WO2016136034A1 - Engine, cylinder body member, and vehicle - Google Patents

Engine, cylinder body member, and vehicle Download PDF

Info

Publication number
WO2016136034A1
WO2016136034A1 PCT/JP2015/081064 JP2015081064W WO2016136034A1 WO 2016136034 A1 WO2016136034 A1 WO 2016136034A1 JP 2015081064 W JP2015081064 W JP 2015081064W WO 2016136034 A1 WO2016136034 A1 WO 2016136034A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding surface
crystal grains
cylinder body
crystal
primary
Prior art date
Application number
PCT/JP2015/081064
Other languages
French (fr)
Japanese (ja)
Inventor
義彦 浅井
堅之 元脇
清志郎 井手
洋敬 栗田
裕義 加藤
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP15883324.4A priority Critical patent/EP3263876B1/en
Publication of WO2016136034A1 publication Critical patent/WO2016136034A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an engine, a cylinder body member, and a vehicle.
  • Al alloying of the cylinder body has been progressing for the purpose of reducing the weight of the engine.
  • the cylinder body portion is required to have high strength and high wear resistance. Therefore, as one of the Al alloys for the cylinder body, an Al alloy containing a large amount of Si, that is, an Al—Si based alloy having a hypereutectic composition can be cited.
  • Patent Document 1 discloses the following technology regarding an engine including a cylinder block made of an Al alloy having a relatively high Si content.
  • ⁇ Si crystal grains and Al alloy base material are exposed on the sliding surface of the cylinder block with the piston ring.
  • the sliding surface is mechanically processed so that Si crystal grains are raised.
  • the exposed surface of the Si crystal grains is located inside the cylinder with respect to the exposed surface of the Al alloy base material. Therefore, the piston ring comes into contact with the Si crystal grains. Contact with the Al alloy base material of the piston ring is avoided.
  • the cylinder block is made of an Al alloy having a relatively high Si content, and is manufactured by high pressure die casting. Therefore, primary Si crystal grains having an appropriate size are appropriately distributed on the sliding surface. Since the load applied to each primary crystal Si crystal grain becomes small during engine operation, destruction of the primary crystal Si crystal grain is suppressed.
  • the primary crystal grains have an appropriate size, the primary crystal grains are prevented from dropping off from the sliding surface. Thereby, contact with the Al alloy base material of the piston ring is effectively avoided. Therefore, the occurrence of scuffing due to the contact between the Al alloy base material and the piston ring is suppressed. Moreover, lubricating oil is hold
  • Patent Documents 2 and 3 relate to an engine including a cylinder block made of an Al alloy having a relatively high Si content, as in Patent Document 1.
  • the sliding surface is etched so that Si crystal grains are raised.
  • irregularities are formed on the surface of the Al alloy base material located in the depressions between the Si crystal grains.
  • the amount of lubricating oil retained by the depressions between the Si crystal grains is greater than that of the cylinder block of Patent Document 1. Therefore, the occurrence of scuffing is more effectively suppressed.
  • the sliding surface is etched so that the unevenness formed on the surface of the Al alloy base material located in the depression between the Si crystal grains near the top dead center becomes deeper.
  • the amount of lubricating oil retained by the depressions between the Si crystal grains located near the top dead center increases. Scuffing near the top dead center is more effectively suppressed.
  • lubrication between the sliding surface and the piston is mainly boundary lubrication.
  • the top dead center is close to the combustion chamber of the engine. Therefore, the lubrication conditions near the top dead center are severe. Scuffing tends to occur near top dead center. Therefore, as in Patent Document 3, a technique for suppressing scuffing near the top dead center has been proposed.
  • the cylinder block made of Al alloy having a relatively high Si content and manufactured by high pressure die casting has been upgraded on the assumption that the Si crystal grains are exposed in a floating island shape.
  • scuffing can be suppressed by realizing the following two points at the root of the technical flow of cylinder blocks made of Al alloy that are relatively high in Si content and manufactured by high pressure die casting. It was. Suppressing the contact between the piston ring and the Al alloy base material Making the recess between the Si crystal grains function as an oil reservoir
  • the present invention is to provide an engine, a cylinder body member, and a vehicle that can more effectively suppress scuffing.
  • the present invention can employ the following configurations.
  • An engine comprising a piston part and a cylinder body part having a sliding surface on which the piston part slides,
  • the cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more,
  • primary crystal Si crystal grains having an average crystal grain size of 8 ⁇ m or more and 50 ⁇ m or less and an Al alloy base material are exposed so as to be in contact with the piston portion, and a plurality of substantially parallel plural grains are exposed.
  • the cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more.
  • the average crystal grain size of the primary crystal Si grains exposed on the sliding surface is 8 ⁇ m or more and 50 ⁇ m or less.
  • the primary crystal Si crystal grains have an appropriate size and are appropriately distributed on the sliding surface. Under these conditions, the primary Si crystal grains and the Al alloy base material are exposed so as to come into contact with the piston portion, and a plurality of substantially parallel linear grooves are formed between the primary Si crystal grains. It is formed at a pitch through which a plurality of linear grooves pass.
  • the lubricating oil is maintained in a balanced manner between the primary crystal grains. Therefore, it is possible to improve the uniformity of the dispersion of the lubricating oil on the sliding surface, and to improve the uniformity of the oil film formed on the sliding surface.
  • the Al alloy base material is exposed on the sliding surface so as to be in contact with the piston portion.
  • the contact between the Al alloy base material and the piston portion has been considered undesirable from the viewpoint of suppressing scuffing.
  • the Al alloy base material is exposed to the sliding surface together with primary crystal Si grains having an appropriate size and appropriately distributed on the sliding surface.
  • the uniformity of the oil film formed on the sliding surface is improved. Therefore, the influence by the contact with the piston part of the Al alloy base material is suppressed to an acceptable level, and the effect of suppressing the scuffing by improving the uniformity of the oil film is obtained. As a result, the occurrence of scuffing can be suppressed more effectively.
  • An engine comprising a piston part and a cylinder body part having a sliding surface on which the piston part slides,
  • the cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more by high pressure die casting, On the sliding surface, primary crystal Si grains and an Al alloy base material are exposed so as to come into contact with the piston portion, and a plurality of substantially parallel linear grooves are formed on the primary crystal Si. It is formed at a pitch through which a plurality of linear grooves pass between crystal grains, An engine characterized by that.
  • the cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more by high pressure die casting.
  • the primary Si crystal grains have an appropriate size and are appropriately distributed on the sliding surface.
  • the primary Si crystal grains and the Al alloy base material are exposed so as to come into contact with the piston portion, and a plurality of substantially parallel linear grooves are formed between the primary Si crystal grains. It is formed at a pitch through which a plurality of linear grooves pass. Since the plurality of linear grooves are formed at a narrow pitch, the lubricating oil is maintained in a balanced manner between the primary crystal grains. Therefore, it is possible to improve the uniformity of the dispersion of the lubricating oil on the sliding surface, and to improve the uniformity of the oil film formed on the sliding surface.
  • the Al alloy base material is exposed on the sliding surface so as to be in contact with the piston portion.
  • the contact between the Al alloy base material and the piston portion has been considered undesirable from the viewpoint of suppressing scuffing.
  • the Al alloy base material is exposed to the sliding surface together with the primary crystal Si grains having an appropriate size and appropriately distributed on the sliding surface.
  • the uniformity of the oil film formed on the sliding surface is improved. For this reason, the influence of the exposure of the Al alloy base material is suppressed, and the effect of suppressing the scuffing by improving the uniformity of the oil film is obtained. As a result, the occurrence of scuffing can be suppressed more effectively.
  • the surface (hereinafter also referred to as a fracture surface) formed in the primary Si crystal grains by being broken functions as an oil reservoir. Since the fracture surface of the primary crystal grain has, for example, irregularities, the amount of lubricating oil that can be retained by the oil sump is large.
  • the opening area of the oil sump is, for example, about the same as the cross-sectional area of the primary crystal grains. For example, the depth of the oil sump is smaller than the diameter of the primary crystal grains. In this way, an oil sump including a fracture surface of primary Si crystal grains is formed on the sliding surface together with a plurality of substantially parallel linear grooves. Accordingly, it is possible to increase the amount of the lubricating oil retained while maintaining the uniformity of the lubricating oil dispersion. Scuffing can be suppressed more effectively.
  • the pitch is smaller than the average crystal grain size of the primary Si crystal grains.
  • a plurality of substantially parallel linear grooves are formed at a narrower pitch.
  • the uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
  • the cylinder body portion contains eutectic Si crystal grains in addition to the primary Si crystal grains and the Al alloy base material,
  • the pitch is included in the range of the eutectic Si crystal grain size in the grain size distribution of the Si crystal grains in the cylinder body.
  • a plurality of substantially parallel linear grooves are formed at a narrower pitch.
  • the uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
  • At least one of the plurality of grooves is formed so as to pass through the primary Si crystal grains by breaking the primary crystal Si grains.
  • lubricating oil is hold
  • the uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
  • the pitch is 5 ⁇ m or more and 10 ⁇ m or less.
  • a plurality of substantially parallel linear grooves are formed at a narrower pitch.
  • the uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
  • the occurrence of scuffing can be suppressed more effectively.
  • FIG. 2 is a side view schematically showing a piston part 122 provided in the engine 150 shown in FIG. 1. It is a perspective view which shows typically the cylinder body part 100 with which the engine 150 shown in FIG. 1 is provided. It is sectional drawing which shows typically the cylinder body part 100 shown in FIG.
  • FIG. 4 is a partially enlarged plan view schematically showing a sliding surface 101 of a cylinder body part 100 shown in FIG. 3.
  • FIG. 4 is a partial enlarged cross-sectional view schematically showing a sliding surface 101 of the cylinder body portion 100 shown in FIG. 3. It is a graph which shows the example of the preferable particle size distribution of Si crystal grain.
  • Fig. 2 is a side view schematically showing a motorcycle including the engine 150 shown in Fig. 1.
  • the sliding surface has been processed so that the primary crystal Si crystal grains are exposed in a floating island shape.
  • contact between the piston ring and the Al alloy base material is suppressed, and a recess between Si crystal grains functions as an oil reservoir. As a result, scuffing was suppressed.
  • the primary crystal Si grains In the cylinder body part made of Al alloy having a relatively high Si content and manufactured by high pressure die casting, from the viewpoint of receiving the load of the piston part, the primary crystal Si grains have an appropriate size and are slid. It is distributed moderately on the moving surface. Therefore, if the uniformity of the oil film formed on the sliding surface is improved by keeping the lubricating oil in a balanced manner between the primary Si crystal grains, the scuffing can be performed even if the Al alloy base material comes into contact with the piston portion. Is unlikely to occur. That is, the contact between the Al alloy base material and the piston portion is allowed. And since the merit by the improvement of the uniformity of an oil film can be enjoyed, generation
  • the present invention is an invention completed based on the above-described knowledge, that is, knowledge that conflicts with the conventional design concept.
  • embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view schematically showing an engine 150 according to an embodiment of the present invention.
  • R indicates the reciprocating direction of the piston part 122.
  • U indicates the upward direction, that is, the direction from the cylinder body portion 100 toward the cylinder head 130.
  • L indicates a downward direction, that is, a direction from the cylinder body portion 100 toward the crankcase 110.
  • a water-cooled engine will be described as an example, but the present invention is not limited to this, and an air-cooled engine may be used.
  • the engine of this embodiment is a single cylinder engine, but in the present invention, the number of cylinders of the engine is not particularly limited.
  • the engine of the present embodiment is a 4-stroke engine, but may be a 2-stroke engine.
  • the engine 150 includes a crankcase 110, a cylinder body portion 100, and a cylinder head 130.
  • the cylinder body portion 100 and the crankcase 110 are separate, but in the present invention, the cylinder body portion 100 and the crankcase 110 may be integrated.
  • a crankshaft 111 is accommodated in the crankcase 110.
  • the crankshaft 111 has a crankpin 112 and a crank web 113.
  • the cylinder body part 100 is provided on the crankcase 110.
  • the cylinder body portion 100 includes a cylinder wall 103 and an outer wall 104.
  • the cylinder wall 103 is formed so as to define the cylinder bore 102.
  • the outer wall 104 surrounds the cylinder wall 103 and constitutes an outer shell of the cylinder body portion 100.
  • a water jacket 105 is provided between the cylinder wall 103 and the outer wall 104.
  • the piston part 122 is inserted into the cylinder bore 102 of the cylinder body part 100.
  • the piston part 122 slides in the cylinder bore 102 in contact with the sliding surface 101 of the cylinder body part 100 (see FIG. 2).
  • the piston part 122 is made of, for example, an Al alloy (typically an Al alloy containing Si).
  • the piston portion 122 is formed by forging as disclosed in, for example, US Pat. No. 6,205,836.
  • the piston part 122 may be formed by casting.
  • No cylinder sleeve is provided in the cylinder bore 102.
  • the inner surface of the cylinder wall 103 of the cylinder body 100 is not plated.
  • a cylinder sleeve since a cylinder sleeve is not required, it is possible to simplify the manufacturing process of the engine 150, reduce the weight of the engine 150, and improve the cooling performance. Further, since it is not necessary to plate the inner surface of the cylinder wall 103, the manufacturing cost can be reduced.
  • the present invention is not limited to the present embodiment.
  • a cylinder sleeve may be provided in the cylinder bore 102, and the cylinder sleeve may include the cylinder body portion 100 according to the present embodiment.
  • the method for installing the cylinder sleeve is not particularly limited, and examples thereof include fitting into the cylinder bore 102 and casting.
  • the cylinder sleeve has the sliding surface 101 according to the present embodiment.
  • the inner surface of the cylinder body portion 100 provided in the cylinder sleeve is not plated.
  • a cylinder head 130 is provided on the cylinder body 100.
  • the cylinder head 130 forms a combustion chamber 131 together with the piston part 122 of the cylinder body part 100.
  • the cylinder head 130 has an intake port 132 and an exhaust port 133.
  • An intake valve 134 for supplying air-fuel mixture into the combustion chamber 131 is provided in the intake port 132, and an exhaust valve 135 for exhausting the combustion chamber 131 is provided in the exhaust port 133. Yes.
  • the piston part 122 and the crankshaft 111 are connected by a connecting rod 140. Specifically, the piston pin 123 of the piston portion 122 is inserted into the through hole of the small end portion 142 of the connecting rod 140, and the crank pin 112 of the crankshaft 111 is inserted into the through hole of the large end portion 144. Thereby, the piston part 122 and the crankshaft 111 are connected.
  • a roller bearing (rolling bearing) 114 is provided between the inner peripheral surface of the through hole of the large end portion 144 and the crank pin 112.
  • the engine 150 does not include an oil pump that forcibly supplies lubricating oil, but the engine of the present invention may include an oil pump.
  • FIG. 2 is a side view schematically showing the piston portion 122 provided in the engine 150 shown in FIG.
  • the piston part 122 is provided in the cylinder bore 102.
  • the piston part 122 includes a piston main body 122a and a piston ring part 122b.
  • the piston body 122 a includes a piston pin 123 that is inserted into the through hole of the connecting rod 140.
  • the piston ring portion 122b includes three (plural) piston rings 122c, 122d, and 122e provided on the outer periphery of the piston main body 122a.
  • the piston ring 122c is also referred to as a top ring, and is fitted in a top ring groove 122f provided on the outer periphery of the piston main body 122a.
  • the piston ring 122d is also called a second ring, and is fitted in a second ring groove 122g provided on the outer periphery of the piston main body 122a.
  • the piston ring 122e is also referred to as an oil ring, and is fitted in an oil ring groove 122h provided on the outer periphery of the piston main body 122a.
  • the top ring 122c, the second ring 122d, and the oil ring 122e are provided in this order from the top to the bottom with a space therebetween in the reciprocating direction R of the piston portion 122. That is, in the present embodiment, the upper end 122m of the piston ring part 122b in the reciprocating direction R of the piston part 122 corresponds to the upper surface of the top ring 122c. The lower end 122n of the piston ring portion 122b corresponds to the lower surface of the oil ring 122e.
  • the piston ring part 122 b (piston rings 122 c, 122 d, 122 e) is in contact with the sliding surface 101 of the cylinder wall 103.
  • the piston ring part 122b is constituted by three piston rings, but the number of piston rings constituting the piston ring part 122b is not particularly limited.
  • FIG. 3 is a perspective view schematically showing the cylinder body portion 100 included in the engine 150 shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing the cylinder body portion 100 shown in FIG.
  • the cylinder body part 100 has a sliding surface 101 and is made of an Al alloy containing Si. Specifically, it is formed from an Al alloy having a Si content of 16% by mass or more.
  • the Al alloy preferably contains 73.4% to 79.6% by weight of Al, 16% to 24% by weight of Si, and 2.0% to 5.0% by weight of copper. .
  • the wear resistance and strength of the cylinder body 100 can be increased.
  • Si content is 18 mass% or more.
  • the Si content is preferably 22% by mass or less.
  • the Al alloy preferably contains 50 mass ppm or more and 200 mass ppm or less of phosphorus and 0.01 mass% or less of calcium.
  • the Al alloy contains 50 mass ppm or more and 200 mass ppm or less of phosphorus, it is possible to suppress the coarsening of the Si crystal grains, so that the Si crystal grains can be uniformly dispersed in the alloy. Moreover, by making the calcium content of the Al alloy 0.01% by mass or less, it is possible to secure the effect of refining Si crystal grains by phosphorus and to obtain a metal structure having excellent wear resistance.
  • the cylinder body portion 100 includes a cylinder wall 103 on which a sliding surface 101 is formed, and an outer wall 104 having a surface exposed to the outer periphery.
  • a water jacket 105 is provided between the cylinder wall 103 and the outer wall 104. The water jacket 105 is configured to hold a coolant.
  • the cylinder body unit 100 includes a sliding surface 101 with which the piston unit 122 (see FIG. 1) contacts.
  • the sliding surface 101 is a surface (that is, an inner peripheral surface) of the cylinder wall 103 on the cylinder bore 102 side.
  • the sliding surface 101 is a surface located on the innermost surface of the cylinder wall 103 in the radial direction of the cylinder body portion 100.
  • the contact of the sliding surface 101 with the piston portion 122 includes the contact of the sliding surface 101 with the piston portion 122 through an oil film formed of lubricating oil.
  • the “upper side” of the sliding surface 101 is the cylinder head side (that is, the top dead center side).
  • the “lower side” of the sliding surface 101 is the crankcase side (that is, the bottom dead center side).
  • the upper quarter region 101a of the sliding surface 101 means that the entire sliding surface 101 is evenly divided into four along the sliding direction of the piston (the central axis direction of the cylinder bore 102). Refers to the area where it is located.
  • the lower quarter region 101b of the sliding surface 101 refers to a region located closest to the crankcase.
  • a linear groove 4 (see FIG. 5) to be described later is formed over the entire sliding surface 101.
  • the portion where the linear groove 4 is formed on the sliding surface 101 is not particularly limited.
  • the portion of the sliding surface 101 where the linear groove 4 is formed may be, for example, at least the upper quarter region 101 a of the sliding surface 101.
  • the portion where the linear groove 4 is formed on the sliding surface 101 may be, for example, at least the upper quarter region 101 a and the lower quarter region 101 b of the sliding surface 101.
  • FIG. 5 is an enlarged plan view schematically showing the sliding surface of the cylinder body 100 shown in FIG. R indicates the reciprocating direction of the piston part 122.
  • FIG. 6 is a cross-sectional view schematically showing an enlarged sliding surface of the cylinder body 100 shown in FIG.
  • FIG. 6 is a cross-sectional view along the direction R. In FIG. 6, only the first linear groove 4 a among the linear grooves 4 is illustrated for convenience of explanation.
  • a plurality of primary crystal Si grains 1, a plurality of eutectic Si crystal grains 2, and an Al alloy base material 3 are exposed.
  • the Si crystal grains that precipitate first are called “primary Si crystal grains”.
  • the precipitated Si crystal grains are called “eutectic Si crystal grains”.
  • the primary crystal Si crystal grain 1 is relatively large and has, for example, a granular shape.
  • the eutectic Si crystal grain 2 is relatively small, for example, has a needle shape. All the eutectic Si crystal grains 2 do not necessarily have a needle shape. Some eutectic Si crystal grains 2 may have a granular shape.
  • the needle-like eutectic Si crystal grains 2 are main crystal grains.
  • the Al alloy base material 3 is a solid solution matrix containing Al.
  • the cylinder body 100 has a plurality of primary crystal Si grains 1, a plurality of eutectic Si crystal grains 2, and an Al alloy base material 3. The plurality of primary crystal Si grains 1 and the plurality of eutectic Si crystal grains 2 are dispersed in the Al alloy base material 3.
  • the average crystal grain size of the primary crystal Si crystal grain 1 is, for example, 8 ⁇ m or more and 50 ⁇ m or less. Accordingly, a sufficient number of primary Si crystal grains 1 exist per unit area of the sliding surface 101. Therefore, the load applied to each primary crystal Si crystal grain 1 during operation of engine 150 is relatively small. The destruction of the primary crystal Si crystal grains 1 during operation of the engine 150 is suppressed. In addition, since the portion of the primary crystal Si crystal grain 1 embedded in the Al alloy base material 3 is sufficiently large, dropping of the primary crystal Si crystal grain 1 is reduced. Therefore, the wear of the sliding surface 101 due to the dropped primary crystal Si crystal grains 1 is also suppressed.
  • the average crystal grain size of the primary crystal grains 1 is less than 8 ⁇ m, the portion of the primary crystal grains 1 embedded in the Al alloy base material 3 is small. Therefore, when the engine 150 is operated, the primary crystal Si crystal grains 1 are likely to fall off. Since the dropped primary crystal Si crystal grains 1 act as abrasive particles, the sliding surface 101 may be greatly worn. When the average crystal grain size of the primary crystal grains 1 exceeds 50 ⁇ m, the number of primary crystal grains 1 per unit area of the sliding surface 101 is small. Therefore, a large load is applied to each of the primary Si crystal grains 1 during operation of the engine 150, and the primary Si crystal grains 1 may be destroyed. Since the broken pieces of the primary Si crystal grains 1 that have been destroyed act as abrasive particles, the sliding surface 101 may be worn significantly. Note that the average crystal grain size of the primary crystal Si crystal grains 1 is preferably 12 ⁇ m or more.
  • the cylinder body 100 is formed of an Al alloy having a Si content of 16% by mass or more by high pressure die casting (HPDC).
  • HPDC high pressure die casting
  • High pressure die casting is a casting method in which molten metal is supplied into a mold at a pressure exceeding atmospheric pressure by applying pressure to the molten metal.
  • the portion that becomes the sliding surface 101 can be cooled at a high cooling rate (for example, 4 ° C./second or more and 50 ° C./second or less).
  • a high cooling rate for example, 4 ° C./second or more and 50 ° C./second or less.
  • the average crystal grain size of the primary crystal Si crystal grains 1 can be controlled to 8 ⁇ m or more and 50 ⁇ m or less.
  • the average crystal grain size of the eutectic Si crystal grain 2 is smaller than the average crystal grain size of the primary crystal Si crystal grain 1.
  • the average crystal grain size of the eutectic Si crystal grains 2 is preferably 7.5 ⁇ m or less.
  • the eutectic Si crystal grains 2 serve to reinforce the Al alloy base material 3. Therefore, by reducing the eutectic Si crystal grain 2, the wear resistance and strength of the cylinder body 100 can be improved.
  • FIG. 7 is a graph showing an example of a preferable particle size distribution of Si crystal grains.
  • the Si crystal grains having a crystal grain size in the range of 1 ⁇ m to 7.5 ⁇ m are eutectic Si crystal grains 2, and the Si crystal grains having a crystal grain size in the range of 8 ⁇ m to 50 ⁇ m
  • the crystal grains are primary crystal Si crystal grains 1.
  • the Si crystal grains 1 and 2 of the cylinder body 100 have a grain size in which peaks exist in the range where the crystal grain size is 1 ⁇ m or more and 7.5 ⁇ m or less and the crystal grain size is 8 ⁇ m or more and 50 ⁇ m or less. It is preferable to have a distribution.
  • the wear resistance and strength of the cylinder body 100 can be greatly improved.
  • the first peak (eutectic crystal) in the range of the crystal grain size of 1 ⁇ m to 7.5 ⁇ m.
  • the frequency in the peak derived from the Si crystal grain 2) is 5 times or more the frequency in the second peak (peak derived from the primary crystal Si crystal grain 1) in the range of the crystal grain size of 8 ⁇ m to 50 ⁇ m. preferable.
  • the cooling rate of the portion that becomes the sliding surface 101 is adjusted in the step of casting the molded body (step S1c described later). do it.
  • the average crystal of the primary crystal grains 1 is obtained.
  • the Si crystal grains 1 and 2 can be precipitated so that the particle diameter is 8 ⁇ m or more and 50 ⁇ m or less and the average crystal grain diameter of the eutectic Si crystal grains 2 is 7.5 ⁇ m or less.
  • the linear groove 4 formed on the sliding surface 101 will be described.
  • a plurality of linear grooves 4 are formed on the sliding surface 101.
  • the plurality of linear grooves 4 include a plurality of first linear grooves 4a and a plurality of second linear grooves 4b.
  • the plurality of first linear grooves 4a have a shape extending in a direction from the upper left to the lower right in FIG. 5 and are substantially parallel to each other.
  • the plurality of first linear grooves 4 a form a striped pattern on the sliding surface 101.
  • the plurality of second linear grooves 4b have a shape extending in a direction from the upper right to the lower left in FIG. 5 and are substantially parallel to each other.
  • the plurality of second linear grooves 4 b form a striped pattern on the sliding surface 101.
  • the plurality of first linear grooves 4a and the plurality of second linear grooves 4b are not parallel to each other but intersect each other. Thereby, the plurality of linear grooves 4 form a lattice pattern on the sliding surface 101.
  • FIG. 5 the portion where the primary Si crystal grain 1 and / or the eutectic Si crystal grain 2 and the linear groove 4 overlap each other is shown in FIG. The part formed so that it may pass on the exposed surface of the crystal grain 2 is shown. In at least a part of the portion, a fracture surface 5a as shown in FIG. 6 is formed.
  • the plurality of linear grooves 4 at least two or more linear grooves 4 are substantially parallel to each other.
  • some of the linear grooves 4 (first linear grooves 4a) and the remaining linear grooves 4 (second linear grooves 4b) may intersect each other.
  • All of the plurality of linear grooves 4 may be formed so as not to cross each other, and may be substantially parallel. “Substantially parallel” means that adjacent linear grooves 4 extend so as not to intersect. That is, regarding the meaning of “substantially parallel”, even if the adjacent linear grooves 4 are not strictly parallel when viewed due to errors or deviations in the formation of the linear grooves 4, the present invention. Can be interpreted as the adjacent linear grooves 4 being substantially parallel.
  • the sliding surface 101 includes a set of first linear grooves 4a and a set of second linear grooves 4b as sets of linear grooves parallel to each other.
  • the sliding surfaces 101 are parallel to each other.
  • the pattern formed by the plurality of linear grooves 4 formed on the sliding surface 101 is not limited to the square lattice pattern as shown in FIG.
  • the pattern formed by the plurality of linear grooves 4 may be a striped pattern formed by the first linear grooves 4a or the second linear grooves 4b, or may be a polygonal lattice pattern such as a triangular lattice pattern.
  • a square lattice pattern is an example of a polygonal lattice pattern. Note that the pitch between the grooves in the striped pattern and the lattice pattern is not necessarily constant.
  • the plurality of linear grooves 4 form a regular pattern (such as a striped pattern or a polygonal lattice pattern).
  • the Al alloy base material 3 is exposed to the sliding surface 101 so as to come into contact with the piston ring portion 122b (piston portion 122) together with the primary crystal Si crystal grains 1 in a pattern having regularity.
  • the sliding surface 101 on which the linear grooves 4 having a regular pattern are formed is more dispersed in the lubricating oil than the conventional irregular sliding surface (sliding surface in which Si crystal grains are exposed in a floating island shape). Can improve the uniformity. As a result, in this embodiment, the uniformity of the oil film formed on the sliding surface 101 is high.
  • the description of the linear groove 4 is the first linear groove 4a and the second linear groove. It is also an explanation for both of them.
  • the planar view shape of the linear groove 4 is linear.
  • the shape of the linear groove 4 in plan view only needs to have a linear shape extending so as not to intersect the adjacent linear groove 4 so as to be substantially parallel, and is limited to a linear shape.
  • the linear groove 4 may be curved.
  • the linear groove 4 may have a curved portion and a linear portion.
  • channel 4 may have a bending part.
  • the planar view shape of the plurality of linear grooves 4 may differ depending on the linear grooves 4. All the linear grooves 4 may have the same or substantially the same plan view shape.
  • each of the plurality of linear grooves 4 is not necessarily formed to be continuous over the entire sliding surface 101.
  • Each of the plurality of linear grooves 4 does not necessarily have to extend to the edge of the sliding surface 101.
  • Each of the plurality of linear grooves 4 may have an interrupted portion on the sliding surface 101.
  • the width of the linear groove 4 is not particularly limited.
  • the width of the linear groove 4 is preferably equal to or less than the maximum value in the range of the grain size of the primary crystal grains 1 in the grain size distribution of the cylinder body 100.
  • the width of the linear groove 4 is also preferably about 10 ⁇ m or less.
  • the width of the linear groove 4 is preferably equal to or larger than the minimum value in the range of the grain size of the eutectic Si crystal grains 2 in the grain size distribution of the cylinder body 100.
  • the width of the linear groove 4 is also preferably about 5 ⁇ m or more.
  • the linear groove 4 has a certain width, but the present invention is not limited to this example.
  • the linear groove 4 may have a different width depending on the location. Further, the widths of the plurality of linear grooves 4 may differ depending on the linear grooves 4. All the linear grooves 4 may have the same width or substantially the same width.
  • the linear groove 4 has a depth of 0.1 ⁇ m or more and less than 2.0 ⁇ m.
  • the depth of the linear groove 4 is not particularly limited.
  • a depth larger than the depth of the linear groove 4 (for example, 2..
  • a groove having a depth of 0 ⁇ m or more may be formed on the sliding surface 101.
  • grooves other than the linear grooves defined in the present invention may be formed on the sliding surface.
  • the depth of the linear groove 4 may be 1.5 ⁇ m or less.
  • the depth of the linear groove 4 may be 0.5 ⁇ m or more.
  • the cross-sectional shape of the linear groove 4 is such that the width of the linear groove 4 decreases as the depth of the linear groove 4 increases.
  • the cross-sectional shape of the linear groove 4 is the cross-sectional shape of the linear groove 4 in a plane perpendicular to the direction in which the linear groove 4 extends.
  • the cross-sectional shape of the linear groove 4 is not particularly limited.
  • the cross-sectional shape of the linear groove 4 may be, for example, a substantially V shape as shown in FIG. 6 or a substantially U shape.
  • the cross-sectional shapes of the linear grooves 4 need not all be the same.
  • the cross-sectional shape of the linear groove 4 may be different depending on the location, and may be different depending on the linear groove 4.
  • the part (crest) between the linear grooves 4 does not necessarily need to be a flat surface as shown in FIG.5 and FIG.6.
  • the portion between the linear grooves 4 may be an inclined surface or may form a ridge line.
  • the plurality of substantially linear first linear grooves 4a are formed at a pitch through which the plurality of first linear grooves 4a pass between the primary crystal grains 1. Yes.
  • a plurality of first linear grooves 4 a pass through the gap P between the primary crystal grains 1.
  • the part between these several 1st linear grooves 4a is exposed so that it may contact with the piston part 122 (refer FIG. 1, 2). Since the portion of the sliding surface 101 that contacts the piston portion 122 is adjacent to the first linear groove 4a in plan view, the lubricating oil is smoothly supplied to the sliding surface 101.
  • the pitch of the first linear grooves 4a is preferably included in the range of the eutectic Si crystal grains 2 in the grain size distribution of the Si crystal grains of the cylinder body portion 100.
  • the pitch of the first linear grooves 4a is preferably 5 ⁇ m or more.
  • the pitch of the first linear grooves 4a is preferably 10 ⁇ m or less.
  • the pitch of the pair of first linear grooves 4a adjacent to each other is constant regardless of the location, but the present invention is not limited to this example. That is, the pitch of the pair of first linear grooves 4a adjacent to each other is not necessarily constant.
  • the first linear grooves 4a adjacent to each other may be formed to meander, and the pitch of the first linear grooves 4a may be different depending on the location.
  • the above-mentioned description is description regarding the 1st linear groove 4a, since the description about the 2nd linear groove 4b is the same as the description about the 1st linear groove 4a, description here is carried out. Omitted.
  • At least one of the linear grooves 4 is formed so as to pass through the primary crystal Si crystal grain 1 by breaking the primary crystal Si crystal grain 1. That is, at least one of the linear grooves 4 is formed so as to pass over the exposed surface of the primary crystal grains 1. Thereby, the uniformity of the dispersion
  • the present invention is not limited to this example.
  • the primary crystal Si crystal grains 1 having the fracture surface 5 a are exposed on the sliding surface 101. That is, in this embodiment, at least a part of the primary crystal Si crystal grains 1 exposed on the sliding surface 101 is destroyed, and the surface formed on the primary crystal Si grains 1 by the destruction (that is, The fracture surface 5 a) is exposed on the sliding surface 101. As a result, an oil sump 5 b is formed on the sliding surface 101. Since the fracture surface of the primary crystal grain 1 has irregularities, the amount of lubricating oil that can be held by the oil sump 5b is large. The opening area of the oil sump 5b is approximately the same as the cross-sectional area of the primary crystal Si crystal grains 1 (the area of the portion exposed on the sliding surface 101).
  • the depth of the oil sump 5 b is smaller than the diameter of the primary crystal Si crystal grain 1.
  • An oil sump 5b including a fracture surface 5a of the primary crystal grain 1 is formed on the sliding surface 101 together with a plurality of substantially parallel first linear grooves 4a. Accordingly, it is possible to increase the amount of the lubricating oil retained while maintaining the uniformity of the lubricating oil dispersion. Scuffing can be suppressed more effectively.
  • the fracture surface 5a is formed when surface processing of the cylinder body part 100 is performed after the casting of the cylinder body part 100. Specifically, the fracture surface 5a is formed, for example, when the primary Si crystal grains 1 are shaved with a grindstone.
  • the cylinder body 100 is made of an Al alloy having a Si content of 16% by mass or more.
  • the average crystal grain size of the primary crystal Si grains 1 exposed on the sliding surface 101 is 8 ⁇ m or more and 50 ⁇ m or less. From the viewpoint of receiving the load of the piston portion 122, the primary crystal grains 1 have an appropriate size and are appropriately distributed on the sliding surface. Under these conditions, the primary crystal Si crystal grains 1 and the Al alloy base material 3 are exposed so as to come into contact with the piston portion 122, and a plurality of substantially parallel linear grooves 4 (first linear grooves 4a). And the second linear grooves 4b) are formed at a pitch through which the plurality of linear grooves 4 pass between the primary Si crystal grains 1.
  • the lubricating oil is held between the primary crystal Si crystal grains 1 with a good balance. Therefore, the uniformity of the dispersion of the lubricating oil on the sliding surface 101 can be improved, and the uniformity of the oil film formed on the sliding surface 101 can be improved.
  • the Al alloy base material 3 is exposed on the sliding surface 101 so as to be in contact with the piston portion 122.
  • the contact between the Al alloy base material 3 and the piston portion 122 has been considered undesirable from the viewpoint of suppressing scuffing.
  • the Al alloy base material 3 is exposed to the sliding surface 101 together with the primary crystal Si grains 1 having an appropriate size and appropriately distributed on the sliding surface 101.
  • the uniformity of the oil film formed on the sliding surface 101 is improved. Therefore, the influence with the piston part 122 of the Al alloy base material 3 is suppressed to an allowable level, and the effect of suppressing the scuffing by improving the uniformity of the oil film is obtained. As a result, the occurrence of scuffing can be suppressed more effectively.
  • the cylinder body 100 is manufactured, for example, by sequentially performing the following steps S1 to S4.
  • Process S1 Prepared body
  • Process S2 Fine boring Process
  • S3 Coarse honing
  • S4 Finish honing
  • step S1 a molded body formed from an Al alloy containing Si is prepared (step S1).
  • This compact includes primary crystal Si grains and eutectic Si crystal grains in the vicinity of the surface.
  • the step S1 for preparing a molded body includes, for example, steps S1a to S1e.
  • Process S1a Preparation of silicon-containing Al alloy Process S1b Formation of molten metal Process S1c High pressure die casting Process S1d Heat treatment Process S1e Machining
  • an Al alloy containing Si is prepared (step S1a).
  • the Al alloy 73.4% by mass to 79.6% by mass Al, 16% by mass to 24% by mass Si, and It is preferable to use an Al alloy containing 2.0% by mass or more and 5.0% by mass or less of copper.
  • the prepared Al alloy is heated and melted in a melting furnace to form a molten metal (step S1b). It is preferable to add about 100 ppm by weight of phosphorus to the Al alloy or molten metal before melting. If the Al alloy contains 50 mass ppm or more and 200 mass ppm or less of phosphorus, it is possible to suppress the coarsening of the Si crystal grains, so that the Si crystal grains can be uniformly dispersed in the alloy. Moreover, by making the calcium content of the Al alloy 0.01% by mass or less, it is possible to secure the effect of refining Si crystal grains by phosphorus and to obtain a metal structure having excellent wear resistance. That is, the Al alloy preferably contains 50 mass ppm or more and 200 mass ppm or less of phosphorus and 0.01 mass% or less of calcium.
  • step S1c casting is performed by high pressure die casting using a molten Al alloy. That is, the molten metal is cooled in a mold to form a molded body. At this time, the portion of the cylinder wall 103 that becomes the sliding surface 101 is cooled at a high cooling rate (for example, 4 ° C./second or more and 50 ° C./second or less), so that Si crystal grains that contribute to wear resistance are brought close to the surface. A formed body is obtained.
  • This casting process S1c can be performed using the casting apparatus currently disclosed by the international publication 2004/002658 pamphlet, for example.
  • any one of heat treatments called “T5”, “T6”, and “T7” is performed on the molded body taken out from the mold (step S1d).
  • the T5 process is a process in which the molded body is rapidly cooled by water cooling or the like immediately after being taken out of the mold, and then artificially aged for a predetermined time at a predetermined temperature for improvement of mechanical properties and dimensional stabilization, and then air cooling.
  • the T6 treatment is a treatment in which after the molded body is taken out from the mold, it is subjected to a solution treatment at a predetermined temperature for a predetermined time, followed by water cooling, and then an artificial aging treatment at a predetermined temperature for a predetermined time, and then air cooling.
  • the T7 process is an overaging process compared to the T6 process, and dimensional stabilization can be achieved compared to the T6 process, but the hardness is lower than that of the T6 process.
  • step S1e predetermined molding is performed on the molded body. Specifically, the mating surface with the cylinder head and the mating surface with the crankcase are ground.
  • step S2 After preparing the molded body as described above, fines for adjusting the dimensional accuracy with respect to the surface of the molded body, specifically, the inner peripheral surface of the cylinder wall 103 (that is, the surface that becomes the sliding surface 101). Boring is performed (step S2).
  • step S3 a rough honing process is performed on the surface subjected to fine boring. That is, the surface to be the sliding surface 101 is polished using a grindstone having a relatively small count (a grindstone having large abrasive grains).
  • a finish honing process is performed (step S4). That is, the region to be the sliding surface 101 in the surface of the molded body is polished using a grindstone having a relatively large count (a grindstone having small abrasive grains).
  • the rough honing process and the finishing honing process can be performed using a honing apparatus as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-268179.
  • the specifications of the grindstone in the coarse honing process and the finishing honing process (type of abrasive grains, count (abrasive grain size), type of bond agent, etc.) depend on the specifications of the linear grooves 4 formed on the sliding surface 101. Can be set.
  • the sliding surface 101 is formed.
  • a plurality of primary crystal Si crystal grains 1 and an Al alloy base material 3 are exposed on the sliding surface 101.
  • the sliding surface 101 has a plurality of linear grooves 4.
  • the plurality of linear grooves 4 include a plurality of first linear grooves 4a that are substantially parallel to each other and a plurality of second linear grooves 4b that are substantially parallel to each other.
  • the linear groove 4 is formed by a grindstone, but the present invention is not limited to this example.
  • the linear groove 4 may be formed by a laser, for example.
  • the number of times of the rough honing process and the finishing honing process is not limited to one, and may be two or more.
  • the cylinder body member in the present embodiment is the cylinder body portion 100 itself (see FIG. 1 and the like).
  • the cylinder body part 100 is a part having a sliding surface 101.
  • the cylinder body member is not limited to this example.
  • the cylinder body member only needs to include the cylinder body portion 100 having the sliding surface 101.
  • the cylinder body member in the present invention may be a member (so-called cylinder block) formed by integrally molding the cylinder body portion 100 and the crankcase 110.
  • the cylinder body member in the present invention may be a cylinder sleeve used by being provided in the cylinder bore 102. Since the cylinder body member has the sliding surface 101 described above, the cylinder body member can more effectively suppress the occurrence of scuffing in the engine when applied to the engine.
  • the vehicle according to the present invention includes various types of vehicles such as automobiles, motorcycles, and snowmobiles such as snowmobiles, and the number of wheels is not particularly limited, such as four wheels, three wheels, and two wheels. Further, the vehicle according to the present invention is a box-type vehicle in which the engine is disposed at a location away from the seat such as an engine room, and at least a part of the engine is disposed below the seat, and the driver straddles the seat. It may be a straddle-type vehicle to board.
  • the saddle riding type vehicle includes a scooter type vehicle that allows the driver to board with the knees aligned.
  • FIG. 8 is a side view schematically showing a motorcycle including the engine 150 shown in FIG.
  • a head pipe 302 is provided at the front end of the main body frame 301.
  • a front fork 303 is attached to the head pipe 302 so as to be able to swing in the left-right direction of the vehicle.
  • a front wheel 304 is rotatably supported at the lower end of the front fork 303.
  • a handle 305 is provided at the upper end of the front fork 303.
  • a rear frame 306 is attached so as to extend rearward from the upper rear end of the main body frame 301.
  • a fuel tank 307 is provided on the main body frame 301, and a main seat 308 a and a tandem seat 308 b are provided on the rear frame 306.
  • a rear arm 309 extending backward is attached to the rear end of the main body frame 301.
  • a rear wheel 310 is rotatably supported at the rear end of the rear arm 309.
  • the engine 150 shown in FIG. 1 is held at the center of the main body frame 301.
  • the engine 150 uses the cylinder body 100 in the present embodiment.
  • a radiator 311 is provided in front of the engine 150.
  • An exhaust pipe 312 is connected to the exhaust port of the engine 150, and a muffler 313 is attached to the rear end of the exhaust pipe 312.
  • a transmission 315 is connected to the engine 150.
  • a drive sprocket 317 is attached to the output shaft 316 of the transmission 315.
  • the drive sprocket 317 is connected to the rear wheel sprocket 319 of the rear wheel 310 via a chain 318.
  • the transmission 315 and the chain 318 function as a transmission mechanism that transmits the power generated by the engine 150 to the drive wheels.
  • the motorcycle (vehicle) in the present embodiment is equipped with the engine 150 including the cylinder body portion 100 having the sliding surface 101 described above, the occurrence of scuffing can be more effectively suppressed.
  • the average crystal grain size of the primary crystal grains and the eutectic Si crystal grains is measured using image processing for the portion that becomes the sliding surface of the cylinder body. Based on the area of the Si crystal grain in the image obtained by the image processing, the diameter (equivalent diameter) of each Si crystal grain when the Si crystal grain in the image is assumed to be a perfect circle is calculated. Note that fine crystals having a diameter of less than 1 ⁇ m are not counted as Si crystal grains (primary Si crystal grains or eutectic Si crystal grains). As described above, the number (frequency) and diameter of the Si crystal grains are specified. Based on this, a particle size distribution of Si crystal grains in the cylinder body is obtained. The particle size distribution is, for example, a histogram as shown in FIG.
  • the particle size distribution includes two peaks.
  • the particle size distribution is divided into two regions with a diameter of a portion forming a valley between two peaks as a threshold value. It is assumed that the region corresponding to the large diameter is the particle size distribution of the primary Si crystal grains. The region corresponding to the small diameter is assumed to be the particle size distribution of the eutectic Si crystal grains. Then, based on each particle size distribution, the average crystal grain size of the primary crystal Si crystal grains and the average crystal grain size of the eutectic Si crystal grains are calculated.
  • the width of the linear groove is a distance between a pair of ridge lines adjacent to each other in a cross section (cross-sectional curve) intersecting the linear groove.
  • the cross section is parallel to the sliding direction of the piston portion and the sliding surface (reciprocating direction R of the piston portion).
  • the cross section is also parallel to the radial direction of the cylinder body.
  • the depth of the linear groove is a depth from a higher ridge line of a pair of ridge lines adjacent to the linear groove to a deepest portion of the linear groove.
  • the pitch of the linear grooves is the distance between the deepest portions of a pair of adjacent grooves in the cross section (cross section curve).
  • the width, depth, and pitch of the linear groove the average value of the linear groove included in the cross-sectional curve having a distance of 3 to 5 mm is used.
  • the depth of the linear groove is prescribed
  • regulated by this invention may be formed in the sliding surface. In that case, when specifying the width and pitch of the linear groove, the linear groove having the depth defined in the present invention is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

The present invention addresses the problem of providing an engine capable of more effectively inhibiting the formation of scuffs. This engine is provided with a piston part, and a cylinder body part having a sliding surface along which the piston part slides. The engine is characterized in that: the cylinder body part is formed from an Al alloy having an Si content of at least 16 mass%; and, in the sliding surface, primary Si crystal grains having an average crystal grain size of 8-50 µm inclusive, and the Al alloy base material are exposed so as to come into contact with the piston part, and a plurality of substantially parallel linear grooves are formed at a pitch with which a plurality of the linear grooves pass between the primary Si crystal grains.

Description

エンジン、シリンダボディ部材及び車両Engine, cylinder body member and vehicle
 本発明は、エンジン、シリンダボディ部材及び車両に関する。 The present invention relates to an engine, a cylinder body member, and a vehicle.
 近年、エンジンの軽量化を目的としてシリンダボディ部のAl合金化が進んでいる。シリンダボディ部には、高い強度や高い耐摩耗性が要求される。そのため、シリンダボディ部用のAl合金の一つとして、Siを多く含有するAl合金、つまり、過共晶組成のAl-Si系合金が挙げられる。 In recent years, Al alloying of the cylinder body has been progressing for the purpose of reducing the weight of the engine. The cylinder body portion is required to have high strength and high wear resistance. Therefore, as one of the Al alloys for the cylinder body, an Al alloy containing a large amount of Si, that is, an Al—Si based alloy having a hypereutectic composition can be cited.
 特許文献1は、Si含有量が比較的高いAl合金製のシリンダブロックを備えたエンジンに関して、以下の技術を開示している。 Patent Document 1 discloses the following technology regarding an engine including a cylinder block made of an Al alloy having a relatively high Si content.
 シリンダブロックのピストンリングとの摺動面には、Si結晶粒とAl合金母材とが露出している。摺動面は、Si結晶粒が浮き出るように機械的に加工されている。Si結晶粒の露出面は、Al合金母材の露出面よりも、シリンダの内側に位置する。従って、ピストンリングはSi結晶粒と接触する。ピストンリングのAl合金母材との接触が避けられる。また、シリンダブロックは、Si含有量が比較的高いAl合金からなり、高圧ダイカストにより製造されている。そのため、適度な大きさを有する初晶Si結晶粒が、摺動面に適度に分布する。エンジン運転時において各初晶Si結晶粒にかかる荷重が小さくなるので、初晶Si結晶粒の破壊が抑制される。また、初晶Si結晶粒が適度な大きさを有するので、摺動面から初晶Si結晶粒が脱落することが抑制される。これにより、ピストンリングのAl合金母材との接触が効果的に回避される。従って、Al合金母材とピストンリングとの接触に起因したスカッフの発生が抑制される。また、摺動面に浮き出したSi結晶粒の間に潤滑油が保持され、Si結晶粒間の窪みが油溜りとして機能する。これにより、ピストンがシリンダ内を摺動する際の潤滑性が向上し、シリンダボディ部の耐スカッフ性が向上する。 ¡Si crystal grains and Al alloy base material are exposed on the sliding surface of the cylinder block with the piston ring. The sliding surface is mechanically processed so that Si crystal grains are raised. The exposed surface of the Si crystal grains is located inside the cylinder with respect to the exposed surface of the Al alloy base material. Therefore, the piston ring comes into contact with the Si crystal grains. Contact with the Al alloy base material of the piston ring is avoided. The cylinder block is made of an Al alloy having a relatively high Si content, and is manufactured by high pressure die casting. Therefore, primary Si crystal grains having an appropriate size are appropriately distributed on the sliding surface. Since the load applied to each primary crystal Si crystal grain becomes small during engine operation, destruction of the primary crystal Si crystal grain is suppressed. Moreover, since the primary crystal grains have an appropriate size, the primary crystal grains are prevented from dropping off from the sliding surface. Thereby, contact with the Al alloy base material of the piston ring is effectively avoided. Therefore, the occurrence of scuffing due to the contact between the Al alloy base material and the piston ring is suppressed. Moreover, lubricating oil is hold | maintained between the Si crystal grains which floated on the sliding surface, and the hollow between Si crystal grains functions as an oil reservoir. Thereby, the lubricity when the piston slides in the cylinder is improved, and the scuff resistance of the cylinder body portion is improved.
 このように、特許文献1のシリンダブロックでは、適度な大きさを有する初晶Si結晶粒が、摺動面において適切な密度で分布するように浮島状に露出する。これにより、Al合金母材とピストンリングとの接触が避けられるとともに、Si結晶粒間の窪みが油溜りとして機能する。その結果、スカッフの発生が抑制される。 Thus, in the cylinder block of Patent Document 1, primary crystal Si grains having an appropriate size are exposed in a floating island shape so as to be distributed at an appropriate density on the sliding surface. Thereby, contact with Al alloy base material and a piston ring is avoided, and the hollow between Si crystal grains functions as an oil reservoir. As a result, the occurrence of scuffing is suppressed.
 特許文献2、3は、特許文献1と同様に、Si含有量が比較的高いAl合金製のシリンダブロックを備えたエンジンに関する。 Patent Documents 2 and 3 relate to an engine including a cylinder block made of an Al alloy having a relatively high Si content, as in Patent Document 1.
 特許文献2のシリンダブロックでは、摺動面が、Si結晶粒が浮き出るようにエッチング加工されている。エッチングにより、Si結晶粒間の窪みに位置するAl合金母材の表面に、凹凸が形成される。その結果、Si結晶粒間の窪みによって保持される潤滑油の量が、特許文献1のシリンダブロックよりも多い。従って、スカッフの発生がより効果的に抑制される。 In the cylinder block of Patent Document 2, the sliding surface is etched so that Si crystal grains are raised. By etching, irregularities are formed on the surface of the Al alloy base material located in the depressions between the Si crystal grains. As a result, the amount of lubricating oil retained by the depressions between the Si crystal grains is greater than that of the cylinder block of Patent Document 1. Therefore, the occurrence of scuffing is more effectively suppressed.
 特許文献3のシリンダブロックでは、上死点近傍においてSi結晶粒間の窪みに位置するAl合金母材の表面に形成される凹凸がより深くなるように、摺動面がエッチング加工されている。その結果、上死点近傍に位置するSi結晶粒間の窪みによって保持される潤滑油の量が増加する。上死点近傍におけるスカッフの発生がより効果的に抑制される。 In the cylinder block of Patent Document 3, the sliding surface is etched so that the unevenness formed on the surface of the Al alloy base material located in the depression between the Si crystal grains near the top dead center becomes deeper. As a result, the amount of lubricating oil retained by the depressions between the Si crystal grains located near the top dead center increases. Scuffing near the top dead center is more effectively suppressed.
 上死点近傍では、摺動面とピストン部との潤滑が、主として境界潤滑となる。また、上死点は、エンジンの燃焼室に近い。従って、上死点近傍の潤滑条件は厳しい。スカッフは、上死点近傍に生じ易い。そのため、特許文献3のように、上死点近傍でのスカッフを抑制するための技術が提案されている。 Near the top dead center, lubrication between the sliding surface and the piston is mainly boundary lubrication. The top dead center is close to the combustion chamber of the engine. Therefore, the lubrication conditions near the top dead center are severe. Scuffing tends to occur near top dead center. Therefore, as in Patent Document 3, a technique for suppressing scuffing near the top dead center has been proposed.
 このように、従来、Si含有量が比較的高く且つ高圧ダイカストにより製造されたAl合金製のシリンダブロックは、Si結晶粒を浮島状に露出させることを前提としてアップグレードされてきた経緯がある。言い換えれば、Si含有量が比較的高く且つ高圧ダイカストにより製造されたAl合金製のシリンダブロックの技術の流れの根底には、以下の2点を実現することによりスカッフを抑制できるという前提が存在していた。
 ピストンリングとAl合金母材との接触を抑制すること
 Si結晶粒間の窪みを油溜りとして機能させること
Thus, conventionally, the cylinder block made of Al alloy having a relatively high Si content and manufactured by high pressure die casting has been upgraded on the assumption that the Si crystal grains are exposed in a floating island shape. In other words, there is a premise that scuffing can be suppressed by realizing the following two points at the root of the technical flow of cylinder blocks made of Al alloy that are relatively high in Si content and manufactured by high pressure die casting. It was.
Suppressing the contact between the piston ring and the Al alloy base material Making the recess between the Si crystal grains function as an oil reservoir
特開2005-273654号公報JP 2005-273654 A 特開2008-180218号公報JP 2008-180218 A 特開2010-31840号公報JP 2010-31840 A
 本発明は、より効果的にスカッフの発生を抑制できるエンジン、シリンダボディ部材及び車両を提供することである。 The present invention is to provide an engine, a cylinder body member, and a vehicle that can more effectively suppress scuffing.
 本発明は、以下の構成を採用することができる。 The present invention can employ the following configurations.
 (1) ピストン部と、前記ピストン部が摺動する摺動面を有するシリンダボディ部とを備えたエンジンであって、
 前記シリンダボディ部は、Si含有量が16質量%以上であるAl合金から形成され、
 前記摺動面には、平均結晶粒径が8μm以上50μm以下である初晶Si結晶粒と、Al合金母材とが、前記ピストン部と接触するように露出するとともに、実質的に平行な複数の線状の溝が、前記初晶Si結晶粒の間に複数本の線状の溝が通るピッチで形成されている、
ことを特徴とするエンジン。
(1) An engine comprising a piston part and a cylinder body part having a sliding surface on which the piston part slides,
The cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more,
On the sliding surface, primary crystal Si crystal grains having an average crystal grain size of 8 μm or more and 50 μm or less and an Al alloy base material are exposed so as to be in contact with the piston portion, and a plurality of substantially parallel plural grains are exposed. Are formed at a pitch through which a plurality of linear grooves pass between the primary crystal grains.
An engine characterized by that.
 (1)の構成では、シリンダボディ部は、Si含有量が16質量%以上であるAl合金から形成される。摺動面に露出する初晶Si結晶粒の平均結晶粒径は、8μm以上50μm以下である。ピストン部の荷重を受ける観点から見て、初晶Si結晶粒は、適度な大きさを有し、摺動面に適度に分布する。この条件下において、初晶Si結晶粒とAl合金母材とが、ピストン部と接触するように露出するとともに、実質的に平行な複数の線状の溝が、初晶Si結晶粒の間に複数本の線状の溝が通るピッチで形成されている。複数の線状の溝が狭いピッチで形成されるので、初晶Si結晶粒間で潤滑油がバランス良く保持される。従って、摺動面における潤滑油の分散の均一性を向上させることが可能であり、摺動面上に形成される油膜の均一性を高めることができる。 In the configuration of (1), the cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more. The average crystal grain size of the primary crystal Si grains exposed on the sliding surface is 8 μm or more and 50 μm or less. From the viewpoint of receiving the load of the piston part, the primary crystal Si crystal grains have an appropriate size and are appropriately distributed on the sliding surface. Under these conditions, the primary Si crystal grains and the Al alloy base material are exposed so as to come into contact with the piston portion, and a plurality of substantially parallel linear grooves are formed between the primary Si crystal grains. It is formed at a pitch through which a plurality of linear grooves pass. Since the plurality of linear grooves are formed at a narrow pitch, the lubricating oil is maintained in a balanced manner between the primary crystal grains. Therefore, it is possible to improve the uniformity of the dispersion of the lubricating oil on the sliding surface, and to improve the uniformity of the oil film formed on the sliding surface.
 Al合金母材は、ピストン部と接触するように摺動面に露出している。従来、Al合金母材とピストン部との接触は、スカッフ抑制の観点から好ましくないと考えられていた。しかし、(1)の構成では、Al合金母材は、適度な大きさを有し且つ摺動面に適度に分布する初晶Si結晶粒とともに、摺動面に露出している。さらに、上述したように、(1)の構成では、摺動面上に形成される油膜の均一性が高められる。そのため、Al合金母材のピストン部との接触による影響が許容可能な程度に抑えられ、油膜の均一性の向上によるスカッフ抑制の効果が得られる。その結果、より効果的にスカッフの発生を抑制できる。 The Al alloy base material is exposed on the sliding surface so as to be in contact with the piston portion. Conventionally, the contact between the Al alloy base material and the piston portion has been considered undesirable from the viewpoint of suppressing scuffing. However, in the configuration of (1), the Al alloy base material is exposed to the sliding surface together with primary crystal Si grains having an appropriate size and appropriately distributed on the sliding surface. Furthermore, as described above, in the configuration (1), the uniformity of the oil film formed on the sliding surface is improved. Therefore, the influence by the contact with the piston part of the Al alloy base material is suppressed to an acceptable level, and the effect of suppressing the scuffing by improving the uniformity of the oil film is obtained. As a result, the occurrence of scuffing can be suppressed more effectively.
 (2) ピストン部と、前記ピストン部が摺動する摺動面を有するシリンダボディ部とを備えたエンジンであって、
 前記シリンダボディ部は、高圧ダイカストにより、Si含有量が16質量%以上であるAl合金から形成され、
 前記摺動面には、初晶Si結晶粒と、Al合金母材とが、前記ピストン部と接触するように露出するとともに、実質的に平行な複数の線状の溝が、前記初晶Si結晶粒の間に複数本の線状の溝が通るピッチで形成されている、
ことを特徴とするエンジン。
(2) An engine comprising a piston part and a cylinder body part having a sliding surface on which the piston part slides,
The cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more by high pressure die casting,
On the sliding surface, primary crystal Si grains and an Al alloy base material are exposed so as to come into contact with the piston portion, and a plurality of substantially parallel linear grooves are formed on the primary crystal Si. It is formed at a pitch through which a plurality of linear grooves pass between crystal grains,
An engine characterized by that.
 (2)の構成によれば、シリンダボディ部は、高圧ダイカストにより、Si含有量が16質量%以上であるAl合金から形成される。これにより、初晶Si結晶粒は、適度な大きさを有し、摺動面に適度に分布する。この条件下において、初晶Si結晶粒とAl合金母材とが、ピストン部と接触するように露出するとともに、実質的に平行な複数の線状の溝が、初晶Si結晶粒の間に複数本の線状の溝が通るピッチで形成されている。複数の線状の溝が狭いピッチで形成されるので、初晶Si結晶粒間で潤滑油がバランス良く保持される。従って、摺動面における潤滑油の分散の均一性を向上させることが可能であり、摺動面上に形成される油膜の均一性を高めることができる。 (2) According to the configuration of (2), the cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more by high pressure die casting. Thereby, the primary Si crystal grains have an appropriate size and are appropriately distributed on the sliding surface. Under these conditions, the primary Si crystal grains and the Al alloy base material are exposed so as to come into contact with the piston portion, and a plurality of substantially parallel linear grooves are formed between the primary Si crystal grains. It is formed at a pitch through which a plurality of linear grooves pass. Since the plurality of linear grooves are formed at a narrow pitch, the lubricating oil is maintained in a balanced manner between the primary crystal grains. Therefore, it is possible to improve the uniformity of the dispersion of the lubricating oil on the sliding surface, and to improve the uniformity of the oil film formed on the sliding surface.
 Al合金母材は、ピストン部と接触するように摺動面に露出している。従来、Al合金母材とピストン部との接触は、スカッフ抑制の観点から好ましくないと考えられていた。しかし、(2)の構成では、Al合金母材は、適度な大きさを有し且つ摺動面に適度に分布する初晶Si結晶粒とともに、摺動面に露出している。さらに、上述したように、(2)の構成では、摺動面上に形成される油膜の均一性が高められる。そのため、Al合金母材の露出による影響が抑えられ、油膜の均一性の向上によるスカッフ抑制の効果が得られる。その結果、より効果的にスカッフの発生を抑制できる。 The Al alloy base material is exposed on the sliding surface so as to be in contact with the piston portion. Conventionally, the contact between the Al alloy base material and the piston portion has been considered undesirable from the viewpoint of suppressing scuffing. However, in the configuration (2), the Al alloy base material is exposed to the sliding surface together with the primary crystal Si grains having an appropriate size and appropriately distributed on the sliding surface. Furthermore, as described above, in the configuration (2), the uniformity of the oil film formed on the sliding surface is improved. For this reason, the influence of the exposure of the Al alloy base material is suppressed, and the effect of suppressing the scuffing by improving the uniformity of the oil film is obtained. As a result, the occurrence of scuffing can be suppressed more effectively.
 (3) (1)又は(2)のエンジンであって、
 前記摺動面に露出する初晶Si結晶粒の少なくとも一部は、破壊されており、破壊されることにより初晶Si結晶粒に形成された面が、前記摺動面に露出している。
(3) The engine according to (1) or (2),
At least a part of the primary crystal Si crystal grains exposed on the sliding surface is destroyed, and the surface formed in the primary crystal Si crystal grains by the destruction is exposed on the sliding surface.
 (3)の構成によれば、破壊されることにより初晶Si結晶粒に形成された面(以下、破断面ともいう)は、油溜りとして機能する。初晶Si結晶粒の破断面は、例えば、凹凸を有しているので、油溜まりが保持可能な潤滑油の量は多い。油溜りの開口面積は、例えば、初晶Si結晶粒の断面積と同程度である。この油溜りの深さは、例えば、初晶Si結晶粒の径よりも小さい。このように初晶Si結晶粒の破断面を含む油溜りが、実質的に平行な複数の線状の溝とともに、摺動面に形成される。従って、潤滑油の分散の均一性を維持しつつ、潤滑油が保持される量を増加させることができる。より効果的にスカッフを抑制できる。 (3) According to the structure of (3), the surface (hereinafter also referred to as a fracture surface) formed in the primary Si crystal grains by being broken functions as an oil reservoir. Since the fracture surface of the primary crystal grain has, for example, irregularities, the amount of lubricating oil that can be retained by the oil sump is large. The opening area of the oil sump is, for example, about the same as the cross-sectional area of the primary crystal grains. For example, the depth of the oil sump is smaller than the diameter of the primary crystal grains. In this way, an oil sump including a fracture surface of primary Si crystal grains is formed on the sliding surface together with a plurality of substantially parallel linear grooves. Accordingly, it is possible to increase the amount of the lubricating oil retained while maintaining the uniformity of the lubricating oil dispersion. Scuffing can be suppressed more effectively.
 (4) (1)~(3)のいずれか1のエンジンであって、
 前記ピッチは、前記初晶Si結晶粒の平均結晶粒径より小さい。
(4) The engine according to any one of (1) to (3),
The pitch is smaller than the average crystal grain size of the primary Si crystal grains.
 (4)の構成によれば、実質的に平行な複数の線状の溝が、より狭いピッチで形成される。潤滑油の分散の均一性がより高められる。従って、さらに効果的にスカッフを抑制できる。 According to the configuration of (4), a plurality of substantially parallel linear grooves are formed at a narrower pitch. The uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
 (5) (1)~(4)のいずれか1のエンジンであって、
 前記シリンダボディ部は、前記初晶Si結晶粒及び前記Al合金母材に加え、共晶Si結晶粒を含有しており、
 前記ピッチは、前記シリンダボディ部のSi結晶粒の粒度分布における前記共晶Si結晶粒径の範囲に含まれる。
(5) The engine according to any one of (1) to (4),
The cylinder body portion contains eutectic Si crystal grains in addition to the primary Si crystal grains and the Al alloy base material,
The pitch is included in the range of the eutectic Si crystal grain size in the grain size distribution of the Si crystal grains in the cylinder body.
 (5)の構成によれば、実質的に平行な複数の線状の溝が、より狭いピッチで形成される。潤滑油の分散の均一性がより高められる。従って、さらに効果的にスカッフを抑制できる。 According to the configuration of (5), a plurality of substantially parallel linear grooves are formed at a narrower pitch. The uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
 (6) (1)~(5)のいずれか1のエンジンであって、
 前記複数の線状の溝は、0.1μm以上2.0μm未満の深さを有する。
(6) The engine according to any one of (1) to (5),
The plurality of linear grooves have a depth of 0.1 μm or more and less than 2.0 μm.
 (6)の構成によれば、摺動面とピストン部との摺動に適した量の潤滑油が保持される。従って、さらに効果的にスカッフを抑制できる。 (6) According to the configuration (6), an amount of lubricating oil suitable for sliding between the sliding surface and the piston portion is retained. Therefore, scuffing can be suppressed more effectively.
 (7) (1)~(6)いずれか1のエンジンであって、
 前記複数の溝の少なくとも一本は、初晶Si結晶粒を破壊することにより、初晶Si結晶粒を通過するように形成されている。
(7) The engine according to any one of (1) to (6),
At least one of the plurality of grooves is formed so as to pass through the primary Si crystal grains by breaking the primary crystal Si grains.
 (7)の構成によれば、潤滑油が初晶Si結晶粒上に保持される。潤滑油の分散の均一性がより高められる。従って、さらに効果的にスカッフを抑制できる。 (7) According to the structure of (7), lubricating oil is hold | maintained on primary crystal Si crystal grain. The uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
 (8) (1)~(7)のエンジンであって、
 前記ピッチは、5μm以上10μm以下である。
(8) The engine of (1) to (7),
The pitch is 5 μm or more and 10 μm or less.
 (8)の構成によれば、実質的に平行な複数の線状の溝が、より狭いピッチで形成される。潤滑油の分散の均一性がより高められる。従って、さらに効果的にスカッフを抑制できる。 According to the configuration of (8), a plurality of substantially parallel linear grooves are formed at a narrower pitch. The uniformity of the dispersion of the lubricating oil is further improved. Therefore, scuffing can be suppressed more effectively.
 (9) (1)~(8)のいずれか1のエンジンに含まれる前記シリンダボディ部を備えるシリンダボディ部材。 (9) A cylinder body member including the cylinder body part included in the engine according to any one of (1) to (8).
 (9)の構成によれば、より効果的にスカッフの発生を抑制できるシリンダボディ部材を提供できる。 According to the configuration of (9), it is possible to provide a cylinder body member that can more effectively suppress the occurrence of scuffing.
 (10) (1)~(8)のいずれか1のエンジンを備えた車両。 (10) A vehicle equipped with any one engine of (1) to (8).
 (10)の構成によれば、より効果的にスカッフの発生を抑制できるエンジンを備えた車両を提供できる。 According to the configuration of (10), it is possible to provide a vehicle including an engine that can more effectively suppress the occurrence of scuffing.
 本発明によれば、より効果的にスカッフの発生を抑制できる。 According to the present invention, the occurrence of scuffing can be suppressed more effectively.
本発明の一実施形態に係るエンジン150を模式的に示す断面図である。It is sectional drawing which shows typically the engine 150 which concerns on one Embodiment of this invention. 図1に示すエンジン150が備えるピストン部122を模式的に示す側面図である。FIG. 2 is a side view schematically showing a piston part 122 provided in the engine 150 shown in FIG. 1. 図1に示すエンジン150が備えるシリンダボディ部100を模式的に示す斜視図である。It is a perspective view which shows typically the cylinder body part 100 with which the engine 150 shown in FIG. 1 is provided. 図3に示すシリンダボディ部100を模式的に示す断面図である。It is sectional drawing which shows typically the cylinder body part 100 shown in FIG. 図3に示すシリンダボディ部100の摺動面101を模式的に示す部分拡大平面図である。FIG. 4 is a partially enlarged plan view schematically showing a sliding surface 101 of a cylinder body part 100 shown in FIG. 3. 図3に示すシリンダボディ部100の摺動面101を模式的に示す部分拡大断面図である。FIG. 4 is a partial enlarged cross-sectional view schematically showing a sliding surface 101 of the cylinder body portion 100 shown in FIG. 3. Si結晶粒の好ましい粒度分布の例を示すグラフである。It is a graph which shows the example of the preferable particle size distribution of Si crystal grain. 図1に示すエンジン150を備えた自動二輪車を模式的に示す側面図である。Fig. 2 is a side view schematically showing a motorcycle including the engine 150 shown in Fig. 1.
 従来、Si含有量が比較的高く且つ高圧ダイカストにより製造されたAl合金製のシリンダボディ部では、初晶Si結晶粒が浮島状に露出するように摺動面が加工されていた。摺動面では、ピストンリングとAl合金母材との接触が抑制されるとともに、Si結晶粒間の窪みが油溜りとして機能する。これにより、スカッフの抑制が図られていた。 Conventionally, in a cylinder body part made of Al alloy having a relatively high Si content and manufactured by high pressure die casting, the sliding surface has been processed so that the primary crystal Si crystal grains are exposed in a floating island shape. On the sliding surface, contact between the piston ring and the Al alloy base material is suppressed, and a recess between Si crystal grains functions as an oil reservoir. As a result, scuffing was suppressed.
 このような従来の設計思想に対し、本発明者らは、より効果的にスカッフの発生を抑制するために鋭意研究を行い、以下の知見を得た。 In response to such a conventional design philosophy, the present inventors conducted intensive research to more effectively suppress the occurrence of scuffing, and obtained the following knowledge.
 Si含有量が比較的高く且つ高圧ダイカストにより製造されたAl合金製のシリンダボディ部では、ピストン部の荷重を受ける観点から見て、初晶Si結晶粒が、適度な大きさを有し、摺動面に適度に分布する。従って、初晶Si結晶粒間で潤滑油をバランス良く保持することにより、摺動面上に形成される油膜の均一性が向上すれば、Al合金母材がピストン部と接触しても、スカッフが生じ難い。即ち、Al合金母材とピストン部との接触が許容可能となる。そして、油膜の均一性の向上によるメリットを享受できるので、より効果的にスカッフの発生を抑制できる。 In the cylinder body part made of Al alloy having a relatively high Si content and manufactured by high pressure die casting, from the viewpoint of receiving the load of the piston part, the primary crystal Si grains have an appropriate size and are slid. It is distributed moderately on the moving surface. Therefore, if the uniformity of the oil film formed on the sliding surface is improved by keeping the lubricating oil in a balanced manner between the primary Si crystal grains, the scuffing can be performed even if the Al alloy base material comes into contact with the piston portion. Is unlikely to occur. That is, the contact between the Al alloy base material and the piston portion is allowed. And since the merit by the improvement of the uniformity of an oil film can be enjoyed, generation | occurrence | production of a scuff can be suppressed more effectively.
 本発明は、上述した知見、即ち従来の設計思想と相反する知見に基づいて完成した発明である。以下、本発明の実施形態について、図面を参照しながら説明する。 The present invention is an invention completed based on the above-described knowledge, that is, knowledge that conflicts with the conventional design concept. Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <エンジン>
 図1は、本発明の一実施形態に係るエンジン150を模式的に示す断面図である。本実施形態において、Rは、ピストン部122の往復動方向を示す。Uは、上方向、即ちシリンダボディ部100からシリンダヘッド130に向かう方向を示す。Lは、下方向、即ちシリンダボディ部100からクランクケース110に向かう方向を示す。また、以下では、水冷式のエンジンを例として説明を行うが、本発明はこれに限定されるものではなく、空冷式のエンジンであってもよい。本実施形態のエンジンは、単気筒エンジンであるが、本発明において、エンジンの気筒数は、特に限定されない。本実施形態のエンジンは、4ストロークのエンジンであるが、2ストロークのエンジンであってもよい。
<Engine>
FIG. 1 is a cross-sectional view schematically showing an engine 150 according to an embodiment of the present invention. In the present embodiment, R indicates the reciprocating direction of the piston part 122. U indicates the upward direction, that is, the direction from the cylinder body portion 100 toward the cylinder head 130. L indicates a downward direction, that is, a direction from the cylinder body portion 100 toward the crankcase 110. In the following, a water-cooled engine will be described as an example, but the present invention is not limited to this, and an air-cooled engine may be used. The engine of this embodiment is a single cylinder engine, but in the present invention, the number of cylinders of the engine is not particularly limited. The engine of the present embodiment is a 4-stroke engine, but may be a 2-stroke engine.
 エンジン150は、クランクケース110、シリンダボディ部100およびシリンダヘッド130を有している。本実施形態では、シリンダボディ部100とクランクケース110とが別体であるが、本発明では、シリンダボディ部100とクランクケース110とが一体であってもよい。 The engine 150 includes a crankcase 110, a cylinder body portion 100, and a cylinder head 130. In the present embodiment, the cylinder body portion 100 and the crankcase 110 are separate, but in the present invention, the cylinder body portion 100 and the crankcase 110 may be integrated.
 クランクケース110内にはクランクシャフト111が収容されている。クランクシャフト111は、クランクピン112およびクランクウェブ113を有している。 A crankshaft 111 is accommodated in the crankcase 110. The crankshaft 111 has a crankpin 112 and a crank web 113.
 クランクケース110の上に、シリンダボディ部100が設けられている。シリンダボディ部100は、シリンダ壁103と、外壁104とを備えている。シリンダ壁103は、シリンダボア102を画定するように形成されている。外壁104は、シリンダ壁103を包囲し、シリンダボディ部100の外郭を構成する。シリンダ壁103と外壁104との間には、ウォータジャケット105が設けられている。 The cylinder body part 100 is provided on the crankcase 110. The cylinder body portion 100 includes a cylinder wall 103 and an outer wall 104. The cylinder wall 103 is formed so as to define the cylinder bore 102. The outer wall 104 surrounds the cylinder wall 103 and constitutes an outer shell of the cylinder body portion 100. A water jacket 105 is provided between the cylinder wall 103 and the outer wall 104.
 シリンダボディ部100のシリンダボア102内には、ピストン部122が挿入されている。ピストン部122は、シリンダボディ部100の摺動面101に接触した状態でシリンダボア102内を摺動する(図2参照)。ピストン部122は、例えば、Al合金(典型的にはSiを含むAl合金)から形成されている。ピストン部122は、例えば、米国特許第6205836号明細書に開示されているように鍛造により形成される。ピストン部122は、鋳造により形成されてもよい。 The piston part 122 is inserted into the cylinder bore 102 of the cylinder body part 100. The piston part 122 slides in the cylinder bore 102 in contact with the sliding surface 101 of the cylinder body part 100 (see FIG. 2). The piston part 122 is made of, for example, an Al alloy (typically an Al alloy containing Si). The piston portion 122 is formed by forging as disclosed in, for example, US Pat. No. 6,205,836. The piston part 122 may be formed by casting.
 シリンダボア102内には、シリンダスリーブが、設けられていない。シリンダボディ部100のシリンダ壁103の内側表面には、めっきは施されていない。本実施形態では、シリンダスリーブが必要とされないので、エンジン150の製造工程の簡略化や、エンジン150の軽量化、冷却性能の向上が可能となる。また、シリンダ壁103の内側表面にめっきを施す必要もないので、製造コストの低減を図ることもできる。本発明は、本実施形態に限定されず、例えば、シリンダボア102内に、シリンダスリーブが設けられ、シリンダスリーブが、本実施形態に係るシリンダボディ部100を有していてもよい。シリンダスリーブの設置方法としては、特に限定されず、例えば、シリンダボア102内への嵌め込み、鋳包み等が挙げられる。この場合、シリンダスリーブが、本実施形態に係る摺動面101を有する。また、シリンダスリーブが備えるシリンダボディ部100の内側表面には、めっきが施されない。 * No cylinder sleeve is provided in the cylinder bore 102. The inner surface of the cylinder wall 103 of the cylinder body 100 is not plated. In the present embodiment, since a cylinder sleeve is not required, it is possible to simplify the manufacturing process of the engine 150, reduce the weight of the engine 150, and improve the cooling performance. Further, since it is not necessary to plate the inner surface of the cylinder wall 103, the manufacturing cost can be reduced. The present invention is not limited to the present embodiment. For example, a cylinder sleeve may be provided in the cylinder bore 102, and the cylinder sleeve may include the cylinder body portion 100 according to the present embodiment. The method for installing the cylinder sleeve is not particularly limited, and examples thereof include fitting into the cylinder bore 102 and casting. In this case, the cylinder sleeve has the sliding surface 101 according to the present embodiment. Further, the inner surface of the cylinder body portion 100 provided in the cylinder sleeve is not plated.
 シリンダボディ部100の上に、シリンダヘッド130が設けられている。シリンダヘッド130は、シリンダボディ部100のピストン部122とともに燃焼室131を形成する。シリンダヘッド130は、吸気ポート132および排気ポート133を有している。吸気ポート132内には燃焼室131内に混合気を供給するための吸気弁134が設けられており、排気ポート133内には燃焼室131内の排気を行うための排気弁135が設けられている。 A cylinder head 130 is provided on the cylinder body 100. The cylinder head 130 forms a combustion chamber 131 together with the piston part 122 of the cylinder body part 100. The cylinder head 130 has an intake port 132 and an exhaust port 133. An intake valve 134 for supplying air-fuel mixture into the combustion chamber 131 is provided in the intake port 132, and an exhaust valve 135 for exhausting the combustion chamber 131 is provided in the exhaust port 133. Yes.
 ピストン部122とクランクシャフト111とは、コンロッド140によって連結されている。具体的には、コンロッド140の小端部142の貫通孔にピストン部122のピストンピン123が挿入されているとともに、大端部144の貫通孔にクランクシャフト111のクランクピン112が挿入されており、そのことによってピストン部122とクランクシャフト111とが連結されている。大端部144の貫通孔の内周面とクランクピン112との間には、ローラベアリング(転がり軸受け)114が設けられている。なお、エンジン150は、潤滑油を強制的に供給するオイルポンプを備えていないが、本発明のエンジンは、オイルポンプを備えていてもよい。 The piston part 122 and the crankshaft 111 are connected by a connecting rod 140. Specifically, the piston pin 123 of the piston portion 122 is inserted into the through hole of the small end portion 142 of the connecting rod 140, and the crank pin 112 of the crankshaft 111 is inserted into the through hole of the large end portion 144. Thereby, the piston part 122 and the crankshaft 111 are connected. A roller bearing (rolling bearing) 114 is provided between the inner peripheral surface of the through hole of the large end portion 144 and the crank pin 112. The engine 150 does not include an oil pump that forcibly supplies lubricating oil, but the engine of the present invention may include an oil pump.
 図2は、図1に示すエンジン150が備えるピストン部122を模式的に示す側面図である。 FIG. 2 is a side view schematically showing the piston portion 122 provided in the engine 150 shown in FIG.
 ピストン部122は、シリンダボア102内に設けられている。ピストン部122は、ピストン本体122aと、ピストンリング部122bとを備える。ピストン本体122aは、コンロッド140の貫通孔に挿入されるピストンピン123を備えている。ピストンリング部122bは、ピストン本体122aの外周に設けられた3つ(複数)のピストンリング122c、122d、122eからなる。 The piston part 122 is provided in the cylinder bore 102. The piston part 122 includes a piston main body 122a and a piston ring part 122b. The piston body 122 a includes a piston pin 123 that is inserted into the through hole of the connecting rod 140. The piston ring portion 122b includes three (plural) piston rings 122c, 122d, and 122e provided on the outer periphery of the piston main body 122a.
 ピストンリング122cは、トップリングとも称され、ピストン本体122aの外周に設けられたトップリング溝122fに嵌められている。ピストンリング122dは、セカンドリングとも称され、ピストン本体122aの外周に設けられたセカンドリング溝122gに嵌められている。ピストンリング122eは、オイルリングとも称され、ピストン本体122aの外周に設けられたオイルリング溝122hに嵌められている。トップリング122c、セカンドリング122d及びオイルリング122eは、ピストン部122の往復動方向Rにおいて互いに間隔を空けて、上から下方向へ、この順に設けられている。即ち、本実施形態において、ピストン部122の往復動方向Rにおけるピストンリング部122bの上端122mは、トップリング122cの上面に相当する。ピストンリング部122bの下端122nは、オイルリング122eの下面に相当する。ピストン部122のうち、特に、ピストンリング部122b(ピストンリング122c、122d、122e)が、シリンダ壁103の摺動面101と接触する。なお、本実施形態では、ピストンリング部122bが、3つのピストンリングにより構成されているが、ピストンリング部122bを構成するピストンリングの数は、特に限定されない。 The piston ring 122c is also referred to as a top ring, and is fitted in a top ring groove 122f provided on the outer periphery of the piston main body 122a. The piston ring 122d is also called a second ring, and is fitted in a second ring groove 122g provided on the outer periphery of the piston main body 122a. The piston ring 122e is also referred to as an oil ring, and is fitted in an oil ring groove 122h provided on the outer periphery of the piston main body 122a. The top ring 122c, the second ring 122d, and the oil ring 122e are provided in this order from the top to the bottom with a space therebetween in the reciprocating direction R of the piston portion 122. That is, in the present embodiment, the upper end 122m of the piston ring part 122b in the reciprocating direction R of the piston part 122 corresponds to the upper surface of the top ring 122c. The lower end 122n of the piston ring portion 122b corresponds to the lower surface of the oil ring 122e. Of the piston part 122, in particular, the piston ring part 122 b ( piston rings 122 c, 122 d, 122 e) is in contact with the sliding surface 101 of the cylinder wall 103. In the present embodiment, the piston ring part 122b is constituted by three piston rings, but the number of piston rings constituting the piston ring part 122b is not particularly limited.
 図3は、図1に示すエンジン150が備えるシリンダボディ部100を模式的に示す斜視図である。図4は、図3に示すシリンダボディ部100を模式的に示す断面図である。 FIG. 3 is a perspective view schematically showing the cylinder body portion 100 included in the engine 150 shown in FIG. FIG. 4 is a cross-sectional view schematically showing the cylinder body portion 100 shown in FIG.
 シリンダボディ部100は、摺動面101を有し、Siを含むAl合金から形成されている。具体的には、Si含有量が16質量%以上であるAl合金から形成されている。Al合金は、73.4質量%以上79.6質量%以下のAl、16質量%以上24質量%以下のSi、および2.0質量%以上5.0質量%以下の銅を含むことが好ましい。シリンダボディ部100の耐摩耗性及び強度を高くすることができる。また、Si含有量は、18質量%以上であることも好ましい。Si含有量は、22質量%以下であることも好ましい。Al合金は、50質量ppm以上200質量ppm以下のリンと、0.01質量%以下のカルシウムとを含むことが好ましい。Al合金が50質量ppm以上200質量ppm以下のリンを含んでいると、Si結晶粒の粗大化を抑制することができるので、合金中にSi結晶粒を均一に分散させることができる。また、Al合金のカルシウム含有量を0.01質量%以下とすることによって、リンによるSi結晶粒の微細化効果を確保し、耐摩耗性に優れた金属組織を得ることができる。 The cylinder body part 100 has a sliding surface 101 and is made of an Al alloy containing Si. Specifically, it is formed from an Al alloy having a Si content of 16% by mass or more. The Al alloy preferably contains 73.4% to 79.6% by weight of Al, 16% to 24% by weight of Si, and 2.0% to 5.0% by weight of copper. . The wear resistance and strength of the cylinder body 100 can be increased. Moreover, it is also preferable that Si content is 18 mass% or more. The Si content is preferably 22% by mass or less. The Al alloy preferably contains 50 mass ppm or more and 200 mass ppm or less of phosphorus and 0.01 mass% or less of calcium. If the Al alloy contains 50 mass ppm or more and 200 mass ppm or less of phosphorus, it is possible to suppress the coarsening of the Si crystal grains, so that the Si crystal grains can be uniformly dispersed in the alloy. Moreover, by making the calcium content of the Al alloy 0.01% by mass or less, it is possible to secure the effect of refining Si crystal grains by phosphorus and to obtain a metal structure having excellent wear resistance.
 シリンダボディ部100は、図3および図4に示すように、摺動面101が形成されたシリンダ壁103と、外周に露出する面を有する外壁104とを備えている。シリンダ壁103と外壁104との間には、ウォータジャケット105が設けられている。ウォータジャケット105は、冷却液を保持するように構成されている。 3 and 4, the cylinder body portion 100 includes a cylinder wall 103 on which a sliding surface 101 is formed, and an outer wall 104 having a surface exposed to the outer periphery. A water jacket 105 is provided between the cylinder wall 103 and the outer wall 104. The water jacket 105 is configured to hold a coolant.
 シリンダボディ部100は、ピストン部122(図1参照)が接触する摺動面101を備えている。摺動面101は、シリンダ壁103のシリンダボア102側の表面(即ち内周面)である。言い換えると、摺動面101は、シリンダ壁103の内周面のうち、シリンダボディ部100の径方向における最も内側に位置する面である。なお、本発明において、摺動面101がピストン部122と接触することは、摺動面101が、潤滑油によって形成された油膜を介してピストン部122と接触することを含む。 The cylinder body unit 100 includes a sliding surface 101 with which the piston unit 122 (see FIG. 1) contacts. The sliding surface 101 is a surface (that is, an inner peripheral surface) of the cylinder wall 103 on the cylinder bore 102 side. In other words, the sliding surface 101 is a surface located on the innermost surface of the cylinder wall 103 in the radial direction of the cylinder body portion 100. In the present invention, the contact of the sliding surface 101 with the piston portion 122 includes the contact of the sliding surface 101 with the piston portion 122 through an oil film formed of lubricating oil.
 なお、本明細書において、摺動面101の「上側」とは、シリンダヘッド側(すなわち上死点側)である。摺動面101の「下側」とは、クランクケース側(すなわち下死点側)である。摺動面101の上側1/4の領域101aとは、摺動面101全体をピストンの摺動方向(シリンダボア102の中心軸方向)に沿って均等に4分割したときに、もっともシリンダヘッド側に位置する領域を指す。摺動面101の下側1/4の領域101bとは、もっともクランクケース側に位置する領域を指す。 In this specification, the “upper side” of the sliding surface 101 is the cylinder head side (that is, the top dead center side). The “lower side” of the sliding surface 101 is the crankcase side (that is, the bottom dead center side). The upper quarter region 101a of the sliding surface 101 means that the entire sliding surface 101 is evenly divided into four along the sliding direction of the piston (the central axis direction of the cylinder bore 102). Refers to the area where it is located. The lower quarter region 101b of the sliding surface 101 refers to a region located closest to the crankcase.
 本実施形態では、摺動面101全域に、後述する線状溝4(図5参照)が形成されている。本発明において、摺動面101において線状溝4が形成される部分は、特に限定されない。摺動面101において線状溝4が形成される部分は、例えば、少なくとも摺動面101の上側1/4の領域101aであってもよい。摺動面101において線状溝4が形成される部分は、例えば、少なくとも摺動面101の上側1/4の領域101a及び下側1/4の領域101bであってもよい。 In this embodiment, a linear groove 4 (see FIG. 5) to be described later is formed over the entire sliding surface 101. In the present invention, the portion where the linear groove 4 is formed on the sliding surface 101 is not particularly limited. The portion of the sliding surface 101 where the linear groove 4 is formed may be, for example, at least the upper quarter region 101 a of the sliding surface 101. The portion where the linear groove 4 is formed on the sliding surface 101 may be, for example, at least the upper quarter region 101 a and the lower quarter region 101 b of the sliding surface 101.
 図5は、図3に示すシリンダボディ部100の摺動面を拡大して模式的に示す平面図である。Rは、ピストン部122の往復動方向を示す。図6は、図3に示すシリンダボディ部100の摺動面を拡大して模式的に示す断面図である。図6は、方向Rに沿った断面図である。図6では、説明の便宜上、線状溝4のうち、第一線状溝4aのみを図示している。 FIG. 5 is an enlarged plan view schematically showing the sliding surface of the cylinder body 100 shown in FIG. R indicates the reciprocating direction of the piston part 122. FIG. 6 is a cross-sectional view schematically showing an enlarged sliding surface of the cylinder body 100 shown in FIG. FIG. 6 is a cross-sectional view along the direction R. In FIG. 6, only the first linear groove 4 a among the linear grooves 4 is illustrated for convenience of explanation.
 摺動面101には、複数の初晶Si結晶粒1と、複数の共晶Si結晶粒2と、Al合金母材3とが露出している。過共晶組成のAl-Si系合金の溶湯を冷却したときに、最初に析出するSi結晶粒は「初晶Si結晶粒」と呼ばれる。次いで析出するSi結晶粒は「共晶Si結晶粒」と呼ばれる。初晶Si結晶粒1は、比較的大きく、例えば、粒状を有する。共晶Si結晶粒2は、比較的小さく、例えば、針状を有する。全ての共晶Si結晶粒2が、必ずしも、針状を有すると限らない。一部の共晶Si結晶粒2が、粒状を有していてもよい。この場合、複数の共晶Si結晶粒2のうち、針状の共晶Si結晶粒2が、主な結晶粒である。Al合金母材3は、Alを含む固溶体のマトリックスである。シリンダボディ部100は、複数の初晶Si結晶粒1と、複数の共晶Si結晶粒2と、Al合金母材3とを有している。複数の初晶Si結晶粒1及び複数の共晶Si結晶粒2は、Al合金母材3中に分散して存在している。 On the sliding surface 101, a plurality of primary crystal Si grains 1, a plurality of eutectic Si crystal grains 2, and an Al alloy base material 3 are exposed. When the molten Al-Si alloy having a hypereutectic composition is cooled, the Si crystal grains that precipitate first are called "primary Si crystal grains". The precipitated Si crystal grains are called “eutectic Si crystal grains”. The primary crystal Si crystal grain 1 is relatively large and has, for example, a granular shape. The eutectic Si crystal grain 2 is relatively small, for example, has a needle shape. All the eutectic Si crystal grains 2 do not necessarily have a needle shape. Some eutectic Si crystal grains 2 may have a granular shape. In this case, among the plurality of eutectic Si crystal grains 2, the needle-like eutectic Si crystal grains 2 are main crystal grains. The Al alloy base material 3 is a solid solution matrix containing Al. The cylinder body 100 has a plurality of primary crystal Si grains 1, a plurality of eutectic Si crystal grains 2, and an Al alloy base material 3. The plurality of primary crystal Si grains 1 and the plurality of eutectic Si crystal grains 2 are dispersed in the Al alloy base material 3.
 初晶Si結晶粒1の平均結晶粒径は、例えば、8μm以上50μm以下である。従って、初晶Si結晶粒1は摺動面101の単位面積あたりに十分な数存在する。そのため、エンジン150の運転時に各初晶Si結晶粒1にかかる荷重は相対的に小さくなる。エンジン150の運転時における初晶Si結晶粒1の破壊が抑制される。また、初晶Si結晶粒1のAl合金母材3に埋まっている部分が十分に大きいので、初晶Si結晶粒1の脱落が低減される。そのため、脱落した初晶Si結晶粒1による摺動面101の摩耗も抑制される。これに対し、初晶Si結晶粒1の平均結晶粒径が8μm未満である場合、初晶Si結晶粒1の、Al合金母材3中に埋まっている部分が小さい。そのため、エンジン150の運転時には、初晶Si結晶粒1の脱落が起こりやすい。脱落した初晶Si結晶粒1は、研磨粒子として作用してしまうため、摺動面101が大きく摩耗するおそれがある。また、初晶Si結晶粒1の平均結晶粒径が50μmを超える場合、摺動面101の単位面積当りの初晶Si結晶粒1の個数が少ない。そのため、エンジン150の運転時に初晶Si結晶粒1のそれぞれに大きな荷重がかかり、初晶Si結晶粒1が破壊されることがある。破壊された初晶Si結晶粒1の破片は、研磨粒子として作用してしまうため、摺動面101が大きく摩耗するおそれがある。なお、初晶Si結晶粒1の平均結晶粒径は、12μm以上であることが好ましい。 The average crystal grain size of the primary crystal Si crystal grain 1 is, for example, 8 μm or more and 50 μm or less. Accordingly, a sufficient number of primary Si crystal grains 1 exist per unit area of the sliding surface 101. Therefore, the load applied to each primary crystal Si crystal grain 1 during operation of engine 150 is relatively small. The destruction of the primary crystal Si crystal grains 1 during operation of the engine 150 is suppressed. In addition, since the portion of the primary crystal Si crystal grain 1 embedded in the Al alloy base material 3 is sufficiently large, dropping of the primary crystal Si crystal grain 1 is reduced. Therefore, the wear of the sliding surface 101 due to the dropped primary crystal Si crystal grains 1 is also suppressed. On the other hand, when the average crystal grain size of the primary crystal grains 1 is less than 8 μm, the portion of the primary crystal grains 1 embedded in the Al alloy base material 3 is small. Therefore, when the engine 150 is operated, the primary crystal Si crystal grains 1 are likely to fall off. Since the dropped primary crystal Si crystal grains 1 act as abrasive particles, the sliding surface 101 may be greatly worn. When the average crystal grain size of the primary crystal grains 1 exceeds 50 μm, the number of primary crystal grains 1 per unit area of the sliding surface 101 is small. Therefore, a large load is applied to each of the primary Si crystal grains 1 during operation of the engine 150, and the primary Si crystal grains 1 may be destroyed. Since the broken pieces of the primary Si crystal grains 1 that have been destroyed act as abrasive particles, the sliding surface 101 may be worn significantly. Note that the average crystal grain size of the primary crystal Si crystal grains 1 is preferably 12 μm or more.
 本実施形態では、シリンダボディ部100は、高圧ダイカスト(HPDC)により、Si含有量が16質量%以上であるAl合金から形成されている。高圧ダイカストは、溶湯に圧力を加えることにより、大気圧を超える圧力で溶湯を型内に供給する鋳造方法である。高圧ダイカストによれば、大きな冷却速度(例えば4℃/秒以上50℃/秒以下)で、摺動面101となる部分を冷却できる。これにより、例えば、初晶Si結晶粒1の平均結晶粒径を、8μm以上50μm以下に制御することができる。 In the present embodiment, the cylinder body 100 is formed of an Al alloy having a Si content of 16% by mass or more by high pressure die casting (HPDC). High pressure die casting is a casting method in which molten metal is supplied into a mold at a pressure exceeding atmospheric pressure by applying pressure to the molten metal. According to the high pressure die casting, the portion that becomes the sliding surface 101 can be cooled at a high cooling rate (for example, 4 ° C./second or more and 50 ° C./second or less). Thereby, for example, the average crystal grain size of the primary crystal Si crystal grains 1 can be controlled to 8 μm or more and 50 μm or less.
 共晶Si結晶粒2の平均結晶粒径は、初晶Si結晶粒1の平均結晶粒径より小さい。共晶Si結晶粒2の平均結晶粒径は、7.5μm以下であることが好ましい。共晶Si結晶粒2は、Al合金母材3を補強する役割を果たす。そのため、共晶Si結晶粒2を微細化することによって、シリンダボディ部100の耐摩耗性や強度を向上することができる。 The average crystal grain size of the eutectic Si crystal grain 2 is smaller than the average crystal grain size of the primary crystal Si crystal grain 1. The average crystal grain size of the eutectic Si crystal grains 2 is preferably 7.5 μm or less. The eutectic Si crystal grains 2 serve to reinforce the Al alloy base material 3. Therefore, by reducing the eutectic Si crystal grain 2, the wear resistance and strength of the cylinder body 100 can be improved.
 ここで、シリンダボディ部100におけるSi結晶粒の粒度分布について説明する。
 図7は、Si結晶粒の好ましい粒度分布の例を示すグラフである。
 図7に示すグラフにおいて、結晶粒径が1μm以上7.5μm以下の範囲内にあるSi結晶粒は、共晶Si結晶粒2であり、結晶粒径が8μm以上50μm以下の範囲内にあるSi結晶粒は、初晶Si結晶粒1である。このように、シリンダボディ部100のSi結晶粒1、2は、結晶粒径が1μm以上7.5μm以下の範囲内と結晶粒径が8μm以上50μm以下の範囲内とにそれぞれピークが存在する粒度分布を有することが好ましい。シリンダボディ部100の耐摩耗性および強度を大きく向上させることができる。
Here, the particle size distribution of the Si crystal grains in the cylinder body 100 will be described.
FIG. 7 is a graph showing an example of a preferable particle size distribution of Si crystal grains.
In the graph shown in FIG. 7, the Si crystal grains having a crystal grain size in the range of 1 μm to 7.5 μm are eutectic Si crystal grains 2, and the Si crystal grains having a crystal grain size in the range of 8 μm to 50 μm The crystal grains are primary crystal Si crystal grains 1. As described above, the Si crystal grains 1 and 2 of the cylinder body 100 have a grain size in which peaks exist in the range where the crystal grain size is 1 μm or more and 7.5 μm or less and the crystal grain size is 8 μm or more and 50 μm or less. It is preferable to have a distribution. The wear resistance and strength of the cylinder body 100 can be greatly improved.
 また、共晶Si結晶粒2によるAl合金母材3の補強の観点から、図7にも示しているように、結晶粒径1μm以上7.5μm以下の範囲内にある第1ピーク(共晶Si結晶粒2に由来するピーク)における度数が、結晶粒径8μm以上50μm以下の範囲内にある第2ピーク(初晶Si結晶粒1に由来するピーク)における度数の5倍以上であることが好ましい。 Further, from the viewpoint of reinforcing the Al alloy base material 3 with the eutectic Si crystal grains 2, as shown in FIG. 7, the first peak (eutectic crystal) in the range of the crystal grain size of 1 μm to 7.5 μm. The frequency in the peak derived from the Si crystal grain 2) is 5 times or more the frequency in the second peak (peak derived from the primary crystal Si crystal grain 1) in the range of the crystal grain size of 8 μm to 50 μm. preferable.
 初晶Si結晶粒1および共晶Si結晶粒2の平均結晶粒径を制御するには、成形体を鋳造する工程(後述する工程S1c)において、摺動面101となる部分の冷却速度を調整すればよい。具体的な一例として、例えば、摺動面101となる部分が4℃/秒以上50℃/秒以下の冷却速度で冷却されるように鋳造を行うことによって、初晶Si結晶粒1の平均結晶粒径が8μm以上50μm以下、共晶Si結晶粒2の平均結晶粒径が7.5μm以下となるように、Si結晶粒1、2を析出させることができる。 In order to control the average crystal grain size of the primary crystal grains 1 and the eutectic crystal grains 2, the cooling rate of the portion that becomes the sliding surface 101 is adjusted in the step of casting the molded body (step S1c described later). do it. As a specific example, for example, by casting so that the portion that becomes the sliding surface 101 is cooled at a cooling rate of 4 ° C./second or more and 50 ° C./second or less, the average crystal of the primary crystal grains 1 is obtained. The Si crystal grains 1 and 2 can be precipitated so that the particle diameter is 8 μm or more and 50 μm or less and the average crystal grain diameter of the eutectic Si crystal grains 2 is 7.5 μm or less.
 次に、摺動面101に形成される線状溝4について説明する。
 図5及び図6に示すように、摺動面101には、複数の線状溝4が形成されている。本実施形態において、複数の線状溝4は、複数の第一線状溝4aと、複数の第二線状溝4bとを含む。複数の第一線状溝4aは、図5において左上から右下へ向かう方向に延びる形状を有しており、互いに実質的に平行である。複数の第一線状溝4aは、摺動面101において、縞模様を成している。複数の第二線状溝4bは、図5において右上から左下へ向かう方向に延びる形状を有しており、互いに実質的に平行である。複数の第二線状溝4bは、摺動面101において、縞模様を成している。複数の第一線状溝4aと、複数の第二線状溝4bとは、互いに平行ではなく、交差している。これにより、複数の線状溝4は、摺動面101において、格子模様を成している。なお、図5において、初晶Si結晶粒1及び/又は共晶Si結晶粒2と線状溝4とが重複する部分は、線状溝4が初晶Si結晶粒1及び/又は共晶Si結晶粒2の露出面上を通過するように形成された部分を示す。当該部分の少なくとも一部では、図6に示すような破断面5aが形成されている。
Next, the linear groove 4 formed on the sliding surface 101 will be described.
As shown in FIGS. 5 and 6, a plurality of linear grooves 4 are formed on the sliding surface 101. In the present embodiment, the plurality of linear grooves 4 include a plurality of first linear grooves 4a and a plurality of second linear grooves 4b. The plurality of first linear grooves 4a have a shape extending in a direction from the upper left to the lower right in FIG. 5 and are substantially parallel to each other. The plurality of first linear grooves 4 a form a striped pattern on the sliding surface 101. The plurality of second linear grooves 4b have a shape extending in a direction from the upper right to the lower left in FIG. 5 and are substantially parallel to each other. The plurality of second linear grooves 4 b form a striped pattern on the sliding surface 101. The plurality of first linear grooves 4a and the plurality of second linear grooves 4b are not parallel to each other but intersect each other. Thereby, the plurality of linear grooves 4 form a lattice pattern on the sliding surface 101. In FIG. 5, the portion where the primary Si crystal grain 1 and / or the eutectic Si crystal grain 2 and the linear groove 4 overlap each other is shown in FIG. The part formed so that it may pass on the exposed surface of the crystal grain 2 is shown. In at least a part of the portion, a fracture surface 5a as shown in FIG. 6 is formed.
 複数の線状溝4のうち、少なくとも2本以上の線状溝4は、互いに実質的に平行である。複数の線状溝4のうち、一部の線状溝4(第一線状溝4a)と残りの線状溝4(第二線状溝4b)とは交差していてもよい。複数の線状溝4の全てが互いに交差しないように形成され、実質的に平行であってもよい。「実質的に平行」とは、隣り合う線状溝4が、交わらないように延びていることをいう。即ち、「実質的に平行」の意味に関し、例えば、線状溝4の形成時の誤差又はズレ等に起因して、隣り合う線状溝4が厳密に見て平行ではないとしても、本発明においては、隣り合う線状溝4が実質的に平行であると解釈され得る。また、摺動面101は、互いに平行な線状溝の組として、第一線状溝4aの組と、第二線状溝4bの組とを有しているが、本発明において、互いに平行な線状溝の組の数は特に限定されない。異なる組に属する溝は互いに交差する。摺動面101に形成される複数の線状溝4が成す模様は、図5に示すような四角格子模様に限定されない。複数の線状溝4が成す模様は、第一線状溝4a又は第二線状溝4bが成すような縞模様であってもよく、三角格子模様等の多角格子模様であってもよい。四角格子模様は、多角格子模様の一例である。なお、縞模様及び格子模様における溝間ピッチは、必ずしも一定である必要はない。 Among the plurality of linear grooves 4, at least two or more linear grooves 4 are substantially parallel to each other. Among the plurality of linear grooves 4, some of the linear grooves 4 (first linear grooves 4a) and the remaining linear grooves 4 (second linear grooves 4b) may intersect each other. All of the plurality of linear grooves 4 may be formed so as not to cross each other, and may be substantially parallel. “Substantially parallel” means that adjacent linear grooves 4 extend so as not to intersect. That is, regarding the meaning of “substantially parallel”, even if the adjacent linear grooves 4 are not strictly parallel when viewed due to errors or deviations in the formation of the linear grooves 4, the present invention. Can be interpreted as the adjacent linear grooves 4 being substantially parallel. The sliding surface 101 includes a set of first linear grooves 4a and a set of second linear grooves 4b as sets of linear grooves parallel to each other. In the present invention, the sliding surfaces 101 are parallel to each other. There is no particular limitation on the number of linear groove groups. The grooves belonging to different sets cross each other. The pattern formed by the plurality of linear grooves 4 formed on the sliding surface 101 is not limited to the square lattice pattern as shown in FIG. The pattern formed by the plurality of linear grooves 4 may be a striped pattern formed by the first linear grooves 4a or the second linear grooves 4b, or may be a polygonal lattice pattern such as a triangular lattice pattern. A square lattice pattern is an example of a polygonal lattice pattern. Note that the pitch between the grooves in the striped pattern and the lattice pattern is not necessarily constant.
 本実施形態では、複数の線状溝4が、規則性を有する模様(縞模様又は多角格子模様等)を成す。本実施形態では、規則性を有する模様内において、初晶Si結晶粒1とともに、Al合金母材3が、ピストンリング部122b(ピストン部122)と接触するように摺動面101に露出する。規則性を有する模様を成す線状溝4が形成された摺動面101は、従来の不規則な摺動面(Si結晶粒が浮島状に露出した摺動面)よりも、潤滑油の分散の均一性を向上させることができる。その結果、本実施形態では、摺動面101上に形成される油膜の均一性が高い。なお、以下において、第一線状溝4aと第二線状溝4bとが区別されている場合を除いて、線状溝4についての説明は、第一線状溝4aと第二線状溝4bとの両方についての説明でもある。 In the present embodiment, the plurality of linear grooves 4 form a regular pattern (such as a striped pattern or a polygonal lattice pattern). In the present embodiment, the Al alloy base material 3 is exposed to the sliding surface 101 so as to come into contact with the piston ring portion 122b (piston portion 122) together with the primary crystal Si crystal grains 1 in a pattern having regularity. The sliding surface 101 on which the linear grooves 4 having a regular pattern are formed is more dispersed in the lubricating oil than the conventional irregular sliding surface (sliding surface in which Si crystal grains are exposed in a floating island shape). Can improve the uniformity. As a result, in this embodiment, the uniformity of the oil film formed on the sliding surface 101 is high. In the following description, except for the case where the first linear groove 4a and the second linear groove 4b are distinguished from each other, the description of the linear groove 4 is the first linear groove 4a and the second linear groove. It is also an explanation for both of them.
 線状溝4の平面視形状に関し、図5に示すように、線状溝4の平面視形状は、直線状である。しかし、本発明において、線状溝4の平面視形状は、実質的に平行となるように隣り合う線状溝4と交わらないように延びる線状を有していればよく、直線状に限定されない。即ち、線状溝4は、曲線状であってもよい。線状溝4は、曲線状の部分と、直線状の部分とを有していてもよい。また、線状溝4は、屈曲部分を有していてもよい。また、複数の線状溝4の平面視形状は、線状溝4によって異なっていてもよい。全ての線状溝4の平面視形状が同じ又は実質的に同じであってもよい。また、複数の線状溝4の各々は、必ずしも、摺動面101の全域で連続するように形成されている必要はない。複数の線状溝4の各々は、必ずしも、摺動面101の端縁まで延びている必要はない。複数の線状溝4の各々は、摺動面101上において途切れた部分を有していてもよい。 Regarding the planar view shape of the linear groove 4, as shown in FIG. 5, the planar view shape of the linear groove 4 is linear. However, in the present invention, the shape of the linear groove 4 in plan view only needs to have a linear shape extending so as not to intersect the adjacent linear groove 4 so as to be substantially parallel, and is limited to a linear shape. Not. That is, the linear groove 4 may be curved. The linear groove 4 may have a curved portion and a linear portion. Moreover, the linear groove | channel 4 may have a bending part. Further, the planar view shape of the plurality of linear grooves 4 may differ depending on the linear grooves 4. All the linear grooves 4 may have the same or substantially the same plan view shape. Further, each of the plurality of linear grooves 4 is not necessarily formed to be continuous over the entire sliding surface 101. Each of the plurality of linear grooves 4 does not necessarily have to extend to the edge of the sliding surface 101. Each of the plurality of linear grooves 4 may have an interrupted portion on the sliding surface 101.
 線状溝4の幅に関し、線状溝4の幅は、特に限定されない。線状溝4の幅は、シリンダボディ部100の粒度分布における初晶Si結晶粒1の粒径の範囲の最大値以下であることが好ましい。線状溝4の幅は、約10μm以下であることも好ましい。また、線状溝4の幅は、シリンダボディ部100の粒度分布における共晶Si結晶粒2の粒径の範囲の最小値以上であることが好ましい。線状溝4の幅は、約5μm以上であることも好ましい。図5に示すように、線状溝4は、一定の幅を有しているが、本発明はこの例に限定されない。線状溝4は、場所によって異なる幅を有していてもよい。また、複数の線状溝4の幅は、線状溝4によって異なっていてもよい。全ての線状溝4が、同じ幅又は実質的に同じ幅を有していてもよい。 Regarding the width of the linear groove 4, the width of the linear groove 4 is not particularly limited. The width of the linear groove 4 is preferably equal to or less than the maximum value in the range of the grain size of the primary crystal grains 1 in the grain size distribution of the cylinder body 100. The width of the linear groove 4 is also preferably about 10 μm or less. Further, the width of the linear groove 4 is preferably equal to or larger than the minimum value in the range of the grain size of the eutectic Si crystal grains 2 in the grain size distribution of the cylinder body 100. The width of the linear groove 4 is also preferably about 5 μm or more. As shown in FIG. 5, the linear groove 4 has a certain width, but the present invention is not limited to this example. The linear groove 4 may have a different width depending on the location. Further, the widths of the plurality of linear grooves 4 may differ depending on the linear grooves 4. All the linear grooves 4 may have the same width or substantially the same width.
 線状溝4の深さに関し、本実施形態において、線状溝4は、0.1μm以上2.0μm未満の深さを有する。但し、本発明において、線状溝4の深さは、特に限定されない。また、本発明では、線状溝4が0.1μm以上2.0μm未満の深さを有する場合、線状溝4に加えて、線状溝4の深さよりも大きな深さ(例えば、2.0μm以上の深さ)を有する溝が、摺動面101に形成されていてもよい。言い換えると、本発明においては、摺動面に、本発明で規定された線状溝以外の溝が形成されていてもよい。なお、線状溝4の深さは、1.5μm以下であってもよい。線状溝4の深さは、0.5μm以上であってもよい。 Regarding the depth of the linear groove 4, in this embodiment, the linear groove 4 has a depth of 0.1 μm or more and less than 2.0 μm. However, in the present invention, the depth of the linear groove 4 is not particularly limited. In the present invention, when the linear groove 4 has a depth of 0.1 μm or more and less than 2.0 μm, in addition to the linear groove 4, a depth larger than the depth of the linear groove 4 (for example, 2.. A groove having a depth of 0 μm or more may be formed on the sliding surface 101. In other words, in the present invention, grooves other than the linear grooves defined in the present invention may be formed on the sliding surface. The depth of the linear groove 4 may be 1.5 μm or less. The depth of the linear groove 4 may be 0.5 μm or more.
 線状溝4の断面形状は、線状溝4の深さが大きくなるにつれて線状溝4の幅が小さくなる形状である。線状溝4の断面形状は、線状溝4が延びる方向と垂直な平面における線状溝4の断面形状である。なお、本発明において、線状溝4の断面形状は、特に限定されない。線状溝4の断面形状は、例えば、図6に示すような略V形状であってもよく、略U形状であってもよい。また、線状溝4の断面形状は、全て同じである必要はない。線状溝4の断面形状は、場所によって異なっていてもよく、線状溝4によって異なっていてもよい。また、線状溝4の間の部分(山)は、必ずしも、図5及び図6に示すように平坦面である必要はない。線状溝4の間の部分は、傾斜面であってもよく、稜線を形成していてもよい。 The cross-sectional shape of the linear groove 4 is such that the width of the linear groove 4 decreases as the depth of the linear groove 4 increases. The cross-sectional shape of the linear groove 4 is the cross-sectional shape of the linear groove 4 in a plane perpendicular to the direction in which the linear groove 4 extends. In the present invention, the cross-sectional shape of the linear groove 4 is not particularly limited. The cross-sectional shape of the linear groove 4 may be, for example, a substantially V shape as shown in FIG. 6 or a substantially U shape. Further, the cross-sectional shapes of the linear grooves 4 need not all be the same. The cross-sectional shape of the linear groove 4 may be different depending on the location, and may be different depending on the linear groove 4. Moreover, the part (crest) between the linear grooves 4 does not necessarily need to be a flat surface as shown in FIG.5 and FIG.6. The portion between the linear grooves 4 may be an inclined surface or may form a ridge line.
 第一線状溝4aのピッチに関し、実質的に平行な複数の第一線状溝4aは、初晶Si結晶粒1の間に複数本の第一線状溝4aが通るピッチで形成されている。例えば、図6に示すように、複数本の第一線状溝4aが、初晶Si結晶粒1の間のギャップP内を通っている。摺動面101において、これら複数本の第一線状溝4aの間の部分は、ピストン部122(図1、2参照)と接触するように露出している。摺動面101においてピストン部122と接触する部分が、平面視において第一線状溝4aと隣接しているので、摺動面101への潤滑油の供給が円滑に行われる。第一線状溝4aのピッチは、シリンダボディ部100のSi結晶粒の粒度分布における共晶Si結晶粒2の範囲に含まれることが好ましい。第一線状溝4aのピッチは、5μm以上であることが好ましい。第一線状溝4aのピッチは、10μm以下であることが好ましい。図5では、互いに隣り合う一対の第一線状溝4aのピッチは、場所によらず一定であるが、本発明は、この例に限定されない。即ち、互いに隣り合う一対の第一線状溝4aのピッチは、必ずしも、一定である必要はない。例えば、互いに隣り合う第一線状溝4aの各々が蛇行するように形成され、これらの第一線状溝4aのピッチが、場所によって異なっていてもよい。なお、上述の説明は、第一線状溝4aに関する説明であるが、第二線状溝4bについての説明は、第一線状溝4aについての説明と同じであるから、ここでの説明を省略する。 Regarding the pitch of the first linear grooves 4a, the plurality of substantially linear first linear grooves 4a are formed at a pitch through which the plurality of first linear grooves 4a pass between the primary crystal grains 1. Yes. For example, as shown in FIG. 6, a plurality of first linear grooves 4 a pass through the gap P between the primary crystal grains 1. In the sliding surface 101, the part between these several 1st linear grooves 4a is exposed so that it may contact with the piston part 122 (refer FIG. 1, 2). Since the portion of the sliding surface 101 that contacts the piston portion 122 is adjacent to the first linear groove 4a in plan view, the lubricating oil is smoothly supplied to the sliding surface 101. The pitch of the first linear grooves 4a is preferably included in the range of the eutectic Si crystal grains 2 in the grain size distribution of the Si crystal grains of the cylinder body portion 100. The pitch of the first linear grooves 4a is preferably 5 μm or more. The pitch of the first linear grooves 4a is preferably 10 μm or less. In FIG. 5, the pitch of the pair of first linear grooves 4a adjacent to each other is constant regardless of the location, but the present invention is not limited to this example. That is, the pitch of the pair of first linear grooves 4a adjacent to each other is not necessarily constant. For example, the first linear grooves 4a adjacent to each other may be formed to meander, and the pitch of the first linear grooves 4a may be different depending on the location. In addition, although the above-mentioned description is description regarding the 1st linear groove 4a, since the description about the 2nd linear groove 4b is the same as the description about the 1st linear groove 4a, description here is carried out. Omitted.
 本実施形態では、線状溝4の少なくとも一本が、初晶Si結晶粒1を破壊することにより、初晶Si結晶粒1を通過するように形成されている。即ち、線状溝4の少なくとも一本が、初晶Si結晶粒1の露出面上を通過するように形成されている。これにより、摺動面101における潤滑油の分散の均一性がより高められる。本発明は、この例に限定されない。 In the present embodiment, at least one of the linear grooves 4 is formed so as to pass through the primary crystal Si crystal grain 1 by breaking the primary crystal Si crystal grain 1. That is, at least one of the linear grooves 4 is formed so as to pass over the exposed surface of the primary crystal grains 1. Thereby, the uniformity of the dispersion | distribution of the lubricating oil in the sliding surface 101 is improved more. The present invention is not limited to this example.
 本実施形態では、図6に示すように、破断面5aを有する初晶Si結晶粒1が、摺動面101に露出している。即ち、本実施形態では、摺動面101に露出する初晶Si結晶粒1の少なくとも一部が、破壊されており、破壊されることにより、初晶Si結晶粒1に形成された面(即ち破断面5a)が、摺動面101に露出している。これにより、摺動面101には、油溜まり5bが形成されている。初晶Si結晶粒1の破断面は、凹凸を有しているので、油溜まり5bが保持可能な潤滑油の量は多い。油溜り5bの開口面積は、初晶Si結晶粒1の断面積(摺動面101に露出した部分の面積)と同程度である。油溜り5bの深さは、初晶Si結晶粒1の径よりも小さい。初晶Si結晶粒1の破断面5aを含む油溜り5bが、実質的に平行な複数の第一線状溝4aとともに、摺動面101に形成されている。従って、潤滑油の分散の均一性を維持しつつ、潤滑油が保持される量を増加させることができる。より効果的にスカッフを抑制できる。破断面5aは、シリンダボディ部100の鋳造後にシリンダボディ部100の表面加工が施される時に形成される。具体的には、破断面5aは、例えば、初晶Si結晶粒1が砥石により削られる時に形成される。 In this embodiment, as shown in FIG. 6, the primary crystal Si crystal grains 1 having the fracture surface 5 a are exposed on the sliding surface 101. That is, in this embodiment, at least a part of the primary crystal Si crystal grains 1 exposed on the sliding surface 101 is destroyed, and the surface formed on the primary crystal Si grains 1 by the destruction (that is, The fracture surface 5 a) is exposed on the sliding surface 101. As a result, an oil sump 5 b is formed on the sliding surface 101. Since the fracture surface of the primary crystal grain 1 has irregularities, the amount of lubricating oil that can be held by the oil sump 5b is large. The opening area of the oil sump 5b is approximately the same as the cross-sectional area of the primary crystal Si crystal grains 1 (the area of the portion exposed on the sliding surface 101). The depth of the oil sump 5 b is smaller than the diameter of the primary crystal Si crystal grain 1. An oil sump 5b including a fracture surface 5a of the primary crystal grain 1 is formed on the sliding surface 101 together with a plurality of substantially parallel first linear grooves 4a. Accordingly, it is possible to increase the amount of the lubricating oil retained while maintaining the uniformity of the lubricating oil dispersion. Scuffing can be suppressed more effectively. The fracture surface 5a is formed when surface processing of the cylinder body part 100 is performed after the casting of the cylinder body part 100. Specifically, the fracture surface 5a is formed, for example, when the primary Si crystal grains 1 are shaved with a grindstone.
 本実施形態では、シリンダボディ部100が、Si含有量が16質量%以上であるAl合金から形成される。摺動面101に露出する初晶Si結晶粒1の平均結晶粒径は、8μm以上50μm以下である。ピストン部122の荷重を受ける観点から見て、初晶Si結晶粒1は、適度な大きさを有し、摺動面に適度に分布する。この条件下において、初晶Si結晶粒1とAl合金母材3とが、ピストン部122と接触するように露出するとともに、実質的に平行な複数の線状溝4(第一線状溝4a及び第二線状溝4b)が、初晶Si結晶粒1の間に複数本の線状溝4が通るピッチで形成されている。複数の線状溝4が狭いピッチで形成されるので、初晶Si結晶粒1の間で潤滑油がバランス良く保持される。従って、摺動面101における潤滑油の分散の均一性を向上させることが可能であり、摺動面101上に形成される油膜の均一性を高めることができる。 In the present embodiment, the cylinder body 100 is made of an Al alloy having a Si content of 16% by mass or more. The average crystal grain size of the primary crystal Si grains 1 exposed on the sliding surface 101 is 8 μm or more and 50 μm or less. From the viewpoint of receiving the load of the piston portion 122, the primary crystal grains 1 have an appropriate size and are appropriately distributed on the sliding surface. Under these conditions, the primary crystal Si crystal grains 1 and the Al alloy base material 3 are exposed so as to come into contact with the piston portion 122, and a plurality of substantially parallel linear grooves 4 (first linear grooves 4a). And the second linear grooves 4b) are formed at a pitch through which the plurality of linear grooves 4 pass between the primary Si crystal grains 1. Since the plurality of linear grooves 4 are formed with a narrow pitch, the lubricating oil is held between the primary crystal Si crystal grains 1 with a good balance. Therefore, the uniformity of the dispersion of the lubricating oil on the sliding surface 101 can be improved, and the uniformity of the oil film formed on the sliding surface 101 can be improved.
 Al合金母材3は、ピストン部122と接触するように摺動面101に露出している。従来、Al合金母材3とピストン部122との接触は、スカッフ抑制の観点から好ましくないと考えられていた。しかし、本実施形態では、Al合金母材3は、適度な大きさを有し且つ摺動面101に適度に分布する初晶Si結晶粒1とともに、摺動面101に露出している。さらに、上述したように、摺動面101上に形成される油膜の均一性が高められる。そのため、Al合金母材3のピストン部122との影響が許容可能な程度に抑えられ、油膜の均一性の向上によるスカッフ抑制の効果が得られる。その結果、より効果的にスカッフの発生を抑制できる。 The Al alloy base material 3 is exposed on the sliding surface 101 so as to be in contact with the piston portion 122. Conventionally, the contact between the Al alloy base material 3 and the piston portion 122 has been considered undesirable from the viewpoint of suppressing scuffing. However, in the present embodiment, the Al alloy base material 3 is exposed to the sliding surface 101 together with the primary crystal Si grains 1 having an appropriate size and appropriately distributed on the sliding surface 101. Furthermore, as described above, the uniformity of the oil film formed on the sliding surface 101 is improved. Therefore, the influence with the piston part 122 of the Al alloy base material 3 is suppressed to an allowable level, and the effect of suppressing the scuffing by improving the uniformity of the oil film is obtained. As a result, the occurrence of scuffing can be suppressed more effectively.
 <製造方法>
 本実施形態におけるシリンダボディ部100の製造方法を説明する。
<Manufacturing method>
The manufacturing method of the cylinder body part 100 in this embodiment is demonstrated.
 シリンダボディ部100は、例えば、下記工程S1~S4が順に行われることにより製造される。
 工程S1 成形体の用意
 工程S2 ファインボーリング
 工程S3 粗ホーニング
 工程S4 仕上ホーニング
The cylinder body 100 is manufactured, for example, by sequentially performing the following steps S1 to S4.
Process S1 Prepared body Process S2 Fine boring Process S3 Coarse honing Process S4 Finish honing
 シリンダボディ部100の製造方法では、まず、Siを含むAl合金から形成された成形体を用意する(工程S1)。この成形体は、表面近傍に初晶Si結晶粒および共晶Si結晶粒を含んでいる。成形体を用意する工程S1は、例えば、工程S1a~S1eを含んでいる。
 工程S1a シリコン含有Al合金の用意
 工程S1b 溶湯の生成
 工程S1c 高圧ダイカスト
 工程S1d 熱処理
 工程S1e 機械加工
In the manufacturing method of the cylinder body part 100, first, a molded body formed from an Al alloy containing Si is prepared (step S1). This compact includes primary crystal Si grains and eutectic Si crystal grains in the vicinity of the surface. The step S1 for preparing a molded body includes, for example, steps S1a to S1e.
Process S1a Preparation of silicon-containing Al alloy Process S1b Formation of molten metal Process S1c High pressure die casting Process S1d Heat treatment Process S1e Machining
 まず、Siを含むAl合金を用意する(工程S1a)。シリンダボディ部100の耐摩耗性および強度を十分に高くするためには、Al合金として、73.4質量%以上79.6質量%以下のAl、16質量%以上24質量%以下のSi、および2.0質量%以上5.0質量%以下の銅を含むAl合金を用いることが好ましい。 First, an Al alloy containing Si is prepared (step S1a). In order to sufficiently increase the wear resistance and strength of the cylinder body 100, as the Al alloy, 73.4% by mass to 79.6% by mass Al, 16% by mass to 24% by mass Si, and It is preferable to use an Al alloy containing 2.0% by mass or more and 5.0% by mass or less of copper.
 次に、用意したAl合金を溶解炉で加熱して溶解させることによって、溶湯を形成する(工程S1b)。溶解前のAl合金あるいは溶湯には、100質量ppm程度のリンを添加しておくことが好ましい。Al合金が50質量ppm以上200質量ppm以下のリンを含んでいると、Si結晶粒の粗大化を抑制することができるので、合金中にSi結晶粒を均一に分散させることができる。また、Al合金のカルシウム含有量を0.01質量%以下とすることによって、リンによるSi結晶粒の微細化効果を確保し、耐摩耗性に優れた金属組織を得ることができる。つまり、Al合金は、50質量ppm以上200質量ppm以下のリンと、0.01質量%以下のカルシウムとを含むことが好ましい。 Next, the prepared Al alloy is heated and melted in a melting furnace to form a molten metal (step S1b). It is preferable to add about 100 ppm by weight of phosphorus to the Al alloy or molten metal before melting. If the Al alloy contains 50 mass ppm or more and 200 mass ppm or less of phosphorus, it is possible to suppress the coarsening of the Si crystal grains, so that the Si crystal grains can be uniformly dispersed in the alloy. Moreover, by making the calcium content of the Al alloy 0.01% by mass or less, it is possible to secure the effect of refining Si crystal grains by phosphorus and to obtain a metal structure having excellent wear resistance. That is, the Al alloy preferably contains 50 mass ppm or more and 200 mass ppm or less of phosphorus and 0.01 mass% or less of calcium.
 続いて、Al合金の溶湯を用いて、高圧ダイカストにより、鋳造を行う(工程S1c)。つまり、溶湯を鋳型の中で冷却して成形体を形成する。このとき、シリンダ壁103の摺動面101となる部分を大きな冷却速度(例えば4℃/秒以上50℃/秒以下)で冷却することによって、耐摩耗性に寄与するSi結晶粒を表面近傍に有する成形体が得られる。この鋳造工程S1cは、例えば、国際公開第2004/002658号パンフレットに開示されている鋳造装置を用いて行うことができる。 Subsequently, casting is performed by high pressure die casting using a molten Al alloy (step S1c). That is, the molten metal is cooled in a mold to form a molded body. At this time, the portion of the cylinder wall 103 that becomes the sliding surface 101 is cooled at a high cooling rate (for example, 4 ° C./second or more and 50 ° C./second or less), so that Si crystal grains that contribute to wear resistance are brought close to the surface. A formed body is obtained. This casting process S1c can be performed using the casting apparatus currently disclosed by the international publication 2004/002658 pamphlet, for example.
 次に、鋳型から取り出した成形体に対し、「T5」、「T6」および「T7」と呼ばれる熱処理のうちのいずれかを行う(工程S1d)。T5処理は、成形体を鋳型から取り出した直後に水冷等により急冷し、続いて、機械的性質の改善や寸法安定化のために所定温度で所定時間だけ人工時効し、その後空冷する処理である。T6処理は、成形体を鋳型から取り出した後に所定温度で所定時間だけ溶体化処理し、続いて水冷し、次いで所定温度で所定時間だけ人工時効処理し、その後空冷する処理である。T7処理は、T6処理に比べて過時効にする処理であり、T6処理よりも寸法安定化を図ることができるが硬度はT6処理よりも低下する。 Next, any one of heat treatments called “T5”, “T6”, and “T7” is performed on the molded body taken out from the mold (step S1d). The T5 process is a process in which the molded body is rapidly cooled by water cooling or the like immediately after being taken out of the mold, and then artificially aged for a predetermined time at a predetermined temperature for improvement of mechanical properties and dimensional stabilization, and then air cooling. . The T6 treatment is a treatment in which after the molded body is taken out from the mold, it is subjected to a solution treatment at a predetermined temperature for a predetermined time, followed by water cooling, and then an artificial aging treatment at a predetermined temperature for a predetermined time, and then air cooling. The T7 process is an overaging process compared to the T6 process, and dimensional stabilization can be achieved compared to the T6 process, but the hardness is lower than that of the T6 process.
 続いて、成形体に所定の機械加工を行う(工程S1e)。具体的には、シリンダヘッドとの合せ面やクランクケースとの合せ面の研削等を行う。 Subsequently, predetermined molding is performed on the molded body (step S1e). Specifically, the mating surface with the cylinder head and the mating surface with the crankcase are ground.
 上述したようにして成形体を用意した後、成形体の表面、具体的には、シリンダ壁103の内周面(すなわち摺動面101となる面)に対して寸法精度を調整するためのファインボーリング加工を行う(工程S2)。 After preparing the molded body as described above, fines for adjusting the dimensional accuracy with respect to the surface of the molded body, specifically, the inner peripheral surface of the cylinder wall 103 (that is, the surface that becomes the sliding surface 101). Boring is performed (step S2).
 次に、ファインボーリング加工を施した面に対して粗いホーニング処理を行う(工程S3)。つまり、摺動面101となる面を、番手が比較的小さい砥石(砥粒が大きい砥石)を用いて研磨する。 Next, a rough honing process is performed on the surface subjected to fine boring (step S3). That is, the surface to be the sliding surface 101 is polished using a grindstone having a relatively small count (a grindstone having large abrasive grains).
 続いて、仕上ホーニング処理を行う(工程S4)。つまり、成形体の表面のうちの摺動面101となる領域を、番手が比較的大きい砥石(砥粒が小さい砥石)を用いて研磨する。なお、粗ホーニング処理及び仕上ホーニング処理は、例えば、特開2004-268179号公報に開示されているようなホーニング装置を用いて実施可能である。また、粗ホーニング処理及び仕上ホーニング処理における砥石の仕様(砥粒の種類、番手(砥粒径)、ボンド剤の種類等)は、摺動面101に形成される線状溝4の仕様に応じて設定可能である。 Subsequently, a finish honing process is performed (step S4). That is, the region to be the sliding surface 101 in the surface of the molded body is polished using a grindstone having a relatively large count (a grindstone having small abrasive grains). The rough honing process and the finishing honing process can be performed using a honing apparatus as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-268179. Further, the specifications of the grindstone in the coarse honing process and the finishing honing process (type of abrasive grains, count (abrasive grain size), type of bond agent, etc.) depend on the specifications of the linear grooves 4 formed on the sliding surface 101. Can be set.
 上述した工程を経て、本実施形態に係る摺動面101が形成される。摺動面101には、複数の初晶Si結晶粒1とAl合金母材3とが露出している。ピストン部122がシリンダボア102内を往復動する時に、複数の初晶Si結晶粒1及びAl合金母材3がピストン部122と接触する。また、摺動面101は、複数の線状溝4を有している。複数の線状溝4は、互いに実質的に平行な複数の第一線状溝4aと、互いに実質的に平行な複数の第二線状溝4bとを含む。本実施形態では、線状溝4が、砥石により形成されているが、本発明は、この例に限定されない。線状溝4は、例えば、レーザにより形成されてもよい。また、粗ホーニング処理及び仕上ホーニング処理の回数は、1回に限定されず、2回以上であってもよい。 Through the above-described steps, the sliding surface 101 according to this embodiment is formed. A plurality of primary crystal Si crystal grains 1 and an Al alloy base material 3 are exposed on the sliding surface 101. When the piston part 122 reciprocates in the cylinder bore 102, the plurality of primary crystal Si crystal grains 1 and the Al alloy base material 3 come into contact with the piston part 122. The sliding surface 101 has a plurality of linear grooves 4. The plurality of linear grooves 4 include a plurality of first linear grooves 4a that are substantially parallel to each other and a plurality of second linear grooves 4b that are substantially parallel to each other. In the present embodiment, the linear groove 4 is formed by a grindstone, but the present invention is not limited to this example. The linear groove 4 may be formed by a laser, for example. Moreover, the number of times of the rough honing process and the finishing honing process is not limited to one, and may be two or more.
 <シリンダボディ部材>
 本実施形態におけるシリンダボディ部材は、上述したシリンダボディ部100そのものである(図1等参照)。シリンダボディ部100は、摺動面101を有する部分である。但し、本発明において、シリンダボディ部材は、この例に限定されない。シリンダボディ部材は、摺動面101を有するシリンダボディ部100を備えていればよい。本発明におけるシリンダボディ部材は、シリンダボディ部100とクランクケース110とが一体成形されることにより形成された部材(所謂シリンダブロック)であってもよい。本発明におけるシリンダボディ部材は、シリンダボア102内に設けられることにより用いられるシリンダスリーブであってもよい。前記シリンダボディ部材は、上述した摺動面101を有しているので、エンジンに適用されることにより、エンジンにおけるスカッフの発生をより効果的に抑制できる。
<Cylinder body member>
The cylinder body member in the present embodiment is the cylinder body portion 100 itself (see FIG. 1 and the like). The cylinder body part 100 is a part having a sliding surface 101. However, in the present invention, the cylinder body member is not limited to this example. The cylinder body member only needs to include the cylinder body portion 100 having the sliding surface 101. The cylinder body member in the present invention may be a member (so-called cylinder block) formed by integrally molding the cylinder body portion 100 and the crankcase 110. The cylinder body member in the present invention may be a cylinder sleeve used by being provided in the cylinder bore 102. Since the cylinder body member has the sliding surface 101 described above, the cylinder body member can more effectively suppress the occurrence of scuffing in the engine when applied to the engine.
 <車両>
 本発明に係る車両は、自動車、自動二輪車、および、スノーモービルなどの雪上車など、様々なタイプの車両を包含し、車輪数も四輪、三輪、二輪など、特に制限されるものではない。また、本発明に係る車両は、エンジンルーム等のシートから離れた箇所にエンジンが配置される箱型車両、並びに、エンジンの少なくとも一部がシートの下方に配置され、運転者がシートにまたがって搭乗する鞍乗型車両であってもよい。鞍乗型車両には、運転者が膝を揃えて搭乗することもできるスクータ型の車両も含まれる。
<Vehicle>
The vehicle according to the present invention includes various types of vehicles such as automobiles, motorcycles, and snowmobiles such as snowmobiles, and the number of wheels is not particularly limited, such as four wheels, three wheels, and two wheels. Further, the vehicle according to the present invention is a box-type vehicle in which the engine is disposed at a location away from the seat such as an engine room, and at least a part of the engine is disposed below the seat, and the driver straddles the seat. It may be a straddle-type vehicle to board. The saddle riding type vehicle includes a scooter type vehicle that allows the driver to board with the knees aligned.
 以下、車両の一例として、自動二輪車を例に挙げて説明する。
 図8は、図1に示すエンジン150を備えた自動二輪車を模式的に示す側面図である。
Hereinafter, a motorcycle will be described as an example of a vehicle.
FIG. 8 is a side view schematically showing a motorcycle including the engine 150 shown in FIG.
 図8に示す自動二輪車では、本体フレーム301の前端にヘッドパイプ302が設けられている。ヘッドパイプ302には、フロントフォーク303が車両の左右方向に揺動し得るように取り付けられている。フロントフォーク303の下端には、前輪304が回転可能なように支持されている。フロントフォーク303の上端には、ハンドル305が設けられている。 In the motorcycle shown in FIG. 8, a head pipe 302 is provided at the front end of the main body frame 301. A front fork 303 is attached to the head pipe 302 so as to be able to swing in the left-right direction of the vehicle. A front wheel 304 is rotatably supported at the lower end of the front fork 303. A handle 305 is provided at the upper end of the front fork 303.
本体フレーム301の後端上部から後方に延びるようにリアフレーム306が取り付けられている。本体フレーム301上に燃料タンク307が設けられており、リアフレーム306上にメインシート308aおよびタンデムシート308bが設けられている。 A rear frame 306 is attached so as to extend rearward from the upper rear end of the main body frame 301. A fuel tank 307 is provided on the main body frame 301, and a main seat 308 a and a tandem seat 308 b are provided on the rear frame 306.
 また、本体フレーム301の後端に、後方へ延びるリアアーム309が取り付けられている。リアアーム309の後端に後輪310が回転可能なように支持されている。 Also, a rear arm 309 extending backward is attached to the rear end of the main body frame 301. A rear wheel 310 is rotatably supported at the rear end of the rear arm 309.
 本体フレーム301の中央部には、図1に示したエンジン150が保持されている。エンジン150には、本実施形態におけるシリンダボディ部100が用いられている。エンジン150の前方には、ラジエータ311が設けられている。エンジン150の排気ポートには排気管312が接続されており、排気管312の後端にマフラー313が取り付けられている。 The engine 150 shown in FIG. 1 is held at the center of the main body frame 301. The engine 150 uses the cylinder body 100 in the present embodiment. A radiator 311 is provided in front of the engine 150. An exhaust pipe 312 is connected to the exhaust port of the engine 150, and a muffler 313 is attached to the rear end of the exhaust pipe 312.
 エンジン150には変速機315が連結されている。変速機315の出力軸316に駆動スプロケット317が取り付けられている。駆動スプロケット317は、チェーン318を介して後輪310の後輪スプロケット319に連結されている。変速機315およびチェーン318は、エンジン150により発生した動力を駆動輪に伝える伝達機構として機能する。 A transmission 315 is connected to the engine 150. A drive sprocket 317 is attached to the output shaft 316 of the transmission 315. The drive sprocket 317 is connected to the rear wheel sprocket 319 of the rear wheel 310 via a chain 318. The transmission 315 and the chain 318 function as a transmission mechanism that transmits the power generated by the engine 150 to the drive wheels.
 本実施形態における自動二輪車(車両)は、上述した摺動面101を有するシリンダボディ部100を含むエンジン150を搭載しているので、スカッフの発生をより効果的に抑制できる。 Since the motorcycle (vehicle) in the present embodiment is equipped with the engine 150 including the cylinder body portion 100 having the sliding surface 101 described above, the occurrence of scuffing can be more effectively suppressed.
 初晶Si結晶粒及び共晶Si結晶粒の平均結晶粒径の測定は、シリンダボディ部の摺動面となる部分を対象として、画像処理を用いて行われる。画像処理により得られた画像内のSi結晶粒の面積に基づいて、画像内のSi結晶粒が真円であると仮定した場合における各Si結晶粒の直径(等価直径)を算出する。なお、直径が1μm未満の微細結晶は、Si結晶粒(初晶Si結晶粒又は共晶Si結晶粒)として算入しない。以上により、Si結晶粒の個数(度数)及び直径を特定する。これに基づいて、シリンダボディ部におけるSi結晶粒の粒度分布が得られる。粒度分布は、例えば図7に示すようなヒストグラムである。粒度分布には、2つのピークが含まれる。2つのピークの間の谷を成す部分の直径を閾値として前記粒度分布を2つの領域に分ける。大きな直径に対応する領域が初晶Si結晶粒の粒度分布であるとする。小さな直径に対応する領域が共晶Si結晶粒の粒度分布であるとする。そして、各粒度分布に基づいて、初晶Si結晶粒の平均結晶粒径と、共晶Si結晶粒の平均結晶粒径とを算出する。 The average crystal grain size of the primary crystal grains and the eutectic Si crystal grains is measured using image processing for the portion that becomes the sliding surface of the cylinder body. Based on the area of the Si crystal grain in the image obtained by the image processing, the diameter (equivalent diameter) of each Si crystal grain when the Si crystal grain in the image is assumed to be a perfect circle is calculated. Note that fine crystals having a diameter of less than 1 μm are not counted as Si crystal grains (primary Si crystal grains or eutectic Si crystal grains). As described above, the number (frequency) and diameter of the Si crystal grains are specified. Based on this, a particle size distribution of Si crystal grains in the cylinder body is obtained. The particle size distribution is, for example, a histogram as shown in FIG. The particle size distribution includes two peaks. The particle size distribution is divided into two regions with a diameter of a portion forming a valley between two peaks as a threshold value. It is assumed that the region corresponding to the large diameter is the particle size distribution of the primary Si crystal grains. The region corresponding to the small diameter is assumed to be the particle size distribution of the eutectic Si crystal grains. Then, based on each particle size distribution, the average crystal grain size of the primary crystal Si crystal grains and the average crystal grain size of the eutectic Si crystal grains are calculated.
 線状溝の幅とは、線状溝と交差する断面(断面曲線)において互いに隣り合う一対の稜線の間の距離である。なお、前記断面は、ピストン部と摺動面との摺動方向(ピストン部の往復動方向R)と平行である。また、前記断面は、シリンダボディ部の径方向とも平行である。線状溝の深さは、線状溝と隣接する一対の稜線のうちのより高い稜線から、線状溝の最深部までの深さである。線状溝のピッチは、前記断面(断面曲線)において互いに隣り合う一対の溝の最深部の間の距離である。なお、線状溝と隣接する摺動面が実質的に平坦面である場合には、線状溝の幅は、一対の摺動面(平坦面)の縁の間の距離である。 The width of the linear groove is a distance between a pair of ridge lines adjacent to each other in a cross section (cross-sectional curve) intersecting the linear groove. The cross section is parallel to the sliding direction of the piston portion and the sliding surface (reciprocating direction R of the piston portion). The cross section is also parallel to the radial direction of the cylinder body. The depth of the linear groove is a depth from a higher ridge line of a pair of ridge lines adjacent to the linear groove to a deepest portion of the linear groove. The pitch of the linear grooves is the distance between the deepest portions of a pair of adjacent grooves in the cross section (cross section curve). When the sliding surface adjacent to the linear groove is a substantially flat surface, the width of the linear groove is the distance between the edges of the pair of sliding surfaces (flat surfaces).
 本発明において、線状溝の幅、深さ及びピッチとしては、距離3~5mmの断面曲線に含まれる線状溝の平均値が用いられる。なお、本発明で線状溝の深さが規定されている場合、摺動面には、本発明で規定された深さを有する線状溝以外の溝が形成されていてもよい。その場合、線状溝の幅及びピッチを特定する際には、本発明で規定された深さを有する線状溝が用いられる。 In the present invention, as the width, depth, and pitch of the linear groove, the average value of the linear groove included in the cross-sectional curve having a distance of 3 to 5 mm is used. In addition, when the depth of the linear groove is prescribed | regulated by this invention, grooves other than the linear groove which has the depth prescribed | regulated by this invention may be formed in the sliding surface. In that case, when specifying the width and pitch of the linear groove, the linear groove having the depth defined in the present invention is used.
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではない。ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、本発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used here are used for explanation and are not used for limited interpretation. It should be recognized that any equivalents of the features shown and described herein are not excluded and that various modifications within the claimed scope of the invention are permitted.
 本発明は、多くの異なった形態で具現化され得るものである。この開示は本発明の原理の実施例を提供するものと見なされるべきである。それら実施例は、本発明をここに記載しかつ/又は図示した好ましい実施形態に限定することを意図するものではないという了解のもとで、多くの図示実施形態がここに記載されている。 The present invention can be embodied in many different forms. This disclosure should be considered as providing an example of the principles of the invention. Many illustrated embodiments are described herein with the understanding that these examples are not intended to limit the invention to the preferred embodiments described and / or illustrated herein.
 本発明の図示実施形態を幾つかここに記載した。本発明は、ここに記載した各種の好ましい実施形態に限定されるものではない。本発明は、この開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良及び/又は変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本のプロセキューション中に記載された実施例に限定されるべきではない。そのような実施例は非排他的であると解釈されるべきである。例えば、この開示において、「好ましくは」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。 Several illustrated embodiments of the invention have been described herein. The present invention is not limited to the various preferred embodiments described herein. The present invention includes all embodiments including equivalent elements, modifications, deletions, combinations (eg, combinations of features across the various embodiments), improvements, and / or changes that can be recognized by those skilled in the art based on this disclosure. Includes. Claim limitations should be construed broadly based on the terms used in the claims and should not be limited to the embodiments described herein or in the process of the book. Such embodiments should be construed as non-exclusive. For example, in this disclosure, the term “preferably” is non-exclusive and means “preferably but not limited to”.
1 初晶Si結晶粒
2 共晶Si結晶粒
3 Al合金母材
4 線状溝
 4a 第一線状溝
 4b 第二線状溝
5a 破断面
5b 油溜まり
100 シリンダボディ部(シリンダボディ部材)
101 摺動面
101a 摺動面の上側1/4の領域
101b 摺動面の下側1/4の領域
102 シリンダボア
103 シリンダ壁
104 外壁
105 ウォータジャケット
122 ピストン部
 122a ピストン本体
 122b ピストンリング部
 122c トップリング(ピストンリング)
 122d セカンドリング(ピストンリング)
 122e オイルリング(ピストンリング)
 122f トップリング溝
 122g セカンドリング溝
 122h オイルリング溝
  122m (ピストンリング部122bの)上端
  122n (ピストンリング部122bの)下端
123 ピストンピン
140 コンロッド
150 エンジン
DESCRIPTION OF SYMBOLS 1 Primary crystal Si grain 2 Eutectic Si crystal grain 3 Al alloy base material 4 Linear groove 4a 1st linear groove 4b 2nd linear groove 5a Fracture surface 5b Oil reservoir 100 Cylinder body part (cylinder body member)
101 Sliding surface 101a Upper quarter of sliding surface 101b Lower quarter of sliding surface 102 Cylinder bore 103 Cylinder wall 104 Outer wall 105 Water jacket 122 Piston part 122a Piston body 122b Piston ring part 122c Top ring (piston ring)
122d Second ring (piston ring)
122e Oil ring (piston ring)
122f Top ring groove 122g Second ring groove 122h Oil ring groove 122m Upper end of piston ring portion 122b 122n Lower end of piston ring portion 122b Piston pin 140 Connecting rod 150 Engine

Claims (10)

  1.  ピストン部と、前記ピストン部が摺動する摺動面を有するシリンダボディ部とを備えたエンジンであって、
     前記シリンダボディ部は、Si含有量が16質量%以上であるAl合金から形成され、
     前記摺動面には、平均結晶粒径が8μm以上50μm以下である初晶Si結晶粒と、Al合金母材とが、前記ピストン部と接触するように露出するとともに、実質的に平行な複数の線状の溝が、前記初晶Si結晶粒の間に複数本の線状の溝が通るピッチで形成されている、
    ことを特徴とするエンジン。
    An engine comprising a piston part and a cylinder body part having a sliding surface on which the piston part slides,
    The cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more,
    On the sliding surface, primary crystal Si crystal grains having an average crystal grain size of 8 μm or more and 50 μm or less and an Al alloy base material are exposed so as to be in contact with the piston portion, and a plurality of substantially parallel plural grains are exposed. Are formed at a pitch through which a plurality of linear grooves pass between the primary crystal grains.
    An engine characterized by that.
  2.  ピストン部と、前記ピストン部が摺動する摺動面を有するシリンダボディ部とを備えたエンジンであって、
     前記シリンダボディ部は、高圧ダイカストにより、Si含有量が16質量%以上であるAl合金から形成され、
     前記摺動面には、初晶Si結晶粒と、Al合金母材とが、前記ピストン部と接触するように露出するとともに、実質的に平行な複数の線状の溝が、前記初晶Si結晶粒の間に複数本の線状の溝が通るピッチで形成されている、
    ことを特徴とするエンジン。
    An engine comprising a piston part and a cylinder body part having a sliding surface on which the piston part slides,
    The cylinder body portion is formed of an Al alloy having a Si content of 16% by mass or more by high pressure die casting,
    On the sliding surface, primary crystal Si grains and an Al alloy base material are exposed so as to come into contact with the piston portion, and a plurality of substantially parallel linear grooves are formed on the primary crystal Si. It is formed at a pitch through which a plurality of linear grooves pass between crystal grains,
    An engine characterized by that.
  3.  請求項1又は2に記載のエンジンであって、
     前記摺動面に露出する初晶Si結晶粒の少なくとも一部は、破壊されており、破壊されることにより初晶Si結晶粒に形成された面が、前記摺動面に露出している。
    The engine according to claim 1 or 2,
    At least a part of the primary crystal Si crystal grains exposed on the sliding surface is destroyed, and the surface formed in the primary crystal Si crystal grains by the destruction is exposed on the sliding surface.
  4.  請求項1~3のいずれか1に記載のエンジンであって、
     前記ピッチは、前記初晶Si結晶粒の平均結晶粒径より小さい。
    The engine according to any one of claims 1 to 3,
    The pitch is smaller than the average crystal grain size of the primary Si crystal grains.
  5.  請求項1~4のいずれか1に記載のエンジンであって、
     前記シリンダボディ部は、前記初晶Si結晶粒及び前記Al合金母材に加え、共晶Si結晶粒を含有しており、
     前記ピッチは、前記シリンダボディ部のSi結晶粒の粒度分布における前記共晶Si結晶粒径の範囲に含まれる。
    The engine according to any one of claims 1 to 4,
    The cylinder body portion contains eutectic Si crystal grains in addition to the primary Si crystal grains and the Al alloy base material,
    The pitch is included in the range of the eutectic Si crystal grain size in the grain size distribution of the Si crystal grains in the cylinder body.
  6.  請求項1~5のいずれか1に記載のエンジンであって、
     前記複数の線状の溝は、0.1μm以上2.0μm未満の深さを有する。
    The engine according to any one of claims 1 to 5,
    The plurality of linear grooves have a depth of 0.1 μm or more and less than 2.0 μm.
  7.  請求項1~6のいずれか1に記載のエンジンであって、
     前記複数の線状の溝の少なくとも一本は、初晶Si結晶粒を破壊することにより、初晶Si結晶粒を通過するように形成されている。
    The engine according to any one of claims 1 to 6,
    At least one of the plurality of linear grooves is formed so as to pass through the primary crystal grains by breaking the primary crystal grains.
  8.  請求項1~7のいずれか1に記載のエンジンであって、
     前記ピッチは、5μm以上10μm以下である。
    The engine according to any one of claims 1 to 7,
    The pitch is 5 μm or more and 10 μm or less.
  9.  請求項1~8のいずれか1に記載のエンジンに含まれる前記シリンダボディ部を備えるシリンダボディ部材。 A cylinder body member comprising the cylinder body part included in the engine according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1に記載のエンジンを備えた車両。 A vehicle equipped with the engine according to any one of claims 1 to 8.
PCT/JP2015/081064 2015-02-23 2015-11-04 Engine, cylinder body member, and vehicle WO2016136034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15883324.4A EP3263876B1 (en) 2015-02-23 2015-11-04 Engine, cylinder body member, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-033024 2015-02-23
JP2015033024A JP2018059403A (en) 2015-02-23 2015-02-23 Engine, cylinder body member, and vehicle

Publications (1)

Publication Number Publication Date
WO2016136034A1 true WO2016136034A1 (en) 2016-09-01

Family

ID=56788195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081064 WO2016136034A1 (en) 2015-02-23 2015-11-04 Engine, cylinder body member, and vehicle

Country Status (4)

Country Link
EP (1) EP3263876B1 (en)
JP (1) JP2018059403A (en)
TW (1) TWI638944B (en)
WO (1) WO2016136034A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189465A (en) * 1990-11-21 1992-07-07 Nissan Motor Co Ltd High silicon aluminium cylinder block and manufacture thereof
JPH08246087A (en) * 1994-10-28 1996-09-24 Mercedes Benz Ag Cylinder bush made of hyper-eutectic aluminum/ silicon alloy and used for casting into crank case of reciprocating piston engine and preparation thereof
JP2002221077A (en) * 2001-01-29 2002-08-09 Nissan Motor Co Ltd Cylinder block and its honing work method
JP2005273654A (en) * 2004-02-27 2005-10-06 Yamaha Motor Co Ltd Engine component part and method for producing same
JP2008180218A (en) * 2006-12-28 2008-08-07 Yamaha Motor Co Ltd Internal combustion engine component and its manufacturing method
JP2010031840A (en) * 2008-06-27 2010-02-12 Yamaha Motor Co Ltd Cylinder block, internal combustion engine, transport equipment, and manufacturing method of cylinder block
JP2010274386A (en) * 2009-05-29 2010-12-09 Toyota Central R&D Labs Inc SLIDING MATERIAL OF Si-PARTICLE-CONTAINING Al-Si ALLOY AND METHOD FOR FORMING SLIDING SURFACE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523484C2 (en) * 1995-06-28 2002-11-14 Daimler Chrysler Ag Method for producing a cylinder liner from a hypereutectic aluminum / silicon alloy for casting into a crankcase of a reciprocating piston machine and cylinder liner produced thereafter
DE10046360A1 (en) * 2000-09-20 2002-04-04 Gehring Gmbh & Co Maschf Machining process for light metal alloys involves mechanically fine machining surface and setting back softer light metal matrix through thermal rays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189465A (en) * 1990-11-21 1992-07-07 Nissan Motor Co Ltd High silicon aluminium cylinder block and manufacture thereof
JPH08246087A (en) * 1994-10-28 1996-09-24 Mercedes Benz Ag Cylinder bush made of hyper-eutectic aluminum/ silicon alloy and used for casting into crank case of reciprocating piston engine and preparation thereof
JP2002221077A (en) * 2001-01-29 2002-08-09 Nissan Motor Co Ltd Cylinder block and its honing work method
JP2005273654A (en) * 2004-02-27 2005-10-06 Yamaha Motor Co Ltd Engine component part and method for producing same
JP2008180218A (en) * 2006-12-28 2008-08-07 Yamaha Motor Co Ltd Internal combustion engine component and its manufacturing method
JP2010031840A (en) * 2008-06-27 2010-02-12 Yamaha Motor Co Ltd Cylinder block, internal combustion engine, transport equipment, and manufacturing method of cylinder block
JP2010274386A (en) * 2009-05-29 2010-12-09 Toyota Central R&D Labs Inc SLIDING MATERIAL OF Si-PARTICLE-CONTAINING Al-Si ALLOY AND METHOD FOR FORMING SLIDING SURFACE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3263876A4 *

Also Published As

Publication number Publication date
TWI638944B (en) 2018-10-21
EP3263876B1 (en) 2020-09-23
TW201631256A (en) 2016-09-01
EP3263876A4 (en) 2018-05-02
JP2018059403A (en) 2018-04-12
EP3263876A1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP5593302B2 (en) Internal combustion engine component and manufacturing method thereof
US8122941B2 (en) Aluminum alloy for vehicle cylinder liner and method of manufacturing vehicle cylinder liner using the same
CN1788149A (en) Engine component part and method for producing the same
EP2138695A2 (en) Cylinder block, internal combustion engine, transportation apparatus, and method for producing cylinder block
WO2016136035A1 (en) Engine, cylinder body member, and vehicle
WO2016136034A1 (en) Engine, cylinder body member, and vehicle
EP3430178B1 (en) High strength cast iron cylinder liners
EP3263878B1 (en) Air-cooled engine, cylinder body member for air-cooled engine, and vehicle equipped with air-cooled engine
JP4518922B2 (en) Split connecting rod, engine and vehicle
WO2014136535A1 (en) Air-cooled, single-cylinder internal combustion engine, saddle-type vehicle, and method for producing air-cooled, single-cylinder internal combustion engine
WO2023112125A1 (en) Internal combustion engine and transportation device
WO2023112124A1 (en) Internal combustion engine and transportation device
JPH02104465A (en) Production of aluminum alloy member having wear resistance
EP4224004A1 (en) Internal combustion engine and transport equipment
JP4870922B2 (en) Connecting rod, engine, motor vehicle and manufacturing method of connecting rod
JP2009235954A (en) Cylinder head reinforcement member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015883324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP