JPH09262500A - Electrical precipitator - Google Patents

Electrical precipitator

Info

Publication number
JPH09262500A
JPH09262500A JP7427696A JP7427696A JPH09262500A JP H09262500 A JPH09262500 A JP H09262500A JP 7427696 A JP7427696 A JP 7427696A JP 7427696 A JP7427696 A JP 7427696A JP H09262500 A JPH09262500 A JP H09262500A
Authority
JP
Japan
Prior art keywords
dust collecting
collecting electrode
electrostatic precipitator
electric field
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7427696A
Other languages
Japanese (ja)
Inventor
Hiroshi Takamatsu
博 高松
Koichi Toyoda
弘一 豊田
Yasuo Hamada
靖夫 濱田
Kiyoshi Fujino
清 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP7427696A priority Critical patent/JPH09262500A/en
Publication of JPH09262500A publication Critical patent/JPH09262500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent dust particles from rescattering from a dust collecting electrode in an electrical precipitator for air cleaning. SOLUTION: DC high voltage V is applied between a dust collecting electrode 41 and a counter electrode 45 to collect charged dust particles on the dust collecting electrode 41. In the whole area of the surface of the dust collecting electrode 41, a lot of minute projecting parts 43 are provided at minute intervals to form an unequal electric field near the surface of the dust collecting electrode. The smaller the radius of curvature R of the projecting part, the better. It is desirable that the distance L between the adjoining projecting parts is sufficiently narrow so that there may exist no clearance in which the unequal electric field is not formed. Practically, it is preferable that R<=0.1mm and L/R=2∼4. As the dust collecting electrode, a flat metal plate in which a part thereof the cut and raised or that in which slits are arranged, or an insulating board on which lattice-shaped print wiring is formed, or a metal net, or a dielectric arranged between two counter electrodes forming a strong electric field in a float state, or a metal fiber net may be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気清浄のための
電気集塵器に関する。
TECHNICAL FIELD The present invention relates to an electrostatic precipitator for air cleaning.

【0002】[0002]

【従来の技術】コロナ放電によってイオン風を発生させ
ると共に、浮遊粒子を帯電させて静電力で分離除去する
電気集塵器が広く知られている。
2. Description of the Related Art An electrostatic precipitator is widely known in which ionic wind is generated by corona discharge and floating particles are charged and separated and removed by electrostatic force.

【0003】例えば、特公平6ー36875号公報に
は、上述の作用を奏する様にイオン化線(放電電極)と
集塵電極及び対向電極を所定の位置に配置した電気集塵
器を用いた空気清浄器が開示されている。この技術は、
放電電極及び対向電極と集塵電極との間に直流高電圧を
印加してコロナ放電を発生させ、ここを通過する空気中
の分子及び浮遊粒子をイオン化及び帯電させ、イオンの
分子への衝突エネルギーによりイオン風を発生させて帯
電粒子を対向電極と集塵電極との間の空間へ導くと共
に、対向電極と集塵電極との間に高電圧を印加して強電
界を形成し、この強電界によるクーロン力により帯電粒
子を集塵電極に捕集するものである。
For example, Japanese Examined Patent Publication No. 6-36875 discloses air using an electrostatic precipitator in which an ionizing wire (discharge electrode), a dust collecting electrode and a counter electrode are arranged at predetermined positions so as to achieve the above-mentioned operation. A purifier is disclosed. This technology is
A DC high voltage is applied between the discharge electrode and the counter electrode and the dust collecting electrode to generate a corona discharge, which ionizes and charges the molecules and suspended particles in the air passing therethrough, and the collision energy of the ions to the molecules. Generate an ion wind to guide the charged particles into the space between the counter electrode and the dust collecting electrode, and apply a high voltage between the counter electrode and the dust collecting electrode to form a strong electric field. The charged particles are collected by the dust collecting electrode by the Coulomb force by the.

【0004】[0004]

【発明が解決しようとする課題】この様な構成の電気集
塵器は、イオン風によって空気が流動するので、ファン
の無いイオン式空気清浄器等に広く利用されている。
The electrostatic precipitator having such a structure is widely used as an ion type air cleaner without a fan because air flows by the ionic wind.

【0005】しかし、生活空間に最も多く存在する、大
気塵、タバコ煙などの0.1〜数ミクロンの粒子は、集塵
電極へ捕集されると電荷を失うためクローン力が働かな
くなり、集塵電極から離脱して、空気中へ再飛散してし
まう事がある。
However, particles of 0.1 to several microns such as air dust and cigarette smoke, which are most abundant in the living space, lose their electric charge when they are collected by the dust collecting electrode, so that the cloning force does not work and the dust collecting electrode There is a case that it is separated from and re-scatters in the air.

【0006】本発明の目的は、集塵電極に捕集された粒
子の再飛散を防ぐことの出来る電気集塵器を提供するも
のである。
An object of the present invention is to provide an electrostatic precipitator capable of preventing re-scattering of particles collected by a dust collecting electrode.

【0007】[0007]

【課題を解決するための手段】本発明は、集塵電極がそ
の表面の近傍に不平等電界が形成されるように構成され
ていることを特徴とする。
The present invention is characterized in that the dust collecting electrode is constructed so that an unequal electric field is formed in the vicinity of its surface.

【0008】これにより、集塵電極の表面近傍では帯電
粒子に対するクーロン力だけでなく、不平等電界での電
界グラディエント(電界勾配)に起因するグラディエン
ト力が働く。このグラディエント力とは、不平等電界中
の電界グラディエントによって、粒子が不均衡な分極を
起こして電界の強い方向へ引き寄せられる力であり、粒
子が帯電していなくても働く。そのため、集塵電極に捕
集された粒子が電荷を失っても、グラディエント力によ
って集塵電極に引き付けられたままとなる。
As a result, not only the Coulomb force with respect to the charged particles but also the gradient force due to the electric field gradient (electric field gradient) in the non-uniform electric field acts near the surface of the dust collecting electrode. The gradient force is a force that causes unbalanced polarization of particles due to an electric field gradient in an unequal electric field and attracts the particles in a strong electric field direction, and works even if the particles are not charged. Therefore, even if the particles collected by the dust collecting electrode lose the charge, they remain attracted to the dust collecting electrode by the gradient force.

【0009】不平等電界を形成するための集塵電極の構
成の1例は、表面に複数の凸部を設けることである。対
向電極から集塵電極に向かう電気力線は凸部に集束する
ので、凸部の近傍で電気力線の粗、密が出来る。このた
め、集塵電極の凸部近傍で電界強度のグラディエントが
生じ、凸部近傍までクーロン力で引き寄せられた帯電粒
子に対し更にグラディエント力が加わる。
One example of the structure of the dust collecting electrode for forming the non-uniform electric field is to provide a plurality of convex portions on the surface. The lines of electric force directed from the counter electrode to the dust collecting electrode are focused on the convex portion, so that the lines of electric force can be coarse and dense in the vicinity of the convex portion. Therefore, a gradient of the electric field strength is generated in the vicinity of the convex portion of the dust collecting electrode, and the gradient force is further applied to the charged particles attracted by the Coulomb force to the vicinity of the convex portion.

【0010】凸部の曲率半径Rは小さいほど好ましく、
又、隣接する凸部間の間隔Lは、凸部間に不平等電界が
形成されない隙間が存在しないよう十分に狭い間隔であ
ることが望ましい。これを満足する条件として、L/R
=2〜4程度であることが好ましい。
The smaller the radius of curvature R of the convex portion, the better,
Further, it is desirable that the distance L between the adjacent protrusions is sufficiently narrow so that there is no gap between the protrusions where an uneven electric field is not formed. As a condition that satisfies this, L / R
= 2-4 is preferable.

【0011】集塵電極の別の構成例は、導電体の網、例
えば金属網である。この場合、網の線半径は出来るだけ
細く、例えば0.1mm 以下が望ましい。電気力線は網の各
格子線に集束するので、網の近傍に不平等電界が形成さ
れ、そこにグラディエント力が発生する。
Another example of the structure of the dust collecting electrode is a mesh of conductors, for example, a metal mesh. In this case, the line radius of the net should be as thin as possible, for example 0.1 mm or less. Since the lines of electric force are focused on each grid line of the net, an unequal electric field is formed near the net, and a gradient force is generated there.

【0012】更に別の例としては、集塵電極に複数の切
り起こした部分を設けたり、複数のスリットを形成して
もよい。電気力線は切り起こし部分、又はスリットのエ
ッヂ部分に集束し、不平等電界を形成する。
As still another example, the dust collecting electrode may be provided with a plurality of cut and raised portions or a plurality of slits. The lines of electric force are focused on the cut-and-raised part or the edge part of the slit to form an unequal electric field.

【0013】或は、絶縁基板に導体のプリント配線で格
子状に形成して、これを集塵電極として用いてもよい。
電気力線はプリント配線のエッヂ部分に集束し、不平等
電界を形成する。
Alternatively, the printed wiring of the conductor may be formed in a grid pattern on the insulating substrate and used as a dust collecting electrode.
The lines of electric force are focused on the edges of the printed wiring and form an unequal electric field.

【0014】更に別の構成例は、電圧が印加された少な
くとも2枚の対向電極の間に、集塵電極として、誘電体
又は導電体の繊維集合又は網を電気的にフロート状態で
配設する。この場合は、誘電体又は導体の分極作用によ
り各繊維又は網の各格子線に電気力線が集束し、この近
傍が不平等電界となる。
In still another configuration example, a fiber assembly or net of a dielectric material or a conductor material is arranged in an electrically floating state as a dust collecting electrode between at least two counter electrodes to which a voltage is applied. . In this case, due to the polarization effect of the dielectric or conductor, the lines of electric force are focused on each lattice line of each fiber or net, and an unequal electric field is generated in the vicinity thereof.

【0015】上述した切り起こし部分、スリット、プリ
ント配線の格子線、網の格子線又は繊維の間隔も、不平
等電界が形成されない隙間が存在しないよう十分狭い間
隔であることが望ましい。
It is desirable that the above-mentioned cut-and-raised portions, slits, grid lines of printed wiring, grid lines of meshes or fibers are also sufficiently narrow so that there are no gaps in which an unequal electric field is not formed.

【0016】[0016]

【実施の形態】以下、本発明の電気集塵器の実施の形態
を図面を用いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the electrostatic precipitator of the present invention will be described in detail below with reference to the drawings.

【0017】図1は本発明の集塵電極の原理図である。
全体として平板形の集塵電極1の表面には凸部3が設け
てあり、この集塵電極1と、これに対向して平行に配置
されたやはり平板形の対向電極5との間に直流高電圧V
を印加すると、図の矢印の様な電気力線によって電界E
が発生する。
FIG. 1 shows the principle of the dust collecting electrode of the present invention.
A convex portion 3 is provided on the surface of the flat plate type dust collecting electrode 1 as a whole, and a direct current is provided between the dust collecting electrode 1 and a flat plate type counter electrode 5 which is arranged in parallel to face the dust collecting electrode 1. High voltage V
Is applied, an electric field E is generated by the line of electric force as shown by the arrow in the figure.
Occurs.

【0018】凸部3の近傍を除いては、電気力線は等密
度で平行に流れ平等電界を形成している。この平等電界
中に入った電荷Qをもつ荷電粒子は、電気力線方向のク
ーロン力(=EQ)を受けて集塵電極1の方へ移動す
る。
Except in the vicinity of the convex portion 3, the lines of electric force flow in parallel with equal density and form a uniform electric field. The charged particles having the electric charge Q that have entered the uniform electric field receive the Coulomb force (= EQ) in the direction of the electric force line and move toward the dust collecting electrode 1.

【0019】凸部3の近傍では電気力線が図の矢印のよ
うに、凸部3に向かって集束するため、凸部の近傍は、
電気力線に沿った方向で電界のグラディエント(勾配、
強度差)を有する不平等電界となる。クーロン力の作用
で不平等電界中に到達した荷電粒子7は、クーロン力に
加えて、電界の強い方、つまり凸部3の方向へ向かうグ
ラディエント力を受ける。
In the vicinity of the convex portion 3, the lines of electric force are focused toward the convex portion 3 as shown by the arrow in the figure.
The electric field gradient (gradient,
An unequal electric field having a strength difference). The charged particles 7 that have reached the unequal electric field due to the action of the Coulomb force are subjected to the strong Coulomb force, that is, the gradient force toward the direction of the convex portion 3.

【0020】このグラディエント力F(ベクトル)は、
電界E(ベクトル)のグラディエントに起因し、次式で
表せる事が一般に知られている。
This gradient force F (vector) is
It is generally known that it can be expressed by the following equation due to the gradient of the electric field E (vector).

【0021】[0021]

【数1】 [Equation 1]

【数2】 ここに、aは粒子径、εrは粒子の比誘電率 、εmは
空気(媒体)の比誘電率である。
[Equation 2] Here, a is a particle diameter, εr is a relative permittivity of particles, and εm is a relative permittivity of air (medium).

【0022】ここで、図1の凸部3の近傍でのグラディ
エント力Fを求めると次式で表される。
The gradient force F in the vicinity of the convex portion 3 shown in FIG. 1 is calculated by the following equation.

【0023】[0023]

【数3】 ここに、Rは凸部の曲率半径、dは荷電粒子の平板表面
からの距離である。
(Equation 3) Here, R is the radius of curvature of the convex portion, and d is the distance of the charged particles from the flat plate surface.

【0024】この式からわかる様に、粒子径a、粒子の
比誘電率εrが大きい程、グラディエント力Fは大きく
なる。
As can be seen from this equation, the gradient force F increases as the particle diameter a and the relative permittivity εr of the particles increase.

【0025】計算によると粒子径aが0.2μm付近より大
きくなると、急激にグラディエント力が大きく作用する
事から、生活空間に多い大気塵、タバコ煙等の、粒子径
が0.1 〜数ミクロンの粒子はグラディエント力が有効に
作用する事が期待できる。
According to the calculation, when the particle diameter a becomes larger than about 0.2 μm, the gradient force suddenly becomes large. Therefore, particles such as air dust, cigarette smoke, etc., which have a lot of living space, having a particle diameter of 0.1 to several microns It can be expected that the gradient force will work effectively.

【0026】又、凸部の曲率半径Rが小さい程グラディ
エント力Fは大きくなり、凸部の中心からの距離dが大
きくなると、急激にグラディエント力Fは小さくなる。
Further, the gradient force F increases as the radius of curvature R of the convex portion decreases, and the gradient force F decreases rapidly as the distance d from the center of the convex portion increases.

【0027】図2は、式(3)より求めた、凸部の曲率
半径Rをパラメータとした、凸部からの距離dとグラデ
ィエント力Fとの関係曲線である。環境条件として、電
界E=1.0MV/m、粒子径a=1.0μm、粒子の比誘電
率εr=4を選んである。
FIG. 2 is a relational curve between the distance d from the convex portion and the gradient force F with the radius of curvature R of the convex portion as a parameter, which is obtained from the equation (3). As environmental conditions, an electric field E = 1.0 MV / m, a particle diameter a = 1.0 μm, and a relative dielectric constant εr = 4 of the particles are selected.

【0028】このグラフより、粒子の凸部表面からの距
離がほぼ曲率半径Rに相当する範囲内では大きなグラデ
ィエント力Fが働くが、これより離れると急激にグラデ
ィエント力Fは減衰することがわかる。
From this graph, it can be seen that a large gradient force F acts within the range where the distance from the surface of the convex portion of the particle corresponds to the radius of curvature R, but if the distance is farther than this, the gradient force F rapidly attenuates.

【0029】又、凸部表面に捕集された粒子は、電荷を
失い0eとなっても、例えば曲率半径Rが0.1mmの場
合の凸部表面でのグラディエント力Fは、図より1.5×
10-13Nである。これは、同じ電界強度E=1.0MV/
m中にある1e(=1.6×10-19クーロン)の電荷を持
つ荷電粒子に働くクーロン力1.6×10-13Nとほぼ同じ
値である。実験的に、1eの電荷があれば粒子は集塵電
極に吸着保持されることが判っている。
Further, even if the particles collected on the surface of the convex portion lose the charge and become 0e, for example, when the radius of curvature R is 0.1 mm, the gradient force F on the surface of the convex portion is 1.5 ×
It is 10 -13 N. This is the same electric field strength E = 1.0 MV /
It is almost the same value as the Coulomb force of 1.6 × 10 -13 N acting on a charged particle having a charge of 1e (= 1.6 × 10 -19 Coulomb) in m. Experimentally, it has been found that particles having a charge of 1e are adsorbed and held by the dust collecting electrode.

【0030】従って、曲率半径Rが0.1mm以下の凸部
に捕集された粒子が電荷を失っても、集塵電極に吸着保
持するに足るグラディエント力が働くことがわかる。こ
のことから、曲率半径0.1mm以下の凸部を設ければ、
グラディエント力が有効に利用できることがわかる。
Therefore, it can be seen that even if the particles trapped in the convex portion having the radius of curvature R of 0.1 mm or less lose the electric charge, a gradient force sufficient to attract and hold the dust collecting electrode is exerted. From this, if a convex part with a radius of curvature of 0.1 mm or less is provided,
It can be seen that the gradient force can be effectively used.

【0031】又、再飛散現象は粒子径が大きい程起こり
やすいが、(3)式からわかるように、グラディエント
力Fは粒子径aが大きい程大きくなるので、大きな粒子
に対してより有効に作用する。
Further, the re-scattering phenomenon tends to occur as the particle diameter becomes larger, but as can be seen from the equation (3), the gradient force F becomes larger as the particle diameter a becomes larger, so that it acts more effectively on large particles. To do.

【0032】次に、グラディエント力は凸部のどの面で
最も強く働くかを実験より求めてみた。図3は凸部のグ
ラディエント力測定位置を示す図であり、電極表面と直
角方向(a)、電極表面と45度の方向(b)及び電極
表面と平行方向(c)の3方向のグラディエント力Fを
測定した。尚、電気力線は図の矢印のように流れている
ものとする。
Next, an experiment was conducted to find out on which surface of the convex portion the gradient force works most strongly. FIG. 3 is a diagram showing the gradient force measurement position of the convex portion, and the gradient force in three directions, that is, the direction perpendicular to the electrode surface (a), the direction 45 degrees from the electrode surface (b) and the direction parallel to the electrode surface (c). F was measured. The lines of electric force are assumed to flow as shown by the arrows in the figure.

【0033】図4(a)、(b)、(c)はそれぞれ図
3の(a)、(b)、(c)の方向で測定したグラディ
エント力Fの特性曲線を、曲率半径Rをパラメータとし
て示す。
4 (a), (b) and (c) are characteristic curves of the gradient force F measured in the directions of (a), (b) and (c) of FIG. Show as.

【0034】この図より、電極表面と直角方向(a)の
凸部面上は最もグラディエント力Fが小さく(図4
(a))、電極表面と平行方向(c)のグラディエント
力Fが最も大きい事がわかる(図4(c))。従って、
電極表面に多数の凸部を並べる場合は、各凸部の平行方
向のグラディエント力Fを有効に活かせるよう、凸部を
適当な間隔で配置することが肝要である。すなわち、凸
部の間隔が広すぎると、凸部間に不平等電界が形成され
ず、グラディエント力が発生しない隙間が生じるため、
広すぎない間隔が必要である。
From this figure, the gradient force F is smallest on the convex surface in the direction (a) perpendicular to the electrode surface (see FIG. 4).
(A)), it can be seen that the gradient force F in the direction (c) parallel to the electrode surface is the largest (FIG. 4 (c)). Therefore,
When a large number of convex portions are arranged on the electrode surface, it is important to arrange the convex portions at appropriate intervals so that the gradient force F in the parallel direction of each convex portion can be effectively utilized. That is, if the spacing between the convex portions is too wide, an unequal electric field is not formed between the convex portions, and there is a gap in which no gradient force is generated,
The spacing should not be too wide.

【0035】図4(c)に示した実験結果によると、凸
部表面から曲率半径Rに相当する距離を越すと、急激に
グラディエント力が減衰することが観測されている。こ
のことから各々の凸部のグラディエント力が有効に働く
範囲は、凸部表面から曲率半径Rに相当する距離以内が
適当であると言える。従って、凸部の中心間の距離をL
とすると、L/R≦4の範囲内で凸部の間隔を選ぶこと
が望ましい。一方、凸部同志が機械的に重なり合わない
ためには、L/R>2である必要がある。以上より、凸
部の曲率半径Rと、凸部中心間隔Lとの関係は、L/R
=2〜4程度であることが望ましい。
According to the experimental result shown in FIG. 4 (c), it is observed that the gradient force is rapidly attenuated when the distance from the surface of the convex portion exceeds the radius of curvature R. From this, it can be said that the range where the gradient force of each convex portion effectively works is within a distance corresponding to the radius of curvature R from the surface of the convex portion. Therefore, the distance between the centers of the protrusions is L
Then, it is desirable to select the interval of the convex portions within the range of L / R ≦ 4. On the other hand, it is necessary that L / R> 2 so that the convex parts do not mechanically overlap each other. From the above, the relationship between the radius of curvature R of the convex portion and the convex portion center interval L is L / R
= 2-4 is desirable.

【0036】尚、凸部間隔は必ずしも全て一定である必
要はなく、上記条件の範囲内であれば凸部間隔はばらつ
いていてもかまわない。
It should be noted that the intervals between the convex portions are not necessarily all constant, and the intervals between the convex portions may vary within the range of the above conditions.

【0037】この様な条件を満たすよう集塵電極表面に
凸部を多数形成すれば、表面全域に万遍なく不平等電界
が形成され、集塵電極表面のほぼ全域にグラディエント
力が発生して、集塵電極に捕集された粒子を集塵電極に
吸着保持する事が出来る。
If a large number of convex portions are formed on the surface of the dust collecting electrode so as to satisfy such conditions, an uneven electric field is evenly formed on the entire surface of the dust collecting electrode, and a gradient force is generated on almost the entire surface of the dust collecting electrode. The particles collected by the dust collecting electrode can be adsorbed and held on the dust collecting electrode.

【0038】又、荷電粒子が集塵電極に捕集されて電荷
を失って起こる再飛散だけでなく、タバコ煙等の高抵抗
粒子(108Ωm以上)が集塵電極との間に逆コロナ放
電を発生し、粒子を反発電位に再荷電してしまう為に起
こる逆電離再飛散や、金属粉等の低抵抗粒子(100Ω
m以下)が集塵電極と同電位に帯電し、反発力によって
起こる誘導再飛散の現象も、前述のグラディエント力に
よって減少させることができる。
Further, not only re-scattering occurs when charged particles are collected by the dust collecting electrode and loses electric charge, but also high resistance particles (10 8 Ωm or more) such as cigarette smoke are reverse corona between the dust collecting electrode and the dust collecting electrode. Reverse ionization and re-dispersion caused by the occurrence of discharge and recharging of the particles to the anti-power generation level, and low resistance particles such as metal powder (100Ω
(m or less) is charged to the same potential as the dust collecting electrode, and the phenomenon of induced re-scattering caused by repulsive force can also be reduced by the above-mentioned gradient force.

【0039】更に、荷電粒子が電極面へ移動する速度w
は次の式で表される。
Further, the speed w at which the charged particles move to the electrode surface.
Is represented by the following equation.

【0040】 w=F/6πaμ (4) ここに、Fはグラディエント力及びクーロン力の総和、
aは粒子径、μは空気の粘度である。
W = F / 6πaμ (4) where F is the sum of the gradient force and the Coulomb force,
a is the particle diameter, and μ is the viscosity of air.

【0041】(4)式より、集塵電極近傍での大きなグ
ラディエント力Fによって、粒子の集塵電極への移動速
度w、即ち集塵速度が速まることが予測され、電極から
の再飛散防止と相俟って集塵効率の向上が期待できる。
From the equation (4), it is predicted that the moving speed w of the particles to the dust collecting electrode, that is, the dust collecting speed is increased by the large gradient force F in the vicinity of the dust collecting electrode, and the re-scattering from the electrode is prevented. Together with this, improvement of dust collection efficiency can be expected.

【0042】次に、本発明の具体的な実施形態を述べ
る。
Next, specific embodiments of the present invention will be described.

【0043】図5は第1の実施形態を示し、集塵電極と
して導電体の網、例えば金属網を用いる。集塵電極たる
金属網11と対向平板電極13との間に直流高電圧Vが
印加される。図示しないファン又は図示しない放電電極
でのコロナ放電によるイオン風などの作用により、ダス
トを含んだ空気が図の矢印のように両電極間11、13
にほぼ平行に流される。
FIG. 5 shows the first embodiment, in which a net of conductors such as a metal net is used as the dust collecting electrode. A high DC voltage V is applied between the metal net 11 which is a dust collecting electrode and the counter flat plate electrode 13. Due to the action of ion wind or the like due to corona discharge at a fan (not shown) or a discharge electrode (not shown), air containing dust is generated between the electrodes 11 and 13 as indicated by arrows in the figure.
Is almost parallel to.

【0044】金属性網11の格子つまり網線は出来るだ
け細く例えば0.1mm 以下、網線のピッチは出来るだけ
狭く例えば0.2mm 以下が望ましい。この様な構成によ
り、金属性網11と対向平板電極13との間には全体的
に平等電界が形成されるが、金属網11の近傍では各網
線へ電気力線が集束して、不平等電界が形成されるの
で、不平等電界でのグラディエント力による再飛散防止
作用が働き、ダスト粒子は金属網11に吸着保持され
る。
It is desirable that the grid of the metallic net 11, that is, the net wire is as thin as possible, for example, 0.1 mm or less, and the pitch of the net wire is as narrow as possible, for example, 0.2 mm or less. With such a configuration, a uniform electric field is formed between the metallic net 11 and the opposing flat plate electrode 13, but in the vicinity of the metallic net 11, the lines of electric force are focused on each net wire and the electric field lines are not formed. Since a uniform electric field is formed, the dust particles are adsorbed and held by the metal net 11 by the action of preventing re-scattering due to the gradient force in the non-uniform electric field.

【0045】図6(a)は第2の実施形態を示し、2枚
の対向平板電極21、23の間に直流高電圧Vを印加す
る。集塵電極25は、前記両電極21、23間にそれら
と平行に、電圧を印加せずにつまり電気的にフロート状
態で、配置する。空気の流れる方向は第1の実施形態と
同様に電極にほぼ平行である。ここで、集塵電極25は
誘電体(例えばガラス繊維、樹脂繊維等)で編んだ網、
繊維集合体、紙又は布等である。
FIG. 6A shows the second embodiment, in which a high DC voltage V is applied between the two opposed plate electrodes 21 and 23. The dust collecting electrode 25 is arranged between the two electrodes 21 and 23 in parallel to them without applying a voltage, that is, in an electrically floating state. The air flow direction is substantially parallel to the electrodes as in the first embodiment. Here, the dust collecting electrode 25 is a net woven with a dielectric (eg, glass fiber, resin fiber, etc.),
It is a fiber aggregate, paper or cloth.

【0046】集塵電極25の各繊維又は網線は対向電極
21、22間の電界により分極作用を起こし、図6
(b)に示すように、各繊維又は各網線に電気力線が集
束する。この結果、集塵電極25の近傍は不平等電界と
なり、この部分でグラディエント力が発生する。従っ
て、この集塵電極25に捕集された粒子は、再飛散が防
止される。更に、この様な網状又は繊維集合体状の集塵
電極25を用いると、ダスト粒子を機械的に捕集する機
械的フィルタとしての効果もある。
Each fiber or mesh wire of the dust collecting electrode 25 is polarized by the electric field between the counter electrodes 21 and 22, and
As shown in (b), the lines of electric force are focused on each fiber or each mesh wire. As a result, an unequal electric field is generated in the vicinity of the dust collecting electrode 25, and a gradient force is generated in this part. Therefore, the particles collected by the dust collecting electrode 25 are prevented from re-scattering. Further, the use of such a net-like or fiber-aggregate dust collecting electrode 25 also has an effect as a mechanical filter for mechanically collecting dust particles.

【0047】又、集塵電極25に金属の網又は繊維集合
体を用いても、金属は誘電率が無限とみなせるため際立
った分極を生じるので、上記と同様の効果がある。しか
し、金属は強電界中に配置されると放電の危険性を伴う
ので、絶縁被覆した金属網を用いることが望ましい。
Even if a metal net or a fiber aggregate is used for the dust collecting electrode 25, the metal has a dielectric constant which is regarded as infinite, so that a remarkable polarization occurs. Therefore, the same effect as described above can be obtained. However, it is desirable to use an insulation-coated metal mesh because metals carry the risk of discharge when placed in a strong electric field.

【0048】従って、この第2の実施形態の網状集塵電
極25は、誘電率が高く、かつ表面抵抗もしくは絶縁抵
抗の高い材料で、網線又は繊維のピッチは第1の実施形
態の場合と同じ条件とすることが望ましい。
Therefore, the net-like dust collecting electrode 25 of the second embodiment is made of a material having a high dielectric constant and a high surface resistance or insulation resistance, and the pitch of the net wires or fibers is the same as that of the first embodiment. It is desirable to use the same conditions.

【0049】図7は第3の実施形態を示し、集塵電極3
1は、金属平板の表面をサンドブラスト処理、化学的エ
ッチング或いはプラズマエッチング等により粗面にし
て、電極表面全域に多数の凹凸部33を設けたものであ
る。凸部の寸法及び間隔は前述の範囲にすることが望ま
しい。
FIG. 7 shows a third embodiment, in which the dust collecting electrode 3
In No. 1, the surface of a metal flat plate is roughened by sandblasting, chemical etching, plasma etching or the like, and a large number of uneven portions 33 are provided on the entire surface of the electrode. It is desirable that the size and interval of the convex portions be within the above range.

【0050】凹凸面を有する集塵電極31と対向平板電
極35との間に直流高電圧Vを印加すれば、集塵電極3
1の凹凸部33の近傍で不平等電界が形成され、グラデ
ィエント力が発生し、この近傍の粒子は集塵電極に吸着
保持される。
If a high DC voltage V is applied between the dust collecting electrode 31 having an uneven surface and the counter flat plate electrode 35, the dust collecting electrode 3
An unequal electric field is formed in the vicinity of the uneven portion 33 of No. 1 and a gradient force is generated, and particles in the vicinity are adsorbed and held by the dust collecting electrode.

【0051】図8(a)は第4の実施形態を示し、集塵
電極41は金属平板の裏面からプレス加工して、表面に
微小間隔で多数の凸部43を設けたものである。この集
塵電極41と対向平板電極45との間に直流高電圧Vを
印加すると、図8(b)に示すように電気力線は凸部に
集束し、この部分でグラディエント力が発生する。
FIG. 8A shows a fourth embodiment, in which the dust collecting electrode 41 is obtained by press working from the back surface of a metal flat plate, and a large number of convex portions 43 are provided on the front surface at minute intervals. When a DC high voltage V is applied between the dust collecting electrode 41 and the counter plate electrode 45, the lines of electric force are focused on the convex portion as shown in FIG. 8B, and a gradient force is generated at this portion.

【0052】図9(a)は第5の実施形態を示し、集塵
電極51は、金属平板の微小間隔の多数の部分を対向電
極53側に切り起こしたものであり、対向平板電極53
との間に直流高電圧Vを印加すると、図9(b)に示す
ように、切り起こした部分53に電気力線が集束し、グ
ラディエント力を発生させる。
FIG. 9A shows a fifth embodiment, in which the dust collecting electrode 51 is obtained by cutting and raising a large number of finely spaced portions of a metal plate toward the counter electrode 53 side.
When a high DC voltage V is applied between the two, the lines of electric force are focused on the cut-and-raised portion 53 to generate a gradient force, as shown in FIG. 9B.

【0053】図10(a)は第6の実施形態を示し、集
塵電極61は、図10(b)の細部詳細図に示す様に、
絶縁基板65の上に、格子状のプリント配線67を形成
したものである。この様に形成された集塵電極61と対
向平板電極63との間に直流高電圧Vを印加すると、図
10(c)に示すように、電気力線はプリント配線7の
エッヂ部分に集束し電極61表面にグラディエント力が
発生する。
FIG. 10A shows a sixth embodiment, and the dust collecting electrode 61 is as shown in the detailed detailed view of FIG. 10B.
A grid-shaped printed wiring 67 is formed on the insulating substrate 65. When a high DC voltage V is applied between the dust collecting electrode 61 and the counter plate electrode 63 formed in this way, the lines of electric force are focused on the edge portion of the printed wiring 7, as shown in FIG. A gradient force is generated on the surface of the electrode 61.

【0054】図11(a)は第7の実施形態を示し、集
塵電極71は、金属平板を打ち抜き加工して、微小間隔
でスリット73を設けたものであり、対向平板電極75
との間に直流高電圧Vを印加すると、図11(b)に示
すようにスリット73のエッヂ部分に電気力線が集束
し、電極71表面にグラディエント力が発生する。
FIG. 11A shows a seventh embodiment, in which the dust collecting electrode 71 is obtained by punching a metal flat plate and providing slits 73 at minute intervals.
When a high DC voltage V is applied between the two, the lines of electric force are focused on the edge portion of the slit 73 and a gradient force is generated on the surface of the electrode 71, as shown in FIG.

【0055】以上、幾つかの実施形態を説明したが、本
発明は、集塵電極表面の少なくとも一部の領域に亘って
不平等電界が形成されるように集塵電極が構成されてい
れば、上記実施形態の内容のみに限定されるものではな
く、種々の変形、改良、修正を加えた態様で実施するこ
とができる。
Although some embodiments have been described above, the present invention is not limited as long as the dust collecting electrode is constructed so that an unequal electric field is formed over at least a part of the surface of the dust collecting electrode. However, the present invention is not limited to the contents of the above-described embodiment, and can be carried out in various modified, improved, and modified modes.

【0056】以上述べた実施形態は、集塵電極を正電位
にしているから、図示しない放電極でコロナ放電を生じ
させてダスト粒子を帯電させる場合には、粒子を負電位
に帯電させる負コロナ放電を生じさせることになるが、
オゾンの発生を抑えるために、正コロナ放電にして集塵
電極を負電位にバイアスする構成とすることもできる。
In the embodiment described above, since the dust collecting electrode is set to a positive potential, when a corona discharge is generated by a discharge electrode (not shown) to charge the dust particles, a negative corona that charges the particles to a negative potential is used. Will cause a discharge,
In order to suppress the generation of ozone, a positive corona discharge may be used to bias the dust collecting electrode to a negative potential.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
集塵電極に捕集された粒子の再飛散を防ぐ事が出来る。
As described above, according to the present invention,
It is possible to prevent the particles collected on the dust collecting electrode from re-scattering.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の集塵電極の原理図。FIG. 1 is a principle diagram of a dust collecting electrode of the present invention.

【図2】理論計算によるグラディエント力の特性曲線。FIG. 2 is a characteristic curve of gradient force obtained by theoretical calculation.

【図3】凸部のグラディエント力の測定位置を示す図。FIG. 3 is a diagram showing a measurement position of a gradient force of a convex portion.

【図4】図3の各測定位置でのグラディエント力の特性
曲線であり、(a)は電極表面と直角方向、(b)は電
極表面と45度の方向、(c)は電極表面と平行方向で
のグラディエント力を示す。
4 is a characteristic curve of gradient force at each measurement position in FIG. 3, where (a) is a direction perpendicular to the electrode surface, (b) is a direction at 45 degrees with the electrode surface, and (c) is parallel to the electrode surface. Shows the gradient force in the direction.

【図5】金属網の集塵電極を用いた第1の実施形態の構
成図。
FIG. 5 is a configuration diagram of the first embodiment using a metal net dust collecting electrode.

【図6】(a)は対向電極間に平行に配置した網状の集
塵電極を用いた第2の実施形態の構成図、(b)は電気
力線の集束を示す図。
FIG. 6A is a configuration diagram of a second embodiment using mesh-shaped dust collecting electrodes arranged in parallel between opposed electrodes, and FIG. 6B is a diagram showing focusing of lines of electric force.

【図7】金属平板をブラスト処理して、凹凸部を設けた
集塵電極を用いた第3の実施形態の構成図。
FIG. 7 is a configuration diagram of a third embodiment in which a metal flat plate is blasted to use a dust collecting electrode having an uneven portion.

【図8】(a)は金属平板をプレス加工して凸部を設け
た集塵電極を用いた第4の実施形態の構成図、(b)は
電気力線の集束を示す図。
FIG. 8A is a configuration diagram of a fourth embodiment using a dust collecting electrode having a convex portion formed by pressing a metal flat plate, and FIG. 8B is a diagram showing focusing of electric force lines.

【図9】(a)は金属平板の一部を切り起こした集塵電
極を用いた第5の実施形態の電極構成図、(b)は電気
力線の集束を示す図。
9A is an electrode configuration diagram of a fifth embodiment using a dust collecting electrode obtained by cutting and raising a part of a metal flat plate, and FIG. 9B is a diagram showing focusing of electric force lines.

【図10】(a)は絶縁基板に格子状のプリント配線を
施した集塵電極を用いた第6の実施形態の構成図、
(b)はプリント配線部詳細図、(c)は電気力線の集
束を示す図。
FIG. 10A is a configuration diagram of a sixth embodiment using a dust collecting electrode in which a grid-like printed wiring is provided on an insulating substrate,
(B) is a detailed view of a printed wiring part, and (c) is a view showing focusing of lines of electric force.

【図11】(a)は金属平板を打ち抜き加工して微小間
隔でスリットを設けた集塵電極を用いた第7の実施形態
の構成図、(b)は電気力線の集束を示す図。
11A is a configuration diagram of a seventh embodiment using a dust collecting electrode in which a metal flat plate is punched and slits are provided at minute intervals, and FIG. 11B is a diagram showing focusing of lines of electric force.

【符号の説明】[Explanation of symbols]

1 集塵電極 3 凸部 5、13、23、35、45、55、63、75 対向
平板電極 7 荷電粒子 V直流高電圧 11、21、25、31、41、51、61、71 集
塵電極 33 凹凸部 43 凸部 53 切り起こした部分 65 絶縁基板 67 プリント配線 73 スリット
1 Dust collecting electrode 3 Convex part 5, 13, 23, 35, 45, 55, 63, 75 Opposed plate electrode 7 Charged particle V DC high voltage 11, 21, 25, 31, 41, 51, 61, 71 Dust collecting electrode 33 Concavo-convex part 43 Convex part 53 Cut and raised part 65 Insulating substrate 67 Printed wiring 73 Slit

フロントページの続き (72)発明者 濱田 靖夫 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 藤野 清 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内Front page continuation (72) Inventor Yasuo Hamada 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Equipment Co., Ltd. (72) Kiyoshi Fujino 2-1-1, Nakajima, Kitakyushu, Kitakyushu, Fukuoka No. 1 Totoki Equipment Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 集塵電極とこれに対向して配置された対
向電極間に電界を形成して、前記集塵電極の表面に集塵
する電気集塵器において、前記集塵電極は、前記表面の
近傍に不平等電界が形成される様な構造を有することを
特徴とする電気集塵器。
1. An electrostatic precipitator that collects dust on a surface of the dust collecting electrode by forming an electric field between the dust collecting electrode and a counter electrode arranged to face the dust collecting electrode. An electrostatic precipitator having a structure in which an unequal electric field is formed near the surface.
【請求項2】 請求項1記載の電気集塵器において、 前記集塵電極は、前記表面上に、複数の凸部を有するこ
とを特徴とする電気集塵器。
2. The electrostatic precipitator according to claim 1, wherein the dust collecting electrode has a plurality of convex portions on the surface.
【請求項3】 請求項1記載の電気集塵器において、 前記集塵電極は、網状導電体を有することを特徴とする
電気集塵器。
3. The electrostatic precipitator according to claim 1, wherein the dust collecting electrode has a mesh conductor.
【請求項4】 請求項1記載の電気集塵器において、 前記集塵電極は、複数の切り起こされた部分を有するこ
とを特徴とする電気集塵器。
4. The electrostatic precipitator according to claim 1, wherein the dust collecting electrode has a plurality of cut and raised portions.
【請求項5】 請求項1記載の電気集塵器において、 前記集塵電極は、複数のスリットを有することを特徴と
する電気集塵器。
5. The electrostatic precipitator according to claim 1, wherein the dust collecting electrode has a plurality of slits.
【請求項6】 請求項1記載の電気集塵器において、 前記集塵電極は、絶縁基板と、その表面に形成された格
子状のプリント配線とを有することを特徴とする電気集
塵器。
6. The electrostatic precipitator according to claim 1, wherein the dust collecting electrode has an insulating substrate and a grid-shaped printed wiring formed on the surface of the insulating substrate.
【請求項7】 請求項1記載の電気集塵器において、 電圧が印加された少なくとも2枚の前記対向電極を備
え、 前記集塵電極は、誘電体及び導電体のいずれかの繊維集
合及び網のいずれかであり、かつ前記少なくとも2枚の
対向電極の間に電気的に浮遊状態で配置されていること
を特徴とする電気集塵器。
7. The electrostatic precipitator according to claim 1, comprising at least two counter electrodes to which a voltage is applied, wherein the dust collecting electrode is a fiber assembly or a mesh of a dielectric or a conductor. And an electrically precipitator which is disposed in an electrically floating state between the at least two opposed electrodes.
【請求項8】 請求項2〜7のいずれか1項記載の電気
集塵器において、 前記凸部、切り起こされた部分、スリット、プリント配
線の格子、網の格子及び繊維集合の繊維のいずれかの間
隔は、不平等電界が存在しない隙間が生じないような間
隔である事を特徴とする電気集塵器。
8. The electrostatic precipitator according to any one of claims 2 to 7, wherein any of the convex portion, the cut and raised portion, the slit, the grid of the printed wiring, the grid of the mesh and the fiber of the fiber assembly. The electrostatic precipitator is characterized in that the intervals are such that there is no gap where there is no unequal electric field.
【請求項9】 請求項2記載の電気集塵器において、 前記凸部の曲率半径Rと、隣接する前記凸部間の間隔L
との比が、ほぼL/R=2〜4である事を特徴とする電
気集塵器。
9. The electrostatic precipitator according to claim 2, wherein the radius of curvature R of the convex portion and the interval L between the adjacent convex portions.
An electrostatic precipitator characterized by having a ratio of approximately L / R = 2-4.
【請求項10】 請求項2又は9のいずれか1項記載の
電気集塵器に於いて、 前記凸部の曲率半径は0.1mm 以下である事を特徴とする
電気集塵器。
10. The electrostatic precipitator according to claim 2, wherein the convex portion has a radius of curvature of 0.1 mm or less.
【請求項11】 請求項3、7及び8のいずれか1項記
載の電気集塵器において、 前記網の格子又は前記繊維集合の繊維の線半径は、0.1m
m 以下である事を特徴とする電気集塵器。
11. The electrostatic precipitator according to claim 3, 7, or 8, wherein the wire radius of the mesh of the mesh or the fibers of the fiber assembly is 0.1 m.
An electrostatic precipitator characterized by being less than m.
JP7427696A 1996-03-28 1996-03-28 Electrical precipitator Pending JPH09262500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7427696A JPH09262500A (en) 1996-03-28 1996-03-28 Electrical precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7427696A JPH09262500A (en) 1996-03-28 1996-03-28 Electrical precipitator

Publications (1)

Publication Number Publication Date
JPH09262500A true JPH09262500A (en) 1997-10-07

Family

ID=13542436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7427696A Pending JPH09262500A (en) 1996-03-28 1996-03-28 Electrical precipitator

Country Status (1)

Country Link
JP (1) JPH09262500A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318496A (en) * 2006-05-26 2007-12-06 Canon Inc Image sensing device
JP2008070750A (en) * 2006-09-15 2008-03-27 Canon Inc Optical apparatus
JP2009072772A (en) * 2007-08-31 2009-04-09 Fuji Electric Systems Co Ltd Electric dust-collector
JP2010063964A (en) * 2008-09-09 2010-03-25 Panasonic Corp Dust collecting apparatus
JP2013226517A (en) * 2012-04-26 2013-11-07 Kajima Corp Charged water particle spray device
WO2014002641A1 (en) * 2012-06-29 2014-01-03 三菱重工メカトロシステムズ株式会社 Wet electric dust-collecting device and exhaust gas treatment method
WO2016136270A1 (en) * 2015-02-27 2016-09-01 パナソニックIpマネジメント株式会社 Electrostatic precipitator
CN107120160A (en) * 2017-06-01 2017-09-01 山东大学 Exhaust gas cleaner and its application based on high-pressure electrostatic precipitation principle
CN107309089A (en) * 2017-07-27 2017-11-03 重庆科技学院 Using the purifier of electrostatic removing impurities
US9839916B2 (en) 2012-07-20 2017-12-12 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Wet-type electric dust collection device and dust removal method
JP6301033B1 (en) * 2017-06-29 2018-03-28 三菱電機株式会社 Dust collector and air conditioner
KR101925847B1 (en) * 2018-02-19 2019-02-27 주식회사 에프에이치아이코리아 Adhesive filter for removing fine dust
WO2019160381A1 (en) * 2018-02-19 2019-08-22 주식회사 에프에이치아이코리아 Fine dust removal apparatus using string electric field
KR20210018594A (en) * 2019-08-06 2021-02-18 주식회사 엔아이티코리아 Dust collector including plate type collecting electrode
WO2022064977A1 (en) * 2020-09-24 2022-03-31 株式会社クリエイティブテクノロジー Dust collector and dust collection method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318496A (en) * 2006-05-26 2007-12-06 Canon Inc Image sensing device
JP2008070750A (en) * 2006-09-15 2008-03-27 Canon Inc Optical apparatus
KR101375468B1 (en) * 2007-08-31 2014-03-18 후지 덴키 가부시키가이샤 Electric dust collector
JP2009072772A (en) * 2007-08-31 2009-04-09 Fuji Electric Systems Co Ltd Electric dust-collector
JP2010063964A (en) * 2008-09-09 2010-03-25 Panasonic Corp Dust collecting apparatus
JP2013226517A (en) * 2012-04-26 2013-11-07 Kajima Corp Charged water particle spray device
JP2014008464A (en) * 2012-06-29 2014-01-20 Mitsubishi Heavy Industries Mechatronics Systems Ltd Wet electric dust collector, and exhaust gas treatment method
WO2014002641A1 (en) * 2012-06-29 2014-01-03 三菱重工メカトロシステムズ株式会社 Wet electric dust-collecting device and exhaust gas treatment method
US9839916B2 (en) 2012-07-20 2017-12-12 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Wet-type electric dust collection device and dust removal method
WO2016136270A1 (en) * 2015-02-27 2016-09-01 パナソニックIpマネジメント株式会社 Electrostatic precipitator
JPWO2016136270A1 (en) * 2015-02-27 2017-12-07 パナソニックIpマネジメント株式会社 Electric dust collector
CN107120160B (en) * 2017-06-01 2024-05-28 山东大学 Tail gas purification device based on high-voltage electrostatic dust removal principle and application thereof
CN107120160A (en) * 2017-06-01 2017-09-01 山东大学 Exhaust gas cleaner and its application based on high-pressure electrostatic precipitation principle
JP6301033B1 (en) * 2017-06-29 2018-03-28 三菱電機株式会社 Dust collector and air conditioner
WO2019003379A1 (en) * 2017-06-29 2019-01-03 三菱電機株式会社 Dust collection device and air conditioner
CN107309089A (en) * 2017-07-27 2017-11-03 重庆科技学院 Using the purifier of electrostatic removing impurities
WO2019160381A1 (en) * 2018-02-19 2019-08-22 주식회사 에프에이치아이코리아 Fine dust removal apparatus using string electric field
KR101925847B1 (en) * 2018-02-19 2019-02-27 주식회사 에프에이치아이코리아 Adhesive filter for removing fine dust
KR20210018594A (en) * 2019-08-06 2021-02-18 주식회사 엔아이티코리아 Dust collector including plate type collecting electrode
WO2022064977A1 (en) * 2020-09-24 2022-03-31 株式会社クリエイティブテクノロジー Dust collector and dust collection method

Similar Documents

Publication Publication Date Title
JPH09262500A (en) Electrical precipitator
KR100688945B1 (en) Device For Collecting A Dust In An Air Purifying System
US7316735B2 (en) Dust collector
US4166729A (en) Collector plates for electrostatic precipitators
EP0730497B1 (en) A precipitator for an electrostatic filter
PL170661B1 (en) Two-stage electrical precipitator
PL181050B1 (en) Separator for removing electrically charged aerosol particles from air
US3740927A (en) Electrostatic precipitator
EP1740310A1 (en) Device for air cleaning
JP2002500562A (en) Air cleaner
JP3503718B2 (en) Electrostatic precipitator and coating film for the precipitating electrode of the precipitating electrode
US3678653A (en) Electrostatic precipitator
CN1223174A (en) Electronic dust-collecting type air purifier
US2973054A (en) Gas cleaning unit
KR102481567B1 (en) Electrostatic precipitator
JP3254134B2 (en) Electric dust collector
CN111542396B (en) Charging equipment and dust remover
EP0044361A1 (en) Electrostatic precipitator comprising a discharge electrode structure
US4364752A (en) Electrostatic precipitator apparatus having an improved ion generating means
JP6953605B2 (en) Electrostatic precipitator
US4518401A (en) Electrostatic precipitating system
CN114901397A (en) Electric dust collector
JP2009061444A (en) Electrostatic dust collector and charger
JP2010063964A (en) Dust collecting apparatus
WO2019087997A1 (en) Electrostatic precipitator