WO2023112124A1 - Internal combustion engine and transportation device - Google Patents

Internal combustion engine and transportation device Download PDF

Info

Publication number
WO2023112124A1
WO2023112124A1 PCT/JP2021/045975 JP2021045975W WO2023112124A1 WO 2023112124 A1 WO2023112124 A1 WO 2023112124A1 JP 2021045975 W JP2021045975 W JP 2021045975W WO 2023112124 A1 WO2023112124 A1 WO 2023112124A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
skirt
outer peripheral
base material
peripheral surface
Prior art date
Application number
PCT/JP2021/045975
Other languages
French (fr)
Japanese (ja)
Inventor
慧太 渡邉
洋敬 栗田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/045975 priority Critical patent/WO2023112124A1/en
Priority to EP21957736.8A priority patent/EP4219928A4/en
Publication of WO2023112124A1 publication Critical patent/WO2023112124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/105Pistons  having surface coverings the coverings forming a double skirt

Definitions

  • the present disclosure relates to an internal combustion engine, and more particularly to an internal combustion engine including an aluminum alloy piston and an aluminum alloy cylinder block.
  • the present disclosure also relates to vehicles equipped with such internal combustion engines.
  • the resin layer of the skirt wears out when the internal combustion engine is operated for a certain amount of time. If a cast iron sleeve is placed in the cylinder bore or if the cylinder wall surface is plated, the aluminum alloy of the piston and the aluminum alloy of the cylinder block will remain in contact even if the resin layer is worn away. Since there is no direct contact, problems such as seizing are less likely to occur.
  • An embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide an internal combustion engine having an aluminum alloy cylinder block and an aluminum alloy piston, even if cast iron sleeves and plating are omitted.
  • An object of the present invention is to realize a structure capable of suppressing seizure after the resin layer wears out.
  • an aluminum alloy piston having a piston head and a piston skirt extending from the outer periphery of the piston head; an aluminum alloy cylinder block having a cylinder wall including a sliding surface on which the piston slides; with An aluminum alloy is exposed on the sliding surface of the cylinder wall,
  • the piston skirt includes a skirt base material made of an aluminum alloy, a skirt base material having a plurality of striations formed on an outer peripheral surface, and a skirt base material formed on at least a part of the outer peripheral surface of the skirt base material. and a resin layer,
  • the internal combustion engine wherein the outer peripheral surface of the skirt base material has a ten-point average roughness Rz JIS of 20 ⁇ m or more.
  • the piston skirt includes a skirt base material made of an aluminum alloy and having a plurality of streaks formed on the outer peripheral surface thereof, and at least part of the outer peripheral surface of the skirt base material. and a resin layer. Since the resin layer is formed on the outer peripheral surface of the skirt base material, the sliding loss is reduced and the initial conformability of the piston to the cylinder block is improved. Further, in the internal combustion engine of the present invention, the outer peripheral surface of the skirt base material has a ten-point average roughness Rz JIS of 20 ⁇ m or more, which is because the streaks formed on the outer peripheral surface of the skirt base material are relatively deep.
  • the streaks can be formed, for example, by turning using a bit (cutting tool). In that case, the striations extend in the circumferential direction of the piston.
  • the uneven average interval Sm (corresponding to the pitch of streaks) on the outer peripheral surface of the skirt base material is preferably 100 ⁇ m or more and 500 ⁇ m or less. If the average unevenness interval Sm is less than 100 ⁇ m, there is a possibility that the productivity will be lowered or that the manufacturing of the cutting tool will be difficult. If the average unevenness interval Sm exceeds 500 ⁇ m, the machining accuracy of the piston may deteriorate. In addition, since the exposed width of the aluminum alloy after the resin layer is worn out becomes large, there is a possibility that the seizure resistance will somewhat deteriorate.
  • the thickness of the resin layer is preferably 10 ⁇ m or more. Moreover, from the viewpoint of ease of manufacture, the thickness of the resin layer is preferably 50 ⁇ m or less.
  • skirt base material has an anodized film formed by phosphoric acid alumite treatment on the outer peripheral surface, the adhesion of the resin layer to the skirt base material can be improved.
  • seizure resistance and wear resistance can be improved by exposing crystallized silicon crystal grains on the sliding surface.
  • the internal combustion engine according to the embodiment of the present invention is suitable for use in various types of transportation equipment.
  • an internal combustion engine having an aluminum alloy cylinder block and an aluminum alloy piston, it is possible to realize a structure capable of suppressing seizure after the resin layer wears even if cast iron sleeves and plating are omitted. be able to.
  • FIG. 1 is a cross-sectional view schematically showing an engine (internal combustion engine) 100 according to an embodiment of the present invention
  • FIG. 1 is a perspective view schematically showing a cylinder block 10 included in engine 100.
  • FIG. 3 is an enlarged plan view showing a sliding surface 12a of the cylinder wall 12;
  • FIG. 2 is a side view schematically showing a piston 40 included in engine 100.
  • FIG. 4 is a side view schematically showing a piston 40;
  • FIG. 4 is a cross-sectional view schematically showing a piston skirt 44 of the piston 40;
  • FIG. 5 is a diagram showing how wear progresses in a piston skirt 44' of a comparative example. 4 is a diagram showing how wear progresses in the piston skirt 44.
  • FIG. 1 is a perspective view schematically showing a cylinder block 10 included in engine 100.
  • FIG. 3 is an enlarged plan view showing a sliding surface 12a of the cylinder wall 12;
  • FIG. 2 is a side
  • FIG. 4 is a graph in which the vertical axis represents the remaining ratio of the resin layer rl and the horizontal axis represents the total test time for Examples 1, 2 and 3 and Comparative Examples 1 and 2.
  • FIG. 5 is a diagram showing photographs of the outer peripheral surface of a piston skirt 44 at a specific total test time for Comparative Example 1 and Example 3, which have been binarized.
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the piston skirt 44; 4 is a cross-sectional view schematically showing a piston ring 42 of the piston 40.
  • FIG. 1 is a side view schematically showing a motorcycle 300 equipped with an engine 100; FIG.
  • a water-cooled engine will be described below as an example, the engine according to the embodiment of the present invention is not limited to a water-cooled engine, and may be an air-cooled engine.
  • the number of cylinders of the engine is not particularly limited.
  • FIG. 1 shows an engine (internal combustion engine) 100 according to an embodiment of the invention.
  • FIG. 1 is a cross-sectional view schematically showing engine 100. As shown in FIG.
  • the engine 100 includes a cylinder block 10, a cylinder head 20, and a crankcase 30, as shown in FIG.
  • Engine 100 further includes a piston 40 , a crankshaft 50 and a connecting rod (connecting rod) 60 .
  • the direction from the cylinder block 10 to the cylinder head 20 is defined as the upward direction
  • the direction from the cylinder block 10 to the crankcase 30 is defined as the downward direction.
  • a cylinder block (sometimes called a "cylinder body") 10 has a cylinder wall 12 and an outer wall 13. Cylinder wall 12 is formed to define cylinder bore 11 . The outer wall 13 surrounds the cylinder wall 12 and constitutes the outer shell of the cylinder block 10 . A water jacket 14 that retains coolant is provided between the cylinder wall 12 and the outer wall 13 .
  • the cylinder head 20 is provided on the cylinder block 10. Cylinder head 20 defines combustion chamber 70 with cylinder wall 12 and piston 40 .
  • the cylinder head 20 has an intake port 21 for introducing fuel into the combustion chamber 70 and an exhaust port 22 for discharging exhaust gas from the combustion chamber 70 .
  • An intake valve 23 is provided in the intake port 21 and an exhaust valve 24 is provided in the exhaust port 22 .
  • crankcase 30 is provided under the cylinder block 10. That is, the crankcase 30 is provided so as to be located on the side opposite to the cylinder head 20 with respect to the cylinder block 10 .
  • Crankcase 30 may be separate from cylinder block 10 or may be formed integrally with cylinder block 10 .
  • the piston 40 is housed inside the cylinder bore 11 .
  • no cylinder sleeve is fitted in the cylinder bore 11 . Therefore, the piston 40 reciprocates up and down in the cylinder bore 11 while being in contact with the inner peripheral surface 12a of the cylinder wall 12 (the surface on the cylinder bore 11 side). That is, the inner peripheral surface 12a of the cylinder wall 12 is a sliding surface on which the piston 40 slides.
  • the crankshaft 50 is housed inside the crankcase 30 .
  • the crankshaft 50 has a crankpin 51 and a crank arm 52 .
  • the connecting rod 60 has a rod-shaped rod main body 61 , a small end 62 provided at one end of the rod main body 61 , and a large end 63 provided at the other end of the rod main body 61 .
  • the connecting rod 60 connects the piston 40 and the crankshaft 50 .
  • the piston pin 48 of the piston 40 is inserted into the through hole (piston pin hole) of the small end 62
  • the crank pin of the crankshaft 50 is inserted into the through hole (crank pin hole) of the large end 63 .
  • 51 is inserted, thereby connecting the piston 40 and the crankshaft 50 .
  • a bearing 66 is provided between the inner peripheral surface of the big end 63 and the crank pin 51 .
  • FIG. 2 is a perspective view schematically showing the cylinder block 10 of the engine 100.
  • the cylinder block 10 has the cylinder wall 12 including the sliding surface 12a and the outer wall 13, and the water jacket 14 is provided between the cylinder wall 12 and the outer wall 13. .
  • the cylinder block 10 is made of an aluminum alloy containing silicon. More specifically, the cylinder block 10 is made of a hypereutectic aluminum-silicon alloy.
  • the inner peripheral surface 12a of the cylinder wall 12 is not plated. Therefore, the aluminum alloy is exposed on the inner peripheral surface (sliding surface) 12 a of the cylinder wall 12 .
  • FIG. 3 is a plan view showing an enlarged sliding surface 12a of the cylinder wall 12.
  • the cylinder wall 12 of the cylinder block 10 includes a solid solution matrix (alloy base material) 1 containing aluminum and a plurality of primary crystal silicon grains 2 dispersed in the matrix 1, and a part of the primary crystal silicon grains 2 are exposed on the sliding surface 12a. That is, the cylinder block 10 has the primary crystal silicon grains 2 on the sliding surface 12a.
  • the cylinder wall 12 further includes a plurality of eutectic silicon grains dispersed in the matrix 1. Therefore, the cylinder block 10 may further have eutectic silicon grains on the sliding surface 12a.
  • the relatively large silicon crystal grains that first precipitate are "primary silicon grains”, and the relatively small silicon crystal grains that precipitate next are "co-crystalline”. crystalline silicon grains”.
  • FIG. 4A and 4B are side views schematically showing the piston 40 of the engine 100.
  • FIG. 4A is a view of the piston 40 viewed from the axial direction of the piston pin 48 (see FIG. 1) (hereinafter referred to as the "piston pin axial direction")
  • FIG. 4B is a view of the piston 40. It is a figure when it sees from the direction orthogonal to a pin axial direction.
  • the piston 40 (more specifically, the piston body 41 described later) is made of an aluminum alloy.
  • the piston 40 may be formed by forging or by casting.
  • the piston 40 has a piston body 41 and a plurality of piston rings 42, as shown in FIGS. 4A and 4B.
  • Piston body 41 includes a piston head 43 and a piston skirt 44 .
  • the piston head 43 is located at the upper end of the piston 40.
  • a ring groove for holding the piston ring 42 is formed in the outer peripheral portion of the piston head 43 .
  • the piston skirt 44 extends downward from the outer peripheral portion of the piston head 43 .
  • the piston skirt 44 has two portions 44a and 44b (referred to as a "first skirt portion” and a “second skirt portion") located so as to sandwich the central axis (cylinder axis) of the cylinder bore 11 in the radial direction.
  • the piston body 41 also includes a pair of piston pin bosses 45 formed with piston pin holes 45a through which piston pins 48 (see FIG. 1) are inserted, and ribs 46 connecting the piston pin bosses 45 and the piston skirt 44 to each other. have.
  • the piston ring 42 is attached to the outer peripheral portion of the piston body 41 , more specifically to the outer peripheral portion of the piston head 43 .
  • a configuration in which the piston 40 has three piston rings 42 is illustrated, but the number of piston rings 42 is not limited to three.
  • the upper and middle piston rings (top ring and second ring) 42a and 42b are compression rings for keeping the combustion chamber 70 airtight
  • the lower piston ring (third 42 c is an oil ring for scraping off excess oil adhering to the cylinder wall 12 .
  • the piston ring 42 is made of a metallic material (eg steel).
  • the piston skirt 44 has a resin layer rl formed on at least part of the outer peripheral surface.
  • the resin layer rl is formed over substantially the entire outer peripheral surface.
  • the piston skirt 44 has a skirt base material bl made of an aluminum alloy and a resin layer rl formed on at least part of the outer peripheral surface of the skirt base material bl.
  • a plurality of streaks sg are formed on the outer peripheral surface of the skirt base material bl.
  • the streak sg is a streaky groove.
  • the streaks sg can be formed, for example, by turning using a cutting tool. In that case, the streak sg extends in the circumferential direction of the piston 40 .
  • the cross section of each streak sg perpendicular to the circumferential direction of the piston 40 has a substantially triangular shape, but is not limited to this, and may have, for example, a substantially arcuate shape.
  • FIG. 5 shows an example in which a plurality of streaks sg are arranged with almost no space between them, a flat portion may exist between adjacent streaks sg.
  • the resin layer rl includes, for example, a polymer matrix and solid lubricant particles (solid lubricant) dispersed in the polymer matrix.
  • solid lubricant particles solid lubricant particles
  • thermosetting polyamideimide can be suitably used, but the material is of course not limited to this.
  • solid lubricant particles various known solid lubricant particles can be used. For example, graphite particles and molybdenum disulfide particles can be preferably used.
  • the resin layer rl can be formed, for example, by applying a liquid resin material to the base material bl by a spray method or various printing methods (screen printing method, pad printing method, etc.).
  • the piston 40 is formed so that the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is within a predetermined range. Specifically, the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 ⁇ m or more over substantially the entire outer peripheral surface.
  • Ten-point average roughness Rz JIS is the altitude of the highest to fifth peaks R1, R3, R5, R7 and R9 and the average values of the elevations R2, R4, R6, R8 and R10 of the five deepest valleys.
  • the ten-point average roughness Rz JIS can be measured using a surface roughness measuring machine (for example, Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.).
  • the piston skirt 40 includes a skirt base material bl formed of an aluminum alloy and having a plurality of streaks sg formed on the outer peripheral surface, and at least the outer peripheral surface of the skirt base material bl. and a resin layer rl formed thereon. Since the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the sliding loss is reduced and the initial conformability of the piston 40 to the cylinder block 10 is improved.
  • the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 ⁇ m or more. It means relatively deep.
  • the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the resin material inevitably enters into the streaks sg. The state in which the portion where the aluminum alloy is exposed and the portion where the resin material remains are mixed on the surface of the can be maintained for a long period of time. Therefore, even after the resin layer rl is worn out, seizure between the aluminum alloy piston 40 and the aluminum alloy cylinder block 10 can be suppressed.
  • the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl can be adjusted, for example, by changing the cutting tool used when turning the skirt base material bl.
  • prototype pistons 40 having a ten-point average roughness Rz JIS of 20 ⁇ m or more on the outer peripheral surface of the skirt base material bl were produced (Examples 1, 2 and 3), and the occurrence of seizure was suppressed (delayed) by a sliding test. The result of verifying the effect will be explained.
  • the pistons of Examples 1, 2 and 3 and Comparative Examples 1 and 2 were compared.
  • the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl was 24.8 ⁇ m, 66.7 ⁇ m, and 67.8 ⁇ m in Examples 1, 2 and 3, respectively, and 1.9 ⁇ m in Comparative Examples 1 and 2, respectively. , 11.6 ⁇ m.
  • the thickness of the resin layer bl was 3 to 5 ⁇ m in all of Examples 1, 2, and 3 and Comparative Examples 1 and 2 (as described later, the thickness of the resin layer bl can be 10 ⁇ m or more. However, here, the thickness of the resin layer bl was set relatively small in order to shorten the test time).
  • FIG. 8 shows the remaining ratio of the resin layer rl (resin layer rl remaining in the region where the resin layer rl is formed on the outer peripheral surface of the piston skirt 44) in Examples 1, 2, and 3 and Comparative Examples 1 and 2. Area ratio) is plotted on the vertical axis and the total test time is plotted on the horizontal axis.
  • the upper and lower parts of FIG. 9 show photographs of the outer peripheral surface of the piston skirt 44 at a specific total test time for Comparative Example 1 and Example 3, respectively, which have undergone binarization processing. .
  • the black portion is the portion where the aluminum alloy of the skirt base material bl is exposed
  • the gray portion is the portion where the resin layer rl remains.
  • FIG. 9 also shows the remaining ratio of the resin layer rl.
  • Example 3 the decrease in the remaining ratio of the resin layer rl is slower than in Comparative Example 1, and no seizure occurs (a relatively large amount of the resin layer rl remains). state) can be maintained for a long period of time.
  • the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is preferably 50 ⁇ m or less.
  • the uneven average interval Sm (corresponding to the pitch of the streaks sg) on the outer peripheral surface of the skirt base material bl is preferably 100 ⁇ m or more and 500 ⁇ m or less. If the average unevenness interval Sm is less than 100 ⁇ m, there is a risk that productivity will decrease, or that it will be difficult to manufacture a cutting tool for turning the skirt base material bl. If the average unevenness interval Sm exceeds 500 ⁇ m, the machining accuracy of the piston 40 may deteriorate. In addition, since the exposed width of the aluminum alloy after the resin layer rl is worn out becomes large, there is a possibility that the seizure resistance may somewhat deteriorate.
  • the unevenness average interval Sm can be measured using a surface roughness measuring machine, like the ten-point average roughness Rz JIS .
  • FIGS. 4A and 4B show an example in which the resin layer rl is formed on substantially the entire outer peripheral surface of the piston skirt 44
  • the resin layer rl may be formed only on a part of the outer peripheral surface. good.
  • the resin layer rl is formed as wide as possible on the outer peripheral surface of the piston skirt 44 .
  • the ratio of the area occupied by the resin layer rl in the outer peripheral surface of the piston skirt 44 is preferably 50% or more, more preferably 70% or more, and 90% or more (that is, the outer circumference of the piston skirt 44 It is more preferable that the resin layer rl is formed on substantially the entire surface.
  • the resin layer rl contains solid lubricant particles, but the resin layer rl may contain hard particles in addition to the solid lubricant.
  • the abrasion of the resin layer rl can be delayed.
  • metal oxide particles can be used as the hard particles. The amount of hard particles to be added, the particle size of the hard particles, and the like are appropriately adjusted according to the hard particles to be used.
  • the thickness t1 (see FIG. 5) of the resin layer rl is not particularly limited, but from the viewpoint of maintaining the resin layer rl for a long period of time, the thickness t1 of the resin layer rl is preferably 10 ⁇ m or more. Moreover, from the viewpoint of ease of manufacture, the thickness t1 of the resin layer rl is preferably 50 ⁇ m or less. As can be seen from FIG. 5, the thickness t1 of the resin layer rl does not include the thickness of the portion where the resin material enters the streaks sg. Further, "the resin layer rl wears out" means that there is no resin material other than the resin material that has entered the streaks sg, and even the resin material that has entered the streaks sg It doesn't even need to cease to exist.
  • the skirt base material bl has an anodized film (phosphate alumite film) bla formed on the outer peripheral surface by phosphoric acid alumite treatment.
  • the skirt base material bl has the phosphoric acid alumite film bla on the outer peripheral surface, the adhesion of the resin layer rl to the skirt base material bl can be improved.
  • the thickness t2 of the phosphoric acid alumite film bla is, for example, 30 nm or more and 200 nm or less.
  • FIG. 11 is a cross-sectional view showing an example configuration of the piston ring 42 of the piston 40.
  • a diamond-like carbon layer (hereinafter referred to as “DLC layer”) 42D is formed on the outer peripheral portion (outer peripheral surface) of the piston ring 42 .
  • An outer peripheral portion of the piston ring 42 is a portion that contacts the cylinder wall 12 .
  • each piston ring 42 has the DLC layer 42D on its outer peripheral surface, thereby more reliably preventing the piston rings 42 from scuffing the cylinder wall 12. can do.
  • the DLC layer 42D is preferably formed by a vapor deposition method (for example, CDV method or PVD method). There are no particular restrictions on the composition or thickness of the DLC layer 42D.
  • the thickness of the DLC layer 42D is preferably 2 ⁇ m or more in order to more reliably prevent scuffing. In terms of adhesion, the thickness of the DLC layer 42D is preferably 20 ⁇ m or less.
  • the crystallized silicon crystal grains are exposed on the sliding surface 12a. Seizure resistance and wear resistance can be improved.
  • the silicon content of the aluminum alloy which is the material of the cylinder block 10 is preferably 15% by mass or more and 25% by mass or less.
  • the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains 2 can be crystallized, and the wear resistance of the cylinder block 10 can be sufficiently improved.
  • the silicon content is 25% by mass or less, the strength of the cylinder block 10 can be maintained sufficiently high.
  • the aluminum content of the aluminum alloy is, for example, 73.4% by mass or more and 79.6% by mass or less.
  • the aluminum alloy may contain copper, and in that case, the copper content is, for example, 2.0% by mass or more and 5.0% by mass or less.
  • the wear resistance of the cylinder block 10 can be further improved by setting the average crystal grain size of the primary crystal silicon grains 2 within the range of 8 ⁇ m or more and 50 ⁇ m or less.
  • the average crystal grain size of the primary crystal silicon grains 2 exceeds 50 ⁇ m, the number of primary crystal silicon grains 2 per unit area of the sliding surface 12a is small. Therefore, a large load is applied to each of the primary crystal silicon grains 2 during operation of the engine 100, and the primary crystal silicon grains 2 may be crushed. Fragments of the crushed primary-crystal silicon grains 2 act as abrasive particles, so there is a risk that the sliding surface 12a will be greatly worn.
  • the average crystal grain size of the primary-crystal silicon grains 2 is less than 8 ⁇ m, the portion of the primary-crystal silicon grains 2 buried in the matrix 1 is small. Therefore, during operation of the engine 100, the primary crystal silicon grains 2 are likely to fall off. Since the dropped primary-crystal silicon grains 2 act as abrasive particles, the sliding surface 12a may be greatly worn.
  • the average crystal grain size of the primary crystal silicon grains 2 is 8 ⁇ m or more and 50 ⁇ m or less (more preferably 12 ⁇ m or more and 50 ⁇ m or less), a sufficient number of primary crystal silicon grains 2 per unit area of the sliding surface 12a. exist. Therefore, the load applied to each primary-crystal silicon grain 2 during operation of the engine 100 is relatively small, so crushing of the primary-crystal silicon grains 2 is suppressed. In addition, since the portion of the primary-crystal silicon grains 2 embedded in the matrix 1 is sufficiently large, the drop-off of the primary-crystal silicon grains 2 is reduced, and wear of the sliding surface 12a due to the dropped-off primary-crystal silicon grains 2 is also suppressed. be done.
  • the average crystal grain size of the eutectic silicon grains is smaller than the average crystal grain size of the primary crystal silicon grains 2 .
  • the average crystal grain size of the eutectic silicon grains is, for example, 7.5 ⁇ m or less.
  • the average crystal grain size of the primary crystal silicon grains 2 and the eutectic silicon grains can be measured as follows by performing image processing on the image of the sliding surface 12a. First, based on the area of the silicon crystal grain obtained by image processing, the diameter (equivalent diameter) of each silicon crystal grain is calculated assuming that the silicon crystal grain is a perfect circle. Specify the number (degrees) and diameter. Fine crystals with a diameter of less than 1 ⁇ m are not counted as silicon crystal grains. Based on the calculated number (frequency) and diameter of the silicon crystal grains, the grain size distribution of the silicon crystal grains is obtained. The resulting particle size distribution (histogram) contains two peaks.
  • the grain size distribution is divided into two regions with the diameter of the portion forming the valley between the two peaks as the threshold, the region corresponding to the large diameter being the grain size distribution of the primary crystal silicon grains, and the region corresponding to the small diameter being the eutectic.
  • it is the particle size distribution of silicon particles. Then, based on each particle size distribution, the average crystal grain size of the primary crystal silicon grains and the average crystal grain size of the eutectic silicon grains can be calculated.
  • FIG. 12 shows an example of a motorcycle with an engine 100 according to an embodiment of the invention.
  • a motorcycle 300 shown in FIG. 12 is provided with a head pipe 302 at the front end of a body frame 301 .
  • a front fork 303 is attached to the head pipe 302 so as to swing in the lateral direction of the vehicle.
  • a front wheel 304 is rotatably supported at the lower end of the front fork 303 .
  • a seat rail 306 is attached so as to extend rearward from the upper part of the rear end of the body frame 301 .
  • a fuel tank 307 is provided on the body frame 301, and a main seat 308a and a tandem seat 308b are provided on the seat rails 306. As shown in FIG.
  • a rear arm 309 extending rearward is attached to the rear end of the body frame 301 .
  • a rear wheel 310 is rotatably supported at the rear end of the rear arm 309 .
  • the engine 100 is held in the central portion of the body frame 301 .
  • a radiator 311 is provided in front of the engine 100 .
  • An exhaust pipe 312 is connected to an exhaust port of the engine 100 and a muffler 313 is attached to the rear end of the exhaust pipe 312 .
  • a transmission 315 is connected to the engine 100 .
  • a drive sprocket 317 is attached to the output shaft 316 of the transmission 315 .
  • Drive sprocket 317 is connected to rear wheel sprocket 319 of rear wheel 310 via chain 318 .
  • Transmission 315 and chain 318 function as a transmission mechanism that transmits the power generated by engine 100 to the drive wheels.
  • the engine according to the embodiment of the present invention is not limited to motorcycles, and is also suitable for other transportation equipment such as four-wheeled motor vehicles, three-wheeled motor vehicles, and ships. used for
  • the internal combustion engine 100 includes an aluminum alloy piston 40 having a piston head 43 and a piston skirt 44 extending from the outer peripheral portion of the piston head 43, and a slide on which the piston 40 slides. and a cylinder block 10 made of an aluminum alloy having a cylinder wall 12 including a moving surface 12a. The aluminum alloy is exposed on the sliding surface 12a of the cylinder wall 12.
  • the piston skirt 44 is a skirt base material bl made of an aluminum alloy. and a formed resin layer rl.
  • the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 ⁇ m or more.
  • the piston skirt 44 includes a skirt base material bl formed of an aluminum alloy and having a plurality of streaks sg formed on the outer peripheral surface thereof, and at least a portion of the outer peripheral surface of the skirt base material bl. and a resin layer rl formed thereon. Since the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the sliding loss is reduced and the initial conformability of the piston 40 to the cylinder block 10 is improved. Further, in the internal combustion engine 100 of the present invention, the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 ⁇ m or more. It means relatively deep.
  • the resin layer rl When the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the resin material inevitably enters into the streaks sg. The state in which the portion where the aluminum alloy is exposed and the portion where the resin material remains are mixed on the surface of the can be maintained for a long period of time. Therefore, even after the resin layer rl is worn out, seizure between the aluminum alloy piston 40 and the aluminum alloy cylinder block 10 can be suppressed.
  • the plurality of streaks sg extend in the circumferential direction of the piston 40.
  • the streaks sg can be formed, for example, by turning using a cutting tool. In that case, the streak sg extends in the circumferential direction of the piston 40 .
  • the uneven average interval Sm of the outer peripheral surface of the skirt base material bl is 100 ⁇ m or more and 500 ⁇ m or less.
  • the uneven average interval Sm (corresponding to the pitch of streaks) on the outer peripheral surface of the skirt base material is preferably 100 ⁇ m or more and 500 ⁇ m or less. If the average unevenness interval Sm is less than 100 ⁇ m, there is a possibility that the productivity will be lowered or that the manufacturing of the cutting tool will be difficult. If the average unevenness interval Sm exceeds 500 ⁇ m, the machining accuracy of the piston may deteriorate. In addition, since the exposed width of the aluminum alloy after the resin layer rl is worn out becomes large, there is a possibility that the seizure resistance may somewhat deteriorate.
  • the thickness of the resin layer rl is 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness t1 of the resin layer rl is preferably 10 ⁇ m or more. Moreover, from the viewpoint of ease of manufacture, the thickness t1 of the resin layer rl is preferably 50 ⁇ m or less.
  • the resin layer rl contains a solid lubricant and hard particles.
  • Abrasion of the resin layer rl can be delayed by including hard particles in the resin layer rl.
  • the skirt base material bl has an anodized coating bla formed on the outer peripheral surface by phosphoric acid alumite treatment.
  • the skirt base material bl has an anodized film bla formed on its outer peripheral surface by phosphoric acid alumite treatment, the adhesion of the resin layer rl to the skirt base material bl can be improved.
  • the cylinder block 10 is made of an aluminum alloy containing silicon.
  • a transportation device includes an internal combustion engine 100 having any of the configurations described above.
  • the internal combustion engine 100 according to the embodiment of the present invention is suitable for use in various types of transportation equipment.
  • an internal combustion engine having an aluminum alloy cylinder block and an aluminum alloy piston it is possible to realize a structure capable of suppressing seizure after the resin layer wears even if cast iron sleeves and plating are omitted. be able to.
  • An internal combustion engine according to an embodiment of the present invention is suitable for use in various types of transportation equipment including motorcycles.

Abstract

An internal combustion engine (100) comprises: an aluminum alloy piston (40) having a piston head (43) and a piston skirt (44) extending from an outer peripheral portion of the piston head; and an aluminum alloy cylinder block (10) having a cylinder wall (12) including a sliding surface (12a) along which the piston slides. The aluminum alloy is exposed from the sliding surface of the cylinder wall. The piston skirt comprises: a skirt base (bl) formed from an aluminum alloy and having an outer peripheral surface on which a plurality of streaks (sg) are formed; and a resin layer (rl) formed on at least a part of the outer peripheral surface of the skirt base. The outer peripheral surface of the skirt base has a ten-point average roughness RzJIS of 20 μm or more.

Description

内燃機関および輸送機器Internal combustion engines and transportation equipment
 本開示は、内燃機関に関し、特に、アルミニウム合金製のピストンと、アルミニウム合金製のシリンダブロックとを備えた内燃機関に関する。また、本開示は、そのような内燃機関を備えた輸送機器にも関する。 The present disclosure relates to an internal combustion engine, and more particularly to an internal combustion engine including an aluminum alloy piston and an aluminum alloy cylinder block. The present disclosure also relates to vehicles equipped with such internal combustion engines.
 近年、内燃機関用のピストンやシリンダブロックの材料として、アルミニウム合金が広く用いられている。アルミニウム合金製のピストンと、アルミニウム合金製のシリンダブロックとを組み合わせて用いる場合、耐摩耗性を確保するために、シリンダボア内に鋳鉄製のスリーブ(ライナー)を配置したり、シリンダ壁の表面にメッキ処理を施したりすることが行われている。 In recent years, aluminum alloys have been widely used as materials for pistons and cylinder blocks for internal combustion engines. When using a combination of an aluminum alloy piston and an aluminum alloy cylinder block, place a cast iron sleeve (liner) in the cylinder bore or plate the surface of the cylinder wall to ensure wear resistance. It is being processed.
 一方、ピストンのスカート部の表面に条痕を形成し、その上に樹脂層を形成する技術が知られている(例えば特許文献1)。条痕が形成されていることにより、スカート部の基材と樹脂層との密着性が向上する。ピストンの摺動により樹脂層が削れて表面粗さが小さくなることにより、摺動ロスが低減されて初期馴染み性が向上する。 On the other hand, a technique is known in which streaks are formed on the surface of the piston skirt and a resin layer is formed thereon (for example, Patent Document 1). The formation of the streaks improves the adhesion between the base material of the skirt portion and the resin layer. Sliding of the piston scrapes the resin layer to reduce surface roughness, thereby reducing sliding loss and improving initial conformability.
 スカート部の樹脂層は、内燃機関がある程度の時間運転されると、摩滅する。シリンダボア内に鋳鉄製のスリーブが配置されている場合や、シリンダ壁表面にメッキ処理が施されている場合には、樹脂層が摩滅しても、ピストンのアルミニウム合金とシリンダブロックのアルミニウム合金とが直接接しないので焼き付き等の問題は生じにくい。 The resin layer of the skirt wears out when the internal combustion engine is operated for a certain amount of time. If a cast iron sleeve is placed in the cylinder bore or if the cylinder wall surface is plated, the aluminum alloy of the piston and the aluminum alloy of the cylinder block will remain in contact even if the resin layer is worn away. Since there is no direct contact, problems such as seizing are less likely to occur.
特許第6485952号公報Japanese Patent No. 6485952
 シリンダブロックの材料として、シリコンを多く含有する(過共晶組成の)ハイシリコンアルミニウム合金を用いることが提案されている。シリンダブロックをハイシリコンアルミニウム合金から形成すると、鋳鉄スリーブやメッキ処理が不要となるので、軽量化および製造工程の簡略化を図ることができる。ただし、鋳鉄スリーブやメッキ処理を省略すると、ピストンのスカート部の樹脂層が摩滅した場合には、ピストンのアルミニウム合金と、シリンダブロックのアルミニウム合金とが直接接してしまうので、焼き付きが生じるおそれがある。 It has been proposed to use a high-silicon-aluminum alloy containing a large amount of silicon (hypereutectic composition) as the material for the cylinder block. Forming the cylinder block from a high-silicon aluminum alloy eliminates the need for a cast iron sleeve and plating, thereby reducing weight and simplifying the manufacturing process. However, if the cast iron sleeve and plating are omitted, if the resin layer on the skirt of the piston wears away, the aluminum alloy of the piston and the aluminum alloy of the cylinder block will come into direct contact, which may cause seizure. .
 本発明の実施形態は、上記課題に鑑みてなされたものであり、その目的は、アルミニウム合金製シリンダブロックとアルミニウム合金製ピストンとを備えた内燃機関において、鋳鉄スリーブやメッキ処理を省略しても樹脂層摩滅後の焼き付きを抑制し得る構造を実現することにある。 An embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide an internal combustion engine having an aluminum alloy cylinder block and an aluminum alloy piston, even if cast iron sleeves and plating are omitted. An object of the present invention is to realize a structure capable of suppressing seizure after the resin layer wears out.
 本明細書は、以下の項目に記載の内燃機関および輸送機器を開示している。 This specification discloses the internal combustion engine and transportation equipment described in the following items.
 [項目1]
 ピストンヘッドと、前記ピストンヘッドの外周部から延びるピストンスカートとを有するアルミニウム合金製のピストンと、
 前記ピストンが摺動する摺動面を含むシリンダ壁を有するアルミニウム合金製のシリンダブロックと、
を備え、
 前記シリンダ壁の前記摺動面にはアルミニウム合金が露出しており、
 前記ピストンスカートは、アルミニウム合金から形成されたスカート基材であって、外周面に複数の条痕が形成されたスカート基材と、前記スカート基材の前記外周面の少なくとも一部上に形成された樹脂層とを有し、
 前記スカート基材の前記外周面の十点平均粗さRzJISは、20μm以上である、内燃機関。
[Item 1]
an aluminum alloy piston having a piston head and a piston skirt extending from the outer periphery of the piston head;
an aluminum alloy cylinder block having a cylinder wall including a sliding surface on which the piston slides;
with
An aluminum alloy is exposed on the sliding surface of the cylinder wall,
The piston skirt includes a skirt base material made of an aluminum alloy, a skirt base material having a plurality of striations formed on an outer peripheral surface, and a skirt base material formed on at least a part of the outer peripheral surface of the skirt base material. and a resin layer,
The internal combustion engine, wherein the outer peripheral surface of the skirt base material has a ten-point average roughness Rz JIS of 20 μm or more.
 本発明の実施形態による内燃機関では、ピストンスカートは、アルミニウム合金から形成され外周面に複数の条痕が形成されたスカート基材と、スカート基材の外周面の少なくとも一部上に形成された樹脂層とを有している。スカート基材の外周面上に樹脂層が形成されていることにより、摺動ロスが低減され、ピストンのシリンダブロックに対する初期馴染み性が向上する。また、本発明の内燃機関では、スカート基材の外周面の十点平均粗さRzJISが20μm以上であり、これは、スカート基材の外周面に形成されている条痕が比較的深いことを意味している。スカート基材の外周面上に樹脂層が形成される際、必然的に条痕内に樹脂材料が入り込むので、条痕が深いと、樹脂層が摩滅した後、ピストンスカートの表面においてアルミニウム合金が露出する部分と樹脂材料が残存する部分とが混在した状態を長期間持続させることができる。そのため、樹脂層が摩滅した後においても、アルミニウム合金製ピストンとアルミニウム合金製シリンダブロックとの焼き付きを抑制することができる。 In the internal combustion engine according to the embodiment of the present invention, the piston skirt includes a skirt base material made of an aluminum alloy and having a plurality of streaks formed on the outer peripheral surface thereof, and at least part of the outer peripheral surface of the skirt base material. and a resin layer. Since the resin layer is formed on the outer peripheral surface of the skirt base material, the sliding loss is reduced and the initial conformability of the piston to the cylinder block is improved. Further, in the internal combustion engine of the present invention, the outer peripheral surface of the skirt base material has a ten-point average roughness Rz JIS of 20 μm or more, which is because the streaks formed on the outer peripheral surface of the skirt base material are relatively deep. means When the resin layer is formed on the outer peripheral surface of the skirt base material, the resin material inevitably enters into the streaks. A mixed state of the exposed portion and the portion where the resin material remains can be maintained for a long period of time. Therefore, even after the resin layer is worn out, it is possible to prevent seizure between the aluminum alloy piston and the aluminum alloy cylinder block.
 [項目2]
 前記複数の条痕は、前記ピストンの周方向に延びている、項目1に記載の内燃機関。
[Item 2]
The internal combustion engine according to item 1, wherein the plurality of striations extend in a circumferential direction of the piston.
 条痕は、例えば、バイト(刃具)を用いた旋削加工によって形成され得る。その場合、条痕は、ピストンの周方向に延びている。 The streaks can be formed, for example, by turning using a bit (cutting tool). In that case, the striations extend in the circumferential direction of the piston.
 [項目3]
 前記スカート基材の前記外周面の凹凸平均間隔Smは、100μm以上500μm以下である、項目1または2に記載の内燃機関。
[Item 3]
3. The internal combustion engine according to item 1 or 2, wherein an average unevenness interval Sm of the outer peripheral surface of the skirt base material is 100 μm or more and 500 μm or less.
 スカート基材の外周面の凹凸平均間隔Sm(条痕のピッチに相当する)は、100μm以上500μm以下であることが好ましい。凹凸平均間隔Smが100μm未満であると、生産性が低下したり、刃具作製が難化したりするおそれがある。凹凸平均間隔Smが500μmを超えると、ピストンの加工精度が低下するおそれがある。また、樹脂層が摩滅した後のアルミニウム合金の露出幅が大きくなるので、耐焼き付き性が幾分低下するおそれがある。 The uneven average interval Sm (corresponding to the pitch of streaks) on the outer peripheral surface of the skirt base material is preferably 100 μm or more and 500 μm or less. If the average unevenness interval Sm is less than 100 μm, there is a possibility that the productivity will be lowered or that the manufacturing of the cutting tool will be difficult. If the average unevenness interval Sm exceeds 500 μm, the machining accuracy of the piston may deteriorate. In addition, since the exposed width of the aluminum alloy after the resin layer is worn out becomes large, there is a possibility that the seizure resistance will somewhat deteriorate.
 [項目4]
 前記樹脂層の厚さは、10μm以上50μm以下である、項目1から3のいずれかに記載の内燃機関。
[Item 4]
4. The internal combustion engine according to any one of items 1 to 3, wherein the resin layer has a thickness of 10 μm or more and 50 μm or less.
 長期間樹脂層を維持する観点からは、樹脂層の厚さは、10μm以上であることが好ましい。また、製造の容易さの観点からは、樹脂層の厚さは、50μm以下であることが好ましい。 From the viewpoint of maintaining the resin layer for a long period of time, the thickness of the resin layer is preferably 10 μm or more. Moreover, from the viewpoint of ease of manufacture, the thickness of the resin layer is preferably 50 μm or less.
 [項目5]
 前記樹脂層は、固体潤滑剤と、硬質粒子とを含む、項目1から4のいずれかに記載の内燃機関。
[Item 5]
5. The internal combustion engine according to any one of items 1 to 4, wherein the resin layer contains a solid lubricant and hard particles.
 樹脂層が硬質粒子を含むことにより、樹脂層の摩滅を遅延させることができる。 By including hard particles in the resin layer, it is possible to delay the wear of the resin layer.
 [項目6]
 前記スカート基材は、前記外周面にリン酸アルマイト処理により形成された陽極酸化被膜を有する、項目1から5のいずれかに記載の内燃機関。
[Item 6]
6. The internal combustion engine according to any one of items 1 to 5, wherein the skirt base material has an anodized coating formed on the outer peripheral surface by phosphoric acid alumite treatment.
 スカート基材が、外周面にリン酸アルマイト処理により形成された陽極酸化被膜を有していると、スカート基材に対する樹脂層の密着性を向上させることができる。 If the skirt base material has an anodized film formed by phosphoric acid alumite treatment on the outer peripheral surface, the adhesion of the resin layer to the skirt base material can be improved.
 [項目7]
 前記シリンダブロックは、シリコンを含むアルミニウム合金から形成されている、項目1から6のいずれかに記載の内燃機関。
[Item 7]
7. The internal combustion engine according to any one of items 1 to 6, wherein the cylinder block is made of an aluminum alloy containing silicon.
 シリンダブロックの材料として、シリコンを含むアルミニウム合金を用いると、晶出させたシリコン結晶粒を摺動面に露出させることにより、耐焼き付き性および耐摩耗性を向上させることができる。 When an aluminum alloy containing silicon is used as the material for the cylinder block, seizure resistance and wear resistance can be improved by exposing crystallized silicon crystal grains on the sliding surface.
 [項目8]
 項目1から7のいずれかに記載の内燃機関を備えた輸送機器。
[Item 8]
Transportation equipment provided with the internal combustion engine according to any one of items 1 to 7.
 本発明の実施形態による内燃機関は、各種の輸送機器に好適に用いられる。  The internal combustion engine according to the embodiment of the present invention is suitable for use in various types of transportation equipment.
 本発明の実施形態によると、アルミニウム合金製シリンダブロックとアルミニウム合金製ピストンとを備えた内燃機関において、鋳鉄スリーブやメッキ処理を省略しても樹脂層摩滅後の焼き付きを抑制し得る構造を実現することができる。 According to an embodiment of the present invention, in an internal combustion engine having an aluminum alloy cylinder block and an aluminum alloy piston, it is possible to realize a structure capable of suppressing seizure after the resin layer wears even if cast iron sleeves and plating are omitted. be able to.
本発明の実施形態によるエンジン(内燃機関)100を模式的に示す断面図である。1 is a cross-sectional view schematically showing an engine (internal combustion engine) 100 according to an embodiment of the present invention; FIG. エンジン100が備えるシリンダブロック10を模式的に示す斜視図である。1 is a perspective view schematically showing a cylinder block 10 included in engine 100. FIG. シリンダ壁12の摺動面12aを拡大して示す平面図である。3 is an enlarged plan view showing a sliding surface 12a of the cylinder wall 12; FIG. エンジン100が備えるピストン40を模式的に示す側面図である。FIG. 2 is a side view schematically showing a piston 40 included in engine 100. FIG. ピストン40を模式的に示す側面図である。4 is a side view schematically showing a piston 40; FIG. ピストン40のピストンスカート44を模式的に示す断面図である。4 is a cross-sectional view schematically showing a piston skirt 44 of the piston 40; FIG. 比較例のピストンスカート44’において、摩耗が進行していく様子を示す図である。FIG. 5 is a diagram showing how wear progresses in a piston skirt 44' of a comparative example. ピストンスカート44において、摩耗が進行していく様子を示す図である。4 is a diagram showing how wear progresses in the piston skirt 44. FIG. 実施例1、2、3および比較例1、2について、樹脂層rlの残存割合を縦軸にとり、総試験時間を横軸にとったグラフである。4 is a graph in which the vertical axis represents the remaining ratio of the resin layer rl and the horizontal axis represents the total test time for Examples 1, 2 and 3 and Comparative Examples 1 and 2. FIG. 比較例1および実施例3について、特定の総試験時間におけるピストンスカート44の外周面の写真に2値化処理が施されたものを示す図である。FIG. 5 is a diagram showing photographs of the outer peripheral surface of a piston skirt 44 at a specific total test time for Comparative Example 1 and Example 3, which have been binarized. ピストンスカート44の構成の他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the configuration of the piston skirt 44; ピストン40のピストンリング42を模式的に示す断面図である。4 is a cross-sectional view schematically showing a piston ring 42 of the piston 40. FIG. エンジン100を備えた自動二輪車300を模式的に示す側面図である。1 is a side view schematically showing a motorcycle 300 equipped with an engine 100; FIG.
 以下、図面を参照しながら本発明の実施形態を説明する。なお、以下では水冷式のエンジンを例として説明を行うが、本発明の実施形態によるエンジンは、水冷式に限定されず、空冷式であってもよい。また、以下では単気筒のエンジンを例として説明を行うが、エンジンの気筒数は特に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Although a water-cooled engine will be described below as an example, the engine according to the embodiment of the present invention is not limited to a water-cooled engine, and may be an air-cooled engine. In addition, although a single-cylinder engine will be described below as an example, the number of cylinders of the engine is not particularly limited.
 [エンジンの構成]
 図1に、本発明の実施形態によるエンジン(内燃機関)100を示す。図1は、エンジン100を模式的に示す断面図である。
[Engine configuration]
FIG. 1 shows an engine (internal combustion engine) 100 according to an embodiment of the invention. FIG. 1 is a cross-sectional view schematically showing engine 100. As shown in FIG.
 エンジン100は、図1に示すように、シリンダブロック10と、シリンダヘッド20と、クランクケース30とを備える。また、エンジン100は、ピストン40と、クランクシャフト50と、コンロッド(コネクティングロッド)60とをさらに備える。以下では、シリンダブロック10からシリンダヘッド20に向かう方向を上方向とし、シリンダブロック10からクランクケース30に向かう方向を下方向として説明を行う。 The engine 100 includes a cylinder block 10, a cylinder head 20, and a crankcase 30, as shown in FIG. Engine 100 further includes a piston 40 , a crankshaft 50 and a connecting rod (connecting rod) 60 . Hereinafter, the direction from the cylinder block 10 to the cylinder head 20 is defined as the upward direction, and the direction from the cylinder block 10 to the crankcase 30 is defined as the downward direction.
 シリンダブロック(「シリンダボディ」と呼ばれることもある)10は、シリンダ壁12と、外壁13とを有する。シリンダ壁12は、シリンダボア11を画定するように形成されている。外壁13は、シリンダ壁12を包囲し、シリンダブロック10の外郭を構成している。シリンダ壁12と外壁13との間に、冷却液を保持するウォータージャケット14が設けられている。 A cylinder block (sometimes called a "cylinder body") 10 has a cylinder wall 12 and an outer wall 13. Cylinder wall 12 is formed to define cylinder bore 11 . The outer wall 13 surrounds the cylinder wall 12 and constitutes the outer shell of the cylinder block 10 . A water jacket 14 that retains coolant is provided between the cylinder wall 12 and the outer wall 13 .
 シリンダヘッド20は、シリンダブロック10の上に設けられている。シリンダヘッド20は、シリンダ壁12およびピストン40とともに燃焼室70を画定する。シリンダヘッド20は、燃焼室70に燃料を導入するための吸気ポート21と、燃焼室70から排気ガスを排出するための排気ポート22とを有している。吸気ポート21内には、吸気弁23が設けられており、排気ポート22内には、排気弁24が設けられている。 The cylinder head 20 is provided on the cylinder block 10. Cylinder head 20 defines combustion chamber 70 with cylinder wall 12 and piston 40 . The cylinder head 20 has an intake port 21 for introducing fuel into the combustion chamber 70 and an exhaust port 22 for discharging exhaust gas from the combustion chamber 70 . An intake valve 23 is provided in the intake port 21 and an exhaust valve 24 is provided in the exhaust port 22 .
 クランクケース30は、シリンダブロック10の下に設けられている。つまり、クランクケース30は、シリンダブロック10に対してシリンダヘッド20とは反対側に位置するように設けられている。クランクケース30は、シリンダブロック10と別体であってもよいし、シリンダブロック10と一体に形成されていてもよい。 The crankcase 30 is provided under the cylinder block 10. That is, the crankcase 30 is provided so as to be located on the side opposite to the cylinder head 20 with respect to the cylinder block 10 . Crankcase 30 may be separate from cylinder block 10 or may be formed integrally with cylinder block 10 .
 ピストン40は、シリンダボア11内に収容されている。本実施形態では、シリンダボア11内にはシリンダスリーブははめ込まれていない。そのため、ピストン40は、シリンダ壁12の内周面(シリンダボア11側の表面)12aに接触した状態でシリンダボア11内を上下に往復運動する。つまり、シリンダ壁12の内周面12aは、ピストン40が摺動する摺動面である。 The piston 40 is housed inside the cylinder bore 11 . In this embodiment, no cylinder sleeve is fitted in the cylinder bore 11 . Therefore, the piston 40 reciprocates up and down in the cylinder bore 11 while being in contact with the inner peripheral surface 12a of the cylinder wall 12 (the surface on the cylinder bore 11 side). That is, the inner peripheral surface 12a of the cylinder wall 12 is a sliding surface on which the piston 40 slides.
 クランクシャフト50は、クランクケース30内に収容されている。クランクシャフト50は、クランクピン51と、クランクアーム52とを有している。 The crankshaft 50 is housed inside the crankcase 30 . The crankshaft 50 has a crankpin 51 and a crank arm 52 .
 コンロッド60は、棒状のロッド本体部61と、ロッド本体部61の一端に設けられた小端部62と、ロッド本体部61の他端に設けられた大端部63とを有する。コンロッド60は、ピストン40とクランクシャフト50とを連結する。具体的には、小端部62の貫通孔(ピストンピン孔)にピストン40のピストンピン48が挿入されているとともに、大端部63の貫通孔(クランクピン孔)にクランクシャフト50のクランクピン51が挿入されており、そのことによってピストン40とクランクシャフト50とが連結されている。大端部63の内周面とクランクピン51との間には、ベアリング66が設けられている。 The connecting rod 60 has a rod-shaped rod main body 61 , a small end 62 provided at one end of the rod main body 61 , and a large end 63 provided at the other end of the rod main body 61 . The connecting rod 60 connects the piston 40 and the crankshaft 50 . Specifically, the piston pin 48 of the piston 40 is inserted into the through hole (piston pin hole) of the small end 62 , and the crank pin of the crankshaft 50 is inserted into the through hole (crank pin hole) of the large end 63 . 51 is inserted, thereby connecting the piston 40 and the crankshaft 50 . A bearing 66 is provided between the inner peripheral surface of the big end 63 and the crank pin 51 .
 図2は、エンジン100のシリンダブロック10を模式的に示す斜視図である。既に説明したように、シリンダブロック10は、摺動面12aを含むシリンダ壁12と、外壁13とを有しており、シリンダ壁12と外壁13との間に、ウォータージャケット14が設けられている。本実施形態では、シリンダブロック10は、シリコンを含むアルミニウム合金から形成されている。より具体的には、シリンダブロック10は、過共晶組成のアルミニウム-シリコン系合金から形成されている。本実施形態では、シリンダ壁12の内周面12aにはめっき処理は施されていない。そのため、シリンダ壁12の内周面(摺動面)12aにはアルミニウム合金が露出している。 FIG. 2 is a perspective view schematically showing the cylinder block 10 of the engine 100. FIG. As already explained, the cylinder block 10 has the cylinder wall 12 including the sliding surface 12a and the outer wall 13, and the water jacket 14 is provided between the cylinder wall 12 and the outer wall 13. . In this embodiment, the cylinder block 10 is made of an aluminum alloy containing silicon. More specifically, the cylinder block 10 is made of a hypereutectic aluminum-silicon alloy. In this embodiment, the inner peripheral surface 12a of the cylinder wall 12 is not plated. Therefore, the aluminum alloy is exposed on the inner peripheral surface (sliding surface) 12 a of the cylinder wall 12 .
 図3は、シリンダ壁12の摺動面12aを拡大して示す平面図である。シリンダブロック10のシリンダ壁12は、アルミニウムを含む固溶体のマトリックス(合金基材)1と、マトリックス1中に分散した複数の初晶シリコン粒2とを含んでおり、一部の初晶シリコン粒2は、摺動面12aに露出している。つまり、シリンダブロック10は、摺動面12aに初晶シリコン粒2を有している。 FIG. 3 is a plan view showing an enlarged sliding surface 12a of the cylinder wall 12. FIG. The cylinder wall 12 of the cylinder block 10 includes a solid solution matrix (alloy base material) 1 containing aluminum and a plurality of primary crystal silicon grains 2 dispersed in the matrix 1, and a part of the primary crystal silicon grains 2 are exposed on the sliding surface 12a. That is, the cylinder block 10 has the primary crystal silicon grains 2 on the sliding surface 12a.
 なお、ここでは図示していないが、シリンダ壁12は、マトリックス1中に分散した複数の共晶シリコン粒をさらに含んでいる。そのため、シリンダブロック10は、摺動面12aにさらに共晶シリコン粒を有していてもよい。過共晶組成のアルミニウム-シリコン系合金の溶湯を冷却したときに、最初に析出する比較的大きなシリコン結晶粒が「初晶シリコン粒」であり、次いで析出する比較的小さなシリコン結晶粒が「共晶シリコン粒」である。 Although not shown here, the cylinder wall 12 further includes a plurality of eutectic silicon grains dispersed in the matrix 1. Therefore, the cylinder block 10 may further have eutectic silicon grains on the sliding surface 12a. When a molten aluminum-silicon alloy with a hypereutectic composition is cooled, the relatively large silicon crystal grains that first precipitate are "primary silicon grains", and the relatively small silicon crystal grains that precipitate next are "co-crystalline". crystalline silicon grains”.
 図4Aおよび図4Bは、エンジン100のピストン40を模式的に示す側面図である。図4Aが、ピストン40をピストンピン48(図1参照)の軸方向(以下では「ピストンピン軸方向」と呼ぶ)から見たときの図であるのに対し、図4Bは、ピストン40をピストンピン軸方向に直交する方向から見たときの図である。 4A and 4B are side views schematically showing the piston 40 of the engine 100. FIG. 4A is a view of the piston 40 viewed from the axial direction of the piston pin 48 (see FIG. 1) (hereinafter referred to as the "piston pin axial direction"), while FIG. 4B is a view of the piston 40. It is a figure when it sees from the direction orthogonal to a pin axial direction.
 本実施形態では、ピストン40(より具体的には後述するピストン本体41)は、アルミニウム合金から形成されている。ピストン40は、鍛造により形成されてもよいし、鋳造により形成されてもよい。 In this embodiment, the piston 40 (more specifically, the piston body 41 described later) is made of an aluminum alloy. The piston 40 may be formed by forging or by casting.
 ピストン40は、図4Aおよび図4Bに示すように、ピストン本体41と、複数のピストンリング42とを有する。ピストン本体41は、ピストンヘッド43と、ピストンスカート44とを含む。 The piston 40 has a piston body 41 and a plurality of piston rings 42, as shown in FIGS. 4A and 4B. Piston body 41 includes a piston head 43 and a piston skirt 44 .
 ピストンヘッド43は、ピストン40の上端部に位置する。ピストンヘッド43の外周部には、ピストンリング42を保持するリング溝が形成されている。 The piston head 43 is located at the upper end of the piston 40. A ring groove for holding the piston ring 42 is formed in the outer peripheral portion of the piston head 43 .
 ピストンスカート44は、ピストンヘッド43の外周部から下方に延びる。ピストンスカート44は、径方向においてシリンダボア11の中心軸(シリンダ軸線)を挟むように位置する2つの部分44aおよび44b(「第1スカート部」および「第2スカート部」と呼ぶ)を有する。 The piston skirt 44 extends downward from the outer peripheral portion of the piston head 43 . The piston skirt 44 has two portions 44a and 44b (referred to as a "first skirt portion" and a "second skirt portion") located so as to sandwich the central axis (cylinder axis) of the cylinder bore 11 in the radial direction.
 また、ピストン本体41は、ピストンピン48(図1参照)が挿通されるピストンピン孔45aが形成された一対のピストンピンボス45と、ピストンピンボス45とピストンスカート44とを互いに連結するリブ46とを有する。 The piston body 41 also includes a pair of piston pin bosses 45 formed with piston pin holes 45a through which piston pins 48 (see FIG. 1) are inserted, and ribs 46 connecting the piston pin bosses 45 and the piston skirt 44 to each other. have.
 ピストンリング42は、ピストン本体41の外周部、より具体的には、ピストンヘッド43の外周部に取り付けられている。ここでは、ピストン40が3つのピストンリング42を有する構成を例示しているが、ピストンリング42の個数は3に限定されるものではない。3つのピストンリング42のうち、例えば、上側および中央のピストンリング(トップリングおよびセカンドリング)42aおよび42bは、燃焼室70の気密性を保つためのコンプレッションリングであり、下側のピストンリング(サードリング)42cは、シリンダ壁12に付着している余分なオイルをかき落とすためのオイルリングである。ピストンリング42は、金属材料(例えば鋼)から形成されている。 The piston ring 42 is attached to the outer peripheral portion of the piston body 41 , more specifically to the outer peripheral portion of the piston head 43 . Here, a configuration in which the piston 40 has three piston rings 42 is illustrated, but the number of piston rings 42 is not limited to three. Of the three piston rings 42, for example, the upper and middle piston rings (top ring and second ring) 42a and 42b are compression rings for keeping the combustion chamber 70 airtight, and the lower piston ring (third 42 c is an oil ring for scraping off excess oil adhering to the cylinder wall 12 . The piston ring 42 is made of a metallic material (eg steel).
 ピストンスカート44は、外周面の少なくとも一部に形成された樹脂層rlを有する。図4Aおよび図4Bに示した例では、外周面の略全体に樹脂層rlが形成されている。 The piston skirt 44 has a resin layer rl formed on at least part of the outer peripheral surface. In the example shown in FIGS. 4A and 4B, the resin layer rl is formed over substantially the entire outer peripheral surface.
 図5に、ピストンスカート44の断面構造の例を示す。図5に示すように、ピストンスカート44は、アルミニウム合金から形成されたスカート基材blと、スカート基材blの外周面の少なくとも一部上に形成された樹脂層rlとを有する。 An example of the cross-sectional structure of the piston skirt 44 is shown in FIG. As shown in FIG. 5, the piston skirt 44 has a skirt base material bl made of an aluminum alloy and a resin layer rl formed on at least part of the outer peripheral surface of the skirt base material bl.
 スカート基材blの外周面には、複数の条痕sgが形成されている。条痕sgは、筋状の溝である。条痕sgは、例えば、バイト(刃具)を用いた旋削加工によって形成され得る。その場合、条痕sgは、ピストン40の周方向に延びている。図5に示す例では、各条痕sgの、ピストン40の周方向に直交する断面は略三角形状であるが、これに限定されるものではなく、例えば略弓型状であってもよい。また、図5には、複数の条痕sgがほぼ隙間なく並ぶ例を示しているが、隣接する条痕sg間に平坦な部分が存在してもよい。 A plurality of streaks sg are formed on the outer peripheral surface of the skirt base material bl. The streak sg is a streaky groove. The streaks sg can be formed, for example, by turning using a cutting tool. In that case, the streak sg extends in the circumferential direction of the piston 40 . In the example shown in FIG. 5, the cross section of each streak sg perpendicular to the circumferential direction of the piston 40 has a substantially triangular shape, but is not limited to this, and may have, for example, a substantially arcuate shape. In addition, although FIG. 5 shows an example in which a plurality of streaks sg are arranged with almost no space between them, a flat portion may exist between adjacent streaks sg.
 樹脂層rlは、例えば、ポリマーマトリックスと、ポリマーマトリックス中に分散された固体潤滑粒子(固体潤滑剤)とを含む。ポリマーマトリックスの材料としては、例えば、熱硬化性ポリアミドイミドを好適に用いることができるが、勿論、これに限定されるものではない。固体潤滑粒子としては、公知の種々の固体潤滑粒子を用いることができ、例えば、グラファイト粒子および二硫化モリブデン粒子を好適に用いることができる。樹脂層rlは、例えば、液状体の樹脂材料をスプレー法や各種の印刷法(スクリーン印刷法やパッド印刷法など)で基材blに塗布することにより形成され得る。 The resin layer rl includes, for example, a polymer matrix and solid lubricant particles (solid lubricant) dispersed in the polymer matrix. As a material for the polymer matrix, for example, thermosetting polyamideimide can be suitably used, but the material is of course not limited to this. As the solid lubricant particles, various known solid lubricant particles can be used. For example, graphite particles and molybdenum disulfide particles can be preferably used. The resin layer rl can be formed, for example, by applying a liquid resin material to the base material bl by a spray method or various printing methods (screen printing method, pad printing method, etc.).
 本実施形態では、ピストン40は、スカート基材blの外周面の十点平均粗さRzJISが所定の範囲内となるように形成されている。具体的には、スカート基材blの外周面の十点平均粗さRzJISは、外周面の略全体にわたって20μm以上である。 In this embodiment, the piston 40 is formed so that the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is within a predetermined range. Specifically, the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 μm or more over substantially the entire outer peripheral surface.
 十点平均粗さRzJISは、下記式で表されるように、断面曲線からある基準長さだけを抜き取った部分において、最高から5番目までの山頂の標高R1、R3、R5、R7およびR9の平均値と、最深から5番目までの谷底の標高R2、R4、R6、R8およびR10の平均値との差の値である。十点平均粗さRzJISは、表面粗さ測定機(例えば東京精密株式会社製サーフコム1400D)を用いて測定することができる。
Figure JPOXMLDOC01-appb-M000001
Ten-point average roughness Rz JIS , as represented by the following formula, is the altitude of the highest to fifth peaks R1, R3, R5, R7 and R9 and the average values of the elevations R2, R4, R6, R8 and R10 of the five deepest valleys. The ten-point average roughness Rz JIS can be measured using a surface roughness measuring machine (for example, Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.).
Figure JPOXMLDOC01-appb-M000001
 上述したように、本実施形態のエンジン100では、ピストンスカート40は、アルミニウム合金から形成され外周面に複数の条痕sgが形成されたスカート基材blと、スカート基材blの外周面の少なくとも一部上に形成された樹脂層rlとを有している。スカート基材blの外周面上に樹脂層rlが形成されていることにより、摺動ロスが低減され、ピストン40のシリンダブロック10に対する初期馴染み性が向上する。 As described above, in the engine 100 of the present embodiment, the piston skirt 40 includes a skirt base material bl formed of an aluminum alloy and having a plurality of streaks sg formed on the outer peripheral surface, and at least the outer peripheral surface of the skirt base material bl. and a resin layer rl formed thereon. Since the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the sliding loss is reduced and the initial conformability of the piston 40 to the cylinder block 10 is improved.
 また、本実施形態のエンジン100では、スカート基材blの外周面の十点平均粗さRzJISが20μm以上であり、これは、スカート基材blの外周面に形成されている条痕sgが比較的深いことを意味している。スカート基材blの外周面上に樹脂層rlが形成される際、必然的に条痕sg内に樹脂材料が入り込むので、条痕sgが深いと、樹脂層rlが摩滅した後、ピストンスカート44の表面においてアルミニウム合金が露出する部分と樹脂材料が残存する部分とが混在した状態を長期間持続させることができる。そのため、樹脂層rlが摩滅した後においても、アルミニウム合金製ピストン40とアルミニウム合金製シリンダブロック10との焼き付きを抑制することができる。なお、スカート基材blの外周面の十点平均粗さRzJISは、例えば、スカート基材blを旋削加工する際に用いられるバイトを変更することにより調整することができる。 Further, in the engine 100 of the present embodiment, the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 μm or more. It means relatively deep. When the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the resin material inevitably enters into the streaks sg. The state in which the portion where the aluminum alloy is exposed and the portion where the resin material remains are mixed on the surface of the can be maintained for a long period of time. Therefore, even after the resin layer rl is worn out, seizure between the aluminum alloy piston 40 and the aluminum alloy cylinder block 10 can be suppressed. The ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl can be adjusted, for example, by changing the cutting tool used when turning the skirt base material bl.
 ここで、焼き付きの抑制効果が得られる理由を、図6および図7を参照しながらあらためて説明する。 Here, the reason why the effect of suppressing image sticking is obtained will be explained again with reference to FIGS. 6 and 7. FIG.
 図6および図7は、スカート基材blの外周面に形成された条痕sgが比較的浅い(例えば外周面の十点平均粗さRzJISが1.6~3.2μm程度である)比較例のピストンスカート44’および本実施形態のピストンスカート44において、摩耗が進行していく様子を示す図であり、初期状態、樹脂層rlが摩滅した状態(つまりスカート基材blが露出し始めた状態)、および、その後さらに摩耗が進行した状態を示している。 6 and 7 show a comparison of relatively shallow streaks sg formed on the outer peripheral surface of the skirt base material bl (for example, the ten-point average roughness Rz JIS of the outer peripheral surface is about 1.6 to 3.2 μm). In the piston skirt 44' of the example and the piston skirt 44 of this embodiment, it is a figure which shows a state that abrasion progresses. state), and a state in which wear has further progressed thereafter.
 図6からわかるように、比較例のピストンスカート44’では、樹脂層rlが摩滅した後に摩耗が進行すると、外周面における露出したアルミニウム合金の割合が急激に増加するので、すぐに焼き付きに至ってしまう。 As can be seen from FIG. 6, in the piston skirt 44' of the comparative example, as the abrasion progresses after the resin layer rl is worn out, the ratio of the exposed aluminum alloy on the outer peripheral surface increases rapidly, leading to immediate seizure. .
 これに対し、本実施形態のピストンスカート44では、図7からわかるように、樹脂層rlが摩滅した後に摩耗が進行しても、外周面における露出したアルミニウム合金の割合の増加が緩慢であるので、焼き付きの発生を遅らせることができる。 On the other hand, in the piston skirt 44 of the present embodiment, as can be seen from FIG. 7, even if the abrasion progresses after the resin layer rl is worn out, the proportion of exposed aluminum alloy on the outer peripheral surface increases slowly. , can delay the occurrence of burn-in.
 続いて、スカート基材blの外周面の十点平均粗さRzJISが20μm以上であるピストン40を試作し(実施例1、2および3)、摺動試験により焼き付きの発生の抑制(遅延)効果を検証した結果を説明する。検証に際しては、実施例1、2および3と、比較例1および2のピストンとの比較を行った。スカート基材blの外周面の十点平均粗さRzJISは、実施例1、2および3ではそれぞれ24.8μm、66.7μm、67.8μmであり、比較例1および2ではそれぞれ1.9μm、11.6μmであった。また、樹脂層blの厚さは、実施例1、2、3および比較例1、2のいずれについても3~5μmであった(後述するように樹脂層blの厚さは10μm以上であり得るが、ここでは試験時間の短縮のために樹脂層blの厚さを比較的小さく設定した)。 Subsequently, prototype pistons 40 having a ten-point average roughness Rz JIS of 20 μm or more on the outer peripheral surface of the skirt base material bl were produced (Examples 1, 2 and 3), and the occurrence of seizure was suppressed (delayed) by a sliding test. The result of verifying the effect will be explained. For verification, the pistons of Examples 1, 2 and 3 and Comparative Examples 1 and 2 were compared. The ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl was 24.8 μm, 66.7 μm, and 67.8 μm in Examples 1, 2 and 3, respectively, and 1.9 μm in Comparative Examples 1 and 2, respectively. , 11.6 μm. In addition, the thickness of the resin layer bl was 3 to 5 μm in all of Examples 1, 2, and 3 and Comparative Examples 1 and 2 (as described later, the thickness of the resin layer bl can be 10 μm or more. However, here, the thickness of the resin layer bl was set relatively small in order to shorten the test time).
 図8および図9に、摺動試験の結果を示す。摺動試験は、荷重980N、回転速度600rpm、温度140℃の条件で行った。図8は、実施例1、2、3および比較例1、2について、樹脂層rlの残存割合(ピストンスカート44の外周面の樹脂層rlを形成した領域において残存している樹脂層rlが占める面積の割合)を縦軸にとり、総試験時間を横軸にとったグラフである。また、図9の上段および下段には、それぞれ比較例1および実施例3について、特定の総試験時間におけるピストンスカート44の外周面の写真に2値化処理が施されたものが示されている。図9における各写真において、黒の部分は、スカート基材blのアルミニウム合金が露出している部分であり、グレーの部分は、樹脂層rlが残存している部分である。また、図9の各写真には、樹脂層rlの残存割合が併せて示されている。  Figures 8 and 9 show the results of the sliding test. The sliding test was performed under the conditions of a load of 980 N, a rotation speed of 600 rpm, and a temperature of 140°C. FIG. 8 shows the remaining ratio of the resin layer rl (resin layer rl remaining in the region where the resin layer rl is formed on the outer peripheral surface of the piston skirt 44) in Examples 1, 2, and 3 and Comparative Examples 1 and 2. Area ratio) is plotted on the vertical axis and the total test time is plotted on the horizontal axis. In addition, the upper and lower parts of FIG. 9 show photographs of the outer peripheral surface of the piston skirt 44 at a specific total test time for Comparative Example 1 and Example 3, respectively, which have undergone binarization processing. . In each photograph in FIG. 9, the black portion is the portion where the aluminum alloy of the skirt base material bl is exposed, and the gray portion is the portion where the resin layer rl remains. Each photograph in FIG. 9 also shows the remaining ratio of the resin layer rl.
 図8に示すように、比較例1および2では、総試験時間の増加に伴う樹脂層rlの残存割合の減少が急激であった。また、比較例1および2では、それぞれ総試験時間が3060秒、3600秒の時点で焼き付きが発生した。これに対し、実施例1、2および3では、総試験時間の増加に伴う樹脂層rlの残存割合の減少が緩慢であり、総試験時間が7000秒を超えても焼き付きが発生しなかった。 As shown in FIG. 8, in Comparative Examples 1 and 2, the residual ratio of the resin layer rl decreased sharply as the total test time increased. In Comparative Examples 1 and 2, burn-in occurred at the total test time of 3060 seconds and 3600 seconds, respectively. On the other hand, in Examples 1, 2 and 3, the decrease in the residual ratio of the resin layer rl was slow with an increase in the total test time, and no seizure occurred even after the total test time exceeded 7000 seconds.
 また、図9の上段および下段の比較からも、実施例3では、比較例1よりも樹脂層rlの残存割合の減少が緩慢であり、焼き付きが発生しない状態(樹脂層rlが比較的多く残存している状態)を長期間持続させ得ることがわかる。 In addition, from the comparison between the upper and lower parts of FIG. 9, in Example 3, the decrease in the remaining ratio of the resin layer rl is slower than in Comparative Example 1, and no seizure occurs (a relatively large amount of the resin layer rl remains). state) can be maintained for a long period of time.
 上述した検証結果から、スカート基材blの外周面の十点平均粗さRzJISが20μm以上であることによって、アルミニウム合金製ピストン40とアルミニウム合金製シリンダブロック10との焼き付きを比較的長時間抑制し得ることが確認された。 From the above-described verification results, it can be seen that seizure between the aluminum alloy piston 40 and the aluminum alloy cylinder block 10 is suppressed for a relatively long time by setting the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl to 20 μm or more. confirmed that it is possible.
 なお、スカート基材blの外周面の十点平均粗さRzJISに特に上限はないが、十点平均粗さRzJISが大きすぎる場合、ピストンの加工精度への悪影響が懸念される。そのため、ピストンの加工精度の観点からは、スカート基材blの外周面の十点平均粗さRzJISは、50μm以下であることが好ましい。 There is no particular upper limit to the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl, but if the ten-point average roughness Rz JIS is too large, there is concern that it will adversely affect the machining accuracy of the piston. Therefore, from the viewpoint of machining accuracy of the piston, the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is preferably 50 μm or less.
 スカート基材blの外周面の凹凸平均間隔Sm(条痕sgのピッチに相当する)は、100μm以上500μm以下であることが好ましい。凹凸平均間隔Smが100μm未満であると、生産性が低下したり、スカート基材blに旋削加工を行うための刃具の作製が難化したりするおそれがある。凹凸平均間隔Smが500μmを超えると、ピストン40の加工精度が低下するおそれがある。また、樹脂層rlが摩滅した後のアルミニウム合金の露出幅が大きくなるので、耐焼き付き性が幾分低下するおそれがある。凹凸平均間隔Smは、十点平均粗さRzJISと同様、表面粗さ測定機を用いて測定することができる。 The uneven average interval Sm (corresponding to the pitch of the streaks sg) on the outer peripheral surface of the skirt base material bl is preferably 100 μm or more and 500 μm or less. If the average unevenness interval Sm is less than 100 μm, there is a risk that productivity will decrease, or that it will be difficult to manufacture a cutting tool for turning the skirt base material bl. If the average unevenness interval Sm exceeds 500 μm, the machining accuracy of the piston 40 may deteriorate. In addition, since the exposed width of the aluminum alloy after the resin layer rl is worn out becomes large, there is a possibility that the seizure resistance may somewhat deteriorate. The unevenness average interval Sm can be measured using a surface roughness measuring machine, like the ten-point average roughness Rz JIS .
 なお、図4Aおよび図4Bには、ピストンスカート44の外周面の略全体に樹脂層rlが形成されている例を示したが、外周面の一部にのみ樹脂層rlが形成されていてもよい。ただし、摺動ロスの低減や初期馴染み性の向上などの効果を高くする観点からは、ピストンスカート44の外周面になるべく広く樹脂層rlが形成されていることが好ましい。例えば、ピストンスカート44の外周面において樹脂層rlの占める面積の割合が50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であること(つまりピストンスカート44の外周面の略全体に樹脂層rlが形成されていること)がさらに好ましい。 Although FIGS. 4A and 4B show an example in which the resin layer rl is formed on substantially the entire outer peripheral surface of the piston skirt 44, the resin layer rl may be formed only on a part of the outer peripheral surface. good. However, from the viewpoint of enhancing effects such as reduction of sliding loss and improvement of initial familiarity, it is preferable that the resin layer rl is formed as wide as possible on the outer peripheral surface of the piston skirt 44 . For example, the ratio of the area occupied by the resin layer rl in the outer peripheral surface of the piston skirt 44 is preferably 50% or more, more preferably 70% or more, and 90% or more (that is, the outer circumference of the piston skirt 44 It is more preferable that the resin layer rl is formed on substantially the entire surface.
 また、上記の説明では、樹脂層rlが固体潤滑粒子を含む構成を例示したが、樹脂層rlは、固体潤滑剤に加えて硬質粒子を含んでもよい。樹脂層rlが硬質粒子を含むことにより、樹脂層rlの摩滅を遅延させることができる。硬質粒子としては、例えば、金属酸化物粒子を用いることができる。硬質粒子の添加量や硬質粒子の粒径等は、用いる硬質粒子に応じて適宜調整される。 Also, in the above description, the resin layer rl contains solid lubricant particles, but the resin layer rl may contain hard particles in addition to the solid lubricant. By including the hard particles in the resin layer rl, the abrasion of the resin layer rl can be delayed. For example, metal oxide particles can be used as the hard particles. The amount of hard particles to be added, the particle size of the hard particles, and the like are appropriately adjusted according to the hard particles to be used.
 樹脂層rlの厚さt1(図5参照)は、特に制限されないが、長期間樹脂層rlを維持する観点からは、樹脂層rlの厚さt1は、10μm以上であることが好ましい。また、製造の容易さの観点からは、樹脂層rlの厚さt1は、50μm以下であることが好ましい。なお、図5からもわかるように、樹脂層rlの厚さt1には、条痕sg内に樹脂材料が入り込んでいる部分の厚さは含まれない。また、「樹脂層rlが摩滅する」とは、条痕sg内に入り込んでいる樹脂材料以外の樹脂材料が存在しなくなることを意味しており、条痕sg内に入り込んでいる樹脂材料までも存在しなくなることまでも要しない。 The thickness t1 (see FIG. 5) of the resin layer rl is not particularly limited, but from the viewpoint of maintaining the resin layer rl for a long period of time, the thickness t1 of the resin layer rl is preferably 10 μm or more. Moreover, from the viewpoint of ease of manufacture, the thickness t1 of the resin layer rl is preferably 50 μm or less. As can be seen from FIG. 5, the thickness t1 of the resin layer rl does not include the thickness of the portion where the resin material enters the streaks sg. Further, "the resin layer rl wears out" means that there is no resin material other than the resin material that has entered the streaks sg, and even the resin material that has entered the streaks sg It doesn't even need to cease to exist.
 図10に、ピストンスカート44の構成の他の例を示す。図10に示す例では、スカート基材blは、外周面にリン酸アルマイト処理により形成された陽極酸化被膜(リン酸アルマイト膜)blaを有する。スカート基材blが、外周面にリン酸アルマイト膜blaを有していると、スカート基材blに対する樹脂層rlの密着性を向上させることができる。リン酸アルマイト膜blaの厚さt2は、例えば30nm以上200nm以下である。 Another example of the configuration of the piston skirt 44 is shown in FIG. In the example shown in FIG. 10, the skirt base material bl has an anodized film (phosphate alumite film) bla formed on the outer peripheral surface by phosphoric acid alumite treatment. When the skirt base material bl has the phosphoric acid alumite film bla on the outer peripheral surface, the adhesion of the resin layer rl to the skirt base material bl can be improved. The thickness t2 of the phosphoric acid alumite film bla is, for example, 30 nm or more and 200 nm or less.
 図11は、ピストン40のピストンリング42の構成の例を示す断面図である。図11に示す例では、ピストンリング42の外周部(外周面)には、ダイヤモンドライクカーボン層(以下では「DLC層」と呼ぶ。)42Dが形成されている。ピストンリング42の外周部は、シリンダ壁12に接触する部分である。ピストンリング42がDLC層42Dを有していなくてもよいが、各ピストンリング42が外周面にDLC層42Dを有していることにより、シリンダ壁12に対するピストンリング42によるスカッフをより確実に防止することができる。 FIG. 11 is a cross-sectional view showing an example configuration of the piston ring 42 of the piston 40. As shown in FIG. In the example shown in FIG. 11 , a diamond-like carbon layer (hereinafter referred to as “DLC layer”) 42D is formed on the outer peripheral portion (outer peripheral surface) of the piston ring 42 . An outer peripheral portion of the piston ring 42 is a portion that contacts the cylinder wall 12 . Although the piston rings 42 do not have to have the DLC layer 42D, each piston ring 42 has the DLC layer 42D on its outer peripheral surface, thereby more reliably preventing the piston rings 42 from scuffing the cylinder wall 12. can do.
 DLC層42Dは、蒸着法(例えばCDV法やPVD法)により好適に形成される。DLC層42Dの組成や厚さに特に制限はない。スカッフをより確実に防止する点からは、DLC層42Dの厚さは、2μm以上であることが好ましい。また、密着性の点からは、DLC層42Dの厚さは、20μm以下であることが好ましい。 The DLC layer 42D is preferably formed by a vapor deposition method (for example, CDV method or PVD method). There are no particular restrictions on the composition or thickness of the DLC layer 42D. The thickness of the DLC layer 42D is preferably 2 μm or more in order to more reliably prevent scuffing. In terms of adhesion, the thickness of the DLC layer 42D is preferably 20 μm or less.
 シリンダブロック10の材料として、本実施形態で例示したような、シリコンを含むアルミニウム合金を用いると、晶出させたシリコン結晶粒(初晶シリコン粒2)を摺動面12aに露出させることにより、耐焼き付き性および耐摩耗性を向上させることができる。 If an aluminum alloy containing silicon, such as that exemplified in the present embodiment, is used as the material of the cylinder block 10, the crystallized silicon crystal grains (primary crystal silicon grains 2) are exposed on the sliding surface 12a. Seizure resistance and wear resistance can be improved.
 シリンダブロック10の耐摩耗性および強度を十分に高くする観点からは、シリンダブロック10の材料であるアルミニウム合金のシリコン含有率は、15質量%以上25質量%以下であることが好ましい。シリコン含有率が15質量%以上であると、初晶シリコン粒2を十分に多く晶出させることができ、シリンダブロック10の耐摩耗性を十分に向上させることができる。シリコン含有率が25質量%以下であると、シリンダブロック10の強度を十分に高く維持することができる。アルミニウム合金のアルミニウム含有率は、例えば73.4質量%以上79.6質量%以下である。また、アルミニウム合金は、銅を含んでいてもよく、その場合、銅含有率は、例えば2.0質量%以上5.0質量%以下である。 From the viewpoint of sufficiently increasing the wear resistance and strength of the cylinder block 10, the silicon content of the aluminum alloy, which is the material of the cylinder block 10, is preferably 15% by mass or more and 25% by mass or less. When the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains 2 can be crystallized, and the wear resistance of the cylinder block 10 can be sufficiently improved. When the silicon content is 25% by mass or less, the strength of the cylinder block 10 can be maintained sufficiently high. The aluminum content of the aluminum alloy is, for example, 73.4% by mass or more and 79.6% by mass or less. Moreover, the aluminum alloy may contain copper, and in that case, the copper content is, for example, 2.0% by mass or more and 5.0% by mass or less.
 初晶シリコン粒2の平均結晶粒径を8μm以上50μm以下の範囲内にすることによって、シリンダブロック10の耐摩耗性をいっそう向上させることができる。初晶シリコン粒2の平均結晶粒径が50μmを超える場合、摺動面12aの単位面積当りの初晶シリコン粒2の個数が少ない。そのため、エンジン100の運転時に初晶シリコン粒2のそれぞれに大きな荷重がかかり、初晶シリコン粒2が破砕されることがある。破砕された初晶シリコン粒2の破片は、研摩粒子として作用してしまうため、摺動面12aが大きく摩耗するおそれがある。また、初晶シリコン粒2の平均結晶粒径が8μm未満である場合、初晶シリコン粒2の、マトリックス1中に埋まっている部分が小さい。そのため、エンジン100の運転時には、初晶シリコン粒2の脱落が起こりやすい。脱落した初晶シリコン粒2は、研摩粒子として作用してしまうため、摺動面12aが大きく摩耗するおそれがある。 The wear resistance of the cylinder block 10 can be further improved by setting the average crystal grain size of the primary crystal silicon grains 2 within the range of 8 μm or more and 50 μm or less. When the average crystal grain size of the primary crystal silicon grains 2 exceeds 50 μm, the number of primary crystal silicon grains 2 per unit area of the sliding surface 12a is small. Therefore, a large load is applied to each of the primary crystal silicon grains 2 during operation of the engine 100, and the primary crystal silicon grains 2 may be crushed. Fragments of the crushed primary-crystal silicon grains 2 act as abrasive particles, so there is a risk that the sliding surface 12a will be greatly worn. Further, when the average crystal grain size of the primary-crystal silicon grains 2 is less than 8 μm, the portion of the primary-crystal silicon grains 2 buried in the matrix 1 is small. Therefore, during operation of the engine 100, the primary crystal silicon grains 2 are likely to fall off. Since the dropped primary-crystal silicon grains 2 act as abrasive particles, the sliding surface 12a may be greatly worn.
 これに対し、初晶シリコン粒2の平均結晶粒径が8μm以上50μm以下(より好ましくは12μm以上50μm以下)である場合、初晶シリコン粒2は摺動面12aの単位面積あたりに十分な数存在する。そのため、エンジン100の運転時に各初晶シリコン粒2にかかる荷重は相対的に小さくなるため、初晶シリコン粒2の破砕が抑制される。また、初晶シリコン粒2のマトリックス1に埋まっている部分が十分に大きいので、初晶シリコン粒2の脱落が低減され、そのため、脱落した初晶シリコン粒2による摺動面12aの摩耗も抑制される。 On the other hand, when the average crystal grain size of the primary crystal silicon grains 2 is 8 μm or more and 50 μm or less (more preferably 12 μm or more and 50 μm or less), a sufficient number of primary crystal silicon grains 2 per unit area of the sliding surface 12a. exist. Therefore, the load applied to each primary-crystal silicon grain 2 during operation of the engine 100 is relatively small, so crushing of the primary-crystal silicon grains 2 is suppressed. In addition, since the portion of the primary-crystal silicon grains 2 embedded in the matrix 1 is sufficiently large, the drop-off of the primary-crystal silicon grains 2 is reduced, and wear of the sliding surface 12a due to the dropped-off primary-crystal silicon grains 2 is also suppressed. be done.
 共晶シリコン粒の平均結晶粒径は、初晶シリコン粒2の平均結晶粒径よりも小さい。共晶シリコン粒の平均結晶粒径は、例えば7.5μm以下である 。 The average crystal grain size of the eutectic silicon grains is smaller than the average crystal grain size of the primary crystal silicon grains 2 . The average crystal grain size of the eutectic silicon grains is, for example, 7.5 μm or less.
 初晶シリコン粒2および共晶シリコン粒の平均結晶粒径の測定は、摺動面12aの画像に対する画像処理により、以下のようにして行うことができる。まず、画像処理により得られたシリコン結晶粒の面積に基づいて、シリコン結晶粒が真円であると仮定した場合における各シリコン結晶粒の直径(等価直径)を算出することにより、シリコン結晶粒の個数(度数)および直径を特定する。なお、直径が1μm未満の微細結晶は、シリコン結晶粒として算入しない。算出されたシリコン結晶粒の個数(度数)および直径に基づいて、シリコン結晶粒の粒度分布が得られる。得られる粒度分布(ヒストグラム)には、2つのピークが含まれる。2つのピークの間の谷を成す部分の直径を閾値として粒度分布を2つの領域に分け、大きな直径に対応する領域が初晶シリコン粒の粒度分布であり、小さな直径に対応する領域が共晶シリコン粒の粒度分布であるとする。そして、各粒度分布に基づいて、初晶シリコン粒の平均結晶粒径と、共晶シリコン粒の平均結晶粒径とを算出することができる。 The average crystal grain size of the primary crystal silicon grains 2 and the eutectic silicon grains can be measured as follows by performing image processing on the image of the sliding surface 12a. First, based on the area of the silicon crystal grain obtained by image processing, the diameter (equivalent diameter) of each silicon crystal grain is calculated assuming that the silicon crystal grain is a perfect circle. Specify the number (degrees) and diameter. Fine crystals with a diameter of less than 1 μm are not counted as silicon crystal grains. Based on the calculated number (frequency) and diameter of the silicon crystal grains, the grain size distribution of the silicon crystal grains is obtained. The resulting particle size distribution (histogram) contains two peaks. The grain size distribution is divided into two regions with the diameter of the portion forming the valley between the two peaks as the threshold, the region corresponding to the large diameter being the grain size distribution of the primary crystal silicon grains, and the region corresponding to the small diameter being the eutectic. Suppose it is the particle size distribution of silicon particles. Then, based on each particle size distribution, the average crystal grain size of the primary crystal silicon grains and the average crystal grain size of the eutectic silicon grains can be calculated.
 [輸送機器]
 本発明の実施形態によるエンジン100は、各種の輸送機器に好適に用いられる。図12に、本発明の実施形態によるエンジン100を備えた自動二輪車の例を示す。
[Transport equipment]
The engine 100 according to the embodiment of the present invention is suitable for use in various transportation equipment. FIG. 12 shows an example of a motorcycle with an engine 100 according to an embodiment of the invention.
 図12に示す自動二輪車300では、本体フレーム301の前端にヘッドパイプ302が設けられている。ヘッドパイプ302には、フロントフォーク303が車両の左右方向に揺動し得るように取り付けられている。フロントフォーク303の下端には、前輪304が回転可能なように支持されている。 A motorcycle 300 shown in FIG. 12 is provided with a head pipe 302 at the front end of a body frame 301 . A front fork 303 is attached to the head pipe 302 so as to swing in the lateral direction of the vehicle. A front wheel 304 is rotatably supported at the lower end of the front fork 303 .
 本体フレーム301の後端上部から後方に延びるようにシートレール306が取り付けられている。本体フレーム301上に燃料タンク307が設けられており、シートレール306上にメインシート308aおよびタンデムシート308bが設けられている。 A seat rail 306 is attached so as to extend rearward from the upper part of the rear end of the body frame 301 . A fuel tank 307 is provided on the body frame 301, and a main seat 308a and a tandem seat 308b are provided on the seat rails 306. As shown in FIG.
 また、本体フレーム301の後端に、後方へ延びるリアアーム309が取り付けられている。リアアーム309の後端に後輪310が回転可能なように支持されている。 A rear arm 309 extending rearward is attached to the rear end of the body frame 301 . A rear wheel 310 is rotatably supported at the rear end of the rear arm 309 .
 本体フレーム301の中央部には、エンジン100が保持されている。エンジン100の前方には、ラジエータ311が設けられている。エンジン100の排気ポートには排気管312が接続されており、排気管312の後端にマフラー313が取り付けられている。 The engine 100 is held in the central portion of the body frame 301 . A radiator 311 is provided in front of the engine 100 . An exhaust pipe 312 is connected to an exhaust port of the engine 100 and a muffler 313 is attached to the rear end of the exhaust pipe 312 .
 エンジン100には変速機315が連結されている。変速機315の出力軸316に駆動スプロケット317が取り付けられている。駆動スプロケット317は、チェーン318を介して後輪310の後輪スプロケット319に連結されている。変速機315およびチェーン318は、エンジン100により発生した動力を駆動輪に伝える伝達機構として機能する。 A transmission 315 is connected to the engine 100 . A drive sprocket 317 is attached to the output shaft 316 of the transmission 315 . Drive sprocket 317 is connected to rear wheel sprocket 319 of rear wheel 310 via chain 318 . Transmission 315 and chain 318 function as a transmission mechanism that transmits the power generated by engine 100 to the drive wheels.
 なお、ここでは輸送機器の例として自動二輪車を例示したが、本発明の実施形態によるエンジンは、自動二輪車に限定されず、自動四輪車や自動三輪車、船舶等の他の輸送機器にも好適に用いられる。 Although a motorcycle is illustrated here as an example of transportation equipment, the engine according to the embodiment of the present invention is not limited to motorcycles, and is also suitable for other transportation equipment such as four-wheeled motor vehicles, three-wheeled motor vehicles, and ships. used for
 上述したように、本発明の実施形態による内燃機関100は、ピストンヘッド43と、ピストンヘッド43の外周部から延びるピストンスカート44とを有するアルミニウム合金製のピストン40と、ピストン40が摺動する摺動面12aを含むシリンダ壁12を有するアルミニウム合金製のシリンダブロック10と、を備える。シリンダ壁12の摺動面12aにはアルミニウム合金が露出している。ピストンスカート44は、アルミニウム合金から形成されたスカート基材blであって、外周面に複数の条痕sgが形成されたスカート基材blと、スカート基材blの外周面の少なくとも一部上に形成された樹脂層rlとを有する。スカート基材blの外周面の十点平均粗さRzJISは、20μm以上である。 As described above, the internal combustion engine 100 according to the embodiment of the present invention includes an aluminum alloy piston 40 having a piston head 43 and a piston skirt 44 extending from the outer peripheral portion of the piston head 43, and a slide on which the piston 40 slides. and a cylinder block 10 made of an aluminum alloy having a cylinder wall 12 including a moving surface 12a. The aluminum alloy is exposed on the sliding surface 12a of the cylinder wall 12. As shown in FIG. The piston skirt 44 is a skirt base material bl made of an aluminum alloy. and a formed resin layer rl. The ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 μm or more.
 本発明の実施形態による内燃機関100では、ピストンスカート44は、アルミニウム合金から形成され外周面に複数の条痕sgが形成されたスカート基材blと、スカート基材blの外周面の少なくとも一部上に形成された樹脂層rlとを有している。スカート基材blの外周面上に樹脂層rlが形成されていることにより、摺動ロスが低減され、ピストン40のシリンダブロック10に対する初期馴染み性が向上する。また、本発明の内燃機関100では、スカート基材blの外周面の十点平均粗さRzJISが20μm以上であり、これは、スカート基材blの外周面に形成されている条痕sgが比較的深いことを意味している。スカート基材blの外周面上に樹脂層rlが形成される際、必然的に条痕sg内に樹脂材料が入り込むので、条痕sgが深いと、樹脂層rlが摩滅した後、ピストンスカート44の表面においてアルミニウム合金が露出する部分と樹脂材料が残存する部分とが混在した状態を長期間持続させることができる。そのため、樹脂層rlが摩滅した後においても、アルミニウム合金製ピストン40とアルミニウム合金製シリンダブロック10との焼き付きを抑制することができる。 In the internal combustion engine 100 according to the embodiment of the present invention, the piston skirt 44 includes a skirt base material bl formed of an aluminum alloy and having a plurality of streaks sg formed on the outer peripheral surface thereof, and at least a portion of the outer peripheral surface of the skirt base material bl. and a resin layer rl formed thereon. Since the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the sliding loss is reduced and the initial conformability of the piston 40 to the cylinder block 10 is improved. Further, in the internal combustion engine 100 of the present invention, the ten-point average roughness Rz JIS of the outer peripheral surface of the skirt base material bl is 20 μm or more. It means relatively deep. When the resin layer rl is formed on the outer peripheral surface of the skirt base material bl, the resin material inevitably enters into the streaks sg. The state in which the portion where the aluminum alloy is exposed and the portion where the resin material remains are mixed on the surface of the can be maintained for a long period of time. Therefore, even after the resin layer rl is worn out, seizure between the aluminum alloy piston 40 and the aluminum alloy cylinder block 10 can be suppressed.
 ある実施形態において、複数の条痕sgは、ピストン40の周方向に延びている。 In one embodiment, the plurality of streaks sg extend in the circumferential direction of the piston 40.
 条痕sgは、例えば、バイト(刃具)を用いた旋削加工によって形成され得る。その場合、条痕sgは、ピストン40の周方向に延びている。 The streaks sg can be formed, for example, by turning using a cutting tool. In that case, the streak sg extends in the circumferential direction of the piston 40 .
 ある実施形態において、スカート基材blの外周面の凹凸平均間隔Smは、100μm以上500μm以下である。 In one embodiment, the uneven average interval Sm of the outer peripheral surface of the skirt base material bl is 100 μm or more and 500 μm or less.
 スカート基材の外周面の凹凸平均間隔Sm(条痕のピッチに相当する)は、100μm以上500μm以下であることが好ましい。凹凸平均間隔Smが100μm未満であると、生産性が低下したり、刃具作製が難化したりするおそれがある。凹凸平均間隔Smが500μmを超えると、ピストンの加工精度が低下するおそれがある。また、樹脂層rlが摩滅した後のアルミニウム合金の露出幅が大きくなるので、耐焼き付き性が幾分低下するおそれがある。 The uneven average interval Sm (corresponding to the pitch of streaks) on the outer peripheral surface of the skirt base material is preferably 100 μm or more and 500 μm or less. If the average unevenness interval Sm is less than 100 μm, there is a possibility that the productivity will be lowered or that the manufacturing of the cutting tool will be difficult. If the average unevenness interval Sm exceeds 500 μm, the machining accuracy of the piston may deteriorate. In addition, since the exposed width of the aluminum alloy after the resin layer rl is worn out becomes large, there is a possibility that the seizure resistance may somewhat deteriorate.
 ある実施形態において、樹脂層rlの厚さは、10μm以上50μm以下である。 In one embodiment, the thickness of the resin layer rl is 10 μm or more and 50 μm or less.
 長期間樹脂層rlを維持する観点からは、樹脂層rlの厚さt1は、10μm以上であることが好ましい。また、製造の容易さの観点からは、樹脂層rlの厚さt1は、50μm以下であることが好ましい。 From the viewpoint of maintaining the resin layer rl for a long period of time, the thickness t1 of the resin layer rl is preferably 10 μm or more. Moreover, from the viewpoint of ease of manufacture, the thickness t1 of the resin layer rl is preferably 50 μm or less.
 ある実施形態において、樹脂層rlは、固体潤滑剤と、硬質粒子とを含む。 In one embodiment, the resin layer rl contains a solid lubricant and hard particles.
 樹脂層rlが硬質粒子を含むことにより、樹脂層rlの摩滅を遅延させることができる。 Abrasion of the resin layer rl can be delayed by including hard particles in the resin layer rl.
 ある実施形態において、スカート基材blは、外周面にリン酸アルマイト処理により形成された陽極酸化被膜blaを有する。 In one embodiment, the skirt base material bl has an anodized coating bla formed on the outer peripheral surface by phosphoric acid alumite treatment.
 スカート基材blが、外周面にリン酸アルマイト処理により形成された陽極酸化被膜blaを有していると、スカート基材blに対する樹脂層rlの密着性を向上させることができる。 When the skirt base material bl has an anodized film bla formed on its outer peripheral surface by phosphoric acid alumite treatment, the adhesion of the resin layer rl to the skirt base material bl can be improved.
 ある実施形態において、シリンダブロック10は、シリコンを含むアルミニウム合金から形成されている。 In one embodiment, the cylinder block 10 is made of an aluminum alloy containing silicon.
 シリンダブロック10の材料として、シリコンを含むアルミニウム合金を用いると、晶出させたシリコン結晶粒(初晶シリコン粒2)を摺動面12aに露出させることにより、耐焼き付き性および耐摩耗性を向上させることができる。 When an aluminum alloy containing silicon is used as the material of the cylinder block 10, seizure resistance and wear resistance are improved by exposing crystallized silicon crystal grains (primary crystal silicon grains 2) on the sliding surface 12a. can be made
 本発明の実施形態による輸送機器は、上述したいずれかの構成を有する内燃機関100を備える。 A transportation device according to an embodiment of the present invention includes an internal combustion engine 100 having any of the configurations described above.
 本発明の実施形態による内燃機関100は、各種の輸送機器に好適に用いられる。 The internal combustion engine 100 according to the embodiment of the present invention is suitable for use in various types of transportation equipment.
 本発明の実施形態によると、アルミニウム合金製シリンダブロックとアルミニウム合金製ピストンとを備えた内燃機関において、鋳鉄スリーブやメッキ処理を省略しても樹脂層摩滅後の焼き付きを抑制し得る構造を実現することができる。本発明の実施形態による内燃機関は、自動二輪車をはじめとする各種の輸送機器に好適に用いられる。 According to an embodiment of the present invention, in an internal combustion engine having an aluminum alloy cylinder block and an aluminum alloy piston, it is possible to realize a structure capable of suppressing seizure after the resin layer wears even if cast iron sleeves and plating are omitted. be able to. INDUSTRIAL APPLICABILITY An internal combustion engine according to an embodiment of the present invention is suitable for use in various types of transportation equipment including motorcycles.
 1:マトリックス(合金基材)、2:初晶シリコン粒、10:シリンダブロック、11:シリンダボア、12:シリンダ壁、12a:摺動面(シリンダ壁の内周面)、13:外壁、14:ウォータージャケット、20:シリンダヘッド、21:吸気ポート、22:排気ポート、23:吸気弁、24:排気弁、30:クランクケース、40:ピストン、41:ピストン本体、42:ピストンリング、42a:トップリング、42b:セカンドリング、42c:サードリング、42D:ダイヤモンドライクカーボン層、43:ピストンヘッド、44:ピストンスカート、44a:第1スカート部、44b:第2スカート部、45:ピストンピンボス、45a:ピストンピン孔、46:リブ、48:ピストンピン、50:クランクシャフト、51:クランクピン、52:クランクアーム、60:コンロッド、61:ロッド本体部、62:小端部、63:大端部、70:燃焼室、100:エンジン(内燃機関)、300:自動二輪車、bl:スカート基材、bla:陽極酸化被膜(リン酸アルマイト膜)、rl:樹脂層、sg:条痕 1: Matrix (alloy base material), 2: Primary silicon grains, 10: Cylinder block, 11: Cylinder bore, 12: Cylinder wall, 12a: Sliding surface (inner peripheral surface of cylinder wall), 13: Outer wall, 14: Water jacket 20: Cylinder head 21: Intake port 22: Exhaust port 23: Intake valve 24: Exhaust valve 30: Crankcase 40: Piston 41: Piston body 42: Piston ring 42a: Top Ring, 42b: Second ring, 42c: Third ring, 42D: Diamond-like carbon layer, 43: Piston head, 44: Piston skirt, 44a: First skirt portion, 44b: Second skirt portion, 45: Piston pin boss, 45a: Piston pin hole 46: Rib 48: Piston pin 50: Crankshaft 51: Crank pin 52: Crank arm 60: Connecting rod 61: Rod main body 62: Small end 63: Large end 70: combustion chamber, 100: engine (internal combustion engine), 300: motorcycle, bl: skirt base material, bla: anodized film (phosphate alumite film), rl: resin layer, sg: streak

Claims (8)

  1.  ピストンヘッドと、前記ピストンヘッドの外周部から延びるピストンスカートとを有するアルミニウム合金製のピストンと、
     前記ピストンが摺動する摺動面を含むシリンダ壁を有するアルミニウム合金製のシリンダブロックと、
    を備え、
     前記シリンダ壁の前記摺動面にはアルミニウム合金が露出しており、
     前記ピストンスカートは、アルミニウム合金から形成されたスカート基材であって、外周面に複数の条痕が形成されたスカート基材と、前記スカート基材の前記外周面の少なくとも一部上に形成された樹脂層とを有し、
     前記スカート基材の前記外周面の十点平均粗さRzJISは、20μm以上である、内燃機関。
    an aluminum alloy piston having a piston head and a piston skirt extending from the outer periphery of the piston head;
    an aluminum alloy cylinder block having a cylinder wall including a sliding surface on which the piston slides;
    with
    An aluminum alloy is exposed on the sliding surface of the cylinder wall,
    The piston skirt includes a skirt base material made of an aluminum alloy, a skirt base material having a plurality of striations formed on an outer peripheral surface, and a skirt base material formed on at least a part of the outer peripheral surface of the skirt base material. and a resin layer,
    The internal combustion engine, wherein the outer peripheral surface of the skirt base material has a ten-point average roughness Rz JIS of 20 μm or more.
  2.  前記複数の条痕は、前記ピストンの周方向に延びている、請求項1に記載の内燃機関。 The internal combustion engine according to claim 1, wherein said plurality of streaks extend in the circumferential direction of said piston.
  3.  前記スカート基材の前記外周面の凹凸平均間隔Smは、100μm以上500μm以下である、請求項1または2に記載の内燃機関。 The internal combustion engine according to claim 1 or 2, wherein the uneven average interval Sm of the outer peripheral surface of the skirt base material is 100 µm or more and 500 µm or less.
  4.  前記樹脂層の厚さは、10μm以上50μm以下である、請求項1から3のいずれかに記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 3, wherein the resin layer has a thickness of 10 µm or more and 50 µm or less.
  5.  前記樹脂層は、固体潤滑剤と、硬質粒子とを含む、請求項1から4のいずれかに記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 4, wherein the resin layer contains solid lubricant and hard particles.
  6.  前記スカート基材は、前記外周面にリン酸アルマイト処理により形成された陽極酸化被膜を有する、請求項1から5のいずれかに記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 5, wherein the skirt base material has an anodized coating formed on the outer peripheral surface by phosphoric acid alumite treatment.
  7.  前記シリンダブロックは、シリコンを含むアルミニウム合金から形成されている、請求項1から6のいずれかに記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 6, wherein said cylinder block is made of an aluminum alloy containing silicon.
  8.  請求項1から7のいずれかに記載の内燃機関を備えた輸送機器。 A transportation device equipped with the internal combustion engine according to any one of claims 1 to 7.
PCT/JP2021/045975 2021-12-14 2021-12-14 Internal combustion engine and transportation device WO2023112124A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/045975 WO2023112124A1 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device
EP21957736.8A EP4219928A4 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045975 WO2023112124A1 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device

Publications (1)

Publication Number Publication Date
WO2023112124A1 true WO2023112124A1 (en) 2023-06-22

Family

ID=86774085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045975 WO2023112124A1 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device

Country Status (2)

Country Link
EP (1) EP4219928A4 (en)
WO (1) WO2023112124A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108850A (en) * 1982-12-14 1984-06-23 Mazda Motor Corp Engine piston
JPH01253553A (en) * 1988-04-01 1989-10-09 Honda Motor Co Ltd Combination of cylinder sleeve and piston of internal combustion engine
JPH0797517A (en) * 1993-08-03 1995-04-11 Toyota Motor Corp Sliding resin composition
JP2004144014A (en) * 2002-10-24 2004-05-20 Ntn Corp Internal combustion engine piston
JP6485952B2 (en) 2015-03-23 2019-03-20 日立オートモティブシステムズ株式会社 Piston for internal combustion engine or surface treatment method for piston of internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144258A (en) * 2020-05-22 2021-11-30 동서페더럴모굴 주식회사 Method For Treating Surface Of Piston Applying Laser Surface Activation Equipment, And The accordingly Processed Piston For Automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108850A (en) * 1982-12-14 1984-06-23 Mazda Motor Corp Engine piston
JPH01253553A (en) * 1988-04-01 1989-10-09 Honda Motor Co Ltd Combination of cylinder sleeve and piston of internal combustion engine
JPH0797517A (en) * 1993-08-03 1995-04-11 Toyota Motor Corp Sliding resin composition
JP2004144014A (en) * 2002-10-24 2004-05-20 Ntn Corp Internal combustion engine piston
JP6485952B2 (en) 2015-03-23 2019-03-20 日立オートモティブシステムズ株式会社 Piston for internal combustion engine or surface treatment method for piston of internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219928A4

Also Published As

Publication number Publication date
EP4219928A4 (en) 2023-11-29
EP4219928A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
CN1062939C (en) Cylinder block
JP5593302B2 (en) Internal combustion engine component and manufacturing method thereof
JP2010031840A (en) Cylinder block, internal combustion engine, transport equipment, and manufacturing method of cylinder block
FR2726212A1 (en) ALUMINUM ALLOY / HYPEREUTECTIC SILICON CYLINDER SHAFT TO BE INCORPORATED IN CASTING IN AN ALTERNATIVE PISTON ENGINE BRACKET AND METHOD FOR MANUFACTURING SUCH A SHIRT
CN102678369A (en) Linerless engine
JP2008036710A (en) Forged piston, internal combustion engine, transporting apparatus and method for manufacturing forged piston
EP0719917B1 (en) Cylinder unit and method for forming the sliding surfaces thereof
WO2023112124A1 (en) Internal combustion engine and transportation device
EP2131031B1 (en) Engine
WO2023112123A1 (en) Internal combustion engine and transport equipment
WO2023112125A1 (en) Internal combustion engine and transportation device
US5671710A (en) Pistons for internal combustion engines and method of manufacturing same
WO2021250859A1 (en) Cylinder liner and cylinder bore
JPWO2014136535A1 (en) Air-cooled single-cylinder internal combustion engine, straddle-type vehicle, and air-cooled single-cylinder internal combustion engine manufacturing method
EP3263877B1 (en) Engine, cylinder body member, and vehicle
JPS5891350A (en) Piston for internal-combustion engine
WO2016136034A1 (en) Engine, cylinder body member, and vehicle
EP3061960A1 (en) Internal combustion engine for straddled vehicle, and straddled vehicle
Navarro Understanding Bore Scoring in Al-Si Cylinder Systems
EP3263878B1 (en) Air-cooled engine, cylinder body member for air-cooled engine, and vehicle equipped with air-cooled engine
JPS62282150A (en) Combination of piston-ring and cylinder
KR100235598B1 (en) The method for surface hardening of piston
Karrar et al. Lightweight piston design in hand-held power tools
JP2001041099A (en) Piston for internal combustion engine
JPH03267553A (en) Piston made of aluminum alloy for internal combustion engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021957736

Country of ref document: EP

Effective date: 20230331