WO2015141240A1 - Aqueous coating agent, film, film production method, laminate, and solar cell module - Google Patents

Aqueous coating agent, film, film production method, laminate, and solar cell module Download PDF

Info

Publication number
WO2015141240A1
WO2015141240A1 PCT/JP2015/050287 JP2015050287W WO2015141240A1 WO 2015141240 A1 WO2015141240 A1 WO 2015141240A1 JP 2015050287 W JP2015050287 W JP 2015050287W WO 2015141240 A1 WO2015141240 A1 WO 2015141240A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating agent
aqueous coating
mass
silica particles
film
Prior art date
Application number
PCT/JP2015/050287
Other languages
French (fr)
Japanese (ja)
Inventor
威史 濱
秀樹 兼岩
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201580002771.7A priority Critical patent/CN105765015B/en
Publication of WO2015141240A1 publication Critical patent/WO2015141240A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an aqueous coating agent, a film obtained from the aqueous coating agent, a method for producing the film, a laminate including the film, and a solar cell module.
  • the aqueous coating agent containing a siloxane compound uses a solvent containing water, and the film formed using the aqueous coating agent is used for various applications because of its low surface energy and excellent transparency.
  • Specific examples of the above applications include optical lenses, optical filters, flattening films for thin film transistors (TFTs) for various displays, antireflection films, anticondensation films, antifouling films, surface protective films, and the like.
  • Japanese Patent Application Laid-Open No. 2012-214772 discloses, as a coating agent capable of forming a film having excellent transparency, a siloxane-based resin containing fine silica particles, polyethylene glycol, and preferably a (meth) acrylic surfactant.
  • a siloxane-based resin composition containing the above has been proposed.
  • a solar cell module generally includes a solar cell in which a solar cell element is sealed with a surface protective material, a sealing material agent, and a back surface side base material in order from a light receiving surface side (front surface side) on which sunlight is incident. ing.
  • a surface protection material with which the light-receiving surface side of a solar cell module is equipped, a glass base material, a weather resistant resin film, etc. are used.
  • the surface protective material provided on the surface on which the sunlight is incident is required to have high light transmittance since it affects the power generation efficiency of the solar cell module.
  • the surface protective material is less likely to adhere to pollutants because the light transmittance decreases when contaminants such as dust and soot in the atmosphere adhere to it. That is, antifouling properties are required.
  • Japanese Patent Application Laid-Open No. 2006-52352 discloses a siloxane compound, a metal compound, a nonionic surfactant, an acidic colloidal An aqueous hydrophilizing agent containing silica and a hydrophilic organic solvent has been proposed.
  • Japanese Patent Application Laid-Open No. 2006-52352 describes that the antifouling property of the surface of the article is improved by providing a hydrophilic film on the surface of the article with the hydrophilizing agent.
  • the siloxane-based resin composition described in Japanese Patent Application Laid-Open No. 2012-214772 has been proposed to solve the problem of improving coating properties and coating stability, which are problems specific to siloxane-based resins.
  • a film formed using the siloxane-based resin composition is excellent in transparency, but the antifouling property of the formed film is not considered.
  • the hydrophilic film formed on the surface of the article using the hydrophilizing agent described in JP-A-2006-52352 can easily remove contaminants adhering to the surface of the hydrophilic film by washing with water.
  • the adhesion preventing property of the contaminant to the surface of the hydrophilic film was not taken into consideration, and it did not have the antifouling property capable of suppressing a decrease in light transmittance due to the adhesion of the contaminant.
  • an object of the present invention is to provide an aqueous coating agent that is excellent in light transmittance and can suppress the adhesion of contaminants, a film obtained by the aqueous coating agent and excellent in transparency and antifouling property, and a method for producing the film. It is to provide.
  • Another object of the present invention is to provide a laminate having a film excellent in transparency and antifouling property, and a solar cell module including the laminate.
  • aqueous coating agent containing a siloxane oligomer having a specific structure, hollow silica particles, silica particles having a particle diameter smaller than that of the hollow silica particles, and the like is as described below.
  • R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 2 to 20.
  • the content of the hollow silica particles is 3% by mass with respect to the total mass of the hollow silica particles contained in the aqueous coating agent and the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles.
  • [5] The aqueous coating agent according to any one of [1] to [4], wherein the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles have an average primary particle size of 50 nm or less.
  • [6] The aqueous coating agent according to any one of [1] to [5], wherein n in the general formula (1) is 3 to 12.
  • the content of the siloxane oligomer represented by the general formula (1) is 3% by mass or more and 70% by mass or less with respect to the total solid content in the aqueous coating agent.
  • the aqueous coating agent as described in any one.
  • the aqueous solution according to any one of [1] to [8], wherein the content of the hollow silica particles is from 1% by mass to 60% by mass with respect to the total solid content in the aqueous coating agent. Coating agent.
  • the content of silica particles having an average primary particle size smaller than the average primary particle size of the empty silica particles is 5% by mass or more and 95% by mass or less based on the total solid content in the aqueous coating agent.
  • the aqueous coating agent according to any one of [9]. [11] The total content of the hollow silica particles and the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles is 30% by mass or less based on the total solid content in the aqueous coating agent. The aqueous coating agent according to any one of [1] to [10].
  • At least one siloxane compound selected from the siloxane oligomer represented by the general formula (1) and the condensate of the siloxane oligomer represented by the general formula (1), hollow silica particles, and hollow silica particles A film containing silica particles having an average primary particle size smaller than the average primary particle size and a surfactant and having a thickness of 50 nm to 350 nm.
  • R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 2 to 20.
  • a solar cell module having the laminate according to [14].
  • the present invention it is possible to provide an aqueous coating agent having excellent light transmittance and antifouling property, a film obtained by the aqueous coating agent and excellent in transparency and antifouling property, and a method for producing the film. it can.
  • ADVANTAGE OF THE INVENTION According to this invention, the laminated body which has a film
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value.
  • the amount of each component in the composition means the total amount of the plurality of substances unless there is a specific notice when there are a plurality of substances corresponding to the same component in the composition.
  • the aqueous coating agent of the present invention comprises water, a siloxane oligomer represented by the general formula (1) (hereinafter sometimes referred to as “specific siloxane compound”), hollow silica particles, and average primary particles of hollow silica particles.
  • An aqueous coating agent comprising silica particles having an average primary particle size smaller than the diameter and a surfactant, wherein the surfactant content is 0.01% by mass or more based on the total solid mass of the aqueous coating agent It is.
  • each component contained in the aqueous coating agent will be described.
  • the aqueous coating agent of the present invention contains a siloxane oligomer represented by the general formula (1).
  • R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 2 to 20.
  • the organic group having 1 to 6 carbon atoms in R 1 , R 2 , R 3 , and R 4 may be linear, branched, or cyclic.
  • Examples of the monovalent organic group include an alkyl group and an alkenyl group, and an alkyl group is preferable.
  • Examples of the alkyl group when R 1 , R 2 , R 3 , and R 4 represent an alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n- A pentyl group, an n-hexyl group, a cyclohexyl group and the like can be mentioned.
  • the siloxane oligomer when the organic group of R 1 to R 4 , preferably the alkyl group has 1 to 6 carbon atoms, the siloxane oligomer has good hydrolyzability.
  • R 1 to R 4 are more preferably each independently an alkyl group having 1 to 4 carbon atoms, and preferably an alkyl group having 1 or 2 carbon atoms. Is more preferable.
  • n is an integer of 2 to 20.
  • the viscosity of the aqueous coating agent containing the specific siloxane compound can be set to an appropriate range.
  • the reactivity of the siloxane oligomer can be controlled within a preferable range.
  • n is in the range of 2 to 20, preferably 3 to 12, and more preferably 5 to 10.
  • n exceeds 20, since the viscosity of an aqueous coating agent becomes higher, there exists a possibility that handling property and uniform coating property may fall.
  • a siloxane compound having n of 1 tends to make it difficult to control the reactivity of alkoxysilane, and there is a concern that the surface hydrophilicity of the film obtained after coating is lowered.
  • Examples of specific siloxane compounds that can be used in the present invention are described by R 1 to R 4 and n in the general formula (1), but the present invention is not limited to these exemplified compounds.
  • the specific siloxane compound is at least partially hydrolyzed by coexisting with water.
  • the hydrolyzate of the specific siloxane compound is a compound in which at least a part of the alkoxy group bonded to the silicon atom of the specific siloxane compound is substituted with a hydroxyl group by the reaction of the siloxane oligomer and water. It is presumed that the film obtained by the aqueous coating agent has good surface hydrophilicity due to a certain hydroxy group.
  • the hydrolysis reaction it is not always necessary to react all alkoxy groups of the specific siloxane compound, but from the viewpoint that the hydrophilicity of the film obtained by applying and drying the aqueous coating agent becomes better, more It is preferable that the alkoxy group is hydrolyzed.
  • the amount of water required for the hydrolysis is a molar amount equal to the alkoxy group of the specific siloxane compound, but it is preferable that a large excess of water is present from the viewpoint of allowing the hydrolysis reaction to proceed efficiently.
  • the hydrolysis reaction of the specific siloxane compound proceeds even at room temperature (25 ° C.), in order to promote the reaction, after preparing the mixture by bringing the specific siloxane compound and water into contact with each other, the obtained mixture is subjected to 30 ° C. to 50 ° C. You may heat to the extent. A longer reaction time for the hydrolysis reaction is preferred because the reaction proceeds more. For this reason, from the viewpoint of sufficiently allowing the hydrolysis reaction to proceed, it is also preferable to carry out the reaction for 1 hour to 36 hours in a heated state.
  • the aqueous coating agent of the present invention may contain only one kind of specific siloxane compound or two or more kinds.
  • the content of the specific siloxane compound is preferably 3% to 70% by weight, more preferably 5% to 60% by weight, and more preferably 10% to 70% by weight with respect to the total solid content of the aqueous coating agent. More preferably, it is 50 mass%.
  • the aqueous coating agent of the present invention contains hollow silica particles.
  • the membrane formed by applying an aqueous coating agent and drying by containing silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles and hollow silica particles described later is a hydrophilic membrane. It becomes. That is, the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles or the hollow silica particles have a characteristic of further improving the hydrophilicity of the formed film by the function of the hydroxyl group on the surface.
  • the hollow silica particles that can be used in the aqueous coating agent of the present invention can be used without particular limitation as long as they are hollow silica particles in which cavities are formed inside the outer shell.
  • Examples of the hollow silica particles that can be used in the present invention include hollow particles described in JP2013-237593A, International Publication WO2007 / 060884, and the like. Among these, particles having an average primary particle diameter measured by a dynamic light scattering method in the range of 5 nm to 200 nm are preferable from the viewpoint of good transparency of a film formed using an aqueous coating agent.
  • the average primary particle diameter is more preferably in the range of 10 nm to 130 nm, the average primary particle diameter is more preferably in the range of 10 nm to 75 nm, and most preferably in the range of 20 nm to 60 nm.
  • the primary particle diameter of the hollow silica particles can be obtained from the photograph obtained by observing the dispersed particles with a transmission electron microscope. From the image of the photograph, the projected area of the particle is obtained, and the equivalent circle diameter is obtained therefrom, which is taken as the average particle size (average primary particle size).
  • the average primary particle diameter in the present specification, a value calculated by measuring a projected area of 300 or more particles and obtaining an equivalent circle diameter is used.
  • the particle refractive index is approximately 1.30. This is 0.14 lower than 1.44 which is the refractive index of silica particles having no voids in general particles.
  • the present inventors have an average primary particle size smaller than the average primary particle size of hollow silica particles described later. It has been surprisingly found that the transparency of the film is further improved by using the silica particles and the hollow silica particles in combination.
  • the hollow silica particles used in the present invention are also available as commercial products.
  • Surria 1110 (trade name; average primary particle diameter 50 nm)
  • Suriria 4110 (trade name; average primary particles).
  • Diameter 60 nm) manufactured by Nippon Steel & Mining Co., Ltd., Silinax (trade name; average primary particle diameter 80 nm to 130 nm), and the like.
  • the aqueous coating agent of the present invention contains at least two types of silica particles: hollow silica particles and silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles described in detail below.
  • the content of the hollow silica particles in the aqueous coating agent of the present invention is preferably 1% by mass to 60% by mass, and preferably 3% by mass to 50% by mass with respect to the total solid mass of the aqueous coating agent. Is more preferably 10% by mass to 40% by mass.
  • the aqueous coating agent of the present invention has the hollow silica particles described above and silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles.
  • silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles may be referred to as “small particle size silica particles”.
  • the small particle size silica particles that can be used in the present invention are not particularly limited as long as the average primary particle size is smaller than the average primary particle size of the hollow silica particles described above.
  • the small particle size silica particles may be hollow particles having voids inside, porous particles, or particles having no voids inside.
  • the average primary particle size of the small particle size silica particles needs to be smaller than the average primary particle size of the hollow silica particles.
  • silica particles generally known as colloidal silica, porous silica particles, hollow silica particles, and the like having a smaller average primary particle size than the hollow silica particles used in combination are appropriately used. It can be selected and used.
  • the small particle diameter silica particles that can be used in the present invention preferably have a small average primary particle diameter in order to suppress light scattering in consideration of light transmittance, and more preferably have a particle diameter that does not cause Rayleigh scattering.
  • the Rayleigh scattering intensity is affected by the refractive index and size of the particles with respect to the medium, and is proportional to the sixth power of the particle diameter when spherical particles are assumed.
  • the average primary particle diameter of the small particle diameter silica particles is preferably smaller than the average primary particle diameter of the hollow silica particles used in combination and 100 nm or less, and general-purpose optics that require transparency. For use, it is more preferably 50 nm or less.
  • the average primary particle size of the small particle size silica particles is preferably in the range of 5 nm to 100 nm, and preferably in the range of 10 nm to 50 nm. A range is more preferable.
  • the average primary particle diameter of the silica particles can be measured by the same method as for the hollow silica particles.
  • the shape of the small particle size silica particles that can be used in the present invention is not particularly limited and may be any of spherical, plate-like, needle-like, necklace-like, etc., but from the viewpoint of improving transparency, Those having a small aspect ratio such as an elliptical shape are preferred.
  • Silica particles that can be used in the present invention are also available as commercial products. For example, Snowtex O-33 (trade name: average primary particle size: 10 nm to 20 nm, manufactured by Nissan Chemical Industries), which is colloidal silica, Snowtex OYL (average primary particle size: 50 nm-80 nm, manufactured by Nissan Chemical Industries) and the like.
  • the aqueous coating agent of the present invention may contain only one kind of small particle size silica particles, or two or more kinds, and when containing two or more kinds, the average primary particle diameter, shape, etc. Different ones may be used in combination.
  • the content of the small particle diameter silica particles in the aqueous coating agent of the present invention is preferably 5% by mass to 95% by mass with respect to the total solid mass of the aqueous coating agent, and is 10% by mass to 90% by mass. More preferably, it is more preferably 20% by mass to 80% by mass.
  • the aqueous coating agent of the present invention is excellent in transparency and antifouling property, and can form a hydrophilic film.
  • the content (content ratio) of the hollow silica particles with respect to the total silica particle content is preferably 3% by mass to 90% by mass.
  • the content is more preferably 5% by mass to 80% by mass, and further preferably 10% by mass to 60% by mass.
  • the total silica particle content in the aqueous coating agent is preferably 5% by mass to 90% by mass, and more preferably 10% by mass to 80% by mass with respect to the total solid content mass of the aqueous coating agent. More preferably, the content is 20% by mass to 70% by mass.
  • the total silica particle content is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less, based on the total mass of the aqueous coating agent. preferable.
  • the content of the total silica particles with respect to the total mass of the aqueous coating agent is within the above range, the dispersibility of the silica particles in the aqueous coating agent becomes better, and the aggregation of silica particles, particularly silica particles having a small particle diameter, is effective. To be suppressed.
  • the aqueous coating agent of the present invention contains water.
  • water By using water as the solvent for the aqueous coating agent, compared to a coating agent that uses a large amount of a volatile organic solvent, the load on the environment is greatly reduced, and the hydrolyzed product obtained by hydrolysis of a specific siloxane compound. It is possible to suppress a decrease in hydrophilicity of the formed film resulting from an undesirable condensation reaction during storage of the decomposition product and an undesirable condensation reaction.
  • the solvent in the aqueous coating agent of the present invention contains water, but may further contain a hydrophilic organic solvent having excellent affinity with water.
  • the content of water in the solvent used for the aqueous coating agent is preferably 30% by mass or more, and more preferably 40% by mass or more based on the total amount of the solvent.
  • examples of other components that can be contained in the solvent include hydrophilic compounds such as hydrophilic organic solvents and glycol solvents.
  • the hydrophilic organic solvent that can be used in the present invention is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, butanol, acetone, ethylene glycol, and ethyl cellosolve. Alcohol is preferable from the viewpoint of availability and reduction of environmental burden, and ethanol, isopropanol, and the like are more preferable.
  • the solid content with respect to the total mass of the aqueous coating agent of the present invention is preferably in the range of 0.1% by mass to 30% by mass, more preferably 0.2% by mass to 20% by mass, More preferably, it is 0.5 to 10% by mass.
  • the content of the solvent, particularly water may be adjusted.
  • the hollow silica particles and the small particle diameter silica particles contained in the aqueous coating agent of the present invention have a small average primary particle diameter, it is important to suppress aggregation and maintain a dispersed state. It is important that the dispersed state be maintained not only in the aqueous coating agent but also during film formation including coating, drying and curing, and after film formation.
  • water is contained as a solvent, there is an advantage that the dispersed state of each contained particle can be favorably maintained by repulsion of charges derived from dissociation of hydroxyl groups on the surface of silica particles.
  • the aqueous coating agent of the present invention contains a surfactant in an amount of 0.01% by mass or more based on the total solid mass of the aqueous coating agent.
  • a surfactant By containing the surfactant, the coating property of the aqueous coating agent is improved, and the surface tension of the aqueous coating agent is suppressed to a lower level, thereby improving the uniform coating property and the coating surface property.
  • the surfactant that can be used in the present invention include nonionic surfactants, anionic surfactants that are ionic surfactants, cationic surfactants, and amphoteric surfactants. Can be suitably used.
  • the ionic surfactant is used in excess, the amount of the electrolyte in the aqueous coating agent increases, and the hollow silica particles and the small particle size silica particles contained in the aqueous coating agent tend to aggregate.
  • nonionic surfactants include polyalkylene glycol monoalkyl ether, polyalkylene glycol monoalkyl ester, polyalkylene glycol monoalkyl ester / monoalkyl ether, and the like. More specifically, polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, polyethylene glycol monostearyl ester and the like can be mentioned.
  • the aqueous coating agent contains an ionic surfactant
  • the ionic surfactant is segregated in the vicinity of the outermost surface of the film formed by applying the aqueous coating agent and drying it. It is preferable in that charging of the film surface can be prevented and hydrophilicity can be improved.
  • the silica particles are easily aggregated. Generally, there are few examples in which the ionic surfactant and the silica particles are used in combination.
  • the ionic surfactant when added to the aqueous coating agent, the ionic surfactant is formed with the aqueous coating agent by using it in a content less than the amount causing aggregation of the silica particles. It has been found that the antifouling properties of the membrane can be enhanced. That is, as the surfactant, any of nonionic and ionic surfactants can be preferably used. When the aqueous coating agent of the present invention contains 0.01% by mass or more of the surfactant, the antifouling property and surface hydrophilicity of the film formed from the aqueous coating agent are excellent.
  • ionic surfactants include anionic surfactants such as alkyl sulfates, alkylbenzene sulfonates and alkyl phosphates, cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts, alkylcarboxyl Examples include amphoteric surfactants such as betaine.
  • the content of the surfactant in the aqueous coating agent of the present invention is 0.01% by mass or more, preferably 0.02% by mass or more, and preferably 0.03% by mass with respect to the total mass of the aqueous coating agent. % Or more is more preferable.
  • the upper limit of the content of the surfactant is not particularly limited, but depending on the type of the surfactant, there is a concern that it may segregate on the surface after application of the aqueous coating agent to reduce the strength of the film.
  • the surfactant content is preferably 10% by mass or less, more preferably 8% by mass or less, based on the total solid mass of the aqueous coating agent. More preferably, it is 5 mass% or less.
  • the content of the ionic surfactant is increased from the viewpoint of enhancing the antifouling property and suppressing the aggregation of silica particles due to the influence of the surfactant. Is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, and still more preferably 1.0% by mass or less, based on the total mass of the aqueous coating agent.
  • the aqueous coating agent of the present invention can contain other components depending on the purpose as long as the effects of the present invention are not impaired in addition to the essential components described above.
  • the aqueous coating agent of the present invention may contain an antistatic agent.
  • the antistatic agent is used for the purpose of suppressing the adhesion of contaminants by imparting antistatic properties to the film formed of the aqueous coating agent. There are no particular restrictions on the antistatic agent for imparting antistatic properties.
  • Antistatic agents used in the present invention include ionic surfactants, metal oxide particles, metal nanoparticles, conductive polymers, ionic liquids that are different from the surfactants described above, which are essential components of the present invention. At least one selected from the above can be used.
  • Two or more antistatic agents may be used in combination.
  • the antistatic agent the ionic surfactant described above may be used.
  • a surfactant different from the surfactant which is an essential component of the present invention is used. I will do it.
  • Metal oxide particles need to be added in a relatively large amount in order to provide antistatic properties. However, since they are inorganic particles, the inclusion of metal oxide particles prevents the film formed by the aqueous coating agent. Dirty can be further increased.
  • the metal oxide particles have a large refractive index, and if the particle size is large, there is concern about a decrease in light transmittance due to scattering of transmitted light. Therefore, the average primary particle size of the metal oxide particles is preferably 100 nm or less, and 50 nm. Or less, more preferably 30 nm or less.
  • the shape of the metal oxide particles is not particularly limited, and may be spherical, plate-shaped, or needle-shaped.
  • the average primary particle diameter of the metal oxide fine particles can be obtained in the same manner as the hollow silica particles described above.
  • shape of the metal oxide particles is not spherical, it may be obtained using other methods, for example, a dynamic light scattering method.
  • One kind of antistatic agent may be contained in the aqueous coating agent, or two or more kinds thereof may be contained. When two or more types of metal oxide particles are contained, two or more types having different average primary particle diameters, shapes, and materials may be used.
  • the content of the antistatic agent is preferably 40% by mass or less, more preferably 30% by mass or less, and more preferably 20% by mass with respect to the total solid mass of the aqueous coating agent. More preferably, it is% or less.
  • the content when metal oxide particles are used as the antistatic agent is preferably 30% by mass or less, more preferably 20% by mass or less, based on the total mass of the aqueous coating agent. More preferably, it is at most mass%.
  • the aqueous coating agent of the present invention preferably contains a catalyst that promotes condensation of the siloxane oligomer.
  • a catalyst that promotes condensation of the siloxane oligomer.
  • a film having higher durability can be formed.
  • at least part of the hydroxyl groups of the hydrolyzate of the siloxane oligomer are condensed with each other to form a condensate as the water content in the film is reduced by drying after application of the aqueous coating agent.
  • a stable film is formed.
  • the aqueous coating agent contains a catalyst that promotes the condensation of the siloxane oligomer during the formation of the film, the film can be formed more rapidly.
  • stimulates the condensation of the siloxane oligomer which can be used for this invention is not specifically limited, An acid catalyst, an alkali catalyst, an organometallic catalyst, etc. are mentioned.
  • the acid catalyst include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, chloroacetic acid, formic acid, oxalic acid, toluenesulfonic acid and the like.
  • the alkali catalyst include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and the like.
  • organometallic catalysts include aluminum bis (ethyl acetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), aluminum chelate compounds such as aluminum ethylacetoacetate diisopropylate, zirconium tetrakis (acetylacetonate) Zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate), titanium chelate compounds such as titanium tetrakis (acetylacetonate), titanium bis (butoxy) bis (acetylacetonate), and dibutyltin diacetate, dibutyltin dilaurate, And organotin compounds such as dibutyltin dioctiate.
  • the type of the catalyst is not particularly limited, but an organometallic catalyst is preferable, and among them, an aluminum chelate compound and a zirconium chelate compound are more preferable.
  • the content of the catalyst for promoting the condensation of the siloxane oligomer is preferably 0.1% by mass to 20% by mass, and preferably 0.2% by mass to 15% by mass with respect to the total solid mass of the aqueous coating agent. More preferably, it is more preferably 0.3% by mass to 10% by mass.
  • stimulates the condensation of a siloxane oligomer is useful also for acceleration
  • the hydrolysis reaction and condensation reaction of the silicon-bonded alkoxy group of the siloxane oligomer are in an equilibrium relationship, and if the water content in the aqueous coating agent is large, the water content is low in the direction of hydrolysis. Proceed in the direction of condensation. Since the catalyst that promotes the condensation reaction of the alkoxy group has an effect of promoting the reaction in both directions, the hydrolysis reaction can be promoted in a state where the water content in the aqueous coating agent is large.
  • the presence of the catalyst allows the hydrolysis of the siloxane oligomer to proceed more reliably under milder conditions.
  • the catalyst used for the hydrolysis reaction of the siloxane oligomer is not removed from the aqueous coating agent, but is contained as it is to be a component of the aqueous coating agent.
  • the catalyst acts as a catalyst for condensation of the siloxane oligomer, so that an efficient film can be formed.
  • the aqueous coating agent of the present invention may have additives such as preservatives as appropriate in addition to the above.
  • the aqueous coating agent of the present invention forms a film by condensing and curing the specific siloxane compound by reducing the amount of water, which is a solvent, as described above. Therefore, formation of a cured film does not require light irradiation or high-temperature heat treatment required for a polymerization reaction, a crosslinking reaction, or the like.
  • the aqueous coating agent of the present invention that does not contain a photopolymerization initiator, a thermal polymerization initiator, or the like that affects storage stability has good storage stability.
  • a film having excellent transparency and excellent antifouling property can be formed by a simple method.
  • the water-based coating agent of the present invention is characterized by the fact that most of the solid content contained in the water-based coating agent is silicon and oxygen and the carbon content is low.
  • the carbon content for example, when a film formed by applying an aqueous coating agent and drying it is used in a harsh environment such as the surface of a solar cell module, the film is affected by light and heat. Can be kept to a minimum.
  • the proportion of carbon in the total solid mass is preferably 3% by mass or less, more preferably 2.5% by mass or less, and preferably 2% by mass or less. Further preferred.
  • the organic compound containing carbon is of low molecular weight.
  • the content of the organic compound having a molecular weight of 1100 or more in the total solid mass of the aqueous coating agent is preferably 0.2% by mass or less, more preferably 0.1% by mass, More preferably, it is not contained except for mass%, ie, inevitable impurities.
  • the aqueous coating agent of the present invention comprises a specific siloxane compound, a solvent containing water, a surfactant of 0.01% by mass or more based on the total solid mass of the aqueous coating agent, hollow silica particles, and small particle size silica. Prepared by mixing particles. It is preferable that the specific siloxane compound is first mixed with a solvent containing water to form a hydrolyzate of the specific siloxane compound to prepare a hydrolyzate solution of the specific siloxane compound. At this time, a catalyst for promoting the condensation of the specific siloxane compound can be added.
  • a surfactant, hollow silica particles, and small particle size silica particles are further added to the obtained hydrolyzate solution of the specific siloxane compound.
  • an antistatic agent used in combination can be further added as desired.
  • a catalyst for promoting condensation of the siloxane oligomer can be added.
  • the conditions for preparing the aqueous coating agent are not particularly limited. However, depending on the type and physical properties of the hollow silica particles and the small particle size silica particles used, there is a concern that they may aggregate depending on the pH and the concentration of coexisting components. Therefore, it is preferable that the hollow silica particles and the small particle size silica particles are added in the latter half, preferably last, in the previous step of the preparation of the aqueous coating agent.
  • a dispersion in which silica particles are dispersed in an aqueous solvent in advance, or a commercially available silica particle dispersion the pH of the dispersion and the aqueous coating are used. It is preferable to adjust the pH of the solvent of the silica particle dispersion and the aqueous coating agent to the same or close values by making the pH of the solvent in the agent both acidic or basic.
  • the aqueous coating agent of the present invention By using the aqueous coating agent of the present invention, a film having good transparency is formed. Since the aqueous coating agent of the present invention contains a specific siloxane compound, hollow silica particles, small silica particles, and a surfactant, the formed film has good surface hydrophilicity, and the film surface is antifouling. It is also one of the features of the aqueous coating agent of the present invention that it is excellent in water. For this reason, the aqueous coating agent of this invention is suitable for formation of the film
  • the membrane has good hydrophilicity, a slight contamination adhered can be easily washed away by rainwater or the like when it rains. Therefore, the water-based coating agent of the present invention is useful for forming surface materials for various substrates, surface materials for optical devices, particularly surface protection materials for solar cell modules.
  • the film of the present invention contains at least one siloxane compound selected from a specific siloxane compound and a condensate of the specific siloxane compound, hollow silica particles, small particle diameter silica particles, and a surfactant. Is a film having a thickness of 30 nm to 500 nm. (Film formation)
  • the film of the present invention is formed by the aqueous coating agent of the present invention described above.
  • the film of the present invention can be formed by applying and drying the aqueous coating agent of the present invention.
  • coats an aqueous coating agent there is no restriction
  • a base material all various base materials, such as glass, resin, a metal, and ceramics, can be used conveniently.
  • glass is used as the substrate, condensation of hydroxyl groups on silicon occurs even with hydroxyl groups on the glass surface, thereby forming a film having excellent adhesion to the substrate.
  • the film of the present invention preferably has a film thickness in the range of 50 nm to 350 nm from the viewpoint of transparency. What is necessary is just to form the film
  • the method for applying the aqueous coating agent of the present invention to the substrate is not particularly limited, and any of known application methods such as spray coating, brush coating, roller coating, bar coating, dip coating and the like can be applied. . Drying after applying the aqueous coating agent may be performed at room temperature (25 ° C.) or by heating to 40 ° C. to 120 ° C. When heating is performed, the drying time can be about 1 to 30 minutes.
  • the film of the present invention has good transparency, and the surface is hydrophilic due to the components contained in the film. Further, by containing an antistatic agent, the film also exhibits antistatic properties. For this reason, the film
  • membrane of this invention can suppress adhesion of a contaminant and is excellent in antifouling property. Furthermore, even if contaminants adhere to the film surface, the contaminants are easily removed by washing with water. Preferred physical properties of the film of the present invention are listed below.
  • the film of the present invention preferably has sufficient light transmittance.
  • the integral sphere transmittance of the membrane was determined by measuring the integral sphere transmittance of a glass substrate provided with a film formed of a glass substrate not formed with a film and an aqueous coating agent, using a barium sulfate white plate as a reference. .
  • the light transmittance improvement with respect to the glass substrate was calculated by subtracting the transmittance of the glass substrate from the transmittance of the glass on which the aqueous coating agent was formed.
  • the integrating sphere transmittance can be measured by using a transmission spectrophotometer with an integrating sphere.
  • a transmission spectrophotometer with an integrating sphere.
  • UV-3600 ultraviolet visible infrared spectrophotometer
  • MPC-3100 multi-purpose large sample chamber
  • the transmittance can be measured by, for example, a self-recording spectrophotometer (UV2400-PC, manufactured by Shimadzu Corporation).
  • the surface resistance of the film is 1 ⁇ 10 12 ⁇ / sq. Or less, preferably 1 ⁇ 10 11 ⁇ / sq. More preferably, it is 1 ⁇ 10 10 ⁇ / sq. More preferably, it is as follows.
  • the surface resistance value of the film can be measured using Hiresta MCP-HT450 manufactured by Mitsubishi Chemical Analytech.
  • the water contact angle of the membrane is preferably 40 ° or less, more preferably 30 ° or less, further preferably 25 ° or less, and particularly preferably 15 ° or less.
  • the contact angle with respect to pure water was measured five times, and the average value was defined as the contact angle value.
  • the laminated body of this invention is equipped with the film
  • the laminate of the present invention is a laminate comprising a film having excellent transparency and adhesion to the glass substrate on the surface of the glass substrate.
  • the film of the present invention is excellent in transparency and antifouling properties. Therefore, the laminate of the present invention having the film of the present invention is suitable as a protective member and a surface material having high transparency and requiring adhesion prevention against dirt, and in particular, a severe environment outdoors. It is useful as a protective member on the light-receiving surface side of a solar cell module that is disposed for a long period of time and requires transparency and durability for a long period of time.
  • the solar cell module of the present invention includes a laminate including the above-described film of the present invention.
  • the solar cell module of the present invention is typified by the laminate and the polyester film of the present invention, which are provided with a solar cell element that converts the light energy of sunlight into electric energy and is provided on the side where sunlight enters. It arrange
  • the laminate and the polyester film can be sealed with a sealing agent typified by a resin such as an ethylene-vinyl acetate copolymer.
  • the solar cell module of the present invention includes a module provided with the laminate of the present invention on the side where sunlight enters.
  • Examples of the substrate of the laminate provided on the side on which sunlight is incident include a glass substrate, a transparent resin such as an acrylic resin, and the like.
  • a transparent resin such as an acrylic resin, and the like.
  • the surface of the glass substrate In addition, a laminate including the film of the present invention that is excellent in antifouling property in addition to transparency is used.
  • the solar cell element used in the solar cell module of the present invention is not particularly limited, and silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, copper-indium-gallium-selenium, copper-indium-selenium, Various known solar cell elements such as III-V and II-VI compound semiconductor systems such as cadmium-tellurium and gallium-arsenic can be applied.
  • the solar cell module of the present invention includes a laminate having the film of the present invention on the glass substrate, which is excellent in transparency, antifouling property and hydrophilicity. Reduced light transmission due to scratches and contamination, and the attached contaminants can be easily removed with rain or other water. Is maintained.
  • silicate MS-51 (Mitsubishi Chemical Corporation) 1.54 parts by mass, ethanol 40.74 parts by mass, pure water 51.94 parts by mass, nonionic surfactant, polyoxyethylene lauryl ether: Emma A silicate oligomer solution A1 was prepared by mixing 5.78 parts by mass of Rex 715 (manufactured by Nippon Emulsion Co., Ltd., diluted with 0.5% pure water) and stirring at room temperature (25 ° C.) for 24 hours or more.
  • Silicate MS-51 is a siloxane oligomer represented by the general formula (1), and is a specific siloxane compound 1 in which R is all methyl groups and n has an average of 5.
  • a coating amount of the obtained aqueous coating agent B1 on the surface of a glass substrate (non-alkali glass OA-10: trade name, thickness: 1.0 mm, manufactured by Nippon Electric Glass Co., Ltd.) using a wire bar to a dry film thickness of 150 nm was applied to form a coating film.
  • the coating film was dried at room temperature (25 ° C.) for 30 minutes to produce a laminate having a film with a thickness of 150 nm on a glass substrate.
  • Example 2 Preparation of silicate oligomer liquid A2- Silicate MS-51 (manufactured by Mitsubishi Chemical Corporation) 1.54 parts by mass, ethanol 40.74 parts by mass, and pure water 51.94 parts by mass were mixed and stirred for 24 hours or longer to prepare silicate oligomer liquid A2.
  • aqueous coating agent B2- Silicate oligomer liquid A2 41.28 parts by mass, pure water 31.66 parts by mass, ethanol 18.24 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 1.84 parts by mass
  • Snowtex Aqueous coating agent B2 was prepared by mixing 1.58 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 3.12 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals). Using the obtained aqueous coating agent B2, a laminate was produced in the same manner as in Example 1.
  • Example 3 In Example 1, an aqueous coating agent B3 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation. -Preparation of aqueous coating agent B3- Silicate oligomer liquid A2 41.28 parts by mass, pure water 31.66 parts by mass, ethanol 18.24 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 0.18 parts by mass, Snowtex Aqueous coating agent B3 was prepared by mixing 1.56 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 3.09 parts by mass of Thruria 1110 (manufactured by JGC Catalysts and Chemicals). Using the obtained aqueous coating agent B3, a laminate was produced in the same manner as in Example 1.
  • Example 4 A silicate oligomer liquid A3 and an aqueous coating agent B4 were obtained in the same manner except that the surfactant EMALEX 715 used in Example 1 was changed to EMALEX 720 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution). . Using the obtained aqueous coating agent B4, a laminate was produced in the same manner as in Example 1.
  • Example 5 A silicate oligomer solution A4 and an aqueous coating agent B5 were prepared in the same manner except that the surfactant EMALEX 715 used in Example 1 was changed to EMALEX 712 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution). . Using the obtained aqueous coating agent B5, a laminate was produced in the same manner as in Example 1.
  • Example 6 A silicate oligomer solution A5 was prepared in the same manner as in Example 1 except that the silicate MS-51 used for the preparation of the silicate oligomer solution A1 was changed to silicate MS-56 (manufactured by Mitsubishi Chemical Corporation), and the resulting silicate oligomer was obtained.
  • An aqueous coating agent B6 was produced in the same manner as in Example 1 except that the liquid A5 was used. Using the obtained aqueous coating agent B6, a laminate was prepared in the same manner as in Example 1.
  • Silicate MS-56 is a siloxane oligomer represented by the general formula (1), and is a specific siloxane compound 2 in which R is all methyl groups and n has an average of 10.
  • Example 7 Preparation of silicate oligomer liquid A6- Specific siloxane compound: 3.85 parts by mass of ethyl silicate 40 (manufactured by Colcoat), 40.74 parts by mass of ethanol, 51.94 parts by mass of pure water, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., diluted with 0.5% pure water)
  • the silicate oligomer liquid A6 was produced by mixing 5.78 parts by mass and stirring for 24 hours or more.
  • aqueous coating agent B7- Silicate oligomer liquid A6 41.28 parts by mass, pure water 29.31 parts by mass, ethanol 15.35 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.11 parts by mass
  • Snowtex Aqueous coating agent B7 was prepared by mixing 1.49 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 2.94 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
  • a laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B7.
  • the ethyl silicate 40 is a siloxane oligomer represented by the general formula (1), and is a specific siloxane compound 3 in which all R are ethyl groups and the average of n is 5.
  • Example 8 Preparation of silicate oligomer liquid A7- Silicate MS-51 (Mitsubishi Chemical Corporation) 1.54 parts by mass, ethanol 40.74 parts by mass, 4. 51.94 parts by mass of pure water, catalyst: aluminum chelate D (manufactured by Kawaken Fine Chemical Co., 1% ethanol dilution) 0.47 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 78 mass parts was mixed and the silicate oligomer liquid A7 was produced by stirring at room temperature (25 degreeC) for 12 hours or more.
  • catalyst aluminum chelate D (manufactured by Kawaken Fine Chemical Co., 1% ethanol dilution) 0.47 parts by mass
  • Emarex 715 manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution
  • Example 9 Aqueous coating agent B9 was prepared in the same manner as in Example 1, except that the hollow silica particles used in Example 1: Through rear 1110 were changed to Through rear 4110 (manufactured by JGC Catalysts & Chemicals, average primary particle size 60 nm). Using the obtained aqueous coating agent B9, a laminate was produced in the same manner as in Example 1.
  • Example 10 Aqueous coating agent B10 was produced in the same manner as in Example 1 except that the hollow silica particles used in Example 1: Thruria 1110 was changed to Sirinax (manufactured by Nippon Steel Mining Co., Ltd.). A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B10.
  • Example 11 Aqueous coating agent as in Example 1, except that the small particle size silica particle Snowtex O-33 used in Example 1 was changed to Snowtex OYL (manufactured by Nissan Chemical Industries, Ltd., average primary particle size 50 to 80 nm). B11 was produced. A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B11.
  • Example 12 An aqueous coating agent B12 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1. -Production of aqueous coating agent B12- Silicate oligomer liquid A1 41.28 parts by mass, pure water 28.06 parts by mass, ethanol 17.11 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B12 was prepared by mixing 1.86 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 2.47 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals). Using the obtained aqueous coating agent B12, a laminate was prepared in the same manner as in Example 1.
  • Example 13 An aqueous coating agent B13 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1. -Production of aqueous coating agent B13- Silicate oligomer liquid A1 41.28 parts by mass, pure water 26.49 parts by mass, ethanol 17.11 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B13 was produced by mixing 2.29 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 1.77 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals). Using the obtained aqueous coating agent B13, a laminate was produced in the same manner as in Example 1.
  • Example 14 An aqueous coating agent B14 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1. -Production of aqueous coating agent B14- Silicate oligomer liquid A1 41.28 parts by mass, pure water 24.73 parts by mass, ethanol 15.79 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B14 was produced by mixing 2.74 parts by mass of O-33 (manufactured by Nissan Chemical Industries, Ltd.) and 1.05 parts by mass of Thruria 1110 (manufactured by JGC Catalysts and Chemicals). A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B14.
  • Example 15 An aqueous coating agent B15 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1. -Production of aqueous coating agent B15- Silicate oligomer liquid A1 41.28 parts by mass, pure water 23.85 parts by mass, ethanol 15.79 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B15 was produced by mixing 3.02 parts by mass of O-33 (manufactured by Nissan Chemical Industries, Ltd.) and 0.61 parts by mass of Thululia 1110 (manufactured by JGC Catalysts and Chemicals). A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B15.
  • Example 16 An aqueous coating agent B16 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1. -Production of aqueous coating agent B16- Silicate oligomer liquid A1 41.28 parts by mass, pure water 22.98 parts by mass, ethanol 15.79 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B16 was produced by mixing 3.18 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 0.34 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals). Using the obtained aqueous coating agent B16, a laminate was prepared in the same manner as in Example 1.
  • Example 17 An aqueous coating agent B17 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1. -Production of aqueous coating agent B17- Silicate oligomer liquid A1 41.28 parts by mass, pure water 28.06 parts by mass, ethanol 17.11 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.17 parts by mass, antistatic Agent, anionic surfactant (sulfosuccinate): Lipal 870P (manufactured by Lion Corporation, 0.2% water dilution) 1.16 parts by mass, Snowtex O-33 (manufactured by Nissan Chemical Industries) 1.53 parts by mass Part, through rear 1110 (manufactured by JGC Catalysts & Chemicals Co., Ltd.) 3.02 parts by mass, aqueous coating agent B17 was produced. Using the obtained aqueous coating agent B
  • Example 18 An aqueous coating agent B18 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1. -Production of aqueous coating agent B18- Silicate oligomer liquid A1 41.28 parts by mass, pure water 35.96 parts by mass, ethanol 17.11 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 3.95 parts by mass, antistatic Agent (metal oxide particle dispersion): 1.24 parts by mass of Celnax CXS-204IP (manufactured by Nissan Chemical Industries), 2.13 parts by mass of Snowtex O-33 (manufactured by Nissan Chemical Industries, Ltd.), 1110 (through JGC) Aqueous coating agent B18 was produced by mixing 4.20 parts by mass of Catalyst Kasei Co., Ltd.). A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B18.
  • Example 19 When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same manner as in Example 1 except that the film was formed by applying with a coating amount such that the dry film thickness was 40 nm. A laminate was produced.
  • Example 20 When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same manner as in Example 1 except that the film was formed by applying with a coating amount such that the dry film thickness was 70 nm. A laminate was produced.
  • Example 21 When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same manner as in Example 1 except that the film was formed by applying with a coating amount such that the dry film thickness was 300 nm. A laminate was produced.
  • Example 22 When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same amount as that of Example 1 except that the dry film thickness was 400 nm to form a film. A laminate was produced.
  • Example 23 an aqueous coating agent B19 was produced in the same manner as in Example 8, except that the aqueous coating agent was changed to the following formulation. -Production of aqueous coating agent B19- Silicate oligomer liquid A7 41.28 parts by mass, pure water 28.06 parts by mass, ethanol 17.11 parts by mass, aluminum chelate D 1.75 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) ) 2.29 parts by mass, Ripar 870P 1.17 parts by mass, Snowtex O-33 (Nissan Chemical Industry Co., Ltd.) 1.57 parts by mass, Sululia 1110 (JGC Catalysts & Chemicals Co., Ltd.) 3.10 parts by mass are mixed. Thus, an aqueous coating agent B19 was produced. Using the obtained aqueous coating agent B19, a laminate was produced in the same manner as in Example 1.
  • [Comparative Example 1] -Preparation of silicate oligomer liquid A8- 2. 1.54 parts by mass of silicate MS-51 (Mitsubishi Chemical Corporation), 40.74 parts by mass of ethanol, 51.94 parts by mass of pure water, Emalex 715 (manufactured by Nippon Emulsion Co., Ltd., diluted with 0.5% pure water) Silicate oligomer liquid A8 was produced by mixing 97 parts by mass and stirring for 24 hours or more. The obtained silicate oligomer liquid A8 was applied on the glass substrate used in Example 1 with a wire bar so as to have a dry film thickness of 150 nm, and a laminate was produced in the same manner as in Example 1.
  • Example 2 the aqueous coating agent was produced like Example 1 except having changed the aqueous
  • Example 3 the aqueous coating agent was produced like Example 1 except having changed the aqueous
  • Example 2 an aqueous coating agent was prepared in the same manner as in Example 2 except that the aqueous coating agent was changed to the following formulation. -Production of aqueous coating agent B22- Silicate oligomer liquid A2 41.28 parts by mass, pure water 31.66 parts by mass, ethanol 18.24 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 0.02 parts by mass, Snowtex Aqueous coating agent B22 was produced by mixing 1.56 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 3.08 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
  • the solid content of the surfactant in Comparative Example 4 is 0.005% by mass with respect to the total solid mass of the aqueous coat, and is an aqueous coat outside the scope of the present invention.
  • a laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B22.
  • Tables 2 and 3 below show the formulations and film thicknesses of the aqueous coating agents used in Examples 1 to 23 and Comparative Examples 1 to 4.
  • “Y” in the column of “water” means that water is contained.
  • Performance evaluation was performed on the following items for a laminate having a film formed using the produced aqueous coating agent. The evaluation results are shown in Table 4 below.
  • the surface resistance value of the film on the surface of the laminate was measured and evaluated according to the following criteria. In the following criteria, it is evaluated that B or more is a surface resistance having no practical problem.
  • C The surface resistance of the film is 1 ⁇ 10 11 ⁇ / sq. Exceeding 1 ⁇ 10 12 ⁇ / sq. It is as follows.
  • Ocher adhesion The antifouling property of the film on the surface of the laminate was evaluated by resistance to adhesion of ocher. The operation of sprinkling the holbein natural ocher pigment evenly over the film of the laminate and then hitting and dropping the back surface was repeated 5 times. The amount of ocher adhering to the film was visually confirmed and evaluated according to the following criteria. In the following criteria, it is evaluated that B or more is ocher adhesion having no practical problem. A: Almost no ocher pigment is observed on the film surface, and the laminate is visually colorless and transparent. B: Although adhesion of ocher pigment is observed, the adhesion area is 30% or less with respect to the total surface area of the film. C: Adhesion of ocher pigment is observed, and the adhesion area exceeds 30% with respect to the total surface area of the film. (Including cases where loess pigment is attached to the entire surface)
  • Adhesion of loess The sample (10 cm ⁇ 10 cm, which was not subjected to the work of removing the ocher by hitting the back of the laminate) with the ocher pigment used was applied to 20 ml of pure water. After flowing and drying, the amount of ocher pigment remaining on the film surface was visually observed and evaluated according to the following criteria. In the following criteria, it is evaluated that B or higher is a cleanability having no practical problem. A: Almost no ocher pigment is observed on the surface of the film after washing, and the laminate is colorless and transparent visually. B: Although adhesion of ocher pigment is observed after washing, the adhesion area is 20% or less with respect to the total surface area of the film. C: The adhesion area of the ocher pigment after washing exceeds 20% with respect to the total surface area of the film.
  • the aqueous coating agent to be evaluated is applied on a 10 cm ⁇ 10 cm glass substrate using a wire bar so that the coating film thickness is 150 nm, and the surface shape of the coating film after drying is applied.
  • B or higher is evaluated as a surface having no practical problem.
  • the number of repellings in which no nuclei are observed is a number exceeding 3 in a plane having an area of 10 cm ⁇ 10 cm. (Including cases where the film is not formed uniformly)
  • the above-mentioned “repellency without nuclei” means a spot-like spot where the surface of the coated film after drying is observed with an optical microscope and no foreign matter is observed at the center and no coated film is present. To do. Since the surface of the glass substrate is exposed at the spot-like portion where the coating film does not exist, a step is generated and can be easily observed with an optical microscope.
  • the hydrolysis time was determined from the relationship between the stirring time and the water contact angle of the oligomer liquid coating film.
  • the contact angle of the oligomer liquid coating film tends to decrease with the stirring time.
  • the contact angle shows a constant value regardless of the stirring time thereafter.
  • the film formed on the laminate produced using the aqueous coating agent of the example was a colorless transparent uniform film.
  • the film was excellent in transparency, hydrophilicity, and antifouling properties, and the adhered contaminants could be easily washed away with water.
  • the comparative example 1 which does not add a silica particle was inferior in transparency and antifouling property.
  • Comparative Example 2 using only hollow silica particles has poor antifouling properties, and Comparative Example 3 using only small particle size silica particles has poor transparency. For this reason, the effect of this invention was not acquired with the addition system of a single silica particle.
  • membrane was not obtained and evaluation could not be performed.
  • the aqueous coating agent of the present invention By using the aqueous coating agent of the present invention, a film having excellent transparency can be formed. Since the formed film has a property that the surface hydrophilicity is good, the antifouling property is also excellent. For this reason, it is used suitably for the surface protection material of various members which require transparency and durability, an optical device, etc. Especially, it is useful as a surface protection material of a solar cell module.

Abstract

Provided are: an aqueous coating agent capable of forming a film having good transparency and antifouling properties; a film; a film production method; a laminate; and a solar cell module. The aqueous coating agent includes water, a siloxane oligomer indicated by general formula (1), hollow silica particles, silica particles having a smaller average primary particle diameter than the average primary particle diameter of the hollow silica particles, and a surfactant. The surfactant content is at least 0.01% by mass relative to the total solid matter content in the aqueous coating agent. In general formula (1), R1-R4 each independently indicate a C1-6 monovalent organic group and n indicates an integer from 2 to 20.

Description

水性コート剤、膜、膜の製造方法、積層体、及び太陽電池モジュールAqueous coating agent, film, film production method, laminate, and solar cell module
 本発明は、水性コート剤、水性コート剤により得られる膜、膜の製造方法、膜を備える積層体、及び太陽電池モジュールに関する。 The present invention relates to an aqueous coating agent, a film obtained from the aqueous coating agent, a method for producing the film, a laminate including the film, and a solar cell module.
 シロキサン化合物を含む水性コート剤は、水を含む溶媒を用いており、水性コート剤を用いて形成された膜は、表面エネルギーが低く、透明性に優れることから、種々の用途に使用されている。
 上記の用途の具体例としては、光学レンズ、光学フィルタ、各種ディスプレイの薄層フィルムトランジスタ(TFT)用平坦化膜、反射防止膜、結露防止膜、防汚膜、表面保護膜等が挙げられる。
The aqueous coating agent containing a siloxane compound uses a solvent containing water, and the film formed using the aqueous coating agent is used for various applications because of its low surface energy and excellent transparency. .
Specific examples of the above applications include optical lenses, optical filters, flattening films for thin film transistors (TFTs) for various displays, antireflection films, anticondensation films, antifouling films, surface protective films, and the like.
 水性コート剤を用いて形成された膜が、反射防止膜、防汚膜、表面保護膜として屋外で使用される場合には、形成された膜には、透明性のみならず、防汚性が求められる。
 特開2012-214772号公報には、透明性に優れた膜を形成しうるコーティング剤として、シリカ微粒子を含有するシロキサン系樹脂と、ポリエチレングリコールと、好ましくは、さらに(メタ)アクリル系界面活性剤とを含有するシロキサン系樹脂組成物が提案されている。
When a film formed using an aqueous coating agent is used outdoors as an antireflection film, antifouling film, or surface protective film, the formed film has not only transparency but also antifouling properties. Desired.
Japanese Patent Application Laid-Open No. 2012-214772 discloses, as a coating agent capable of forming a film having excellent transparency, a siloxane-based resin containing fine silica particles, polyethylene glycol, and preferably a (meth) acrylic surfactant. A siloxane-based resin composition containing the above has been proposed.
 近年、発電時における環境負荷が小さい発電方式である太陽電池モジュールが注目されている。太陽電池モジュールは、一般に太陽光が入射する受光面側(表面側)から、表面保護材、封止材剤で太陽電池素子が封止されてなる太陽電池セル、及び裏面側基材を順次備えている。
 太陽電池モジュールの受光面側に備えられる表面保護材としては、一般的には、ガラス基材、耐候性樹脂フイルム等が用いられている。
 太陽光が入射する面に設けられる表面保護材は、太陽電池モジュールの発電効率に影響を与えることから高い光透過性を有することが要求されている。さらに、通常は屋外に設置される太陽電池モジュールでは、表面保護材は、大気中の砂塵、煤煙等の汚染物質が付着した場合には、光透過率が低下するため、汚染物質が付着し難いこと、即ち、防汚性が求められる。
2. Description of the Related Art In recent years, solar cell modules, which are power generation methods with a small environmental load during power generation, have attracted attention. A solar cell module generally includes a solar cell in which a solar cell element is sealed with a surface protective material, a sealing material agent, and a back surface side base material in order from a light receiving surface side (front surface side) on which sunlight is incident. ing.
Generally as a surface protection material with which the light-receiving surface side of a solar cell module is equipped, a glass base material, a weather resistant resin film, etc. are used.
The surface protective material provided on the surface on which the sunlight is incident is required to have high light transmittance since it affects the power generation efficiency of the solar cell module. Furthermore, in solar cell modules that are usually installed outdoors, the surface protective material is less likely to adhere to pollutants because the light transmittance decreases when contaminants such as dust and soot in the atmosphere adhere to it. That is, antifouling properties are required.
 汚染物質の付着を抑制する親水性膜を形成する目的で使用される親水化処理剤として、例えば、特開2006-52352号公報には、シロキサン化合物、金属化合物、非イオン界面活性剤、酸性コロイダルシリカ、及び親水性有機溶媒を含有する水性親水化処理剤が提案されている。特開2006-52352号公報には、上記親水化処理剤により物品の表面に親水性膜を設けることにより、物品の表面の防汚性が改善されると記載されている。 As a hydrophilization treatment agent used for the purpose of forming a hydrophilic film that suppresses adhesion of contaminants, for example, Japanese Patent Application Laid-Open No. 2006-52352 discloses a siloxane compound, a metal compound, a nonionic surfactant, an acidic colloidal An aqueous hydrophilizing agent containing silica and a hydrophilic organic solvent has been proposed. Japanese Patent Application Laid-Open No. 2006-52352 describes that the antifouling property of the surface of the article is improved by providing a hydrophilic film on the surface of the article with the hydrophilizing agent.
 特開2012-214772号公報に記載されているシロキサン系樹脂組成物は、シロキサン系樹脂特有の問題である塗布性、塗布安定性を向上させるという課題を解決するために提案されたものである。上記シロキサン系樹脂組成物を用いて形成された膜は、透明性には優れるものの、形成された膜の防汚性については考慮されていない。
 また、特開2006-52352号公報に記載された親水化処理剤を用いて物品の表面に形成された親水性膜は、親水性膜の表面に付着した汚染物質を水洗により容易に除去しうるものの、親水性膜の表面への汚染物質の付着防止性は考慮されておらず、汚染物質の付着による光透過率の低下を抑制しうる防汚性を有するものではなかった。
The siloxane-based resin composition described in Japanese Patent Application Laid-Open No. 2012-214772 has been proposed to solve the problem of improving coating properties and coating stability, which are problems specific to siloxane-based resins. A film formed using the siloxane-based resin composition is excellent in transparency, but the antifouling property of the formed film is not considered.
Further, the hydrophilic film formed on the surface of the article using the hydrophilizing agent described in JP-A-2006-52352 can easily remove contaminants adhering to the surface of the hydrophilic film by washing with water. However, the adhesion preventing property of the contaminant to the surface of the hydrophilic film was not taken into consideration, and it did not have the antifouling property capable of suppressing a decrease in light transmittance due to the adhesion of the contaminant.
 従って、本発明の課題は、光透過性に優れ、汚染物質の付着を抑制しうる水性コート剤、水性コート剤により得られた透明性及び防汚性に優れた膜、及び膜の製造方法を提供することにある。
 本発明の別の課題は、透明性及び防汚性に優れた膜を有する積層体、及び積層体を備えた太陽電池モジュールを提供することにある。
Accordingly, an object of the present invention is to provide an aqueous coating agent that is excellent in light transmittance and can suppress the adhesion of contaminants, a film obtained by the aqueous coating agent and excellent in transparency and antifouling property, and a method for producing the film. It is to provide.
Another object of the present invention is to provide a laminate having a film excellent in transparency and antifouling property, and a solar cell module including the laminate.
 本発明者らは、特定構造を有するシロキサンオリゴマー、中空シリカ粒子、中空シリカ粒子の粒径より粒径の小さいシリカ粒子等を含む水性コート剤により、上記課題が解決されることを見出した。
 即ち、本発明は以下に記載するとおりである。
The present inventors have found that the above problems can be solved by an aqueous coating agent containing a siloxane oligomer having a specific structure, hollow silica particles, silica particles having a particle diameter smaller than that of the hollow silica particles, and the like.
That is, the present invention is as described below.
[1]水と、一般式(1)で表されるシロキサンオリゴマーと、中空シリカ粒子と、中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子と、界面活性剤とを含み、界面活性剤の含有量が、水性コート剤の全固形分質量に対し0.01質量%以上である水性コート剤。 [1] Water, a siloxane oligomer represented by the general formula (1), hollow silica particles, silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles, and a surfactant. An aqueous coating agent containing a surfactant in an amount of 0.01% by mass or more based on the total solid content of the aqueous coating agent.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 一般式(1)中、R、R、R、及びRは、それぞれ独立に炭素数1~6の1価の有機基を表す。nは2~20の整数を表す。
[2]シロキサンオリゴマーの縮合を促進する触媒を含む[1]に記載の水性コート剤。
[3]中空シリカ粒子の平均一次粒子径が75nm以下である[1]又は[2]に記載の水性コート剤。
[4]中空シリカ粒子の含有量が、水性コート剤に含まれる中空シリカ粒子と中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子との総質量に対して3質量%以上90質量%以下である[1]~[3]のいずれか1つに記載の水性コート剤。
[5]中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子の平均一次粒子径が50nm以下である[1]~[4]のいずれか1つに記載の水性コート剤。
[6]一般式(1)におけるnが3~12である[1]~[5]のいずれか1つに記載の水性コート剤。
[7]帯電防止剤を含む[1]~[6]のいずれか1つに記載の水性コート剤。
[8]一般式(1)で表されるシロキサンオリゴマーの含有量が、水性コート剤に含まれる全固形分質量に対して3質量%以上70質量%以下である[1]~[7]のいずれか1つに記載の水性コート剤。
[9]中空シリカ粒子の含有量が、水性コート剤に含まれる全固形分質量に対して1質量%以上60質量%以下である[1]~[8]のいずれか1つに記載の水性コート剤。
[10]空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子の含有量が、水性コート剤に含まれる全固形分質量に対して5質量%以上95質量%以下である[1]~[9]のいずれか1つに記載の水性コート剤。
[11]中空シリカ粒子と中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子との総含有量が、水性コート剤に含まれる全固形分質量に対して30質量%以下である[1]~[10]のいずれか1つに記載の水性コート剤。
[12]一般式(1)で表されるシロキサンオリゴマー、及び一般式(1)で表されるシロキサンオリゴマーの縮合物から選ばれる少なくとも1種のシロキサン化合物と、中空シリカ粒子と、中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子と、界面活性剤とを含有し、膜厚が50nm~350nmである膜。
In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
[2] The aqueous coating agent according to [1], which contains a catalyst that promotes condensation of the siloxane oligomer.
[3] The aqueous coating agent according to [1] or [2], wherein the average primary particle diameter of the hollow silica particles is 75 nm or less.
[4] The content of the hollow silica particles is 3% by mass with respect to the total mass of the hollow silica particles contained in the aqueous coating agent and the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles. The aqueous coating agent according to any one of [1] to [3], which is 90% by mass or more.
[5] The aqueous coating agent according to any one of [1] to [4], wherein the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles have an average primary particle size of 50 nm or less. .
[6] The aqueous coating agent according to any one of [1] to [5], wherein n in the general formula (1) is 3 to 12.
[7] The aqueous coating agent according to any one of [1] to [6], comprising an antistatic agent.
[8] The content of the siloxane oligomer represented by the general formula (1) is 3% by mass or more and 70% by mass or less with respect to the total solid content in the aqueous coating agent. The aqueous coating agent as described in any one.
[9] The aqueous solution according to any one of [1] to [8], wherein the content of the hollow silica particles is from 1% by mass to 60% by mass with respect to the total solid content in the aqueous coating agent. Coating agent.
[10] The content of silica particles having an average primary particle size smaller than the average primary particle size of the empty silica particles is 5% by mass or more and 95% by mass or less based on the total solid content in the aqueous coating agent. [1] The aqueous coating agent according to any one of [9].
[11] The total content of the hollow silica particles and the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles is 30% by mass or less based on the total solid content in the aqueous coating agent. The aqueous coating agent according to any one of [1] to [10].
[12] At least one siloxane compound selected from the siloxane oligomer represented by the general formula (1) and the condensate of the siloxane oligomer represented by the general formula (1), hollow silica particles, and hollow silica particles A film containing silica particles having an average primary particle size smaller than the average primary particle size and a surfactant and having a thickness of 50 nm to 350 nm.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 一般式(1)中、R、R、R、及びRは、それぞれ独立に炭素数1~6の1価の有機基を表す。nは2~20の整数を表す。
[13]基材上に、[1]~[11]のいずれか1つに記載の水性コート剤を塗布し、乾燥することを含む、乾燥膜厚が50nm~350nmである膜の製造方法。
[14]ガラス基材上に、[12]に記載の膜、又は[13]に記載の製造方法により得られた膜を有する積層体。
[15][14]に記載の積層体を有する太陽電池モジュール。
In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
[13] A method for producing a film having a dry film thickness of 50 nm to 350 nm, comprising applying the aqueous coating agent according to any one of [1] to [11] on a substrate and drying.
[14] A laminate having a film according to [12] or a film obtained by the production method according to [13] on a glass substrate.
[15] A solar cell module having the laminate according to [14].
 本発明によれば、光透過性に優れ、防汚性を有する水性コート剤、及び、水性コート剤により得られた透明性及び防汚性に優れた膜及び膜の製造方法を提供することができる。
 本発明によれば、透明性及び防汚性に優れた膜を有する積層体、及び積層体を備えた太陽電池モジュールを提供することができる。
According to the present invention, it is possible to provide an aqueous coating agent having excellent light transmittance and antifouling property, a film obtained by the aqueous coating agent and excellent in transparency and antifouling property, and a method for producing the film. it can.
ADVANTAGE OF THE INVENTION According to this invention, the laminated body which has a film | membrane excellent in transparency and antifouling property, and the solar cell module provided with the laminated body can be provided.
 以下、本発明を詳細に説明する。
 以下の説明は、本発明の代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値を最小値及び最大値として含む範囲を示す。
 さらに、本明細書において組成物中の各成分の量は、組成物中に同一成分に該当する物質が複数存在する場合、特に断らない限り、複数の物質の合計量を意味する。
Hereinafter, the present invention will be described in detail.
The following description may be made based on representative embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments.
In the present specification, a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value.
Further, in the present specification, the amount of each component in the composition means the total amount of the plurality of substances unless there is a specific notice when there are a plurality of substances corresponding to the same component in the composition.
<水性コート剤>
 本発明の水性コート剤は、水と、一般式(1)で表されるシロキサンオリゴマー(以下、「特定シロキサン化合物」と称することがある)と、中空シリカ粒子と、中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子と、界面活性剤とを含み、界面活性剤の含有量が、水性コート剤の全固形分質量に対し0.01質量%以上である水性コート剤である。
 以下、水性コート剤に含まれる各成分について説明する。
〔一般式(1)で表されるシロキサンオリゴマー(特定シロキサン化合物)〕
 本発明の水性コート剤は、一般式(1)で表されるシロキサンオリゴマーを含む。
<Water-based coating agent>
The aqueous coating agent of the present invention comprises water, a siloxane oligomer represented by the general formula (1) (hereinafter sometimes referred to as “specific siloxane compound”), hollow silica particles, and average primary particles of hollow silica particles. An aqueous coating agent comprising silica particles having an average primary particle size smaller than the diameter and a surfactant, wherein the surfactant content is 0.01% by mass or more based on the total solid mass of the aqueous coating agent It is.
Hereinafter, each component contained in the aqueous coating agent will be described.
[Siloxane oligomer represented by general formula (1) (specific siloxane compound)]
The aqueous coating agent of the present invention contains a siloxane oligomer represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 一般式(1)中、R、R、R、及びRは、それぞれ独立に炭素数1~6の1価の有機基を表す。nは2~20の整数を表す。 In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
 R、R、R、及びRにおける炭素数1~6の有機基は、直鎖状であっても、分岐を有していても、環状であってもよい。1価の有機基としては、アルキル基、アルケニル基等が挙げられ、アルキル基であることが好ましい。
 R、R、R、及びRがアルキル基を表す場合のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert―ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。
 特定シロキサン化合物においてR~Rの有機基、好ましくはアルキル基の炭素数を1~6とすることにより、シロキサンオリゴマーは加水分解性が良好となる。なお、加水分解性がより良好であるという観点からはR~Rは、それぞれ独立に炭素数1~4のアルキル基であることがより好ましく、炭素数1又は2のアルキル基であることがさらに好ましい。
The organic group having 1 to 6 carbon atoms in R 1 , R 2 , R 3 , and R 4 may be linear, branched, or cyclic. Examples of the monovalent organic group include an alkyl group and an alkenyl group, and an alkyl group is preferable.
Examples of the alkyl group when R 1 , R 2 , R 3 , and R 4 represent an alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n- A pentyl group, an n-hexyl group, a cyclohexyl group and the like can be mentioned.
In the specific siloxane compound, when the organic group of R 1 to R 4 , preferably the alkyl group has 1 to 6 carbon atoms, the siloxane oligomer has good hydrolyzability. From the viewpoint of better hydrolyzability, R 1 to R 4 are more preferably each independently an alkyl group having 1 to 4 carbon atoms, and preferably an alkyl group having 1 or 2 carbon atoms. Is more preferable.
 一般式(1)におけるnは2~20の整数である。nを上記範囲とすることにより、特定シロキサン化合物を含む水性コート剤の粘度を適切な範囲とすることができる。また、シロキサンオリゴマーの反応性を好ましい範囲に制御することができる。nとしては、2~20の範囲であり、3~12であることが好ましく、5~10であることがより好ましい。
 なお、nが20を超えると、水性コート剤の粘度がより高くなるため、ハンドリング性、均一塗布性が低下する懸念がある。一方、nが1のシロキサン化合物はアルコキシシランの反応性の制御が困難となる傾向があり、塗布後に得られる膜の表面親水性が低下する懸念がある。
 本発明に使用しうる特定シロキサン化合物の例を、一般式(1)におけるR~R、及びnにより記載するが、本発明はこれらの例示化合物に限定されるものではない。
In the general formula (1), n is an integer of 2 to 20. By setting n to the above range, the viscosity of the aqueous coating agent containing the specific siloxane compound can be set to an appropriate range. Further, the reactivity of the siloxane oligomer can be controlled within a preferable range. n is in the range of 2 to 20, preferably 3 to 12, and more preferably 5 to 10.
In addition, when n exceeds 20, since the viscosity of an aqueous coating agent becomes higher, there exists a possibility that handling property and uniform coating property may fall. On the other hand, a siloxane compound having n of 1 tends to make it difficult to control the reactivity of alkoxysilane, and there is a concern that the surface hydrophilicity of the film obtained after coating is lowered.
Examples of specific siloxane compounds that can be used in the present invention are described by R 1 to R 4 and n in the general formula (1), but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 特定シロキサン化合物は、水と共存することで、少なくとも一部が加水分解される。特定シロキサン化合物の加水分解物は、シロキサンオリゴマーと水とが反応することで、特定シロキサン化合物のケイ素原子に結合したアルコキシ基の少なくとも一部がヒドロキシル基に置換された化合物であり、親水性基であるヒドロキシ基に起因して、水性コート剤により得られる膜は表面親水性が良好なものとなると推定される。
 加水分解反応に際して、必ずしも特定シロキサン化合物が有する全てのアルコキシ基が反応する必要はないが、水性コート剤の塗布、乾燥により得られる膜の親水性がより良好になるという観点からは、より多くのアルコキシ基が加水分解されていることが好ましい。
 加水分解に際して必要な水の量は、特定シロキサン化合物が有するアルコキシ基と等しいモル量であるが、加水分解反応を効率よく進行させるという観点からは、大過剰の水が存在することが好ましい。
The specific siloxane compound is at least partially hydrolyzed by coexisting with water. The hydrolyzate of the specific siloxane compound is a compound in which at least a part of the alkoxy group bonded to the silicon atom of the specific siloxane compound is substituted with a hydroxyl group by the reaction of the siloxane oligomer and water. It is presumed that the film obtained by the aqueous coating agent has good surface hydrophilicity due to a certain hydroxy group.
In the hydrolysis reaction, it is not always necessary to react all alkoxy groups of the specific siloxane compound, but from the viewpoint that the hydrophilicity of the film obtained by applying and drying the aqueous coating agent becomes better, more It is preferable that the alkoxy group is hydrolyzed.
The amount of water required for the hydrolysis is a molar amount equal to the alkoxy group of the specific siloxane compound, but it is preferable that a large excess of water is present from the viewpoint of allowing the hydrolysis reaction to proceed efficiently.
 特定シロキサン化合物の加水分解反応は室温(25℃)でも進行するが、反応促進のために、特定シロキサン化合物と水とを接触させて混合物を調製した後、得られた混合物を30℃~50℃程度に加温してもよい。加水分解反応の反応時間は長い方がより反応が進むため好ましい。このため、十分に加水分解反応を進行させるという観点からは、加温状態で1時間~36時間、反応させることも好ましい。また、以下に詳述する特定シロキサン化合物の加水分解反応を促進する触媒を、混合物中に共存させることで、半日程度でも親水性に必要な特定シロキサン化合物の加水分解物を得ることが可能である。
 加水分解反応は可逆反応であり、このため、混合物から水が除かれるとシロキサンオリゴマーの加水分解物はヒドロキシル基間における縮合反応が開始、進行する。従って、特定シロキサン化合物と、好ましくは大過剰の水とを含有する混合物中で、加水分解反応させて特定シロキサン化合物の加水分解物を得た場合、加水分解物を単離せずに混合物(溶液)のまま水性コート剤の調製に用いることが好ましい。
Although the hydrolysis reaction of the specific siloxane compound proceeds even at room temperature (25 ° C.), in order to promote the reaction, after preparing the mixture by bringing the specific siloxane compound and water into contact with each other, the obtained mixture is subjected to 30 ° C. to 50 ° C. You may heat to the extent. A longer reaction time for the hydrolysis reaction is preferred because the reaction proceeds more. For this reason, from the viewpoint of sufficiently allowing the hydrolysis reaction to proceed, it is also preferable to carry out the reaction for 1 hour to 36 hours in a heated state. In addition, it is possible to obtain a hydrolyzate of a specific siloxane compound necessary for hydrophilicity even in about half a day by allowing the catalyst for promoting the hydrolysis reaction of the specific siloxane compound described below to coexist in the mixture. .
The hydrolysis reaction is a reversible reaction. Therefore, when water is removed from the mixture, the hydrolyzate of siloxane oligomer starts and proceeds with a condensation reaction between hydroxyl groups. Accordingly, when a hydrolyzate of the specific siloxane compound is obtained by hydrolysis reaction in a mixture containing the specific siloxane compound and preferably a large excess of water, the mixture (solution) is not isolated without isolating the hydrolyzate. It is preferable to use it as it is for the preparation of the aqueous coating agent.
 本発明の水性コート剤には、特定シロキサン化合物を1種のみ含有してもよく、2種以上を含有してもよい。
 特定シロキサン化合物の含有量は、水性コート剤の全固形分質量に対して、3質量~70質量%であることが好ましく、5質量%~60質量%であることがより好ましく、10質量%~50質量%であることがさらに好ましい。
 特定シロキサン化合物の含有量を上記範囲とすることにより、透明性が良好であり、防汚性に優れた膜を形成することができる。
The aqueous coating agent of the present invention may contain only one kind of specific siloxane compound or two or more kinds.
The content of the specific siloxane compound is preferably 3% to 70% by weight, more preferably 5% to 60% by weight, and more preferably 10% to 70% by weight with respect to the total solid content of the aqueous coating agent. More preferably, it is 50 mass%.
By making content of a specific siloxane compound into the said range, transparency is favorable and the film | membrane excellent in antifouling property can be formed.
〔中空シリカ粒子〕
 本発明の水性コート剤は、中空シリカ粒子を含有する。
 中空シリカ粒子及び後述する中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子を含有することで、水性コート剤を塗布し、乾燥して形成する膜は、親水的な膜となる。即ち、中空シリカ粒子或いは中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子は、表面のヒドロキシル基の機能により、形成された膜の親水性をより向上させる特性を有する。
[Hollow silica particles]
The aqueous coating agent of the present invention contains hollow silica particles.
The membrane formed by applying an aqueous coating agent and drying by containing silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles and hollow silica particles described later is a hydrophilic membrane. It becomes. That is, the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles or the hollow silica particles have a characteristic of further improving the hydrophilicity of the formed film by the function of the hydroxyl group on the surface.
 本発明の水性コート剤に用い得る中空シリカ粒子は、外殻の内部に空洞が形成されてなる中空のシリカ粒子であれば、特に制限なく用いることができる。
 本発明に使用しうる中空シリカ粒子としては、特開2013-237593号公報、国際公開WO2007/060884号などに記載される中空粒子などが挙げられる。
 なかでも、水性コート剤を用いて形成される膜の透明性が良好であるという観点からは、動的光散乱法により測定される平均一次粒子径が5nm~200nmの範囲にある粒子が好ましい。平均一次粒子径は、10nm~130nmの範囲であることがより好ましく、平均一次粒子径は、10nm~75nmの範囲であることがさらに好ましく、20nm~60nmの範囲であることが最も好ましい。
The hollow silica particles that can be used in the aqueous coating agent of the present invention can be used without particular limitation as long as they are hollow silica particles in which cavities are formed inside the outer shell.
Examples of the hollow silica particles that can be used in the present invention include hollow particles described in JP2013-237593A, International Publication WO2007 / 060884, and the like.
Among these, particles having an average primary particle diameter measured by a dynamic light scattering method in the range of 5 nm to 200 nm are preferable from the viewpoint of good transparency of a film formed using an aqueous coating agent. The average primary particle diameter is more preferably in the range of 10 nm to 130 nm, the average primary particle diameter is more preferably in the range of 10 nm to 75 nm, and most preferably in the range of 20 nm to 60 nm.
 中空シリカ粒子の一次粒子径は、分散した粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。写真の画像より、粒子の投影面積を求め、そこから円相当径を求め平均粒子径(平均一次粒子径)とする。本明細書における平均一次粒子径は、300個以上の粒子について投影面積を測定して、円相当径を求めて算出した値を用いている。 The primary particle diameter of the hollow silica particles can be obtained from the photograph obtained by observing the dispersed particles with a transmission electron microscope. From the image of the photograph, the projected area of the particle is obtained, and the equivalent circle diameter is obtained therefrom, which is taken as the average particle size (average primary particle size). As the average primary particle diameter in the present specification, a value calculated by measuring a projected area of 300 or more particles and obtaining an equivalent circle diameter is used.
 なお、例えば、平均一次粒子径が50nmであり、空隙率は30%~35%の中空シリカ粒子の場合、粒子屈折率はおよそ1.30である。これは一般的な粒子内に空隙を有さないシリカ粒子の屈折率である1.44と比較して0.14低い。このため、中空シリカ粒子を使用して膜の透明性を改良する試みは種々なされてはいるが、本発明者らは、後述する中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子と中空シリカ粒子とを併用することで、驚くべきことに膜の透明性が一層良好になることを見出した。 For example, in the case of hollow silica particles having an average primary particle diameter of 50 nm and a porosity of 30% to 35%, the particle refractive index is approximately 1.30. This is 0.14 lower than 1.44 which is the refractive index of silica particles having no voids in general particles. For this reason, although various attempts have been made to improve the transparency of the membrane using hollow silica particles, the present inventors have an average primary particle size smaller than the average primary particle size of hollow silica particles described later. It has been surprisingly found that the transparency of the film is further improved by using the silica particles and the hollow silica particles in combination.
 本発明で使用される中空シリカ粒子は、市販品としても入手可能であり、例えば、日揮触媒化成社製、スルーリア1110(商品名;平均一次粒子径50nm)、スルーリア4110(商品名;平均一次粒子径60nm)、日鉄鉱業社製、シリナックス(商品名;平均一次粒子径80nm~130nm)等が挙げられる。 The hollow silica particles used in the present invention are also available as commercial products. For example, Julia Catalysis Chemicals Co., Ltd., Surria 1110 (trade name; average primary particle diameter 50 nm), Suriria 4110 (trade name; average primary particles). Diameter 60 nm), manufactured by Nippon Steel & Mining Co., Ltd., Silinax (trade name; average primary particle diameter 80 nm to 130 nm), and the like.
 本発明の水性コート剤には、中空シリカ粒子と、以下に詳述する中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子の少なくとも二種類のシリカ粒子を含有する。
 本発明の水性コート剤における中空シリカ粒子の含有量は、水性コート剤の全固形分質量に対して、1質量%~60質量%であることが好ましく、3質量%~50質量%であることがより好ましく、10質量%~40質量%であることがさらに好ましい。
The aqueous coating agent of the present invention contains at least two types of silica particles: hollow silica particles and silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles described in detail below.
The content of the hollow silica particles in the aqueous coating agent of the present invention is preferably 1% by mass to 60% by mass, and preferably 3% by mass to 50% by mass with respect to the total solid mass of the aqueous coating agent. Is more preferably 10% by mass to 40% by mass.
〔中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子〕
 本発明の水性コート剤は、既述の中空シリカ粒子と、中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子とを有する。以下、中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子を、「小粒子径シリカ粒子」と称することがある。
 本発明に使用しうる小粒子径シリカ粒子は、既述の中空シリカ粒子の平均一次粒子径よりも、平均一次粒子径が小さいものであれば、特に制限はない。
 小粒子径シリカ粒子は、内部に空隙を有する中空粒子でも、多孔質粒子でもよく、内部に空隙を有さない粒子であってもよい。
 形成される膜の透明性を、より向上させるという観点から、小粒子径シリカ粒子の平均一次粒子径は、中空シリカ粒子の平均一次粒子径よりも小さいことが必要である。
 本発明に使用しうる小粒子径シリカ粒子としては、一般にコロイダルシリカとして知られるシリカ粒子、多孔質シリカ粒子、中空シリカ粒子等から、併用する中空シリカ粒子よりも平均一次粒子径が小さいものを適宜選択して用いることができる。
[Silica particles having an average primary particle size smaller than the average primary particle size of hollow silica particles]
The aqueous coating agent of the present invention has the hollow silica particles described above and silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles. Hereinafter, silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles may be referred to as “small particle size silica particles”.
The small particle size silica particles that can be used in the present invention are not particularly limited as long as the average primary particle size is smaller than the average primary particle size of the hollow silica particles described above.
The small particle size silica particles may be hollow particles having voids inside, porous particles, or particles having no voids inside.
From the viewpoint of further improving the transparency of the formed film, the average primary particle size of the small particle size silica particles needs to be smaller than the average primary particle size of the hollow silica particles.
As the small particle size silica particles that can be used in the present invention, silica particles generally known as colloidal silica, porous silica particles, hollow silica particles, and the like having a smaller average primary particle size than the hollow silica particles used in combination are appropriately used. It can be selected and used.
 本発明に用いうる小粒子径シリカ粒子は、光透過性を考慮すると光散乱を抑制するために平均一次粒子径が小さいものが好ましく、より好ましくは、レイリー散乱を生じない粒子径である。レイリー散乱強度は、粒子の媒体に対する屈折率とサイズに影響され、球状粒子を仮定した場合、粒子径の6乗に比例する。このため、小粒子径シリカ粒子の平均一次粒子径は、併用される中空シリカ粒子の平均一次粒子径よりも小さく、且つ、100nm以下であることが好ましく、透明性を要求される汎用的な光学用途では50nm以下であることがより好ましい。より厳しい透明性が求められる場合には30nm以下であることがさらに好ましい。
 なお、平均一次粒子径が小さくなるに従い、シリカ粒子が凝集しやすくなることを考慮すれば、小粒子径シリカ粒子の平均一次粒子径は5nm~100nmの範囲であることが好ましく、10nm~50nmの範囲であることがより好ましい。
 シリカ粒子の平均一次粒子径は、中空シリカ粒子と同様の方法で測定することができる。
The small particle diameter silica particles that can be used in the present invention preferably have a small average primary particle diameter in order to suppress light scattering in consideration of light transmittance, and more preferably have a particle diameter that does not cause Rayleigh scattering. The Rayleigh scattering intensity is affected by the refractive index and size of the particles with respect to the medium, and is proportional to the sixth power of the particle diameter when spherical particles are assumed. For this reason, the average primary particle diameter of the small particle diameter silica particles is preferably smaller than the average primary particle diameter of the hollow silica particles used in combination and 100 nm or less, and general-purpose optics that require transparency. For use, it is more preferably 50 nm or less. When more severe transparency is required, it is more preferably 30 nm or less.
In consideration of the fact that the silica particles tend to aggregate as the average primary particle size decreases, the average primary particle size of the small particle size silica particles is preferably in the range of 5 nm to 100 nm, and preferably in the range of 10 nm to 50 nm. A range is more preferable.
The average primary particle diameter of the silica particles can be measured by the same method as for the hollow silica particles.
 中空シリカ粒子と小粒子径シリカ粒子とを併用することにより、水性コート剤を基材上に塗布乾燥する過程で膜中に空気が取り込まれ、結果、膜中に微細な空隙が形成されると推測している。そのため、形成された空隙に起因して中空シリカ粒子を単独で用いた場合よりも膜の屈折率がより低くなり、光透過性がより良好になるものと考えられる。また、膜中の空隙は微小であるために、塗膜の防汚性に与える影響は殆どないものと考えられる。 When hollow silica particles and silica particles having a small particle diameter are used in combination, air is taken into the film in the process of applying and drying the aqueous coating agent on the substrate, and as a result, fine voids are formed in the film. I guess. Therefore, it is considered that the refractive index of the film becomes lower and the light transmittance becomes better than when the hollow silica particles are used alone due to the formed voids. Further, since the voids in the film are minute, it is considered that there is almost no influence on the antifouling property of the coating film.
 本発明で用いることができる小粒子径シリカ粒子の形状は特に限定されず、球状、板状、針状、ネックレス状等のいずれであってもよいが、透明性向上の観点からは、球状、楕円形状の如き、アスペクト比の小さいものが好ましく挙げられる。
 本発明に使用しうるシリカ粒子は、市販品としても入手可能であり、例えば、コロイダルシリカであるスノーテックスO-33(商品名:平均一次粒子径10nm-20nm、日産化学工業製)、スノーテックスOYL(平均一次粒子径50nm-80nm、日産化学工業製)等が挙げられる。
 本発明の水性コート剤には、小粒子径シリカ粒子は1種のみ含有してもよく、2種以上含有してもよく、2種以上含有する場合には、平均一次粒子径、形状等が互いに異なるもの同士を併用してもよい。
The shape of the small particle size silica particles that can be used in the present invention is not particularly limited and may be any of spherical, plate-like, needle-like, necklace-like, etc., but from the viewpoint of improving transparency, Those having a small aspect ratio such as an elliptical shape are preferred.
Silica particles that can be used in the present invention are also available as commercial products. For example, Snowtex O-33 (trade name: average primary particle size: 10 nm to 20 nm, manufactured by Nissan Chemical Industries), which is colloidal silica, Snowtex OYL (average primary particle size: 50 nm-80 nm, manufactured by Nissan Chemical Industries) and the like.
The aqueous coating agent of the present invention may contain only one kind of small particle size silica particles, or two or more kinds, and when containing two or more kinds, the average primary particle diameter, shape, etc. Different ones may be used in combination.
 本発明の水性コート剤における小粒子径シリカ粒子の含有量は、水性コート剤の全固形分質量に対して、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましく、20質量%~80質量%であることがさらに好ましい。
 小粒子径シリカ粒子の含有量が上記範囲であることで、本発明の水性コート剤は、透明性、防汚性に優れ、さらに親水性を有する膜を形成しうるものとなる。
The content of the small particle diameter silica particles in the aqueous coating agent of the present invention is preferably 5% by mass to 95% by mass with respect to the total solid mass of the aqueous coating agent, and is 10% by mass to 90% by mass. More preferably, it is more preferably 20% by mass to 80% by mass.
When the content of the small particle size silica particles is in the above range, the aqueous coating agent of the present invention is excellent in transparency and antifouling property, and can form a hydrophilic film.
(シリカ粒子の含有量)
 水性コート剤に含まれる中空シリカ粒子と小粒子径シリカ粒子との総量である全シリカ粒子含有量に対する中空シリカ粒子の含有量(含有比率)は、3質量%~90質量%であることが好ましく、5質量%~80質量%であることがより好ましく、10質量%~60質量%であることがさらに好ましい。
 また、水性コート剤における全シリカ粒子含有量は、水性コート剤の全固形分質量に対し、5質量%~90質量%であることが好ましく、10質量%~80質量%であることがより好ましく、20質量%~70質量%であることがさらに好ましい。
 また、全シリカ粒子の含有量は、水性コート剤の全質量に対しては30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。水性コート剤の全質量に対する全シリカ粒子の含有量が上記範囲であることで、水性コート剤中におけるシリカ粒子の分散性がより良好となり、シリカ粒子、特に小粒子径シリカ粒子の凝集が効果的に抑制される。
(Content of silica particles)
The content (content ratio) of the hollow silica particles with respect to the total silica particle content, which is the total amount of the hollow silica particles and the small particle size silica particles contained in the aqueous coating agent, is preferably 3% by mass to 90% by mass. The content is more preferably 5% by mass to 80% by mass, and further preferably 10% by mass to 60% by mass.
Further, the total silica particle content in the aqueous coating agent is preferably 5% by mass to 90% by mass, and more preferably 10% by mass to 80% by mass with respect to the total solid content mass of the aqueous coating agent. More preferably, the content is 20% by mass to 70% by mass.
The total silica particle content is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less, based on the total mass of the aqueous coating agent. preferable. When the content of the total silica particles with respect to the total mass of the aqueous coating agent is within the above range, the dispersibility of the silica particles in the aqueous coating agent becomes better, and the aggregation of silica particles, particularly silica particles having a small particle diameter, is effective. To be suppressed.
〔水〕
 本発明の水性コート剤は水を含有する。
 水性コート剤の溶媒として水を用いることで、揮発性の有機溶媒を大量に用いたコート剤に比較して、環境への負荷が大幅に軽減され、特定シロキサン化合物が加水分解して得られる加水分解物の貯蔵中の所望されない縮合反応と、所望されない縮合反応の結果生じる、形成される膜の親水性の低下を抑制することができる。
 本発明の水性コート剤における溶媒は水を含むが、水との親和性に優れる親水性有機溶媒等をさらに含んでいてもよい。
 水性コート剤に用いられる溶媒中の水の含有量は、溶媒全量に対して、30質量%以上であることが好ましく、40質量%以上であることがより好ましい。
 溶媒が含むことができる他の成分としては、例えば、親水性有機溶媒、グリコール系溶媒などの親水性化合物等が挙げられる。
 溶媒が親水性有機溶媒を含むことで、水性コート剤の表面張力がより低くなり、より均一な塗布が可能となること、低沸点有機溶媒の比率が高くなるため、塗布液の乾燥が容易になること等の利点を有することになる。
 本発明に使用しうる親水性有機溶媒には特に制限はないが、メタノール、エタノール、イソプロパノール、ブタノール、アセトン、エチレングリコール、エチルセロソルブ等が挙げられる。入手容易性、環境負荷の低減の観点からアルコールが好ましく、エタノール、イソプロパノール等がより好ましい。
〔water〕
The aqueous coating agent of the present invention contains water.
By using water as the solvent for the aqueous coating agent, compared to a coating agent that uses a large amount of a volatile organic solvent, the load on the environment is greatly reduced, and the hydrolyzed product obtained by hydrolysis of a specific siloxane compound. It is possible to suppress a decrease in hydrophilicity of the formed film resulting from an undesirable condensation reaction during storage of the decomposition product and an undesirable condensation reaction.
The solvent in the aqueous coating agent of the present invention contains water, but may further contain a hydrophilic organic solvent having excellent affinity with water.
The content of water in the solvent used for the aqueous coating agent is preferably 30% by mass or more, and more preferably 40% by mass or more based on the total amount of the solvent.
Examples of other components that can be contained in the solvent include hydrophilic compounds such as hydrophilic organic solvents and glycol solvents.
When the solvent contains a hydrophilic organic solvent, the surface tension of the aqueous coating agent is lower, more uniform application is possible, and the ratio of the low-boiling organic solvent is increased, so that the coating liquid can be easily dried. And so on.
The hydrophilic organic solvent that can be used in the present invention is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, butanol, acetone, ethylene glycol, and ethyl cellosolve. Alcohol is preferable from the viewpoint of availability and reduction of environmental burden, and ethanol, isopropanol, and the like are more preferable.
 本発明の水性コート剤の全質量に対する固形分の含有量は、0.1質量%~30質量%に範囲であることが好ましく、0.2質量%~20質量%であることがより好ましく、0.5質量%~10質量%であることがさらに好ましい。水性コート剤の固形分含有量が既述の好ましい範囲に調整するには、溶媒、特に水の含有量を調整すればよい。 The solid content with respect to the total mass of the aqueous coating agent of the present invention is preferably in the range of 0.1% by mass to 30% by mass, more preferably 0.2% by mass to 20% by mass, More preferably, it is 0.5 to 10% by mass. In order to adjust the solid content of the aqueous coating agent to the preferred range described above, the content of the solvent, particularly water, may be adjusted.
 本発明の水性コート剤に含まれる、中空シリカ粒子及び小粒子径シリカ粒子は、平均一次粒子径が小さいため、凝集を抑制し、分散状態を維持することが重要である。分散状態は、水性コート剤中のみならず、塗布、乾燥、硬化を含む膜形成中、及び成膜後にも維持されることが重要である。
 本発明においては、溶媒として水を含有するため、シリカ粒子表面の水酸基の解離に由来する電荷の反発によって、含有する各粒子の分散状態を良好に保つことができるという利点を有する。
Since the hollow silica particles and the small particle diameter silica particles contained in the aqueous coating agent of the present invention have a small average primary particle diameter, it is important to suppress aggregation and maintain a dispersed state. It is important that the dispersed state be maintained not only in the aqueous coating agent but also during film formation including coating, drying and curing, and after film formation.
In the present invention, since water is contained as a solvent, there is an advantage that the dispersed state of each contained particle can be favorably maintained by repulsion of charges derived from dissociation of hydroxyl groups on the surface of silica particles.
〔界面活性剤〕
 本発明の水性コート剤は、界面活性剤を、水性コート剤の全固形分質量に対し0.01質量%以上含有する。
 界面活性剤を含有することにより、水性コート剤の塗布性が良好となり、水性コート剤の表面張力がより低く抑えられることにより、均一塗布性、塗布面状性が向上する。
 本発明に使用し得る界面活性剤としては、ノニオン性界面活性剤、イオン性界面活性剤であるアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられ、いずれも本発明に好適に用いることができる。
 なお、イオン性界面活性剤は過剰に用いると、水性コート剤中の電解質の量が増加して、水性コート剤に含まれる中空シリカ粒子、小粒子径シリカ粒子が凝集し易くなってしまう点を考慮すると、界面活性剤としては、ノニオン性界面活性剤を用いることが、界面活性剤の含有量の自由度が高くなるので好ましい。
[Surfactant]
The aqueous coating agent of the present invention contains a surfactant in an amount of 0.01% by mass or more based on the total solid mass of the aqueous coating agent.
By containing the surfactant, the coating property of the aqueous coating agent is improved, and the surface tension of the aqueous coating agent is suppressed to a lower level, thereby improving the uniform coating property and the coating surface property.
Examples of the surfactant that can be used in the present invention include nonionic surfactants, anionic surfactants that are ionic surfactants, cationic surfactants, and amphoteric surfactants. Can be suitably used.
If the ionic surfactant is used in excess, the amount of the electrolyte in the aqueous coating agent increases, and the hollow silica particles and the small particle size silica particles contained in the aqueous coating agent tend to aggregate. In consideration, it is preferable to use a nonionic surfactant as the surfactant because the degree of freedom of the content of the surfactant is increased.
 ノニオン性界面活性剤の例としては、ポリアルキレングリコールモノアルキルエーテル、ポリアルキレングリコールモノアルキルエステル、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテル等が挙げられる。より具体的には、ポリエチレングリコールモノラウリルエーテル、ポリエチレングリコールモノステアリルエーテル、ポリエチレングリコールモノセチルエーテル、ポリエチレングリコールモノラウリルエステル、ポリエチレングリコールモノステアリルエステル等が挙げられる。 Examples of nonionic surfactants include polyalkylene glycol monoalkyl ether, polyalkylene glycol monoalkyl ester, polyalkylene glycol monoalkyl ester / monoalkyl ether, and the like. More specifically, polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, polyethylene glycol monostearyl ester and the like can be mentioned.
 一方、水性コート剤がイオン性界面活性剤を含有することで、水性コート剤を塗布し、乾燥して形成された膜の最表面付近にイオン性界面活性剤が偏析し、より少量の添加で膜表面の帯電を防止し、親水性を高めることができる点で好ましい。
 イオン性界面活性剤は過剰に含有するとシリカ粒子が凝集し易くなることは既述の通りであり、一般には、イオン性界面活性剤とシリカ粒子とを併用した例は少ない。しかし、本発明者らの検討によれば、イオン性界面活性剤を水性コート剤に添加した場合、シリカ粒子の凝集を生起させる量よりも少ない含有量で用いることで、水性コート剤により形成された膜の防汚性を高め得ることが見出された。
 即ち、界面活性剤としては、ノニオン性、イオン性のいずれの界面活性剤をも好適に用いることができる。本発明の水性コート剤が、界面活性剤を0.01質量%以上含有することで、水性コート剤により形成された膜の防汚性と表面親水性が優れたものとなった。
On the other hand, since the aqueous coating agent contains an ionic surfactant, the ionic surfactant is segregated in the vicinity of the outermost surface of the film formed by applying the aqueous coating agent and drying it. It is preferable in that charging of the film surface can be prevented and hydrophilicity can be improved.
As described above, when the ionic surfactant is excessively contained, the silica particles are easily aggregated. Generally, there are few examples in which the ionic surfactant and the silica particles are used in combination. However, according to the study by the present inventors, when an ionic surfactant is added to the aqueous coating agent, the ionic surfactant is formed with the aqueous coating agent by using it in a content less than the amount causing aggregation of the silica particles. It has been found that the antifouling properties of the membrane can be enhanced.
That is, as the surfactant, any of nonionic and ionic surfactants can be preferably used. When the aqueous coating agent of the present invention contains 0.01% by mass or more of the surfactant, the antifouling property and surface hydrophilicity of the film formed from the aqueous coating agent are excellent.
 イオン性界面活性剤の例としては、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルリン酸塩等のアニオン性界面活性剤、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等のカチオン性界面活性剤、アルキルカルボキシベタイン等の両性界面活性剤を挙げることができる。 Examples of ionic surfactants include anionic surfactants such as alkyl sulfates, alkylbenzene sulfonates and alkyl phosphates, cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts, alkylcarboxyl Examples include amphoteric surfactants such as betaine.
 本発明の水性コート剤における界面活性剤の含有量は、水性コート剤の全質量に対して、0.01質量%以上であり、0.02質量%以上であることが好ましく、0.03質量%以上であることがより好ましい。
 界面活性剤の含有量を上記範囲とすることで、濡れ性を向上させることができ、水性コート剤の塗布性が良好となる。
 界面活性剤の含有量の上限には特に制限はないが、界面活性剤の種類によっては過剰に加えることで、水性コート剤を塗布した後に表面に偏析して膜の強度が低下する懸念があるため、他の成分の含有量も勘案すると、界面活性剤の含有量は水性コート剤の全固形分質量に対して10質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 また、界面活性剤として、イオン性界面活性剤を用いる場合には、防汚性をより高め、界面活性剤の影響によるシリカ粒子の凝集を抑制するという観点から、イオン性界面活性剤の含有量は、水性コート剤の全質量に対して、5.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。
The content of the surfactant in the aqueous coating agent of the present invention is 0.01% by mass or more, preferably 0.02% by mass or more, and preferably 0.03% by mass with respect to the total mass of the aqueous coating agent. % Or more is more preferable.
By setting the content of the surfactant in the above range, the wettability can be improved, and the coating property of the aqueous coating agent becomes good.
The upper limit of the content of the surfactant is not particularly limited, but depending on the type of the surfactant, there is a concern that it may segregate on the surface after application of the aqueous coating agent to reduce the strength of the film. Therefore, considering the content of other components, the surfactant content is preferably 10% by mass or less, more preferably 8% by mass or less, based on the total solid mass of the aqueous coating agent. More preferably, it is 5 mass% or less.
In addition, when an ionic surfactant is used as the surfactant, the content of the ionic surfactant is increased from the viewpoint of enhancing the antifouling property and suppressing the aggregation of silica particles due to the influence of the surfactant. Is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, and still more preferably 1.0% by mass or less, based on the total mass of the aqueous coating agent.
〔その他の成分〕
 本発明の水性コート剤は、既述の必須成分に加え、本発明の効果を損なわない限りにおいて、目的に応じて他の成分を含有することができる。
(帯電防止剤)
 本発明の水性コート剤は、帯電防止剤を含有してもよい。
 帯電防止剤は、水性コート剤により形成された膜に帯電防止性を付与することで、汚染物質の付着を抑制する目的で用いられる。
 帯電防止性を付与するための帯電防止剤としては、特に制限はない。
 本発明に用いられる帯電防止剤としては、本発明の必須成分である既述の界面活性剤とは異なるイオン性の界面活性剤、金属酸化物粒子、金属ナノ粒子、導電性高分子、イオン液体等から選ばれる少なくとも1種を用いることができる。帯電防止剤は2種以上を併用してもよい。なお、帯電防止剤としては、既述のイオン性界面活性剤を用いてもよく、イオン性界面活性剤を用いる場合は、本発明の必須成分である界面活性剤とは異なる界面活性剤を用いることとする。
 金属酸化物粒子は帯電防止性を与えるために比較的多量の添加が必要であるが、無機粒子であるために、金属酸化物粒子を含有することで、水性コート剤により形成された膜の防汚性をより高めることができる。
[Other ingredients]
The aqueous coating agent of the present invention can contain other components depending on the purpose as long as the effects of the present invention are not impaired in addition to the essential components described above.
(Antistatic agent)
The aqueous coating agent of the present invention may contain an antistatic agent.
The antistatic agent is used for the purpose of suppressing the adhesion of contaminants by imparting antistatic properties to the film formed of the aqueous coating agent.
There are no particular restrictions on the antistatic agent for imparting antistatic properties.
Antistatic agents used in the present invention include ionic surfactants, metal oxide particles, metal nanoparticles, conductive polymers, ionic liquids that are different from the surfactants described above, which are essential components of the present invention. At least one selected from the above can be used. Two or more antistatic agents may be used in combination. As the antistatic agent, the ionic surfactant described above may be used. When the ionic surfactant is used, a surfactant different from the surfactant which is an essential component of the present invention is used. I will do it.
Metal oxide particles need to be added in a relatively large amount in order to provide antistatic properties. However, since they are inorganic particles, the inclusion of metal oxide particles prevents the film formed by the aqueous coating agent. Dirty can be further increased.
 金属酸化物粒子には、特に制限はないが、酸化スズ粒子、アンチモンドープ酸化スズ粒子、スズドープ酸化インジウム粒子、酸化亜鉛粒子等が挙げられる。
 金属酸化物粒子は屈折率が大きく、粒子径が大きいと透過光の散乱による光透過性の低下が懸念されるため、金属酸化物粒子の平均一次粒子径は100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。
 また金属酸化物粒子の形状は特に限定されず、球状であっても、板状であっても、針状であってもよい。
 金属酸化物微粒子の平均一次粒子径は、既述の中空シリカ粒子と同様にして求めることができる。
 なお、金属酸化物粒子の形状が球状ではない場合にはその他の方法、例えば動的光散乱法を用いて求めてもよい。
Although there is no restriction | limiting in particular in a metal oxide particle, A tin oxide particle, an antimony dope tin oxide particle, a tin dope indium oxide particle, a zinc oxide particle etc. are mentioned.
The metal oxide particles have a large refractive index, and if the particle size is large, there is concern about a decrease in light transmittance due to scattering of transmitted light. Therefore, the average primary particle size of the metal oxide particles is preferably 100 nm or less, and 50 nm. Or less, more preferably 30 nm or less.
The shape of the metal oxide particles is not particularly limited, and may be spherical, plate-shaped, or needle-shaped.
The average primary particle diameter of the metal oxide fine particles can be obtained in the same manner as the hollow silica particles described above.
In addition, when the shape of the metal oxide particles is not spherical, it may be obtained using other methods, for example, a dynamic light scattering method.
 帯電防止剤は、水性コート剤に1種のみ含有してもよく、2種以上含有してもよい。金属酸化物粒子を2種以上含有する場合、平均一次粒子径、形状、素材が互いに異なるものを2種以上使用してもよい。
 本発明の水性コート剤においては、帯電防止剤の含有量は水性コート剤の全固形分質量に対して40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
 帯電防止剤の含有量を上記範囲とすることにより、水性コート剤の製膜性を低下させることなく、形成された膜に効果的に帯電防止性を付与することができる。
 また、帯電防止剤として金属酸化物粒子を用いる場合の含有量は、水性コート剤の全質量に対しては30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 金属酸化物粒子の含有量を上記範囲とすることで、水性コート剤における金属酸化物粒子の分散性が良好となり、凝集の発生が抑制され、必要な帯電防止性を水性コート剤により形成された膜に付与することができる。
One kind of antistatic agent may be contained in the aqueous coating agent, or two or more kinds thereof may be contained. When two or more types of metal oxide particles are contained, two or more types having different average primary particle diameters, shapes, and materials may be used.
In the aqueous coating agent of the present invention, the content of the antistatic agent is preferably 40% by mass or less, more preferably 30% by mass or less, and more preferably 20% by mass with respect to the total solid mass of the aqueous coating agent. More preferably, it is% or less.
By making content of an antistatic agent into the said range, antistatic property can be effectively provided to the formed film | membrane, without reducing the film forming property of an aqueous coating agent.
The content when metal oxide particles are used as the antistatic agent is preferably 30% by mass or less, more preferably 20% by mass or less, based on the total mass of the aqueous coating agent. More preferably, it is at most mass%.
By making the content of the metal oxide particles in the above range, the dispersibility of the metal oxide particles in the aqueous coating agent becomes good, the occurrence of aggregation is suppressed, and the necessary antistatic property is formed by the aqueous coating agent. It can be applied to the membrane.
(触媒)
 本発明の水性コート剤は、シロキサンオリゴマーの縮合を促進する触媒を含有することが好ましい。
 水性コート剤が触媒を含有することにより、より耐久性に優れた膜を形成することができる。本発明においては、水性コート剤を塗布後に乾燥させて膜中の水分を減少させることに伴い、シロキサンオリゴマーの加水分解物が持つヒドロキシル基の少なくとも一部が互いに縮合して、縮合物を形成することで、安定な膜が形成される。膜の形成時に、シロキサンオリゴマーの縮合を促進する触媒を水性コート剤が含有することで、膜の形成をより速やかに進めることができる。
(catalyst)
The aqueous coating agent of the present invention preferably contains a catalyst that promotes condensation of the siloxane oligomer.
When the aqueous coating agent contains a catalyst, a film having higher durability can be formed. In the present invention, at least part of the hydroxyl groups of the hydrolyzate of the siloxane oligomer are condensed with each other to form a condensate as the water content in the film is reduced by drying after application of the aqueous coating agent. Thus, a stable film is formed. When the aqueous coating agent contains a catalyst that promotes the condensation of the siloxane oligomer during the formation of the film, the film can be formed more rapidly.
 本発明に用いることができるシロキサンオリゴマーの縮合を促進する触媒は特に限定されないが、酸触媒、アルカリ触媒、有機金属触媒等が挙げられる。
 酸触媒の例としては、硝酸、塩酸、硫酸、酢酸、クロロ酢酸、蟻酸、シュウ酸、トルエンスルホン酸等が挙げられる。
 アルカリ触媒の例としては、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム等が挙げられる。
 有機金属触媒の例としては、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムエチルアセトアセテートジイソプロピレート等のアルミキレート化合物、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)等のジルコニウムキレート化合物、チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)等のチタンキレート化合物及びジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクチエート等の有機スズ化合物等が挙げられる。
 触媒の種類は特に限定されないが、有機金属触媒が好ましく、なかでも、アルミキレート化合物、ジルコニウムキレート化合物がより好ましい。
Although the catalyst which accelerates | stimulates the condensation of the siloxane oligomer which can be used for this invention is not specifically limited, An acid catalyst, an alkali catalyst, an organometallic catalyst, etc. are mentioned.
Examples of the acid catalyst include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, chloroacetic acid, formic acid, oxalic acid, toluenesulfonic acid and the like.
Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and the like.
Examples of organometallic catalysts include aluminum bis (ethyl acetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), aluminum chelate compounds such as aluminum ethylacetoacetate diisopropylate, zirconium tetrakis (acetylacetonate) Zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate), titanium chelate compounds such as titanium tetrakis (acetylacetonate), titanium bis (butoxy) bis (acetylacetonate), and dibutyltin diacetate, dibutyltin dilaurate, And organotin compounds such as dibutyltin dioctiate.
The type of the catalyst is not particularly limited, but an organometallic catalyst is preferable, and among them, an aluminum chelate compound and a zirconium chelate compound are more preferable.
 シロキサンオリゴマーの縮合を促進する触媒の含有率量は、水性コート剤の全固形分質量に対して、0.1質量%~20質量%であることが好ましく、0.2質量%~15質量%であることがより好ましく、0.3質量%~10質量%であることがさらに好ましい。
 触媒の含有量を上記範囲とすることにより、良好な透明性を有する膜を、より速やかに形成することができる。
The content of the catalyst for promoting the condensation of the siloxane oligomer is preferably 0.1% by mass to 20% by mass, and preferably 0.2% by mass to 15% by mass with respect to the total solid mass of the aqueous coating agent. More preferably, it is more preferably 0.3% by mass to 10% by mass.
By setting the content of the catalyst in the above range, a film having good transparency can be formed more quickly.
 なお、シロキサンオリゴマーの縮合を促進する触媒は前述したシロキサンオリゴマーの加水分解反応の促進に対しても有用である。
 シロキサンオリゴマーのケイ素に結合したアルコキシ基の加水分解反応と縮合反応は平衡の関係にあり、水性コート剤中に含まれる水の含有量が多いと加水分解の方向に、水の含有量が少ないと縮合の方向に進む。アルコキシ基の縮合反応を促進する触媒は、上記反応の両方向への促進効果を有するため、水性コート剤における水の含有量が多い状態では加水分解反応を促進することができる。触媒の存在により、シロキサンオリゴマーの加水分解をより穏やかな条件でより確実に進めることが可能となる。
 この際、シロキサンオリゴマーの加水分解反応に用いた触媒は、水性コート剤より除去することなく、そのまま含有させて水性コート剤の成分とすることで、水性コート剤により膜を形成する場合、水分の減少に伴い、触媒がシロキサンオリゴマーの縮合用の触媒として作用するため、効率良い膜の形成が可能となる。
In addition, the catalyst which accelerates | stimulates the condensation of a siloxane oligomer is useful also for acceleration | stimulation of the hydrolysis reaction of the siloxane oligomer mentioned above.
The hydrolysis reaction and condensation reaction of the silicon-bonded alkoxy group of the siloxane oligomer are in an equilibrium relationship, and if the water content in the aqueous coating agent is large, the water content is low in the direction of hydrolysis. Proceed in the direction of condensation. Since the catalyst that promotes the condensation reaction of the alkoxy group has an effect of promoting the reaction in both directions, the hydrolysis reaction can be promoted in a state where the water content in the aqueous coating agent is large. The presence of the catalyst allows the hydrolysis of the siloxane oligomer to proceed more reliably under milder conditions.
At this time, the catalyst used for the hydrolysis reaction of the siloxane oligomer is not removed from the aqueous coating agent, but is contained as it is to be a component of the aqueous coating agent. Along with the decrease, the catalyst acts as a catalyst for condensation of the siloxane oligomer, so that an efficient film can be formed.
(その他の添加剤)
 本発明の水性コート剤は、上記の他に防腐剤等の添加剤を適宜有していてもよい。
 本発明の水性コート剤は、塗布後の膜形成時には、既述のとおり、溶媒である水等が減少することで特定シロキサン化合物が縮合して硬化し、膜を形成する。従って、硬化膜の形成に、重合反応、架橋反応等に必要とされる光照射や高温熱処理を必要としない。また、重合反応、架橋反応等に必要とされる光重合開始剤、熱重合開始剤等を含有することは必要としない。
 このため、貯蔵安定性に影響を与える光重合開始剤、熱重合開始剤等を含有しない本発明の水性コート剤は、保存安定性が良好である。
 本発明の水性コート剤によれば、簡便な方法で、透明性が良好で、防汚性に優れた膜を形成することができる。
(Other additives)
The aqueous coating agent of the present invention may have additives such as preservatives as appropriate in addition to the above.
As described above, the aqueous coating agent of the present invention forms a film by condensing and curing the specific siloxane compound by reducing the amount of water, which is a solvent, as described above. Therefore, formation of a cured film does not require light irradiation or high-temperature heat treatment required for a polymerization reaction, a crosslinking reaction, or the like. Moreover, it is not necessary to contain the photoinitiator required for a polymerization reaction, a crosslinking reaction, etc., a thermal polymerization initiator, etc.
For this reason, the aqueous coating agent of the present invention that does not contain a photopolymerization initiator, a thermal polymerization initiator, or the like that affects storage stability has good storage stability.
According to the aqueous coating agent of the present invention, a film having excellent transparency and excellent antifouling property can be formed by a simple method.
 本発明の水性コート剤は、水性コート剤が含有する固形分の大部分がケイ素と酸素であり、炭素の含有率が少ないことも一つの特徴であるといえる。炭素の含有量を少なくすることにより、例えば、水性コート剤を塗布し、乾燥して形成された膜を太陽電池モジュール表面等の過酷な環境に用いた場合でも、光、熱による膜への影響を最小限にとどめることが可能となる。
 本発明の水性コート剤において、全固形分質量中に占める炭素の割合は3質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、2質量%以下であることがさらに好ましい。
It can be said that the water-based coating agent of the present invention is characterized by the fact that most of the solid content contained in the water-based coating agent is silicon and oxygen and the carbon content is low. By reducing the carbon content, for example, when a film formed by applying an aqueous coating agent and drying it is used in a harsh environment such as the surface of a solar cell module, the film is affected by light and heat. Can be kept to a minimum.
In the aqueous coating agent of the present invention, the proportion of carbon in the total solid mass is preferably 3% by mass or less, more preferably 2.5% by mass or less, and preferably 2% by mass or less. Further preferred.
 本発明の水性コート剤においては、含まれる炭素を含む有機化合物は低分子量のものであることが好ましい。具体的には、水性コート剤の全固形分質量中における分子量1100以上の有機化合物の含有量は0.2質量%以下であることが好ましく、0.1質量%であることがより好ましく、0質量%、即ち、不可避不純物を除き、含まないことがさらに好ましい。分子量1100以上の有機化合物の含有量を上記範囲とすることにより、水性コート剤中における固形分の相溶性がより良好となり、水性コート剤を塗布し、乾燥した場合の成膜性をより向上させうる。 In the aqueous coating agent of the present invention, it is preferable that the organic compound containing carbon is of low molecular weight. Specifically, the content of the organic compound having a molecular weight of 1100 or more in the total solid mass of the aqueous coating agent is preferably 0.2% by mass or less, more preferably 0.1% by mass, More preferably, it is not contained except for mass%, ie, inevitable impurities. By setting the content of the organic compound having a molecular weight of 1100 or more in the above range, the compatibility of the solid content in the aqueous coating agent becomes better, and the film formability when the aqueous coating agent is applied and dried is further improved. sell.
(水性コート剤の調製方法)
 本発明の水性コート剤は、特定シロキサン化合物と、水を含む溶媒と、水性コート剤の全固形分質量に対して0.01質量%以上の界面活性剤と、中空シリカ粒子、小粒子径シリカ粒子を混合することによって調製される。
 特定シロキサン化合物は、まず水を含む溶媒と混合し、特定シロキサン化合物の加水分解物を形成させ、特定シロキサン化合物の加水分解物溶液を調製することが好ましい。なお、この際、特定シロキサン化合物の縮合を促進する触媒を添加することができる。
 得られた特定シロキサン化合物の加水分解物溶液に、さらに界面活性剤、中空シリカ粒子、及び小粒子径シリカ粒子を添加する。この際に、所望により併用される帯電防止剤をさらに添加することができる。
 この段階で、シロキサンオリゴマーの縮合を促進する触媒を追加することもできる。また、界面活性剤、及び所望により併用される帯電防止剤の一部又は全部は特定シロキサン化合物の加水分解物を得る際に加えてもよい。
(Method for preparing aqueous coating agent)
The aqueous coating agent of the present invention comprises a specific siloxane compound, a solvent containing water, a surfactant of 0.01% by mass or more based on the total solid mass of the aqueous coating agent, hollow silica particles, and small particle size silica. Prepared by mixing particles.
It is preferable that the specific siloxane compound is first mixed with a solvent containing water to form a hydrolyzate of the specific siloxane compound to prepare a hydrolyzate solution of the specific siloxane compound. At this time, a catalyst for promoting the condensation of the specific siloxane compound can be added.
A surfactant, hollow silica particles, and small particle size silica particles are further added to the obtained hydrolyzate solution of the specific siloxane compound. At this time, an antistatic agent used in combination can be further added as desired.
At this stage, a catalyst for promoting condensation of the siloxane oligomer can be added. Moreover, you may add in part or all of surfactant and the antistatic agent used together together when it obtains the hydrolyzate of a specific siloxane compound.
 なお、水性コート剤の調製条件について特に限定は無いが、用いる中空シリカ粒子、小粒子径シリカ粒子の種類や物性によっては、pHや共存成分の濃度により凝集する懸念がある。従って、中空シリカ粒子、及び小粒子径シリカ粒子は、水性コート剤の調製の前工程における後半、好ましくは最後に加えることが好ましい。中空シリカ粒子、小粒子径シリカ粒子を含有させる際に、必要に応じてシリカ粒子を予め水性溶媒に分散した分散液、或いは、市販のシリカ粒子分散液を用いる場合、分散液のpHと水性コート剤における溶媒のpHを、共に酸性とするか、又は共に塩基性として、シリカ粒子分散液と水性コート剤の溶媒とのpHを同じか或いは近い値に調整することが好ましい。 The conditions for preparing the aqueous coating agent are not particularly limited. However, depending on the type and physical properties of the hollow silica particles and the small particle size silica particles used, there is a concern that they may aggregate depending on the pH and the concentration of coexisting components. Therefore, it is preferable that the hollow silica particles and the small particle size silica particles are added in the latter half, preferably last, in the previous step of the preparation of the aqueous coating agent. When hollow silica particles and small silica particles are contained, if necessary, a dispersion in which silica particles are dispersed in an aqueous solvent in advance, or a commercially available silica particle dispersion, the pH of the dispersion and the aqueous coating are used. It is preferable to adjust the pH of the solvent of the silica particle dispersion and the aqueous coating agent to the same or close values by making the pH of the solvent in the agent both acidic or basic.
 本発明の水性コート剤を用いることで、透明性が良好な膜が形成される。本発明の水性コート剤は、特定シロキサン化合物、中空シリカ粒子、小粒子径シリカ粒子、及び界面活性剤を含有するため、形成された膜は表面親水性が良好であり、膜表面は防汚性に優れたものとなることも、本発明の水性コート剤の特徴の一つである。
 このため、本発明の水性コート剤は、太陽電池モジュール等の屋外に使用する装置の表面を保護する膜の形成に好適である。形成された膜は、防汚性に優れ、屋外において汚染物質の付着が抑制される。さらに、膜の親水性が良好であることで付着したわずかな汚染物質も雨天時には雨水等により洗い流され易い、という付加的な効果を奏する。
 従って、本発明の水性コート剤は、各種基材の表面材、光学デバイス、特に太陽電池モジュールの表面保護材の表面材の形成に有用である。
By using the aqueous coating agent of the present invention, a film having good transparency is formed. Since the aqueous coating agent of the present invention contains a specific siloxane compound, hollow silica particles, small silica particles, and a surfactant, the formed film has good surface hydrophilicity, and the film surface is antifouling. It is also one of the features of the aqueous coating agent of the present invention that it is excellent in water.
For this reason, the aqueous coating agent of this invention is suitable for formation of the film | membrane which protects the surface of the apparatus used outdoors, such as a solar cell module. The formed film is excellent in antifouling property, and adhesion of contaminants is suppressed outdoors. Further, since the membrane has good hydrophilicity, a slight contamination adhered can be easily washed away by rainwater or the like when it rains.
Therefore, the water-based coating agent of the present invention is useful for forming surface materials for various substrates, surface materials for optical devices, particularly surface protection materials for solar cell modules.
<膜>
 本発明の膜は、特定シロキサン化合物、及び特定シロキサン化合物の縮合物から選ばれる少なくとも1種のシロキサン化合物と、中空シリカ粒子と、小粒子径シリカ粒子と、界面活性剤とを含有し、膜厚が30nm~500nmである膜である。
〔膜の形成〕
 本発明の膜は、既述の本発明の水性コート剤により形成される。
 本発明の膜は、本発明の水性コート剤を塗布し、乾燥させることによって形成することができる。水性コート剤を塗布する基材には特に制限はなく、基材としては、ガラス、樹脂、金属、セラミックス等各種基材をいずれも好適に用いることができる。
 基材としてガラスを用いた場合、ケイ素上のヒドロキシル基の縮合がガラス表面のヒドロキシル基との間でも発生することにより、基材との密着性に優れた膜が形成される。
 本発明の膜は、透明性の観点から、膜厚は50nm~350nmの範囲とすることが好ましい。上記の膜厚の範囲で、目的に応じた膜を形成すればよい。
<Membrane>
The film of the present invention contains at least one siloxane compound selected from a specific siloxane compound and a condensate of the specific siloxane compound, hollow silica particles, small particle diameter silica particles, and a surfactant. Is a film having a thickness of 30 nm to 500 nm.
(Film formation)
The film of the present invention is formed by the aqueous coating agent of the present invention described above.
The film of the present invention can be formed by applying and drying the aqueous coating agent of the present invention. There is no restriction | limiting in particular in the base material which apply | coats an aqueous coating agent, As a base material, all various base materials, such as glass, resin, a metal, and ceramics, can be used conveniently.
When glass is used as the substrate, condensation of hydroxyl groups on silicon occurs even with hydroxyl groups on the glass surface, thereby forming a film having excellent adhesion to the substrate.
The film of the present invention preferably has a film thickness in the range of 50 nm to 350 nm from the viewpoint of transparency. What is necessary is just to form the film | membrane according to the objective in the range of said film thickness.
(基材)
 本発明の水性コート剤を基材に塗布する方法としては特に限定されず、例えば、スプレー塗布、刷毛塗布、ローラー塗布、バー塗布、ディップ塗布等の公知の塗布法をいずれも適用することができる。
 水性コート剤を塗布した後の乾燥は、室温(25℃)で行なってもよく、40℃~120℃に加熱して行なってもよい。また、加熱を行なう場合には、1分~30分程度の乾燥時間とすることができる。
(Base material)
The method for applying the aqueous coating agent of the present invention to the substrate is not particularly limited, and any of known application methods such as spray coating, brush coating, roller coating, bar coating, dip coating and the like can be applied. .
Drying after applying the aqueous coating agent may be performed at room temperature (25 ° C.) or by heating to 40 ° C. to 120 ° C. When heating is performed, the drying time can be about 1 to 30 minutes.
(膜の物性)
 本発明の膜は、透明性が良好であり、さらに、膜が含有する成分に起因して、表面は親水性を示す。さらに、帯電防止剤を含有することで膜は帯電防止性をも示すことになる。このため、本発明の膜は、汚染物質の付着を抑制することができ、防汚性に優れる。さらに、膜表面に汚染物質が付着した場合であっても汚染物質は水洗により容易に除去される。
 以下に本発明の膜の好ましい物性を挙げる。
(Physical properties of membrane)
The film of the present invention has good transparency, and the surface is hydrophilic due to the components contained in the film. Further, by containing an antistatic agent, the film also exhibits antistatic properties. For this reason, the film | membrane of this invention can suppress adhesion of a contaminant and is excellent in antifouling property. Furthermore, even if contaminants adhere to the film surface, the contaminants are easily removed by washing with water.
Preferred physical properties of the film of the present invention are listed below.
 本発明の膜は、十分な光透過性を有していることが好ましい。本発明の膜の積分球透過率(λ=300nm~1200nmの平均)は、90%以上であることが好ましく、93%以上であることがより好ましい。
 膜の積分球透過率は、膜を形成していないガラス基材と水性コート剤により形成した膜を設けたガラス基材の積分球透過率を、硫酸バリウム白板をリファレンスとして測定することで求めた。水性コート剤を形成したガラスの透過率からガラス基材の透過率を差し引きすることでガラス基材に対する光透過率向上分を算出した。
 積分球透過率の測定は、積分球付の透過型分光光度計を用いることで測定可能である。具体的には、例えば、紫外可視赤外分光光度計(UV-3600、島津製作所)に積分球付属装置(ISR-2200、島津製作所)を接続した装置、又は、紫外可視赤外分光光度計(UV-3600、島津製作所)に多用途大型試料室(MPC-3100、島津製作所)を接続した装置、等により測定することができる。本発明においては、波長300nm~1400nmの光を用い、UV-3100PC(島津製作所)を用いて測定した値を採用している。測定により得られる透過率向上分が多いほど、透明性(低反射性)に優れると判断する。
The film of the present invention preferably has sufficient light transmittance. The integrating sphere transmittance (average of λ = 300 nm to 1200 nm) of the film of the present invention is preferably 90% or more, and more preferably 93% or more.
The integral sphere transmittance of the membrane was determined by measuring the integral sphere transmittance of a glass substrate provided with a film formed of a glass substrate not formed with a film and an aqueous coating agent, using a barium sulfate white plate as a reference. . The light transmittance improvement with respect to the glass substrate was calculated by subtracting the transmittance of the glass substrate from the transmittance of the glass on which the aqueous coating agent was formed.
The integrating sphere transmittance can be measured by using a transmission spectrophotometer with an integrating sphere. Specifically, for example, a device in which an integrating sphere attachment device (ISR-2200, Shimadzu Corp.) is connected to an ultraviolet visible infrared spectrophotometer (UV-3600, Shimadzu Corp.) UV-3600, Shimadzu Corporation) and a multi-purpose large sample chamber (MPC-3100, Shimadzu Corporation) connected to the apparatus. In the present invention, values measured using UV-3100PC (Shimadzu Corporation) using light having a wavelength of 300 nm to 1400 nm are employed. It is determined that the greater the transmittance improvement obtained by measurement, the better the transparency (low reflectivity).
 本発明の膜の光透過率向上分(λ=400nm~1400nm)は、1%以上であることが好ましく、1.5%以上であることがより好ましい。1.8%以上が特に好ましい。
 透過率は、例えば、自記分光光度計(UV2400-PC、島津製作所製)により測定することができる。
The light transmittance improvement (λ = 400 nm to 1400 nm) of the film of the present invention is preferably 1% or more, and more preferably 1.5% or more. 1.8% or more is particularly preferable.
The transmittance can be measured by, for example, a self-recording spectrophotometer (UV2400-PC, manufactured by Shimadzu Corporation).
 膜の表面抵抗は、1×1012Ω/sq.以下であることが好ましく、1×1011Ω/sq.以下であることがより好ましく、1×1010Ω/sq.以下であることがさらに好ましい。膜の表面抵抗を上記範囲とすることにより、膜に十分な防汚性を付与することができる。
 膜の表面抵抗値は、三菱化学アナリテック社製 ハイレスタ MCP-HT450を用いて測定することができる。
The surface resistance of the film is 1 × 10 12 Ω / sq. Or less, preferably 1 × 10 11 Ω / sq. More preferably, it is 1 × 10 10 Ω / sq. More preferably, it is as follows. By setting the surface resistance of the film in the above range, sufficient antifouling property can be imparted to the film.
The surface resistance value of the film can be measured using Hiresta MCP-HT450 manufactured by Mitsubishi Chemical Analytech.
 膜の水接触角は、40°以下であることが好ましく、30°以下であることがより好ましく、25°以下であることがさらに好ましく、15°以下が特に好ましい。
 水接触角は、純水に対する接触角を5回測定し、その平均値を接触角値とした。
 膜の水接触角を上記範囲とすることにより、膜に十分な親水性を付与することができる。
The water contact angle of the membrane is preferably 40 ° or less, more preferably 30 ° or less, further preferably 25 ° or less, and particularly preferably 15 ° or less.
As for the water contact angle, the contact angle with respect to pure water was measured five times, and the average value was defined as the contact angle value.
By setting the water contact angle of the membrane within the above range, sufficient hydrophilicity can be imparted to the membrane.
<積層体>
 本発明の積層体は、ガラス基材上に、本発明の水性コート剤により形成される膜を備える。
 本発明の膜は、既述のとおり、特定シロキサン化合物及び特定シロキサン化合物の加水分解物から選ばれる1種以上を含有するため、ガラス基材への密着性に優れる。
 このため、ガラス基材上に本発明の水性コート剤により形成された本発明の膜を有する積層体は、透明性、防汚性に優れた膜となるため、太陽電池モジュールの表面保護部材、光学用デバイス、窓ガラスやガイドミラーなどの建材用途の防汚材料等に好適に使用することができる。
<Laminate>
The laminated body of this invention is equipped with the film | membrane formed with the aqueous coating agent of this invention on a glass base material.
Since the film | membrane of this invention contains 1 or more types chosen from the specific siloxane compound and the hydrolyzate of a specific siloxane compound as stated above, it is excellent in the adhesiveness to a glass base material.
For this reason, since the laminate having the film of the present invention formed on the glass substrate with the aqueous coating agent of the present invention becomes a film excellent in transparency and antifouling property, the surface protection member of the solar cell module, It can be suitably used for antifouling materials for building materials such as optical devices, window glass and guide mirrors.
 本発明の積層体は、ガラス基材の表面に透明性とガラス基材との密着性に優れた膜を備える積層体である。本発明の膜は、透明性、防汚性に優れる。従って、本発明の膜を有する本発明の積層体は、高い透明性を有し、汚れに対する付着防止性を必要とする、保護部材、表面材として好適であり、なかでも、屋外で過酷な環境に長期間配置され、長期間に亘り透明性と耐久性とを必要とする太陽電池モジュールの受光面側の保護部材として有用である。 The laminate of the present invention is a laminate comprising a film having excellent transparency and adhesion to the glass substrate on the surface of the glass substrate. The film of the present invention is excellent in transparency and antifouling properties. Therefore, the laminate of the present invention having the film of the present invention is suitable as a protective member and a surface material having high transparency and requiring adhesion prevention against dirt, and in particular, a severe environment outdoors. It is useful as a protective member on the light-receiving surface side of a solar cell module that is disposed for a long period of time and requires transparency and durability for a long period of time.
<太陽電池モジュール>
 本発明の太陽電池モジュールは、既述の本発明の膜を含む積層体を備える。本発明の太陽電池モジュールは、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子を、太陽光が入射する側に設けられる透明性に優れた本発明の積層体とポリエステルフィルムに代表される太陽電池用バックシートとの間に配置される。積層体とポリエステルフィルムとの間は、例えばエチレン-酢酸ビニル共重合体等の樹脂に代表される封止剤により封止することができる。
<Solar cell module>
The solar cell module of the present invention includes a laminate including the above-described film of the present invention. The solar cell module of the present invention is typified by the laminate and the polyester film of the present invention, which are provided with a solar cell element that converts the light energy of sunlight into electric energy and is provided on the side where sunlight enters. It arrange | positions between the solar cell backsheets. The laminate and the polyester film can be sealed with a sealing agent typified by a resin such as an ethylene-vinyl acetate copolymer.
 太陽電池素子、太陽電池セル等、積層体及びバックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。本発明の太陽電池モジュールでは、太陽光が入射する側に本発明の積層体を備えるものを包含する。 About members other than a laminated body and a back sheet, such as a solar battery element and a solar battery cell, for example, described in detail in “Solar power generation system constituent material” (supervised by Eiichi Sugimoto, Industrial Research Committee, Inc., issued in 2008). Has been. The solar cell module of the present invention includes a module provided with the laminate of the present invention on the side where sunlight enters.
 太陽光が入射する側に設けられる積層体の基板としては、例えば、ガラス基材、アクリル樹脂等の透明樹脂等を挙げることができるが、本発明の太陽電池モジュールにおいては、ガラス基材の表面に、透明性に加え、防汚性にも優れる本発明の膜を備えた積層体が用いられる。 Examples of the substrate of the laminate provided on the side on which sunlight is incident include a glass substrate, a transparent resin such as an acrylic resin, and the like. In the solar cell module of the present invention, the surface of the glass substrate. In addition, a laminate including the film of the present invention that is excellent in antifouling property in addition to transparency is used.
 本発明の太陽電池モジュールに使用される太陽電池素子としては、特に制限はなく、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素等のIII-V族やII-VI族化合物半導体系等、各種公知の太陽電池素子をいずれも適用することができる。
 本発明の太陽電池モジュールは、透明性に優れ、防汚性及び親水性も良好な本発明の膜をガラス基材上に有する積層体を備えるため、長期間使用しても、表面の膜に傷が発生したり、汚染物質が付着したりすることによる光透過性の低下が抑制され、付着した汚染物質は雨等の水で容易に除去されるために、長期間に亘り良好な発電効率が維持される。
The solar cell element used in the solar cell module of the present invention is not particularly limited, and silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, copper-indium-gallium-selenium, copper-indium-selenium, Various known solar cell elements such as III-V and II-VI compound semiconductor systems such as cadmium-tellurium and gallium-arsenic can be applied.
The solar cell module of the present invention includes a laminate having the film of the present invention on the glass substrate, which is excellent in transparency, antifouling property and hydrophilicity. Reduced light transmission due to scratches and contamination, and the attached contaminants can be easily removed with rain or other water. Is maintained.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 なお、以下、特に断らない限り、濃度を表す「%」は「質量%」を意味する。
The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
Hereinafter, unless otherwise specified, “%” representing concentration means “mass%”.
〔実施例1〕
-シリケートオリゴマー液A1の調製-
 特定シロキサン化合物:シリケートMS-51(三菱化学社製)1.54質量部、エタノール40.74質量部、純水51.94質量部、及び、ノニオン性界面活性剤、ポリオキシエチレンラウリルエーテル:エマレックス715(日本エマルジョン社製、0.5%純水希釈)5.78質量部を混合して、室温(25℃)にて24時間以上撹拌することで、シリケートオリゴマー液A1を作製した。
 シリケートMS-51は一般式(1)で表されるシロキサンオリゴマーであって、Rが全てメチル基であり、nの平均が5である特定シロキサン化合物1である。
[Example 1]
-Preparation of silicate oligomer liquid A1-
Specific siloxane compound: silicate MS-51 (Mitsubishi Chemical Corporation) 1.54 parts by mass, ethanol 40.74 parts by mass, pure water 51.94 parts by mass, nonionic surfactant, polyoxyethylene lauryl ether: Emma A silicate oligomer solution A1 was prepared by mixing 5.78 parts by mass of Rex 715 (manufactured by Nippon Emulsion Co., Ltd., diluted with 0.5% pure water) and stirring at room temperature (25 ° C.) for 24 hours or more.
Silicate MS-51 is a siloxane oligomer represented by the general formula (1), and is a specific siloxane compound 1 in which R is all methyl groups and n has an average of 5.
-水性コート剤B1の調製-
 得られたシリケートオリゴマー液A1 41.28質量部、純水29.31質量部、エタノール17.11質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、小粒子径シリカ粒子:スノーテックスO-33(商品名:日産化学工業社製、平均一次粒子径:10-20nm)1.53質量部、中空シリカ粒子:スルーリア1110(商品名、日揮触媒化成社、平均一次粒子径50nm)3.01質量部を混合することで、水性コート剤B1を作製した。
 得られた水性コート剤B1を、ワイヤーバーを用いてガラス基材(日本電気硝子社製 無アルカリガラス OA-10:商品名、厚み:1.0mm)表面に、乾燥膜厚150nmとなる塗布量で塗布を行って塗膜を形成した。塗膜を、常温(25℃)で30分乾燥して、ガラス基材上に膜厚150nmの膜を有する積層体を作製した。
-Preparation of aqueous coating agent B1-
41.28 parts by mass of the resulting silicate oligomer liquid A1, 29.31 parts by mass of pure water, 17.11 parts by mass of ethanol, 2.16 parts by mass of Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) , Small particle size silica particles: Snowtex O-33 (trade name: manufactured by Nissan Chemical Industries, average primary particle size: 10-20 nm) 1.53 parts by mass, hollow silica particles: thruria 1110 (trade name, JGC Catalysts & Chemicals) Aqueous coating agent B1 was produced by mixing 3.01 parts by mass of the company, average primary particle size 50 nm).
A coating amount of the obtained aqueous coating agent B1 on the surface of a glass substrate (non-alkali glass OA-10: trade name, thickness: 1.0 mm, manufactured by Nippon Electric Glass Co., Ltd.) using a wire bar to a dry film thickness of 150 nm Was applied to form a coating film. The coating film was dried at room temperature (25 ° C.) for 30 minutes to produce a laminate having a film with a thickness of 150 nm on a glass substrate.
〔実施例2〕
-シリケートオリゴマー液A2の調製-
 シリケートMS-51(三菱化学社製)1.54質量部、エタノール40.74質量部、純水51.94質量部を混合して24時間以上撹拌することで、シリケートオリゴマー液A2を作製した。
-水性コート剤B2の調製-
 シリケートオリゴマー液A2 41.28質量部、純水31.66質量部、エタノール18.24質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)1.84質量部、スノーテックスO-33(日産化学工業社製)1.58質量部、スルーリア1110(日揮触媒化成社製)3.12質量部を混合することで、水性コート剤B2を作製した。
 得られた水性コート剤B2を用いて、実施例1と同様にして積層体を作製した。
[Example 2]
-Preparation of silicate oligomer liquid A2-
Silicate MS-51 (manufactured by Mitsubishi Chemical Corporation) 1.54 parts by mass, ethanol 40.74 parts by mass, and pure water 51.94 parts by mass were mixed and stirred for 24 hours or longer to prepare silicate oligomer liquid A2.
-Preparation of aqueous coating agent B2-
Silicate oligomer liquid A2 41.28 parts by mass, pure water 31.66 parts by mass, ethanol 18.24 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 1.84 parts by mass, Snowtex Aqueous coating agent B2 was prepared by mixing 1.58 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 3.12 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
Using the obtained aqueous coating agent B2, a laminate was produced in the same manner as in Example 1.
〔実施例3〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B3を作製した。
-水性コート剤B3の調製-
 シリケートオリゴマー液A2 41.28質量部、純水31.66質量部、エタノール18.24質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)0.18質量部、スノーテックスO-33(日産化学工業社製)1.56質量部、スルーリア1110(日揮触媒化成社製)3.09質量部を混合することで、水性コート剤B3を作製した。
 得られた水性コート剤B3を用いて、実施例1と同様にして積層体を作製した。
Example 3
In Example 1, an aqueous coating agent B3 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation.
-Preparation of aqueous coating agent B3-
Silicate oligomer liquid A2 41.28 parts by mass, pure water 31.66 parts by mass, ethanol 18.24 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 0.18 parts by mass, Snowtex Aqueous coating agent B3 was prepared by mixing 1.56 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 3.09 parts by mass of Thruria 1110 (manufactured by JGC Catalysts and Chemicals).
Using the obtained aqueous coating agent B3, a laminate was produced in the same manner as in Example 1.
〔実施例4〕
 実施例1において用いた界面活性剤エマレックス715をエマレックス720(日本エマルジョン社製、0.5%純水希釈)に変更した以外は同様にしてシリケートオリゴマー液A3、水性コート剤B4を得た。
 得られた水性コート剤B4を用いて、実施例1と同様にして積層体を作製した。
Example 4
A silicate oligomer liquid A3 and an aqueous coating agent B4 were obtained in the same manner except that the surfactant EMALEX 715 used in Example 1 was changed to EMALEX 720 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution). .
Using the obtained aqueous coating agent B4, a laminate was produced in the same manner as in Example 1.
〔実施例5〕
 実施例1において用いた界面活性剤エマレックス715をエマレックス712(日本エマルジョン社製、0.5%純水希釈)に変更した以外は同様にしてシリケートオリゴマー液A4、水性コート剤B5を作製した。
 得られた水性コート剤B5を用いて、実施例1と同様にして積層体を作製した。
Example 5
A silicate oligomer solution A4 and an aqueous coating agent B5 were prepared in the same manner except that the surfactant EMALEX 715 used in Example 1 was changed to EMALEX 712 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution). .
Using the obtained aqueous coating agent B5, a laminate was produced in the same manner as in Example 1.
〔実施例6〕
 実施例1のシリケートオリゴマー液A1の調製に用いたシリケートMS-51をシリケートMS-56(三菱化学社製)に変更した以外は同様にして、シリケートオリゴマー液A5を調製し、得られたシリケートオリゴマー液A5を用いた以外は、実施例1と同様にして水性コート剤B6を作製した。
 得られた水性コート剤B6を用いて、実施例1と同様にして積層体を作製した。
 シリケートMS-56は一般式(1)で表されるシロキサンオリゴマーであって、Rが全てメチル基であり、nの平均が10である特定シロキサン化合物2である。
Example 6
A silicate oligomer solution A5 was prepared in the same manner as in Example 1 except that the silicate MS-51 used for the preparation of the silicate oligomer solution A1 was changed to silicate MS-56 (manufactured by Mitsubishi Chemical Corporation), and the resulting silicate oligomer was obtained. An aqueous coating agent B6 was produced in the same manner as in Example 1 except that the liquid A5 was used.
Using the obtained aqueous coating agent B6, a laminate was prepared in the same manner as in Example 1.
Silicate MS-56 is a siloxane oligomer represented by the general formula (1), and is a specific siloxane compound 2 in which R is all methyl groups and n has an average of 10.
〔実施例7〕
-シリケートオリゴマー液A6の調製-
 特定シロキサン化合物:エチルシリケート40(コルコート社製)3.85質量部、エタノール40.74質量部、純水51.94質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)5.78質量部を混合して24時間以上撹拌することで、シリケートオリゴマー液A6を作製した。
-水性コート剤B7の調製-
 シリケートオリゴマー液A6 41.28質量部、純水29.31質量部、エタノール15.35質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.11質量部、スノーテックスO-33(日産化学工業社製)1.49質量部、スルーリア1110(日揮触媒化成社製)2.94質量部を混合することで、水性コート剤B7を作製した。
 得られた水性コート剤B7を用いて、実施例1と同様にして積層体を作製した。
 エチルシリケート40は一般式(1)で表されるシロキサンオリゴマーであって、Rが全てエチル基であり、nの平均が5である特定シロキサン化合物3である。
Example 7
-Preparation of silicate oligomer liquid A6-
Specific siloxane compound: 3.85 parts by mass of ethyl silicate 40 (manufactured by Colcoat), 40.74 parts by mass of ethanol, 51.94 parts by mass of pure water, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., diluted with 0.5% pure water) The silicate oligomer liquid A6 was produced by mixing 5.78 parts by mass and stirring for 24 hours or more.
-Preparation of aqueous coating agent B7-
Silicate oligomer liquid A6 41.28 parts by mass, pure water 29.31 parts by mass, ethanol 15.35 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.11 parts by mass, Snowtex Aqueous coating agent B7 was prepared by mixing 1.49 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 2.94 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B7.
The ethyl silicate 40 is a siloxane oligomer represented by the general formula (1), and is a specific siloxane compound 3 in which all R are ethyl groups and the average of n is 5.
〔実施例8〕
-シリケートオリゴマー液A7の調製-
 シリケートMS-51(三菱化学社製)1.54質量部、エタノール40.74質量部、
純水51.94質量部、触媒:アルミキレートD(川研ファインケミカル社製、1%エタノール希釈)0.47質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)5.78質量部を混合して、室温(25℃)にて12時間以上撹拌することで、シリケートオリゴマー液A7を作製した。
-水性コート剤B8の調製-
 得られたシリケートオリゴマー液A7 41.28質量部、純水29.31質量部、エタノール17.11質量部、アルミキレートD 1.74質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.28質量部、スノーテックスO-33(日産化学工業社製)1.56質量部、スルーリア1110(日揮触媒化成社製)3.08質量部を混合することで、水性コート剤B8を作製した。
 得られた水性コート剤B8を用いて、実施例1と同様にして積層体を作製した。
Example 8
-Preparation of silicate oligomer liquid A7-
Silicate MS-51 (Mitsubishi Chemical Corporation) 1.54 parts by mass, ethanol 40.74 parts by mass,
4. 51.94 parts by mass of pure water, catalyst: aluminum chelate D (manufactured by Kawaken Fine Chemical Co., 1% ethanol dilution) 0.47 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 78 mass parts was mixed and the silicate oligomer liquid A7 was produced by stirring at room temperature (25 degreeC) for 12 hours or more.
-Preparation of aqueous coating agent B8-
41.28 parts by mass of the resulting silicate oligomer liquid A7, 29.31 parts by mass of pure water, 17.11 parts by mass of ethanol, 1.74 parts by mass of aluminum chelate D, Emalex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% Pure water dilution) 2.28 parts by mass, Snowtex O-33 (manufactured by Nissan Chemical Industries, Ltd.) 1.56 parts by mass, Sululia 1110 (manufactured by JGC Catalysts & Chemicals) 3.08 parts by mass Agent B8 was produced.
Using the obtained aqueous coating agent B8, a laminate was prepared in the same manner as in Example 1.
〔実施例9〕
 実施例1において用いた、中空シリカ粒子:スルーリア1110をスルーリア4110(日揮触媒化成社製、平均一次粒子径60nm)に変更した以外は実施例1と同様にして、水性コート剤B9を作製した。
 得られた水性コート剤B9を用いて、実施例1と同様にして積層体を作製した。
Example 9
Aqueous coating agent B9 was prepared in the same manner as in Example 1, except that the hollow silica particles used in Example 1: Through rear 1110 were changed to Through rear 4110 (manufactured by JGC Catalysts & Chemicals, average primary particle size 60 nm).
Using the obtained aqueous coating agent B9, a laminate was produced in the same manner as in Example 1.
〔実施例10〕
 実施例1において用いた、中空シリカ粒子:スルーリア1110をシリナックス(日鉄鉱業社製)に変更した以外は実施例1と同様にして水性コート剤B10を作製した。
 得られた水性コート剤B10を用いて、実施例1と同様にして積層体を作製した。
Example 10
Aqueous coating agent B10 was produced in the same manner as in Example 1 except that the hollow silica particles used in Example 1: Thruria 1110 was changed to Sirinax (manufactured by Nippon Steel Mining Co., Ltd.).
A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B10.
〔実施例11〕
 実施例1におい用いた小粒子径シリカ粒子スノーテックスO-33をスノーテックスOYL(日産化学工業社製、平均一次粒子径50~80nm)に変更した以外は実施例1と同様にして水性コート剤B11を作製した。
 得られた水性コート剤B11を用いて、実施例1と同様にして積層体を作製した。
Example 11
Aqueous coating agent as in Example 1, except that the small particle size silica particle Snowtex O-33 used in Example 1 was changed to Snowtex OYL (manufactured by Nissan Chemical Industries, Ltd., average primary particle size 50 to 80 nm). B11 was produced.
A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B11.
〔実施例12〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B12を作製した。
-水性コート剤B12の作製-
 シリケートオリゴマー液A1 41.28質量部、純水28.06質量部、エタノール17.11質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、スノーテックスO-33(日産化学工業社製)1.86質量部、スルーリア1110(日揮触媒化成社製)2.47質量部を混合することで、水性コート剤B12を作製した。
 得られた水性コート剤B12を用いて、実施例1と同様にして積層体を作製した。
Example 12
An aqueous coating agent B12 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1.
-Production of aqueous coating agent B12-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 28.06 parts by mass, ethanol 17.11 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B12 was prepared by mixing 1.86 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 2.47 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
Using the obtained aqueous coating agent B12, a laminate was prepared in the same manner as in Example 1.
〔実施例13〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B13を作製した。
-水性コート剤B13の作製-
 シリケートオリゴマー液A1 41.28質量部、純水26.49質量部、エタノール17.11質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、スノーテックスO-33(日産化学工業社製)2.29質量部、スルーリア1110(日揮触媒化成社製)1.77質量部を混合することで、水性コート剤B13を作製した。
 得られた水性コート剤B13を用いて、実施例1と同様にして積層体を作製した。
Example 13
An aqueous coating agent B13 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1.
-Production of aqueous coating agent B13-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 26.49 parts by mass, ethanol 17.11 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B13 was produced by mixing 2.29 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 1.77 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
Using the obtained aqueous coating agent B13, a laminate was produced in the same manner as in Example 1.
〔実施例14〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B14を作製した。
-水性コート剤B14の作製-
 シリケートオリゴマー液A1 41.28質量部、純水24.73質量部、エタノール15.79質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、スノーテックスO-33(日産化学工業社製)2.74質量部、スルーリア1110(日揮触媒化成社製)1.05質量部を混合することで、水性コート剤B14を作製した。
 得られた水性コート剤B14を用いて、実施例1と同様にして積層体を作製した。
Example 14
An aqueous coating agent B14 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1.
-Production of aqueous coating agent B14-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 24.73 parts by mass, ethanol 15.79 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B14 was produced by mixing 2.74 parts by mass of O-33 (manufactured by Nissan Chemical Industries, Ltd.) and 1.05 parts by mass of Thruria 1110 (manufactured by JGC Catalysts and Chemicals).
A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B14.
〔実施例15〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B15を作製した。
-水性コート剤B15の作製-
 シリケートオリゴマー液A1 41.28質量部、純水23.85質量部、エタノール15.79質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、スノーテックスO-33(日産化学工業社製)3.02質量部、スルーリア1110(日揮触媒化成社製)0.61質量部を混合することで、水性コート剤B15を作製した。
 得られた水性コート剤B15を用いて、実施例1と同様にして積層体を作製した。
Example 15
An aqueous coating agent B15 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1.
-Production of aqueous coating agent B15-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 23.85 parts by mass, ethanol 15.79 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B15 was produced by mixing 3.02 parts by mass of O-33 (manufactured by Nissan Chemical Industries, Ltd.) and 0.61 parts by mass of Thululia 1110 (manufactured by JGC Catalysts and Chemicals).
A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B15.
〔実施例16〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B16を作製した。
-水性コート剤B16の作製-
 シリケートオリゴマー液A1 41.28質量部、純水22.98質量部、エタノール15.79質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、スノーテックスO-33(日産化学工業社製)3.18質量部、スルーリア1110(日揮触媒化成社製)0.34質量部を混合することで、水性コート剤B16を作製した。
 得られた水性コート剤B16を用いて、実施例1と同様にして積層体を作製した。
Example 16
An aqueous coating agent B16 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1.
-Production of aqueous coating agent B16-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 22.98 parts by mass, ethanol 15.79 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex Aqueous coating agent B16 was produced by mixing 3.18 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 0.34 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
Using the obtained aqueous coating agent B16, a laminate was prepared in the same manner as in Example 1.
〔実施例17〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B17を作製した。
-水性コート剤B17の作製-
 シリケートオリゴマー液A1 41.28質量部、純水28.06質量部、エタノール17.11質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.17質量部、帯電防止剤、アニオン性界面活性剤(スルホコハク酸塩):リパール870P(ライオン社製、0.2%水希釈液)1.16質量部、スノーテックスO-33(日産化学工業社製)1.53質量部、スルーリア1110(日揮触媒化成社製)3.02質量部を混合することで、水性コート剤B17を作製した。
 得られた水性コート剤B17を用いて、実施例1と同様にして積層体を作製した。
Example 17
An aqueous coating agent B17 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1.
-Production of aqueous coating agent B17-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 28.06 parts by mass, ethanol 17.11 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.17 parts by mass, antistatic Agent, anionic surfactant (sulfosuccinate): Lipal 870P (manufactured by Lion Corporation, 0.2% water dilution) 1.16 parts by mass, Snowtex O-33 (manufactured by Nissan Chemical Industries) 1.53 parts by mass Part, through rear 1110 (manufactured by JGC Catalysts & Chemicals Co., Ltd.) 3.02 parts by mass, aqueous coating agent B17 was produced.
Using the obtained aqueous coating agent B17, a laminate was produced in the same manner as in Example 1.
〔実施例18〕
 実施例1において、水性コート剤を下記処方に変更した以外は実施例1と同様にして水性コート剤B18を作製した。
-水性コート剤B18の作製-
 シリケートオリゴマー液A1 41.28質量部、純水35.96質量部、エタノール17.11質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)3.95質量部、帯電防止剤(金属酸化物粒子分散液):セルナックスCXS-204IP(日産化学工業社製)1.24質量部、スノーテックスO-33(日産化学工業社製)2.13質量部、スルーリア1110(日揮触媒化成社製)4.20質量部を混合することで、水性コート剤B18を作製した。
 得られた水性コート剤B18を用いて、実施例1と同様にして積層体を作製した。
Example 18
An aqueous coating agent B18 was produced in the same manner as in Example 1 except that the aqueous coating agent was changed to the following formulation in Example 1.
-Production of aqueous coating agent B18-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 35.96 parts by mass, ethanol 17.11 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 3.95 parts by mass, antistatic Agent (metal oxide particle dispersion): 1.24 parts by mass of Celnax CXS-204IP (manufactured by Nissan Chemical Industries), 2.13 parts by mass of Snowtex O-33 (manufactured by Nissan Chemical Industries, Ltd.), 1110 (through JGC) Aqueous coating agent B18 was produced by mixing 4.20 parts by mass of Catalyst Kasei Co., Ltd.).
A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B18.
〔実施例19〕
 実施例1で得た水性コート剤B1を、ワイヤーバーを用いて塗布する際に、乾燥膜厚が40nmとなる塗布量で塗布して膜を形成した以外は、実施例1と同様にして、積層体を作製した。
Example 19
When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same manner as in Example 1 except that the film was formed by applying with a coating amount such that the dry film thickness was 40 nm. A laminate was produced.
〔実施例20〕
 実施例1で得た水性コート剤B1を、ワイヤーバーを用いて塗布する際に、乾燥膜厚が70nmとなる塗布量で塗布して膜を形成した以外は、実施例1と同様にして、積層体を作製した。
Example 20
When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same manner as in Example 1 except that the film was formed by applying with a coating amount such that the dry film thickness was 70 nm. A laminate was produced.
〔実施例21〕
 実施例1で得た水性コート剤B1を、ワイヤーバーを用いて塗布する際に、乾燥膜厚が300nmとなる塗布量で塗布して膜を形成した以外は、実施例1と同様にして、積層体を作製した。
Example 21
When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same manner as in Example 1 except that the film was formed by applying with a coating amount such that the dry film thickness was 300 nm. A laminate was produced.
〔実施例22〕
 実施例1で得た水性コート剤B1を、ワイヤーバーを用いて塗布する際に、乾燥膜厚が400nmとなる塗布量で塗布して膜を形成した以外は、実施例1と同様にして、積層体を作製した。
[Example 22]
When the aqueous coating agent B1 obtained in Example 1 was applied using a wire bar, it was applied in the same amount as that of Example 1 except that the dry film thickness was 400 nm to form a film. A laminate was produced.
〔実施例23〕
 実施例8において、水性コート剤を下記処方に変更した以外は実施例8と同様にして水性コート剤B19を作製した。
-水性コート剤B19の作製-
 シリケートオリゴマー液A7 41.28質量部、純水28.06質量部、エタノール17.11質量部、アルミキレートD 1.75質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.29質量部、リパール870P 1.17質量部、スノーテックスO-33(日産化学工業社製)1.57質量部、スルーリア1110(日揮触媒化成社製)3.10質量部を混合することで、水性コート剤B19を作製した。
 得られた水性コート剤B19を用いて、実施例1と同様にして積層体を作製した。
Example 23
In Example 8, an aqueous coating agent B19 was produced in the same manner as in Example 8, except that the aqueous coating agent was changed to the following formulation.
-Production of aqueous coating agent B19-
Silicate oligomer liquid A7 41.28 parts by mass, pure water 28.06 parts by mass, ethanol 17.11 parts by mass, aluminum chelate D 1.75 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) ) 2.29 parts by mass, Ripar 870P 1.17 parts by mass, Snowtex O-33 (Nissan Chemical Industry Co., Ltd.) 1.57 parts by mass, Sululia 1110 (JGC Catalysts & Chemicals Co., Ltd.) 3.10 parts by mass are mixed. Thus, an aqueous coating agent B19 was produced.
Using the obtained aqueous coating agent B19, a laminate was produced in the same manner as in Example 1.
〔比較例1〕
-シリケートオリゴマー液A8の作製-
 シリケートMS-51(三菱化学社製)1.54質量部、エタノール40.74質量部、純水51.94質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)3.97質量部を混合して24時間以上撹拌することで、シリケートオリゴマー液A8を作製した。
 得られたシリケートオリゴマー液A8を、実施例1で用いたガラス基材上に乾燥膜厚150nmとなるようにワイヤーバーで塗布し、実施例1と同様にして積層体を作製した。
[Comparative Example 1]
-Preparation of silicate oligomer liquid A8-
2. 1.54 parts by mass of silicate MS-51 (Mitsubishi Chemical Corporation), 40.74 parts by mass of ethanol, 51.94 parts by mass of pure water, Emalex 715 (manufactured by Nippon Emulsion Co., Ltd., diluted with 0.5% pure water) Silicate oligomer liquid A8 was produced by mixing 97 parts by mass and stirring for 24 hours or more.
The obtained silicate oligomer liquid A8 was applied on the glass substrate used in Example 1 with a wire bar so as to have a dry film thickness of 150 nm, and a laminate was produced in the same manner as in Example 1.
〔比較例2〕
 実施例1において、水性コート剤を下記処方に変えた以外は実施例1と同様にして水性コート剤を作製した。
-水性コート剤B20の作製-
 シリケートオリゴマー液A1 41.28質量部、純水22.52質量部、エタノール15.26質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、スルーリア1110(日揮触媒化成社製)5.46質量部を混合することで、水性コート剤B20を作製した。
 得られた水性コート剤B20を用いて、実施例1と同様にして積層体を作製した。
[Comparative Example 2]
In Example 1, the aqueous coating agent was produced like Example 1 except having changed the aqueous | water-based coating agent into the following prescription.
-Production of aqueous coating agent B20-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 22.52 parts by mass, ethanol 15.26 parts by mass, EMALEX 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, through rear 1110 Aqueous coating agent B20 was produced by mixing 5.46 parts by mass (manufactured by JGC Catalysts & Chemicals).
Using the obtained aqueous coating agent B20, a laminate was produced in the same manner as in Example 1.
〔比較例3〕
 実施例1において、水性コート剤を下記処方に変えた以外は実施例1と同様にして水性コート剤を作製した。
-水性コート剤B21の作製-
 シリケートオリゴマー液A1 41.28質量部、純水22.52質量部、エタノール15.26質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)2.16質量部、スノーテックスOYL(日産化学工業社製)5.46質量部を混合することで、水性コート剤B21を作製した。
 得られた水性コート剤B21を用いて、実施例1と同様にして積層体を作製した。
[Comparative Example 3]
In Example 1, the aqueous coating agent was produced like Example 1 except having changed the aqueous | water-based coating agent into the following prescription.
-Production of aqueous coating agent B21-
Silicate oligomer liquid A1 41.28 parts by mass, pure water 22.52 parts by mass, ethanol 15.26 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 2.16 parts by mass, Snowtex The aqueous coating agent B21 was produced by mixing 5.46 mass parts of OYL (Nissan Chemical Industry Co., Ltd.).
Using the obtained aqueous coating agent B21, a laminate was produced in the same manner as in Example 1.
〔比較例4〕
 実施例2において、水性コート剤を下記処方に変えた以外は実施例2と同様にして水性コート剤を作製した。
-水性コート剤B22の作製-
 シリケートオリゴマー液A2 41.28質量部、純水31.66質量部、エタノール18.24質量部、エマレックス715(日本エマルジョン社製、0.5%純水希釈)0.02質量部、スノーテックスO-33(日産化学工業社製)1.56質量部、スルーリア1110(日揮触媒化成社製)3.08質量部を混合することで、水性コート剤B22を作製した。
 比較例4における界面活性剤の固形分は水性コートの全固形分質量に対して0.005質量%であり、本発明の範囲外の水性コート剤である。
 得られた水性コート剤B22を用いて、実施例1と同様にして積層体を作製した。
[Comparative Example 4]
In Example 2, an aqueous coating agent was prepared in the same manner as in Example 2 except that the aqueous coating agent was changed to the following formulation.
-Production of aqueous coating agent B22-
Silicate oligomer liquid A2 41.28 parts by mass, pure water 31.66 parts by mass, ethanol 18.24 parts by mass, Emarex 715 (manufactured by Nippon Emulsion Co., Ltd., 0.5% pure water dilution) 0.02 parts by mass, Snowtex Aqueous coating agent B22 was produced by mixing 1.56 parts by mass of O-33 (manufactured by Nissan Chemical Industries) and 3.08 parts by mass of Thululia 1110 (manufactured by JGC Catalysts & Chemicals).
The solid content of the surfactant in Comparative Example 4 is 0.005% by mass with respect to the total solid mass of the aqueous coat, and is an aqueous coat outside the scope of the present invention.
A laminate was produced in the same manner as in Example 1 using the obtained aqueous coating agent B22.
 実施例1~実施例23、及び比較例1~比較例4で用いた水性コート剤の処方及び膜厚を下記表2及び表3に示す。表2及び表3において、「水」の欄の「Y」は、水を含有することを意味する。
〔評価〕
 作製した水性コート剤を用いて形成した膜を有する積層体に対して、以下の項目で性能評価を行なった。評価結果を下記表4に示す。
Tables 2 and 3 below show the formulations and film thicknesses of the aqueous coating agents used in Examples 1 to 23 and Comparative Examples 1 to 4. In Tables 2 and 3, “Y” in the column of “water” means that water is contained.
[Evaluation]
Performance evaluation was performed on the following items for a laminate having a film formed using the produced aqueous coating agent. The evaluation results are shown in Table 4 below.
(1.光学特性)
1-1.透過率
 紫外可視赤外分光光度計(UV-3600、島津製作所)に積分球付属装置(ISR-2200、島津製作所)を接続した装置を用い、波長300nm~1400nmの光を用いて、積分球透過率から算出した。
 波長300nm~1400nmにおける平均透過率を算出し、膜を形成しないガラス基材に対する透過率向上分を、以下の基準で評価した。以下の基準においてC以上が実用上問題のない透過性であると評価する。
 A:透過率向上分が1.8%以上である。
 B:透過率向上分が1.0以上1.8%未満である。
 C:透過率向上分が0.2%以上1.0%未満である。
 D:透過率向上分が0.2%未満である。
(1. Optical properties)
1-1. Transmittance Integral sphere transmission using light with a wavelength of 300 nm to 1400 nm using a device in which an integrating sphere attachment device (ISR-2200, Shimadzu Corp.) is connected to an ultraviolet visible infrared spectrophotometer (UV-3600, Shimadzu Corp.) Calculated from the rate.
The average transmittance at a wavelength of 300 nm to 1400 nm was calculated, and the improvement in transmittance relative to the glass substrate on which no film was formed was evaluated according to the following criteria. In the following criteria, it is evaluated that C or more is a transmittance having no practical problem.
A: The transmittance improvement is 1.8% or more.
B: The transmittance improvement is 1.0 or more and less than 1.8%.
C: The transmittance improvement is 0.2% or more and less than 1.0%.
D: The transmittance improvement is less than 0.2%.
1-2.ヘイズ
 日本電色工業社製ヘーズメーターNDH700によりヘイズ測定を行った。膜を形成しないガラス基材に対するヘイズの上昇分を、以下の基準で評価した。
以下の基準においてB以上が実用上問題のないヘイズであると評価する。
 A:ヘイズ上昇分がガラス基材に対して0.5%未満
 B:ヘイズ上昇分がガラス基材に対して0.5%以上2%未満
 C:ヘイズ上昇分がガラス基材に対して2%以上
1-2. Haze Haze measurement was performed with a haze meter NDH700 manufactured by Nippon Denshoku Industries Co., Ltd. The amount of increase in haze relative to the glass substrate not forming a film was evaluated according to the following criteria.
In the following criteria, B or higher is evaluated as a haze having no practical problem.
A: Increase in haze is less than 0.5% relative to glass substrate B: Increase in haze is not less than 0.5% and less than 2% relative to glass substrate C: Increase in haze is 2 relative to glass substrate %more than
(2.防汚性)
2-1.表面抵抗
 三菱化学アナリテック社製 ハイレスタ MCP-HT450を用いて、積層体表面の膜の表面抵抗値を測定し、以下の基準で評価した。
以下の基準においてB以上が実用上問題のない表面抵抗であると評価する。
 A:膜の表面抵抗が1×1010Ω/sq.以下である。
 B:膜の表面抵抗が1×1010Ω/sq.を超え、1×1011Ω/sq.以下である。
 C:膜の表面抵抗が1×1011Ω/sq.を超え、1×1012Ω/sq.以下である。
(2. Antifouling property)
2-1. Surface Resistance Using Hiresta MCP-HT450 manufactured by Mitsubishi Chemical Analytech Co., Ltd., the surface resistance value of the film on the surface of the laminate was measured and evaluated according to the following criteria.
In the following criteria, it is evaluated that B or more is a surface resistance having no practical problem.
A: The surface resistance of the film is 1 × 10 10 Ω / sq. It is as follows.
B: The surface resistance of the film is 1 × 10 10 Ω / sq. Exceeding 1 × 10 11 Ω / sq. It is as follows.
C: The surface resistance of the film is 1 × 10 11 Ω / sq. Exceeding 1 × 10 12 Ω / sq. It is as follows.
 2-2.黄土付着
 積層体表面の膜の防汚性は、黄土付着に対する抵抗性で評価した。
 ホルベイン社製天然黄土顔料を積層体の膜上にまんべんなく振りかけた後に裏面を叩いて落とす作業を5回繰り返し、膜上に付着した黄土の量を目視で確認し、以下の基準で評価した。以下の基準においてB以上が実用上問題のない黄土付着性であると評価する。
 A:膜表面に黄土顔料がほぼ観察されず、積層体は目視で無色透明である。
 B:黄土顔料の付着は観察されるが、付着面積は膜全表面積に対し30%以下である。
 C:黄土顔料の付着が観察され、付着面積が膜全表面積に対し30%を超える。
   (黄土顔料が全面に付着している場合も含む)
2-2. Ocher adhesion The antifouling property of the film on the surface of the laminate was evaluated by resistance to adhesion of ocher.
The operation of sprinkling the holbein natural ocher pigment evenly over the film of the laminate and then hitting and dropping the back surface was repeated 5 times. The amount of ocher adhering to the film was visually confirmed and evaluated according to the following criteria. In the following criteria, it is evaluated that B or more is ocher adhesion having no practical problem.
A: Almost no ocher pigment is observed on the film surface, and the laminate is visually colorless and transparent.
B: Although adhesion of ocher pigment is observed, the adhesion area is 30% or less with respect to the total surface area of the film.
C: Adhesion of ocher pigment is observed, and the adhesion area exceeds 30% with respect to the total surface area of the film.
(Including cases where loess pigment is attached to the entire surface)
(3.洗浄性)
3-1.水接触角
 膜の表面親水性は、水の接触角で評価した。水としては、純水を用い、純水に対する接触角を5回測定し、その平均値を接触角値とし、以下の基準で評価した。
 以下の基準においてB以上が実用上問題のない親水性であると評価する。
 A:水の接触角が15°以下である。
 B:水の接触角が15°を超え、25°以下である。
 C:水の接触角が25°を超える
3-2.洗浄評価
 2.防汚性「2-2.黄土付着」評価で用いた黄土顔料が付着した試料(10cm×10cm、積層体の裏面を叩いて黄土を落とす作業を行なわなかったもの)に、純水20mlをかけ流して乾燥した後に、膜表面に残存する黄土顔料の量を目視で観察し、以下の基準で評価した。
 以下の基準においてB以上が実用上問題のない洗浄性であると評価する。
 A:洗浄後の膜表面に黄土顔料がほぼ観察されず、積層体は目視で無色透明である。
 B:洗浄後に黄土顔料の付着は観察されるが、付着面積は膜全表面積に対し20%以下である。
 C:洗浄後の黄土顔料の付着面積は、膜全表面積に対し、20%を超える。
(3. Detergency)
3-1. Water contact angle The surface hydrophilicity of the membrane was evaluated by the water contact angle. As water, pure water was used, the contact angle with pure water was measured 5 times, and the average value was defined as the contact angle value, and evaluated according to the following criteria.
In the following criteria, B or higher is evaluated as hydrophilic with no problem in practical use.
A: The contact angle of water is 15 ° or less.
B: The contact angle of water exceeds 15 ° and is 25 ° or less.
C: Water contact angle exceeds 25 ° 3-2. Cleaning evaluation Antifouling property “2-2. Adhesion of loess” The sample (10 cm × 10 cm, which was not subjected to the work of removing the ocher by hitting the back of the laminate) with the ocher pigment used was applied to 20 ml of pure water. After flowing and drying, the amount of ocher pigment remaining on the film surface was visually observed and evaluated according to the following criteria.
In the following criteria, it is evaluated that B or higher is a cleanability having no practical problem.
A: Almost no ocher pigment is observed on the surface of the film after washing, and the laminate is colorless and transparent visually.
B: Although adhesion of ocher pigment is observed after washing, the adhesion area is 20% or less with respect to the total surface area of the film.
C: The adhesion area of the ocher pigment after washing exceeds 20% with respect to the total surface area of the film.
(4.面状評価:ハジキ)
 積層体を形成する際に、10cm×10cmガラス基材上に評価対象の水性コート剤を、塗布膜厚が150nmとなるように、ワイヤーバーを用いて塗布し、乾燥後の塗膜の面状を光学顕微鏡で観察し、以下の基準で評価した。
 以下の基準においてB以上が実用上問題のない面状であると評価する。
A:核が見られないハジキの個数が、10cm×10cmの面積の面内で1個以下である。
B:核が見られないハジキの個数が、10cm×10cmの面積の面内で1個を超え、3個以下である。
C:核が見られないハジキの個数が、10cm×10cmの面積の面内で3個を超える数である。
  (膜が均一に形成されない場合も含む)
 上記の「核が見られないハジキ」とは、乾燥後の塗膜の表面を光学顕微鏡で観察した場合に、中心部に異物が観察されずに塗膜が存在しない、スポット状の箇所を意味する。塗膜が存在しないスポット状の箇所は、ガラス基材の表面が露出しているため、段差が生じており、光学顕微鏡により容易に観察することができる。
(4. Planar evaluation: repelling)
When forming the laminate, the aqueous coating agent to be evaluated is applied on a 10 cm × 10 cm glass substrate using a wire bar so that the coating film thickness is 150 nm, and the surface shape of the coating film after drying is applied. Were observed with an optical microscope and evaluated according to the following criteria.
In the following criteria, B or higher is evaluated as a surface having no practical problem.
A: The number of repellings in which no nucleus is seen is 1 or less in a plane having an area of 10 cm × 10 cm.
B: The number of repellings in which no nuclei are observed is more than 1 and 3 or less in a plane having an area of 10 cm × 10 cm.
C: The number of repellings in which no nuclei are observed is a number exceeding 3 in a plane having an area of 10 cm × 10 cm.
(Including cases where the film is not formed uniformly)
The above-mentioned “repellency without nuclei” means a spot-like spot where the surface of the coated film after drying is observed with an optical microscope and no foreign matter is observed at the center and no coated film is present. To do. Since the surface of the glass substrate is exposed at the spot-like portion where the coating film does not exist, a step is generated and can be easily observed with an optical microscope.
(5.加水分解時間)
 シリケートオリゴマー液を調液する際に撹拌時間とオリゴマー液塗膜の水接触角の関係から、加水分解時間を決定した。
 加水分解時間が十分ではない場合は、撹拌時間と共にオリゴマー液塗膜の接触角は減少する傾向にあるが、加水分解が完了するとそれ以降は撹拌時間によらず接触角は一定値を示す。
A:オリゴマー液塗膜の接触角が安定するまでの撹拌時間が15時間未満である。
B:オリゴマー液塗膜の接触角が安定するまでの撹拌時間が15時間以上である。
(5. Hydrolysis time)
When preparing the silicate oligomer liquid, the hydrolysis time was determined from the relationship between the stirring time and the water contact angle of the oligomer liquid coating film.
When the hydrolysis time is not sufficient, the contact angle of the oligomer liquid coating film tends to decrease with the stirring time. However, when the hydrolysis is completed, the contact angle shows a constant value regardless of the stirring time thereafter.
A: The stirring time until the contact angle of the oligomer liquid coating film is stabilized is less than 15 hours.
B: The stirring time until the contact angle of the oligomer liquid coating film is stabilized is 15 hours or more.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表4の結果より、実施例の水性コート剤を用いて作製した積層体に形成された膜は、無色透明で均一な膜であった。膜は、透明性、親水性、防汚性のいずれにも優れ、付着した汚染物質を水により容易に洗い流すことができた。
 シリカ粒子を添加しない比較例1は透明性、防汚性が劣るものであった。
 中空シリカ粒子のみを用いた比較例2は防汚性が劣り、小粒子径シリカ粒子のみを用いた比較例3では透明性に劣る。このため、単独シリカ粒子の添加系では本発明の効果が得られなかった。
 また、界面活性剤の含有量が本発明の範囲より少ない比較例4の場合には、均一な膜が得られず、評価を行うことができなかった。
From the results in Table 4, the film formed on the laminate produced using the aqueous coating agent of the example was a colorless transparent uniform film. The film was excellent in transparency, hydrophilicity, and antifouling properties, and the adhered contaminants could be easily washed away with water.
The comparative example 1 which does not add a silica particle was inferior in transparency and antifouling property.
Comparative Example 2 using only hollow silica particles has poor antifouling properties, and Comparative Example 3 using only small particle size silica particles has poor transparency. For this reason, the effect of this invention was not acquired with the addition system of a single silica particle.
Moreover, in the case of the comparative example 4 with less surfactant content than the range of this invention, a uniform film | membrane was not obtained and evaluation could not be performed.
 本発明の水性コート剤を用いることで、透明性に優れた膜を形成することができる。形成された膜は、さらに、表面親水性が良好であるという特性を有するため、防汚性にも優れる。
 このため、透明性、及び耐久性を必要とする各種部材の表面保護材、光学デバイス等に好適に使用され、なかでも、太陽電池モジュールの表面保護材として有用である。
By using the aqueous coating agent of the present invention, a film having excellent transparency can be formed. Since the formed film has a property that the surface hydrophilicity is good, the antifouling property is also excellent.
For this reason, it is used suitably for the surface protection material of various members which require transparency and durability, an optical device, etc. Especially, it is useful as a surface protection material of a solar cell module.
 2014年3月17日に出願された日本国特許出願2014-054190号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2014-054190 filed on March 17, 2014 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  水と、一般式(1)で表されるシロキサンオリゴマーと、中空シリカ粒子と、中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子と、界面活性剤とを含み、
     界面活性剤の含有量が、水性コート剤の全固形分質量に対し0.01質量%以上である水性コート剤。
    Figure JPOXMLDOC01-appb-C000001

     
     一般式(1)中、R、R、R、及びRは、それぞれ独立に炭素数1~6の1価の有機基を表す。nは2~20の整数を表す。
    Water, a siloxane oligomer represented by the general formula (1), hollow silica particles, silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles, and a surfactant,
    The aqueous coating agent whose content of surfactant is 0.01 mass% or more with respect to the total solid content mass of an aqueous coating agent.
    Figure JPOXMLDOC01-appb-C000001


    In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
  2.  シロキサンオリゴマーの縮合を促進する触媒を含む請求項1に記載の水性コート剤。 The aqueous coating agent according to claim 1, comprising a catalyst for promoting condensation of the siloxane oligomer.
  3.  中空シリカ粒子の平均一次粒子径が75nm以下である請求項1又は請求項2に記載の水性コート剤。 The aqueous coating agent according to claim 1 or 2, wherein the hollow silica particles have an average primary particle diameter of 75 nm or less.
  4.  中空シリカ粒子の含有量が、水性コート剤に含まれる中空シリカ粒子と中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子との総質量に対して3質量%以上90質量%以下である請求項1~請求項3のいずれか1項に記載の水性コート剤。 The content of the hollow silica particles is 3% by mass or more and 90% by mass with respect to the total mass of the hollow silica particles contained in the aqueous coating agent and the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles. The aqueous coating agent according to any one of claims 1 to 3, wherein the aqueous coating agent is not more than%.
  5.  中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子の平均一次粒子径が50nm以下である請求項1~請求項4のいずれか1項に記載の水性コート剤。 The aqueous coating agent according to any one of claims 1 to 4, wherein the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles have an average primary particle size of 50 nm or less.
  6.  前記一般式(1)におけるnが3~12である請求項1~請求項5のいずれか1項に記載の水性コート剤。 6. The aqueous coating agent according to claim 1, wherein n in the general formula (1) is 3 to 12.
  7.  帯電防止剤を含む請求項1~請求項6のいずれか1項に記載の水性コート剤。 The aqueous coating agent according to any one of claims 1 to 6, comprising an antistatic agent.
  8.  一般式(1)で表されるシロキサンオリゴマーの含有量が、水性コート剤に含まれる全固形分質量に対して3質量%以上70質量%以下である請求項1~請求項7のいずれか1項に記載の水性コート剤。 The content of the siloxane oligomer represented by the general formula (1) is 3% by mass or more and 70% by mass or less based on the total solid content in the aqueous coating agent. The aqueous coating agent according to Item.
  9.  中空シリカ粒子の含有量が、水性コート剤に含まれる全固形分質量に対して1質量%以上60質量%以下である請求項1~請求項8のいずれか1項に記載の水性コート剤。 The aqueous coating agent according to any one of claims 1 to 8, wherein the content of the hollow silica particles is 1% by mass or more and 60% by mass or less with respect to the total solid mass contained in the aqueous coating agent.
  10.  中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子の含有量が、水性コート剤に含まれる全固形分質量に対して5質量%以上95質量%以下である請求項1~請求項9のいずれか1項に記載の水性コート剤。 The content of silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles is 5% by mass or more and 95% by mass or less based on the total solid content mass contained in the aqueous coating agent. The aqueous coating agent according to any one of claims 9 to 9.
  11.  中空シリカ粒子と中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子との総含有量が、水性コート剤に含まれる全固形分質量に対して30質量%以下である請求項1~請求項10のいずれか1項に記載の水性コート剤。 The total content of the hollow silica particles and the silica particles having an average primary particle size smaller than the average primary particle size of the hollow silica particles is 30% by mass or less based on the total solid content mass contained in the aqueous coating agent. The aqueous coating agent according to any one of claims 1 to 10.
  12.  一般式(1)で表されるシロキサンオリゴマー、及び一般式(1)で表されるシロキサンオリゴマーの縮合物から選ばれる少なくとも1種のシロキサン化合物と、中空シリカ粒子と、中空シリカ粒子の平均一次粒子径よりも小さい平均一次粒子径を有するシリカ粒子と、界面活性剤とを含有し、膜厚が50nm~350nmである膜。
    Figure JPOXMLDOC01-appb-C000002

     
     一般式(1)中、R、R、R、及びRは、それぞれ独立に炭素数1~6の1価の有機基を表す。nは2~20の整数を表す。
    At least one siloxane compound selected from the siloxane oligomer represented by the general formula (1) and the condensate of the siloxane oligomer represented by the general formula (1), hollow silica particles, and average primary particles of the hollow silica particles A film containing silica particles having an average primary particle diameter smaller than the diameter and a surfactant and having a film thickness of 50 nm to 350 nm.
    Figure JPOXMLDOC01-appb-C000002


    In general formula (1), R 1 , R 2 , R 3 , and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 2 to 20.
  13.  基材上に、請求項1~請求項11のいずれか1項に記載の水性コート剤を塗布し、乾燥することを含む、乾燥膜厚が50nm~350nmである膜の製造方法。 A method for producing a film having a dry film thickness of 50 nm to 350 nm, comprising applying the aqueous coating agent according to any one of claims 1 to 11 on a substrate and drying the film.
  14.  ガラス基材上に請求項12に記載の膜、又は請求項13に記載の製造方法により得られた膜を有する積層体。 A laminate having the film according to claim 12 or the film obtained by the production method according to claim 13 on a glass substrate.
  15.  請求項14に記載の積層体を備える太陽電池モジュール。 A solar cell module comprising the laminate according to claim 14.
PCT/JP2015/050287 2014-03-17 2015-01-07 Aqueous coating agent, film, film production method, laminate, and solar cell module WO2015141240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580002771.7A CN105765015B (en) 2014-03-17 2015-01-07 Aqueous coating agent, film, the manufacturing method of film, laminated body and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014054190A JP6099587B2 (en) 2014-03-17 2014-03-17 Aqueous coating agent, film, film production method, laminate, and solar cell module
JP2014-054190 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015141240A1 true WO2015141240A1 (en) 2015-09-24

Family

ID=54144220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050287 WO2015141240A1 (en) 2014-03-17 2015-01-07 Aqueous coating agent, film, film production method, laminate, and solar cell module

Country Status (4)

Country Link
JP (1) JP6099587B2 (en)
CN (1) CN105765015B (en)
TW (1) TW201536864A (en)
WO (1) WO2015141240A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136041A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Hydrophilic film and production process therefor, laminate, protective material for surveillance camera, and surveillance camera
WO2017111169A1 (en) * 2015-12-25 2017-06-29 京セラ株式会社 Insulation paste, method for manufacturing same, method for manufacturing solar cell element, and solar cell element
WO2017217513A1 (en) * 2016-06-17 2017-12-21 富士フイルム株式会社 Film forming composition, laminate, and laminate manufacturing method
WO2017217474A1 (en) * 2016-06-17 2017-12-21 富士フイルム株式会社 Film forming composition and laminate manufacture method
JP2019051596A (en) * 2017-09-12 2019-04-04 大日本印刷株式会社 Oil-repellent laminate
CN113946000A (en) * 2020-06-30 2022-01-18 日本电产株式会社 Method for manufacturing optical member and optical member

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6154833B2 (en) * 2015-01-07 2017-06-28 三菱ケミカル株式会社 Laminated polyester film
KR101749174B1 (en) * 2016-01-18 2017-06-21 영창케미칼 주식회사 Coating composition for anti-reflection and anti-reflection film using the same
WO2017150393A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Aqueous coating composition, anti-reflection film, laminate, method for producing laminate, and solar cell module
JP2018006699A (en) * 2016-07-08 2018-01-11 株式会社エコ・24 Photovoltaic power generation module and manufacturing method therefor
WO2018101277A1 (en) * 2016-11-30 2018-06-07 富士フイルム株式会社 Coating composition, antireflective film, laminate, method for producing laminate, and solar cell module
JP6866642B2 (en) * 2016-12-29 2021-04-28 株式会社リコー Ink sets, ink cartridges, printing methods and printing equipment
JP7055294B2 (en) * 2018-04-02 2022-04-18 株式会社トラディショナルインテリジェンス Method of forming coating member and siliceous coating layer
WO2019216061A1 (en) * 2018-05-11 2019-11-14 富士フイルム株式会社 Coating agent, anti-fog coating, method for producing anti-fog coating, and multilayer body
CN115678424B (en) * 2022-10-27 2023-11-17 东莞南玻太阳能玻璃有限公司 Water-based anti-reflection coating liquid and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052352A (en) * 2004-08-13 2006-02-23 Nippon Paint Co Ltd Aqueous hydrophilization treatment agent
JP2007182511A (en) * 2006-01-10 2007-07-19 Toray Ind Inc Coating material, method for producing the same and optical article
WO2008041681A1 (en) * 2006-10-02 2008-04-10 Asahi Glass Company, Limited Coating composition for formation of antireflective film, and article having antireflective film formed therein
JP2009203285A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Coating material composition for forming film and antireflection base material
JP2010168508A (en) * 2009-01-26 2010-08-05 Toppan Printing Co Ltd Low refractive index composition, antireflection material, and display
JP2011195806A (en) * 2010-02-23 2011-10-06 Panasonic Electric Works Co Ltd Fingerprint-resistant coating film-formed article and fingerprint-resistant coating material composition
JP2013081941A (en) * 2011-09-30 2013-05-09 Dainippon Toryo Co Ltd Method of forming antifouling coating film, and antifouling painting article
WO2015012021A1 (en) * 2013-07-24 2015-01-29 富士フイルム株式会社 Water-based anti-soiling agent, anti-soiling layer, layered body, and solar battery module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916266B2 (en) * 2009-03-11 2014-12-23 Asahi Kasei E-Materials Corporation Coating composition, coating film, laminate, and process for production of laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052352A (en) * 2004-08-13 2006-02-23 Nippon Paint Co Ltd Aqueous hydrophilization treatment agent
JP2007182511A (en) * 2006-01-10 2007-07-19 Toray Ind Inc Coating material, method for producing the same and optical article
WO2008041681A1 (en) * 2006-10-02 2008-04-10 Asahi Glass Company, Limited Coating composition for formation of antireflective film, and article having antireflective film formed therein
JP2009203285A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Coating material composition for forming film and antireflection base material
JP2010168508A (en) * 2009-01-26 2010-08-05 Toppan Printing Co Ltd Low refractive index composition, antireflection material, and display
JP2011195806A (en) * 2010-02-23 2011-10-06 Panasonic Electric Works Co Ltd Fingerprint-resistant coating film-formed article and fingerprint-resistant coating material composition
JP2013081941A (en) * 2011-09-30 2013-05-09 Dainippon Toryo Co Ltd Method of forming antifouling coating film, and antifouling painting article
WO2015012021A1 (en) * 2013-07-24 2015-01-29 富士フイルム株式会社 Water-based anti-soiling agent, anti-soiling layer, layered body, and solar battery module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136041A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Hydrophilic film and production process therefor, laminate, protective material for surveillance camera, and surveillance camera
WO2017111169A1 (en) * 2015-12-25 2017-06-29 京セラ株式会社 Insulation paste, method for manufacturing same, method for manufacturing solar cell element, and solar cell element
JP6229099B1 (en) * 2015-12-25 2017-11-08 京セラ株式会社 Insulating paste, method for producing insulating paste, method for producing solar cell element, and solar cell element
WO2017217513A1 (en) * 2016-06-17 2017-12-21 富士フイルム株式会社 Film forming composition, laminate, and laminate manufacturing method
WO2017217474A1 (en) * 2016-06-17 2017-12-21 富士フイルム株式会社 Film forming composition and laminate manufacture method
JPWO2017217474A1 (en) * 2016-06-17 2019-02-14 富士フイルム株式会社 Film-forming composition and method for producing laminate
JPWO2017217513A1 (en) * 2016-06-17 2019-02-28 富士フイルム株式会社 Film-forming composition, laminate, and method for producing laminate
US10640670B2 (en) 2016-06-17 2020-05-05 Fujifilm Corporation Film-forming composition and manufacturing method of laminate
JP2019051596A (en) * 2017-09-12 2019-04-04 大日本印刷株式会社 Oil-repellent laminate
JP7185837B2 (en) 2017-09-12 2022-12-08 大日本印刷株式会社 oil repellent laminate
CN113946000A (en) * 2020-06-30 2022-01-18 日本电产株式会社 Method for manufacturing optical member and optical member

Also Published As

Publication number Publication date
TW201536864A (en) 2015-10-01
CN105765015A (en) 2016-07-13
JP2015174972A (en) 2015-10-05
JP6099587B2 (en) 2017-03-22
CN105765015B (en) 2018-10-30

Similar Documents

Publication Publication Date Title
JP6099587B2 (en) Aqueous coating agent, film, film production method, laminate, and solar cell module
US10297698B2 (en) Articles, coating compositions, and methods
JP5761346B2 (en) Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same
TWI630246B (en) Aqueous antifouling coating agent, antifouling coating layer, laminate and solar cell module
EP2625227A1 (en) Coating composition and method of making and using the same
JP2014534289A (en) Coating composition and antireflective coating produced therefrom
JP2009526638A (en) Coating system
JP2017509471A (en) Siloxane nanoparticle coating useful for antireflection
JP2011062877A (en) Protective film and front sheet for solar cell
WO2014119710A1 (en) Coating solution and antireflective film
JP5827107B2 (en) Method for preparing film forming composition and method for producing solar cell module
JP2012246440A (en) Inorganic coating composition
WO2016056489A1 (en) Antifouling layer-equipped laminate, protective material for surveillance camera, and surveillance camera
JP2012242666A (en) Composition for forming coating, substrate with antireflective coating, and solar cell module with antireflective coating
JP2018058914A (en) Composition for porous film formation, method for producing composition for porous film formation, method for producing porous film, laminate, and solar cell module
JPWO2017150393A1 (en) Aqueous coating composition, antireflection film, laminate, method for producing laminate, and solar cell module
WO2016072509A1 (en) Aqueous coating solution, film and manufacturing method therefor, laminate, and solar cell module
KR20150131499A (en) Composition for forming a thin layer of low refractive index, manufacturing method thereof, and manufacturing method of a thin layer of low refractive index
CN109923183A (en) The manufacturing method and solar cell module of coating composition, antireflection film, laminated body and laminated body
JP2017031325A (en) Aqueous coating liquid, film and manufacturing method therefor, laminate and solar cell module
JPWO2019167414A1 (en) Water-based coating material, film and its manufacturing method, laminate and its manufacturing method, and water-based coating material kit
JPWO2018221739A1 (en) Coating composition and method for producing laminate
KR20190088838A (en) a coating composition for anti-reflection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765699

Country of ref document: EP

Kind code of ref document: A1