WO2016136041A1 - Hydrophilic film and production process therefor, laminate, protective material for surveillance camera, and surveillance camera - Google Patents

Hydrophilic film and production process therefor, laminate, protective material for surveillance camera, and surveillance camera Download PDF

Info

Publication number
WO2016136041A1
WO2016136041A1 PCT/JP2015/081384 JP2015081384W WO2016136041A1 WO 2016136041 A1 WO2016136041 A1 WO 2016136041A1 JP 2015081384 W JP2015081384 W JP 2015081384W WO 2016136041 A1 WO2016136041 A1 WO 2016136041A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic film
coating
hydrophilic
surveillance camera
siloxane
Prior art date
Application number
PCT/JP2015/081384
Other languages
French (fr)
Japanese (ja)
Inventor
優介 畠中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016136041A1 publication Critical patent/WO2016136041A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin

Definitions

  • the present invention relates to a hydrophilic film, a manufacturing method thereof, a laminate, a protective material for a surveillance camera, and a surveillance camera.
  • Equipment or building materials that are installed indoors or outdoors and used for a long period of time are used by being exposed to various environments, so that dust, dust, gravel, etc. gradually accumulate or get wet in rainwater during wind and rain. Equally, planned functions and performance may be impaired.
  • surveillance cameras are widely used for crime prevention in homes or as security systems for commercial buildings or outdoors.
  • surveillance cameras are stationary devices that include an imaging device such as a charge coupled device (CCD) camera and a protective cover, and are typically used for a long period of time once installed.
  • the protective cover plays a role of protecting the imaging device from rainwater, gravel, or the like while having light transmittance that enables photographing.
  • the protective cover of the surveillance camera is required to be maintenance-free that does not require cleaning over a long period of time in order to always capture a stable image while protecting the imaging device.
  • devices that are generally installed outdoors, such as surveillance cameras tend to lose light transmittance gradually as water drops, dust, dust, or sand adhere to the surface of the device with long-term use. It is in.
  • dust, dust, sand, etc. are likely to accumulate on the surface of the protective cover, and depending on the size or amount of the deposit, there is a concern that not only the light transmission will be significantly reduced, but also that the expected image cannot be recorded. Arise. Therefore, a technique for preventing adhesion of water, dust, dust, sand, or the like to the surface of the device exposed to the outdoor environment has been studied.
  • building materials such as garage roofs for cars or bicycles, soundproof walls for roads, etc. are also used outdoors. It is the same.
  • the water contact angle is 5 to 30 degrees
  • the centerline average roughness Ra of the surface is 0.01 to 0.06 ⁇ m
  • the main component There is disclosed a camera cover having a hydrophilic coat of an inorganic material made of silicone on the outer surface of a resin substrate. This camera cover is supposed to prevent water droplets and dirt from adhering to ensure the sharpness of the image.
  • JP 2013-203774 A discloses an antifogging and antifouling agent for organic substrates containing an organosilica sol, an organic solvent, and boric acid.
  • This anti-fogging and antifouling agent for organic substrates is said to impart an inorganic cured coating film having high hydrophilicity, hardness, adhesion strength to the organic substrate and water resistance and excellent antifouling and antifogging performance.
  • JP 2006-52352 A discloses a hydrolyzate of tetraalkoxysilane and / or a condensate thereof, a metal compound capable of interacting with a silanol group, an alkylene oxide unit, and an HLB (Hydrophile).
  • An aqueous hydrophilization treatment agent comprising a nonionic surfactant having a Lipophile Balance) of 10 to 15, acidic colloidal silica, and a hydrophilic organic solvent is disclosed.
  • 2000-212511 discloses a hydrophilic film provided with a cured coating of a hydrophilic inorganic paint containing a silane-modified surfactant having a terminal reactive group in an inorganic paint mainly composed of a silicone resin.
  • a painted product is disclosed.
  • One embodiment of the present invention has been made in view of the above situation, and provides a hydrophilic film excellent in scratch resistance and hydrophilicity, a method for manufacturing the same, a laminate, a protective material for a surveillance camera, and a surveillance camera.
  • the purpose is to achieve this purpose.
  • ⁇ 1> A hydrophilic film containing a siloxane binder and silica particles, wherein the surface area difference ⁇ S and the surface roughness Ra on the surface satisfy the relationship of the following formula 1.
  • ⁇ S [(S X ⁇ S 0 ) / S 0 ] ⁇ 100 Equation 2
  • S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film
  • S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
  • ⁇ 2> The hydrophilic film according to ⁇ 1>, wherein the surface roughness Ra is 100 nm or less.
  • ⁇ 3> The hydrophilic film according to ⁇ 1> or ⁇ 2>, wherein the surface roughness Ra is 10 nm or less.
  • ⁇ 4> The hydrophilic film according to any one of ⁇ 1> to ⁇ 3>, wherein the surface area difference ⁇ S is 0.1% or more.
  • ⁇ 5> The hydrophilic film according to any one of ⁇ 1> to ⁇ 4>, further containing an antistatic agent.
  • ⁇ 6> The hydrophilic film according to ⁇ 5>, wherein at least one of the antistatic agents is an ionic surfactant.
  • R 1 , R 2 , R 3 , and R 4 each independently represent a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 2 to 20.
  • hydrophilic film according to any one of ⁇ 1> to ⁇ 9>, wherein an average primary particle diameter of the silica particles is 2 nm to 100 nm.
  • Equation 1 ⁇ S is a percentage obtained by Equation 2 below.
  • ⁇ S [(S X ⁇ S 0 ) / S 0 ] ⁇ 100 Equation 2
  • S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film
  • S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
  • hydrophilic film according to ⁇ 11> further comprising a preparation step of preparing a coating liquid by mixing water, a siloxane oligomer, and silica particles having an average primary particle diameter of 2 nm to 100 nm.
  • Production method. ⁇ 13> The method for producing a hydrophilic film according to ⁇ 12>, wherein the preparation step further comprises preparing a coating solution by mixing a catalyst that promotes a condensation reaction of the siloxane oligomer.
  • ⁇ 14> A laminate having a base material and the hydrophilic film according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 15> A surveillance camera protective material comprising the laminate according to ⁇ 14>.
  • ⁇ 16> The surveillance camera protective material according to ⁇ 15>, wherein the base material in the laminate has a hemispherical shape, a semi-ellipsoidal shape, a planar shape, a prismatic shape, or a cylindrical shape.
  • ⁇ 18> A surveillance camera comprising the surveillance camera protective material according to any one of ⁇ 15> to ⁇ 17>.
  • a hydrophilic film excellent in scratch resistance and hydrophilicity a method for producing the same, a laminate, a protective material for a surveillance camera, and a surveillance camera are provided.
  • a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the hydrophilic film contains a siloxane binder and silica particles, and the surface area difference ⁇ S and the surface roughness Ra on the surface satisfy the relationship of the following formula 1.
  • ⁇ S 0.5Ra Formula 1
  • ⁇ S is a percentage obtained by Equation 2 below.
  • ⁇ S [(S X ⁇ S 0 ) / S 0 ] ⁇ 100 Equation 2
  • S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film
  • S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
  • the unit of S 0 and S X may be the same unit (for example, ⁇ m).
  • a hydrophilic membrane refers to a membrane having a water contact angle of 40 ° or less.
  • the water contact angle is a value obtained by measuring 5 times by using a contact angle meter M553G-XM (manufactured by Shiro Sangyo Co., Ltd.) by dropping 1 ⁇ l of pure water on the surface of the hydrophilic membrane and calculating by the ⁇ / 2 method. Arithmetic mean value.
  • the surface roughness Ra is a value measured according to JIS B0601: 2001 using an atomic force microscope (AFM).
  • S X is a value measured by an atomic force microscope (AFM).
  • the surface area difference ⁇ S of the hydrophilic film is expressed by the above formula 2.
  • the surface area difference ⁇ S indicates that the closer the numerical value approaches 0%, the smaller the difference between the numerical values of S X and S 0 . That is, as ⁇ S approaches 0%, the surface of the hydrophilic film becomes flat with less unevenness.
  • the actual surface area represented by S X refers to the total area along the concavo-convex surface measured by an atomic force microscope (AFM).
  • the projected area represented by S 0 refers to an apparent area in the two-dimensional direction of the xy axis that is projected from the perpendicular direction of the hydrophilic film and ignores irregularities on the surface of the hydrophilic film.
  • the value of the measurement range (projected area viewed from the perpendicular direction of the hydrophilic film) on the xy axis when measuring S X can be used as S 0 .
  • the surface area difference ⁇ S can be adjusted to a predetermined range depending on the average primary particle diameter of the silica particles, the ratio of the silica particles to the siloxane binder, and the drying conditions (specifically, drying temperature and drying time) at the time of film formation. .
  • the surface area difference ⁇ S is preferably 0.1% or more.
  • the state where the surface area difference ⁇ S is 0.1% or more is a state where a part of the silica particles is exposed on the surface of the hydrophilic film. When the surface of the film is in this state, the hydrophilicity and scratch resistance of the silica particles can be effectively expressed.
  • the surface area difference ⁇ S is more preferably 0.1% or more and 50% or less, and further preferably 0.1% or more and 5% or less from the same point as described above.
  • the surface roughness Ra can be measured according to JIS B0601: 2001 using an atomic force microscope (AFM) (manufactured by Seiko Instruments Inc., SPA-400).
  • AFM atomic force microscope
  • the surface roughness Ra is preferably 100 nm or less, and more preferably 10 nm or less, from the viewpoint of scratch resistance.
  • the film has excellent scratch resistance and hydrophilicity.
  • the surface area difference ⁇ S and the surface roughness Ra satisfy the relationship of Formula 1, the film has excellent scratch resistance and hydrophilicity.
  • the surface area difference ⁇ S is 5% or less. That is, in the case of the surfaces having the same surface roughness, it is shown that the one with less unevenness is more effective for achieving both scratch resistance and hydrophilicity.
  • the water contact angle of the hydrophilic film is preferably 30 ° or less, more preferably 25 ° or less, and further preferably 15 ° or less. When the water contact angle is in the above range, the surface of the hydrophilic film is more excellent in hydrophilicity.
  • the water contact angle is as described above.
  • the hydrophilic film can achieve the above effect.
  • the surface area difference ⁇ S and the surface roughness Ra satisfy the relationship of the above formula 1, so that the hydrophilic film has a surface with small unevenness. Therefore, for example, when the surface of the hydrophilic film is rubbed with a contaminant such as gravel attached, the area where the hydrophilic film and the contaminant are in contact with each other is increased, and the stress at the time of contact is dispersed. Further, since the unevenness is small, the accumulation of contaminants can be suppressed.
  • the hydrophilic film is considered to be a film that is difficult to be scratched and soiled (that is, excellent in scratch resistance and antifouling property).
  • the hydrophilic film contains a siloxane binder and silica particles (preferably, the siloxane binder is formed by a condensation reaction of siloxane oligomers), the surface of the silica particles in the formed film has a high density of silanol groups. Exists. Therefore, it is considered that the formed hydrophilic film is excellent in hydrophilicity.
  • the hydrophilicity of a film for example, the larger the numerical value of the surface roughness Ra, the more the hydrophilicity appears (for example, Wenzel's formula), and the smaller the numerical value of the surface roughness Ra (surface). It was thought that the hydrophilicity etc. were inferior so that it became flat. However, it is considered that excellent hydrophilicity can be obtained even if the numerical value of the surface roughness Ra is small, by adopting the above-described configuration for the hydrophilic film of one embodiment of the present invention. From the above, it is considered that the hydrophilic film is excellent in scratch resistance and hydrophilicity.
  • the hydrophilic film contains at least one siloxane binder.
  • the hydrophilic film can hold silica particles, and both scratch resistance and hydrophilicity can be achieved.
  • the siloxane binder preferably contains at least one compound obtained by a condensation reaction of a siloxane oligomer.
  • siloxane oligomer a partial hydrolysis condensate obtained by using one kind of silane compound and a partial cohydrolysis condensate obtained by using two or more kinds of silane compounds can be used.
  • these compounds may be referred to as “partial (co) hydrolysis condensates”.
  • the silane compound is a compound having a hydrolyzable silyl group and / or a silanol group. The silyl group is hydrolyzed to become a silanol group, and the silanol group is dehydrated and condensed to produce a siloxane bond.
  • dimers of the silane compound as described above (1 mol of water was allowed to act on 2 mol of the silane compound to remove 2 mol of alcohol to form disiloxane units.
  • Compound) to 100-mer, preferably dimer to 50-mer, more preferably dimer to 20-mer, and a part (co) of which two or more silane compounds are used as raw materials. It is also possible to use hydrolysis condensates.
  • Such a partial (co) hydrolysis condensate may be a compound commercially available as a silicone alkoxy oligomer (for example, commercially available from Shin-Etsu Chemical Co., Ltd.). Based on the law, a compound produced by reacting hydrolyzable silane compound with less than an equivalent amount of hydrolyzed water and then removing by-products such as alcohol and hydrochloric acid may be used.
  • the siloxane oligomer preferably has an alkoxysilyl group at the molecular end.
  • a tetrafunctional or bifunctional siloxane oligomer can be used, including a tetrafunctional siloxane oligomer having four alkoxysilyl groups in the molecule.
  • tetrafunctional siloxane oligomers are preferable from the viewpoint of the reactivity of the condensation reaction.
  • the hydrophilic film preferably contains at least one siloxane binder formed from the compound represented by the general formula (1).
  • membrane can improve the hydrophilic property of a surface more by including the siloxane binder formed from the compound represented by General formula (1).
  • R 1 , R 2 , R 3 , and R 4 each independently represent a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 2 to 20.
  • the monovalent organic group having 1 to 6 carbon atoms in R 1 , R 2 , R 3 and R 4 may be linear, branched or cyclic. .
  • Examples of the monovalent organic group include an alkyl group and an alkenyl group, and an alkyl group is preferable.
  • Examples of the alkyl group when R 1 , R 2 , R 3 , or R 4 represents an alkyl group include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n- Examples thereof include a pentyl group, an n-hexyl group, and a cyclohexyl group.
  • R 1 to R 4 are more preferably each independently an alkyl group having 1 to 4 carbon atoms, and more preferably an alkyl group having 1 or 2 carbon atoms. More preferably.
  • N in the general formula (1) is an integer of 2 to 20.
  • n is preferably 3 to 12, and more preferably 5 to 10. When n is 20 or less, the viscosity of the coating solution does not become too high, and a hydrophilic film with high uniformity is formed by coating.
  • n 2 or more
  • the reactivity of the siloxane compound is easily controlled, and for example, a hydrophilic film having excellent surface hydrophilicity is formed by coating.
  • examples of the specific siloxane compound are described by R 1 to R 4 and n in the general formula (1). However, it is not limited to these exemplary compounds.
  • the siloxane oligomer is hydrolyzed at least partially by coexisting with water.
  • a hydrolyzate of a siloxane oligomer is a compound in which at least a part of an alkoxy group bonded to a silicon atom of a siloxane oligomer is substituted with a hydroxy group by a reaction between the siloxane oligomer and water, and a hydroxy group that is a hydrophilic group. Due to the group, for example, a hydrophilic film formed through coating and drying becomes a film having good surface hydrophilicity.
  • the hydrolysis reaction it is not always necessary to react all the alkoxy groups of the siloxane oligomer, but for example, from the viewpoint that the hydrophilicity of the coating film obtained by applying and drying the coating liquid for forming a hydrophilic film becomes better. It is preferable that more alkoxy groups are hydrolyzed.
  • the amount of water required for the hydrolysis is the same molar amount as the alkoxy group of the siloxane oligomer, but it is preferable to carry out the hydrolysis with a large excess of water from the viewpoint of allowing the hydrolysis reaction to proceed efficiently.
  • the siloxane binder contained in the hydrophilic film is obtained by condensing at least a part of the hydroxy groups of the hydrolyzate of the siloxane oligomer and condensing the siloxane oligomer.
  • the hydrophilic film may contain only one type of siloxane binder or two or more types.
  • the weight average molecular weight of the siloxane oligomer is preferably in the range of 300 to 1500, more preferably in the range of 500 to 1200.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC). Specifically, HLC-8120GPC, SC-8020 (manufactured by Tosoh Corporation) is used, TSKgel, SuperHM-H (manufactured by Tosoh Corporation, 6.0 mm ID ⁇ 15 cm) are used as columns, and tetrahydrofuran is used as an eluent. It can be measured using (THF). The conditions are as follows: the sample concentration is 0.5 mass%, the flow rate is 0.6 ml / min, the sample injection amount is 10 ⁇ l, the measurement temperature is 40 ° C., and a differential refractive index (RI) detector is used. it can.
  • GPC gel permeation chromatography
  • the calibration curves are “polystyrene standard sample TSK standard” manufactured by Tosoh Corporation: “A-500”, “F-1”, “F-10”, “F-80”, “F-380”, “A-2500”. , “F-4”, “F-40”, “F-128”, and “F-700” prepared from 10 samples can be used.
  • the content of the siloxane binder in the hydrophilic film is preferably 1% by mass to 80% by mass, more preferably 3% by mass to 75% by mass with respect to the total solid content of the hydrophilic film, and 5% by mass to 70%. More preferred is mass%.
  • the content of the siloxane binder is within the above range, the water contact angle on the surface of the hydrophilic film is suppressed to be low, and the film is difficult to get dirty, and even when dirty, the film can be easily removed.
  • silica particles examples include fumed silica and colloidal silica.
  • Fumed silica can be obtained by reacting a compound containing a silicon atom with oxygen and hydrogen in the gas phase.
  • silicon compound used as a raw material examples include silicon halide (for example, silicon chloride).
  • Colloidal silica can be synthesized by a sol-gel method in which a raw material compound is hydrolyzed and condensed.
  • the raw material compound for colloidal silica include alkoxy silicon (for example, tetraethoxysilane) and halogenated silane compound (for example, diphenyldichlorosilane).
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a plate shape, a needle shape, a bead shape, or a shape in which two or more of these are combined.
  • spherical as used herein includes not only true spheres but also spheroids and oval shapes.
  • the silica particles preferably have an average primary particle diameter of 100 nm or less, from the viewpoint of easy adjustment to a range in which the surface area difference ⁇ S and the surface roughness Ra of the hydrophilic film satisfy the relationship of the above formula 1, and are 50 nm or less. More preferably, it is more preferably 30 nm or less, and particularly preferably 15 nm or less. Moreover, the minimum of the average primary particle diameter of a silica particle is although it does not specifically limit, 2 nm or more is preferable from a viewpoint similar to the above. Silica particles having different sizes or shapes may be mixed.
  • the average primary particle diameter of the silica particles is obtained by observing with a transmission electron microscope, measuring the projected area of the particles for 300 or more particles from the obtained photograph, and determining the equivalent circle diameter from the projected area.
  • the shape of a silica particle is not spherical, it calculates
  • the content of silica particles is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, and still more preferably 20% by mass to 85% by mass with respect to the total solid content of the hydrophilic film. .
  • a hydrophilic film having hydrophilicity can be formed while being excellent in hardness, scratch resistance, and impact resistance.
  • content of a silica particle is the range of a fixed ratio with respect to content of the above-mentioned siloxane binder. That is, the ratio of the silica particles to the siloxane binder in the hydrophilic film is preferably 0.1 to 1.8, more preferably 0.1 to 1.5, more preferably 0.1 More preferably, it is -1.2.
  • the ratio of the silica particles to the siloxane binder is in the above range, the relationship between the surface area difference ⁇ S of the hydrophilic film and the surface roughness Ra can be easily adjusted to a range satisfying the above formula 1.
  • the hydrophilic film may contain an antistatic agent, a surfactant, a catalyst for promoting the condensation reaction of the siloxane oligomer, and other components.
  • the hydrophilic film preferably contains at least one antistatic agent.
  • an antistatic agent By containing an antistatic agent, antistatic properties are imparted to the hydrophilic film.
  • the antistatic agent together with a siloxane binder and silica particles, the effect of preventing adhesion to contaminants is great, and the antifouling property is dramatically improved. improves.
  • the antistatic agent can be appropriately selected from compounds having an antistatic function, and may be either a compound showing surface activity or a compound not showing surface activity.
  • examples of the antistatic agent include ionic surfactants and metal oxide particles. Since an ionic surfactant has a property of easily segregating in the vicinity of the film surface of a coating film when a hydrophilic film is formed by coating, for example, the effect can be expected with a small amount of addition.
  • metal oxide particles may be required to be added in a relatively large amount in order to impart antistatic properties to the hydrophilic film, but are suitable for enhancing the scratch resistance of the hydrophilic film because it is an inorganic substance. ing.
  • ionic surfactants include alkyl sulfates (eg, sodium dodecyl sulfate, sodium lauryl sulfate, etc.), alkyl benzene sulfonates (eg, sodium dodecyl benzene sulfonate, sodium lauryl benzene sulfonate, etc.), alkyl sulfosuccinates.
  • an ionic surfactant exhibits an antifouling function against pollutants
  • one embodiment of the present invention is based on such knowledge, and an ionic surfactant is used as an antistatic agent in a hydrophilic film. It is a preferable aspect to contain the surfactant. By including an ionic surfactant, the antifouling property and water washability of the hydrophilic membrane are further enhanced.
  • the metal oxide particles may be used by mixing particles having different sizes, shapes, or materials.
  • the shape of the particles is not particularly limited, and may be spherical, plate-shaped, or needle-shaped.
  • the average primary particle size is preferably 100 nm or less, and preferably 50 nm or less. More preferably, it is more preferably 30 nm or less.
  • the content of the ionic surfactant is preferably 50% by mass or less, more preferably 20% by mass or less, based on the total solid content of the hydrophilic film. Preferably, 10 mass% or less is more preferable.
  • the content of the ionic surfactant is within the above range, the antifouling property of the hydrophilic film can be enhanced while suppressing aggregation of the silica particles.
  • content of an ionic surfactant is 0.05 mass% or more from a viewpoint of the antifouling property improvement effect of a hydrophilic film
  • the content of metal oxide particles is preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass with respect to the total solid content of the hydrophilic film. % Or less is more preferable.
  • the content of the metal oxide particles is within the above range, the antistatic property can be effectively imparted without impairing the film formability when the hydrophilic film is formed by coating.
  • it is preferable that content of a metal oxide particle is 1 mass% or more from a viewpoint of the antifouling property improvement effect of a hydrophilic film
  • the hydrophilic film further contains a surfactant.
  • the surfactant is contained together with the siloxane binder and the silica particles, thereby exhibiting the ability to prevent the adhesion of contaminants (particularly gravel, etc.) and excellent antifouling properties.
  • the surfactant here does not include the compound having an antistatic function (for example, an ionic surfactant) mentioned as the above-mentioned antistatic agent.
  • the hydrophilic film contains a surfactant, not only the antifouling property of the hydrophilic film is increased, but also the coating property when the hydrophilic film is formed by coating, for example, can be improved.
  • the surface tension of the coating film also decreases, and the uniformity of the coating film is further improved.
  • the surfactant examples include nonionic surfactants.
  • an ionic surfactant When an ionic surfactant is used as the aforementioned antistatic agent, if the ionic surfactant is excessively added to the film as described above, the electrolytic mass in the system increases and silica particles are aggregated. Since it is easy to invite, it is preferable to use a nonionic surfactant together.
  • the nonionic surfactant does not necessarily need to be used in combination with the ionic surfactant, and may contain a nonionic surfactant alone as the surfactant.
  • nonionic surfactant examples include polyalkylene glycol monoalkyl ether, polyalkylene glycol monoalkyl ester, polyalkylene glycol monoalkyl ester / monoalkyl ether, and the like.
  • specific examples of the nonionic surfactant include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, and polyethylene glycol monostearyl ester.
  • the content of the surfactant in the hydrophilic film is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more based on the total solid content of the hydrophilic film. Moreover, 50.0 mass% or less is preferable with respect to the total solid of a hydrophilic film
  • content of the surfactant is 30.0% by mass or less, the phenomenon that the surfactant is segregated on the film surface is suppressed, which is advantageous in that the hardness of the film is maintained well.
  • condensation promotion catalyst there is no restriction
  • an acid catalyst, an alkali catalyst, and an organometallic catalyst are mentioned.
  • the acid catalyst include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, chloroacetic acid, formic acid, oxalic acid, and toluenesulfonic acid.
  • the alkali catalyst include sodium hydroxide, potassium hydroxide, and tetramethylammonium hydroxide.
  • organometallic catalysts include aluminum chelate compounds such as aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), and aluminum ethylacetoacetate diisopropylate; zirconium tetrakis (acetylacetonate) And zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate); titanium chelate compounds such as titanium tetrakis (acetylacetonate) and titanium bis (butoxy) bis (acetylacetonate); and dibutyltin diacetate , Organotin compounds such as dibutyltin dilaurate, and dibutyltin dioctiate.
  • aluminum chelate compounds such as aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), and aluminum ethylacetoacetate diisoprop
  • nitric acid is preferable as the acid catalyst
  • sodium hydroxide is preferable as the alkali catalyst
  • an aluminum chelate compound or a zirconium chelate compound is preferable as the organometallic catalyst.
  • an organometallic catalyst is more preferable, and an aluminum chelate compound is particularly preferable.
  • the content of the condensation accelerating catalyst in the hydrophilic membrane is preferably from 0.1% by mass to 20% by mass, more preferably from 0.2% by mass to 15% by mass, based on the total solid content of the hydrophilic membrane. More preferably, the content is 3% by mass to 10% by mass.
  • the content of the condensation accelerating catalyst is within the above range, it is easy to form a hydrophilic film having scratch resistance. Moreover, it is excellent also in the formation property of a hydrophilic film
  • the hydrophilic film can further contain additives such as a binder component (binder additive component) other than the siloxane binder, if necessary, as other components.
  • a binder component binder additive component
  • binder addition component for example, polyurethane, acrylic resin, polyphosphate, metaphosphate, etc., terminal polar groups (for example, hydroxyl group, carboxy group, phosphate group, sulfonate group, amino group, etc.)
  • the binder additive component in the hydrophilic film, the adhesion between the hydrophilic film and the substrate (particularly, the polycarbonate substrate) is improved.
  • a binder-added component having a hydroxyl group, a carboxy group, or a phosphate group at the terminal is preferable.
  • Polyurethane, acrylic resin, and polyphosphorus Acid salts are more preferred.
  • polyurethane which has a soft segment / hard segment structure comprised by a polyol skeleton and a polyisocyanate skeleton is mentioned.
  • a commercially available polyurethane may be used.
  • acrylic resins include acrylic acid homopolymers (polyacrylic acid), acrylic acid derivatives such as acrylic acid and esters of acrylic acid, and methacrylic acid derivatives such as methyl methacrylate.
  • polyacrylic acid is preferable, polyacrylic acid having a weight average molecular weight of 20 to 5 million is preferable, polyacrylic acid having 10,000 to 2 million is more preferable, and polyacrylic acid having 250,000 to 1 million is preferable. Acid is more preferred.
  • the polyphosphate include sodium polyphosphate and potassium polyphosphate. The weight average molecular weight can be measured by the method described above.
  • the content of the binder additive component in the hydrophilic film is preferably 0.001% by mass to 0.1% by mass and more preferably 0.001% by mass to 0.01% by mass with respect to the total solid content of the hydrophilic film. Preferably, 0.002% by mass to 0.008% by mass is more preferable. When the content of the binder additive component is within the above range, it is easy to form a hydrophilic film having excellent adhesion to the substrate.
  • the hydrophilic film contains silicon and oxygen as main components of the solid content, and has a small carbon content.
  • a hydrophilic film formed by forming a coating film using a hydrophilic film-forming coating solution and drying it can be used in various environments exposed to outdoor wind and rain. Even when placed on the film, the influence of light and heat on the film can be kept to a minimum.
  • the proportion of carbon in the total solid content is preferably 3% by mass or less, more preferably 2.5% by mass or less, and further preferably 2% by mass or less.
  • the organic compound containing carbon is preferably a compound having a low weight average molecular weight.
  • the content of the organic compound having a weight average molecular weight of 1100 or more is preferably 0.2% by mass or less, and 0% by mass with respect to the total solid content of the hydrophilic film. That is, it is more preferable that it is not contained except for inevitable impurities.
  • the content of the organic compound having a weight average molecular weight of 1100 or more is in the above range, the compatibility of the solid content in the hydrophilic film becomes better, and the coating film is formed using the hydrophilic film forming coating solution. The film formability can be further improved.
  • the “organic compound having a weight average molecular weight of 1100 or more” does not include the above-described siloxane binder. Moreover, a weight average molecular weight can be measured by the above-mentioned method.
  • the thickness of the hydrophilic film is preferably in the range of 20 nm to 600 nm, more preferably in the range of 50 nm to 350 nm, and still more preferably in the range of 100 nm to 250 nm.
  • the hydrophilic film is excellent in scratch resistance and hydrophilicity.
  • the hydrophilic film is suitable as a protective material for objects installed outdoors (for example, surveillance cameras, protective materials for protecting lighting, garage roofing materials, protective materials for signs, wall materials).
  • a hydrophilic film By attaching a hydrophilic film, adhesion of contaminants is suppressed.
  • the hydrophilic film has good hydrophilicity, when a contaminant adheres to the surface, it can be easily removed by washing away the contaminant (for example, washing with water). There is also an effect that it is easy to be washed away by rain water or the like during rainy weather.
  • the hydrophilic film is excellent in scratch resistance, it is possible to prevent the film from being damaged when the contaminant is wiped off.
  • the physical properties of the hydrophilic film are listed below.
  • the surface resistance value of the hydrophilic film is preferably 1 ⁇ 10 12 ⁇ / square or less, more preferably 1 ⁇ 10 11 ⁇ / square or less, and 1 ⁇ 10 10 ⁇ / square or less. Is more preferable. When the surface resistance of the hydrophilic film is within the above range, the hydrophilic film has a more excellent antifouling property.
  • the surface resistance value is measured using Hiresta MCP-HT450 (manufactured by Mitsubishi Chemical Analytech).
  • the hydrophilic film is preferably excellent in light transmittance.
  • the integrating sphere transmittance is more preferably 95.5% or more. Integral sphere transmittance of the hydrophilic membrane is determined by measuring the integral sphere transmittance of the base material on which the hydrophilic membrane is not formed and the base material on which the hydrophilic membrane is formed with reference to the white plate of barium sulfate. By subtracting the integrated sphere transmittance of the base material on which the hydrophilic film is not formed from the integrated sphere transmittance of the formed base material, the light transmittance improvement for the base material is calculated. The integrating sphere transmittance is measured using a transmission spectrophotometer with an integrating sphere.
  • the light transmittance improvement is obtained as an average value in the wavelength region of 400 nm to 1400 nm.
  • the transmittance of the hydrophilic membrane was determined by measuring the integrating sphere transmittance of the base material on which the hydrophilic membrane was formed with reference to the integrating sphere transmittance of the base material on which the hydrophilic membrane was not formed.
  • the transmittance is a value measured by a self-recording spectrophotometer (UV2400-PC, manufactured by Shimadzu Corporation).
  • the hydrophilic film is produced by applying a coating liquid containing a siloxane binder and silica particles having an average primary particle diameter of 2 nm or more and 100 nm or less to the substrate, and applying the coating liquid on the substrate by the coating process. And a drying step of drying the coated film at a temperature of 20 ° C. or higher and 150 ° C. or lower. Moreover, it is preferable that the manufacturing method of a hydrophilic film
  • membrane has the preparation process which prepares a coating liquid further.
  • the ratio of the silica particles to the siloxane binder is 0.1 to 1.8 on a mass basis, and the surface area difference ⁇ S and the surface roughness on the surface.
  • Ra satisfies the relationship of the following formula 1.
  • ⁇ S ⁇ 0.5Ra Formula 1 In Equation 1, ⁇ S is a percentage obtained by Equation 2 below.
  • ⁇ S [(S X ⁇ S 0 ) / S 0 ] ⁇ 100 Equation 2
  • S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
  • membrane has a preparation process which prepares a coating liquid.
  • the coating liquid used in the method for producing the hydrophilic film can be appropriately selected from coating liquids containing a siloxane binder and silica particles having an average primary particle diameter of 2 nm to 100 nm.
  • a coating solution is prepared by mixing water, a siloxane oligomer, and silica particles having an average primary particle size of 2 nm to 100 nm.
  • a preparation process prepares a coating liquid by further mixing the catalyst (condensation promotion catalyst) which accelerates
  • the coating liquid is prepared by bringing a siloxane oligomer into contact with water to prepare a mixed liquid containing a hydrolyzate of the siloxane oligomer, and then adding silica particles having an average primary particle diameter of 2 nm to 100 nm to the mixed liquid.
  • the method of doing is mentioned.
  • the hydrolysis reaction of the siloxane oligomer proceeds even at room temperature (25 ° C.), but in order to promote the reaction, after preparing a mixed solution by bringing the siloxane oligomer into contact with water, the obtained mixed solution is heated at 30 ° C. to 50 ° C. You may heat to about degreeC. A longer reaction time for the hydrolysis reaction is preferred because the reaction proceeds more.
  • the hydrolysis reaction of the siloxane oligomer is a reversible reaction. Therefore, when water is removed from the mixed solution, the hydrolyzate of the siloxane oligomer starts with a condensation reaction between hydroxy groups and proceeds.
  • the addition amount of the siloxane oligomer is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and more preferably 0.5% by mass to 20% by mass with respect to the total mass of the coating solution. % Is more preferable.
  • the amount of silica particles added is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less with respect to the total mass of the coating solution. When the proportion of the silica particles in the coating solution is within the above range, it is advantageous in that the dispersibility of the silica particles in the solution is enhanced and aggregation is prevented.
  • the coating solution may further contain a condensation accelerating catalyst, an antistatic agent, a surfactant, and a binder additive component.
  • the coating solution contains the siloxane oligomer and the condensation accelerating catalyst, the condensation reaction of the siloxane oligomer is promoted and the formation of the siloxane binder is promoted. Thereby, a hydrophilic film
  • the condensation accelerating catalyst is the same as the condensation accelerating catalyst in the hydrophilic membrane described above, and the preferred embodiment is also the same.
  • the amount of the condensation accelerating catalyst added to the coating solution is preferably 0.1% by mass to 20% by mass, more preferably 0.2% by mass to 15% by mass, and 0.3% with respect to the total solid content of the coating solution. More preferably, the content is 10% by mass to 10% by mass.
  • the content of the condensation accelerating catalyst is within the above range, a hydrophilic film having scratch resistance is easily formed. Moreover, it is excellent also in the formation property of a hydrophilic film
  • the condensation accelerating catalyst is also useful for hydrolysis of siloxane oligomers.
  • the hydrolysis reaction and condensation reaction of the alkoxy group bonded to silicon of the siloxane oligomer are in an equilibrium relationship. If there is a lot of moisture in the system, the reaction proceeds in the direction of hydrolysis, and if the moisture in the system is low, the reaction Proceeds in the direction of condensation. Since the catalyst for promoting the condensation reaction of the alkoxy group promotes the reaction in both directions, the hydrolysis reaction can be promoted in a state where there is a lot of moisture in the system. The presence of the catalyst allows the hydrolysis of the siloxane oligomer to proceed more reliably under milder conditions.
  • the catalyst used for the hydrolysis reaction of the siloxane oligomer is kept in the system as it is to be used as a component of the coating liquid for forming a hydrophilic film and used as it is as a condensation catalyst for the siloxane oligomer.
  • the coating liquid may contain an antistatic agent. Since the coating liquid contains an antistatic agent, it is possible to form a hydrophilic film imparted with antistatic properties, and the formed hydrophilic film is antifouling because the adhesion of contaminants to the film is suppressed. Will improve.
  • an antistatic agent it is the same as the antistatic agent in the above-mentioned hydrophilic film
  • the content of the ionic surfactant in the coating liquid is preferably 1.0% by mass or less based on the total mass of the coating liquid. More preferably, it is 8 mass% or less, More preferably, it is 0.5 mass% or less.
  • the proportion of the ionic surfactant in the coating solution is within the above range, the antifouling property of the hydrophilic film can be enhanced while suppressing aggregation of the silica particles.
  • the content of the metal oxide particles in the coating solution is preferably 30% by mass or less, and 20% by mass or less with respect to the total mass of the coating solution. More preferably, it is more preferably 10% by mass or less.
  • the ratio of the metal oxide particles in the coating liquid is within the above range, the dispersibility of the metal oxide particles in the liquid is enhanced, which is advantageous in preventing aggregation and the like.
  • the coating solution contains a surfactant
  • the wettability of the coating solution to the substrate is improved.
  • the surfactant is the same as the surfactant in the hydrophilic film described above, and the preferred embodiment is also the same.
  • the content of the surfactant in the coating solution is preferably 0.01% by mass or more, preferably 0.02% by mass or more, and more preferably 0.03% by mass or more with respect to the total mass of the coating solution.
  • content of the surfactant is within the above range, the wettability to the substrate is more excellent.
  • 15 mass% or less is preferable with respect to the total solid of a coating liquid, content of surfactant is 10.0 mass% or less, More preferably, it is 5 mass% or less.
  • the coating liquid may contain a binder additive component.
  • a binder addition component it is the same as the binder addition component in the above-mentioned hydrophilic film
  • the content of the binder additive component in the coating solution is preferably 0.001% by mass to 0.1% by mass, more preferably 0.001% by mass to 0.01% by mass, based on the total solid content of the coating solution. 0.002 mass% to 0.008 mass% is more preferable.
  • an antistatic agent when an antistatic agent, a surfactant and a binder additive component are added, a part or all of them may be added in the step of obtaining a hydrolyzate of a siloxane oligomer.
  • the coating liquid does not contain a photopolymerization initiator and a thermal polymerization initiator.
  • a photopolymerization initiator and a thermal polymerization initiator By not using a photopolymerization initiator and a thermal polymerization initiator, light irradiation or heat treatment can be omitted when forming the hydrophilic film.
  • the conditions for preparing the coating liquid are not particularly limited, but from the viewpoint of suppressing the aggregation of silica particles due to pH and the concentration of coexisting components, the silica particles are preferably added in the latter half of the process of preparing the coating liquid. More preferably, it is added last.
  • the silica particles are used as a dispersion (specifically, a dispersion in which silica particles are previously dispersed in an aqueous solvent, or a commercially available silica particle dispersion)
  • the pH of the dispersion and the solvent used in the coating solution It is preferable to adjust the pH of the dispersion of silica particles and the solvent of the coating solution to the same or close values by making the pH both acidic or basic.
  • membrane has an application
  • coating method which apply
  • the well-known method of spray coating, brush coating, roller coating, bar coating, dip coating (dip coating) can be applied.
  • the coating amount of the coating liquid is not particularly limited, and can be appropriately set in consideration of operability and the like according to the solid content concentration in the coating liquid, the desired film thickness, and the like.
  • the coating amount of the coating solution is preferably 0.1 mL / m 2 to 1000 mL / m 2 , more preferably 0.5 mL / m 2 to 500 mL / m 2 , and 1 mL / m 2 to 200 mL / m 2. 2 is more preferable.
  • the coating amount of the coating liquid is within the above range, the coating accuracy is good and the surface area difference ⁇ S and the surface roughness Ra can be easily adjusted.
  • membrane has a drying process which dries the coating film apply
  • the coating film formed by applying the coating liquid is heated to a temperature of 20 ° C. or more and 150 ° C. and dried, whereby the surface area difference ⁇ S and the surface roughness Ra are expressed by the above formula 1
  • the formed hydrophilic film is excellent in scratch resistance and hydrophilicity.
  • the coating film may be dried using a heating device.
  • the heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used.
  • As the heating device an oven, an electric furnace, or the like, or a heating device uniquely manufactured according to the production line can be used.
  • the coating film can be dried using, for example, the above-described heating device so that the surface temperature of the coating film is 20 ° C. or higher and 150 ° C. or lower.
  • the drying time can be, for example, a heating time of about 1 minute to 60 minutes.
  • the drying condition of the coating film is preferably a drying condition in which the coating film is heated at a surface temperature of 20 ° C. or higher and 150 ° C. or lower for 1 minute to 60 minutes, and is heated at a surface temperature of 40 ° C. or higher and 150 ° C. or lower for 1 minute to 60 minutes. More preferably, the drying condition is heating for 1 to 30 minutes at a surface temperature of 60 ° C.
  • the drying condition is heating for 1 to 10 minutes at a surface temperature of 90 ° C. to 150 ° C.
  • the drying of the coating film is preferably performed in a short time at a high temperature from the viewpoint of maintaining the surface shape of the coating film.
  • the surface temperature can be measured with an infrared thermometer.
  • the coating film after drying preferably has a film thickness of 20 nm or more. When the film thickness is 20 nm or more, the coating film after drying is more excellent in scratch resistance.
  • the coating film after drying preferably has a thickness of 20 nm to 600 nm, more preferably 50 nm to 350 nm, and particularly preferably 100 nm to 250 nm.
  • the laminate has at least a base material and the hydrophilic film according to one embodiment of the present invention described above. Since the laminate has the hydrophilic film according to the embodiment of the present invention, the laminate is excellent in scratch resistance and hydrophilicity.
  • hydrophilic film membrane in a laminated body is the hydrophilic film
  • Base material There is no restriction
  • Glass is widely used as a substrate, and is suitable as a substrate for forming a laminate.
  • a resin material is also suitable as the base material.
  • a resin material is often used for a base material such as a protective material for a monitoring camera.
  • the resin materials polycarbonate and polymethyl methacrylate are preferable because they are excellent in durability against light and heat.
  • the substrate may be a composite material.
  • any of a composite material including glass and a resin material, in which glass and a resin material are mixed and combined, or a resin composite material in which a plurality of types of resin materials are kneaded or bonded may be used.
  • the thickness of the substrate is not particularly limited and may be appropriately selected depending on the intended use or intended purpose, and may be, for example, 0.05 mm to 10 mm.
  • Laminates are for surveillance cameras, protective materials for protecting lighting (so-called protective covers), roof materials for garages for vehicles such as automobiles and bicycles, protective materials for signs such as road signs, and highway shoulder installations. Or it is used suitably for uses, such as a noise barrier for railroads. Especially, it can apply suitably for the use of the protective material (what is called a camera cover) for the surveillance camera which protects an imaging device.
  • protective material what is called a camera cover
  • the surveillance camera protective material includes at least the laminate according to the embodiment of the present invention. Since the laminate has the hydrophilic film according to one embodiment of the present invention described above, it is excellent in scratch resistance and hydrophilicity. Accordingly, the protective material for a surveillance camera is, for example, an imaging device for a surveillance camera that is easily exposed to a harsh outdoor environment for a long period of time, has excellent light transmission and transparency over a long period of time, and requires long-term durability. It is useful as a protective material for protecting the imaging surface.
  • the shape of the substrate in the laminate As the shape of the substrate in the laminate, a hemispherical shape, a semi-ellipsoidal shape (including a so-called dome shape), a planar shape, a prismatic shape, or a cylindrical shape is preferable.
  • the ellipsoid refers to a shape obtained by extending the ellipse into three dimensions so as to be symmetric with respect to the xy plane, the yz plane, and the zx plane.
  • the diameter of the circle of the opening surface may be in the range of 10 mm to 1000 mm, for example.
  • the same material as the base material in the above-described laminate of one embodiment of the present invention can be used.
  • a resin material is preferable and polycarbonate and polymethyl methacrylate are more preferable from the viewpoint of adhesion to the hydrophilic film of one embodiment of the present invention.
  • the surveillance camera includes the monitoring camera protective material according to the embodiment of the present invention described above for protecting the imaging apparatus. Therefore, the surveillance camera is excellent in scratch resistance and hydrophilicity. Therefore, the surveillance camera is useful as a surveillance camera that is easily exposed to a harsh outdoor environment for a long period of time, maintains excellent light transmission and transparency over a long period of time, and requires long-term durability.
  • one embodiment of the present invention will be described more specifically by way of examples. However, one embodiment of the present invention is not limited to the following examples unless it exceeds the gist thereof.
  • aluminum bis (ethylacetoacetate) mono (acetylacetonate) 0.94 g of a 1% by mass isopropanol solution (catalyst for promoting condensation reaction of siloxane oligomer) was added and mixed.
  • the ratio of silica particles to siloxane binder in the hydrophilic film is 0.5 on a mass basis.
  • a camera cover (laminate) for a surveillance camera which was an acrylic plate having a hydrophilic film, was produced.
  • the laminate on which the hydrophilic film is formed is cut to a size of 1 cm ⁇ 1 cm, set on a horizontal sample stage on a piezo scanner, the cantilever is approached to the sample surface, and the atomic force is reduced. When it reached the working area, it was scanned in the XY directions. During scanning, irregularities on the surface of the hydrophilic film were captured by the displacement of the piezo in the Z direction. The measurement was performed at 512 points ⁇ 512 points in a surface area of 5 ⁇ m ⁇ 5 ⁇ m. Three-dimensional data was obtained from the measured results. Note that the actual surface area that is actually measured by the cantilever and S X, the area of the measurement range (5 ⁇ m ⁇ 5 ⁇ m) was S 0.
  • the relationship between the surface area difference ⁇ S and the surface roughness Ra was determined using the numerical values obtained above. In Table 2, it is represented by ⁇ S / Ra, and satisfies the formula 1 when the value of ⁇ S / Ra is 0.5 or less.
  • B A natural ocher pigment adheres to the surface of the hydrophilic film, and the adhesion area is 10% or less of the total area.
  • C A natural ocher pigment adheres to the surface of the hydrophilic film, and the adhesion area exceeds 10% of the total area and is 50% or less.
  • D Although natural ocher pigment adheres to the surface of the hydrophilic film and the transparency of the hydrophilic film is maintained, the adhesion area exceeds 50% of the total area.
  • E Natural ocher pigment adheres to the entire surface of the hydrophilic film, and part or all of the surface is opaque.
  • Example 2 Comparative Examples 1 to 4 and Comparative Examples 6 to 7
  • a hydrophilic film was prepared in the same manner as in Example 1 except that various components, base materials, and drying conditions were changed as shown in Table 2.
  • a camera cover (laminate) for a surveillance camera was produced in the same manner as in Example 1, and measured and evaluated. The results of measurement and evaluation are shown in Table 2.
  • Example 5 A hydrophilic film was prepared in the same manner as in Example 1 except that EXCELPURE manufactured by China Automotive Industry Co., Ltd. was used as the coating solution. Further, a camera cover (laminate) for a surveillance camera was produced in the same manner as in Example 1, and measured and evaluated. The results of measurement and evaluation are shown in Table 2.
  • Snowtex (registered trademark) OYL average primary particle size: 50 nm to 80 nm, manufactured by Nissan Chemical Industries, Ltd. -Acrylic plate ... Planar shape, plate size: 300 mm x 450 mm, thickness: 1 mm, made by Ebara Kogyo Co., Ltd.-Dome substrate ... Semi-ellipsoidal shape (dome shape), maximum outer diameter: 150 mm, maximum height: 130 mm, thickness: 3mm, polymethylmethacrylate molding member, K camera type made by Sugawara Kogyo Co., Ltd. (transparent)
  • any camera cover for a surveillance camera was colorless and transparent, and exhibited good scratch resistance and hydrophilicity.
  • the surface of the camera cover for the surveillance camera was inferior in both scratch resistance and hydrophilicity.

Abstract

A hydrophilic film comprising a siloxane binder and silica particles and having a surface which has a surface area difference ΔS and a surface roughness Ra that satisfy the following relationship 1; a process for producing the hydrophilic film; a laminate; a protective material for surveillance cameras; and a surveillance camera. ΔS≤0.5Ra relationship 1 In relationship 1, ΔS is the percentage determined with the following equation 2. ΔS=[(SX-S0)/S0]×100 equation 2 In equation 2, S0 represents the projected area of the hydrophilic film viewed from the perpendicular direction, and SX represents the actual surface area of the hydrophilic film having the projected area expressed by S0.

Description

親水性膜及びその製造方法、積層体、監視カメラ用保護材、並びに監視カメラHydrophilic film and manufacturing method thereof, laminate, protective material for surveillance camera, and surveillance camera
 本発明は、親水性膜及びその製造方法、積層体、監視カメラ用保護材、並びに監視カメラに関する。 The present invention relates to a hydrophilic film, a manufacturing method thereof, a laminate, a protective material for a surveillance camera, and a surveillance camera.
 屋内又は屋外に設置されて長期間にわたって使用される装置又は建材などは、様々な環境に曝されて使用されるため、徐々に埃、塵又は砂利などが堆積したり、風雨時の雨水に濡れる等して、予定されている機能、及び性能が損なわれる場合がある。 Equipment or building materials that are installed indoors or outdoors and used for a long period of time are used by being exposed to various environments, so that dust, dust, gravel, etc. gradually accumulate or get wet in rainwater during wind and rain. Equally, planned functions and performance may be impaired.
 例えば、近年、住宅の防犯用途、又は商用ビルもしくは屋外のセキュリティシステムとして、監視カメラが広く利用されている。監視カメラは、電荷結合素子(CCD)カメラ等の撮像装置と保護カバーとを備えた固定型装置であり、一旦設置されると長期間に亘り使用されることが通例である。保護カバーは、撮影を可能にする光透過性を有しつつ、雨水又は砂利等から撮像装置を保護する役割を果たしている。 For example, in recent years, surveillance cameras are widely used for crime prevention in homes or as security systems for commercial buildings or outdoors. Surveillance cameras are stationary devices that include an imaging device such as a charge coupled device (CCD) camera and a protective cover, and are typically used for a long period of time once installed. The protective cover plays a role of protecting the imaging device from rainwater, gravel, or the like while having light transmittance that enables photographing.
 監視カメラの保護カバーは、撮像装置を保護しつつも、常に安定した画像の撮影を可能とするため、長期間にわたって清掃の要らないメンテナンスフリーであることが要求される。ところが、一般に監視カメラのように屋外に設置されて使用される装置は、長期使用に伴って、機器の表面に水滴、又は埃、塵もしくは砂などが付着し、徐々に光透過性を損なう傾向にある。監視カメラの場合、保護カバーの表面に埃、塵又は砂などが堆積しやすく、堆積物のサイズ又は量によっては、光透過性が著しく低下するばかりか、期待される画像が記録できなくなる懸念も生じる。
 そのため、屋外の環境に曝される機器表面には、水又は、埃、塵もしくは砂などの付着を防ぐための技術が検討されている。
The protective cover of the surveillance camera is required to be maintenance-free that does not require cleaning over a long period of time in order to always capture a stable image while protecting the imaging device. However, devices that are generally installed outdoors, such as surveillance cameras, tend to lose light transmittance gradually as water drops, dust, dust, or sand adhere to the surface of the device with long-term use. It is in. In the case of a surveillance camera, dust, dust, sand, etc. are likely to accumulate on the surface of the protective cover, and depending on the size or amount of the deposit, there is a concern that not only the light transmission will be significantly reduced, but also that the expected image cannot be recorded. Arise.
Therefore, a technique for preventing adhesion of water, dust, dust, sand, or the like to the surface of the device exposed to the outdoor environment has been studied.
 この点は、監視カメラのほか、照明等の機器、標識などに加え、自動車又は自転車等の車庫の屋根、道路用等の防音壁などの建材についても、屋外に設置して使用される点で同様である。 In this respect, in addition to surveillance cameras, lighting and other equipment, signs, etc., building materials such as garage roofs for cars or bicycles, soundproof walls for roads, etc. are also used outdoors. It is the same.
 上記に関連する技術として、例えば、特許第5250685号公報には、水接触角が5乃至30度であり、且つ表面の中心線平均粗さRaが0.01乃至0.06μmであり、主成分をシリコーンとした無機系材料の親水コートを、樹脂基板の外表面に有するカメラカバーが開示されている。このカメラカバーは、水滴及び汚れの付着を防止し、画像の鮮明性を確保することができるとされている。 As a technology related to the above, for example, in Japanese Patent No. 5250685, the water contact angle is 5 to 30 degrees, the centerline average roughness Ra of the surface is 0.01 to 0.06 μm, and the main component There is disclosed a camera cover having a hydrophilic coat of an inorganic material made of silicone on the outer surface of a resin substrate. This camera cover is supposed to prevent water droplets and dirt from adhering to ensure the sharpness of the image.
 また、特開2013-203774号公報には、オルガノシリカゾルと有機溶剤とホウ酸とを含有する有機基材用防曇防汚剤が開示されている。この有機基材用防曇防汚剤は、親水性、硬度、有機基材に対する密着強度及び耐水性が高く防汚防曇性能に優れる無機硬化塗膜を付与するとされている。 In addition, JP 2013-203774 A discloses an antifogging and antifouling agent for organic substrates containing an organosilica sol, an organic solvent, and boric acid. This anti-fogging and antifouling agent for organic substrates is said to impart an inorganic cured coating film having high hydrophilicity, hardness, adhesion strength to the organic substrate and water resistance and excellent antifouling and antifogging performance.
 これらの他にも、特開2006-52352号公報には、テトラアルコキシシランおよび/またはその縮合物の加水分解体、シラノール基と相互作用可能な金属化合物、アルキレンオキサイドユニットを有し、HLB(Hydrophile Lipophile Balance)が10~15であるノニオン系界面活性剤、酸性コロイダルシリカ、ならびに親水性有機溶剤からなる水性親水化処理剤が開示されている。
 また、特開2000-212511号公報には、シリコーンレジンを主成分とする無機塗料中に、末端反応性基を有するシラン変性界面活性剤を含有する親水性無機塗料の硬化被膜を備えた親水性塗装物が開示されている。
In addition to these, JP 2006-52352 A discloses a hydrolyzate of tetraalkoxysilane and / or a condensate thereof, a metal compound capable of interacting with a silanol group, an alkylene oxide unit, and an HLB (Hydrophile). An aqueous hydrophilization treatment agent comprising a nonionic surfactant having a Lipophile Balance) of 10 to 15, acidic colloidal silica, and a hydrophilic organic solvent is disclosed.
Japanese Patent Application Laid-Open No. 2000-212511 discloses a hydrophilic film provided with a cured coating of a hydrophilic inorganic paint containing a silane-modified surfactant having a terminal reactive group in an inorganic paint mainly composed of a silicone resin. A painted product is disclosed.
 屋外に設置されて風雨等の様々に変化する環境下に曝される装置、部材、又は建材等は、汚れが付着するにしたがって所期の機能が低下する傾向があるため、一定の期間をおいて定期的に清掃又は部品交換を行うことが慣習とされてきた。
 上記の特許第5250685号公報に記載のカメラカバー等は、清掃等によりカバー表面を拭いた場合、カバーの表面に傷がつきやすく、清掃後に親水性を維持できないことがあった。
 また、監視カメラは高所に設置されることも多く、専用の器具を用いて設置されることがある。設置の際、器具が保護材等に接触した場合、保護材等の表面を傷つけてしまうことがある。上記の特許第5250685号公報に記載のカメラカバー等は、耐傷性が充分でないため、設置の際にカメラカバー等に傷がつきやすい傾向にあった。これらの点は、上記の特開2013-203774号公報に記載の防曇防汚剤で被覆された有機基材、上記の特開2006-52352号公報に記載の親水性膜及び特開2000-212511号公報に記載の親水性塗装物においても同様の傾向がある。
Equipment, components, or building materials that are installed outdoors and exposed to various environments such as wind and rain tend to deteriorate in their intended functions as dirt adheres to them. It has become customary to regularly clean or replace parts.
When the cover surface of the camera cover described in the above-mentioned Japanese Patent No. 5250685 is wiped by cleaning or the like, the surface of the cover is easily damaged, and the hydrophilicity may not be maintained after cleaning.
Also, surveillance cameras are often installed at high places, and may be installed using dedicated equipment. If the instrument comes into contact with a protective material or the like during installation, the surface of the protective material or the like may be damaged. Since the camera cover and the like described in the above-mentioned Japanese Patent No. 5250685 are not sufficiently scratch resistant, the camera cover and the like tend to be easily damaged during installation. These points are the organic base material coated with the anti-fogging and antifouling agent described in JP-A-2013-203774, the hydrophilic film described in JP-A-2006-52352, and JP-A 2000-2000. There is a similar tendency in the hydrophilic coating described in US Pat.
 本発明の一実施形態は、上記の状況に鑑みなされたものであり、耐傷性及び親水性に優れた親水性膜及びその製造方法、積層体、監視カメラ用保護材、並びに監視カメラを提供することを目的とし、この目的を達成することを課題とする。 One embodiment of the present invention has been made in view of the above situation, and provides a hydrophilic film excellent in scratch resistance and hydrophilicity, a method for manufacturing the same, a laminate, a protective material for a surveillance camera, and a surveillance camera. The purpose is to achieve this purpose.
 課題を解決するための具体的手段には、以下の態様が含まれる。
<1> シロキサンバインダーと、シリカ粒子と、を含有し、表面における表面積差ΔSと表面粗さRaとが下記式1の関係を満たす親水性膜。
 ΔS≦0.5Ra ・・・式1
 式1中、ΔSは下記式2で求められる百分率である。
 ΔS=[(S-S)/S]×100 ・・・式2
 式2中、Sは親水性膜の垂線方向から見た投影面積を表し、SはSで表す投影面積における親水性膜の表面の実表面積を表す。
Specific means for solving the problems include the following aspects.
<1> A hydrophilic film containing a siloxane binder and silica particles, wherein the surface area difference ΔS and the surface roughness Ra on the surface satisfy the relationship of the following formula 1.
ΔS ≦ 0.5Ra Formula 1
In Equation 1, ΔS is a percentage obtained by Equation 2 below.
ΔS = [(S X −S 0 ) / S 0 ] × 100 Equation 2
In Equation 2, S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
<2> 表面粗さRaが100nm以下である<1>に記載の親水性膜。
<3> 表面粗さRaが10nm以下である<1>又は<2>に記載の親水性膜。
<4> 表面積差ΔSが0.1%以上である<1>~<3>のいずれか1つに記載の親水性膜。
<5> さらに帯電防止剤を含有する<1>~<4>のいずれか1つに記載の親水性膜。
<6> 帯電防止剤の少なくとも1種が、イオン性の界面活性剤である<5>に記載の親水性膜。
<7> さらに界面活性剤を含有する<1>~<6>のいずれか1つに記載の親水性膜。
<8> 界面活性剤が、ノニオン性の界面活性剤である<7>に記載の親水性膜。
<9> シロキサンバインダーは、下記一般式(1)で表される化合物から形成されるシロキサンバインダーである<1>~<8>のいずれか1つに記載の親水性膜。
<2> The hydrophilic film according to <1>, wherein the surface roughness Ra is 100 nm or less.
<3> The hydrophilic film according to <1> or <2>, wherein the surface roughness Ra is 10 nm or less.
<4> The hydrophilic film according to any one of <1> to <3>, wherein the surface area difference ΔS is 0.1% or more.
<5> The hydrophilic film according to any one of <1> to <4>, further containing an antistatic agent.
<6> The hydrophilic film according to <5>, wherein at least one of the antistatic agents is an ionic surfactant.
<7> The hydrophilic film according to any one of <1> to <6>, further containing a surfactant.
<8> The hydrophilic film according to <7>, wherein the surfactant is a nonionic surfactant.
<9> The hydrophilic film according to any one of <1> to <8>, wherein the siloxane binder is a siloxane binder formed from a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、2~20の整数を表す。 In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represent a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
<10> シリカ粒子の平均一次粒子径が、2nm以上100nm以下である<1>~<9>のいずれか1つに記載の親水性膜。 <10> The hydrophilic film according to any one of <1> to <9>, wherein an average primary particle diameter of the silica particles is 2 nm to 100 nm.
<11> シロキサンバインダーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を含有する塗布液を基材に塗布する塗布工程と、塗布工程により基材上に塗布された塗布膜を20℃以上150℃以下の温度で乾燥する乾燥工程と、を有し、シロキサンバインダーに対するシリカ粒子の比率が質量基準で0.1~1.8であり、表面における表面積差ΔSと表面粗さRaとが下記式1の関係を満たす親水性膜を製造する親水性膜の製造方法。
 ΔS≦0.5Ra ・・・式1
 式1中、ΔSは下記式2で求められる百分率である。
 ΔS=[(S-S)/S]×100 ・・・式2
 式2中、Sは親水性膜の垂線方向から見た投影面積を表し、SはSで表す投影面積における親水性膜の表面の実表面積を表す。
<11> A coating step in which a coating solution containing a siloxane binder and silica particles having an average primary particle size of 2 nm to 100 nm is coated on a substrate, and a coating film coated on the substrate by the coating step is 20 And a drying step of drying at a temperature of from 150 ° C. to 150 ° C., the ratio of the silica particles to the siloxane binder is 0.1 to 1.8 on a mass basis, the surface area difference ΔS on the surface and the surface roughness Ra, Manufacturing method of the hydrophilic film | membrane which manufactures the hydrophilic film | membrane satisfy | filling the relationship of following formula 1.
ΔS ≦ 0.5Ra Formula 1
In Equation 1, ΔS is a percentage obtained by Equation 2 below.
ΔS = [(S X −S 0 ) / S 0 ] × 100 Equation 2
In Equation 2, S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
<12> さらに、水と、シロキサンオリゴマーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を混合することで塗布液を調製する調製工程を有する<11>に記載の親水性膜の製造方法。
<13> 調製工程は、さらにシロキサンオリゴマーの縮合反応を促進する触媒を混合することで塗布液を調製する<12>に記載の親水性膜の製造方法。
<12> The hydrophilic film according to <11>, further comprising a preparation step of preparing a coating liquid by mixing water, a siloxane oligomer, and silica particles having an average primary particle diameter of 2 nm to 100 nm. Production method.
<13> The method for producing a hydrophilic film according to <12>, wherein the preparation step further comprises preparing a coating solution by mixing a catalyst that promotes a condensation reaction of the siloxane oligomer.
<14> 基材と、<1>~<10>のいずれか1つに記載の親水性膜と、を有する積層体。
<15> <14>に記載の積層体を備えた監視カメラ用保護材。
<16> 積層体における基材の形状は、半球形状、半楕円体形状、平面形状、角柱形状又は円柱形状である<15>に記載の監視カメラ用保護材。
<17> 屋外に設置される監視カメラに用いられる<15>又は<16>に記載の監視カメラ用保護材。
<18> <15>~<17>のいずれか1つに記載の監視カメラ用保護材を備えた監視カメラ。
<14> A laminate having a base material and the hydrophilic film according to any one of <1> to <10>.
<15> A surveillance camera protective material comprising the laminate according to <14>.
<16> The surveillance camera protective material according to <15>, wherein the base material in the laminate has a hemispherical shape, a semi-ellipsoidal shape, a planar shape, a prismatic shape, or a cylindrical shape.
<17> The protective material for a surveillance camera according to <15> or <16>, which is used for a surveillance camera installed outdoors.
<18> A surveillance camera comprising the surveillance camera protective material according to any one of <15> to <17>.
 本発明の一実施形態によれば、耐傷性及び親水性に優れた親水性膜及びその製造方法、積層体、監視カメラ用保護材、並びに監視カメラが提供される。 According to one embodiment of the present invention, a hydrophilic film excellent in scratch resistance and hydrophilicity, a method for producing the same, a laminate, a protective material for a surveillance camera, and a surveillance camera are provided.
 以下、親水性膜及びその製造方法、積層体、監視カメラ用保護材、並びに監視カメラについて詳細に説明する。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
Hereinafter, the hydrophilic film, the manufacturing method thereof, the laminate, the protective material for the surveillance camera, and the surveillance camera will be described in detail.
In the present specification, a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
<親水性膜> 
 親水性膜は、シロキサンバインダーと、シリカ粒子と、を含有し、表面における表面積差ΔSと表面粗さRaとが下記式1の関係を満たす。
 ΔS≦0.5Ra ・・・式1
 式1中、ΔSは下記式2で求められる百分率である。
 ΔS=[(S-S)/S]×100 ・・・式2
 式2中、Sは親水性膜の垂線方向から見た投影面積を表し、SはSで表す投影面積における親水性膜の表面の実表面積を表す。SとSとの単位は同一の単位(例えば、μm)であればよい。
<Hydrophilic membrane>
The hydrophilic film contains a siloxane binder and silica particles, and the surface area difference ΔS and the surface roughness Ra on the surface satisfy the relationship of the following formula 1.
ΔS ≦ 0.5Ra Formula 1
In Equation 1, ΔS is a percentage obtained by Equation 2 below.
ΔS = [(S X −S 0 ) / S 0 ] × 100 Equation 2
In Equation 2, S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 . The unit of S 0 and S X may be the same unit (for example, μm).
 親水性膜とは、水接触角が40°以下の膜をいう。
 水接触角は、接触角計M553G-XM(株式会社シロ産業製)を用い、親水性膜の表面に純水を1μl滴下してθ/2法により求め、5回測定して得た値の算術平均値とする。
 表面粗さRaは、原子間力顕微鏡(AFM)を用いて、JIS B0601:2001に準拠し測定される値である。
 Sは原子間力顕微鏡(AFM)により測定される値である。
A hydrophilic membrane refers to a membrane having a water contact angle of 40 ° or less.
The water contact angle is a value obtained by measuring 5 times by using a contact angle meter M553G-XM (manufactured by Shiro Sangyo Co., Ltd.) by dropping 1 μl of pure water on the surface of the hydrophilic membrane and calculating by the θ / 2 method. Arithmetic mean value.
The surface roughness Ra is a value measured according to JIS B0601: 2001 using an atomic force microscope (AFM).
S X is a value measured by an atomic force microscope (AFM).
[表面積差ΔS]
 親水性膜の表面積差ΔSは、上記の式2により表される。
 表面積差ΔSは、数値が0%に近づくほど、SとSとの数値に差が少ないことを示す。すなわち、ΔSが0%に近づくほど、親水性膜の表面は凹凸が小さく平坦になることを示す。
 Sで表される実表面積とは、原子間力顕微鏡(AFM)により測定される、凹凸表面に沿った総面積を指す。Sで表される投影面積とは、親水性膜の垂線方向から投影して親水性膜表面の凹凸を無視したxy軸2次元方向における見た目の面積を指す。具体的には、SはSを測定する際のxy軸における測定範囲(親水性膜の垂線方向から見た投影面積)の値を用いることができる。
 表面積差ΔSは、シリカ粒子の平均一次粒子径、シロキサンバインダーに対するシリカ粒子の比率、膜形成時の乾燥条件(具体的には、乾燥温度、乾燥時間)により、所定の範囲に調節することができる。
[Surface area difference ΔS]
The surface area difference ΔS of the hydrophilic film is expressed by the above formula 2.
The surface area difference ΔS indicates that the closer the numerical value approaches 0%, the smaller the difference between the numerical values of S X and S 0 . That is, as ΔS approaches 0%, the surface of the hydrophilic film becomes flat with less unevenness.
The actual surface area represented by S X refers to the total area along the concavo-convex surface measured by an atomic force microscope (AFM). The projected area represented by S 0 refers to an apparent area in the two-dimensional direction of the xy axis that is projected from the perpendicular direction of the hydrophilic film and ignores irregularities on the surface of the hydrophilic film. Specifically, the value of the measurement range (projected area viewed from the perpendicular direction of the hydrophilic film) on the xy axis when measuring S X can be used as S 0 .
The surface area difference ΔS can be adjusted to a predetermined range depending on the average primary particle diameter of the silica particles, the ratio of the silica particles to the siloxane binder, and the drying conditions (specifically, drying temperature and drying time) at the time of film formation. .
 表面積差ΔSは、0.1%以上であることが好ましい。表面積差ΔSが0.1%以上の状態とは、シリカ粒子の一部が親水性膜の表面に露出した状態である。膜の表面がこの状態であることで、シリカ粒子の有する親水性及び耐傷性を効果的に発現することができる。
 表面積差ΔSは、上記と同様の点から0.1%以上50%以下がより好ましく、0.1%以上5%以下が更に好ましい。
The surface area difference ΔS is preferably 0.1% or more. The state where the surface area difference ΔS is 0.1% or more is a state where a part of the silica particles is exposed on the surface of the hydrophilic film. When the surface of the film is in this state, the hydrophilicity and scratch resistance of the silica particles can be effectively expressed.
The surface area difference ΔS is more preferably 0.1% or more and 50% or less, and further preferably 0.1% or more and 5% or less from the same point as described above.
[表面粗さRa]
 表面粗さRaは、原子間力顕微鏡(AFM)(セイコーインスツルメンツ社製、SPA-400)を用いて、JIS B0601:2001に準拠し測定することができる。
[Surface roughness Ra]
The surface roughness Ra can be measured according to JIS B0601: 2001 using an atomic force microscope (AFM) (manufactured by Seiko Instruments Inc., SPA-400).
 表面粗さRaは、耐傷性の観点から、100nm以下であることが好ましく、10nm以下であることがより好ましい。 The surface roughness Ra is preferably 100 nm or less, and more preferably 10 nm or less, from the viewpoint of scratch resistance.
[表面積差ΔSと表面粗さRaとの関係]
 親水性膜は、表面積差ΔSと表面粗さRaとが下記式1の関係を満たす。
 ΔS≦0.5Ra ・・・式1
[Relationship between surface area difference ΔS and surface roughness Ra]
In the hydrophilic film, the surface area difference ΔS and the surface roughness Ra satisfy the relationship of the following formula 1.
ΔS ≦ 0.5Ra Formula 1
 表面積差ΔSと表面粗さRaとが式1の関係を満たすことで、耐傷性と親水性とが優れた膜となる。
 上記の式1において、例えば、表面粗さRaが10nmであると仮定した場合、表面積差ΔSは5%以下となる。すなわち、同じ表面粗さを有する表面の場合、凹凸が少ない方が耐傷性と親水性の両立には、効果的であることを示している。
When the surface area difference ΔS and the surface roughness Ra satisfy the relationship of Formula 1, the film has excellent scratch resistance and hydrophilicity.
In the above formula 1, for example, when it is assumed that the surface roughness Ra is 10 nm, the surface area difference ΔS is 5% or less. That is, in the case of the surfaces having the same surface roughness, it is shown that the one with less unevenness is more effective for achieving both scratch resistance and hydrophilicity.
[水接触角]
 親水性膜の水接触角は、30°以下であることが好ましく、25°以下であることがより好ましく、15°以下がさらに好ましい。水接触角が上記範囲であると、親水性膜の表面がより親水性に優れたものなる。水接触角は前述の通りである。
[Water contact angle]
The water contact angle of the hydrophilic film is preferably 30 ° or less, more preferably 25 ° or less, and further preferably 15 ° or less. When the water contact angle is in the above range, the surface of the hydrophilic film is more excellent in hydrophilicity. The water contact angle is as described above.
 親水性膜が上記の効果を奏し得る理由については明らかではないが、以下のように推測される。
 親水性膜は、表面積差ΔSと表面粗さRaとが上記の式1の関係を満たすことで、親水性膜は凹凸が小さい表面となる。そのため、親水性膜表面に、例えば、砂利などの汚染物質が付着したまま擦られた場合、親水性膜と汚染物質とが接触する面積が大きくなり、接触した際の応力が分散される。また、凹凸が小さいため汚染物質の堆積も抑えられる。その結果、親水性膜は傷が付きにくく汚れにくい膜となる(つまり耐傷性及び防汚性に優れる)と考えられる。
 また、親水性膜は、シロキサンバインダーとシリカ粒子とを含む(好ましくは、シロキサンバインダーがシロキサンオリゴマーの縮合反応により形成される)ため、形成された膜におけるシリカ粒子の表面には高密度のシラノール基が存在する。そのため、形成された親水性膜は親水性に優れると考えられる。
 従来、膜における親水性等の物性は、例えば、表面粗さRaの数値が大きいほど親水性等が顕著に現れ(例えば、Wenzelの式など)、逆に表面粗さRaの数値が小さい(表面が平坦化する)ほど親水性等に劣ると考えられていた。
 しかし、本発明の一実施形態の親水性膜は、上記の構成とすることで、表面粗さRaの数値が小さくとも優れた親水性が得られると考えられる。
 以上のことから、親水性膜は耐傷性及び親水性に優れると考えられる。
The reason why the hydrophilic film can achieve the above effect is not clear, but is presumed as follows.
In the hydrophilic film, the surface area difference ΔS and the surface roughness Ra satisfy the relationship of the above formula 1, so that the hydrophilic film has a surface with small unevenness. Therefore, for example, when the surface of the hydrophilic film is rubbed with a contaminant such as gravel attached, the area where the hydrophilic film and the contaminant are in contact with each other is increased, and the stress at the time of contact is dispersed. Further, since the unevenness is small, the accumulation of contaminants can be suppressed. As a result, the hydrophilic film is considered to be a film that is difficult to be scratched and soiled (that is, excellent in scratch resistance and antifouling property).
Further, since the hydrophilic film contains a siloxane binder and silica particles (preferably, the siloxane binder is formed by a condensation reaction of siloxane oligomers), the surface of the silica particles in the formed film has a high density of silanol groups. Exists. Therefore, it is considered that the formed hydrophilic film is excellent in hydrophilicity.
Conventionally, as for the physical properties such as hydrophilicity of a film, for example, the larger the numerical value of the surface roughness Ra, the more the hydrophilicity appears (for example, Wenzel's formula), and the smaller the numerical value of the surface roughness Ra (surface). It was thought that the hydrophilicity etc. were inferior so that it became flat.
However, it is considered that excellent hydrophilicity can be obtained even if the numerical value of the surface roughness Ra is small, by adopting the above-described configuration for the hydrophilic film of one embodiment of the present invention.
From the above, it is considered that the hydrophilic film is excellent in scratch resistance and hydrophilicity.
[シロキサンバインダー]
 親水性膜は、シロキサンバインダーの少なくとも1種を含有する。
 親水性膜がシロキサンバインダーを含有することで、親水性膜はシリカ粒子を保持することができ、耐傷性と親水性とを両立することができる。
[Siloxane binder]
The hydrophilic film contains at least one siloxane binder.
When the hydrophilic film contains a siloxane binder, the hydrophilic film can hold silica particles, and both scratch resistance and hydrophilicity can be achieved.
 シロキサンバインダーは、シロキサンオリゴマーを縮合反応させて得られる化合物の少なくとも1種を含むことが好ましい。 The siloxane binder preferably contains at least one compound obtained by a condensation reaction of a siloxane oligomer.
 シロキサンオリゴマーとしては、1種のシラン化合物を用いて得られた部分加水分解縮合物、及び2種以上のシラン化合物を用いて得られた部分共加水分解縮合物を用いることができる。以下、これらの化合物を「部分(共)加水分解縮合物」と称することがある。
 なお、シラン化合物とは、加水分解性シリル基及び/又はシラノール基を有する化合物であり、シリル基は加水分解してシラノール基となり、シラノール基は脱水縮合してシロキサン結合が生成する。
As the siloxane oligomer, a partial hydrolysis condensate obtained by using one kind of silane compound and a partial cohydrolysis condensate obtained by using two or more kinds of silane compounds can be used. Hereinafter, these compounds may be referred to as “partial (co) hydrolysis condensates”.
The silane compound is a compound having a hydrolyzable silyl group and / or a silanol group. The silyl group is hydrolyzed to become a silanol group, and the silanol group is dehydrated and condensed to produce a siloxane bond.
 この場合、部分(共)加水分解縮合物としては、上記したようなシラン化合物の2量体(シラン化合物2モルに水1モルを作用させてアルコール2モルを脱離させ、ジシロキサン単位とした化合物)~100量体、好ましくは2量体~50量体、更に好ましくは2量体~20量体とした化合物が好適に使用でき、2種以上のシラン化合物を原料とする部分(共)加水分解縮合物を使用することも可能である。 In this case, as a partial (co) hydrolysis condensate, dimers of the silane compound as described above (1 mol of water was allowed to act on 2 mol of the silane compound to remove 2 mol of alcohol to form disiloxane units. Compound) to 100-mer, preferably dimer to 50-mer, more preferably dimer to 20-mer, and a part (co) of which two or more silane compounds are used as raw materials. It is also possible to use hydrolysis condensates.
 なお、このような部分(共)加水分解縮合物はシリコーンアルコキシオリゴマーとして市販されている化合物を使用してもよく(例えば、信越化学工業(株)などから市販されている。)、また、常法に基づき、加水分解性シラン化合物に対し当量未満の加水分解水を反応させた後に、アルコール、及び塩酸等の副生物を除去することによって製造した化合物を使用してもよい。 Such a partial (co) hydrolysis condensate may be a compound commercially available as a silicone alkoxy oligomer (for example, commercially available from Shin-Etsu Chemical Co., Ltd.). Based on the law, a compound produced by reacting hydrolyzable silane compound with less than an equivalent amount of hydrolyzed water and then removing by-products such as alcohol and hydrochloric acid may be used.
 シロキサンオリゴマーは、分子末端にアルコキシシリル基を有することが好ましい。分子末端にアルコキシシリル基を有するシロキサンオリゴマーとしては、分子中にアルコキシシリル基を4つ有する4官能のシロキサンオリゴマーを始め、3官能または2官能のシロキサンオリゴマーを使用することができる。
 これらのシロキサンオリゴマーの中でも、縮合反応の反応性の観点から、4官能のシロキサンオリゴマーが好ましい。
The siloxane oligomer preferably has an alkoxysilyl group at the molecular end. As the siloxane oligomer having an alkoxysilyl group at the molecular end, a tetrafunctional or bifunctional siloxane oligomer can be used, including a tetrafunctional siloxane oligomer having four alkoxysilyl groups in the molecule.
Among these siloxane oligomers, tetrafunctional siloxane oligomers are preferable from the viewpoint of the reactivity of the condensation reaction.
 4官能のシロキサンオリゴマーの中でも、一般式(1)で表される化合物(以下、「特定シロキサン化合物」ともいう。)が好ましい。
 つまり、親水性膜は一般式(1)で表される化合物から形成されるシロキサンバインダーの少なくとも1種を含有することが好ましい。
 親水性膜は、一般式(1)で表される化合物から形成されるシロキサンバインダーを含むことで、表面の親水性をより高めることができる。
Of the tetrafunctional siloxane oligomers, compounds represented by the general formula (1) (hereinafter also referred to as “specific siloxane compounds”) are preferable.
That is, the hydrophilic film preferably contains at least one siloxane binder formed from the compound represented by the general formula (1).
A hydrophilic film | membrane can improve the hydrophilic property of a surface more by including the siloxane binder formed from the compound represented by General formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは2~20の整数を表す。 In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represent a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
 R、R、R、及びRにおける炭素数1~6の1価の有機基は、直鎖状であってもよく、分岐を有していてもよく、環状であってもよい。1価の有機基としては、アルキル基、及びアルケニル基等が挙げられ、アルキル基であることが好ましい。
 R、R、R、又はRがアルキル基を表す場合のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert―ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基が挙げられる。
 特定シロキサン化合物においてR~Rの1価の有機基、好ましくはアルキル基の炭素数を1~6とすることにより、特定シロキサン化合物は加水分解性が良好となる。なお、加水分解性がより良好であるという観点からは、R~Rは、それぞれ独立に炭素数1~4のアルキル基であることがより好ましく、炭素数1又は2のアルキル基であることがさらに好ましい。
The monovalent organic group having 1 to 6 carbon atoms in R 1 , R 2 , R 3 and R 4 may be linear, branched or cyclic. . Examples of the monovalent organic group include an alkyl group and an alkenyl group, and an alkyl group is preferable.
Examples of the alkyl group when R 1 , R 2 , R 3 , or R 4 represents an alkyl group include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n- Examples thereof include a pentyl group, an n-hexyl group, and a cyclohexyl group.
When the monovalent organic group of R 1 to R 4 in the specific siloxane compound, preferably the alkyl group has 1 to 6 carbon atoms, the specific siloxane compound has good hydrolyzability. From the viewpoint of better hydrolyzability, R 1 to R 4 are more preferably each independently an alkyl group having 1 to 4 carbon atoms, and more preferably an alkyl group having 1 or 2 carbon atoms. More preferably.
 一般式(1)におけるnは、2~20の整数である。nを2~20の範囲とすることにより、特定シロキサン化合物を含む親水性膜用の塗布液(例えば、親水性膜を塗布により形成する場合は親水性膜形成用塗布液;以下同様。)の粘度を適切な範囲とすることができる。また、特定シロキサン化合物の反応性を好ましい範囲に制御することができる。nとしては、3~12であることが好ましく、5~10であることがより好ましい。
 なお、nが20以下であると、塗布液の粘度が高くなり過ぎず、均一性の高い親水性膜が塗布形成される。一方、nが2以上であると、シロキサン化合物の反応性が制御し易く、例えば表面の親水性に優れた親水性膜が塗布形成される。
 以下に、特定シロキサン化合物の例を、一般式(1)におけるR~R、及びnにより記載する。但し、これらの例示化合物に限定されるものではない。
N in the general formula (1) is an integer of 2 to 20. By setting n in the range of 2 to 20, a coating solution for a hydrophilic film containing a specific siloxane compound (for example, when a hydrophilic film is formed by coating, a coating solution for forming a hydrophilic film; the same applies hereinafter). The viscosity can be in an appropriate range. Moreover, the reactivity of a specific siloxane compound can be controlled in a preferable range. n is preferably 3 to 12, and more preferably 5 to 10.
When n is 20 or less, the viscosity of the coating solution does not become too high, and a hydrophilic film with high uniformity is formed by coating. On the other hand, when n is 2 or more, the reactivity of the siloxane compound is easily controlled, and for example, a hydrophilic film having excellent surface hydrophilicity is formed by coating.
Hereinafter, examples of the specific siloxane compound are described by R 1 to R 4 and n in the general formula (1). However, it is not limited to these exemplary compounds.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 シロキサンオリゴマーは、水と共存することで、少なくとも一部が加水分解される。シロキサンオリゴマーの加水分解物は、シロキサンオリゴマーと水とが反応することで、シロキサンオリゴマーのケイ素原子に結合したアルコキシ基の少なくとも一部がヒドロキシ基に置換された化合物であり、親水性基であるヒドロキシ基に起因して、例えば塗布及び乾燥を経て形成される親水性膜は表面親水性が良好な膜となる。
 加水分解反応に際して、必ずしもシロキサンオリゴマーが有する全てのアルコキシ基が反応する必要はないが、例えば親水性膜形成用塗布液の塗布及び乾燥により得られる塗膜の親水性がより良好になるという観点からは、より多くのアルコキシ基が加水分解されていることが好ましい。
 加水分解に際して必要な水の量は、シロキサンオリゴマーが有するアルコキシ基と等しいモル量であるが、加水分解反応を効率よく進行させるという観点からは、大過剰の水で加水分解を行うことが好ましい。
The siloxane oligomer is hydrolyzed at least partially by coexisting with water. A hydrolyzate of a siloxane oligomer is a compound in which at least a part of an alkoxy group bonded to a silicon atom of a siloxane oligomer is substituted with a hydroxy group by a reaction between the siloxane oligomer and water, and a hydroxy group that is a hydrophilic group. Due to the group, for example, a hydrophilic film formed through coating and drying becomes a film having good surface hydrophilicity.
In the hydrolysis reaction, it is not always necessary to react all the alkoxy groups of the siloxane oligomer, but for example, from the viewpoint that the hydrophilicity of the coating film obtained by applying and drying the coating liquid for forming a hydrophilic film becomes better. It is preferable that more alkoxy groups are hydrolyzed.
The amount of water required for the hydrolysis is the same molar amount as the alkoxy group of the siloxane oligomer, but it is preferable to carry out the hydrolysis with a large excess of water from the viewpoint of allowing the hydrolysis reaction to proceed efficiently.
 親水性膜に含有されるシロキサンバインダーは、上述のように、シロキサンオリゴマーの加水分解物が持つヒドロキシ基の少なくとも一部が互いに結合し、シロキサンオリゴマーが縮合して得られる。
 親水性膜には、シロキサンバインダーが1種のみ含まれていてもよく、2種以上が含まれていてもよい。
As described above, the siloxane binder contained in the hydrophilic film is obtained by condensing at least a part of the hydroxy groups of the hydrolyzate of the siloxane oligomer and condensing the siloxane oligomer.
The hydrophilic film may contain only one type of siloxane binder or two or more types.
 シロキサンオリゴマーの重量平均分子量は、300~1500の範囲が好ましく、500~1200の範囲がより好ましい。 The weight average molecular weight of the siloxane oligomer is preferably in the range of 300 to 1500, more preferably in the range of 500 to 1200.
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)で測定できる。具体的には、HLC-8120GPC、SC-8020(東ソー株式会社製)を用い、カラムとして、TSKgel、SuperHM-H(東ソー株式会社製、6.0mmID×15cm)を2本用い、溶離液としてテトラヒドロフラン(THF)を用いて測定できる。また、条件としては、試料濃度を0.5質量%、流速を0.6ml/min、サンプル注入量を10μl、測定温度を40℃とし、示差屈折率(RI)検出器を用いて行なうことができる。検量線は、東ソー社製「polystyrene標準試料TSK standard」:「A-500」、「F-1」、「F-10」、「F-80」、「F-380」、「A-2500」、「F-4」、「F-40」、「F-128」、「F-700」の10サンプルから作製されたものを用いることができる。 The weight average molecular weight can be measured by gel permeation chromatography (GPC). Specifically, HLC-8120GPC, SC-8020 (manufactured by Tosoh Corporation) is used, TSKgel, SuperHM-H (manufactured by Tosoh Corporation, 6.0 mm ID × 15 cm) are used as columns, and tetrahydrofuran is used as an eluent. It can be measured using (THF). The conditions are as follows: the sample concentration is 0.5 mass%, the flow rate is 0.6 ml / min, the sample injection amount is 10 μl, the measurement temperature is 40 ° C., and a differential refractive index (RI) detector is used. it can. The calibration curves are “polystyrene standard sample TSK standard” manufactured by Tosoh Corporation: “A-500”, “F-1”, “F-10”, “F-80”, “F-380”, “A-2500”. , “F-4”, “F-40”, “F-128”, and “F-700” prepared from 10 samples can be used.
 シロキサンバインダーの親水性膜中における含有量としては、親水性膜の全固形分に対して、1質量%~80質量%が好ましく、3質量%~75質量%がより好ましく、5質量%~70質量%がさらに好ましい。シロキサンバインダーの含有量が上記範囲であると、親水性膜の表面の水接触角が低く抑えられ、汚れ難く、汚れた場合にも汚れを容易に除去し得る膜となる。 The content of the siloxane binder in the hydrophilic film is preferably 1% by mass to 80% by mass, more preferably 3% by mass to 75% by mass with respect to the total solid content of the hydrophilic film, and 5% by mass to 70%. More preferred is mass%. When the content of the siloxane binder is within the above range, the water contact angle on the surface of the hydrophilic film is suppressed to be low, and the film is difficult to get dirty, and even when dirty, the film can be easily removed.
[シリカ粒子]
 親水性膜は、シリカ粒子の少なくとも1種を含有する。
 シリカ粒子は、親水性膜の耐傷性を高めつつ、さらに親水性を発揮させる機能を有する。すなわち、シリカ粒子は硬いフィラーとしての役割を担い、かつ、粒子表面のヒドロキシ基が作用して親水性に寄与する。
[Silica particles]
The hydrophilic film contains at least one kind of silica particles.
The silica particles have a function of further improving hydrophilicity while enhancing the scratch resistance of the hydrophilic film. That is, the silica particle plays a role as a hard filler, and the hydroxyl group on the particle surface acts to contribute to hydrophilicity.
 シリカ粒子としては、例えば、ヒュームドシリカ、コロイダルシリカが挙げられる。
 ヒュームドシリカは、ケイ素原子を含む化合物を気相中で酸素及び水素と反応させることによって得ることができる。原料となるケイ素化合物としては、例えば、ハロゲン化ケイ素(例えば、塩化ケイ素)が挙げられる。
 コロイダルシリカは、原料化合物を加水分解及び縮合するゾルゲル法により合成することができる。コロイダルシリカの原料化合物としては、例えば、アルコキシケイ素(例えば、テトラエトキシシラン)、ハロゲン化シラン化合物(例えば、ジフェニルジクロロシラン)が挙げられる。
Examples of the silica particles include fumed silica and colloidal silica.
Fumed silica can be obtained by reacting a compound containing a silicon atom with oxygen and hydrogen in the gas phase. Examples of the silicon compound used as a raw material include silicon halide (for example, silicon chloride).
Colloidal silica can be synthesized by a sol-gel method in which a raw material compound is hydrolyzed and condensed. Examples of the raw material compound for colloidal silica include alkoxy silicon (for example, tetraethoxysilane) and halogenated silane compound (for example, diphenyldichlorosilane).
 シリカ粒子の形状は、特に限定はなく、球状、板状、針状、数珠状、又はこれらの2種類以上が合体した形状が挙げられる。なお、ここでいう球状とは、真球状の他、回転楕円体、及び卵形等の形状である場合も含む。 The shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a plate shape, a needle shape, a bead shape, or a shape in which two or more of these are combined. The term “spherical” as used herein includes not only true spheres but also spheroids and oval shapes.
 シリカ粒子の例としては、エボニック デグサ社製のAEROSIL(登録商標)シリーズ、日産化学工業社製のスノーテックス(登録商標)シリーズ(例えばスノーテックスOなど)、及びナルコケミカル社製のナルコ(Nalco)(登録商標)シリーズ(例えばNalco8699など)等が挙げられる。 Examples of the silica particles include AEROSIL (registered trademark) series manufactured by Evonik Degussa, Snowtex (registered trademark) series (for example, Snowtex O) manufactured by Nissan Chemical Industries, and Nalco manufactured by Nalco Chemical. (Registered trademark) series (for example, Nalco 8699 etc.) etc. are mentioned.
 シリカ粒子は、親水性膜の表面積差ΔSと表面粗さRaとが上記の式1の関係を満たす範囲に調整しやすい観点から、平均一次粒子径が100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましく、15nm以下であることが特に好ましい。また、シリカ粒子の平均一次粒子径の下限は、特に限定されないが、上記と同様の観点から2nm以上が好ましい。
 また、シリカ粒子は、サイズ又は形状が異なるものが混合されていてもよい。
The silica particles preferably have an average primary particle diameter of 100 nm or less, from the viewpoint of easy adjustment to a range in which the surface area difference ΔS and the surface roughness Ra of the hydrophilic film satisfy the relationship of the above formula 1, and are 50 nm or less. More preferably, it is more preferably 30 nm or less, and particularly preferably 15 nm or less. Moreover, the minimum of the average primary particle diameter of a silica particle is although it does not specifically limit, 2 nm or more is preferable from a viewpoint similar to the above.
Silica particles having different sizes or shapes may be mixed.
 シリカ粒子の平均一次粒子径は、透過型電子顕微鏡により観察し、得られた写真から300個以上の粒子について粒子の投影面積を測定し、投影面積から円相当径を求めることにより求められる。なお、シリカ粒子の形状が球状ではない場合には、その他の方法、例えば、動的光散乱法を用いて求められる。 The average primary particle diameter of the silica particles is obtained by observing with a transmission electron microscope, measuring the projected area of the particles for 300 or more particles from the obtained photograph, and determining the equivalent circle diameter from the projected area. In addition, when the shape of a silica particle is not spherical, it calculates | requires using another method, for example, a dynamic light scattering method.
 シリカ粒子の含有量としては、親水性膜の全固形分に対して、5質量%~95質量%が好ましく、10質量%~90質量%がより好ましく、20質量%~85質量%がさらに好ましい。シリカ粒子の含有量が上記範囲内であると、硬度、耐傷性、及び耐衝撃性に優れつつも、親水性を有する親水性膜を形成することができる。 The content of silica particles is preferably 5% by mass to 95% by mass, more preferably 10% by mass to 90% by mass, and still more preferably 20% by mass to 85% by mass with respect to the total solid content of the hydrophilic film. . When the content of the silica particles is within the above range, a hydrophilic film having hydrophilicity can be formed while being excellent in hardness, scratch resistance, and impact resistance.
 また、シリカ粒子の含有量は、前述のシロキサンバインダーの含有量に対して一定の比率の範囲であることが好ましい。すなわち、親水性膜中における、シロキサンバインダーに対するシリカ粒子の比率が、質量基準で0.1~1.8であることが好ましく、0.1~1.5であることがより好ましく、0.1~1.2であることがさらに好ましい。
 シロキサンバインダーに対するシリカ粒子の比率が、上記の範囲であると、親水性膜の表面積差ΔSと表面粗さRaとの関係を上記の式1を満たす範囲に調整しやすい。
Moreover, it is preferable that content of a silica particle is the range of a fixed ratio with respect to content of the above-mentioned siloxane binder. That is, the ratio of the silica particles to the siloxane binder in the hydrophilic film is preferably 0.1 to 1.8, more preferably 0.1 to 1.5, more preferably 0.1 More preferably, it is -1.2.
When the ratio of the silica particles to the siloxane binder is in the above range, the relationship between the surface area difference ΔS of the hydrophilic film and the surface roughness Ra can be easily adjusted to a range satisfying the above formula 1.
 親水性膜は、シロキサンバインダー及びシリカ粒子以外にも、帯電防止剤、界面活性剤、シロキサンオリゴマーの縮合反応を促進する触媒、及び他の成分を含んでもよい。 In addition to the siloxane binder and silica particles, the hydrophilic film may contain an antistatic agent, a surfactant, a catalyst for promoting the condensation reaction of the siloxane oligomer, and other components.
[帯電防止剤]
 親水性膜は、帯電防止剤の少なくとも1種を含有することが好ましい。帯電防止剤の含有により親水性膜に帯電防止性が付与され、帯電防止剤をシロキサンバインダー及びシリカ粒子と共に含有していることで、汚染物質に対する付着防止効果が大きく、防汚性が飛躍的に向上する。
[Antistatic agent]
The hydrophilic film preferably contains at least one antistatic agent. By containing an antistatic agent, antistatic properties are imparted to the hydrophilic film. By containing the antistatic agent together with a siloxane binder and silica particles, the effect of preventing adhesion to contaminants is great, and the antifouling property is dramatically improved. improves.
 帯電防止剤は、帯電防止機能を有する化合物から適宜選択することができ、界面活性を示す化合物又は界面活性を示さない化合物のいずれでもよい。帯電防止剤としては、例えば、イオン性の界面活性剤、金属酸化物粒子が挙げられる。
 イオン性の界面活性剤は、親水性膜を例えば塗布により形成する場合に、塗膜の膜面付近に偏析しやすい性質があるため、少量の添加で効果が期待できる。また、金属酸化物粒子は、親水性膜に帯電防止性を与えるために比較的多量の添加が必要とされる場合があるが、無機物であるため、親水性膜の耐傷性を高める点で適している。
The antistatic agent can be appropriately selected from compounds having an antistatic function, and may be either a compound showing surface activity or a compound not showing surface activity. Examples of the antistatic agent include ionic surfactants and metal oxide particles.
Since an ionic surfactant has a property of easily segregating in the vicinity of the film surface of a coating film when a hydrophilic film is formed by coating, for example, the effect can be expected with a small amount of addition. In addition, metal oxide particles may be required to be added in a relatively large amount in order to impart antistatic properties to the hydrophilic film, but are suitable for enhancing the scratch resistance of the hydrophilic film because it is an inorganic substance. ing.
 イオン性の界面活性剤の例としては、アルキル硫酸塩(例:ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム等)、アルキルベンゼンスルホン酸塩(例:ドデシルベンゼンスルホン酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム等)、アルキルスルホコハク酸塩(例:ジ(2-エチルヘキシル)スルホコハク酸ナトリウム等)、アルキルリン酸塩(例:ドデシルリン酸ナトリウム等)などのアニオン性界面活性剤;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩などのカチオン性界面活性剤;及びアルキルカルボキシベタインなどの両性型界面活性剤を挙げることができる。
 なお、イオン性の界面活性剤は、膜中に過剰に加えられると、系内の電解質量が増えてシリカ粒子の凝集を招くことが知られているため、イオン性の界面活性剤をシリカ粒子と併用する組成は避けられてきた。しかしながら、イオン性の界面活性剤は、汚染物質に対する防汚機能を発現するとの知見が得られ、本発明の一実施形態はかかる知見に基づくものであり、親水性膜に帯電防止剤としてイオン性の界面活性剤を含有することは好ましい態様である。イオン性の界面活性剤を含むことで、親水性膜の防汚性及び水洗浄性がより高められる。
Examples of ionic surfactants include alkyl sulfates (eg, sodium dodecyl sulfate, sodium lauryl sulfate, etc.), alkyl benzene sulfonates (eg, sodium dodecyl benzene sulfonate, sodium lauryl benzene sulfonate, etc.), alkyl sulfosuccinates. Anionic surfactants such as acid salts (eg, sodium di (2-ethylhexyl) sulfosuccinate) and alkyl phosphates (eg, sodium dodecyl phosphate); Cationics such as alkyltrimethylammonium salts and dialkyldimethylammonium salts Surfactants; and amphoteric surfactants such as alkylcarboxybetaines.
It is known that if an ionic surfactant is added excessively in the film, the electrolytic mass in the system increases and silica particles are aggregated. The composition used in combination with has been avoided. However, the knowledge that an ionic surfactant exhibits an antifouling function against pollutants is obtained, and one embodiment of the present invention is based on such knowledge, and an ionic surfactant is used as an antistatic agent in a hydrophilic film. It is a preferable aspect to contain the surfactant. By including an ionic surfactant, the antifouling property and water washability of the hydrophilic membrane are further enhanced.
 金属酸化物粒子としては、特に限定されないが、酸化スズ粒子、アンチモンドープ酸化スズ粒子、スズドープ酸化インジウム粒子、及び酸化亜鉛粒子などが挙げられる。
 また、金属酸化物粒子は、サイズ、形状、又は素材が異なる粒子が混合されて使用されていてもよい。粒子の形状は、特に限定されず、球状であっても、板状であっても、針状であってもよい。
 金属酸化物粒子は、屈折率が大きく、粒径が大きい場合には、透過光の過度の散乱による損失が発生しやすいため、平均一次粒子径が100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。
 金属酸化物粒子の平均一次粒子径は、粒子形状が球状又は断面楕円等の略球状である場合は、分散した粒子を透過型電子顕微鏡により観察し、得られた写真から300個以上の粒子について粒子の投影面積を測定し、投影面積から円相当径を求めることにより求められる。なお、金属酸化物粒子の形状が球状ではない場合、その他の方法、例えば、動的光散乱法を用いて求められる。
Although it does not specifically limit as a metal oxide particle, A tin oxide particle, an antimony dope tin oxide particle, a tin dope indium oxide particle, a zinc oxide particle, etc. are mentioned.
Moreover, the metal oxide particles may be used by mixing particles having different sizes, shapes, or materials. The shape of the particles is not particularly limited, and may be spherical, plate-shaped, or needle-shaped.
When the metal oxide particles have a large refractive index and a large particle size, loss due to excessive scattering of transmitted light is likely to occur. Therefore, the average primary particle size is preferably 100 nm or less, and preferably 50 nm or less. More preferably, it is more preferably 30 nm or less.
Regarding the average primary particle diameter of the metal oxide particles, when the particle shape is substantially spherical, such as a spherical shape or a cross-sectional ellipse, the dispersed particles are observed with a transmission electron microscope, and 300 or more particles are obtained from the obtained photograph. It is obtained by measuring the projected area of the particles and determining the equivalent circle diameter from the projected area. In addition, when the shape of a metal oxide particle is not spherical, it calculates | requires using another method, for example, a dynamic light scattering method.
 帯電防止剤としてイオン性の界面活性剤を用いる場合、イオン性の界面活性剤の含有量としては、親水性膜の全固形分に対して、50質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましい。イオン性の界面活性剤の含有量が上記範囲内であると、シリカ粒子の凝集を抑えつつ、親水性膜の防汚性を高めることができる。また、イオン性の界面活性剤の含有量は、イオン性の界面活性剤を含めることによる親水性膜の防汚性の向上効果の観点から、0.05質量%以上であることが好ましい。 When an ionic surfactant is used as the antistatic agent, the content of the ionic surfactant is preferably 50% by mass or less, more preferably 20% by mass or less, based on the total solid content of the hydrophilic film. Preferably, 10 mass% or less is more preferable. When the content of the ionic surfactant is within the above range, the antifouling property of the hydrophilic film can be enhanced while suppressing aggregation of the silica particles. Moreover, it is preferable that content of an ionic surfactant is 0.05 mass% or more from a viewpoint of the antifouling property improvement effect of a hydrophilic film | membrane by including an ionic surfactant.
 帯電防止剤として金属酸化物粒子を用いる場合、金属酸化物粒子の含有量としては、親水性膜の全固形分に対して、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下がさらに好ましい。金属酸化物粒子の含有量が上記範囲内であると、親水性膜を塗布により形成する場合の成膜性を損なうことなく、効果的に帯電防止性を付与することができる。また、金属酸化物粒子の含有量は、金属酸化物粒子を含めることによる親水性膜の防汚性の向上効果の観点から、1質量%以上であることが好ましい。 When using metal oxide particles as an antistatic agent, the content of metal oxide particles is preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass with respect to the total solid content of the hydrophilic film. % Or less is more preferable. When the content of the metal oxide particles is within the above range, the antistatic property can be effectively imparted without impairing the film formability when the hydrophilic film is formed by coating. Moreover, it is preferable that content of a metal oxide particle is 1 mass% or more from a viewpoint of the antifouling property improvement effect of a hydrophilic film | membrane by including a metal oxide particle.
[界面活性剤]
 親水性膜は、さらに界面活性剤を含有することが好ましい。親水性膜において、シロキサンバインダー及びシリカ粒子とともに界面活性剤が含有されることで、汚染物質(特に砂利等)の付着防止能を発現し防汚性に優れる。
 なお、ここでいう界面活性剤には、前述の帯電防止剤として挙げた帯電防止機能を有する化合物(例えば、イオン性の界面活性剤)は含まない。
[Surfactant]
It is preferable that the hydrophilic film further contains a surfactant. In the hydrophilic film, the surfactant is contained together with the siloxane binder and the silica particles, thereby exhibiting the ability to prevent the adhesion of contaminants (particularly gravel, etc.) and excellent antifouling properties.
In addition, the surfactant here does not include the compound having an antistatic function (for example, an ionic surfactant) mentioned as the above-mentioned antistatic agent.
 界面活性剤は、帯電防止剤が界面活性を有する有しないに関わらず、帯電防止剤と界面活性剤とを併用してもよい。帯電防止剤が界面活性を示さない化合物である場合は、水洗浄性の観点から界面活性剤を含有することが好ましい。帯電防止剤が界面活性を示す化合物である場合は、防汚性をより向上させる観点から帯電防止剤とは別に界面活性剤を含有することが好ましい。 The surfactant may be a combination of an antistatic agent and a surfactant, regardless of whether the antistatic agent has surface activity. When the antistatic agent is a compound that does not exhibit surface activity, it is preferable to contain a surfactant from the viewpoint of water detergency. When the antistatic agent is a compound showing surface activity, it is preferable to contain a surfactant separately from the antistatic agent from the viewpoint of further improving the antifouling property.
 親水性膜が界面活性剤を含有することにより、親水性膜の防汚性が高まるのみならず、親水性膜を例えば塗布により形成する場合の塗布性を高めることができ、塗布に用いる塗布液の表面張力も低下して塗布膜の均一性がより高められる。 When the hydrophilic film contains a surfactant, not only the antifouling property of the hydrophilic film is increased, but also the coating property when the hydrophilic film is formed by coating, for example, can be improved. The surface tension of the coating film also decreases, and the uniformity of the coating film is further improved.
 界面活性剤としては、例えば、ノニオン性の界面活性剤が挙げられる。
 前述の帯電防止剤としてイオン性の界面活性剤を用いる場合、イオン性の界面活性剤は、前述のように膜中に過剰に加えられると、系内の電解質量が増えてシリカ粒子の凝集を招きやすいことから、ノニオン性の界面活性剤を併用することが好ましい。但し、ノニオン性の界面活性剤は、必ずしもイオン性の界面活性剤と併用する必要はなく、界面活性剤としてノニオン性の界面活性剤を単独で含有してもよい。
Examples of the surfactant include nonionic surfactants.
When an ionic surfactant is used as the aforementioned antistatic agent, if the ionic surfactant is excessively added to the film as described above, the electrolytic mass in the system increases and silica particles are aggregated. Since it is easy to invite, it is preferable to use a nonionic surfactant together. However, the nonionic surfactant does not necessarily need to be used in combination with the ionic surfactant, and may contain a nonionic surfactant alone as the surfactant.
 ノニオン性の界面活性剤としては、ポリアルキレングリコールモノアルキルエーテル、ポリアルキレングリコールモノアルキルエステル、及びポリアルキレングリコールモノアルキルエステル・モノアルキルエーテルなどが挙げられる。ノニオン性の界面活性剤の具体的な例としては、ポリエチレングリコールモノラウリルエーテル、ポリエチレングリコールモノステアリルエーテル、ポリエチレングリコールモノセチルエーテル、ポリエチレングリコールモノラウリルエステル、及びポリエチレングリコールモノステアリルエステルなどが挙げられる。 Examples of the nonionic surfactant include polyalkylene glycol monoalkyl ether, polyalkylene glycol monoalkyl ester, polyalkylene glycol monoalkyl ester / monoalkyl ether, and the like. Specific examples of the nonionic surfactant include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, and polyethylene glycol monostearyl ester.
 界面活性剤の親水性膜における含有量は、親水性膜の全固形分に対して、0.5質量%以上が好ましく、1.0質量%以上がより好ましい。
 また、界面活性剤の含有量は、親水性膜の全固形分に対して、50.0質量%以下が好ましく、40.0質量%以下がより好ましく、30.0質量%以下がさらに好ましい。界面活性剤の含有量が30.0質量%以下であると、界面活性剤が膜面に偏析する現象が抑えられ、膜の硬さを良好に維持する点で有利である。
The content of the surfactant in the hydrophilic film is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more based on the total solid content of the hydrophilic film.
Moreover, 50.0 mass% or less is preferable with respect to the total solid of a hydrophilic film | membrane, content of surfactant is more preferable, 40.0 mass% or less is more preferable, and 30.0 mass% or less is further more preferable. When the content of the surfactant is 30.0% by mass or less, the phenomenon that the surfactant is segregated on the film surface is suppressed, which is advantageous in that the hardness of the film is maintained well.
[シロキサンオリゴマーの縮合反応を促進する触媒]
 親水性膜は、シロキサンオリゴマーの縮合反応を促進する触媒(縮合促進触媒)の少なくとも1種を含有していてもよい。なお、縮合促進触媒の奏する効果については後述する。
[Catalyst for promoting condensation reaction of siloxane oligomer]
The hydrophilic film may contain at least one catalyst that promotes the condensation reaction of the siloxane oligomer (condensation promoting catalyst). The effect of the condensation accelerating catalyst will be described later.
 縮合促進触媒としては、特に制限はなく、例えば、酸触媒、アルカリ触媒、有機金属触媒が挙げられる。
 酸触媒の例としては、硝酸、塩酸、硫酸、酢酸、クロロ酢酸、蟻酸、シュウ酸、及びトルエンスルホン酸などが挙げられる。
 アルカリ触媒の例としては、水酸化ナトリウム、水酸化カリウム、及び水酸化テトラメチルアンモニウムなどが挙げられる。
 有機金属触媒の例としては、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、及びアルミニウムエチルアセトアセテートジイソプロピレートなどのアルミキレート化合物;ジルコニウムテトラキス(アセチルアセトネート)、及びジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)などのジルコニウムキレート化合物;チタニウムテトラキス(アセチルアセトネート)、及びチタニウムビス(ブトキシ)ビス(アセチルアセトネート)などのチタンキレート化合物;並びにジブチルスズジアセテート、ジブチルスズジラウレート、及びジブチルスズジオクチエートなどの有機スズ化合物などが挙げられる。
 これらの触媒の中でも、酸触媒としては硝酸が好ましく、アルカリ触媒としては水酸化ナトリウムが好ましく、有機金属触媒としてはアルミキレート化合物又はジルコニウムキレート化合物が好ましい。これらの触媒の中でも、さらに好ましくは、有機金属触媒であり、特に好ましくはアルミキレート化合物である。
There is no restriction | limiting in particular as a condensation promotion catalyst, For example, an acid catalyst, an alkali catalyst, and an organometallic catalyst are mentioned.
Examples of the acid catalyst include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, chloroacetic acid, formic acid, oxalic acid, and toluenesulfonic acid.
Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide, and tetramethylammonium hydroxide.
Examples of organometallic catalysts include aluminum chelate compounds such as aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), and aluminum ethylacetoacetate diisopropylate; zirconium tetrakis (acetylacetonate) And zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate); titanium chelate compounds such as titanium tetrakis (acetylacetonate) and titanium bis (butoxy) bis (acetylacetonate); and dibutyltin diacetate , Organotin compounds such as dibutyltin dilaurate, and dibutyltin dioctiate.
Among these catalysts, nitric acid is preferable as the acid catalyst, sodium hydroxide is preferable as the alkali catalyst, and an aluminum chelate compound or a zirconium chelate compound is preferable as the organometallic catalyst. Among these catalysts, an organometallic catalyst is more preferable, and an aluminum chelate compound is particularly preferable.
 縮合促進触媒の親水性膜中における含有量は、親水性膜の全固形分に対して、0.1質量%~20質量%が好ましく、0.2質量%~15質量%がより好ましく、0.3質量%~10質量%がさらに好ましい。縮合促進触媒の含有量が上記範囲内であると、耐傷性を有する親水性膜を形成しやすい。また、親水性膜の形成性にも優れる。 The content of the condensation accelerating catalyst in the hydrophilic membrane is preferably from 0.1% by mass to 20% by mass, more preferably from 0.2% by mass to 15% by mass, based on the total solid content of the hydrophilic membrane. More preferably, the content is 3% by mass to 10% by mass. When the content of the condensation accelerating catalyst is within the above range, it is easy to form a hydrophilic film having scratch resistance. Moreover, it is excellent also in the formation property of a hydrophilic film | membrane.
[他の成分]
 親水性膜は、上記の成分に加えて、必要に応じて、更に他の成分として、シロキサンバインダー以外のバインダー成分(バインダー添加成分)などの添加剤を含有することができる。
[Other ingredients]
In addition to the above-described components, the hydrophilic film can further contain additives such as a binder component (binder additive component) other than the siloxane binder, if necessary, as other components.
 バインダー添加成分としては、例えば、ポリウレタン、アクリル系樹脂、ポリりん酸塩、メタりん酸塩等の、末端に極性基(例えば、水酸基、カルボキシ基、りん酸基、スルホン酸基、アミノ基など)を有するバインダー成分が挙げられる。
 親水性膜に上記のバインダー添加成分が含有されることで、親水性膜と基材(特に、ポリカーボネート基材)との密着性が向上する。
 上記のバインダー添加成分の中でも、親水性膜と基材との密着性の観点から、末端に水酸基、カルボキシ基、又はりん酸基を有するバインダー添加成分が好ましく、ポリウレタン、アクリル系樹脂、及びポリりん酸塩がより好ましい。
As a binder addition component, for example, polyurethane, acrylic resin, polyphosphate, metaphosphate, etc., terminal polar groups (for example, hydroxyl group, carboxy group, phosphate group, sulfonate group, amino group, etc.) The binder component which has is mentioned.
By including the binder additive component in the hydrophilic film, the adhesion between the hydrophilic film and the substrate (particularly, the polycarbonate substrate) is improved.
Among the above binder-added components, from the viewpoint of adhesion between the hydrophilic film and the substrate, a binder-added component having a hydroxyl group, a carboxy group, or a phosphate group at the terminal is preferable. Polyurethane, acrylic resin, and polyphosphorus Acid salts are more preferred.
 ポリウレタンとしては、特に限定されないが、例えば、ポリオール骨格とポリイソシアネート骨格とで構成されるソフトセグメント/ハードセグメント構造を有するポリウレタンが挙げられる。
 ポリウレタンは、市販のものを使用してもよく、例えば、三井化学株式会社製のタケラック(登録商標)Wシリーズ、WSシリーズ、WDシリーズ、三洋化成工業株式会社製のパーマリン(登録商標)シリーズ、ユーコート(登録商標)シリーズ、ユープレン(登録商標)シリーズ等が挙げられる。
 アクリル系樹脂としては、例えば、アクリル酸の単独重合体(ポリアクリル酸)、アクリル酸及びアクリル酸のエステルなどのアクリル酸誘導体、メタクリル酸メチルなどのメタクリル酸誘導体が挙げられる。
 これらのアクリル系樹脂の中でもポリアクリル酸が好ましく、重量平均分子量が、2000~500万のポリアクリル酸が好ましく、1万~200万のポリアクリル酸がより好ましく、25万~100万のポリアクリル酸がさらに好ましい。
 ポリりん酸塩としては、例えば、ポリりん酸ナトリウム、ポリりん酸カリウムが挙げられる。
 なお、重量平均分子量は、前述の方法により測定することができる。
Although it does not specifically limit as a polyurethane, For example, the polyurethane which has a soft segment / hard segment structure comprised by a polyol skeleton and a polyisocyanate skeleton is mentioned.
A commercially available polyurethane may be used. For example, Takerak (registered trademark) W series, WS series, WD series manufactured by Mitsui Chemical Co., Ltd., Permarin (registered trademark) series manufactured by Sanyo Chemical Industries, Ltd., Ucoat (Registered trademark) series, Uprene (registered trademark) series, and the like.
Examples of acrylic resins include acrylic acid homopolymers (polyacrylic acid), acrylic acid derivatives such as acrylic acid and esters of acrylic acid, and methacrylic acid derivatives such as methyl methacrylate.
Among these acrylic resins, polyacrylic acid is preferable, polyacrylic acid having a weight average molecular weight of 20 to 5 million is preferable, polyacrylic acid having 10,000 to 2 million is more preferable, and polyacrylic acid having 250,000 to 1 million is preferable. Acid is more preferred.
Examples of the polyphosphate include sodium polyphosphate and potassium polyphosphate.
The weight average molecular weight can be measured by the method described above.
 親水性膜におけるバインダー添加成分の含有量は、親水性膜の全固形分に対して、0.001質量%~0.1質量%が好ましく、0.001質量%~0.01質量%がより好ましく、0.002質量%~0.008質量%がさらに好ましい。バインダー添加成分の含有量が上記範囲内であると、基材との密着性に優れた親水性膜を形成しやすい。 The content of the binder additive component in the hydrophilic film is preferably 0.001% by mass to 0.1% by mass and more preferably 0.001% by mass to 0.01% by mass with respect to the total solid content of the hydrophilic film. Preferably, 0.002% by mass to 0.008% by mass is more preferable. When the content of the binder additive component is within the above range, it is easy to form a hydrophilic film having excellent adhesion to the substrate.
 親水性膜は、固形分の主要成分としてケイ素と酸素とを含んでおり、炭素の含有量が少ないことも一つの特徴であるといえる。炭素の含有量を少なくすることにより、例えば、親水性膜形成用塗布液を用いて塗膜を形成し乾燥させて形成された親水性膜は、屋外の風雨等に曝される様々な環境下に置かれた場合でも、光、及び熱による膜への影響を最小限に留めることが可能である。
 親水性膜は、全固形分中に占める炭素の割合が3質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、2質量%以下であることがさらに好ましい。
It can be said that the hydrophilic film contains silicon and oxygen as main components of the solid content, and has a small carbon content. By reducing the carbon content, for example, a hydrophilic film formed by forming a coating film using a hydrophilic film-forming coating solution and drying it can be used in various environments exposed to outdoor wind and rain. Even when placed on the film, the influence of light and heat on the film can be kept to a minimum.
In the hydrophilic film, the proportion of carbon in the total solid content is preferably 3% by mass or less, more preferably 2.5% by mass or less, and further preferably 2% by mass or less.
 また、親水性膜に炭素を含む有機化合物が含まれる場合、炭素を含む有機化合物は重量平均分子量の低い化合物であることが好ましい。具体的には、親水性膜において、重量平均分子量が1100以上の有機化合物の含有量は、親水性膜の全固形分に対して、0.2質量%以下であることが好ましく、0質量%、すなわち不可避不純物を除いては含まれないことが更に好ましい。
 重量平均分子量1100以上の有機化合物の含有量が上記範囲であると、親水性膜中における固形分の相溶性がより良好になり、親水性膜形成用塗布液を用いて塗膜を形成する際の成膜性をより向上させ得る。
 なお、「重量平均分子量が1100以上の有機化合物」には、前述のシロキサンバインダーは含まれない。
 また、重量平均分子量は前述の方法により測定できる。
When the hydrophilic film contains an organic compound containing carbon, the organic compound containing carbon is preferably a compound having a low weight average molecular weight. Specifically, in the hydrophilic film, the content of the organic compound having a weight average molecular weight of 1100 or more is preferably 0.2% by mass or less, and 0% by mass with respect to the total solid content of the hydrophilic film. That is, it is more preferable that it is not contained except for inevitable impurities.
When the content of the organic compound having a weight average molecular weight of 1100 or more is in the above range, the compatibility of the solid content in the hydrophilic film becomes better, and the coating film is formed using the hydrophilic film forming coating solution. The film formability can be further improved.
The “organic compound having a weight average molecular weight of 1100 or more” does not include the above-described siloxane binder.
Moreover, a weight average molecular weight can be measured by the above-mentioned method.
 親水性膜の厚みとしては、20nm以上600nm以下の範囲が好ましく、50nm以上350nm以下の範囲がより好ましく、100nm以上250nm以下の範囲が更に好ましい。 The thickness of the hydrophilic film is preferably in the range of 20 nm to 600 nm, more preferably in the range of 50 nm to 350 nm, and still more preferably in the range of 100 nm to 250 nm.
[親水性膜の物性]
 親水性膜は、耐傷性及び親水性に優れる。これにより、親水性膜は、屋外に設置されるもの(例えば、監視カメラ、照明を保護するための保護材、車庫の屋根材、標識用の保護材、壁材)の保護材として好適であり、親水性膜を付設することで、汚染物質の付着が抑制される。また、親水性膜は親水性が良好であるので、表面に汚染物質が付着した場合には、汚染物質を洗い流す(例えば水洗する)ことにより容易に除去することができ、例えば僅かな汚染物質も雨天時の雨水等により洗い流され易いという効果も奏される。
 また、親水性膜は耐傷性に優れるため、汚染物質を拭き取る際に膜に傷が付くことを抑制することができる。
 以下に、親水性膜の物性を挙げる。
[Physical properties of hydrophilic film]
The hydrophilic film is excellent in scratch resistance and hydrophilicity. As a result, the hydrophilic film is suitable as a protective material for objects installed outdoors (for example, surveillance cameras, protective materials for protecting lighting, garage roofing materials, protective materials for signs, wall materials). By attaching a hydrophilic film, adhesion of contaminants is suppressed. Further, since the hydrophilic film has good hydrophilicity, when a contaminant adheres to the surface, it can be easily removed by washing away the contaminant (for example, washing with water). There is also an effect that it is easy to be washed away by rain water or the like during rainy weather.
In addition, since the hydrophilic film is excellent in scratch resistance, it is possible to prevent the film from being damaged when the contaminant is wiped off.
The physical properties of the hydrophilic film are listed below.
[表面抵抗]
 親水性膜の表面抵抗値としては、1×1012Ω/square以下であることが好ましく、1×1011Ω/square以下であることがより好ましく、1×1010Ω/square以下であることがさらに好ましい。親水性膜の表面抵抗が上記範囲内であると、親水性膜の防汚性がより優れた膜となる。
 表面抵抗値は、ハイレスタMCP-HT450(三菱化学アナリテック社製)を用いて測定される。
[Surface resistance]
The surface resistance value of the hydrophilic film is preferably 1 × 10 12 Ω / square or less, more preferably 1 × 10 11 Ω / square or less, and 1 × 10 10 Ω / square or less. Is more preferable. When the surface resistance of the hydrophilic film is within the above range, the hydrophilic film has a more excellent antifouling property.
The surface resistance value is measured using Hiresta MCP-HT450 (manufactured by Mitsubishi Chemical Analytech).
[積分球透過率]
 親水性膜は、光透過性に優れていることが好ましく、かかる観点より親水性膜の積分球透過率(波長(λ)=300nm~1200nmにおける積分球透過率の平均値)が95%以上であることが好ましい。
 ここでの積分球透過率は、300nm~1200nmの波長領域において波長5nmごとに積分球透過率を測定し、測定値を平均して得られる平均値(波長(λ)=300nm~1200nmにおける積分球透過率の平均値)として求められる値である。
 積分球透過率は、95.5%以上であることがより好ましい。
 親水性膜の積分球透過率は、親水性膜が形成されていない基材及び親水性膜が形成された基材の積分球透過率を、硫酸バリウム白板をリファレンスとして測定し、親水性膜が形成された基材の積分球透過率から、親水性膜が形成されていない基材の積分球透過率を差し引くことで、基材に対する光透過率向上分を算出する。
 積分球透過率は、積分球付の透過型分光光度計を用いて測定される。具体的には、例えば、紫外可視赤外分光光度計(UV-3600、株式会社島津製作所製)に積分球付属装置(ISR-2200、株式会社島津製作所製)を接続した装置、又は紫外可視赤外分光光度計(UV-3600、株式会社島津製作所製)に多用途大型試料室(MPC-3100、株式会社島津製作所製)を接続した装置等により、波長300nm~1400nmの光を用いて測定される。
 測定により得られる透過率向上分が多いほど、透明性(低反射性)に優れていることを示し、光透過率向上分(波長(λ)=400nm~1400nm)は、1%以上が好ましく、1.5%以上がより好ましく、1.8%以上が特に好ましい。
 なお、光透過率向上分は、400nm~1400nmの波長領域における平均値として求められる。
[Integral sphere transmittance]
The hydrophilic film is preferably excellent in light transmittance. From such a viewpoint, the integrating sphere transmittance of the hydrophilic film (wavelength (λ) = average value of integrating sphere transmittance at 300 nm to 1200 nm) is 95% or more. Preferably there is.
The integrating sphere transmittance here is an average value obtained by measuring the integrating sphere transmittance for each wavelength of 5 nm in the wavelength region of 300 nm to 1200 nm and averaging the measured values (the integrating sphere at the wavelength (λ) = 300 nm to 1200 nm). (Average value of transmittance).
The integrating sphere transmittance is more preferably 95.5% or more.
Integral sphere transmittance of the hydrophilic membrane is determined by measuring the integral sphere transmittance of the base material on which the hydrophilic membrane is not formed and the base material on which the hydrophilic membrane is formed with reference to the white plate of barium sulfate. By subtracting the integrated sphere transmittance of the base material on which the hydrophilic film is not formed from the integrated sphere transmittance of the formed base material, the light transmittance improvement for the base material is calculated.
The integrating sphere transmittance is measured using a transmission spectrophotometer with an integrating sphere. Specifically, for example, an apparatus in which an integrating sphere attachment device (ISR-2200, manufactured by Shimadzu Corporation) is connected to an ultraviolet-visible infrared spectrophotometer (UV-3600, manufactured by Shimadzu Corporation), or ultraviolet-visible red Measured using light having a wavelength of 300 nm to 1400 nm with a device such as an external spectrophotometer (UV-3600, manufactured by Shimadzu Corporation) connected to a versatile large sample chamber (MPC-3100, manufactured by Shimadzu Corporation) The
The more transmittance improvement obtained by measurement, the better the transparency (low reflectivity), and the light transmittance improvement (wavelength (λ) = 400 nm to 1400 nm) is preferably 1% or more, 1.5% or more is more preferable, and 1.8% or more is particularly preferable.
The light transmittance improvement is obtained as an average value in the wavelength region of 400 nm to 1400 nm.
[透過率]
 親水性膜の透過率(λ=300nm~1200nmでの平均値)は、70%以上であることが好ましく、80%以上であることがより好ましい。親水性膜の透過率は、親水性膜が形成された基材の積分球透過率を、親水性膜が形成されていない基材の積分球透過率をリファレンスとして測定することで求めた。
 透過率は、自記分光光度計(UV2400-PC、株式会社島津製作所製)により測定される値である。
[Transmissivity]
The transmittance of the hydrophilic membrane (average value at λ = 300 nm to 1200 nm) is preferably 70% or more, and more preferably 80% or more. The transmittance of the hydrophilic membrane was determined by measuring the integrating sphere transmittance of the base material on which the hydrophilic membrane was formed with reference to the integrating sphere transmittance of the base material on which the hydrophilic membrane was not formed.
The transmittance is a value measured by a self-recording spectrophotometer (UV2400-PC, manufactured by Shimadzu Corporation).
<親水性膜の製造方法>
 親水性膜の製造方法は、シロキサンバインダーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を含有する塗布液を基材に塗布する塗布工程と、塗布工程により基材上に塗布された塗布膜を20℃以上150℃以下の温度で乾燥する乾燥工程と、を有する。
 また、親水性膜の製造方法は、さらに塗布液を調製する調製工程を有することが好ましい。
 なお、本発明の一実施形態の製造方法において製造される親水性膜は、シロキサンバインダーに対するシリカ粒子の比率が質量基準で0.1~1.8であり、表面において表面積差ΔSと表面粗さRaとが下記式1の関係を満たす。
  ΔS≦0.5Ra ・・・式1
 式1中、ΔSは下記式2で求められる百分率である。
 ΔS=[(S-S)/S]×100 ・・・式2
 式2中、Sは親水性膜の垂線方向から見た投影面積を表し、SはSで表す投影面積における親水性膜の表面の実表面積を表す。
<Method for producing hydrophilic membrane>
The hydrophilic film is produced by applying a coating liquid containing a siloxane binder and silica particles having an average primary particle diameter of 2 nm or more and 100 nm or less to the substrate, and applying the coating liquid on the substrate by the coating process. And a drying step of drying the coated film at a temperature of 20 ° C. or higher and 150 ° C. or lower.
Moreover, it is preferable that the manufacturing method of a hydrophilic film | membrane has the preparation process which prepares a coating liquid further.
In the hydrophilic film produced by the production method of one embodiment of the present invention, the ratio of the silica particles to the siloxane binder is 0.1 to 1.8 on a mass basis, and the surface area difference ΔS and the surface roughness on the surface. Ra satisfies the relationship of the following formula 1.
ΔS ≦ 0.5Ra Formula 1
In Equation 1, ΔS is a percentage obtained by Equation 2 below.
ΔS = [(S X −S 0 ) / S 0 ] × 100 Equation 2
In Equation 2, S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
[調製工程]
 親水性膜の製造方法は、塗布液を調製する調製工程を有することが好ましい。
 親水性膜の製造方法に用いる塗布液は、シロキサンバインダーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を含有する塗布液から適宜選択することができるが、以下に示す調製工程において調製された塗布液を用いることが好ましい。
 調製工程では、水と、シロキサンオリゴマーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を混合することで塗布液を調製する。また、調製工程は、さらにシロキサンオリゴマーの縮合反応を促進する触媒(縮合促進触媒)を混合することで塗布液を調製することが好ましい。
[Preparation process]
It is preferable that the manufacturing method of a hydrophilic film | membrane has a preparation process which prepares a coating liquid.
The coating liquid used in the method for producing the hydrophilic film can be appropriately selected from coating liquids containing a siloxane binder and silica particles having an average primary particle diameter of 2 nm to 100 nm. In the preparation process shown below, It is preferable to use the prepared coating solution.
In the preparation step, a coating solution is prepared by mixing water, a siloxane oligomer, and silica particles having an average primary particle size of 2 nm to 100 nm. Moreover, it is preferable that a preparation process prepares a coating liquid by further mixing the catalyst (condensation promotion catalyst) which accelerates | stimulates the condensation reaction of a siloxane oligomer.
 塗布液の調製は、例えば、シロキサンオリゴマーと水とを接触させてシロキサンオリゴマーの加水分解物を含む混合液を調製した後、この混合液に平均一次粒子径が2nm以上100nm以下のシリカ粒子を添加する方法が挙げられる。
 シロキサンオリゴマーの加水分解反応は、室温(25℃)でも進行するが、反応促進のために、シロキサンオリゴマーと水とを接触させて混合液を調製した後、得られた混合液を30℃~50℃程度に加温してもよい。加水分解反応の反応時間は長い方がより反応が進むため好ましい。このため、十分に加水分解反応を進行させるという観点からは、加温状態で1時間~36時間、反応させることも好ましい。
 また、シロキサンオリゴマーの加水分解反応を促進する触媒を、混合液中に共存させることで、半日程度でも親水性に必要なシロキサンオリゴマーの加水分解物を得ることが可能である。
 シロキサンオリゴマーの加水分解反応は可逆反応である。そのため、混合液から水が除かれると、シロキサンオリゴマーの加水分解物は、ヒドロキシ基間における縮合反応が開始し、進行する。したがって、シロキサンオリゴマーと、好ましくは大過剰の水と、を含有する混合液中において、加水分解反応させてシロキサンオリゴマーの加水分解物を得た場合、加水分解物を単離せずに混合液のまま、シリカ粒子を添加して塗布液の調製することが好ましい。
 塗布液において、シロキサンオリゴマーの加水分解物の縮合反応が進行するため、塗布液にはシロキサンバインダーが含まれている。
For example, the coating liquid is prepared by bringing a siloxane oligomer into contact with water to prepare a mixed liquid containing a hydrolyzate of the siloxane oligomer, and then adding silica particles having an average primary particle diameter of 2 nm to 100 nm to the mixed liquid. The method of doing is mentioned.
The hydrolysis reaction of the siloxane oligomer proceeds even at room temperature (25 ° C.), but in order to promote the reaction, after preparing a mixed solution by bringing the siloxane oligomer into contact with water, the obtained mixed solution is heated at 30 ° C. to 50 ° C. You may heat to about degreeC. A longer reaction time for the hydrolysis reaction is preferred because the reaction proceeds more. For this reason, from the viewpoint of sufficiently allowing the hydrolysis reaction to proceed, it is also preferable to carry out the reaction for 1 hour to 36 hours in a heated state.
In addition, by allowing a catalyst for promoting the hydrolysis reaction of the siloxane oligomer to coexist in the mixed solution, it is possible to obtain a hydrolyzate of the siloxane oligomer necessary for hydrophilicity even for about half a day.
The hydrolysis reaction of the siloxane oligomer is a reversible reaction. Therefore, when water is removed from the mixed solution, the hydrolyzate of the siloxane oligomer starts with a condensation reaction between hydroxy groups and proceeds. Therefore, when a hydrolyzate of a siloxane oligomer is obtained by a hydrolysis reaction in a mixed solution containing a siloxane oligomer and preferably a large excess of water, the hydrolyzate is not isolated but remains in the mixed solution. It is preferable to prepare a coating solution by adding silica particles.
Since the condensation reaction of the hydrolyzate of the siloxane oligomer proceeds in the coating solution, the coating solution contains a siloxane binder.
 シロキサンオリゴマーの添加量としては、塗布液の全質量に対して、0.1質量%~50質量%が好ましく、0.5質量%~30質量%がより好ましく、0.5質量%~20質量%がさらに好ましい。
 シリカ粒子の添加量は、塗布液の全質量に対して、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましい。シリカ粒子が塗布液中に占める割合が上記範囲内であると、シリカ粒子の液中での分散性が高められ、凝集などを防ぐ点で有利である。
The addition amount of the siloxane oligomer is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and more preferably 0.5% by mass to 20% by mass with respect to the total mass of the coating solution. % Is more preferable.
The amount of silica particles added is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less with respect to the total mass of the coating solution. When the proportion of the silica particles in the coating solution is within the above range, it is advantageous in that the dispersibility of the silica particles in the solution is enhanced and aggregation is prevented.
 塗布液には、さらに必要に応じて、縮合促進触媒、帯電防止剤、界面活性剤、及びバインダー添加成分を添加することができる。 If necessary, the coating solution may further contain a condensation accelerating catalyst, an antistatic agent, a surfactant, and a binder additive component.
 塗布液が、シロキサンオリゴマーと縮合促進触媒とを含むことで、シロキサンオリゴマーの縮合反応が促進し、シロキサンバインダーの形成が促進される。これにより、親水性膜が耐傷性により優れた膜となる。 When the coating solution contains the siloxane oligomer and the condensation accelerating catalyst, the condensation reaction of the siloxane oligomer is promoted and the formation of the siloxane binder is promoted. Thereby, a hydrophilic film | membrane becomes a film | membrane excellent in scratch resistance.
 縮合促進触媒としては、前述の親水性膜における縮合促進触媒と同じであり、好ましい態様も同じである。 The condensation accelerating catalyst is the same as the condensation accelerating catalyst in the hydrophilic membrane described above, and the preferred embodiment is also the same.
 塗布液への縮合促進触媒の添加量は、塗布液の全固形分に対して、0.1質量%~20質量%が好ましく、0.2質量%~15質量%がより好ましく、0.3質量%~10質量%がさらに好ましい。縮合促進触媒の含有量が上記範囲内であると、耐傷性を有する親水性膜を形成しやすい。また、親水性膜の形成性にも優れる。 The amount of the condensation accelerating catalyst added to the coating solution is preferably 0.1% by mass to 20% by mass, more preferably 0.2% by mass to 15% by mass, and 0.3% with respect to the total solid content of the coating solution. More preferably, the content is 10% by mass to 10% by mass. When the content of the condensation accelerating catalyst is within the above range, a hydrophilic film having scratch resistance is easily formed. Moreover, it is excellent also in the formation property of a hydrophilic film | membrane.
 なお、縮合促進触媒は、シロキサンオリゴマーの加水分解に対しても有用である。ここで、シロキサンオリゴマーのケイ素に結合したアルコキシ基の加水分解反応と縮合反応とは平衡関係にあり、系内の水分が多いと反応が加水分解の方向に進み、系内の水分が少ないと反応が縮合の方向に進む。アルコキシ基の縮合反応を促進する触媒は、両方向の反応を促進するため、系内に水分の多い状態では加水分解反応を促進することができる。触媒の存在により、シロキサンオリゴマーの加水分解をより穏やかな条件でより確実に進めることが可能となる。
 この際、シロキサンオリゴマーの加水分解反応に用いた触媒をそのまま系内に留めて親水性膜形成用塗布液の含有成分とし、そのままシロキサンオリゴマーの縮合用触媒として使用すると効率がよい。
The condensation accelerating catalyst is also useful for hydrolysis of siloxane oligomers. Here, the hydrolysis reaction and condensation reaction of the alkoxy group bonded to silicon of the siloxane oligomer are in an equilibrium relationship. If there is a lot of moisture in the system, the reaction proceeds in the direction of hydrolysis, and if the moisture in the system is low, the reaction Proceeds in the direction of condensation. Since the catalyst for promoting the condensation reaction of the alkoxy group promotes the reaction in both directions, the hydrolysis reaction can be promoted in a state where there is a lot of moisture in the system. The presence of the catalyst allows the hydrolysis of the siloxane oligomer to proceed more reliably under milder conditions.
In this case, it is efficient if the catalyst used for the hydrolysis reaction of the siloxane oligomer is kept in the system as it is to be used as a component of the coating liquid for forming a hydrophilic film and used as it is as a condensation catalyst for the siloxane oligomer.
 塗布液は帯電防止剤を含んでいてもよい。塗布液が帯電防止剤を含むことで、帯電防止性を付与した親水性膜を形成することができ、形成された親水性膜は、膜への汚染物質の付着が抑制されるため防汚性が向上する。
 帯電防止剤としては、前述の親水性膜における帯電防止剤と同じであり、好ましい態様も同じである。
The coating liquid may contain an antistatic agent. Since the coating liquid contains an antistatic agent, it is possible to form a hydrophilic film imparted with antistatic properties, and the formed hydrophilic film is antifouling because the adhesion of contaminants to the film is suppressed. Will improve.
As an antistatic agent, it is the same as the antistatic agent in the above-mentioned hydrophilic film | membrane, A preferable aspect is also the same.
 帯電防止剤としてイオン性の界面活性剤を用いる場合、イオン性界面活性剤の塗布液中における含有量は、塗布液の全質量に対して、1.0質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。イオン性の界面活性剤の塗布液中に占める割合が上記範囲内であると、シリカ粒子の凝集を抑えつつ、親水性膜の防汚性を高められる。
 なお、帯電防止剤として金属酸化物粒子を用いる場合、金属酸化物粒子の塗布液中における含有量は、塗布液の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。金属酸化物粒子の塗布液中に占める割合が上記範囲内であると、金属酸化物粒子の液中での分散性が高められ、凝集などを防ぐ点で有利である。
When an ionic surfactant is used as the antistatic agent, the content of the ionic surfactant in the coating liquid is preferably 1.0% by mass or less based on the total mass of the coating liquid. More preferably, it is 8 mass% or less, More preferably, it is 0.5 mass% or less. When the proportion of the ionic surfactant in the coating solution is within the above range, the antifouling property of the hydrophilic film can be enhanced while suppressing aggregation of the silica particles.
When metal oxide particles are used as the antistatic agent, the content of the metal oxide particles in the coating solution is preferably 30% by mass or less, and 20% by mass or less with respect to the total mass of the coating solution. More preferably, it is more preferably 10% by mass or less. When the ratio of the metal oxide particles in the coating liquid is within the above range, the dispersibility of the metal oxide particles in the liquid is enhanced, which is advantageous in preventing aggregation and the like.
 塗布液が界面活性剤を含むことで、塗布液の基材への濡れ性が向上する。
 界面活性剤としては、前述の親水性膜における界面活性剤と同じであり、好ましい態様も同じである。
When the coating solution contains a surfactant, the wettability of the coating solution to the substrate is improved.
The surfactant is the same as the surfactant in the hydrophilic film described above, and the preferred embodiment is also the same.
 界面活性剤の塗布液中の含有量は、塗布液の全質量に対して、0.01質量%以上が好ましく、0.02質量%以上が好ましく、0.03質量%以上がより好ましい。界面活性剤の含有量が上記範囲内であると、基材への濡れ性により優れる。また、界面活性剤の含有量は、塗布液の全固形分に対して、15質量%以下が好ましく、10.0質量%以下がより好ましく、5質量%以下がさらに好ましい。 The content of the surfactant in the coating solution is preferably 0.01% by mass or more, preferably 0.02% by mass or more, and more preferably 0.03% by mass or more with respect to the total mass of the coating solution. When the content of the surfactant is within the above range, the wettability to the substrate is more excellent. Moreover, 15 mass% or less is preferable with respect to the total solid of a coating liquid, content of surfactant is 10.0 mass% or less, More preferably, it is 5 mass% or less.
 塗布液はバインダー添加成分を含んでいてもよい。塗布液がバインダー添加成分を含むことで、基材への密着性を向上させた親水性膜を形成することができる。
 バインダー添加成分としては、前述の親水性膜におけるバインダー添加成分と同じであり、好ましい態様も同じである。
The coating liquid may contain a binder additive component. When the coating solution contains a binder addition component, a hydrophilic film with improved adhesion to the substrate can be formed.
As a binder addition component, it is the same as the binder addition component in the above-mentioned hydrophilic film | membrane, A preferable aspect is also the same.
 バインダー添加成分の塗布液中における含有量は、塗布液の全固形分に対して、0.001質量%~0.1質量%が好ましく、0.001質量%~0.01質量%がより好ましく、0.002質量%~0.008質量%がさらに好ましい。 The content of the binder additive component in the coating solution is preferably 0.001% by mass to 0.1% by mass, more preferably 0.001% by mass to 0.01% by mass, based on the total solid content of the coating solution. 0.002 mass% to 0.008 mass% is more preferable.
 上記において、帯電防止剤、界面活性剤及びバインダー添加成分を加える場合、これらの一部又は全部を、シロキサンオリゴマーの加水分解物を得る工程で加えるようにしてもよい。 In the above, when an antistatic agent, a surfactant and a binder additive component are added, a part or all of them may be added in the step of obtaining a hydrolyzate of a siloxane oligomer.
 塗布液は、光重合開始剤及び熱重合開始剤を含有しないことが好ましい。光重合開始剤及び熱重合開始剤をしないことで、親水性膜の形成時に光照射又は熱処理を省くことができる。また、塗布液の貯蔵安定性の観点からは、光重合開始剤及び熱重合開始剤を含有しないことが好ましい。 It is preferable that the coating liquid does not contain a photopolymerization initiator and a thermal polymerization initiator. By not using a photopolymerization initiator and a thermal polymerization initiator, light irradiation or heat treatment can be omitted when forming the hydrophilic film. Moreover, it is preferable not to contain a photoinitiator and a thermal polymerization initiator from a viewpoint of the storage stability of a coating liquid.
 塗布液の調製条件については、特に制限はないが、pH及び共存成分の濃度に起因したシリカ粒子の凝集を抑える観点から、シリカ粒子は、塗布液を調製する過程の後半に加えられることが好ましく、最後に加えられることがより好ましい。ここで、シリカ粒子を分散液(具体的には、シリカ粒子を予め水性溶媒に分散した分散液、又は市販のシリカ粒子分散液)として用いる場合は、分散液のpHと塗布液に用いる溶媒のpHとを、共に酸性とするか、又は共に塩基性として、シリカ粒子の分散液と塗布液の溶媒とのpHを同じか若しくは近い値に調整することが好ましい。 The conditions for preparing the coating liquid are not particularly limited, but from the viewpoint of suppressing the aggregation of silica particles due to pH and the concentration of coexisting components, the silica particles are preferably added in the latter half of the process of preparing the coating liquid. More preferably, it is added last. Here, when the silica particles are used as a dispersion (specifically, a dispersion in which silica particles are previously dispersed in an aqueous solvent, or a commercially available silica particle dispersion), the pH of the dispersion and the solvent used in the coating solution It is preferable to adjust the pH of the dispersion of silica particles and the solvent of the coating solution to the same or close values by making the pH both acidic or basic.
[塗布工程]
 親水性膜の製造方法は、シロキサンバインダーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を含有する塗布液を基材に塗布する塗布工程を有する。
 塗布液を基材に塗布する塗布法としては、特に制限はなく、例えば、スプレー塗布、刷毛塗布、ローラー塗布、バー塗布、ディップ塗布(浸漬塗布)の公知の方法を適用することができる。
[Coating process]
The manufacturing method of a hydrophilic film | membrane has an application | coating process which apply | coats to a base material the coating liquid containing a siloxane binder and a silica particle with an average primary particle diameter of 2 nm or more and 100 nm or less.
There is no restriction | limiting in particular as a coating method which apply | coats a coating liquid to a base material, For example, the well-known method of spray coating, brush coating, roller coating, bar coating, dip coating (dip coating) can be applied.
 塗布液の塗布量は、特に限定されるものではなく、塗布液中の固形分の濃度、所望の膜厚等に応じて、操作性等を考慮し、適宜設定することができる。塗布液の塗布量は、0.1mL/m~1000mL/mであることが好ましく、0.5mL/m~500mL/mであることがより好ましく、1mL/m~200mL/mであることがさらに好ましい。塗布液の塗布量が、上記の範囲内であると、塗布精度が良好となり、表面積差ΔSと表面粗さRaを調節しやすい。 The coating amount of the coating liquid is not particularly limited, and can be appropriately set in consideration of operability and the like according to the solid content concentration in the coating liquid, the desired film thickness, and the like. The coating amount of the coating solution is preferably 0.1 mL / m 2 to 1000 mL / m 2 , more preferably 0.5 mL / m 2 to 500 mL / m 2 , and 1 mL / m 2 to 200 mL / m 2. 2 is more preferable. When the coating amount of the coating liquid is within the above range, the coating accuracy is good and the surface area difference ΔS and the surface roughness Ra can be easily adjusted.
[乾燥工程]
 親水性膜の製造方法は、塗布工程により基材上に塗布された塗布膜を20℃以上150℃以下の温度で乾燥する乾燥工程を有する。
[Drying process]
The manufacturing method of a hydrophilic film | membrane has a drying process which dries the coating film apply | coated on the base material by the application | coating process at the temperature of 20 to 150 degreeC.
 乾燥工程では、塗布液を塗布して形成された塗布膜を20℃以上150℃の温度に加熱して乾燥することにより、基材上に、表面積差ΔSと表面粗さRaとが上記式1の関係を満たす膜が形成されるため、形成された親水性膜は耐傷性及び親水性に優れる。 In the drying step, the coating film formed by applying the coating liquid is heated to a temperature of 20 ° C. or more and 150 ° C. and dried, whereby the surface area difference ΔS and the surface roughness Ra are expressed by the above formula 1 Thus, the formed hydrophilic film is excellent in scratch resistance and hydrophilicity.
 塗布膜の乾燥は、加熱装置を用いて行なってもよい。加熱装置としては、目的の温度に加熱することができれば、特に限定されることなく、公知の加熱装置をいずれも用いることができる。加熱装置としては、オーブン、電気炉等の他、製造ラインに合わせて独自に作製した加熱装置を用いることができる。 The coating film may be dried using a heating device. The heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used. As the heating device, an oven, an electric furnace, or the like, or a heating device uniquely manufactured according to the production line can be used.
 塗布膜の乾燥は、例えば、上記の加熱装置を用いて、塗布膜の表面温度が20℃以上150℃以下の温度となるように行うことができる。乾燥時間は、例えば、加熱時間を1分間~60分間程度とすることができる。
 塗布膜の乾燥条件としては、塗布膜を、表面温度20℃以上150℃以下にして1分間~60分間加熱する乾燥条件が好ましく、表面温度40℃以上150℃以下にして1分間~60分間加熱する乾燥条件がより好ましく、表面温度60℃以上150℃以下にして1分間~30分間加熱する乾燥条件がさらに好ましく、表面温度90℃以上150℃以下にして1分間~10分間加熱する乾燥条件が特に好ましい。
 塗布膜の乾燥は、塗布膜の表面形状を維持する観点から、高温短時間で行われることが好ましい。
 なお、表面温度は赤外線温度計などにより測定することができる。
The coating film can be dried using, for example, the above-described heating device so that the surface temperature of the coating film is 20 ° C. or higher and 150 ° C. or lower. The drying time can be, for example, a heating time of about 1 minute to 60 minutes.
The drying condition of the coating film is preferably a drying condition in which the coating film is heated at a surface temperature of 20 ° C. or higher and 150 ° C. or lower for 1 minute to 60 minutes, and is heated at a surface temperature of 40 ° C. or higher and 150 ° C. or lower for 1 minute to 60 minutes. More preferably, the drying condition is heating for 1 to 30 minutes at a surface temperature of 60 ° C. to 150 ° C., and the drying condition is heating for 1 to 10 minutes at a surface temperature of 90 ° C. to 150 ° C. Particularly preferred.
The drying of the coating film is preferably performed in a short time at a high temperature from the viewpoint of maintaining the surface shape of the coating film.
The surface temperature can be measured with an infrared thermometer.
 乾燥後の塗布膜は、膜厚が20nm以上であることが好ましい。膜厚が20nm以上であると、乾燥後の塗布膜は耐傷性により優れる。
 乾燥後の塗布膜は、膜厚が20nm以上600nm以下であることがより好ましく、50nm以上350nm以下が更に好ましく、100nm以上250nm以下が特に好ましい。
The coating film after drying preferably has a film thickness of 20 nm or more. When the film thickness is 20 nm or more, the coating film after drying is more excellent in scratch resistance.
The coating film after drying preferably has a thickness of 20 nm to 600 nm, more preferably 50 nm to 350 nm, and particularly preferably 100 nm to 250 nm.
<積層体>
 積層体は、基材と、前述の本発明の一実施形態の親水性膜と、を少なくとも有する。
 積層体は、前述の本発明の一実施形態の親水性膜を有するため、耐傷性及び親水性に優れる。
<Laminated body>
The laminate has at least a base material and the hydrophilic film according to one embodiment of the present invention described above.
Since the laminate has the hydrophilic film according to the embodiment of the present invention, the laminate is excellent in scratch resistance and hydrophilicity.
[親水性膜]
 積層体における親水性膜は、前述の本発明の一実施形態の親水性膜であり、好ましい態様は前述の通りである。
[Hydrophilic membrane]
The hydrophilic film | membrane in a laminated body is the hydrophilic film | membrane of one Embodiment of the above-mentioned this invention, A preferable aspect is as above-mentioned.
[基材]
 積層体を形成する基材としては、特に制限はなく、ガラス、樹脂材料(プラスチックス材料)、金属、及びセラミックス等の各種材料より適宜選択して用いることができる。
[Base material]
There is no restriction | limiting in particular as a base material which forms a laminated body, It can select suitably from various materials, such as glass, a resin material (plastics material), a metal, and ceramics, and can use it.
 基材として、ガラスは広く用いられており、積層体を形成する基材として好適である。基材としてガラスを用いる場合、ケイ素上のヒドロキシ基の縮合がガラス表面のヒドロキシ基との間でも生じることにより、基材との密着性により優れた膜が形成される。
 また、基材として、樹脂材料も好適であり、例えば監視カメラ用保護材などの基材には樹脂材料が用いられることが多い。樹脂材料の中では、光、熱に対する耐久性に優れる点で、ポリカーボネート及びポリメチルメタクリレートが好ましい。
 基材は、複合材料であってもよい。基材としては、例えばガラス及び樹脂材料を含み、ガラスと樹脂材料とが混在して複合化した複合材、又は複数種の樹脂材料が混練又は貼合された樹脂複合材等のいずれでもよい。
Glass is widely used as a substrate, and is suitable as a substrate for forming a laminate. When glass is used as the substrate, condensation of hydroxy groups on silicon occurs even with the hydroxy groups on the glass surface, thereby forming a film having better adhesion to the substrate.
A resin material is also suitable as the base material. For example, a resin material is often used for a base material such as a protective material for a monitoring camera. Among the resin materials, polycarbonate and polymethyl methacrylate are preferable because they are excellent in durability against light and heat.
The substrate may be a composite material. As a base material, for example, any of a composite material including glass and a resin material, in which glass and a resin material are mixed and combined, or a resin composite material in which a plurality of types of resin materials are kneaded or bonded may be used.
 基材の厚みについては、特に制限はなく、用途や使用目的等に合わせて適宜選択すればよく、例えば0.05mm~10mmとすることができる。 The thickness of the substrate is not particularly limited and may be appropriately selected depending on the intended use or intended purpose, and may be, for example, 0.05 mm to 10 mm.
 積層体は、監視カメラ、照明を保護するための保護材(いわゆる保護カバー)、自動車や自転車などの車両用の車庫の屋根材、道路標識等の標識用の保護材、及び高速道路路肩設置用又は鉄道用などの防音壁などの用途に好適に用いられる。
 中でも、撮像装置を保護する監視カメラ用の保護材(いわゆるカメラカバー)の用途に好適に適用することができる。
Laminates are for surveillance cameras, protective materials for protecting lighting (so-called protective covers), roof materials for garages for vehicles such as automobiles and bicycles, protective materials for signs such as road signs, and highway shoulder installations. Or it is used suitably for uses, such as a noise barrier for railroads.
Especially, it can apply suitably for the use of the protective material (what is called a camera cover) for the surveillance camera which protects an imaging device.
<監視カメラ用保護材>
 監視カメラ用保護材は、少なくとも前述の本発明の一実施形態の積層体を備えている。
 積層体は、前述の本発明の一実施形態の親水性膜を有するため耐傷性及び親水性に優れる。したがって、監視カメラ用保護材は、例えば屋外の過酷な環境下に長期間曝されやすく、長期間にわたって優れた光透過性、透明性を保ち、長期耐久性が求められる監視カメラの撮像装置及びその撮像面を保護する保護材として有用である。
<Protective material for surveillance cameras>
The surveillance camera protective material includes at least the laminate according to the embodiment of the present invention.
Since the laminate has the hydrophilic film according to one embodiment of the present invention described above, it is excellent in scratch resistance and hydrophilicity. Accordingly, the protective material for a surveillance camera is, for example, an imaging device for a surveillance camera that is easily exposed to a harsh outdoor environment for a long period of time, has excellent light transmission and transparency over a long period of time, and requires long-term durability. It is useful as a protective material for protecting the imaging surface.
 積層体における基材の形状としては、半球形状、半楕円体形状(いわゆるドーム形状を含む)、平面形状、角柱形状、又は円柱形状が好ましい。ここで、楕円体とは、楕円を、xy平面、yz平面、zx平面に関して対称なように三次元へ拡張した形状を指す。
 また、基材のサイズには、特に制限はなく、用途や使用目的等に合わせて適宜選択すればよい。例えば、半球形状の場合、開口面の円の直径で例えば10mm~1000mmの範囲であってもよい。
As the shape of the substrate in the laminate, a hemispherical shape, a semi-ellipsoidal shape (including a so-called dome shape), a planar shape, a prismatic shape, or a cylindrical shape is preferable. Here, the ellipsoid refers to a shape obtained by extending the ellipse into three dimensions so as to be symmetric with respect to the xy plane, the yz plane, and the zx plane.
Moreover, there is no restriction | limiting in particular in the size of a base material, What is necessary is just to select suitably according to a use, a use purpose, etc. For example, in the case of a hemispherical shape, the diameter of the circle of the opening surface may be in the range of 10 mm to 1000 mm, for example.
 基材の材質としては、前述の本発明の一実施形態の積層体における基材と同じものを用いることができる。基材の材質の中でも、本発明の一実施形態の親水性膜との密着性の観点から、樹脂材料が好ましく、ポリカーボネート及びポリメチルメタクリレートがより好ましい。 As the material of the base material, the same material as the base material in the above-described laminate of one embodiment of the present invention can be used. Among the materials of the base material, a resin material is preferable and polycarbonate and polymethyl methacrylate are more preferable from the viewpoint of adhesion to the hydrophilic film of one embodiment of the present invention.
<監視カメラ>
 監視カメラは、撮像装置を保護するための、前述の本発明の一実施形態の監視カメラ用保護材を備えている。そのため、監視カメラは、耐傷性及び親水性に優れる。したがって、監視カメラは、例えば屋外の過酷な環境下に長期間曝されやすく、長期間にわたって優れた光透過性、透明性を保ち、長期耐久性が求められる監視カメラとして有用である。
<Monitoring camera>
The surveillance camera includes the monitoring camera protective material according to the embodiment of the present invention described above for protecting the imaging apparatus. Therefore, the surveillance camera is excellent in scratch resistance and hydrophilicity. Therefore, the surveillance camera is useful as a surveillance camera that is easily exposed to a harsh outdoor environment for a long period of time, maintains excellent light transmission and transparency over a long period of time, and requires long-term durability.
 以下、本発明の一実施形態を実施例により更に具体的に説明するが、本発明の一実施形態はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, one embodiment of the present invention will be described more specifically by way of examples. However, one embodiment of the present invention is not limited to the following examples unless it exceeds the gist thereof.
(実施例1)
-塗布液の調製-
 エタノール81.07gに対して、シロキサンオリゴマー(表1の化合物1;一般式(1)で表される化合物(n=5))3.06gおよびアルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)の1質量%イソプロパノール溶液(シロキサンオリゴマーの縮合反応を促進する触媒)0.94gを添加して混合した。
 得られた溶液に対してポリエチレングリコールモノラウリルエーテル(エチレンオキサイド部の繰り返し数15;ノニオン性の界面活性剤)0.057gを溶解させた水溶液114.80gを徐々に加え、室温で12時間以上攪拌した。これにより、シロキサンオリゴマーを加水分解させることで、塗布母液B1を調製した。
 次いで、19.99gの塗布母液B1に対して、エタノール7.36g、水12.58g、及びポリエチレングリコールモノラウリルエーテル(エチレンオキサイド部の繰り返し数15;ノニオン性の界面活性剤)0.0056gを加えた。その後、更に、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム(帯電防止剤であるイオン性の界面活性剤)0.0011gを添加して希釈した。この溶液に更に、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)の1質量%イソプロパノール溶液(シロキサンオリゴマーの縮合反応を促進する触媒)0.85gおよびシリカ粒子1(スノーテックス(登録商標)O、平均一次粒子径:10nm~15nm、日産化学工業社製)を固形分として1.4gを加えて、塗布液を調製した。なお、塗布液中においても、シロキサンオリゴマーの加水分解物の縮合反応が進行するため、塗布液にはシロキサンバインダーが含まれている。
(Example 1)
-Preparation of coating solution-
To 81.07 g of ethanol, 3.06 g of a siloxane oligomer (compound 1 in Table 1; compound represented by general formula (1) (n = 5)) and aluminum bis (ethylacetoacetate) mono (acetylacetonate) 0.94 g of a 1% by mass isopropanol solution (catalyst for promoting condensation reaction of siloxane oligomer) was added and mixed.
To the obtained solution, 114.80 g of an aqueous solution in which 0.057 g of polyethylene glycol monolauryl ether (ethylene oxide repeat number 15; nonionic surfactant) was dissolved was gradually added and stirred at room temperature for 12 hours or more. did. Thereby, application mother liquid B1 was prepared by hydrolyzing a siloxane oligomer.
Next, 7.36 g of ethanol, 12.58 g of water, and 0.0056 g of polyethylene glycol monolauryl ether (15 ethylene oxide repeats; nonionic surfactant) are added to 19.99 g of the coating mother liquor B1. It was. Thereafter, 0.0011 g of sodium di (2-ethylhexyl) sulfosuccinate (an ionic surfactant as an antistatic agent) was further added for dilution. This solution was further mixed with 0.85 g of a 1% by mass isopropanol solution of aluminum bis (ethylacetoacetate) mono (acetylacetonate) (catalyst for promoting condensation reaction of siloxane oligomer) and silica particles 1 (Snowtex® O). The average primary particle size: 10 nm to 15 nm, manufactured by Nissan Chemical Industries, Ltd.) was added as a solid content and 1.4 g was added to prepare a coating solution. In addition, since the condensation reaction of the hydrolyzate of siloxane oligomer proceeds in the coating solution, the coating solution contains a siloxane binder.
-カメラカバーの作製-
 次に、調製した塗布液を、アクリル板(平面形状)〔板サイズ:300mm×450mm、厚み:1mm、株式会社菅原工芸製;基材〕の片面にスプレー塗布することで塗膜を形成後、65℃2分間乾燥させ、厚み130mm(0.13μm)の親水性膜を得た。スプレー塗布には、スプレー噴霧装置(プレバル、プレシジョンバルブ社製)を用いた。ここで、親水性膜中に含まれるシロキサンオリゴマーの縮合が進行し、親水性膜には、シロキサンバインダーが含まれている。なお、親水性膜中におけるシロキサンバインダーに対するシリカ粒子の比率は質量基準で0.5である。
 以上のようにして、親水性膜を有するアクリル板である監視カメラ用カメラカバー(積層体)を作製した。
-Production of camera cover-
Next, after forming the coating film by spray-coating the prepared coating liquid on one side of an acrylic plate (planar shape) [plate size: 300 mm × 450 mm, thickness: 1 mm, manufactured by Ebara Kogyo Co., Ltd .; The film was dried at 65 ° C. for 2 minutes to obtain a hydrophilic film having a thickness of 130 mm (0.13 μm). For spray application, a spray atomizer (Preval, manufactured by Precision Valve) was used. Here, condensation of the siloxane oligomer contained in the hydrophilic film proceeds, and the hydrophilic film contains a siloxane binder. The ratio of silica particles to siloxane binder in the hydrophilic film is 0.5 on a mass basis.
As described above, a camera cover (laminate) for a surveillance camera, which was an acrylic plate having a hydrophilic film, was produced.
-評価-
 作製した監視カメラ用カメラカバーを用い、下記の測定又は評価を行った。評価結果は、下記表2に示す。
-Evaluation-
The following measurement or evaluation was performed using the produced camera cover for a surveillance camera. The evaluation results are shown in Table 2 below.
(1)表面粗さRa及び表面積差ΔS
 表面粗さRa及び表面積差ΔSは、原子間力顕微鏡(Atomic Force Microscope:AFM)により表面形状を測定することで3次元データを求め算出した。なお、ΔSの算出には下記の式2を用いた。
 ΔS=[(S-S)/S]×100 ・・・式2
 式2中、Sは親水性膜の垂線方向から見た投影面積を表し、SはSで表す投影面積における親水性膜の表面の実表面積を表す。
(1) Surface roughness Ra and surface area difference ΔS
The surface roughness Ra and the surface area difference ΔS were calculated by obtaining three-dimensional data by measuring the surface shape with an atomic force microscope (AFM). In addition, the following formula 2 was used for the calculation of ΔS.
ΔS = [(S X −S 0 ) / S 0 ] × 100 Equation 2
In Equation 2, S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
 具体的には、上記親水性膜が形成された積層体を1cm×1cmの大きさに切り取って、ピエゾスキャナー上の水平な試料台にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンした。スキャンの際、親水性膜表面の凹凸を、Z方向のピエゾの変位でとらえた。測定は、表面の5μm×5μmの範囲を512点×512点行った。測定された結果から、3次元データを得た。なお、カンチレバーにより実測された実表面積をSとし、測定範囲の面積(5μm×5μm)をSとした。
 表面積差ΔSと表面粗さRaとの関係は、上記で得られた数値を用いて求めた。表2中ではΔS/Raで表し、ΔS/Raの値が0.5以下であることで式1を満たす。
Specifically, the laminate on which the hydrophilic film is formed is cut to a size of 1 cm × 1 cm, set on a horizontal sample stage on a piezo scanner, the cantilever is approached to the sample surface, and the atomic force is reduced. When it reached the working area, it was scanned in the XY directions. During scanning, irregularities on the surface of the hydrophilic film were captured by the displacement of the piezo in the Z direction. The measurement was performed at 512 points × 512 points in a surface area of 5 μm × 5 μm. Three-dimensional data was obtained from the measured results. Note that the actual surface area that is actually measured by the cantilever and S X, the area of the measurement range (5μm × 5μm) was S 0.
The relationship between the surface area difference ΔS and the surface roughness Ra was determined using the numerical values obtained above. In Table 2, it is represented by ΔS / Ra, and satisfies the formula 1 when the value of ΔS / Ra is 0.5 or less.
(2)耐傷性
 スチールウール型番#0000を1cmの大きさに切り取り、積層体の親水性膜側に重ね、スチールウールの上から所定の荷重をかけて10回擦り下記の評価基準にしたがって評価した。評価基準のA~Eのうち、A及びBを許容範囲とした。
(2) Scratch resistance Steel wool model # 0000 was cut to a size of 1 cm 2 , piled on the hydrophilic film side of the laminate, and rubbed 10 times over the steel wool with a predetermined load, and evaluated according to the following evaluation criteria. did. Among the evaluation criteria A to E, A and B were allowed.
〈評価基準〉
A:30g荷重でも親水性膜にキズが付かなかった。
B:20g荷重で親水性膜にキズが付いた。
C:10g荷重で親水性膜にキズが付いた。
D:5g荷重で親水性膜にキズが付いた。
E:1g荷重で親水性膜にキズが付いた。
<Evaluation criteria>
A: The hydrophilic film was not scratched even at a load of 30 g.
B: The hydrophilic film was scratched with a load of 20 g.
C: The hydrophilic film was scratched with a load of 10 g.
D: The hydrophilic film was scratched with a load of 5 g.
E: The hydrophilic film was scratched with a load of 1 g.
(3)水接触角
 接触角計M553G-XM(株式会社シロ産業製)を用い、親水性膜の表面に純水を1μl滴下してθ/2法により接触角[°]を測定し、5回測定して得た値の平均値を水接触角とした。
 水接触角は、40°以下を許容値とした。
(3) Water contact angle Using a contact angle meter M553G-XM (manufactured by Shiro Sangyo Co., Ltd.), 1 μl of pure water was dropped on the surface of the hydrophilic film, and the contact angle [°] was measured by the θ / 2 method. The average of the values obtained by repeated measurements was taken as the water contact angle.
The water contact angle was set to an allowable value of 40 ° or less.
(4)防汚性
 天然黄土顔料(ホルベイン社製)を、カメラカバーの親水性膜の表面に一様に散布して付着させた後、カメラカバーの裏面を叩き、付着した天然黄土顔料を落とす作業を5回繰り返した。その後、作業を5回繰り返した後の親水性膜の写真を撮り、10mm×10mmの範囲において、画像解析ソフトImageFactory(Imsoft社製)による二値化画像解析により天然黄土顔料の付着面積を求め、汚れの程度を下記の評価基準にしたがって評価した。評価基準のA~Eのうち、A及びBを許容範囲とした。
(4) Antifouling property After applying a natural ocher pigment (manufactured by Holbein Co., Ltd.) evenly on the surface of the hydrophilic film of the camera cover, the surface of the camera cover is struck to remove the attached natural ocher pigment. The operation was repeated 5 times. Thereafter, a photograph of the hydrophilic film after repeating the work 5 times was taken, and in the range of 10 mm × 10 mm, the adhesion area of the natural ocher pigment was obtained by binarized image analysis using image analysis software ImageFactory (manufactured by Imsoft). The degree of contamination was evaluated according to the following evaluation criteria. Among the evaluation criteria A to E, A and B were allowed.
 <評価基準>
A:親水性膜の表面には天然黄土顔料が付着せず、無色透明である。
B:親水性膜の表面に天然黄土顔料が付着し、付着面積が全面積の10%以下である。
C:親水性膜の表面に天然黄土顔料が付着し、付着面積が全面積の10%を超え50%以下である。
D:親水性膜の表面に天然黄土顔料が付着し、親水性膜の透明性は維持されているものの、付着面積が全面積の50%を超えている。
E:親水性膜の表面の全面に天然黄土顔料が付着し、一部又は全部が不透明である。
<Evaluation criteria>
A: The natural ocher pigment does not adhere to the surface of the hydrophilic film and is colorless and transparent.
B: A natural ocher pigment adheres to the surface of the hydrophilic film, and the adhesion area is 10% or less of the total area.
C: A natural ocher pigment adheres to the surface of the hydrophilic film, and the adhesion area exceeds 10% of the total area and is 50% or less.
D: Although natural ocher pigment adheres to the surface of the hydrophilic film and the transparency of the hydrophilic film is maintained, the adhesion area exceeds 50% of the total area.
E: Natural ocher pigment adheres to the entire surface of the hydrophilic film, and part or all of the surface is opaque.
(実施例2~実施例14、比較例1~比較例4及び比較例6~比較例7)
 実施例1において、各種成分、基材及び乾燥条件を表2に示すとおりに変更した以外は、実施例1と同様にして親水性膜を作製した。さらに実施例1と同様にして監視カメラ用カメラカバー(積層体)を作製し、測定及び評価した。測定及び評価の結果は、表2に示す。
(Examples 2 to 14, Comparative Examples 1 to 4 and Comparative Examples 6 to 7)
In Example 1, a hydrophilic film was prepared in the same manner as in Example 1 except that various components, base materials, and drying conditions were changed as shown in Table 2. Further, a camera cover (laminate) for a surveillance camera was produced in the same manner as in Example 1, and measured and evaluated. The results of measurement and evaluation are shown in Table 2.
(比較例5)
 塗布液として中国自動車工業株式会社製EXCELPUREを用いた以外は、実施例1と同様にして親水性膜を作製した。さらに実施例1と同様にして監視カメラ用カメラカバー(積層体)を作製し、測定及び評価した。測定及び評価の結果は、表2に示す。
(Comparative Example 5)
A hydrophilic film was prepared in the same manner as in Example 1 except that EXCELPURE manufactured by China Automotive Industry Co., Ltd. was used as the coating solution. Further, a camera cover (laminate) for a surveillance camera was produced in the same manner as in Example 1, and measured and evaluated. The results of measurement and evaluation are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(表2の説明)
~シリカ粒子について~
・シリカ粒子1 … スノーテックス(登録商標)O、平均一次粒子径:10nm~15nm、日産化学工業社製
・シリカ粒子2 … スノーテックス(登録商標)OXS、平均一次粒子径:4nm~6nm、日産化学工業社製
・シリカ粒子3 … スノーテックス(登録商標)OS、平均一次粒子径:8nm~11nm、日産化学工業社製
・シリカ粒子4 … スノーテックス(登録商標)N40、平均一次粒子径:20nm~30nm、日産化学工業社製
・シリカ粒子5 … スノーテックス(登録商標)OYL、平均一次粒子径:50nm~80nm、日産化学工業社製
~基材について~
・アクリル板 … 平面形状、板サイズ:300mm×450mm、厚み:1mm、株式会社菅原工芸製
・ドーム基板 … 半楕円体形状(ドーム形状)、最大外径:150mm、最大高さ:130mm、厚み:3mm、ポリメチルメタクリレート成形部材、株式会社菅原工芸製の監視カメラカバーKタイプ(透明)
(Explanation of Table 2)
About silica particles
・ Silica particles 1… Snowtex (registered trademark) O, average primary particle size: 10 nm to 15 nm, manufactured by Nissan Chemical Industries ・ Silica particles 2… Snowtex (registered trademark) OXS, average primary particle size: 4 to 6 nm, Nissan Made by Chemical Industry Co., Ltd./Silica Particle 3 ... Snowtex (registered trademark) OS, average primary particle size: 8 to 11 nm, manufactured by Nissan Chemical Industries Co., Ltd./Silica particle 4 ... Snowtex (registered trademark) N40, average primary particle size: 20 nm ~ 30 nm, manufactured by Nissan Chemical Industries, Ltd., silica particles 5 ... Snowtex (registered trademark) OYL, average primary particle size: 50 nm to 80 nm, manufactured by Nissan Chemical Industries, Ltd.
-Acrylic plate ... Planar shape, plate size: 300 mm x 450 mm, thickness: 1 mm, made by Ebara Kogyo Co., Ltd.-Dome substrate ... Semi-ellipsoidal shape (dome shape), maximum outer diameter: 150 mm, maximum height: 130 mm, thickness: 3mm, polymethylmethacrylate molding member, K camera type made by Sugawara Kogyo Co., Ltd. (transparent)
 表2に示されるように、実施例では、いずれの監視カメラ用カメラカバーも無色透明であり、良好な耐傷性及び親水性を示した。
 これに対して、比較例1~比較例7では、監視カメラ用カメラカバーの表面は、耐傷性及び親水性がいずれも劣っていた。
As shown in Table 2, in the examples, any camera cover for a surveillance camera was colorless and transparent, and exhibited good scratch resistance and hydrophilicity.
In contrast, in Comparative Examples 1 to 7, the surface of the camera cover for the surveillance camera was inferior in both scratch resistance and hydrophilicity.
 2015年2月27日に出願された日本国特許出願2015-039450号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2015-039450 filed on February 27, 2015 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (18)

  1.  シロキサンバインダーと、シリカ粒子と、を含有し、表面における表面積差ΔSと表面粗さRaとが下記式1の関係を満たす親水性膜。
     ΔS≦0.5Ra ・・・式1
     式1中、ΔSは下記式2で求められる百分率である。
     ΔS=[(S-S)/S]×100 ・・・式2
     式2中、Sは親水性膜の垂線方向から見た投影面積を表し、SはSで表す投影面積における親水性膜の表面の実表面積を表す。
    A hydrophilic film containing a siloxane binder and silica particles, wherein the surface area difference ΔS and the surface roughness Ra on the surface satisfy the relationship of the following formula 1.
    ΔS ≦ 0.5Ra Formula 1
    In Equation 1, ΔS is a percentage obtained by Equation 2 below.
    ΔS = [(S X −S 0 ) / S 0 ] × 100 Equation 2
    In Equation 2, S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
  2.  前記表面粗さRaが100nm以下である請求項1に記載の親水性膜。 The hydrophilic film according to claim 1, wherein the surface roughness Ra is 100 nm or less.
  3.  前記表面粗さRaが10nm以下である請求項1又は請求項2に記載の親水性膜。 The hydrophilic film according to claim 1 or 2, wherein the surface roughness Ra is 10 nm or less.
  4.  前記表面積差ΔSが0.1%以上である請求項1~請求項3のいずれか1項に記載の親水性膜。 The hydrophilic film according to any one of claims 1 to 3, wherein the surface area difference ΔS is 0.1% or more.
  5.  さらに帯電防止剤を含有する請求項1~請求項4のいずれか1項に記載の親水性膜。 The hydrophilic film according to any one of claims 1 to 4, further comprising an antistatic agent.
  6.  前記帯電防止剤の少なくとも1種が、イオン性の界面活性剤である請求項5に記載の親水性膜。 The hydrophilic film according to claim 5, wherein at least one of the antistatic agents is an ionic surfactant.
  7.  さらに界面活性剤を含有する請求項1~請求項6のいずれか1項に記載の親水性膜。 The hydrophilic film according to any one of claims 1 to 6, further comprising a surfactant.
  8.  前記界面活性剤が、ノニオン性の界面活性剤である請求項7に記載の親水性膜。 The hydrophilic film according to claim 7, wherein the surfactant is a nonionic surfactant.
  9.  前記シロキサンバインダーは、下記一般式(1)で表される化合物から形成されるシロキサンバインダーである請求項1~請求項8のいずれか1項に記載の親水性膜。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、2~20の整数を表す。
    The hydrophilic film according to any one of claims 1 to 8, wherein the siloxane binder is a siloxane binder formed from a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represent a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
  10.  前記シリカ粒子の平均一次粒子径が、2nm以上100nm以下である請求項1~請求項9のいずれか1項に記載の親水性膜。 The hydrophilic membrane according to any one of claims 1 to 9, wherein an average primary particle diameter of the silica particles is 2 nm or more and 100 nm or less.
  11.  シロキサンバインダーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を含有する塗布液を基材に塗布する塗布工程と、
     前記塗布工程により基材上に塗布された塗布膜を20℃以上150℃以下の温度で乾燥する乾燥工程と、
     を有し、シロキサンバインダーに対するシリカ粒子の比率が質量基準で0.1~1.8であり、表面における表面積差ΔSと表面粗さRaとが下記式1の関係を満たす親水性膜を製造する親水性膜の製造方法。
     ΔS≦0.5Ra ・・・式1
     式1中、ΔSは下記式2で求められる百分率である。
     ΔS=[(S-S)/S]×100 ・・・式2
     式2中、Sは親水性膜の垂線方向から見た投影面積を表し、SはSで表す投影面積における親水性膜の表面の実表面積を表す。
    A coating step of coating a substrate with a coating solution containing a siloxane binder and silica particles having an average primary particle size of 2 nm to 100 nm,
    A drying step of drying the coating film coated on the substrate by the coating step at a temperature of 20 ° C. or higher and 150 ° C. or lower;
    The ratio of silica particles to siloxane binder is 0.1 to 1.8 on a mass basis, and the surface area difference ΔS on the surface and the surface roughness Ra satisfy the relationship of the following formula 1. A method for producing a hydrophilic film.
    ΔS ≦ 0.5Ra Formula 1
    In Equation 1, ΔS is a percentage obtained by Equation 2 below.
    ΔS = [(S X −S 0 ) / S 0 ] × 100 Equation 2
    In Equation 2, S 0 represents the projected area viewed from the perpendicular direction of the hydrophilic film, and S X represents the actual surface area of the surface of the hydrophilic film in the projected area represented by S 0 .
  12.  さらに、水と、シロキサンオリゴマーと、平均一次粒子径が2nm以上100nm以下のシリカ粒子と、を混合することで前記塗布液を調製する調製工程を有する請求項11に記載の親水性膜の製造方法。 Furthermore, the manufacturing method of the hydrophilic film | membrane of Claim 11 which has the preparation process which prepares the said coating liquid by mixing water, a siloxane oligomer, and a silica particle with an average primary particle diameter of 2 nm or more and 100 nm or less. .
  13.  前記調製工程は、さらに前記シロキサンオリゴマーの縮合反応を促進する触媒を混合することで塗布液を調製する請求項12に記載の親水性膜の製造方法。 The method for producing a hydrophilic film according to claim 12, wherein the preparation step further comprises preparing a coating solution by mixing a catalyst that promotes the condensation reaction of the siloxane oligomer.
  14.  基材と、請求項1~請求項10のいずれか1項に記載の親水性膜と、を有する積層体。 A laminate having a substrate and the hydrophilic film according to any one of claims 1 to 10.
  15.  請求項14に記載の積層体を備えた監視カメラ用保護材。 A protective material for a surveillance camera, comprising the laminate according to claim 14.
  16.  前記積層体における基材の形状は、半球形状、半楕円体形状、平面形状、角柱形状又は円柱形状である請求項15に記載の監視カメラ用保護材。 The protective material for a surveillance camera according to claim 15, wherein the shape of the base material in the laminate is a hemispherical shape, a semi-ellipsoidal shape, a planar shape, a prismatic shape or a cylindrical shape.
  17.  屋外に設置される監視カメラに用いられる請求項15又は請求項16に記載の監視カメラ用保護材。 The surveillance camera protective material according to claim 15 or 16, which is used for a surveillance camera installed outdoors.
  18.  請求項15~請求項17のいずれか1項に記載の監視カメラ用保護材を備えた監視カメラ。 A surveillance camera comprising the surveillance camera protective material according to any one of claims 15 to 17.
PCT/JP2015/081384 2015-02-27 2015-11-06 Hydrophilic film and production process therefor, laminate, protective material for surveillance camera, and surveillance camera WO2016136041A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039450 2015-02-27
JP2015-039450 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136041A1 true WO2016136041A1 (en) 2016-09-01

Family

ID=56788099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081384 WO2016136041A1 (en) 2015-02-27 2015-11-06 Hydrophilic film and production process therefor, laminate, protective material for surveillance camera, and surveillance camera

Country Status (2)

Country Link
JP (1) JP2016164265A (en)
WO (1) WO2016136041A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109922957A (en) 2016-11-15 2019-06-21 富士胶片株式会社 Laminated body and its manufacturing method and anti-fog coating composition
EP3527368A4 (en) 2016-11-15 2019-09-18 FUJIFILM Corporation Laminated body
WO2019159974A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Antifogging laminate and method for producing antifogging laminate
WO2019216061A1 (en) * 2018-05-11 2019-11-14 富士フイルム株式会社 Coating agent, anti-fog coating, method for producing anti-fog coating, and multilayer body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161042A (en) * 1997-08-08 1999-03-05 Matsushita Electric Works Ltd Highly hydrophilic inorganic paint, painted product using same and application thereof
JP2006052352A (en) * 2004-08-13 2006-02-23 Nippon Paint Co Ltd Aqueous hydrophilization treatment agent
WO2015012021A1 (en) * 2013-07-24 2015-01-29 富士フイルム株式会社 Water-based anti-soiling agent, anti-soiling layer, layered body, and solar battery module
WO2015141240A1 (en) * 2014-03-17 2015-09-24 富士フイルム株式会社 Aqueous coating agent, film, film production method, laminate, and solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161042A (en) * 1997-08-08 1999-03-05 Matsushita Electric Works Ltd Highly hydrophilic inorganic paint, painted product using same and application thereof
JP2006052352A (en) * 2004-08-13 2006-02-23 Nippon Paint Co Ltd Aqueous hydrophilization treatment agent
WO2015012021A1 (en) * 2013-07-24 2015-01-29 富士フイルム株式会社 Water-based anti-soiling agent, anti-soiling layer, layered body, and solar battery module
WO2015141240A1 (en) * 2014-03-17 2015-09-24 富士フイルム株式会社 Aqueous coating agent, film, film production method, laminate, and solar cell module

Also Published As

Publication number Publication date
JP2016164265A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US10640670B2 (en) Film-forming composition and manufacturing method of laminate
WO2018092543A1 (en) Laminate, method for producing same and composition for anti-fog coating
US6599976B2 (en) Coating process and silicon-containing liquid composition
JP6702814B2 (en) Antifogging layer forming composition, laminate, and method for producing laminate
US10377904B2 (en) Inorganic hydrophilic coating solution, hydrophilic coating film obtained therefrom, and member using same
JPH09227831A (en) Photocatalytic, hydrophilic coating composition
MXPA06013795A (en) Multi-layer coatings and related methods.
WO2016136041A1 (en) Hydrophilic film and production process therefor, laminate, protective material for surveillance camera, and surveillance camera
SA517381194B1 (en) Low-Reflection Coating
JP2004142161A (en) Surface stainproof composite resin film, surface stainproof article and decorative plate
WO2019064973A1 (en) Anti-fogging layer laminate
TWI630246B (en) Aqueous antifouling coating agent, antifouling coating layer, laminate and solar cell module
WO2016056489A1 (en) Antifouling layer-equipped laminate, protective material for surveillance camera, and surveillance camera
WO2018092544A1 (en) Laminated body
JP2019065178A (en) Antifogging coating material and laminate
JP2005272835A (en) Silicon-containing liquid composition
WO2017217513A1 (en) Film forming composition, laminate, and laminate manufacturing method
JP2009154480A (en) Water-repellent film
JPH0724958A (en) Surface treated substrate and manufacture thereof
JP2007091873A (en) Composition for water-repellant coating with low index of refraction
WO2018051958A1 (en) Antifouling article
JP7065980B2 (en) Laminate
JP2016050276A (en) Surface treatment agent for coated steel panel
JP2018109108A (en) Coating composition, coating film and article
TWI738030B (en) Composition and coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883331

Country of ref document: EP

Kind code of ref document: A1