JPH01253553A - Combination of cylinder sleeve and piston of internal combustion engine - Google Patents

Combination of cylinder sleeve and piston of internal combustion engine

Info

Publication number
JPH01253553A
JPH01253553A JP63078252A JP7825288A JPH01253553A JP H01253553 A JPH01253553 A JP H01253553A JP 63078252 A JP63078252 A JP 63078252A JP 7825288 A JP7825288 A JP 7825288A JP H01253553 A JPH01253553 A JP H01253553A
Authority
JP
Japan
Prior art keywords
powder
piston
alloy
cylinder sleeve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63078252A
Other languages
Japanese (ja)
Other versions
JP2552523B2 (en
Inventor
Eitaro Koya
栄太郎 小屋
Tatsuo Suzuki
達夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63078252A priority Critical patent/JP2552523B2/en
Publication of JPH01253553A publication Critical patent/JPH01253553A/en
Application granted granted Critical
Publication of JP2552523B2 publication Critical patent/JP2552523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an internal combustion engine excellent in durability by providing a cylinder sleeve made of a sintered aluminum alloy having specific composition excellent in heat resistance and wear and abrasion resistance and a piston made of aluminum alloy comprising the external peripheral surface of the skirt thereof coated with specific heat resistant resin. CONSTITUTION:The cylinder sleeve fittedly secured to the cylinder block of an internal combustion engine shall be made of a sintered aluminum alloy. This aluminum alloy is made by press-molding powder comprising aluminum alloy powder composed of primary Si whose grain diameter is 20mum or less, Si, Cu, Mg, and Fe compounded at a specific rate respectively, aluminum and inevitable impurity mixed with aluminum oxide powder of 1 through 5 weight % composed of spherical particles of 1 through 10mum in average particle diameter uniformly and then sintering or hot working it. On the other hand, the piston made of an aluminum alloy and fittedly secured to this sleeve is constituted with the external peripheral surface coated with heat resistant resin in which at least one kind of powder out of MoS2 powder, thermosetting fluorocarbon resin and others dispersedly added.

Description

【発明の詳細な説明】 LIL匹皿里匁1 本発明は内燃機関のシリンダスリーブとピストンの組合
せに係り、特に耐熱性、耐摩耗性の良好なる焼結AfJ
合金製シリンダスリーブと、ヌカ−1〜外周面を耐熱樹
脂で覆われたAl合金製ピストンとの組合せに関するも
のである。
[Detailed Description of the Invention] The present invention relates to a combination of a cylinder sleeve and a piston for an internal combustion engine, and particularly relates to a combination of a cylinder sleeve and a piston for an internal combustion engine, and particularly to a combination of a sintered AfJ with good heat resistance and wear resistance.
This relates to a combination of an alloy cylinder sleeve and an Al alloy piston whose outer peripheral surface is covered with heat-resistant resin.

〜およ   の゛ 内燃機関のシリンダブロックは磯関本体の基礎となる部
分であり、その寿命は内燃機関全体の寿命を左右する。
The cylinder block of an internal combustion engine is the basic part of the Isoseki main body, and its lifespan determines the lifespan of the entire internal combustion engine.

シリンダブロックは、耐摩耗性。Cylinder block is wear resistant.

耐蝕性が良好で機械加工が容易であり、しかも取価であ
る等の理由により鋳鉄でこれを形成することが多いが、
近年では車体重量の軽減化を計るとともに熱伝導性を向
上させるためにA、l1合金製のものも採用されている
This is often made of cast iron because it has good corrosion resistance, is easy to machine, and is inexpensive.
In recent years, in order to reduce the weight of the vehicle and improve thermal conductivity, those made of A, 11 alloy have also been adopted.

AfJ合金製シリンダブロックとしては、■シリンダの
内壁部分に鋳鉄製スリーブを嵌め込んだもの(例、特開
昭61−142352号公報)、および■シリンダ内壁
部分を含めて全体がへ1合金で形成されたものがある(
例、特開昭6l−14451q公報)。
Cylinder blocks made of AfJ alloy include: (1) one in which a cast iron sleeve is fitted into the inner wall of the cylinder (e.g., Japanese Patent Application Laid-open No. 142352/1983), and (2) the entire cylinder block including the inner wall is made of He1 alloy. There is something that was done (
For example, Japanese Patent Application Laid-Open No. 61-14451q).

ところが、第一の形式である鋳鉄製スリーブを用いたも
のでは、燃焼室に臨むスリーブが熱伝導性の劣る鋳鉄製
であるが故に、熱伝導性の良好なAf1合金製シリンダ
ブロックとしての放熱性能が十分に発揮されず、またへ
1合金の熱膨張係数が鋳鉄のそれに比して約2倍である
ため、温度上野したときに鋳鉄製スリーブとこれを包囲
するAfJ合金製シリンダブロック本体との間に間隙が
生じる傾向となる。
However, in the first type, which uses a cast iron sleeve, the sleeve facing the combustion chamber is made of cast iron, which has poor thermal conductivity. In addition, since the coefficient of thermal expansion of He-1 alloy is approximately twice that of cast iron, when the temperature rises, the relationship between the cast iron sleeve and the AfJ alloy cylinder block body surrounding it will deteriorate. There is a tendency for gaps to form between the two.

第二の形式である全Δg合金製シリンダブロックでは、
シリンダ内壁部分の耐熱性、耐摩耗性を確保するために
アルシルと呼称される高Si含有Al合金製K 造スリ
ーブを用いているが、次の欠点を有している。■初晶S
iの粒径が大きり(30〜100μTrL)、vj造後
の機械加工性が悪い。■Si粒子相互の間隔が大きく、
硬質粒子であるSL粉粒子耐摩耗性の要求されるシリン
ダ内壁面に露出させるためにエッヂング処理を行う必要
がある。082粒子の硬度はさほど大きくはなく(HV
1200程度)、大きな負荷が作用した場合の耐摩耗性
が不足する。■特に空冷機関にJ3いてシリンダ内壁部
の湿度が200℃〜300℃に達すると母材硬度が急激
に低下し温度上翼時の耐摩耗性が劣る。■また、一般的
なA、l!合金製スリーブにおいては、前記項目■と関
連し、シリンダ内壁面に硬質Orメツキ、SiC分散N
λメツキ等の表面処理を施して耐摩耗性を付与しなけれ
ばならず、処理経費が嵩む。
The second type of all-Δg alloy cylinder block has
In order to ensure the heat resistance and wear resistance of the cylinder inner wall portion, a K sleeve made of a high Si-containing Al alloy called Alsil is used, but it has the following drawbacks. ■First crystal S
The grain size of i is large (30 to 100 μTrL), and machinability after vj formation is poor. ■The distance between Si particles is large,
It is necessary to perform an edging treatment in order to expose the SL powder particles, which are hard particles, to the inner wall surface of the cylinder, which requires wear resistance. The hardness of 082 particles is not very large (HV
1200), the wear resistance is insufficient when a large load is applied. (2) In particular, when the humidity on the inner wall of the cylinder reaches 200°C to 300°C in J3 air-cooled engines, the hardness of the base material decreases rapidly and the wear resistance of the blades at high temperatures deteriorates. ■Also, general A, l! Regarding the alloy sleeve, in relation to the above item (2), hard Or plating, SiC dispersed N
Surface treatment such as lambda plating must be applied to impart wear resistance, which increases processing costs.

以上により、シリンダのスリーブ材として使用可能な耐
耐熱性、耐摩耗性に優れたAl合金材の開発が望まれる
ところである。
Based on the above, it is desired to develop an Al alloy material with excellent heat resistance and wear resistance that can be used as a cylinder sleeve material.

一方、内燃機関のピストンは機関の作動中熱膨張するた
め、この膨張を予め見込んで、シリンダ内壁部との間に
常温で成る程度の間隙を設けている。この隙間をピスト
ンクリアランスと称し、シリンダ内径とピストン最大外
径との差で表わされる。ピストンクリアランスが小さ過
ぎると、シリンダ内壁部どの間に焼付きを生じ、逆にピ
ストンクリアランスが大き過ぎると、圧縮圧力の低下。
On the other hand, since the piston of an internal combustion engine thermally expands during operation of the engine, in anticipation of this expansion, a gap is provided between the piston and the inner wall of the cylinder to the extent that it can be maintained at room temperature. This gap is called piston clearance, and is expressed as the difference between the cylinder inner diameter and the piston maximum outer diameter. If the piston clearance is too small, seizure will occur between the inner walls of the cylinder, and if the piston clearance is too large, the compression pressure will drop.

ブローパイ(吹扱【))、オイル上り、ダイリューショ
ン(ガソリンによるエンジンオイルの希釈)等の原因と
なり、またピストンスラップ合の発([原因ともなる。
This can cause blow pie, oil build-up, dilution (dilution of engine oil with gasoline), and can also cause piston slap.

シリンダ内壁部に接するピストン・スカート部は、連接
棒の傾斜によって生ずるサイドスラスト(側圧)を受け
、ピストンの直線運動を正しく保つ作用をしているが、
ピストンクリアランスがあるため、往復動するピストン
が運動方向を変える時にシリンダ壁に衝撃を与える。こ
れがピストンスラップである。ピストンスラップが激し
いと、ビスl−シリンダとリング名の摩耗を早め、エン
ジンオイルの消費量を増す等の不具合が生じるため、そ
れ等の現象が生じない範囲で最小のピストンクリアラン
スを設定しなければならない。
The piston skirt, which is in contact with the inner wall of the cylinder, receives side thrust (side pressure) caused by the inclination of the connecting rod, and functions to maintain the correct linear motion of the piston.
Because of the piston clearance, the reciprocating piston impacts the cylinder wall when changing its direction of motion. This is piston slap. If the piston slap is severe, problems such as accelerated wear of the screw cylinder and ring name and increased engine oil consumption will occur, so the minimum piston clearance must be set to the extent that such phenomena do not occur. It won't happen.

しかるに、Uaで高速回転に適する△p合金製ピストン
は熱膨張率が大きいため、鋳鉄製シリンダ内壁部と組合
せて使用する場合、特に頭頂部のピストンクリアランス
を大ぎくせざるを得ず、それに対応してスカート部の形
状に種々の工夫がなされ、温度上野の少ないスカート部
においてピストンクリアランスを小さく保っている。
However, since the △p alloy piston, which is suitable for Ua and high-speed rotation, has a large coefficient of thermal expansion, when used in combination with the inner wall of a cast iron cylinder, the piston clearance, especially at the top of the head, must be increased. Various improvements have been made to the shape of the skirt portion to keep the piston clearance small in the skirt portion where the temperature range is small.

それに対して、へp合金製ピストンを採用するとともに
、シリンダ内壁部を含めてシリンダブロック全体をAJ
)合金で形成した機関では、前記へ1合金と鋳鉄の組合
せに比してピストンクリアランスを小さく設定すること
が可能である。
In contrast, we adopted a Hep alloy piston, and the entire cylinder block, including the inner wall of the cylinder, was
) In an engine made of an alloy, it is possible to set a smaller piston clearance than in the combination of the above-mentioned He1 alloy and cast iron.

斯様に、Al合金製ピストンを使用する場合には、ピス
トンクリアランスをできるだけ小さクリ−る様に格別の
方策が講じられるが、その場合、ビス]〜ン・スカート
の摩耗に留意しなければならない。とりわけ、アルシル
の如き高S尤含有AfJ合金”A 鋳’INスリーブを
用いたシリンダではスカート部で“かじり″、焼句ぎ等
の不具合が生じ易い。
In this way, when using an Al alloy piston, special measures are taken to keep the piston clearance as small as possible, but in that case, care must be taken to prevent wear of the screws and skirts. . Particularly, in a cylinder using a sleeve made of a high S-containing AfJ alloy such as Alsil, problems such as "galling" and cracking are likely to occur at the skirt portion.

そのため、従来ではスカート外周面に鉄メツキ処理、耐
熱樹脂被覆処理等を施して対処していた。
Conventionally, this problem has been dealt with by applying iron plating, heat-resistant resin coating, etc. to the outer peripheral surface of the skirt.

ところが、鉄メツキ処理を施すと、AJ合金製スリーブ
の摩耗が問題になり、またピストン”IJ lj経費が
高価になる欠点がある。
However, when iron plating is applied, there is a problem of wear of the AJ alloy sleeve, and there is also the drawback that the cost of the piston is high.

本発明は斯かる技術的背景の下にOj案されたものであ
り、その主たる目的はA1合金製スリーブおよびこれと
摺接づ−るA9合金製ピストンの摩耗を可及的に低減化
することである。
The present invention was devised against this technical background, and its main purpose is to reduce as much as possible the wear of the A1 alloy sleeve and the A9 alloy piston that comes into sliding contact with the A1 alloy sleeve. It is.

本発明の他の目的は、メツキ処理に比して気兼なる経費
で被覆処理を行うことが可能な耐熱樹脂被覆の摩耗特性
を改善し、該改善された耐熱樹脂被覆をA1合金製ピス
トンの外周に施すことによりピストンの摩耗をより低減
化させるとともに、ピストン製造経費の節減を訓ること
である。
Another object of the present invention is to improve the wear characteristics of a heat-resistant resin coating, which can be coated at a lower cost than plating, and to apply the improved heat-resistant resin coating to a piston made of A1 alloy. By applying it to the outer periphery, the wear of the piston can be further reduced, and the cost of manufacturing the piston can be reduced.

を ゛す ための゛ 、および この目的は、組織中に含まれる初晶SLの粒径が20u
m以下であって、5L11〜30%、CU0.8〜5%
、 MO0,3〜3.5%、Fe2〜10%(数字はい
ずれも重ω%)、残部・・・八gおよび不可避不純物な
る組成の、1合金粉末に平均粒子l 1〜10μmの球
状粒子からなるAl203粉末1〜5重1B%を均一に
混合した混合粉末を圧粉成形後、温度400〜550℃
での焼結または熱間加工によってに’7た焼結A、l)
合金でシリンダスリーブを形成し、M(+82粉末、ポ
リデトラフルオロエチレン樹脂粉末、窒化硼素粉末、黒
鉛粉末のうちの少なくとも一種の粉末を添加分散さけた
耐熱樹脂で1合金製ピストンの外周を覆うことによって
)ヱ成される。
This purpose is to increase the particle size of primary SL contained in the structure to 20u.
m or less, 5L11-30%, CU0.8-5%
, MO0.3 to 3.5%, Fe2 to 10% (all numbers are weight ω%), balance...8g and inevitable impurities, 1 alloy powder contains spherical particles with an average particle size of 1 to 10 μm. After compacting a mixed powder made by uniformly mixing 1 to 5 weight 1 B% of Al203 powder, the temperature was 400 to 550°C.
Sintered by sintering or hot working in '7 A, l)
A cylinder sleeve is formed with the alloy, and the outer periphery of the piston made of alloy 1 is covered with a heat-resistant resin in which at least one of M(+82 powder, polydetrafluoroethylene resin powder, boron nitride powder, and graphite powder) is added and dispersed. (by)

アルシルの如き多ωのS=を含有するA1合金で形成さ
れた鋳造品では、粗大な初晶sLが晶出して必要な強度
が得られないため、改良処理(例、溶湯中にNaを添加
する)を行なって初晶S尤の微細化を計っている。しか
しながら、その微細化効果には限界があるところから、
固溶限界を越えるFeを含む高SL含有i合金粉末をア
トマイジング法で製造することにより初晶sLの粒径を
20μm以下に抑え、その圧粉成形体を熱間押出し加工
して高強度の焼結AfJ合金製部材を得る方法が提案さ
れている。
In cast products made of A1 alloy containing S= of many ω, such as Alsil, coarse primary crystals sL crystallize and the necessary strength cannot be obtained, so improvement treatment (for example, adding Na to the molten metal) ) to refine the primary crystal S layer. However, since there is a limit to its miniaturization effect,
The particle size of primary sL is suppressed to 20 μm or less by producing i-alloy powder with high SL content containing Fe exceeding the solid solubility limit by the atomizing method, and the compacted powder is hot-extruded to produce high-strength A method for obtaining a sintered AfJ alloy member has been proposed.

本発明のA1合金製シリンダスリーブはこの方法に則っ
て得たものであるが、常温および高温にお【ノる耐摩耗
性を更に向上させるために平均粒径1〜10μmの球状
粒子からなるAfJ203粉末を添加している。AN 
20s粉末の添加量は原石へ1合金粉末に対して1〜5
重量%とするのが適当であり、1重量%未満では耐摩耗
付向上効果が17られず、5重量%を越えると相手摺動
部材に対する影響が大きく、添加量の増大とともに圧粉
成形体の熱間加工性が低下する。また、球状化されたへ
1203粒子を用いるのは、その硬度がHv2500に
も達するAfJzOsの相手攻撃性を緩和させるためで
あり、その粒径を1〜10μmとするのは、1μm未満
では原料Aj20s粉末の取扱い性が悪い上に必要な耐
摩耗性が17られ難<、10μmを越えると焼結晶の機
械加工性が悪化し、1合金マトリックスからの粒子の脱
落が生じ易く、自身および相手摺動部材であるピストン
の摩耗を促進する結果となるからである。
The cylinder sleeve made of A1 alloy of the present invention was obtained according to this method, but in order to further improve the wear resistance at room temperature and high temperature, AfJ203 made of spherical particles with an average particle size of 1 to 10 μm was used. Powder is added. AN
The amount of 20s powder added is 1 to 5 per 1 alloy powder to the raw stone.
% by weight is appropriate; if it is less than 1% by weight, the effect of improving wear resistance will not be achieved, and if it exceeds 5% by weight, the effect on the mating sliding member will be large, and as the amount added increases, the compacted product will not improve. Hot workability decreases. In addition, the reason why spherical He1203 particles are used is to alleviate the aggressiveness of AfJzOs, whose hardness reaches Hv2500, and the reason why the particle size is set to 1 to 10 μm is that if the particle size is less than 1 μm, the raw material Aj20s In addition to poor handling of the powder, the necessary wear resistance is difficult to achieve.If the diameter exceeds 10 μm, the machinability of the fired crystal deteriorates, and particles tend to fall off from the alloy matrix, causing damage to the sliding surface of itself and its counterpart. This is because this results in accelerated wear of the piston, which is a member.

なお、Aj)203粉末以外にSL粉粒子りも硬質の他
のセラミック粉末(例、SLC。
In addition to Aj) 203 powder, SL powder particles and other hard ceramic powders (eg, SLC) are also used.

Szs N4 )を用いることもできるが、その耐摩耗
性(焼結晶の耐摩耗性)はAN 20s粉末を用いた場
合に比してやや劣る。AJ)20ssのセラミック粉末
と共に黒鉛、硼化物、硫化物等の潤滑性材料の粉末を用
いるのも有効であり、焼結材中に硬質のセラミック粒子
を分散させるとともに、潤滑+i材料の粒子を分散させ
て自己潤滑性を与えることにより耐摩耗性を向上させ得
る。また、場合によりセラミック粉末を用いることなく
、潤滑性材料の粉末のみを用いても、焼結材の自己潤滑
性故に耐1?耗性の向上を計り得る。
Szs N4) can also be used, but its wear resistance (wear resistance of baked crystals) is slightly inferior to that when AN 20s powder is used. AJ) It is also effective to use powder of lubricating materials such as graphite, boride, sulfide, etc. together with 20ss ceramic powder, and in addition to dispersing hard ceramic particles in the sintered material, particles of lubricating + i material are also dispersed. The wear resistance can be improved by imparting self-lubricating properties. Also, in some cases, even if only a lubricating material powder is used without using ceramic powder, the self-lubricating properties of the sintered material may cause the sintered material to withstand 1? Improved wear resistance can be measured.

へ1合金粉末の組成および初晶S=の粒径を限定する理
由は以下の通りである。
The reason for limiting the composition of the He1 alloy powder and the particle size of the primary crystal S= is as follows.

(1)Si(11〜30千m%)・・・Siは焼結晶の
耐摩耗性およびヤング率の向上に寄与し、熱膨張率を低
く抑え、熱伝導率を向上させ得る。ただし、S^湾有m
が11重量%未満では耐摩耗性1強度が劣り、30重量
%を越えると熱間押出し加工また(ま熱間鍛造加工時の
成形性が悪く製品に割れが生じ易い。
(1) Si (11 to 30,000 m%)...Si contributes to improving the wear resistance and Young's modulus of the fired crystal, suppresses the coefficient of thermal expansion, and can improve the thermal conductivity. However, S^bay m
If it is less than 11% by weight, the wear resistance and strength will be poor, and if it exceeds 30% by weight, the formability during hot extrusion or hot forging will be poor and the product will be prone to cracking.

また、初晶SL粉粒子粒径を20μm以下にするのは、
粒径20μmを越えると焼結晶の機械加工性が悪くなり
、相手運動部材であるピストンとの摺接関係で大きな集
中負荷を受けて破壊され易く、破壊によって脱落した8
1粒子が自身およびピストンの摩耗を促進する結果とな
るからである。20μm以下の粒径は、溶融AJ金合金
細孔から流出させ、これに不活性ガスを噴射させるアト
マイズ法、あるいは遠心噴霧法等により溶融状態からの
冷却速度を102〜10’℃/秒にして得ることができ
る。このような大きな冷却速度は溶解法によって摺動部
材(シリンダスリーブ)を形成する場合には得ることが
できない。
In addition, to make the primary crystal SL powder particle size 20 μm or less,
If the grain size exceeds 20 μm, the machinability of the sintered crystal deteriorates, and it is likely to break due to large concentrated loads due to sliding contact with the piston, which is a mating moving member, and the crystal will fall off due to the breakage.
This is because one particle accelerates the wear of itself and the piston. For particles with a diameter of 20 μm or less, the molten AJ gold alloy is made to flow out from the pores, and an inert gas is injected into it using an atomization method, or a centrifugal spray method, etc., at a cooling rate of 102 to 10'C/sec from the molten state. Obtainable. Such a high cooling rate cannot be obtained when the sliding member (cylinder sleeve) is formed by a melting method.

(2) Cu (0,8〜51ff1%>−CUは熱処
理によるマトリックスの強化に有効である。ただし、0
.8唄口%未満では添加効果がなく、5重量%を越える
と熱間加工性が低下づるとともに対応力腐蝕割れ特性が
悪化する。
(2) Cu (0.8~51ff1%>-CU is effective for strengthening the matrix by heat treatment. However, 0.
.. If it is less than 8% by weight, there is no effect of addition, and if it exceeds 5% by weight, hot workability decreases and the resistance to corrosion cracking properties deteriorates.

(3)Mg(0,3〜3.5重品%)−M gはCuと
同じく熱処理によるマトリックスの強化に有効である。
(3) Mg (0.3 to 3.5% by weight) - Like Cu, Mg is effective in strengthening the matrix by heat treatment.

ただし、0,3重両%未満では添加効果がなく、3.5
東ω%を越すと熱間加工性が低下するとともに対応力腐
蝕割れ特性が悪化する。
However, if it is less than 0.3%, there is no addition effect, and 3.5%
If it exceeds ω%, hot workability decreases and the resistance to corrosion and cracking properties deteriorates.

(4)Fe(2〜10毛吊%)・・・FCを添加し4f
い場合のへ1合金硬度は第1図図示のように温度200
℃〜300℃の加熱で急激に低下する。それに対し、2
〜10重品%のFCを添加したへ1合金では斯かる急激
な砂崩低下は見られない。Feの添加量は2〜10重量
%にするのが好ましく、2重量%未満では焼結晶の高温
強度の向上が期待できず、10重量%を越えると高速熱
間加工が不可能となる。
(4) Fe (2-10 %)...Add FC to 4f
In this case, the hardness of the alloy is at a temperature of 200°C as shown in Figure 1.
It decreases rapidly when heated from ℃ to 300℃. On the other hand, 2
Such a rapid decrease in sand-sliding is not observed in the Hel alloy containing ~10 wt% FC. The amount of Fe added is preferably 2 to 10% by weight; if it is less than 2% by weight, no improvement in the high temperature strength of the fired crystal can be expected, and if it exceeds 10% by weight, high-speed hot working becomes impossible.

一方、Al合金製ビス1−ンに適用する耐熱樹脂として
は、特にポリイミド樹脂、ポリアミド樹脂。
On the other hand, examples of heat-resistant resins applicable to Al alloy bis-bonds include polyimide resins and polyamide resins.

ポリイミドアミド樹脂(またはポリアミドイミド樹脂)
が好適である。斯かる耐熱樹脂に対してMe 82粉末
、ポリテトラフルオロエチレン樹脂粉末、窒化Ta素粉
末、黒鉛粉末等の潤滑性良好なる粉末を添加するならば
、樹脂被覆の耐摩耗性が改善される。
Polyimide amide resin (or polyamideimide resin)
is suitable. If a powder with good lubricity, such as Me 82 powder, polytetrafluoroethylene resin powder, Ta nitride powder, or graphite powder, is added to such heat-resistant resin, the wear resistance of the resin coating will be improved.

Mll 32粉末、ポリテトラフルオロエチレン樹脂粉
末、窒化硼素粉末、黒鉛粉末を単独で添加する場合の上
限添加Jは、その比重の違いから下記の様になる。
The upper limit of addition J when Mll 32 powder, polytetrafluoroethylene resin powder, boron nitride powder, and graphite powder are added alone is as follows based on the difference in their specific gravity.

樹脂被覆の好適な膜厚は2〜50μmである。膜厚が2
μm未満では、ピストン・スカート表面に対する付着性
が悪くヌカ−1〜素地が露出する可能性があり、50/
1mを越えると摺動特性(耐焼付き性、耐摩耗性)の向
上は認められない。
The preferred thickness of the resin coating is 2 to 50 μm. Film thickness is 2
If it is less than μm, the adhesion to the piston skirt surface will be poor and the base material may be exposed, resulting in 50/
If the length exceeds 1 m, no improvement in sliding properties (seizure resistance, wear resistance) is observed.

なお、樹脂被膜の塗装下地層としてピストンの表面に化
成皮膜を形成すると、樹脂被膜の密若性が向上する。1
1合金の化成皮膜処理法としては、■クロム!塩と炭酸
ナトリウムなどのアルカリとの混合液を用い、温度70
〜100℃で処理するMBV法、■リン酸、クロム酸お
よびフッ化物の混合物を用いるアロデイン法(Atod
ine法)が知られており、とりわけMBV法によって
得られた皮膜は、成る程度粗面化しているため樹脂被膜
の富者性が良好である。
Note that when a chemical conversion film is formed on the surface of the piston as a coating base layer for the resin film, the density of the resin film is improved. 1
As a chemical conversion coating treatment method for 1 alloy, ■Chromium! Using a mixture of salt and an alkali such as sodium carbonate, at a temperature of 70
MBV method, which is treated at ~100°C; ■ Allodein method, which uses a mixture of phosphoric acid, chromic acid, and fluoride (Atod
In particular, the coating obtained by the MBV method has a roughened surface to a certain extent, so that the resin coating has good texture.

支−盪一コ 第2図は自動二輪車用水冷エンジン1を要部欠截側面図
として示している。エンジン1はダブル・オーバーヘッ
ド・カム軸式動弁機構を採用しており、クランク@8と
連結されたピストン4(例、JIS ACgA材製)が
シリンダ2内に嵌挿されている。
Figure 2 shows a water-cooled motorcycle engine 1 as a side view with main parts cut away. The engine 1 employs a double overhead camshaft type valve mechanism, and a piston 4 (eg, made of JIS ACgA material) connected to a crank @8 is fitted into a cylinder 2.

シリンダ2の内壁部分は、Δg合金(例、JISADC
12材)製シリンダブロック本体に鋳包みにより一体化
されたシリンダスリーブ3で形成されている。そして、
シリンダスリーブ3に嵌挿されたピストン4におけるス
カート5の外周面はポリイミドアミド樹脂被覆6で覆わ
れている〈第3図)。
The inner wall portion of the cylinder 2 is made of Δg alloy (e.g., JISADC
It is formed of a cylinder sleeve 3 that is integrated into a cylinder block body made of 12 materials by casting. and,
The outer peripheral surface of the skirt 5 of the piston 4 fitted into the cylinder sleeve 3 is covered with a polyimide amide resin coating 6 (FIG. 3).

ポリイミドアミド樹脂被覆6中にはMQ32粒子7が添
加分散せしめられており、該ポリイミドアミド樹脂被覆
6は、溶剤としてのへキサジメチルピロリドン中にポリ
イミドアミド樹脂およびM a S 2粉末を混合した
液をスカート5の外周面に噴霧(♂むして、温度190
℃2時間30分の加熱焼付処理を施すことによって形成
される。
MQ32 particles 7 are added and dispersed in the polyimide amide resin coating 6, and the polyimide amide resin coating 6 is made by mixing a polyimide amide resin and M a S 2 powder in hexadimethylpyrrolidone as a solvent. Spray on the outer peripheral surface of the skirt 5 (temperature 190
It is formed by applying heat baking treatment for 2 hours and 30 minutes at °C.

焼結晶であるシリンダ・スリーブ3の製造は以下のよう
にして行われる。
The cylinder sleeve 3 made of sintered crystal is manufactured as follows.

■原PIへ1合金粉末のyJ造・・・規定組成のA1合
金を溶融させ、不活性ガスを用いたアトマイズ法。
■YJ production of 1 alloy powder to original PI...Atomization method using inert gas by melting A1 alloy of specified composition.

遠心噴霧法、ロール急冷法等により冷却速度102〜1
06℃なる条件で粒径105μm未満の粉末を製造する
Cooling rate 102-1 by centrifugal spray method, roll quenching method, etc.
Powder with a particle size of less than 105 μm is produced under conditions of 0.06° C.

■粉末の混合・・・AIJ合金粉末に平均粒径1〜10
μmの球状粒子からなるAl203粉末1〜5重伍%を
加えて均一に混合する。
■Powder mixing...AIJ alloy powder with an average particle size of 1 to 10
1 to 5% by weight of Al203 powder consisting of μm spherical particles is added and mixed uniformly.

■圧粉成形・・・得られた粉末を冷間静水圧プレス成形
法(CIP法)により圧力4.000に9f/cti 
テ圧粉成形し、押出し加工用素材としての円筒形状の圧
粉成形体を得る。
■Powder compacting...The obtained powder is pressed to a pressure of 4.000 by the cold isostatic press method (CIP method) at 9f/cti.
The powder is compacted to obtain a cylindrical powder compact as a material for extrusion processing.

■熱間押出し加工(焼結)・・・圧粉成形体である押出
し加工用素材を4Ji 450℃で熱間押出し加工を行
なってシリンダ・スリーブ3を得る。なお、成形品の酸
化防止を考慮するならば非酸化性雰囲気中で熱間押出し
加工を行うのが好ましい。
■Hot extrusion processing (sintering): Hot extrusion processing is performed on the extrusion processing material, which is a powder compact, at 4Ji 450°C to obtain the cylinder sleeve 3. Note that, in consideration of preventing oxidation of the molded product, it is preferable to perform hot extrusion processing in a non-oxidizing atmosphere.

斯くして得られたシリンダ・スリーブ3の耐摩耗性、耐
熱性は良好であり、相手摺動部材であるピストン・スカ
ート5の外周面にポリイミドアミド樹脂被覆6が付され
ていることとし相俟って、シリンダ・スリーブ3の摺動
表面に硬質Crメツキ等の表面処理を施こさすとも優れ
た耐久性を発揮する。また、シリンダ・スリーブ3は温
度200℃〜300℃に加熱された後(常温復帰時)で
も初期常温硬度を有しているため、空冷エンジン用とし
ても使用可能である。さらに、AfJ20s粒子を分散
させたシリンダ・スリーブ3はシリンダブロック本体と
の鋳包みによる一体化の際の熱を受けても硬度低下しな
いという特徴があり、実用効果が大きい。
The thus obtained cylinder sleeve 3 has good abrasion resistance and heat resistance, and the piston skirt 5, which is the mating sliding member, has a polyimide amide resin coating 6 on its outer peripheral surface. Therefore, excellent durability can be achieved by applying a surface treatment such as hard Cr plating to the sliding surface of the cylinder sleeve 3. Moreover, since the cylinder sleeve 3 has an initial normal temperature hardness even after being heated to a temperature of 200° C. to 300° C. (when returning to normal temperature), it can also be used for air-cooled engines. Furthermore, the cylinder sleeve 3 in which AfJ20s particles are dispersed has a characteristic that its hardness does not decrease even when it receives heat during integration with the cylinder block body by casting, and has a great practical effect.

一方、シリンダ・スリーブ3と摺接するピストン4のス
カート外周面には潤滑性を右するM o S 2粒子7
を分散さゼたポリイミドアミド樹脂被覆6が付されてお
り、ピストン4の焼付きが生じ難く、耐久性良好である
On the other hand, the outer circumferential surface of the skirt of the piston 4, which is in sliding contact with the cylinder sleeve 3, is coated with M o S 2 particles 7 that provide lubricity.
A polyimide amide resin coating 6 is applied, which prevents the piston 4 from seizing and has good durability.

なJ3、シリンダ・スリーブ3を製造するに当り、Af
JzOs粉末と共に0.5〜5重量%の潤滑性材料(黒
鉛、硼化物、硫化物等)の粉末をへp合金粉末に配合し
ても良く、その場合シリンダ・スリーブ3に自己潤滑性
を付与できるため、MoS2082粒子散させたポリイ
ミドアミド樹脂被覆6でそのスカート5が覆われるピス
トン4との摺接関係において優れた耐焼付性を発揮する
In manufacturing J3, cylinder sleeve 3, Af
0.5 to 5% by weight of a lubricating material (graphite, boride, sulfide, etc.) powder may be blended with the hep alloy powder together with the JzOs powder, in which case the cylinder/sleeve 3 will have self-lubricating properties. Therefore, it exhibits excellent seizure resistance in sliding contact with the piston 4 whose skirt 5 is covered with the polyimide amide resin coating 6 in which MoS2082 particles are dispersed.

1胛り1呈 以上の説明から明らかなように、本発明による内燃機関
のシリンダスリーブとピストンの組合せでは、シリンダ
スリーブの母材であるA1合金がそれ自CI優れた耐摩
耗性、耐熱性を有している上に、母材中に高硬度のAJ
zOs粒子が分散しているため、摺動表面に硬質Crメ
ツキ等の表面処理を施さずとも常温から高温に亘る温度
範囲でシリンダスリーブは優れた耐摩耗性を発揮し、M
OS2粉末等の潤滑性粉末を分散させた耐熱樹脂でその
外周を覆われる1合金製ピストンは、シリンダスリーブ
に含まれる高硬度のAj) 20s粒子が球状化されて
相手攻撃性が少ないこととも相俟って、焼付き、rf、
耗が生じ難く、耐久性良好である。また、ピストンに耐
熱樹脂被覆を施す揚:′ 合の経費はメツキ処理を施す
場合に比して低部でありコストダウンが達成される。
As is clear from the above description, in the combination of the cylinder sleeve and piston of the internal combustion engine according to the present invention, the A1 alloy that is the base material of the cylinder sleeve has excellent wear resistance and heat resistance. In addition, it has high hardness AJ in the base material.
Because the zOs particles are dispersed, the cylinder sleeve exhibits excellent wear resistance in the temperature range from room temperature to high temperature without applying surface treatment such as hard Cr plating to the sliding surface.
The piston made of Alloy 1, whose outer periphery is covered with heat-resistant resin in which lubricating powder such as OS2 powder is dispersed, is also compatible with the fact that the highly hard Aj) 20s particles contained in the cylinder sleeve are spherical and less aggressive to the opponent.迟, burn-in, rf,
It is hard to wear and has good durability. Furthermore, the cost of coating the piston with a heat-resistant resin is lower than that of plating the piston, resulting in cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルシル系AJI合金の温度による硬度変化を
示すグラフ、第2図は本発明例に係るシリンダスリーブ
とピストンの組合せを採用した自動二輪車用水冷エンジ
ンを示す要部欠截側面図、第3図は前記ピストンのスカ
ート部分を拡大した図である。 1・・・エンジン、2・・・シリンダ、3・・・シリン
ダスリーブ、4・・・ピストン、5・・・スカート、6
・・・ポリイミドアミド樹脂被覆、7・・・MO32粒
子、8・・・クランク帖。 代理人 弁理士 江 原  望 外3名篇1図 温度(”C) 第2図 第3図 手続補正書 昭和63年 6月 1日 特許庁長官 小 川 邦 夫 殿 1、$件の表示 昭和63年 特許願 第78252号 3、補正をする者 事件との関係  特許出願人 4、代理人 8、補正の内容 (1)特許請求の範囲を別紙の通りに補正します。 (2)第8頁第5行ないし第9行の記載「温度400″
C・〜550°C・・・ポリテトラフルオロエチレン樹
脂粉末、」を下記のように補正します。 記 「所定温度での焼結よlζ【よ熱間加工によって得た焼
結A1合金でシリンダスリーブを形成し、MO32粉末
、熱硬化性ふっ素樹脂粉末、」特許請求の範囲 (1)組織中に含まれる初品SLの粒径が20μm以下
であって、5L11〜30%、 Cu O,8〜5%。 Mg0.3〜3.5%、Fe2〜10%(数字はいずれ
も重量%)、残部…Alおよび不可避不純物なる組成の
A1合金粉末に平均粒径1〜10μmの球状粒子からな
るAN 20s粉末1〜5重量%を均一に混合した混合
粉末を圧粉成形後、血定工皿での焼結または熱間加工に
よって1′′7た焼結へ0含金で形成されたシリンダス
リーブと、 MoS2粉末、執f  ふつ;”2ノ 、窒化1m素粉
末、黒鉛粉末のうちの少なくとも一種の粉末を添加分散
させた耐熱樹脂をもって、その外周面を被覆してなるA
1合金製ピストンとで構成される内燃1mのシリンダス
リーブとピストンの組合せ。 (2)前記混合粉末に黒鉛粉末0.5〜5重量%を混合
することを特徴とする特許請求の範囲第1項に記載され
た内燃機関のシリンダスリーブとピストンの組合せ。 (3)前記耐熱樹脂が、ポリイミド樹脂またはポリアミ
ド樹脂またはポリイミドアミド樹脂であることを特徴と
する特許請求の範囲第1項に記載された内燃機関のシリ
ンダスリーブとピストンの組合せ。
Fig. 1 is a graph showing changes in hardness due to temperature of Alsil-based AJI alloy; Fig. 2 is a cutaway side view of main parts showing a water-cooled motorcycle engine employing a combination of a cylinder sleeve and a piston according to an example of the present invention; FIG. 3 is an enlarged view of the skirt portion of the piston. 1... Engine, 2... Cylinder, 3... Cylinder sleeve, 4... Piston, 5... Skirt, 6
... Polyimide amide resin coating, 7... MO32 particles, 8... Crank book. Representative: Patent attorney Nozomu Ehara, 3 other authors, Figure 1 Temperature ("C) Figure 2 Figure 3 Procedural amendments June 1, 1988 Director General of the Patent Office Kunio Ogawa 1, $ display 1988 Year Patent Application No. 78252 3 Relationship with the case of the person making the amendment Patent applicant 4, agent 8 Contents of the amendment (1) The scope of the patent claims is amended as shown in the attached sheet. (2) Page 8 The description in the 5th to 9th lines is “Temperature 400”
C・~550℃...Polytetrafluoroethylene resin powder,'' is corrected as follows. ``Cylinder sleeve is formed by sintering A1 alloy obtained by hot working by sintering at a predetermined temperature, MO32 powder, thermosetting fluororesin powder,'' Claims (1) In the structure The particle size of the initial product SL contained is 20 μm or less, 5L is 11 to 30%, and CuO is 8 to 5%. AN 20s powder 1 consisting of spherical particles with an average particle size of 1 to 10 μm in A1 alloy powder with a composition of 0.3 to 3.5% Mg, 2 to 10% Fe (all numbers are weight %), and the balance...Al and inevitable impurities. A cylinder sleeve formed of 0 metal-containing material is formed by compacting a mixed powder in which ~5% by weight is uniformly mixed, and then sintering it in a blood molding plate or hot working to sinter the powder to 1''7. A made by coating the outer peripheral surface with a heat-resistant resin in which at least one of the following powders is added and dispersed: 1m nitride powder, and graphite powder.
Combination of internal combustion 1m cylinder sleeve and piston, consisting of a 1-alloy piston. (2) The combination of a cylinder sleeve and a piston for an internal combustion engine as set forth in claim 1, wherein 0.5 to 5% by weight of graphite powder is mixed in the mixed powder. (3) The combination of a cylinder sleeve and a piston for an internal combustion engine according to claim 1, wherein the heat-resistant resin is a polyimide resin, a polyamide resin, or a polyimide amide resin.

Claims (3)

【特許請求の範囲】[Claims] (1)組織中に含まれる初晶Siの粒径が20μm以下
であって、Si11〜30%、Cu0.8〜5%、Mg
0.3〜3.5%、Fe2〜10%(数字はいずれも重
量%)、残部…Alおよび不可避不純物なる組成のAl
合金粉末に平均粒径1〜10μmの球状粒子からなるA
l_2O_3粉末1〜5重量%を均一に混合した混合粉
末を圧粉成形後、温度400℃〜550℃での焼結また
は熱間加工によって得た焼結Al合金で形成されたシリ
ンダスリーブと、MoS_2粉末、ポリテトラフルオロ
エチレン樹脂粉末、窒化硼素粉末、黒鉛粉末のうちの少
なくとも一種の粉末を添加分散させた耐熱樹脂をもつて
、その外周面を被覆してなるAl合金製ピストンとで構
成される内燃機関のシリンダスリーブとピストンの組合
せ。
(1) The particle size of primary Si contained in the structure is 20 μm or less, with Si 11-30%, Cu 0.8-5%, Mg
Al with a composition of 0.3 to 3.5%, Fe2 to 10% (all numbers are weight %), and the balance...Al and inevitable impurities.
A consisting of spherical particles with an average particle size of 1 to 10 μm in alloy powder
A cylinder sleeve formed of a sintered Al alloy obtained by sintering or hot working at a temperature of 400°C to 550°C after compacting a mixed powder in which 1 to 5% by weight of l_2O_3 powder is uniformly mixed, and MoS_2 It is composed of an Al alloy piston whose outer peripheral surface is coated with a heat-resistant resin in which at least one of powder, polytetrafluoroethylene resin powder, boron nitride powder, and graphite powder is added and dispersed. Combination of cylinder sleeve and piston for internal combustion engines.
(2)前記混合粉末に黒鉛粉末0.5〜5重量%を混合
することを特徴とする特許請求の範囲第1項に記載され
た内燃機関のシリンダスリーブとピストンの組合せ。
(2) The combination of a cylinder sleeve and a piston for an internal combustion engine as set forth in claim 1, wherein 0.5 to 5% by weight of graphite powder is mixed in the mixed powder.
(3)前記耐熱樹脂が、ポリイミド樹脂またはポリアミ
ド樹脂またはポリイミドアミド樹脂であることを特徴と
する特許請求の範囲第1項に記載された内燃機関のシリ
ンダスリーブとピストンの組合せ。
(3) The combination of a cylinder sleeve and a piston for an internal combustion engine according to claim 1, wherein the heat-resistant resin is a polyimide resin, a polyamide resin, or a polyimide amide resin.
JP63078252A 1988-04-01 1988-04-01 Combination of cylinder sleeve and piston for internal combustion engine Expired - Fee Related JP2552523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078252A JP2552523B2 (en) 1988-04-01 1988-04-01 Combination of cylinder sleeve and piston for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078252A JP2552523B2 (en) 1988-04-01 1988-04-01 Combination of cylinder sleeve and piston for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01253553A true JPH01253553A (en) 1989-10-09
JP2552523B2 JP2552523B2 (en) 1996-11-13

Family

ID=13656807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078252A Expired - Fee Related JP2552523B2 (en) 1988-04-01 1988-04-01 Combination of cylinder sleeve and piston for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2552523B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163570A (en) * 1988-12-15 1990-06-22 Mitsubishi Alum Co Ltd Cylinder tube material
US4959276A (en) * 1988-10-31 1990-09-25 Sumitomo Electric Industries, Ltd. Heat-resistant, wear-resistant and high-strength Al-Si alloy, and cylinder liner employing same
WO1994012783A1 (en) * 1992-11-28 1994-06-09 Mahle Gmbh Piston-cylinder assembly of an internal combustion engine
US5738062A (en) * 1991-12-02 1998-04-14 Ryobi Outdoor Products, Inc. Operator carried power tool having a four-cycle engine
EP0864660A3 (en) * 1997-02-12 1999-09-29 Yamaha Hatsudoki Kabushiki Kaisha Piston for internal combustion engine and method for producing same
JP2017509144A (en) * 2014-01-30 2017-03-30 イクストゥール オイIxtur Oy How to handle magnets and metal sheets
CN115570130A (en) * 2022-11-23 2023-01-06 深州市工程塑料有限公司 Composite material bushing and preparation process thereof
WO2023112125A1 (en) * 2021-12-14 2023-06-22 ヤマハ発動機株式会社 Internal combustion engine and transportation device
WO2023112123A1 (en) * 2021-12-14 2023-06-22 ヤマハ発動機株式会社 Internal combustion engine and transport equipment
WO2023112124A1 (en) * 2021-12-14 2023-06-22 ヤマハ発動機株式会社 Internal combustion engine and transportation device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959276A (en) * 1988-10-31 1990-09-25 Sumitomo Electric Industries, Ltd. Heat-resistant, wear-resistant and high-strength Al-Si alloy, and cylinder liner employing same
JPH02163570A (en) * 1988-12-15 1990-06-22 Mitsubishi Alum Co Ltd Cylinder tube material
US5738062A (en) * 1991-12-02 1998-04-14 Ryobi Outdoor Products, Inc. Operator carried power tool having a four-cycle engine
US6227160B1 (en) 1991-12-02 2001-05-08 Mtd Southwest, Inc. Operator carried power tool having a four-cycle engine and engine lubrication method
US6622688B2 (en) 1991-12-02 2003-09-23 Mtd Southwest, Inc. Operator carried power tool having a four-cycle engine and an engine lubrication method
WO1994012783A1 (en) * 1992-11-28 1994-06-09 Mahle Gmbh Piston-cylinder assembly of an internal combustion engine
US5560283A (en) * 1992-11-28 1996-10-01 Mahle Gmbh Piston-Cylinder assembly of an internal combustion engine
EP0864660A3 (en) * 1997-02-12 1999-09-29 Yamaha Hatsudoki Kabushiki Kaisha Piston for internal combustion engine and method for producing same
JP2017509144A (en) * 2014-01-30 2017-03-30 イクストゥール オイIxtur Oy How to handle magnets and metal sheets
WO2023112125A1 (en) * 2021-12-14 2023-06-22 ヤマハ発動機株式会社 Internal combustion engine and transportation device
WO2023112123A1 (en) * 2021-12-14 2023-06-22 ヤマハ発動機株式会社 Internal combustion engine and transport equipment
WO2023112124A1 (en) * 2021-12-14 2023-06-22 ヤマハ発動機株式会社 Internal combustion engine and transportation device
EP4224004A4 (en) * 2021-12-14 2023-11-22 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine and transport equipment
EP4219928A4 (en) * 2021-12-14 2023-11-29 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine and transportation device
EP4219929A4 (en) * 2021-12-14 2024-01-10 Yamaha Motor Co Ltd Internal combustion engine and transportation device
CN115570130A (en) * 2022-11-23 2023-01-06 深州市工程塑料有限公司 Composite material bushing and preparation process thereof

Also Published As

Publication number Publication date
JP2552523B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US11549408B2 (en) Iron-based sintered alloy valve seat for internal combustion engine
US4817578A (en) Internal combustion engine
JPH01253553A (en) Combination of cylinder sleeve and piston of internal combustion engine
EP3162475B1 (en) Sintered valve seat and method for manufacturing same
JP2021519860A (en) Copper alloy composition with improved thermal conductivity and wear resistance
WO2018179590A1 (en) Sintered valve seat
JP2893658B2 (en) Sintered aluminum alloy sliding member
JP3897416B2 (en) Powder aluminum alloy cylinder liner
JPS63125821A (en) Slide member
JP2753880B2 (en) Engine components
JP2000008132A (en) Valve guide made of high silicon aluminum alloy for internal combustion engine
JPH01255640A (en) Sliding member made of sintered al alloy
JP3547583B2 (en) Cylinder liner
JP2006249994A (en) Cylinder made of light alloy composite material
JP2000080451A (en) Sintered body for wear resistant ring and wear resistant ring
JP2790807B2 (en) Composite piston
JP2623621B2 (en) Engine structure
JP6309700B1 (en) Sintered valve seat
JPH07238331A (en) Sliding member
JP2005201099A (en) Piston and cylinder for internal combustion engine
JPH0513969Y2 (en)
JPH0873972A (en) Composite material excellent in strength, wear resistance, and thermal conductivity and its production
JP2000018089A (en) Combination between cylinder liner and piston for internal combustion engine
JP3883656B2 (en) Wear-resistant ring and piston equipped with it
JP2516978Y2 (en) Cylinder and piston ring combination

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees