WO2016135952A1 - Substrate storing container - Google Patents

Substrate storing container Download PDF

Info

Publication number
WO2016135952A1
WO2016135952A1 PCT/JP2015/055878 JP2015055878W WO2016135952A1 WO 2016135952 A1 WO2016135952 A1 WO 2016135952A1 JP 2015055878 W JP2015055878 W JP 2015055878W WO 2016135952 A1 WO2016135952 A1 WO 2016135952A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
wall
substrate
substrate storage
container
Prior art date
Application number
PCT/JP2015/055878
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 金森
稔 冨田
Original Assignee
ミライアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミライアル株式会社 filed Critical ミライアル株式会社
Priority to PCT/JP2015/055878 priority Critical patent/WO2016135952A1/en
Priority to JP2017501798A priority patent/JPWO2016135952A1/en
Priority to TW105105052A priority patent/TW201630668A/en
Publication of WO2016135952A1 publication Critical patent/WO2016135952A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders

Definitions

  • the present invention relates to a substrate storage container used when storing, storing, transporting, transporting, and the like, a substrate made of a semiconductor wafer or the like.
  • a substrate storage container for storing a substrate made of a semiconductor wafer and transporting it in a process in a factory, a structure including a container main body and a lid is known.
  • the container body has a cylindrical wall part in which an opening part of the container body is formed at one end and the other end is closed.
  • a substrate storage space is formed in the container body.
  • the substrate storage space is formed by being surrounded by a wall portion, and can store a plurality of substrates.
  • the lid can be attached to and detached from the container body opening, and the container body opening can be closed.
  • a front retainer is provided in a portion of the lid that faces the substrate storage space when the container main body opening is closed.
  • the front retainer can support the edges of the plurality of substrates when the container main body opening is closed by the lid.
  • the back substrate support portion is provided on the wall portion so as to be paired with the front retainer.
  • the back side substrate support part can support the edges of a plurality of substrates.
  • a check valve is provided on the container body. Dry gas (hereinafter referred to as purge gas) from which inert gas such as nitrogen or moisture has been removed (1% or less) (hereinafter referred to as purge gas) flows from the outside of the container body into the substrate storage space through the check valve, and gas purge is performed.
  • purge gas dry gas
  • purge gas inert gas such as nitrogen or moisture has been removed (1% or less)
  • the check valve prevents the gas filled in the substrate storage space by the gas purge from leaking (see Patent Documents 3 to 4).
  • the left and right air supply valves on the back side of the container body are provided with nozzles that extend in the vertical direction of the container body, and the peripheral wall contains the nozzle.
  • Some of these substrates have jet holes for jetting purge gas on the upper and lower surfaces of each substrate (see Patent Document 5).
  • a barrier filter made of a porous material is provided for the purpose of injecting a uniformly distributed purified gas from a large number of openings of the purification tower in which a large number of openings for ejecting a purge gas are formed. (See Patent Document 6).
  • Japanese Patent No. 4204302 Japanese Patent No. 4201583 Japanese Patent No. 5241607 JP 2007-533166
  • the nozzle provided with the ejection holes it is possible to shorten the time for replacing the gas inside the container with the purge gas as compared with the case where there is no nozzle.
  • the medium is disposed in the nozzle, and the purge gas that has reached the nozzle passes through the medium, from which the purge gas is ejected into the container and replaced. Therefore, there is a problem that the smooth purge gas flow from the nozzle to the inside of the container is hindered and the gas replacement efficiency is lowered.
  • the pressure of the purge gas is uniformly applied to a large number of openings, and is not uniformly distributed from the large numbers of openings. It is possible to release the active gas.
  • parts such as a barrier filter are required, which increases the number of parts and the number of assembly steps.
  • An object of the present invention is to provide a substrate storage container that can efficiently replace the gas in the substrate storage space of the container main body with a purge gas without increasing the number of parts and can perform a uniform gas purge in a short time.
  • the present invention is a cylindrical wall portion having a container body opening formed at one end and the other end closed, and has a back wall, an upper wall, a lower wall, and a pair of side walls.
  • a gas control unit for controlling the gas flow inside the container provided on the side wall, and the back wall It is located on the lower wall spaced from the inner surface, has a predetermined height between the lower wall and the upper wall, and the gas supplied from the air supply holes in the direction of the substrate stored in the container body It has a gas ejection control mechanism for circulating the gas in a certain substrate direction and a gas control unit direction which is a direction of the gas control unit.
  • the gas ejection control mechanism includes a tubular gas circulation part having a plurality of openings for ejecting gas in the direction of the substrate and the gas control part in the form of a hollow cylinder having an opening on a side surface, the air supply hole, Formed at one end of the tubular gas circulation part, having a connection part connected to the intake hole so that gas can circulate, the gas supplied to the air supply hole is supplied to the tubular gas circulation part through the connection part, After that, it is preferable that the gas flows through the opening of the tubular gas circulation part and further flows into the inner wall direction of the container body and the upper wall after hitting the gas control part of the container body.
  • the gas control unit is provided in a curved portion of a connection portion between the side wall and the back wall of the container body.
  • the gas control unit controls the gas by a back side fixing portion of a substrate support plate-like portion for supporting the substrate disposed on the side wall of the container body.
  • the opening of the tubular gas circulation part is arranged between the adjacent substrates of the plurality of substrates accommodated in the container body, and a space between the adjacent substrates is provided. It is preferable to eject gas to
  • the gas ejection control mechanism is configured such that, when 25 substrates are accommodated in the container body at equal intervals, the tubular gas flow between the 13th and 14th substrates counted from the lower wall side. It is preferable that the uppermost opening of the opening portion is disposed.
  • the present invention also includes a cylindrical wall portion having a container body opening formed at one end and the other end closed, and a plurality of substrates can be accommodated by the inner surface of the wall, and the container body opening
  • the air passage is disposed on the wall portion, and is formed between the space outside the container body and the substrate storage space through the filter.
  • the gas jet nozzle part includes a through hole that communicates the nozzle part internal space communicating with the air passage and the external space of the gas jet nozzle part, and the gas jet forming the nozzle part internal space.
  • the present invention relates to a substrate storage container having an uneven portion that is formed on an inner surface of a nozzle portion and generates a turbulent gas flow in the inner space of the nozzle portion.
  • the concavo-convex portion is constituted by a concave portion formed in a recess in the inner surface of the gas ejection nozzle portion, and the depth of the concave portion is 2.0 mm or more.
  • grooved part has a positional relationship facing the said through-hole.
  • the gas ejection nozzle with respect to the inner surface of the gas ejection nozzle portion where the recess is formed A convex portion having a shape substantially coincident with the concave portion is formed on the outer surface portion of the portion, and when the concave and convex portion has a convex portion, the inner surface of the gas ejection nozzle portion on which the convex portion is formed is formed. It is preferable that a concave portion having a shape substantially coinciding with the convex portion is formed on a portion of the outer surface of the gas ejection nozzle portion.
  • the “substantially matching shape” means that even when manufactured with the intention of a matching shape, it actually includes a case where a slight difference in shape occurs due to a dimensional error or the like. .
  • the substrate storage space is capable of storing a plurality of substrates in a state of being separated and arranged in parallel at a predetermined equal interval, and a plurality of the through holes are formed and the plurality of substrates stored in the substrate storage space. It is preferable to have a positional relationship that faces each other between the adjacent substrates.
  • the substrate storage space can store 25 substrates spaced in parallel at a predetermined equal interval, and a plurality of the through holes are formed, and a plurality of through holes are stored in the substrate storage space. It is preferable that the first substrate to the fourteenth substrate among the substrates have a positional relationship facing the spaces between the substrates.
  • the present invention it is possible to provide a substrate storage container capable of efficiently replacing the gas in the substrate storage space of the container main body with the purge gas without increasing the number of parts and performing a uniform gas purge in a short time.
  • FIG. 1 It is an enlarged view of the gas ejection control mechanism 101 vicinity of the substrate storage container 1 which concerns on a reference form.
  • FIG. 1 It is sectional drawing which shows a mode that the board
  • FIG. It is the graph which showed the waveform of the humidity sensor on the board
  • FIG. 1 It is the graph which showed the waveform of the humidity sensor on the board
  • FIG. It is the graph which showed the waveform of the humidity sensor on the board
  • FIG. It is the graph which showed the waveform of the humidity sensor on the board
  • FIG. 1 is an exploded perspective view showing a state in which a substrate W is stored in a substrate storage container 1 according to a reference embodiment.
  • FIG. 2 is a lower perspective view showing the container main body 2 of the substrate storage container 1 according to the reference embodiment.
  • FIG. 3 is an upper perspective view in which the second side wall 26 and the upper wall 23 are omitted in the container body 2 of the substrate storage container 1 according to the reference embodiment.
  • FIG. 4 is an exploded perspective view showing the gas ejection control mechanism 101 of the substrate storage container 1 according to the reference embodiment.
  • FIG. 5 is an upper plan view in which the upper wall 23 is omitted in the container main body 2 of the substrate storage container 1 according to the reference embodiment.
  • FIG. 6 is an enlarged view of the vicinity of the gas ejection control mechanism 101 of the substrate storage container 1 according to the reference embodiment.
  • FIG. 7 is a cross-sectional view showing a state in which the substrate W is stored in the container body 2 of the substrate storage container 1 according to the reference embodiment.
  • a direction from the container body 2 described later to the lid 3 is defined as the front direction D11, and the opposite direction is defined as the rear direction D12. These are collectively defined as the front-rear direction D1.
  • a direction (upward direction in FIG. 1) from the lower wall 24 described later to the upper wall 23 is defined as an upward direction D21, and the opposite direction is defined as a downward direction D22.
  • a direction from the second side wall 26 to be described later to the first side wall 25 (a direction from the lower right to the upper left in FIG. 1) is defined as the left direction D31, and the opposite direction is defined as the right direction D32.
  • arrows indicating these directions are shown.
  • the substrate W (see FIG. 1) stored in the substrate storage container 1 is a disk-shaped silicon wafer, glass wafer, sapphire wafer, etc., and is a thin one used in the industry.
  • the substrate W in the reference embodiment is a silicon wafer having a diameter of 300 mm to 450 mm.
  • the substrate storage container 1 is used as an in-process container for storing a substrate W made of a silicon wafer as described above and transporting it in a process in a factory, or by land transportation means / air transportation means / sea transportation.
  • Used as a shipping container for transporting a substrate by transport means such as a container, a container main body 2, a lid 3, a substrate support plate-like portion 5 as a side substrate support portion, and a back side It has a substrate support part (not shown) and a front retainer (not shown) as a lid side substrate support part.
  • the container body 2 has a cylindrical wall portion 20 in which a container body opening 21 is formed at one end and the other end is closed.
  • a substrate storage space 27 is formed in the container body 2.
  • the substrate storage space 27 is formed so as to be surrounded by the wall portion 20.
  • the substrate support plate-shaped portion 5 is disposed in a portion of the wall portion 20 that forms the substrate storage space 27. As shown in FIG. 1, a plurality of substrates W can be stored in the substrate storage space 27.
  • the substrate support plate-like portion 5 is provided on the wall portion 20 so as to form a pair in the substrate storage space 27.
  • the substrate support plate-like portion 5 abuts the edges of the plurality of substrates W to separate the adjacent substrates W at a predetermined interval.
  • the edges of the plurality of substrates W can be supported in a state where they are aligned in parallel.
  • a back side substrate support part (not shown) is provided on the back side of the substrate support plate-like part 5.
  • the back substrate support (not shown) is provided on the wall 20 so as to form a pair with a front retainer (not shown) described later in the substrate storage space 27.
  • the back substrate support (not shown) abuts the edges of the plurality of substrates W, thereby The rear part can be supported.
  • the lid 3 can be attached to and detached from the opening peripheral edge portion 31 (FIG. 1 and the like) forming the container body opening 21 and can close the container body opening 21.
  • the front retainer (not shown) is provided in a portion of the lid 3 that faces the substrate storage space 27 when the container main body opening 21 is closed by the lid 3.
  • the front retainer (not shown) is disposed inside the substrate storage space 27 so as to be paired with the back side substrate support portion (not shown).
  • the front retainer (not shown) supports the front part of the edges of the plurality of substrates W by contacting the edges of the plurality of substrates W when the container body opening 21 is closed by the lid 3. Is possible.
  • the front retainer (not shown) supports the plurality of substrates W in cooperation with the back side substrate support portion (not shown) when the container body opening 21 is closed by the lid 3.
  • a plurality of substrates W are held in a state in which adjacent substrates W are separated from each other at a predetermined interval and arranged in parallel.
  • the substrate storage container 1 is made of a resin such as a plastic material.
  • the resin of the material include polycarbonate, cycloolefin polymer, polyetherimide, polyetherketone, and polybutyl.
  • examples thereof include thermoplastic resins such as terephthalate, polyether ether ketone, and liquid crystal polymer, and alloys thereof.
  • conductive substances such as carbon fibers, carbon powder, carbon nanotubes, and conductive polymers are selectively added. It is also possible to add glass fiber, carbon fiber or the like in order to increase the rigidity.
  • the wall portion 20 of the container body 2 includes a back wall 22, an upper wall 23, a lower wall 24, a first side wall 25, and a second side wall 26.
  • the back wall 22, the upper wall 23, the lower wall 24, the first side wall 25, and the second side wall 26 are made of the above-described materials and are integrally formed.
  • the first side wall 25 and the second side wall 26 face each other, and the upper wall 23 and the lower wall 24 face each other.
  • the rear end of the upper wall 23, the rear end of the lower wall 24, the rear end of the first side wall 25, and the rear end of the second side wall 26 are all connected to the back wall 22.
  • the front end of the upper wall 23, the front end of the lower wall 24, the front end of the first side wall 25, and the front end of the second side wall 26 have a positional relationship facing the back wall 22 and have a substantially rectangular shape.
  • the opening peripheral part 31 which forms is comprised.
  • the opening periphery 31 is provided at one end of the container body 2, and the back wall 22 is located at the other end of the container body 2.
  • the outer shape of the container body 2 formed by the outer surface of the wall portion 20 is box-shaped.
  • the inner surface of the wall portion 20, that is, the inner surface of the back wall 22, the inner surface of the upper wall 23, the inner surface of the lower wall 24, the inner surface of the first side wall 25, and the inner surface of the second side wall 26 are surrounded by these. 27 is formed.
  • the container main body opening 21 formed in the opening peripheral edge portion 31 is surrounded by the wall portion 20 and communicates with the substrate storage space 27 formed in the container main body 2. A maximum of 25 substrates W can be stored in the substrate storage space 27.
  • gas flows in the surface on the inner side of the first side wall 25 and on the inner side of the second side wall 26 and in the first side wall curved portion 225 and the second side wall curved portion 226.
  • the gas control part 151 which controls is formed.
  • the back side fixing portion 51 formed at the rear end of the substrate support plate-like portion 5 attached to the inner surface of the first side wall 25 and the inner surface of the second side wall 26 is configured as the gas control unit 151.
  • latch engaging recesses 40 ⁇ / b> A and 40 ⁇ / b> B that are recessed toward the outside of the substrate storage space 27 in the upper wall 23 and the lower wall 24 and in the vicinity of the opening peripheral edge 31.
  • 41A, 41B are formed.
  • a total of four latch engagement recesses 40A, 40B, 41A, 41B are formed in the vicinity of the left and right ends of the upper wall 23 and the lower wall 24, one each.
  • a rib 28 is provided integrally with the upper wall 23.
  • the ribs 28 increase the rigidity of the container body.
  • top flange 29 is fixed to the central portion of the upper wall 23.
  • the top flange 29 is a member that is a portion that is hung and suspended in the substrate storage container 1 when the substrate storage container 1 is suspended in an AMHS (automatic wafer conveyance system), PGV (wafer substrate conveyance carriage), or the like.
  • air supply holes 45 and exhaust holes 46 which are two types of through holes, are formed at the four corners of the lower wall 24 as air passages.
  • the two through holes in front of the lower wall 24 are exhaust holes 46 for discharging the gas inside the container body 2, and the two through holes in the rear supply gas to the inside of the container.
  • An air supply hole 45 is provided for attention.
  • An air supply filter portion 80 and an exhaust filter portion 81 are disposed in the through holes of the air supply hole 45 and the exhaust hole 46, respectively. Therefore, the gas flow paths inside the air supply filter unit 80 and the exhaust filter unit 81 constitute a part of a ventilation path that allows the substrate storage space 27 and the space outside the container body 2 to communicate with each other.
  • the air supply filter unit 80 and the exhaust filter unit 81 are disposed on the wall 20, and the air supply filter unit 80 and the exhaust filter unit 81 pass through the filter 83 to the outside of the container body 2. Gas can pass between this space and the substrate storage space 27.
  • the air supply filter unit 80 includes a housing 82 as a filter unit housing, a filter 83, and a check valve 84.
  • the filter 83 and the check valve 84 are fixed to the housing 82 portion.
  • the filter 83 is disposed in the ventilation path, and is disposed closer to the substrate storage space 27 than the check valve 84.
  • the air supply filter unit 80 can pass gas only from the space outside the container body 2 to the substrate storage space 27 through the filter 83 by the check valve 84. At that time, the filter 83 prevents particles contained in the gas from the external space of the container body 2 from passing through.
  • the exhaust filter unit 81 has the same configuration as the air supply filter unit 80. However, the function of the check valve is different from the function of the check valve 84 for air supply, and the substrate storage space 27 is provided. Gas can only pass through to the space outside the container body 2.
  • two gas ejection control mechanisms 101 are provided opposite to each other in the vicinity of the inner surface of the back wall 22 of the substrate storage space 27 of the container body 2.
  • the gas ejection control mechanism 101 polyethylene, polypropylene, or the like can be used in addition to the resin of the substrate storage container 1 described above.
  • gas ejection control mechanisms 101 are disposed above the air supply holes 45 and are attached to the gas ejection control mechanism mounting portion 150. As shown in FIG. 4, the gas ejection control mechanism 101 has a plurality of openings as gas ejection nozzles that supply the gas that has flowed into the ventilation path inside the air supply filter unit 80 to the substrate storage space 27. To connect the tubular gas circulation part 110, the supply air filter part 80, and the tubular gas circulation part 110 so that gas can be circulated from the supply air filter part 80 to the tubular gas circulation part 110 as a gas ejection nozzle part. And a connecting portion 120.
  • a direction from the tubular gas circulation part 110 toward the substrate W is defined as a substrate direction
  • a direction from the tubular gas circulation part 110 toward the gas control part 151 of the substrate support plate-like part 5 is defined as a gas control part direction.
  • the tubular gas circulation part 110 has a substrate direction opening part 130 and a gas control part direction opening part 140.
  • the substrate direction opening 130 is directed to the center of the substrate W accommodated in the container main body 2
  • the gas control unit direction opening 140 is a gas control provided on the side wall of the container main body 2. It is directed to the part 151.
  • the inside of the tubular gas circulation part 110 is hollow.
  • the size and arrangement of the substrate direction opening 130 and the gas control unit direction opening 140 are appropriately designed so that the flow rate of the gas ejected from the substrate direction opening 130 and the gas control unit direction opening 140 is uniform. It is configured to be possible.
  • the openings are arranged so as to be ejected into the inter-substrate space 200 between the plurality of substrates W stored in the vertical direction D2 in the substrate storage container 1.
  • the tubular gas circulation part 110 has a predetermined height between the lower wall 24 and the upper wall 23.
  • the tubular gas circulation part 110 has a height at which the uppermost opening can be arranged between the 13th and 14th substrates W stored in the container body 2.
  • the lid 3 has a substantially rectangular shape that substantially matches the shape of the opening peripheral edge 31 of the container body 2.
  • the lid 3 can be attached to and detached from the opening peripheral edge 31 of the container main body 2, and the lid 3 can close the container main body opening 21 by attaching the lid 3 to the opening peripheral edge 31. .
  • It is the inner surface of the lid 3 (the surface on the back side of the lid 3 shown in FIG. 1), at the position in the rearward direction D12 of the opening peripheral edge 31 when the lid 3 closes the container body opening 21.
  • An annular seal member 4 is attached to a surface facing the formed stepped portion surface (seal surface 30).
  • the seal member 4 is made of various types of thermoplastic elastomers such as polyester and polyolefin that can be elastically deformed, fluorine rubber, and silicon rubber. The seal member 4 is arranged so as to go around the outer peripheral edge of the lid 3.
  • the seal member 4 When the lid 3 is attached to the opening peripheral edge 31, the seal member 4 is sandwiched between the seal surface 30 and the inner surface of the lid 3, and is elastically deformed. The lid 3 seals the container body opening 21. Shuts down in a closed state. By removing the lid 3 from the opening peripheral edge 31, the substrate W can be taken in and out of the substrate storage space 27 in the container body 2.
  • the lid 3 is provided with a latch mechanism.
  • the latch mechanism is provided in the vicinity of both left and right ends of the lid 3, and as shown in FIG. 1, two upper latch portions 32A and 32B that can project in the upward direction D21 from the upper side of the lid 3, and the lid 3, two lower latch portions (not shown) that can project in the downward direction D22 from the lower side of 3.
  • the two upper latch portions 32 ⁇ / b> A and 32 ⁇ / b> B are disposed in the vicinity of the left and right ends of the upper side of the lid 3, and the two lower latch portions are disposed in the vicinity of the left and right ends of the lower side of the lid 3.
  • An operation unit 33 is provided on the outer surface of the lid 3.
  • the upper latch portions 32A and 32B and the lower latch portion (not shown) can be protruded from the upper side and the lower side of the lid body 3, It can be set as the state which does not protrude from a lower side.
  • the upper latch portions 32A and 32B protrude from the upper side of the lid 3 in the upward direction D21, engage with the latch engagement recesses 40A and 40B of the container body 2, and the lower latch portion (not shown) is the lid.
  • the lid 3 is fixed to the opening peripheral edge 31 of the container body 2 by projecting in the downward direction D22 from the lower side of the container 3 and engaging with the latch engagement recesses 41A and 41B of the container body 2.
  • a recess (not shown) that is recessed outward from the substrate storage space 27 is formed inside the lid 3.
  • a front retainer (not shown) is fixedly provided on the concave portion (not shown) and the lid 3 outside the concave portion.
  • the front retainer (not shown) has a front retainer substrate receiving portion (not shown).
  • Two front retainer substrate receiving portions (not shown) are arranged in pairs so as to form a pair with a predetermined interval in the left-right direction D3.
  • the front retainer substrate receiving portions arranged in pairs so as to form a pair in this way are provided in a state where 25 pairs are juxtaposed in the vertical direction D2.
  • the front retainer substrate receiving portion sandwiches and supports the edge of the edge of the substrate W.
  • gas replacement by the gas ejection control mechanism 101 is performed as follows.
  • the gas purging method for the substrate storage container 1 includes two cases where the cover body 3 is closed by closing the container body opening 21 of the container body 2 and when the cover body 3 is removed from the substrate storage container 1. There is a street. Hereinafter, description will be given in a state where the container body 2 is closed with the lid 3.
  • the purge gas is supplied to the air supply filter section 80 provided in the air supply hole 45 of the lower wall 24 of the container main body 2.
  • the check valve 84 in the air supply filter unit 80 can pass gas only from the outside of the container body 2 to the substrate storage space 27 inside the container body 2, and cannot pass gas in the opposite direction. Therefore, the purge gas supplied to the inlet of the air supply filter unit 80 passes through the check valve 84 and the filter 83.
  • the purge gas that has passed through the air supply filter unit 80 passes through the connection unit 120 and enters the tubular gas circulation unit 110.
  • the purge gas that has entered the tubular gas circulation part 110 rises upward D21 due to the pressure of the purge gas, hits the upper surface 111 of the tubular gas circulation part, and the internal pressure of the tubular gas circulation part 110 increases.
  • the purge gas is ejected from the substrate direction opening 130 and the gas control unit direction opening 140 provided on the side of the tubular gas circulation part 110.
  • the purge gas discharged from the substrate direction openings 130 of the respective tubular gas circulation portions 110 is jetted to the central portion of the substrate W stored in the container body 2. Then, these purge gases collide in the vicinity of the central portion of the substrate W and change their direction toward the container body opening 21. That is, the purge gas is jetted from the central portion of the back wall 22 in the left-right direction D3 toward the container main body opening 21. Thereafter, the gas inside the container body 2 is released to the outside from the exhaust filter portion 81 disposed in the front portion of the lower wall 24 of the container body 2 and provided in the exhaust hole 46.
  • each tubular gas flow part 110 is located inside the first side wall curved part 225 and the second side wall curved part 226, respectively, as indicated by arrows in FIG. It ejects toward the gas control part 151 arrange
  • the purge gas in the vicinity of the container body opening 21 the gas inside the container body 2 is released to the outside from the exhaust filter part 81 provided in the exhaust hole 46 disposed in the front part of the lower wall 24 of the container body 2.
  • the in this way, the purge gas is supplied to the supply air filter unit 80 and the gas is released from the exhaust filter unit 81 in a predetermined time, whereby the substrate storage container 1 is purged.
  • the gas purge When the gas purge is performed with the lid 3 removed from the substrate storage container 1, the amount of gas released from the exhaust filter portion 81 to the outside decreases, and the gas released from the container body opening portion.
  • the gas purge itself is performed in the same manner only by increasing the amount of gas. In this case, it is necessary to quickly attach the lid 3 to the container body 2 after the gas purge is completed.
  • two tubular gas distribution parts existed, it is not restricted to this. For example, it is good also as one tubular gas distribution part. At that time, in order to allow the purge gas to flow toward the gas control sections on the first side wall and the second side wall, a new opening is provided in the tubular gas circulation section to adjust the gas flow.
  • the gas ejection control mechanism 101 according to the reference embodiment was removed, and the pattern 1 was formed by ejecting the purge gas from the opening of the connection portion while being offset from the center of the supply air filter portion 80 by the connection portion 120.
  • the total length of the tubular gas circulation part 110 is such that the openings can be arranged between all the 25 substrates W stored in the substrate storage space 27.
  • Pattern 2 was assumed. Further, the gas ejection control mechanism 101 in the reference form was tested as a pattern 3.
  • a humidity sensor was installed at the center of the first, thirteenth, and twenty-fifth substrates among the 25 substrates stored in the substrate storage space 27, and industrial compressed nitrogen was supplied thereto at 50 liters per minute. Supply and check for low humidity.
  • a nitrogen purge for 2 minutes was performed with the lid 3 removed from the container body 2.
  • the nitrogen concentration should be measured, but instead of measuring the nitrogen gas concentration, the nitrogen gas substitution state was measured as a change in humidity using the fact that the nitrogen gas was completely dry. .
  • the humidity value of the air in the test environment appears on the vertical axis. The state where the nitrogen gas concentration is high is a state where the humidity is low in this test.
  • FIG. 8 shows the test results of pattern 1
  • FIG. 9 shows pattern 2
  • FIG. 10 shows pattern 3.
  • the replacement efficiency on the first substrate is poor
  • the replacement efficiency on the thirteenth and 25th substrates is poor.
  • the purge gas ejected from the connection opening 112 rises in the direction of the upper wall 23, so that the purge gas hardly flows in the vicinity of the lower wall of the container, and the replacement is difficult to be performed.
  • the purge gas ejected into the substrate storage space 27 varies and the uniform replacement is not performed.
  • the tubular gas circulation part 110 is provided, and the total length of the tubular gas circulation part 110 is set to a predetermined height between the lower wall 24 and the upper wall 23, and the first to fourteenth substrates W from the bottom are provided. It has been found that the purge can be efficiently performed by providing an opening between them and performing the purge. Further, although no opening is provided between the first substrate from the bottom of the substrate W and the lower wall 24, it is replaced by the purge gas from the opening between the first and second substrates from the bottom of the substrate W. ing.
  • the substrate storage container 1 is a cylindrical wall portion in which a container main body opening is formed at one end and the other end is closed, and includes a back wall, an upper wall, a lower wall, and a pair of side walls.
  • the inner surface of the container can store a plurality of substrates and can be attached to and detached from the container body opening in which a substrate storage space communicating with the container body opening is formed, and the container body opening can be closed.
  • a substrate storage container comprising a lid and capable of replacing the gas inside the container using a plurality of air passages that allow the substrate storage space and the space outside the container body to communicate with each other.
  • Air supply holes used to supply gas to the inside or empty inside the container
  • the gas control unit 151 for controlling the gas flow inside the container provided on the side wall
  • the gas ejection control mechanism 101 has a predetermined height between the lower wall and the upper wall, and causes the gas supplied from the air supply holes to flow in the direction of the substrate stored in the container body and the direction of the gas control unit.
  • the gas ejection control mechanism includes a tubular gas flow part 110 having a plurality of openings that have openings on the side surfaces and have a hollow cylindrical shape and eject gas in the direction of the substrate and the gas control part, the air supply holes 45, and the tubular gas flow.
  • the connection portion 120 is formed at one end of the portion and is connected to the supply hole so that gas can flow, and the gas supplied to the supply hole is supplied to the tubular gas flow portion through the connection portion, and then the tubular gas flow portion. The gas flowed in the direction of the inner wall 22 of the container body and in the direction of the upper wall 23 after being ejected from the opening and further hitting the gas control part of the container body.
  • the gas control unit is provided in the curved portions 225 and 226 at the connection portion between the container main body side wall and the back wall.
  • the opening of the tubular gas circulation part is arranged between the adjacent substrates of the plurality of substrates accommodated in the container body, and the gas is ejected into the space between the adjacent substrates. It was set as the structure to do.
  • the uppermost opening of the opening of the tubular gas circulation portion is between the 13th and 14th substrates counted from the lower wall side. It was set as the structure arranged.
  • the purge gas supplied to the air supply filter section collides with the upper surface of the tubular gas circulation section when passing through the tubular gas circulation section, and the pressure of the substrate W stored in the container body is increased.
  • the purge gas is also ejected toward the gas control unit on the side wall. The purge gas ejected toward the gas control unit is reflected by the gas control unit and changes its direction toward the rear wall and the upper wall. Then, it flows into the container body opening in an extruded form.
  • the purge gas does not stay in the substrate storage space of the container main body, and flows from the supply air filter section to the exhaust filter section or the container main body opening, and the gas inside the container is discharged to the outside for replacement. Further, by appropriately designing the opening of the tubular gas circulation part and the fluid control part, the flow rate of the gas purge gas flowing inside the container can be made uniform in the vertical direction of the container. Therefore, it is possible to provide a substrate storage container that can efficiently replace the gas in the substrate storage space of the container body and perform a uniform gas purge in a short time.
  • the rate at which the silicon wafer is exposed to the purge gas in the semiconductor processing step is increased and uniform gas replacement can be performed, the yield of semiconductor chips fabricated on the silicon wafer can be improved. Furthermore, since the gas replacement can be performed efficiently in a short time, the process time is shortened and the cost is reduced.
  • FIG. 11 is a perspective view showing the gas ejection control mechanism 101A of the substrate storage container 1 according to the embodiment reference embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing the gas ejection control mechanism 101A of the substrate storage container 1 according to the embodiment reference embodiment of the present invention.
  • the configurations of the gas ejection control mechanism 101A and the connection portion 120A are different from the configurations of the gas ejection control mechanism 101 and the connection portion 120 of the substrate storage container 1 according to the above-described reference embodiment. Since the configuration other than this is the same as the configuration of the substrate storage container 1 according to the reference mode, the same configuration as each configuration in the reference mode is denoted by the same reference numeral, and the description thereof is omitted.
  • the substrate storage container includes two gas ejection control mechanisms 101A and two connection portions 120A.
  • the two gas ejection control mechanisms 101A have a symmetrical shape, and the two connection portions 120A have the same shape. For this reason, only one gas ejection control mechanism 101A and connection part 120A will be described, and description of the other gas ejection control mechanism 101A and connection part 120A will be omitted.
  • a locking portion 121A and a hook portion 122A are provided at the upper end of the connecting portion 120A.
  • the locking portion 121 ⁇ / b> A extends outward in the radial direction of the gas ejection control mechanism 101 so as to be separated from the hook portion 122 ⁇ / b> A, extends in the upward direction D ⁇ b> 21, and further in the radial direction of the gas ejection control mechanism 101. It extends outwardly away from the hook portion 122A.
  • the gas ejection control mechanism 101 ⁇ / b> A supplies purge gas or the like as gas that has flowed into the supply air filter unit 80 to the substrate storage space 27.
  • the gas ejection control mechanism 101A has a substantially conical tubular gas circulation part main body 110A having an upper end closed and a lower end opened.
  • the maximum inner diameter of the tubular gas circulation part main body 110A (the inner diameter of the lower end of the tubular gas circulation part main body 110A) is about 14 mm, and the minimum inner diameter of the tubular gas circulation part main body 110A (the tubular gas circulation part main body 110A The inner diameter of the upper end is about 9 mm.
  • the internal space of the tubular gas circulation part main body 110 ⁇ / b> A communicates with the ventilation path of the air supply filter part 80.
  • the gas ejection control mechanism 101A includes a curved portion side direction inner wall recess 113A, a back wall side direction inner wall recess 114A, a gas control portion direction inner wall recess 115A, a substrate direction opening 130A, and 140 A of gas control part direction openings are formed.
  • the curved-wall-side inner wall recess 113A is formed by a substantially rectangular recess that is formed on the inner surface of the tubular gas circulation portion main body 110A and is recessed in a direction away from the center of the substrate W.
  • the curved portion side inner wall recess 113A is formed in a row in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the position near the lower end.
  • the height in the vertical direction D2 of each curved portion side inner wall recess 113A is the same and is about 4.5 mm.
  • the length of the curved portion side direction inner wall concave portion 113A in the circumferential direction of the tubular gas circulation portion main body 110A is changed from the curved portion side direction inner wall concave portion 113A located at the top to the curved portion side direction inner wall concave portion 113A located at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 3 mm, and the maximum is about 7 mm.
  • the depths of the recesses in the curved portion side direction inner wall recess 113A are each 2.0 mm.
  • the portion of the inner surface of the tubular gas circulation portion main body 110A where the curved portion side direction inner wall concave portion 113A is not formed has a convex shape relative to the curved portion side direction inner wall concave portion 113A.
  • An uneven portion is constituted by the side inner wall recess 113A. The uneven portion causes gas turbulence in the internal space of the tubular gas circulation portion main body 110A.
  • the inner wall concave portion 114A in the rear wall side direction is configured by a substantially rectangular concave portion that is recessed in a direction away from the gas control unit 151 (see FIG. 6).
  • the back wall side direction inner wall recess 114A is formed in a row in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the position near the lower end.
  • the dimension of the inner wall recess 114A in the rear wall side direction is the same as the dimension of the inner wall recess 113A in the bending portion side direction. That is, the heights in the vertical direction D2 of the inner wall concave portions 114A in the back wall side direction are all the same and about 4.5 mm.
  • the length of the inner wall recess 114A in the back wall side direction in the circumferential direction of the tubular gas circulation portion main body 110A is changed from the inner wall recess 114A in the back wall side direction located at the top to the inner wall recess 114A in the back wall side direction located at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 3 mm, and the maximum is about 7 mm.
  • the depths of the recesses in the inner wall recess 114A in the rear wall side direction are each 2.0 mm.
  • the gas control unit direction inner wall recess 115 ⁇ / b> A is configured by a substantially rectangular recess recessed in a direction approaching the gas control unit 151.
  • the gas control unit direction inner wall concave portion 115A extends in the vertical direction D2 from the position near the lower end of the gas ejection control mechanism 101A to the same position as the sixth inner wall concave portion 114A in the back wall side direction in the vertical direction D2. Six are formed in one row. Therefore, the inner wall recess 115A in the gas control unit direction has a positional relationship opposite to the inner wall recess 114A in the rear wall side direction from the first to the sixth from the bottom in the direction approaching / separating from the gas control unit 151. ing.
  • the dimension of the inner wall recess 115A in the gas control unit direction is the same as the dimension of the inner wall recess 114A in the rear wall side direction from the first to the sixth from the bottom. That is, the height in the vertical direction D2 of each gas control unit direction inner wall recess 115A is the same and is about 4.5 mm.
  • the length of the inner wall recess 115A in the gas control unit direction in the circumferential direction of the tubular gas circulation unit main body 110A is changed from the inner wall recess 115A in the gas control unit direction positioned at the top to the inner wall recess 115A in the gas control unit direction positioned at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 5.7 mm, and the maximum is about 7 mm.
  • the depths of the recesses in the inner wall recess 115A in the gas control unit direction are each 2.0 mm.
  • the substrate direction opening 130A and the gas control unit direction opening 140A are configured by through holes that communicate the inside and the outside of the gas ejection control mechanism 101A.
  • the substrate direction openings 130A are formed in a row in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the position near the lower end.
  • the substrate direction openings 130A all have rectangular openings, and the 13 substrate direction openings 130A are in a direction perpendicular to the vertical direction D2 and approaching / separating from the central portion of the substrate W.
  • And 13 curved portion side direction inner wall concave portions 113A respectively, in a one-to-one correspondence. Accordingly, the substrate direction opening 130A opens toward the center of the substrate W in a direction perpendicular to the vertical direction D2 and approaching / separating from the center of the substrate W.
  • Each substrate direction opening 130A having a positional relationship facing each curved portion side direction inner wall concave portion 113A has the same dimensions as each curved portion side direction inner wall concave portion 113A. That is, the height in the vertical direction D2 of each substrate direction opening 130A is the same and is about 4.5 mm.
  • the length of each substrate direction opening 130A in the circumferential direction of the gas ejection control mechanism 101A gradually increases from the substrate direction opening 130A positioned at the top to the substrate direction opening 130A positioned at the bottom. Therefore, the minimum is about 3 mm, and the maximum is about 7 mm.
  • Each of the substrate direction openings 130A is formed between the substrates from the first substrate W from the bottom to the fourteenth substrate from the bottom among the plurality of substrates W stored in the substrate storage space 27.
  • Each of the spaces has a positional relationship facing each other.
  • the substrate direction opening 130A located at the bottom faces the space between the first substrate W from the bottom and the second substrate W from the bottom.
  • the substrate direction opening 130A located second from the bottom faces the space between the second substrate W from the bottom and the third substrate W from the bottom.
  • each substrate direction opening 130A is opposed to the space between the two substrates W supported adjacent to the vertical direction D2, and is located in the thirteenth position from the bottom.
  • 130A faces a space between the 13th substrate W from the bottom and the 14th substrate W from the bottom.
  • the substrate direction opening 130A facing the space between the first substrate W located at the bottom and the lower wall 24 is not formed, but the substrate direction opening formed at another position.
  • the first sheet located at the bottom due to the purge gas flowing into the substrate storage space 27 from the portion 130A or the gas control unit direction opening 140A and the purge gas leaking between the connecting portion 120A and the lower wall 24 Also in the space between the substrate W and the lower wall 24, replacement with the purge gas is performed.
  • the gas control unit direction opening 140A extends in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the same position as the seventh inner wall recess 114A in the back wall side direction in the vertical direction D2. Seven are formed in one row.
  • the gas control unit direction openings 140A all have rectangular openings, and the seven gas control unit direction openings 140A are directions perpendicular to the vertical direction D2 and approach the gas control unit 151.
  • the first to seventh inner wall recesses 114A in the rear wall side direction face each other in a one-to-one correspondence. Therefore, the gas control unit direction opening 140A opens toward the gas control unit 151 in a direction orthogonal to the vertical direction D2 and in a direction approaching / separating from the gas control unit 151.
  • Each gas control unit direction opening 140A having a positional relationship facing each back wall side direction inner wall recess 114A has the same dimensions as each back wall side direction inner wall recess 114A. That is, the heights of the gas control unit direction openings 140A in the vertical direction D2 are all the same and about 4.5 mm.
  • the length of each gas control unit direction opening 140A in the circumferential direction of the gas ejection control mechanism 101A is changed from the gas control unit direction opening 140A located at the top to the gas control unit direction opening 140A located at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 3 mm, and the maximum is about 7 mm.
  • the curved portion side direction convex portion 116A is formed on the outer surface portion of the tubular gas flow portion main body 110A with respect to the inner surface of the tubular gas flow portion main body 110A in which the curved portion side direction inner wall concave portion 113A is formed. It has a shape that substantially matches the inner wall recess 113A.
  • the back wall side convex portion 117A is formed on the outer surface portion of the tubular gas flow portion main body 110A with respect to the inner surface of the tubular gas flow portion main body 110A in which the back wall side direction inner wall concave portion 114A is formed. It has a shape that substantially matches the lateral inner wall recess 114A.
  • the gas control unit direction convex portion 118A is formed on the outer surface portion of the tubular gas flow portion main body 110A with respect to the inner surface of the tubular gas flow portion main body 110A in which the gas control portion direction inner wall concave portion 115A is formed. It has a shape substantially coinciding with the partial inner wall recess 115A.
  • substantially matching shape means not only a completely matching shape but also a case where a slight difference in shape occurs due to a dimensional error or the like when manufactured with the intention of a matching shape. Even if the curved portion side direction inner wall concave portion 113A, the rear wall side direction inner wall concave portion 114A, and the gas control portion direction inner wall concave portion 115A are formed, the radial thickness of the tubular gas flow portion main body 110A is almost the same. It means that the curved portion side convex portion 116A, the back wall side convex portion 117A, and the gas control portion direction convex portion 118A are formed to such an extent that a so-called sink does not occur during molding.
  • the lower end of the gas ejection control mechanism 101A has locked portions 102 and 103.
  • the locked portion 103 protrudes radially outward (leftward in FIG. 12) of the gas ejection control mechanism 101A from the lower end of the gas ejection control mechanism 101A.
  • the locked portion 102 is lowered stepwise in a downward direction D22 from the lower end portion of the gas ejection control mechanism 101A and protrudes radially outward (rightward in FIG. 12) of the gas ejection control mechanism 101A.
  • a through hole is formed in the portion of the locked portion 102 that protrudes outward in the radial direction of the gas ejection control mechanism 101A (right direction in FIG. 12).
  • the locking portion 121A is inserted into the through hole of the locked portion 102, and the locked portion 103 is hooked on the hook portion 122A, whereby the lower end portion of the gas ejection control mechanism 101A is fixed to the upper end portion of the connecting portion 120A. Is done.
  • a test was performed to compare the replacement status of the substrate storage space 27 described above.
  • a pattern 4 (FIG. 13) using the gas ejection control mechanism 101 ⁇ / b> A in the present embodiment was used.
  • the curved portion side direction inner wall concave portion 113A, the back wall side direction inner wall concave portion 114A, and the gas control portion direction inner wall concave portion 115A are not formed, and other configurations
  • the pattern 5 (FIG. 14) is the same as that of the gas ejection control mechanism 101A in the present embodiment.
  • the depths of the curved portion side direction inner wall recess 113A, the back wall side direction inner wall recess 114A, and the gas control portion direction inner wall recess 115A are each 1 mm, and other configurations
  • the pattern 6 (FIG. 15) is the same as that of the gas ejection control mechanism 101A in the present embodiment. Further, the height in the vertical direction D2 of the gas ejection control mechanism 101A in the present embodiment is further increased so that the substrate direction opening 130A, the gas control unit direction opening 140A, the curved portion side direction inner wall concave portion 113A, and the back wall side direction.
  • Pattern 7 (FIG. 16) was obtained by increasing the number of inner wall recesses 114A and gas control unit direction inner wall recesses 115A by 12 each.
  • each of the substrate-direction openings 130 ⁇ / b> A extends from the bottom of the plurality of substrates W stored in the substrate storage space 27 to the substrate W positioned at the top from the first substrate W.
  • the space between the substrates and the space between the substrate W located on the top and the upper wall 23 respectively have a positional relationship facing each other.
  • a humidity sensor was installed at the center of the first, seventh, thirteenth, and twenty-fifth substrates among the 25 substrates stored in the substrate storage space 27. Then, industrial compressed nitrogen was supplied to the substrate storage space 27 at a rate of 50 liters per minute, and the humidity reduction state was confirmed. In this test, nitrogen was purged for 2 minutes with the lid 3 removed from the container body 2. Originally, the nitrogen concentration should be measured, but instead of measuring the nitrogen gas concentration, the nitrogen gas substitution state was measured as a change in humidity using the fact that the nitrogen gas was completely dry. . In the initial state, the value of air humidity in the test environment appears on the vertical axis. The state where the nitrogen gas concentration is high is a state where the humidity is low in this test.
  • FIG. 13 is a graph showing the waveform of the humidity sensor on the substrate used to confirm the replacement efficiency of the pattern 4 used in the test for confirming the effect of the present invention.
  • FIG. 14 is a graph showing the waveform of the humidity sensor on the substrate used in the test for confirming the effect of the present invention to confirm the replacement efficiency of the pattern 5.
  • FIG. 15 is a graph showing the waveform of the humidity sensor on the substrate used to confirm the replacement efficiency of the pattern 6 used in the test for confirming the effect of the present invention.
  • FIG. 16 is a graph showing the waveform of the humidity sensor on the substrate used to confirm the replacement efficiency of the pattern 7 used in the test for confirming the effect of the present invention.
  • the humidity value is greatly reduced with respect to the initial state at any of the positions of the first, seventh, thirteenth and twenty-fifth substrates. It can be seen that the nitrogen gas concentration is high at any position of the substrate storage space 27. That is, it can be seen that the nitrogen purge is sufficiently performed at any position in the substrate storage space 27.
  • the humidity value stably decreases at the positions of the first, thirteenth, and twenty-fifth substrates, and therefore the nitrogen gas concentration is stably high.
  • the humidity value hardly decreases and the nitrogen gas concentration does not become high.
  • the humidity value is hardly lowered at the positions of the seventh and thirteenth substrates, and the nitrogen gas concentration does not become high. It can also be seen that the humidity value is not stable at the position of the seventh substrate, and therefore the nitrogen gas concentration is not stable.
  • the substrate storage container 1 includes the cylindrical wall portion 20 in which the container main body opening 21 is formed at one end and the other end is closed, and a plurality of substrates can be stored by the inner surface of the wall portion.
  • a container main body 2 in which a substrate storage space 27 communicating with the container main body opening is formed; a lid 3 that is detachable from the container main body opening and can close the container main body opening; and a substrate storage space;
  • An air passage that can communicate with a space outside the container body, and a filter 83 that is disposed in the air passage.
  • the air passage is disposed on the wall and is disposed between the space outside the container body and the substrate storage space through the filter.
  • the gas jet control mechanism 101A as a gas jet nozzle part that supplies gas to the substrate storage space, and the gas from the filter part to the gas jet nozzle part.
  • Communicable communication It comprises a part, a.
  • the gas ejection control mechanism 101A serving as the gas ejection nozzle section has through-holes (substrate direction opening 130A and gas control section direction opening 140A) communicating the nozzle section internal space communicating with the air passage and the external space of the gas ejection nozzle section.
  • concavo-convex portions (curved portion side direction inner wall concave portion 113A, back wall side direction inner wall concave portion 114A) that are formed on the inner surface of the gas ejection nozzle portion forming the nozzle portion inner space and cause turbulent gas flow in the nozzle portion inner space.
  • gas control part direction inner wall concave part 115A (curved portion side direction inner wall concave portion 113A, back wall side direction inner wall concave portion 114A)
  • the curved wall side direction inner wall recess 113A, the back wall side direction inner wall recess 114A, and the gas control unit direction inner wall recess 115A that constitute the uneven part are inside the tubular gas circulation part main body 110A that is the nozzle part internal space.
  • a turbulent flow of gas in the space can be generated. Thereby, it can inhibit that purge gas flows strongly toward the front-end
  • the purge gas is uniformly injected into the substrate storage space 27 from any of the substrate direction opening portion 130A and the gas control portion direction opening portion 140A. be able to.
  • a configuration that does not require parts such as a barrier filter made of a porous material can be used, and therefore, it is possible to suppress an increase in the number of parts and an increase in the number of assembly steps. Furthermore, in the case of a configuration that requires parts such as a barrier filter made of a porous material, pressure loss due to the porous material occurs, but a barrier filter made of such a porous material is not used. , Pressure loss can be suppressed. As a result, the purge gas can be ejected vigorously from the substrate direction opening 130A and the gas control unit direction opening 140A to the substrate storage space 27, so that the gas purge can be performed in a shorter time.
  • the concavo-convex part is constituted by a concave part (curved part side direction inner wall concave part 113A, back wall side direction inner wall concave part 114A, and gas control part direction inner wall concave part 115A) formed to be depressed on the inner surface of the gas ejection nozzle part. .
  • the depth of the recess is 2.0 mm or more.
  • the depth of the recess is less than 2.0 mm, the purge gas cannot be sufficiently turbulent, and the amount of purge gas ejected from the substrate-direction opening 130A located near the lower end of the tubular gas circulation portion main body 110A is small. Less. For this reason, the efficiency of gas purge falls.
  • the depths of the curved portion side inner wall recess 113A, the back wall side inner wall recess 114A, and the gas control portion inner wall recess 115A constituting the concavo-convex portion are 2.0 mm or more. Turbulent flow can be sufficiently generated, and the amount of purge gas ejected from the substrate-direction opening 130A located in the vicinity of the lower end of the tubular gas circulation portion main body 110A can be suppressed.
  • the concavo-convex portions (the curved portion side direction inner wall concave portion 113A, the back wall side direction inner wall concave portion 114A) have a positional relationship facing the through holes (the substrate direction opening portion 130A and the gas control portion direction opening portion 140A).
  • a larger amount of purge gas is generated from the substrate direction opening 130A and the gas control unit direction opening 140A due to the turbulent flow generated by the curved portion side inner wall recess 113A and the rear wall side inner wall recess 114A constituting the uneven portion. Can be erupted.
  • the outer surface portion of the gas ejection nozzle portion with respect to the inner surface of the gas ejection nozzle portion where the recess portion is formed has a convex shape substantially matching the recess.
  • Are formed curved portion side convex portion 116A, back wall side convex portion 117A, and gas control portion direction convex portion 118A).
  • the curved portion side inner wall concave portion 113A, the inner wall concave portion 114A in the back wall side direction, and the inner wall concave portion 115A in the gas control portion direction, which form the concave and convex portions, are formed, so that the thickness of the tubular gas circulation portion main body 110A is increased. Can be suppressed from becoming thin. As a result, large deformation due to so-called “sinking” can be suppressed when the tubular gas circulation portion main body 110A is molded.
  • the substrate storage space can store a plurality of substrates in a state where they are arranged in parallel with a predetermined interval.
  • a plurality of through-holes are formed and have a positional relationship facing the space between adjacent substrates among the plurality of substrates stored in the substrate storage space.
  • the substrate storage space can store 25 substrates in a state where they are arranged in parallel at a predetermined equal interval.
  • a plurality of through-holes are formed and have a positional relationship facing the spaces between the respective substrates from the first substrate to the fourteenth substrate among the plurality of substrates stored in the substrate storage space. .
  • the purge gas supplied to the air supply filter unit 80 is stored in the container main body 2 in a state in which the purge gas collides with the upper surface of the tubular gas circulation unit main body 110A and the pressure is increased when passing through the tubular gas circulation unit main body 110A. Is once ejected to the central portion of the substrate W, and then intersects in the vicinity of the central portion of the substrate W and changes direction toward the container body opening 21 side, as if in the central portion of the back wall 22 in the left-right direction D3. The state is the same as when the purge gas is supplied.
  • purge gas is also ejected toward the gas control unit 151 on the side wall.
  • the purge gas ejected toward the gas control unit 151 is reflected by the gas control unit 151 and changes its direction toward the rear wall 22 and the upper wall 23. Then, it flows into the container body opening 21 in an extruded form. That is, the purge gas does not stay in the substrate storage space 27 of the container body 2 and flows from the air supply filter section 80 to the exhaust filter section 81 or the container body opening 21, and the gas inside the container is released to the outside. Replacement is performed. Furthermore, by appropriately designing the opening of the tubular gas circulation part and the fluid control part, the flow rate of the gas purge gas flowing inside the container can be made uniform in the vertical direction D2 of the container.
  • the substrate storage container that can efficiently replace the gas in the substrate storage space of the container body and perform a uniform gas purge in a short time. For this reason, the rate at which the substrate W (silicon wafer) is exposed to the purge gas in the semiconductor processing step is increased and uniform gas replacement can be performed, so that the yield of semiconductor chips fabricated on the substrate W is improved. Can do. Furthermore, since the gas replacement can be performed efficiently in a short time, the process time is shortened and the cost is reduced.
  • the depths of the curved portion side inner wall recess 113A, the back wall side inner wall recess 114A, and the gas control portion direction inner wall recess 115A are 2.0 mm, but are not limited to this value. What is necessary is just 2.0 mm or more.
  • the upper limit values of the depths of the curved portion side inner wall recess 113A, the rear wall side inner wall recess 114A, and the gas control portion direction inner wall recess 115A are as follows: the purge gas is inside the tubular gas circulation portion main body 110A and the tubular gas circulation portion main body 110A.
  • the flow path that circulates up to the upper end of the tube has a depth value that can be secured in the tubular gas flow portion main body 110A, and the tubular gas flow portion main body 110A becomes too thin.
  • it may be a depth value that does not cause significant deformation due to so-called “sinking”.
  • the portion of the tubular gas circulation portion main body 110A in which the curved portion side inner wall recess 113A, the rear wall side inner wall recess 114A, and the gas control portion inner wall recess 115A are formed in which the curved portion side inner wall recess 113A, the rear wall side inner wall recess 114A, and the gas control portion inner wall recess 115A are formed.
  • the curved portion side convex portion 116A, the back wall side convex portion 117A, and the gas control portion direction convex portion 118A are formed, but the configuration is not limited thereto.
  • the concavo-convex portion formed on the inner surface of the tubular gas circulation portion main body 110A has a convex portion
  • the outer surface portion of the gas ejection nozzle portion with respect to the inner surface of the gas ejection nozzle portion where the convex portion is formed It suffices if a concave portion having a shape substantially coincident with the convex portion is formed.
  • the curved portion side convex portion 116A, the back wall side convex portion 117A, and the gas control portion direction convex portion 118A may not be formed on the outer surface of the gas ejection nozzle portion.
  • the curved portion side direction inner wall recess 113A and the back wall side direction inner wall recess 114A constituting the concavo-convex portion extend from a position near the upper end of the gas ejection control mechanism 101A to a position near the lower end.
  • the purge gas easily flows out from the inside of the tubular gas circulation portion main body 110A to the substrate storage space 27 from the substrate direction opening portion 130A and the gas control portion direction opening portion 140A. It is good also as a structure by which 113 A of curved wall side direction inner wall recessed parts and the inner wall recessed part 114A of back wall side direction are formed only in the lower end part vicinity of 110 A of gas distribution
  • the shapes of the tubular gas circulation part, the back wall gas circulation part, and the gas ejection control part are not limited to the shapes of the present embodiment.
  • the number, arrangement, and size of the openings can be changed as appropriate.
  • the shape of the container main body and the lid, the number and dimensions of the substrates W that can be stored in the container main body are the shape of the container main body 2 and the lid 3 in this embodiment, the number of substrates W that can be stored in the container main body 2, It is not limited to dimensions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

A substrate storing container (1) according to the present invention is provided with a gas spraying nozzle part (101A) which supplies, to a substrate storing space (27), gas having flowed into the aeration channel of a filter part (80). The gas spraying nozzle part (101A) is provided with: through holes (130A, 140A) which cause a nozzle-part internal space connected to the aeration channel to be in communication with the external space of the gas spraying nozzle part; and concavities and convexities (113A, 114A, 115A) which are formed on the internal surface of the gas spraying nozzle part (101A) which forms the nozzle-part internal space, and which produce a turbulent flow of the gas in the nozzle-part internal space.

Description

基板収納容器Substrate storage container
 本発明は、半導体ウェーハ等からなる基板を収納、保管、搬送、輸送等する際に使用される基板収納容器に関する。 The present invention relates to a substrate storage container used when storing, storing, transporting, transporting, and the like, a substrate made of a semiconductor wafer or the like.
 半導体ウェーハからなる基板を収納して、工場内の工程において搬送するための基板収納容器としては、容器本体と蓋体とを備える構成のものが、従来より知られている。 2. Description of the Related Art Conventionally, as a substrate storage container for storing a substrate made of a semiconductor wafer and transporting it in a process in a factory, a structure including a container main body and a lid is known.
 容器本体は、一端部に容器本体開口部が形成され、他端部が閉塞された筒状の壁部を有する。容器本体内には基板収納空間が形成されている。基板収納空間は、壁部により取り囲まれて形成されており、複数の基板を収納可能である。蓋体は、容器本体開口部に対して着脱可能であり、容器本体開口部を閉塞可能である。 The container body has a cylindrical wall part in which an opening part of the container body is formed at one end and the other end is closed. A substrate storage space is formed in the container body. The substrate storage space is formed by being surrounded by a wall portion, and can store a plurality of substrates. The lid can be attached to and detached from the container body opening, and the container body opening can be closed.
 蓋体の部分であって容器本体開口部を閉塞しているときに基板収納空間に対向する部分には、フロントリテーナが設けられている。フロントリテーナは、蓋体によって容器本体開口部が閉塞されているときに、複数の基板の縁部を支持可能である。また、フロントリテーナと対をなすようにして、奥側基板支持部が壁部に設けられている。奥側基板支持部は、複数の基板の縁部を支持可能である。奥側基板支持部は、蓋体によって容器本体開口部が閉塞されているときに、フロントリテーナと協働して複数の基板を支持することにより、隣接する基板同士を所定の間隔で離間させて並列させた状態で、複数の基板を保持する(特許文献1~2参照)。 A front retainer is provided in a portion of the lid that faces the substrate storage space when the container main body opening is closed. The front retainer can support the edges of the plurality of substrates when the container main body opening is closed by the lid. Further, the back substrate support portion is provided on the wall portion so as to be paired with the front retainer. The back side substrate support part can support the edges of a plurality of substrates. When the container body opening is closed by the lid, the back side substrate support unit supports a plurality of substrates in cooperation with the front retainer, thereby separating adjacent substrates at a predetermined interval. A plurality of substrates are held in a parallel state (see Patent Documents 1 and 2).
 また、容器本体には、逆止弁が設けられている。逆止弁を通して、容器本体の外部から基板収納空間へ、窒素等の不活性ガスあるいは水分を除去(1%以下)したドライエア(以下、パージガスという)が流入して、ガスパージが行われる。逆止弁は、ガスパージにより基板収納空間に充填されたガスが、漏れ出ることを防止する(特許文献3~4参照)。 Also, a check valve is provided on the container body. Dry gas (hereinafter referred to as purge gas) from which inert gas such as nitrogen or moisture has been removed (1% or less) (hereinafter referred to as purge gas) flows from the outside of the container body into the substrate storage space through the check valve, and gas purge is performed. The check valve prevents the gas filled in the substrate storage space by the gas purge from leaking (see Patent Documents 3 to 4).
 さらに、短時間で容器内部の空気をパージガスで効率的に置換するために、容器本体の奥側の左右の給気バルブに、容器本体の上下方向に伸びるノズルを設け、その周壁には、収納するそれぞれの基板の上下面にパージガスを噴出する噴出孔を設けたものもある(特許文献5参照)。 In addition, in order to efficiently replace the air inside the container with the purge gas in a short time, the left and right air supply valves on the back side of the container body are provided with nozzles that extend in the vertical direction of the container body, and the peripheral wall contains the nozzle. Some of these substrates have jet holes for jetting purge gas on the upper and lower surfaces of each substrate (see Patent Document 5).
 また、パージガスを噴出する多数の開口が形成された浄化タワーの当該多数の開口から、均一に分布した浄化ガスを噴出する目的で、多孔質材料で構成されたバリアフィルタを設けたもの知られている(特許文献6参照)。 Also, it is known that a barrier filter made of a porous material is provided for the purpose of injecting a uniformly distributed purified gas from a large number of openings of the purification tower in which a large number of openings for ejecting a purge gas are formed. (See Patent Document 6).
特許第4204302号公報Japanese Patent No. 4204302 特許第4201583号公報Japanese Patent No. 4201583 特許第5241607号公報Japanese Patent No. 5241607 特開2007-533166号公報JP 2007-533166 A 特許第5524093号公報Japanese Patent No. 5524093 特表2013-513951号公報Special table 2013-513951 gazette
 前述のように、噴出孔が設けられたノズルを設けることにより、ノズルが無い場合に比べると容器内部の気体をパージガスで置換する時間を短くすることができる。しかし、気体の置換時間を少しでも短くし、効率を上げたいというさらなる要求は常にある。前述のノズルを用いた基板収納容器では、ノズル内に媒体が配置されノズルに到達したパージガスは媒体を通過し、そこから容器内部へパージガスが噴出され置換される。よって、ノズルから容器内部へのスムーズなパージガスの流れが妨げられ、気体の置換効率を下げてしまうという課題があった。 As described above, by providing the nozzle provided with the ejection holes, it is possible to shorten the time for replacing the gas inside the container with the purge gas as compared with the case where there is no nozzle. However, there is always a further demand to shorten the gas replacement time as much as possible and increase efficiency. In the above-described substrate storage container using the nozzle, the medium is disposed in the nozzle, and the purge gas that has reached the nozzle passes through the medium, from which the purge gas is ejected into the container and replaced. Therefore, there is a problem that the smooth purge gas flow from the nozzle to the inside of the container is hindered and the gas replacement efficiency is lowered.
 また、前述のように、多孔質材料で構成されたバリアフィルタを浄化タワーに設けた場合には、パージガスの圧力が多数の開口に対して均一にかかるようになり、多数の開口から均一に不活性ガスを放出することは可能である。しかし、バリアフィルタ等の部品が必要となり、部品点数が増え、組立工数が増える。 Further, as described above, when a barrier filter made of a porous material is provided in the purification tower, the pressure of the purge gas is uniformly applied to a large number of openings, and is not uniformly distributed from the large numbers of openings. It is possible to release the active gas. However, parts such as a barrier filter are required, which increases the number of parts and the number of assembly steps.
 本発明は、部品点数を増やさずに、容器本体の基板収納空間内の気体をパージガスで効率的に置換し、短時間で且つ均一なガスパージを行える基板収納容器を提供することを目的とする。 An object of the present invention is to provide a substrate storage container that can efficiently replace the gas in the substrate storage space of the container main body with a purge gas without increasing the number of parts and can perform a uniform gas purge in a short time.
 本発明は、一端部に容器本体開口部が形成され他端部が閉塞された筒状の壁部であって、奥壁、上壁、下壁、及び一対の側壁を有し前記上壁の一端部、前記下壁の一端部、及び前記側壁の一端部によって前記容器本体開口部が形成された壁部を備え、前記上壁の内面、前記下壁の内面、前記側壁の内面、及び前記奥壁の内面によって、複数の基板を収納可能であり前記容器本体開口部に連通する基板収納空間が形成された容器本体と、前記容器本体開口部に対して着脱可能であり、前記容器本体開口部を閉塞可能な蓋体からなり、前記基板収納空間と前記容器本体の外部の空間とを連通可能とする複数の通気路を利用して容器内部の気体を置換できる基板収納容器において、前記通気路は、外部の空間から容器内部に気体を供給するために用いられる給気孔あるいは容器内部の空間から外部の空間に気体を放出するために用いられる排気孔と、前記側壁に設けられた容器内部の気体の流れを制御する気体制御部と、前記奥壁の内面から離間された前記下壁に位置し、前記下壁から前記上壁間の所定の高さを有し、前記給気孔から供給された気体を前記容器本体に収納されている基板の方向である基板方向及び前記気体制御部の方向である気体制御部方向に前記気体を流通させる気体噴出制御機構を有することを特徴とする。 The present invention is a cylindrical wall portion having a container body opening formed at one end and the other end closed, and has a back wall, an upper wall, a lower wall, and a pair of side walls. One end portion, one end portion of the lower wall, and a wall portion in which the container body opening is formed by one end portion of the side wall, the inner surface of the upper wall, the inner surface of the lower wall, the inner surface of the side wall, and the A container main body in which a plurality of substrates can be stored by the inner surface of the inner wall and a substrate storage space communicating with the container main body opening is formed, and can be attached to and detached from the container main body opening. In the substrate storage container, which comprises a lid capable of closing the portion, and can replace the gas inside the container using a plurality of air passages that allow the substrate storage space and the space outside the container body to communicate with each other. To supply gas from outside space into the container An exhaust hole used for releasing gas from the air supply hole or the space inside the container to the outside space, a gas control unit for controlling the gas flow inside the container provided on the side wall, and the back wall It is located on the lower wall spaced from the inner surface, has a predetermined height between the lower wall and the upper wall, and the gas supplied from the air supply holes in the direction of the substrate stored in the container body It has a gas ejection control mechanism for circulating the gas in a certain substrate direction and a gas control unit direction which is a direction of the gas control unit.
 また、前記気体噴出制御機構は、側面に開口部を有し中空筒状で前記基板方向及び前記気体制御部方向に気体を噴出する複数の開口を有する管状気体流通部と、前記給気孔と前記管状気体流通部の一端に形成され、気体が流通可能に前記吸気孔と接続する接続部を有し、前記給気孔に供給された気体は、前記接続部を通じて前記管状気体流通部に供給され、その後前記管状気体流通部の前記開口から噴出され、さらに前記容器本体の前記気体制御部に当った後に前記容器本体の奥壁方向でかつ上壁の方向に気体が流通することが好ましい。 Further, the gas ejection control mechanism includes a tubular gas circulation part having a plurality of openings for ejecting gas in the direction of the substrate and the gas control part in the form of a hollow cylinder having an opening on a side surface, the air supply hole, Formed at one end of the tubular gas circulation part, having a connection part connected to the intake hole so that gas can circulate, the gas supplied to the air supply hole is supplied to the tubular gas circulation part through the connection part, After that, it is preferable that the gas flows through the opening of the tubular gas circulation part and further flows into the inner wall direction of the container body and the upper wall after hitting the gas control part of the container body.
 さらに、前記気体制御部は、前記容器本体の側壁と奥壁との接続部の湾曲部に設けることが好ましい。 Furthermore, it is preferable that the gas control unit is provided in a curved portion of a connection portion between the side wall and the back wall of the container body.
 また、前記気体制御部は、前記容器本体の側壁に配置される前記基板を支持するための基板支持板状部の奥側固定部によって気体を制御することが好ましい。 Further, it is preferable that the gas control unit controls the gas by a back side fixing portion of a substrate support plate-like portion for supporting the substrate disposed on the side wall of the container body.
 また、前記管状気体流通部の前記開口部は、前記容器本体内に収納された複数の基板の隣り合った基板との間に前記開口部を配置し、隣り合う基板と基板との間の空間へ気体を噴出することが好ましい。 Further, the opening of the tubular gas circulation part is arranged between the adjacent substrates of the plurality of substrates accommodated in the container body, and a space between the adjacent substrates is provided. It is preferable to eject gas to
 さらに、前記気体噴出制御機構は、前記容器本体内に等間隔に基板を25枚収納した場合に、前記下壁側から数えて13枚目と14枚目の基板との間に前記管状気体流通部の前記開口部の最上段の開口が配置されることが好ましい。 Further, the gas ejection control mechanism is configured such that, when 25 substrates are accommodated in the container body at equal intervals, the tubular gas flow between the 13th and 14th substrates counted from the lower wall side. It is preferable that the uppermost opening of the opening portion is disposed.
 また、本発明は、一端部に容器本体開口部が形成され他端部が閉塞された筒状の壁部を備え、前記壁部の内面によって、複数の基板を収納可能であり前記容器本体開口部に連通する基板収納空間が形成された容器本体と、前記容器本体開口部に対して着脱可能であり、前記容器本体開口部を閉塞可能な蓋体と、前記基板収納空間と前記容器本体の外部の空間とを連通可能な通気路と、前記通気路に配置されたフィルタと、を有し、前記壁部に配置され、前記フィルタを通して前記容器本体の外部の空間と前記基板収納空間との間で気体が通過可能なフィルタ部と、前記フィルタ部の前記通気路に流入した気体を、前記基板収納空間に供給する気体噴出ノズル部と、前記フィルタ部から前記気体噴出ノズル部へ気体を流通可能に連通する連通部と、を備え、前記気体噴出ノズル部は、前記通気路に連通するノズル部内部空間と前記気体噴出ノズル部の外部空間とを連通する貫通孔と、前記ノズル部内部空間を形成する前記気体噴出ノズル部の内面に形成され、前記ノズル部内部空間における気体の乱流を生じさせる凹凸部と、を有する基板収納容器に関する。 The present invention also includes a cylindrical wall portion having a container body opening formed at one end and the other end closed, and a plurality of substrates can be accommodated by the inner surface of the wall, and the container body opening A container main body in which a substrate storage space communicating with the portion is formed; a lid that can be attached to and detached from the container main body opening; and can close the container main body opening; and the substrate storage space and the container main body An air passage that can communicate with an external space; and a filter that is disposed in the air passage. The air passage is disposed on the wall portion, and is formed between the space outside the container body and the substrate storage space through the filter. A filter part through which gas can pass between, a gas ejection nozzle part for supplying the gas flowing into the ventilation path of the filter part to the substrate storage space, and a gas flow from the filter part to the gas ejection nozzle part Communication that communicates as possible And the gas jet nozzle part includes a through hole that communicates the nozzle part internal space communicating with the air passage and the external space of the gas jet nozzle part, and the gas jet forming the nozzle part internal space. The present invention relates to a substrate storage container having an uneven portion that is formed on an inner surface of a nozzle portion and generates a turbulent gas flow in the inner space of the nozzle portion.
 また、前記凹凸部は、前記気体噴出ノズル部の内面において窪んで形成された凹部により構成され、前記凹部の深さは、2.0mm以上であることが好ましい。また、前記凹凸部は、前記貫通孔に対向する位置関係を有することが好ましい。 Further, it is preferable that the concavo-convex portion is constituted by a concave portion formed in a recess in the inner surface of the gas ejection nozzle portion, and the depth of the concave portion is 2.0 mm or more. Moreover, it is preferable that the said uneven | corrugated | grooved part has a positional relationship facing the said through-hole.
 また、前記凹凸部が形成されている前記気体噴出ノズル部の部分においては、前記凹凸部が凹部を有する場合には、前記凹部が形成されている前記気体噴出ノズル部の内面に対する前記気体噴出ノズル部の外面の部分には、前記凹部と略一致する形状の凸部が形成され、前記凹凸部が凸部を有する場合には、前記凸部が形成されている前記気体噴出ノズル部の内面に対する前記気体噴出ノズル部の外面の部分には、前記凸部と略一致する形状の凹部が形成されていることが好ましい。
 ここで、「略一致する形状」とは、一致する形状を意図して製造した場合であっても、実際には、寸法誤差等により、若干の形状の違いが生ずる場合を含むことを意味する。
Further, in the portion of the gas ejection nozzle portion where the uneven portion is formed, when the uneven portion has a recess, the gas ejection nozzle with respect to the inner surface of the gas ejection nozzle portion where the recess is formed A convex portion having a shape substantially coincident with the concave portion is formed on the outer surface portion of the portion, and when the concave and convex portion has a convex portion, the inner surface of the gas ejection nozzle portion on which the convex portion is formed is formed. It is preferable that a concave portion having a shape substantially coinciding with the convex portion is formed on a portion of the outer surface of the gas ejection nozzle portion.
Here, the “substantially matching shape” means that even when manufactured with the intention of a matching shape, it actually includes a case where a slight difference in shape occurs due to a dimensional error or the like. .
 さらに、前記基板収納空間は、複数の基板を所定の等間隔で離間させて並列させた状態で収納可能であり、前記貫通孔は、複数形成され、前記基板収納空間に収納された複数の基板のうちの隣接する基板同士の間の空間にそれぞれ対向する位置関係を有することが好ましい。 Further, the substrate storage space is capable of storing a plurality of substrates in a state of being separated and arranged in parallel at a predetermined equal interval, and a plurality of the through holes are formed and the plurality of substrates stored in the substrate storage space. It is preferable to have a positional relationship that faces each other between the adjacent substrates.
 さらに、前記基板収納空間は、25枚の基板を所定の等間隔で離間させて並列させた状態で収納可能であり、前記貫通孔は、複数形成され、前記基板収納空間に収納された複数の基板のうちの1枚目の基板から14枚目の基板までのそれぞれの基板同士の間の空間にそれぞれ対向する位置関係を有することが好ましい。 Further, the substrate storage space can store 25 substrates spaced in parallel at a predetermined equal interval, and a plurality of the through holes are formed, and a plurality of through holes are stored in the substrate storage space. It is preferable that the first substrate to the fourteenth substrate among the substrates have a positional relationship facing the spaces between the substrates.
 本発明によれば、部品点数を増やさずに、容器本体の基板収納空間内の気体をパージガスで効率的に置換し、短時間で且つ均一なガスパージを行える基板収納容器を提供することができる。 According to the present invention, it is possible to provide a substrate storage container capable of efficiently replacing the gas in the substrate storage space of the container main body with the purge gas without increasing the number of parts and performing a uniform gas purge in a short time.
参考形態に係る基板収納容器1に基板Wが収納された様子を示す分解斜視図である。It is a disassembled perspective view which shows a mode that the board | substrate W was accommodated in the substrate storage container 1 which concerns on a reference form. 参考形態に係る基板収納容器1の容器本体2を示す下方斜視図である。It is a downward perspective view which shows the container main body 2 of the substrate storage container 1 which concerns on a reference form. 参考形態に係る基板収納容器1の容器本体2において、第二側壁26と上壁23の省略した上方斜視図である。In the container main body 2 of the substrate storage container 1 according to the reference form, it is an upper perspective view in which the second side wall 26 and the upper wall 23 are omitted. 参考形態に係る基板収納容器1の気体噴出制御機構101を示す分解斜視図である。It is a disassembled perspective view which shows the gas ejection control mechanism 101 of the substrate storage container 1 which concerns on a reference form. 参考形態に係る基板収納容器1の容器本体2において、上壁23を省略した上方平面図である。In the container main body 2 of the substrate storage container 1 according to the reference form, it is an upper plan view in which the upper wall 23 is omitted. 参考形態に係る基板収納容器1の気体噴出制御機構101近傍の拡大図である。It is an enlarged view of the gas ejection control mechanism 101 vicinity of the substrate storage container 1 which concerns on a reference form. 参考形態に係る基板収納容器1の容器本体2において基板Wが収納されている様子を示す断面図である。It is sectional drawing which shows a mode that the board | substrate W is accommodated in the container main body 2 of the substrate storage container 1 which concerns on a reference form. 参考形態の効果を確かめる試験で用いられた、パターン1の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。It is the graph which showed the waveform of the humidity sensor on the board | substrate which is used in the test which confirms the effect of a reference form, and confirms the substitution efficiency of the pattern 1. FIG. 参考形態の効果を確かめる試験で用いられた、パターン2の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。It is the graph which showed the waveform of the humidity sensor on the board | substrate which confirms the substitution efficiency of the pattern 2 used in the test which confirms the effect of a reference form. 参考形態の効果を確かめる試験で用いられた、パターン3の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。It is the graph which showed the waveform of the humidity sensor on the board | substrate which confirms the substitution efficiency of the pattern 3 used in the test which confirms the effect of a reference form. 本発明の実施参考形態に係る基板収納容器1の気体噴出制御機構101Aを示す斜視図である。It is a perspective view which shows 101 A of gas ejection control mechanisms of the substrate storage container 1 which concerns on embodiment reference form of this invention. 本発明の実施参考形態に係る基板収納容器1の気体噴出制御機構101Aを示す断面図である。It is sectional drawing which shows 101A of gas ejection control mechanisms of the substrate storage container 1 which concerns on embodiment reference form of this invention. 本発明の効果を確かめる試験で用いられた、パターン1の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。It is the graph which showed the waveform of the humidity sensor on the board | substrate which is used in the test which confirms the effect of this invention, and confirms the substitution efficiency of the pattern 1. FIG. 本発明の効果を確かめる試験で用いられた、パターン2の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。It is the graph which showed the waveform of the humidity sensor on the board | substrate which is used in the test which confirms the effect of this invention, and confirms the substitution efficiency of the pattern 2. FIG. 本発明の効果を確かめる試験で用いられた、パターン3の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。It is the graph which showed the waveform of the humidity sensor on the board | substrate which is used in the test which confirms the effect of this invention, and confirms the substitution efficiency of the pattern 3. FIG. 本発明の効果を確かめる試験で用いられた、パターン4の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。It is the graph which showed the waveform of the humidity sensor on the board | substrate which is used in the test which confirms the effect of this invention, and confirms the substitution efficiency of the pattern 4. FIG.
 以下、参考形態による基板収納容器1について、図面を参照しながら説明する。図1は、参考形態に係る基板収納容器1に基板Wが収納された様子を示す分解斜視図である。図2は、参考形態に係る基板収納容器1の容器本体2を示す下方斜視図である。図3は、参考形態に係る基板収納容器1の容器本体2において、第二側壁26と上壁23の省略した上方斜視図である。図4は、参考形態に係る基板収納容器1の気体噴出制御機構101を示す分解斜視図である。図5は、参考形態に係る基板収納容器1の容器本体2において、上壁23を省略した上方平面図である。図6は、参考形態に係る基板収納容器1の気体噴出制御機構101近傍の拡大図である。図7は、参考形態に係る基板収納容器1の容器本体2において基板Wが収納されている様子を示す断面図である。 Hereinafter, the substrate storage container 1 according to the reference embodiment will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing a state in which a substrate W is stored in a substrate storage container 1 according to a reference embodiment. FIG. 2 is a lower perspective view showing the container main body 2 of the substrate storage container 1 according to the reference embodiment. FIG. 3 is an upper perspective view in which the second side wall 26 and the upper wall 23 are omitted in the container body 2 of the substrate storage container 1 according to the reference embodiment. FIG. 4 is an exploded perspective view showing the gas ejection control mechanism 101 of the substrate storage container 1 according to the reference embodiment. FIG. 5 is an upper plan view in which the upper wall 23 is omitted in the container main body 2 of the substrate storage container 1 according to the reference embodiment. FIG. 6 is an enlarged view of the vicinity of the gas ejection control mechanism 101 of the substrate storage container 1 according to the reference embodiment. FIG. 7 is a cross-sectional view showing a state in which the substrate W is stored in the container body 2 of the substrate storage container 1 according to the reference embodiment.
 ここで、説明の便宜上、後述の容器本体2から蓋体3へ向かう方向(図1における右上から左下へ向かう方向)を前方向D11と定義し、その反対の方向を後方向D12と定義し、これらをあわせて前後方向D1と定義する。また、後述の下壁24から上壁23へと向かう方向(図1における上方向)を上方向D21と定義し、その反対の方向を下方向D22と定義し、これらをあわせて上下方向D2と定義する。また、後述する第2側壁26から第1側壁25へと向かう方向(図1における右下から左上へ向かう方向)を左方向D31と定義し、その反対の方向を右方向D32と定義し、これらをあわせて左右方向D3と定義する。主要な図には、これらの方向を示す矢印を図示している。 Here, for convenience of explanation, a direction from the container body 2 described later to the lid 3 (direction from the upper right to the lower left in FIG. 1) is defined as the front direction D11, and the opposite direction is defined as the rear direction D12. These are collectively defined as the front-rear direction D1. Further, a direction (upward direction in FIG. 1) from the lower wall 24 described later to the upper wall 23 is defined as an upward direction D21, and the opposite direction is defined as a downward direction D22. Define. Further, a direction from the second side wall 26 to be described later to the first side wall 25 (a direction from the lower right to the upper left in FIG. 1) is defined as the left direction D31, and the opposite direction is defined as the right direction D32. Are defined as a horizontal direction D3. In the main figure, arrows indicating these directions are shown.
 また、基板収納容器1に収納される基板W(図1参照)は、円盤状のシリコンウェーハ、ガラスウェーハ、サファイアウェーハ等であり、産業に用いられる薄いものである。参考形態における基板Wは、直径300mm~450mmのシリコンウェーハである。 Further, the substrate W (see FIG. 1) stored in the substrate storage container 1 is a disk-shaped silicon wafer, glass wafer, sapphire wafer, etc., and is a thin one used in the industry. The substrate W in the reference embodiment is a silicon wafer having a diameter of 300 mm to 450 mm.
 図1に示すように、基板収納容器1は、上述のようなシリコンウェーハからなる基板Wを収納して、工場内の工程において搬送する工程内容器として用いられたり、陸運手段・空運手段・海運手段等の輸送手段により基板を輸送するための出荷容器として用いられたりするものであり、容器本体2と、蓋体3と、側方基板支持部としての基板支持板状部5と、奥側基板支持部(図示せず)と、蓋体側基板支持部としてのフロントリテーナ(図示せず)とを有している。 As shown in FIG. 1, the substrate storage container 1 is used as an in-process container for storing a substrate W made of a silicon wafer as described above and transporting it in a process in a factory, or by land transportation means / air transportation means / sea transportation. Used as a shipping container for transporting a substrate by transport means such as a container, a container main body 2, a lid 3, a substrate support plate-like portion 5 as a side substrate support portion, and a back side It has a substrate support part (not shown) and a front retainer (not shown) as a lid side substrate support part.
 容器本体2は、一端部に容器本体開口部21が形成され、他端部が閉塞された筒状の壁部20を有する。容器本体2内には基板収納空間27が形成されている。基板収納空間27は、壁部20により取り囲まれて形成されている。壁部20の部分であって基板収納空間27を形成している部分には、基板支持板状部5が配置されている。基板収納空間27には、図1に示すように、複数の基板Wを収納可能である。 The container body 2 has a cylindrical wall portion 20 in which a container body opening 21 is formed at one end and the other end is closed. A substrate storage space 27 is formed in the container body 2. The substrate storage space 27 is formed so as to be surrounded by the wall portion 20. The substrate support plate-shaped portion 5 is disposed in a portion of the wall portion 20 that forms the substrate storage space 27. As shown in FIG. 1, a plurality of substrates W can be stored in the substrate storage space 27.
 基板支持板状部5は、基板収納空間27内において対をなすように壁部20に設けられている。基板支持板状部5は、蓋体3によって容器本体開口部21が閉塞されていないときに、複数の基板Wの縁部に当接することにより、隣接する基板W同士を所定の間隔で離間させて並列させた状態で、複数の基板Wの縁部を支持可能である。基板支持板状部5の奥側には、奥側基板支持部(図示せず)が設けられている。 The substrate support plate-like portion 5 is provided on the wall portion 20 so as to form a pair in the substrate storage space 27. When the container body opening 21 is not closed by the lid 3, the substrate support plate-like portion 5 abuts the edges of the plurality of substrates W to separate the adjacent substrates W at a predetermined interval. The edges of the plurality of substrates W can be supported in a state where they are aligned in parallel. A back side substrate support part (not shown) is provided on the back side of the substrate support plate-like part 5.
 奥側基板支持部(図示せず)は、基板収納空間27内において後述するフロントリテーナ(図示せず)と対をなすように壁部20に設けられている。奥側基板支持部(図示せず)は、蓋体3によって容器本体開口部21が閉塞されているときに、複数の基板Wの縁部に当接することにより、複数の基板Wの縁部の後部を支持可能である。 The back substrate support (not shown) is provided on the wall 20 so as to form a pair with a front retainer (not shown) described later in the substrate storage space 27. When the container body opening 21 is closed by the lid 3, the back substrate support (not shown) abuts the edges of the plurality of substrates W, thereby The rear part can be supported.
 蓋体3は、容器本体開口部21を形成する開口周縁部31(図1等)に対して着脱可能であり、容器本体開口部21を閉塞可能である。フロントリテーナ(図示せず)は、蓋体3の部分であって蓋体3によって容器本体開口部21が閉塞されているときに基板収納空間27に対向する部分に設けられている。フロントリテーナ(図示せず)は、基板収納空間27の内部において奥側基板支持部(図示せず)と対をなすように配置されている。 The lid 3 can be attached to and detached from the opening peripheral edge portion 31 (FIG. 1 and the like) forming the container body opening 21 and can close the container body opening 21. The front retainer (not shown) is provided in a portion of the lid 3 that faces the substrate storage space 27 when the container main body opening 21 is closed by the lid 3. The front retainer (not shown) is disposed inside the substrate storage space 27 so as to be paired with the back side substrate support portion (not shown).
 フロントリテーナ(図示せず)は、蓋体3によって容器本体開口部21が閉塞されているときに、複数の基板Wの縁部に当接することにより複数の基板Wの縁部の前部を支持可能である。フロントリテーナ(図示せず)は、蓋体3によって容器本体開口部21が閉塞されているときに、奥側基板支持部(図示せず)と協働して複数の基板Wを支持することにより、隣接する基板W同士を所定の間隔で離間させて並列させた状態で、複数の基板Wを保持する。 The front retainer (not shown) supports the front part of the edges of the plurality of substrates W by contacting the edges of the plurality of substrates W when the container body opening 21 is closed by the lid 3. Is possible. The front retainer (not shown) supports the plurality of substrates W in cooperation with the back side substrate support portion (not shown) when the container body opening 21 is closed by the lid 3. A plurality of substrates W are held in a state in which adjacent substrates W are separated from each other at a predetermined interval and arranged in parallel.
 基板収納容器1は、プラスチック材等の樹脂で構成されており、特に説明が無い場合には、その材料の樹脂としては、たとえば、ポリカーボネート、シクロオレフィンポリマー、ポリエーテルイミド、ポリエーテルケトン、ポリブチルテレフタレート、ポリエーテルエーテルケトン、液晶ポリマーといった熱可塑性樹脂やこれらのアロイ等が上げられる。これらの成形材料の樹脂には、導電性を付与する場合には、カーボン繊維、カーボンパウダー、カーボンナノチューブ、導電性ポリマー等の導電性物質が選択的に添加される。また、剛性を上げるためにガラス繊維や炭素繊維等を添加することも可能である。 The substrate storage container 1 is made of a resin such as a plastic material. Unless otherwise specified, examples of the resin of the material include polycarbonate, cycloolefin polymer, polyetherimide, polyetherketone, and polybutyl. Examples thereof include thermoplastic resins such as terephthalate, polyether ether ketone, and liquid crystal polymer, and alloys thereof. When imparting electrical conductivity to these molding material resins, conductive substances such as carbon fibers, carbon powder, carbon nanotubes, and conductive polymers are selectively added. It is also possible to add glass fiber, carbon fiber or the like in order to increase the rigidity.
 以下、各部について、詳細に説明する。
 図1等に示すように、容器本体2の壁部20は、奥壁22と上壁23と下壁24と第1側壁25と第2側壁26とを有する。奥壁22、上壁23、下壁24、第1側壁25、及び第2側壁26は、上述した材料により構成されており、一体成形されて構成されている。
Hereinafter, each part will be described in detail.
As shown in FIG. 1 and the like, the wall portion 20 of the container body 2 includes a back wall 22, an upper wall 23, a lower wall 24, a first side wall 25, and a second side wall 26. The back wall 22, the upper wall 23, the lower wall 24, the first side wall 25, and the second side wall 26 are made of the above-described materials and are integrally formed.
 第1側壁25と第2側壁26とは対向しており、上壁23と下壁24とは対向している。上壁23の後端、下壁24の後端、第1側壁25の後端、及び第2側壁26の後端は、全て奥壁22に接続されている。上壁23の前端、下壁24の前端、第1側壁25の前端、及び第2側壁26の前端は、奥壁22に対向する位置関係を有し、略長方形状をした容器本体開口部21を形成する開口周縁部31を構成する。 The first side wall 25 and the second side wall 26 face each other, and the upper wall 23 and the lower wall 24 face each other. The rear end of the upper wall 23, the rear end of the lower wall 24, the rear end of the first side wall 25, and the rear end of the second side wall 26 are all connected to the back wall 22. The front end of the upper wall 23, the front end of the lower wall 24, the front end of the first side wall 25, and the front end of the second side wall 26 have a positional relationship facing the back wall 22 and have a substantially rectangular shape. The opening peripheral part 31 which forms is comprised.
 開口周縁部31は、容器本体2の一端部に設けられており、奥壁22は、容器本体2の他端部に位置している。壁部20の外面により形成される容器本体2の外形は箱状である。壁部20の内面、即ち、奥壁22の内面、上壁23の内面、下壁24の内面、第1側壁25の内面、及び第2側壁26の内面は、これらによって取り囲まれた基板収納空間27を形成している。開口周縁部31に形成された容器本体開口部21は、壁部20により取り囲まれて容器本体2の内部に形成された基板収納空間27に連通している。基板収納空間27には、最大で25枚の基板Wを収納可能である。 The opening periphery 31 is provided at one end of the container body 2, and the back wall 22 is located at the other end of the container body 2. The outer shape of the container body 2 formed by the outer surface of the wall portion 20 is box-shaped. The inner surface of the wall portion 20, that is, the inner surface of the back wall 22, the inner surface of the upper wall 23, the inner surface of the lower wall 24, the inner surface of the first side wall 25, and the inner surface of the second side wall 26 are surrounded by these. 27 is formed. The container main body opening 21 formed in the opening peripheral edge portion 31 is surrounded by the wall portion 20 and communicates with the substrate storage space 27 formed in the container main body 2. A maximum of 25 substrates W can be stored in the substrate storage space 27.
 第1側壁25の後端、及び第2側壁26の後端の部分であって、奥壁22に接続される部分の近傍には、図5に示すように、湾曲してなめらかに奥壁22に接続された形状を有する第1側壁湾曲部225及び第2側壁湾曲部226が形成されている。 In the vicinity of the rear end of the first side wall 25 and the rear end of the second side wall 26 and connected to the back wall 22, as shown in FIG. The 1st side wall curved part 225 and the 2nd side wall curved part 226 which have the shape connected to are formed.
 図3や図6等に示すように第1側壁25内側の面、及び第2側壁26の内側の面であって第1側壁湾曲部225及び第2側壁湾曲部226の部分には気体の流れを制御する気体制御部151が形成されている。参考形態では第1側壁25内側の面、及び第2側壁26の内側の面に取り付けられる基板支持板状部5の後端に形成される奥側固定部51が気体制御部151として構成される。 As shown in FIG. 3 and FIG. 6 and the like, gas flows in the surface on the inner side of the first side wall 25 and on the inner side of the second side wall 26 and in the first side wall curved portion 225 and the second side wall curved portion 226. The gas control part 151 which controls is formed. In the reference mode, the back side fixing portion 51 formed at the rear end of the substrate support plate-like portion 5 attached to the inner surface of the first side wall 25 and the inner surface of the second side wall 26 is configured as the gas control unit 151. .
 図1に示すように、上壁23及び下壁24の部分であって、開口周縁部31の近傍の部分には、基板収納空間27の外方へ向かって窪んだラッチ係合凹部40A、40B、41A、41Bが形成されている。ラッチ係合凹部40A、40B、41A、41Bは、上壁23及び下壁24の左右両端部近傍に1つずつ、計4つ形成されている。 As shown in FIG. 1, latch engaging recesses 40 </ b> A and 40 </ b> B that are recessed toward the outside of the substrate storage space 27 in the upper wall 23 and the lower wall 24 and in the vicinity of the opening peripheral edge 31. , 41A, 41B are formed. A total of four latch engagement recesses 40A, 40B, 41A, 41B are formed in the vicinity of the left and right ends of the upper wall 23 and the lower wall 24, one each.
 図1に示すように、上壁23の外面においては、リブ28が、上壁23と一体成形されて設けられている。リブ28は、容器本体の剛性を高める。 As shown in FIG. 1, on the outer surface of the upper wall 23, a rib 28 is provided integrally with the upper wall 23. The ribs 28 increase the rigidity of the container body.
 また、上壁23の中央部には、トップフランジ29が固定される。トップフランジ29は、AMHS(自動ウェーハ搬送システム)、PGV(ウェーハ基板搬送台車)等において基板収納容器1を吊り下げる際に、基板収納容器1において掛けられて吊り下げられる部分となる部材である。 Further, a top flange 29 is fixed to the central portion of the upper wall 23. The top flange 29 is a member that is a portion that is hung and suspended in the substrate storage container 1 when the substrate storage container 1 is suspended in an AMHS (automatic wafer conveyance system), PGV (wafer substrate conveyance carriage), or the like.
 図1及び図2に示すように、下壁24の四隅には、通気路として、2種類の貫通孔である給気孔45と排気孔46が形成されている。参考形態においては、下壁24の前方の2箇所の貫通孔は、容器本体2内部の気体を排出するための排気孔46であり、後方の2箇所の貫通孔は、容器内部に気体を給気するための給気孔45である。給気孔45と排気孔46の貫通孔には、それぞれ給気用フィルタ部80と排気用フィルタ部81が配置されている。従って、給気用フィルタ部80及び排気用フィルタ部81の内部の気体の流路は、基板収納空間27と容器本体2の外部の空間とを連通可能な通気路の一部を構成する。また、給気用フィルタ部80と排気用フィルタ部81とは、壁部20に配置されており、給気用フィルタ部80と排気用フィルタ部81とにおいては、フィルタ83を通して容器本体2の外部の空間と基板収納空間27との間で気体が通過可能である。 As shown in FIGS. 1 and 2, air supply holes 45 and exhaust holes 46, which are two types of through holes, are formed at the four corners of the lower wall 24 as air passages. In the reference form, the two through holes in front of the lower wall 24 are exhaust holes 46 for discharging the gas inside the container body 2, and the two through holes in the rear supply gas to the inside of the container. An air supply hole 45 is provided for attention. An air supply filter portion 80 and an exhaust filter portion 81 are disposed in the through holes of the air supply hole 45 and the exhaust hole 46, respectively. Therefore, the gas flow paths inside the air supply filter unit 80 and the exhaust filter unit 81 constitute a part of a ventilation path that allows the substrate storage space 27 and the space outside the container body 2 to communicate with each other. In addition, the air supply filter unit 80 and the exhaust filter unit 81 are disposed on the wall 20, and the air supply filter unit 80 and the exhaust filter unit 81 pass through the filter 83 to the outside of the container body 2. Gas can pass between this space and the substrate storage space 27.
 図4に示すように給気用フィルタ部80は、フィルタ部ハウジングとしてのハウジング82と、フィルタ83と、逆止弁84とを有している。フィルタ83と逆止弁84は、ハウジング82の部分に固定されている。フィルタ83は、通気路に配置されており、逆止弁84よりも基板収納空間27側に配置されている。給気用フィルタ部80は、逆止弁84によりフィルタ83を通して容器本体2の外部の空間から基板収納空間27へのみ気体を通過可能である。その際、フィルタ83は、容器本体2の外部空間からの気体に含まれるパーティクル等が通過することを阻止する。 As shown in FIG. 4, the air supply filter unit 80 includes a housing 82 as a filter unit housing, a filter 83, and a check valve 84. The filter 83 and the check valve 84 are fixed to the housing 82 portion. The filter 83 is disposed in the ventilation path, and is disposed closer to the substrate storage space 27 than the check valve 84. The air supply filter unit 80 can pass gas only from the space outside the container body 2 to the substrate storage space 27 through the filter 83 by the check valve 84. At that time, the filter 83 prevents particles contained in the gas from the external space of the container body 2 from passing through.
 また、排気用フィルタ部81は、給気用フィルタ部80と同様な構成を有しているが、逆止弁の機能が給気用の逆止弁84の機能とは異なり、基板収納空間27から容器本体2の外部の空間へのみ気体を通過可能である。 The exhaust filter unit 81 has the same configuration as the air supply filter unit 80. However, the function of the check valve is different from the function of the check valve 84 for air supply, and the substrate storage space 27 is provided. Gas can only pass through to the space outside the container body 2.
 図3および図5に示すように、容器本体2の基板収納空間27の奥壁22の内面の近傍には、気体噴出制御機構101が2つ対向して設けられている。気体噴出制御機構101としては、上述した基板収納容器1の樹脂以外にも、ポリエチレン、ポリプロピレン等も用いることができる。 As shown in FIGS. 3 and 5, two gas ejection control mechanisms 101 are provided opposite to each other in the vicinity of the inner surface of the back wall 22 of the substrate storage space 27 of the container body 2. As the gas ejection control mechanism 101, polyethylene, polypropylene, or the like can be used in addition to the resin of the substrate storage container 1 described above.
 これらの気体噴出制御機構101は、給気孔45の上部に配置され、気体噴出制御機構取付部150に取り付けられている。図4に示すように、気体噴出制御機構101は、給気用フィルタ部80の内部の通気路に流入した気体を、基板収納空間27に供給する気体噴出ノズル部としての、複数の開口を有する管状気体流通部110と、給気用フィルタ部80と管状気体流通部110を接続し、給気用フィルタ部80から気体噴出ノズル部としての管状気体流通部110へ気体を流通可能に連通するための接続部120と、から構成されている。以下、管状気体流通部110から基板Wへ向う方向を基板方向、管状気体流通部110から基板支持板状部5の気体制御部151へ向う方向を気体制御部方向と定義する。 These gas ejection control mechanisms 101 are disposed above the air supply holes 45 and are attached to the gas ejection control mechanism mounting portion 150. As shown in FIG. 4, the gas ejection control mechanism 101 has a plurality of openings as gas ejection nozzles that supply the gas that has flowed into the ventilation path inside the air supply filter unit 80 to the substrate storage space 27. To connect the tubular gas circulation part 110, the supply air filter part 80, and the tubular gas circulation part 110 so that gas can be circulated from the supply air filter part 80 to the tubular gas circulation part 110 as a gas ejection nozzle part. And a connecting portion 120. Hereinafter, a direction from the tubular gas circulation part 110 toward the substrate W is defined as a substrate direction, and a direction from the tubular gas circulation part 110 toward the gas control part 151 of the substrate support plate-like part 5 is defined as a gas control part direction.
 管状気体流通部110は、基板方向開口部130と、気体制御部方向開口部140とを有している。図6に示すように基板方向開口部130は、容器本体2に収納される基板Wの中央部に向けられており、気体制御部方向開口部140は容器本体2の側壁に設けられた気体制御部151に向けられている。管状気体流通部110の内部は中空である。基板方向開口部130と、気体制御部方向開口部140から噴出する気体の流量が均一になるように、この基板方向開口部130と、気体制御部方向開口部140の大きさ、配置は適宜設計可能に構成されている。参考形態では、基板収納容器1において上下方向D2に収納する複数の基板Wの間の基板間空間200に噴出するように開口が配置されている。 The tubular gas circulation part 110 has a substrate direction opening part 130 and a gas control part direction opening part 140. As shown in FIG. 6, the substrate direction opening 130 is directed to the center of the substrate W accommodated in the container main body 2, and the gas control unit direction opening 140 is a gas control provided on the side wall of the container main body 2. It is directed to the part 151. The inside of the tubular gas circulation part 110 is hollow. The size and arrangement of the substrate direction opening 130 and the gas control unit direction opening 140 are appropriately designed so that the flow rate of the gas ejected from the substrate direction opening 130 and the gas control unit direction opening 140 is uniform. It is configured to be possible. In the reference form, the openings are arranged so as to be ejected into the inter-substrate space 200 between the plurality of substrates W stored in the vertical direction D2 in the substrate storage container 1.
 また、図7等に示すように管状気体流通部110は、下壁24と上壁23との間において、所定の高さを有している。参考形態では、容器本体2に収納される基板Wの13枚目と14枚目の間に最上段の開口を配置可能な高さを、管状気体流通部110は有している。 Further, as shown in FIG. 7 and the like, the tubular gas circulation part 110 has a predetermined height between the lower wall 24 and the upper wall 23. In the reference form, the tubular gas circulation part 110 has a height at which the uppermost opening can be arranged between the 13th and 14th substrates W stored in the container body 2.
 図1等に示すように、蓋体3は、容器本体2の開口周縁部31の形状と略一致する略長方形状を有している。蓋体3は容器本体2の開口周縁部31に対して着脱可能であり、開口周縁部31に蓋体3が装着されることにより、蓋体3は、容器本体開口部21を閉塞可能である。蓋体3の内面(図1に示す蓋体3の裏側の面)であって、蓋体3が容器本体開口部21を閉塞しているときの開口周縁部31のすぐ後方向D12の位置に形成された段差の部分の面(シール面30)に対向する面には、環状のシール部材4が取り付けられている。シール部材4は、弾性変形可能なポリエステル系、ポリオレフィン系など各種熱可塑性エラストマー、フッ素ゴム製、シリコンゴム製等により構成されている。シール部材4は、蓋体3の外周縁部を一周するように配置されている。 As shown in FIG. 1 and the like, the lid 3 has a substantially rectangular shape that substantially matches the shape of the opening peripheral edge 31 of the container body 2. The lid 3 can be attached to and detached from the opening peripheral edge 31 of the container main body 2, and the lid 3 can close the container main body opening 21 by attaching the lid 3 to the opening peripheral edge 31. . It is the inner surface of the lid 3 (the surface on the back side of the lid 3 shown in FIG. 1), at the position in the rearward direction D12 of the opening peripheral edge 31 when the lid 3 closes the container body opening 21. An annular seal member 4 is attached to a surface facing the formed stepped portion surface (seal surface 30). The seal member 4 is made of various types of thermoplastic elastomers such as polyester and polyolefin that can be elastically deformed, fluorine rubber, and silicon rubber. The seal member 4 is arranged so as to go around the outer peripheral edge of the lid 3.
 蓋体3が開口周縁部31に装着されたときに、シール部材4は、シール面30と蓋体3の内面とにより挟まれて弾性変形し、蓋体3は、容器本体開口部21を密閉した状態で閉塞する。開口周縁部31から蓋体3が取り外されることにより、容器本体2内の基板収納空間27に対して、基板Wを出し入れ可能となる。 When the lid 3 is attached to the opening peripheral edge 31, the seal member 4 is sandwiched between the seal surface 30 and the inner surface of the lid 3, and is elastically deformed. The lid 3 seals the container body opening 21. Shuts down in a closed state. By removing the lid 3 from the opening peripheral edge 31, the substrate W can be taken in and out of the substrate storage space 27 in the container body 2.
 蓋体3においては、ラッチ機構が設けられている。ラッチ機構は、蓋体3の左右両端部近傍に設けられており、図1に示すように、蓋体3の上辺から上方向D21へ突出可能な2つの上側ラッチ部32A、32Bと、蓋体3の下辺から下方向D22へ突出可能な2つの下側ラッチ部(図示せず)と、を備えている。2つの上側ラッチ部32A、32Bは、蓋体3の上辺の左右両端近傍に配置されており、2つの下側ラッチ部は、蓋体3の下辺の左右両端近傍に配置されている。 The lid 3 is provided with a latch mechanism. The latch mechanism is provided in the vicinity of both left and right ends of the lid 3, and as shown in FIG. 1, two upper latch portions 32A and 32B that can project in the upward direction D21 from the upper side of the lid 3, and the lid 3, two lower latch portions (not shown) that can project in the downward direction D22 from the lower side of 3. The two upper latch portions 32 </ b> A and 32 </ b> B are disposed in the vicinity of the left and right ends of the upper side of the lid 3, and the two lower latch portions are disposed in the vicinity of the left and right ends of the lower side of the lid 3.
 蓋体3の外面においては操作部33が設けられている。操作部33を蓋体3の前側から操作することにより、上側ラッチ部32A、32B、下側ラッチ部(図示せず)を蓋体3の上辺、下辺から突出させることができ、また、上辺、下辺から突出させない状態とすることができる。上側ラッチ部32A、32Bが蓋体3の上辺から上方向D21へ突出して、容器本体2のラッチ係合凹部40A、40Bに係合し、且つ、下側ラッチ部(図示せず)が蓋体3の下辺から下方向D22へ突出して、容器本体2のラッチ係合凹部41A、41Bに係合することにより、蓋体3は、容器本体2の開口周縁部31に固定される。 An operation unit 33 is provided on the outer surface of the lid 3. By operating the operation portion 33 from the front side of the lid body 3, the upper latch portions 32A and 32B and the lower latch portion (not shown) can be protruded from the upper side and the lower side of the lid body 3, It can be set as the state which does not protrude from a lower side. The upper latch portions 32A and 32B protrude from the upper side of the lid 3 in the upward direction D21, engage with the latch engagement recesses 40A and 40B of the container body 2, and the lower latch portion (not shown) is the lid. The lid 3 is fixed to the opening peripheral edge 31 of the container body 2 by projecting in the downward direction D22 from the lower side of the container 3 and engaging with the latch engagement recesses 41A and 41B of the container body 2.
 蓋体3の内側においては、基板収納空間27の外方へ窪んだ凹部(図示せず)が形成されている。凹部(図示せず)及び凹部の外側の蓋体3の部分には、フロントリテーナ(図示せず)が固定されて設けられている。 A recess (not shown) that is recessed outward from the substrate storage space 27 is formed inside the lid 3. A front retainer (not shown) is fixedly provided on the concave portion (not shown) and the lid 3 outside the concave portion.
 フロントリテーナ(図示せず)は、フロントリテーナ基板受け部(図示せず)を有している。フロントリテーナ基板受け部(図示せず)は、左右方向D3に所定の間隔で離間して対をなすようにして2つずつ配置されている。このように対をなすようにして2つずつ配置されたフロントリテーナ基板受け部は、上下方向D2に25対並列した状態で設けられている。基板収納空間27内に基板Wが収納され、蓋体3が閉じられることにより、フロントリテーナ基板受け部は、基板Wの縁部の端縁を挟持して支持する。 The front retainer (not shown) has a front retainer substrate receiving portion (not shown). Two front retainer substrate receiving portions (not shown) are arranged in pairs so as to form a pair with a predetermined interval in the left-right direction D3. The front retainer substrate receiving portions arranged in pairs so as to form a pair in this way are provided in a state where 25 pairs are juxtaposed in the vertical direction D2. When the substrate W is stored in the substrate storage space 27 and the lid 3 is closed, the front retainer substrate receiving portion sandwiches and supports the edge of the edge of the substrate W.
 上述のような基板収納容器1において、気体噴出制御機構101による気体の置換は、以下のとおりに行われる。 In the substrate storage container 1 as described above, gas replacement by the gas ejection control mechanism 101 is performed as follows.
 工場内の工程において基板収納容器1が工程内容器として用いられているときには、容器本体2において下壁24は、下部に位置し上壁23は上部に位置している。この基板収納容器1へのガスパージの方法としては、蓋体3で容器本体2の容器本体開口部21を塞いで行う場合と、基板収納容器1から蓋体3を外した状態で行う場合の2通りがある。以下、蓋体3で容器本体2を塞いだ状態での説明を行う。 When the substrate storage container 1 is used as an in-process container in a process in a factory, the lower wall 24 is located at the lower part and the upper wall 23 is located at the upper part in the container body 2. The gas purging method for the substrate storage container 1 includes two cases where the cover body 3 is closed by closing the container body opening 21 of the container body 2 and when the cover body 3 is removed from the substrate storage container 1. There is a street. Hereinafter, description will be given in a state where the container body 2 is closed with the lid 3.
 容器本体2が蓋体3によりその容器本体開口部21が閉じられた状態で、容器本体2の下壁24の給気孔45に設けられた給気用フィルタ部80にパージガスが供給される。給気用フィルタ部80内の逆止弁84は、容器本体2の外部から容器本体2内部の基板収納空間27へのみ気体が通過でき、その逆の向きには気体は通過できない。よって、給気用フィルタ部80の入り口に供給されたパージガスは、逆止弁84、フィルタ83を通過する。 In the state where the container main body 2 is closed by the lid 3, the purge gas is supplied to the air supply filter section 80 provided in the air supply hole 45 of the lower wall 24 of the container main body 2. The check valve 84 in the air supply filter unit 80 can pass gas only from the outside of the container body 2 to the substrate storage space 27 inside the container body 2, and cannot pass gas in the opposite direction. Therefore, the purge gas supplied to the inlet of the air supply filter unit 80 passes through the check valve 84 and the filter 83.
 給気用フィルタ部80を通過したパージガスは、接続部120を通り管状気体流通部110に入る。管状気体流通部110に入ったパージガスは、そのパージガスの圧力で上方D21に上昇し、管状気体流通部上面111にぶつかり、管状気体流通部110の内部圧力が高まる。その結果、管状気体流通部110の側部に設けられた基板方向開口部130、気体制御部方向開口部140から、パージガスが噴出される。 The purge gas that has passed through the air supply filter unit 80 passes through the connection unit 120 and enters the tubular gas circulation unit 110. The purge gas that has entered the tubular gas circulation part 110 rises upward D21 due to the pressure of the purge gas, hits the upper surface 111 of the tubular gas circulation part, and the internal pressure of the tubular gas circulation part 110 increases. As a result, the purge gas is ejected from the substrate direction opening 130 and the gas control unit direction opening 140 provided on the side of the tubular gas circulation part 110.
 参考形態では、上述の管状気体流通部110を2セット設けている。それぞれの管状気体流通部110の基板方向開口部130から出たパージガスは、図6の矢印で示すように、それぞれ容器本体2に収納される基板Wの中央部に噴出される。すると、これらのパージガスは、基板Wの中央部近傍でぶつかり合い、容器本体開口部21に向けて、その向きを変える。つまり、あたかも奥壁22の左右方向D3の中央部から容器本体開口部21に向けて、パージガスが噴出されている状態となる。その後、容器本体2の下壁24の前部に配置され排気孔46に設けられた排気用フィルタ部81から、容器本体2の内部の気体が外部に放出される。 In the reference form, two sets of the tubular gas circulation part 110 described above are provided. As shown by the arrows in FIG. 6, the purge gas discharged from the substrate direction openings 130 of the respective tubular gas circulation portions 110 is jetted to the central portion of the substrate W stored in the container body 2. Then, these purge gases collide in the vicinity of the central portion of the substrate W and change their direction toward the container body opening 21. That is, the purge gas is jetted from the central portion of the back wall 22 in the left-right direction D3 toward the container main body opening 21. Thereafter, the gas inside the container body 2 is released to the outside from the exhaust filter portion 81 disposed in the front portion of the lower wall 24 of the container body 2 and provided in the exhaust hole 46.
 同様にそれぞれの管状気体流通部110の気体制御部方向開口部140から出たパージガスは、図6の矢印で示したように、それぞれ第1側壁湾曲部225及び第2側壁湾曲部226の内側に配置された気体制御部151に向って噴出される。すると、これらのパージガスの一部は、それぞれ気体制御部151で反射され、奥壁22と上壁23との接続部分の方向に向けて、その向きを変える。その後、奥壁22でかつ上壁23近傍に溜まったパージガスが、後から来るパージガスに押し出される格好で容器本体開口部21の方向へ流れる。容器本体開口部21近傍のパージガスは、容器本体2の下壁24の前部に配置された排気孔46に設けられた排気用フィルタ部81から、容器本体2の内部の気体が外部に放出される。
 このように所定の時間で、給気用フィルタ部80にパージガスを供給し、排気用フィルタ部81から気体を放出させることにより、基板収納容器1のガスパージを行う。
Similarly, the purge gas that has exited from the gas control unit direction opening 140 of each tubular gas flow part 110 is located inside the first side wall curved part 225 and the second side wall curved part 226, respectively, as indicated by arrows in FIG. It ejects toward the gas control part 151 arrange | positioned. Then, a part of these purge gases is reflected by the gas control unit 151 and changes its direction toward the connecting portion between the back wall 22 and the upper wall 23. Thereafter, the purge gas accumulated in the back wall 22 and in the vicinity of the upper wall 23 flows in the direction of the container body opening 21 in such a manner that it is pushed out by the purge gas coming later. As for the purge gas in the vicinity of the container body opening 21, the gas inside the container body 2 is released to the outside from the exhaust filter part 81 provided in the exhaust hole 46 disposed in the front part of the lower wall 24 of the container body 2. The
In this way, the purge gas is supplied to the supply air filter unit 80 and the gas is released from the exhaust filter unit 81 in a predetermined time, whereby the substrate storage container 1 is purged.
 なお、基板収納容器1から蓋体3を外した状態でガスパージを行った場合には、排気用フィルタ部81から外部に放出される気体の量が少なくなり、容器本体開口部から放出される気体の量が多くなるだけで、ガスパージそのものは同様に行われる。この場合には、ガスパージ終了後に、速やかに蓋体3を容器本体2に取り付ける必要がある。また、参考形態においては、管状気体流通部が2つ存在していたが、これに限られない。例えば、管状気体流通部を1つとしても良い。その際、第1側壁、第2側壁それぞれの気体制御部に向けてパージガスが流れるようにするために、管状気体流通部に新たな開口を設けて気体の流れを調整する。 When the gas purge is performed with the lid 3 removed from the substrate storage container 1, the amount of gas released from the exhaust filter portion 81 to the outside decreases, and the gas released from the container body opening portion. The gas purge itself is performed in the same manner only by increasing the amount of gas. In this case, it is necessary to quickly attach the lid 3 to the container body 2 after the gas purge is completed. Moreover, in the reference form, although two tubular gas distribution parts existed, it is not restricted to this. For example, it is good also as one tubular gas distribution part. At that time, in order to allow the purge gas to flow toward the gas control sections on the first side wall and the second side wall, a new opening is provided in the tubular gas circulation section to adjust the gas flow.
 次に上述の基板収納空間27の置換状況の比較を行う試験を行った。試験は参考形態における気体噴出制御機構101を取り外し、接続部120によって給気用フィルタ部80の中心からオフセットした状態で接続部開口からパージガスを噴出する構成としたものをパターン1とした。また、気体噴出制御機構101の基本形状は同じとして、管状気体流通部110の全長を、基板収納空間27に収納された基板W25枚の全ての基板間に開口を配置可能な長さとしたものをパターン2とした。また、参考形態における気体噴出制御機構101をパターン3として試験を行った。 Next, a test was performed to compare the replacement status of the substrate storage space 27 described above. In the test, the gas ejection control mechanism 101 according to the reference embodiment was removed, and the pattern 1 was formed by ejecting the purge gas from the opening of the connection portion while being offset from the center of the supply air filter portion 80 by the connection portion 120. In addition, assuming that the basic shape of the gas ejection control mechanism 101 is the same, the total length of the tubular gas circulation part 110 is such that the openings can be arranged between all the 25 substrates W stored in the substrate storage space 27. Pattern 2 was assumed. Further, the gas ejection control mechanism 101 in the reference form was tested as a pattern 3.
 試験では基板収納空間27に収納された25枚の基板のうち、1枚目、13枚目、25枚目の基板中央に湿度センサーを設置し、そこへ工業用圧縮窒素を毎分50リットルを供給し、湿度低下状態を確認する。なお、今回の試験では容器本体2から蓋体3を取り外した状態で2分間の窒素パージを行った。本来であれば、窒素濃度を測定すべきであるが、窒素ガス濃度を測定する代わりに、窒素ガスが絶乾状態であることを利用し、窒素ガスの置換の状態を湿度の変化として測定した。初期状態は、試験環境の空気の湿度の値が縦軸に現われている。窒素ガス濃度が高い状態とは、本試験では湿度が低い状態である。 In the test, a humidity sensor was installed at the center of the first, thirteenth, and twenty-fifth substrates among the 25 substrates stored in the substrate storage space 27, and industrial compressed nitrogen was supplied thereto at 50 liters per minute. Supply and check for low humidity. In this test, a nitrogen purge for 2 minutes was performed with the lid 3 removed from the container body 2. Originally, the nitrogen concentration should be measured, but instead of measuring the nitrogen gas concentration, the nitrogen gas substitution state was measured as a change in humidity using the fact that the nitrogen gas was completely dry. . In the initial state, the humidity value of the air in the test environment appears on the vertical axis. The state where the nitrogen gas concentration is high is a state where the humidity is low in this test.
 図8にパターン1の、図9にパターン2の、図10にパターン3の試験結果を示す。図8から図9に示すように、パターン1では基板1枚目における置換効率が悪く、パターン2では基板13枚目、25枚目における置換効率が悪い。パターン1では、接続部開口112から噴出されたパージガスが上壁23の方向に立ち上がってしまい容器下壁近傍にはパージガスが流れにくく、置換が行われにくい結果となり、パターン2では管状気体流通部110の全長が長く、内部圧力が上がらない為、基板収納空間27へ噴出されるパージガスにバラつきが発生し、均一な置換が行われていない結果となった。 FIG. 8 shows the test results of pattern 1, FIG. 9 shows pattern 2, and FIG. 10 shows pattern 3. As shown in FIGS. 8 to 9, in the pattern 1, the replacement efficiency on the first substrate is poor, and in the pattern 2, the replacement efficiency on the thirteenth and 25th substrates is poor. In the pattern 1, the purge gas ejected from the connection opening 112 rises in the direction of the upper wall 23, so that the purge gas hardly flows in the vicinity of the lower wall of the container, and the replacement is difficult to be performed. As a result, the purge gas ejected into the substrate storage space 27 varies and the uniform replacement is not performed.
 これに対し、図10に示すように、パターン3では、いずれの測定箇所においても十分な置換が行われており、十分な湿度低下が見られた。これらの結果から管状気体流通部110を設け、管状気体流通部110の全長を下壁24から上壁23までの間の所定の高さとして、下から1枚目から14枚目までの基板W間に開口を設けてパージを行うことで、効率よく置換されることが分かった。また、基板Wの下から1枚目と下壁24との間には、開口が設けられていないが、基板Wの下から1枚目と2枚目の間の開口からのパージガスにより置換されている。 On the other hand, as shown in FIG. 10, in pattern 3, sufficient substitution was performed at any measurement location, and a sufficient decrease in humidity was observed. From these results, the tubular gas circulation part 110 is provided, and the total length of the tubular gas circulation part 110 is set to a predetermined height between the lower wall 24 and the upper wall 23, and the first to fourteenth substrates W from the bottom are provided. It has been found that the purge can be efficiently performed by providing an opening between them and performing the purge. Further, although no opening is provided between the first substrate from the bottom of the substrate W and the lower wall 24, it is replaced by the purge gas from the opening between the first and second substrates from the bottom of the substrate W. ing.
 上記構成の参考形態に係る基板収納容器1によれば、以下のような効果を得ることができる。 According to the substrate storage container 1 according to the reference embodiment having the above configuration, the following effects can be obtained.
 上述のように基板収納容器1は、一端部に容器本体開口部が形成され他端部が閉塞された筒状の壁部であって、奥壁、上壁、下壁、及び一対の側壁を有し上壁の一端部、下壁の一端部、及び側壁の一端部によって容器本体開口部が形成された壁部を備え、上壁の内面、下壁の内面、側壁の内面、及び奥壁の内面によって、複数の基板を収納可能であり容器本体開口部に連通する基板収納空間が形成された容器本体と、容器本体開口部に対して着脱可能であり、容器本体開口部を閉塞可能な蓋体からなり、基板収納空間と容器本体の外部の空間とを連通可能とする複数の通気路を利用して容器内部の気体を置換できる基板収納容器において、通気路は、外部の空間から容器内部に気体を供給するために用いられる給気孔あるいは容器内部の空間から外部の空間に気体を放出するために用いられる排気孔と、側壁に設けられた容器内部の気体の流れを制御する気体制御部151と、奥壁の内面から離間された下壁に位置し、下壁から上壁間の所定の高さを有し、給気孔から供給された気体を容器本体に収納されている基板方向及び気体制御部方向に気体を流通させる気体噴出制御機構101を有する。 As described above, the substrate storage container 1 is a cylindrical wall portion in which a container main body opening is formed at one end and the other end is closed, and includes a back wall, an upper wall, a lower wall, and a pair of side walls. A wall having a container body opening formed by one end of the upper wall, one end of the lower wall, and one end of the side wall; and an inner surface of the upper wall, an inner surface of the lower wall, an inner surface of the side wall, and a back wall The inner surface of the container can store a plurality of substrates and can be attached to and detached from the container body opening in which a substrate storage space communicating with the container body opening is formed, and the container body opening can be closed. A substrate storage container comprising a lid and capable of replacing the gas inside the container using a plurality of air passages that allow the substrate storage space and the space outside the container body to communicate with each other. Air supply holes used to supply gas to the inside or empty inside the container Located on the lower wall spaced from the inner surface of the inner wall of the inner wall of the inner wall of the exhaust hole used for discharging the gas to the outside space, the gas control unit 151 for controlling the gas flow inside the container provided on the side wall The gas ejection control mechanism 101 has a predetermined height between the lower wall and the upper wall, and causes the gas supplied from the air supply holes to flow in the direction of the substrate stored in the container body and the direction of the gas control unit. .
 さらに、気体噴出制御機構は、側面に開口部を有し中空筒状で基板方向及び気体制御部方向に気体を噴出する複数の開口を有する管状気体流通部110と、給気孔45と管状気体流通部の一端に形成され、気体が流通可能に給気孔と接続する接続部120を有し、給気孔に供給された気体は、接続部を通じて管状気体流通部に供給され、その後管状気体流通部の開口から噴出され、さらに容器本体の気体制御部に当った後に容器本体の奥壁22方向でかつ上壁23の方向に気体が流通する構成とした。 Further, the gas ejection control mechanism includes a tubular gas flow part 110 having a plurality of openings that have openings on the side surfaces and have a hollow cylindrical shape and eject gas in the direction of the substrate and the gas control part, the air supply holes 45, and the tubular gas flow. The connection portion 120 is formed at one end of the portion and is connected to the supply hole so that gas can flow, and the gas supplied to the supply hole is supplied to the tubular gas flow portion through the connection portion, and then the tubular gas flow portion. The gas flowed in the direction of the inner wall 22 of the container body and in the direction of the upper wall 23 after being ejected from the opening and further hitting the gas control part of the container body.
 特に、気体制御部を容器本体側壁と奥壁との接続部の湾曲部225、226に設ける構成とした。 In particular, the gas control unit is provided in the curved portions 225 and 226 at the connection portion between the container main body side wall and the back wall.
 さらに、気体制御部が容器本体の側壁に配置される基板を支持するための基板支持状板部の奥側固定部51である構成とした。 Furthermore, it was set as the structure which is the back | inner side fixing | fixed part 51 of the board | substrate support-like board part for supporting the board | substrate arrange | positioned at the side wall of a container main body for a gas control part.
 特に、管状気体流通部の開口部は、容器本体内に収納された複数の基板の隣り合った基板との間に開口部を配置し、隣り合う基板と基板との間の空間へ気体を噴出する構成とした。 In particular, the opening of the tubular gas circulation part is arranged between the adjacent substrates of the plurality of substrates accommodated in the container body, and the gas is ejected into the space between the adjacent substrates. It was set as the structure to do.
 特に、容器本体内に等間隔に基板を25枚収納した場合に、下壁側から数えて13枚目と14枚目の基板との間に管状気体流通部の開口部の最上段の開口が配置される構成とした。 In particular, when 25 substrates are accommodated in the container body at equal intervals, the uppermost opening of the opening of the tubular gas circulation portion is between the 13th and 14th substrates counted from the lower wall side. It was set as the structure arranged.
 この構成により、給気用フィルタ部に供給されたパージガスは、管状気体流通部を通過する際に管状気体流通部の上面にぶつかり圧力が高められた状態で容器本体に収納されている基板Wの中央部に一旦噴出され、その後、基板Wの中央部近傍で交わり合い、容器本体開口部側へ向きを変えることで、あたかも奥壁の左右方向の中央部にパージガスが供給されたのと同じ状態となる。さらに、側壁の気体制御部に向けてもパージガスが噴出される。気体制御部に向け噴出されたパージガスは気体制御部で反射され、奥壁でかつ上壁の方向に向けて、その向きを変える。その後、押し出される形で容器本体開口部へ流れる。つまり、パージガスは、容器本体の基板収納空間内で滞留することなく、給気用フィルタ部から排気用フィルタ部あるいは容器本体開口部に流れ、容器内部の気体が外部に放出され置換が行われる。さらに管状気体流通部の開口や流体制御部を適宜設計することで、容器内部を流れるガスパージの気体の流量も、容器の上下方向において、均一にすることができる。
 よって、容器本体の基板収納空間内の気体の置換を効率的に行い、短時間で且つ均一なガスパージを行える基板収納容器を提供することができる。このため、半導体の処理工程においてシリコンウェーハがパージガスにさらされている割合を長くし、しかも均一な気体置換が行えるため、シリコンウェーハ上に作製される半導体チップの歩留まりを向上させることができる。さらに、短時間で効率よく気体置換を行うことができるので、プロセス時間を短縮させ、コストダウンにも寄与する。
With this configuration, the purge gas supplied to the air supply filter section collides with the upper surface of the tubular gas circulation section when passing through the tubular gas circulation section, and the pressure of the substrate W stored in the container body is increased. The same state as if purge gas was supplied to the central part of the back wall in the left-right direction by once being ejected to the central part and then intersecting in the vicinity of the central part of the substrate W and changing the direction to the container body opening side It becomes. Furthermore, the purge gas is also ejected toward the gas control unit on the side wall. The purge gas ejected toward the gas control unit is reflected by the gas control unit and changes its direction toward the rear wall and the upper wall. Then, it flows into the container body opening in an extruded form. That is, the purge gas does not stay in the substrate storage space of the container main body, and flows from the supply air filter section to the exhaust filter section or the container main body opening, and the gas inside the container is discharged to the outside for replacement. Further, by appropriately designing the opening of the tubular gas circulation part and the fluid control part, the flow rate of the gas purge gas flowing inside the container can be made uniform in the vertical direction of the container.
Therefore, it is possible to provide a substrate storage container that can efficiently replace the gas in the substrate storage space of the container body and perform a uniform gas purge in a short time. For this reason, since the rate at which the silicon wafer is exposed to the purge gas in the semiconductor processing step is increased and uniform gas replacement can be performed, the yield of semiconductor chips fabricated on the silicon wafer can be improved. Furthermore, since the gas replacement can be performed efficiently in a short time, the process time is shortened and the cost is reduced.
 次に、本発明の実施形態による基板収納容器について図11~図12を参照しながら説明する。
 図11は、本発明の実施参考形態に係る基板収納容器1の気体噴出制御機構101Aを示す斜視図である。図12は、本発明の実施参考形態に係る基板収納容器1の気体噴出制御機構101Aを示す断面図である。
Next, a substrate storage container according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 11 is a perspective view showing the gas ejection control mechanism 101A of the substrate storage container 1 according to the embodiment reference embodiment of the present invention. FIG. 12 is a cross-sectional view showing the gas ejection control mechanism 101A of the substrate storage container 1 according to the embodiment reference embodiment of the present invention.
 本実施形態による基板収納容器においては、気体噴出制御機構101A、接続部120Aの構成が、前述の参考形態による基板収納容器1の気体噴出制御機構101、接続部120の構成とは異なる。これ以外の構成については、参考形態による基板収納容器1の構成と同様であるため、参考形態における各構成と同様の構成については、同様の符号を付して説明を省略する。 In the substrate storage container according to the present embodiment, the configurations of the gas ejection control mechanism 101A and the connection portion 120A are different from the configurations of the gas ejection control mechanism 101 and the connection portion 120 of the substrate storage container 1 according to the above-described reference embodiment. Since the configuration other than this is the same as the configuration of the substrate storage container 1 according to the reference mode, the same configuration as each configuration in the reference mode is denoted by the same reference numeral, and the description thereof is omitted.
 基板収納容器は、気体噴出制御機構101Aと接続部120Aとを2つずつ備えている。2つの気体噴出制御機構101Aは、左右対称形状を有しており、また、2つの接続部120Aは、同一形状を有している。このため、一方の気体噴出制御機構101A、接続部120Aのみについて説明し、他方の気体噴出制御機構101A、接続部120Aについては、説明を省略する。 The substrate storage container includes two gas ejection control mechanisms 101A and two connection portions 120A. The two gas ejection control mechanisms 101A have a symmetrical shape, and the two connection portions 120A have the same shape. For this reason, only one gas ejection control mechanism 101A and connection part 120A will be described, and description of the other gas ejection control mechanism 101A and connection part 120A will be omitted.
 図11に示すように、接続部120Aの上端部には、係止部121Aと、フック部122Aとが設けられている。図12に示すように、係止部121Aは、気体噴出制御機構101の半径方向外方へフック部122Aから離間するように延び、上方向D21へ延び、更に、気体噴出制御機構101の半径方向外方へフック部122Aから離間するように延びている。 As shown in FIG. 11, a locking portion 121A and a hook portion 122A are provided at the upper end of the connecting portion 120A. As shown in FIG. 12, the locking portion 121 </ b> A extends outward in the radial direction of the gas ejection control mechanism 101 so as to be separated from the hook portion 122 </ b> A, extends in the upward direction D <b> 21, and further in the radial direction of the gas ejection control mechanism 101. It extends outwardly away from the hook portion 122A.
 気体噴出制御機構101Aは、給気用フィルタ部80に流入した気体としてのパージガス等を、基板収納空間27に供給する。具体的には、気体噴出制御機構101Aは、図11~図12に示すように、上端部が閉塞され、下端部が開口している略円錐形状の管状気体流通部本体110Aを有している。管状気体流通部本体110Aの内径の最大値(管状気体流通部本体110Aの下端部の内径)は、14mm程度であり、管状気体流通部本体110Aの内径の最小値(管状気体流通部本体110Aの上端部の内径)は、9mm程度である。管状気体流通部本体110Aの内部空間は、給気用フィルタ部80の通気路に連通する。 The gas ejection control mechanism 101 </ b> A supplies purge gas or the like as gas that has flowed into the supply air filter unit 80 to the substrate storage space 27. Specifically, as shown in FIGS. 11 to 12, the gas ejection control mechanism 101A has a substantially conical tubular gas circulation part main body 110A having an upper end closed and a lower end opened. . The maximum inner diameter of the tubular gas circulation part main body 110A (the inner diameter of the lower end of the tubular gas circulation part main body 110A) is about 14 mm, and the minimum inner diameter of the tubular gas circulation part main body 110A (the tubular gas circulation part main body 110A The inner diameter of the upper end is about 9 mm. The internal space of the tubular gas circulation part main body 110 </ b> A communicates with the ventilation path of the air supply filter part 80.
 図12に示すように、気体噴出制御機構101Aには、湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aと、基板方向開口部130A、及び、気体制御部方向開口部140Aと、が形成されている。
 湾曲部側方向内壁凹部113Aは、管状気体流通部本体110Aの内面に形成された、基板Wの中央部から離間する方向へ窪んだ、略長方形状の凹部により構成されている。湾曲部側方向内壁凹部113Aは、気体噴出制御機構101Aの上端部近傍の位置から下端部近傍の位置に至るまで、上下方向D2に一列で13個形成されている。各湾曲部側方向内壁凹部113Aの上下方向D2における高さは、全て同一であり4.5mm程度である。管状気体流通部本体110Aの周方向における湾曲部側方向内壁凹部113Aの長さは、1番上に位置する湾曲部側方向内壁凹部113Aから1番下に位置する湾曲部側方向内壁凹部113Aに近づくにつれて、徐々に長くなり、最小で3mm程度であり、最大で7mm程度である。湾曲部側方向内壁凹部113Aの窪みの深さは、それぞれ2.0mmである。
As shown in FIG. 12, the gas ejection control mechanism 101A includes a curved portion side direction inner wall recess 113A, a back wall side direction inner wall recess 114A, a gas control portion direction inner wall recess 115A, a substrate direction opening 130A, and 140 A of gas control part direction openings are formed.
The curved-wall-side inner wall recess 113A is formed by a substantially rectangular recess that is formed on the inner surface of the tubular gas circulation portion main body 110A and is recessed in a direction away from the center of the substrate W. The curved portion side inner wall recess 113A is formed in a row in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the position near the lower end. The height in the vertical direction D2 of each curved portion side inner wall recess 113A is the same and is about 4.5 mm. The length of the curved portion side direction inner wall concave portion 113A in the circumferential direction of the tubular gas circulation portion main body 110A is changed from the curved portion side direction inner wall concave portion 113A located at the top to the curved portion side direction inner wall concave portion 113A located at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 3 mm, and the maximum is about 7 mm. The depths of the recesses in the curved portion side direction inner wall recess 113A are each 2.0 mm.
 湾曲部側方向内壁凹部113Aが形成されていない管状気体流通部本体110Aの内面の部分は、湾曲部側方向内壁凹部113Aに対して相対的に凸状を有しており、この部分と湾曲部側方向内壁凹部113Aとにより凹凸部が構成される。凹凸部は、管状気体流通部本体110Aの内部空間における気体の乱流を生じさせる。奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aについても同様である。 The portion of the inner surface of the tubular gas circulation portion main body 110A where the curved portion side direction inner wall concave portion 113A is not formed has a convex shape relative to the curved portion side direction inner wall concave portion 113A. An uneven portion is constituted by the side inner wall recess 113A. The uneven portion causes gas turbulence in the internal space of the tubular gas circulation portion main body 110A. The same applies to the inner wall recess 114A in the back wall side direction and the inner wall recess 115A in the gas control unit direction.
 奥壁側方向内壁凹部114Aは、気体制御部151(図6参照)から離間する方向へ窪んだ、略長方形状の凹部により構成されている。奥壁側方向内壁凹部114Aは、気体噴出制御機構101Aの上端部近傍の位置から下端部近傍の位置に至るまで、上下方向D2に一列で13個形成されている。奥壁側方向内壁凹部114Aの寸法は、湾曲部側方向内壁凹部113Aの寸法と同様である。即ち、各奥壁側方向内壁凹部114Aの上下方向D2における高さは、全て同一であり4.5mm程度である。管状気体流通部本体110Aの周方向における奥壁側方向内壁凹部114Aの長さは、1番上に位置する奥壁側方向内壁凹部114Aから1番下に位置する奥壁側方向内壁凹部114Aに近づくにつれて、徐々に長くなり、最小で3mm程度であり、最大で7mm程度である。奥壁側方向内壁凹部114Aの窪みの深さは、それぞれ2.0mmである。 The inner wall concave portion 114A in the rear wall side direction is configured by a substantially rectangular concave portion that is recessed in a direction away from the gas control unit 151 (see FIG. 6). The back wall side direction inner wall recess 114A is formed in a row in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the position near the lower end. The dimension of the inner wall recess 114A in the rear wall side direction is the same as the dimension of the inner wall recess 113A in the bending portion side direction. That is, the heights in the vertical direction D2 of the inner wall concave portions 114A in the back wall side direction are all the same and about 4.5 mm. The length of the inner wall recess 114A in the back wall side direction in the circumferential direction of the tubular gas circulation portion main body 110A is changed from the inner wall recess 114A in the back wall side direction located at the top to the inner wall recess 114A in the back wall side direction located at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 3 mm, and the maximum is about 7 mm. The depths of the recesses in the inner wall recess 114A in the rear wall side direction are each 2.0 mm.
 気体制御部方向内壁凹部115Aは、気体制御部151に接近する方向へ窪んだ、略長方形状の凹部により構成されている。気体制御部方向内壁凹部115Aは、気体噴出制御機構101Aの下端部近傍の位置から、上下方向D2において、下から6番目の奥壁側方向内壁凹部114Aと同一の位置に至るまで、上下方向D2に一列で6個形成されている。従って、気体制御部方向内壁凹部115Aは、気体制御部151に対して接近/離間する方向において、下から1番目~下から6番目の奥壁側方向内壁凹部114Aと対向する位置関係を有している。 The gas control unit direction inner wall recess 115 </ b> A is configured by a substantially rectangular recess recessed in a direction approaching the gas control unit 151. The gas control unit direction inner wall concave portion 115A extends in the vertical direction D2 from the position near the lower end of the gas ejection control mechanism 101A to the same position as the sixth inner wall concave portion 114A in the back wall side direction in the vertical direction D2. Six are formed in one row. Therefore, the inner wall recess 115A in the gas control unit direction has a positional relationship opposite to the inner wall recess 114A in the rear wall side direction from the first to the sixth from the bottom in the direction approaching / separating from the gas control unit 151. ing.
 気体制御部方向内壁凹部115Aの寸法は、下から1番目~下から6番目の奥壁側方向内壁凹部114Aの寸法と同様である。即ち、各気体制御部方向内壁凹部115Aの上下方向D2における高さは、全て同一であり4.5mm程度である。管状気体流通部本体110Aの周方向における気体制御部方向内壁凹部115Aの長さは、1番上に位置する気体制御部方向内壁凹部115Aから1番下に位置する気体制御部方向内壁凹部115Aに近づくにつれて、徐々に長くなり、最小で5.7mm程度であり、最大で7mm程度である。気体制御部方向内壁凹部115Aの窪みの深さは、それぞれ2.0mmである。 The dimension of the inner wall recess 115A in the gas control unit direction is the same as the dimension of the inner wall recess 114A in the rear wall side direction from the first to the sixth from the bottom. That is, the height in the vertical direction D2 of each gas control unit direction inner wall recess 115A is the same and is about 4.5 mm. The length of the inner wall recess 115A in the gas control unit direction in the circumferential direction of the tubular gas circulation unit main body 110A is changed from the inner wall recess 115A in the gas control unit direction positioned at the top to the inner wall recess 115A in the gas control unit direction positioned at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 5.7 mm, and the maximum is about 7 mm. The depths of the recesses in the inner wall recess 115A in the gas control unit direction are each 2.0 mm.
 基板方向開口部130A及び気体制御部方向開口部140Aは、気体噴出制御機構101Aの内部と外部とを連通する貫通孔により構成されている。基板方向開口部130Aは、気体噴出制御機構101Aの上端部近傍の位置から下端部近傍の位置に至るまで、上下方向D2に一列で13個形成されている。基板方向開口部130Aは、全て長方形状の開口を有しており、13個の基板方向開口部130Aは、上下方向D2に直交する方向であって基板Wの中央部へ接近/離間する方向において、13個の湾曲部側方向内壁凹部113Aと、それぞれ一対一対応で対向している。従って、基板方向開口部130Aは、上下方向D2に直交する方向であって基板Wの中央部へ接近/離間する方向において、基板Wの中央部へ向って開口している。 The substrate direction opening 130A and the gas control unit direction opening 140A are configured by through holes that communicate the inside and the outside of the gas ejection control mechanism 101A. The substrate direction openings 130A are formed in a row in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the position near the lower end. The substrate direction openings 130A all have rectangular openings, and the 13 substrate direction openings 130A are in a direction perpendicular to the vertical direction D2 and approaching / separating from the central portion of the substrate W. , And 13 curved portion side direction inner wall concave portions 113A, respectively, in a one-to-one correspondence. Accordingly, the substrate direction opening 130A opens toward the center of the substrate W in a direction perpendicular to the vertical direction D2 and approaching / separating from the center of the substrate W.
 各湾曲部側方向内壁凹部113Aと対向する位置関係を有する各基板方向開口部130Aは、それぞれ各湾曲部側方向内壁凹部113Aと同一の寸法を有している。即ち、各基板方向開口部130Aの上下方向D2における高さは、全て同一であり4.5mm程度である。気体噴出制御機構101Aの周方向における各基板方向開口部130Aの長さは、1番上に位置する基板方向開口部130Aから1番下に位置する基板方向開口部130Aに近づくにつれて、徐々に長くなり、最小で3mm程度であり、最大で7mm程度である。 Each substrate direction opening 130A having a positional relationship facing each curved portion side direction inner wall concave portion 113A has the same dimensions as each curved portion side direction inner wall concave portion 113A. That is, the height in the vertical direction D2 of each substrate direction opening 130A is the same and is about 4.5 mm. The length of each substrate direction opening 130A in the circumferential direction of the gas ejection control mechanism 101A gradually increases from the substrate direction opening 130A positioned at the top to the substrate direction opening 130A positioned at the bottom. Therefore, the minimum is about 3 mm, and the maximum is about 7 mm.
 基板方向開口部130Aは、それぞれ、基板収納空間27に収納された複数の基板Wのうちの下から1枚目の基板Wから、下から14枚目の基板までの、それぞれの基板同士の間の空間にそれぞれ対向する位置関係を有する。具体的には、1番下に位置する基板方向開口部130Aは、下から1枚目の基板Wと下から2枚目の基板Wとの間の空間に対向している。下から2番目に位置する基板方向開口部130Aは、下から2枚目の基板Wと下から3枚目の基板Wとの間の空間に対向している。このようにして、各基板方向開口部130Aは、上下方向D2に隣接して支持されている2枚の基板Wの間の空間に対向しており、下から13番目に位置する基板方向開口部130Aは、下から13枚目の基板Wと下から14枚目の基板Wとの間の空間に対向している。 Each of the substrate direction openings 130A is formed between the substrates from the first substrate W from the bottom to the fourteenth substrate from the bottom among the plurality of substrates W stored in the substrate storage space 27. Each of the spaces has a positional relationship facing each other. Specifically, the substrate direction opening 130A located at the bottom faces the space between the first substrate W from the bottom and the second substrate W from the bottom. The substrate direction opening 130A located second from the bottom faces the space between the second substrate W from the bottom and the third substrate W from the bottom. In this way, each substrate direction opening 130A is opposed to the space between the two substrates W supported adjacent to the vertical direction D2, and is located in the thirteenth position from the bottom. 130A faces a space between the 13th substrate W from the bottom and the 14th substrate W from the bottom.
 従って、1番下に位置する1枚目の基板Wと下壁24との間の空間に対向する基板方向開口部130Aは、形成されていないが、他の位置に形成されている基板方向開口部130Aや気体制御部方向開口部140Aから基板収納空間27へ流入するパージガスの巻き込みや、接続部120Aと下壁24との間からのパージガスの漏れにより、1番下に位置する1枚目の基板Wと下壁24との間の空間においても、パージガスへの置換が行われる。 Accordingly, the substrate direction opening 130A facing the space between the first substrate W located at the bottom and the lower wall 24 is not formed, but the substrate direction opening formed at another position. The first sheet located at the bottom due to the purge gas flowing into the substrate storage space 27 from the portion 130A or the gas control unit direction opening 140A and the purge gas leaking between the connecting portion 120A and the lower wall 24 Also in the space between the substrate W and the lower wall 24, replacement with the purge gas is performed.
 気体制御部方向開口部140Aは、気体噴出制御機構101Aの上端部近傍の位置から、上下方向D2において、上から7番目の奥壁側方向内壁凹部114Aと同一の位置に至るまで、上下方向D2に一列で7個形成されている。気体制御部方向開口部140Aは、全て長方形状の開口を有しており、7個の気体制御部方向開口部140Aは、上下方向D2に直交する方向であって気体制御部151に対して接近/離間する方向において、上から1番目~7番目の奥壁側方向内壁凹部114Aと、それぞれ一対一対応で対向している。従って、気体制御部方向開口部140Aは、上下方向D2に直交する方向であって気体制御部151に対して接近/離間する方向において、気体制御部151へ向って開口している。 The gas control unit direction opening 140A extends in the vertical direction D2 from the position near the upper end of the gas ejection control mechanism 101A to the same position as the seventh inner wall recess 114A in the back wall side direction in the vertical direction D2. Seven are formed in one row. The gas control unit direction openings 140A all have rectangular openings, and the seven gas control unit direction openings 140A are directions perpendicular to the vertical direction D2 and approach the gas control unit 151. In the direction of separation, the first to seventh inner wall recesses 114A in the rear wall side direction face each other in a one-to-one correspondence. Therefore, the gas control unit direction opening 140A opens toward the gas control unit 151 in a direction orthogonal to the vertical direction D2 and in a direction approaching / separating from the gas control unit 151.
 各奥壁側方向内壁凹部114Aと対向する位置関係を有する各気体制御部方向開口部140Aは、それぞれ各奥壁側方向内壁凹部114Aと同一の寸法を有している。即ち、各気体制御部方向開口部140Aの上下方向D2における高さは、全て同一であり4.5mm程度である。気体噴出制御機構101Aの周方向における各気体制御部方向開口部140Aの長さは、1番上に位置する気体制御部方向開口部140Aから1番下に位置する気体制御部方向開口部140Aに近づくにつれて、徐々に長くなり、最小で3mm程度であり、最大で7mm程度である。 Each gas control unit direction opening 140A having a positional relationship facing each back wall side direction inner wall recess 114A has the same dimensions as each back wall side direction inner wall recess 114A. That is, the heights of the gas control unit direction openings 140A in the vertical direction D2 are all the same and about 4.5 mm. The length of each gas control unit direction opening 140A in the circumferential direction of the gas ejection control mechanism 101A is changed from the gas control unit direction opening 140A located at the top to the gas control unit direction opening 140A located at the bottom. As it gets closer, it gradually becomes longer, the minimum is about 3 mm, and the maximum is about 7 mm.
 凹凸部を構成する湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aが形成されている管状気体流通部本体110Aの内面に対する外面の部分においては、湾曲部側方向凸部116A、奥壁側方向凸部117A、及び、気体制御部方向凸部118Aが形成されている。 In the portion of the outer surface with respect to the inner surface of the tubular gas flow portion main body 110A in which the curved portion side direction inner wall concave portion 113A, the back wall side direction inner wall concave portion 114A, and the gas control portion direction inner wall concave portion 115A forming the uneven portion are formed. 116A of curved part side direction convex parts, 117 A of back wall side direction convex parts, and 118 A of gas control part direction convex parts are formed.
 湾曲部側方向凸部116Aは、湾曲部側方向内壁凹部113Aが形成されている管状気体流通部本体110Aの内面に対する管状気体流通部本体110Aの外面の部分に形成されており、湾曲部側方向内壁凹部113Aと略一致する形状を有する。また、奥壁側方向凸部117Aは、奥壁側方向内壁凹部114Aが形成されている管状気体流通部本体110Aの内面に対する管状気体流通部本体110Aの外面の部分に形成されており、奥壁側方向内壁凹部114Aと略一致する形状を有する。また、気体制御部方向凸部118Aは、気体制御部方向内壁凹部115Aが形成されている管状気体流通部本体110Aの内面に対する管状気体流通部本体110Aの外面の部分に形成されており、気体制御部方向内壁凹部115Aと略一致する形状を有する。 The curved portion side direction convex portion 116A is formed on the outer surface portion of the tubular gas flow portion main body 110A with respect to the inner surface of the tubular gas flow portion main body 110A in which the curved portion side direction inner wall concave portion 113A is formed. It has a shape that substantially matches the inner wall recess 113A. Further, the back wall side convex portion 117A is formed on the outer surface portion of the tubular gas flow portion main body 110A with respect to the inner surface of the tubular gas flow portion main body 110A in which the back wall side direction inner wall concave portion 114A is formed. It has a shape that substantially matches the lateral inner wall recess 114A. The gas control unit direction convex portion 118A is formed on the outer surface portion of the tubular gas flow portion main body 110A with respect to the inner surface of the tubular gas flow portion main body 110A in which the gas control portion direction inner wall concave portion 115A is formed. It has a shape substantially coinciding with the partial inner wall recess 115A.
 ここで、「略一致する形状」とは、完全に一致する形状のみならず、一致する形状を意図して製造した場合に、結果として、寸法誤差等により、若干の形状の違いが生ずる場合を含むことや、湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aが形成されていても、管状気体流通部本体110Aの半径方向の厚さがほとんど変化せず、成形時のいわゆるヒケが発生しない程度に、湾曲部側方向凸部116A、奥壁側方向凸部117A、及び、気体制御部方向凸部118Aが形成されていることを意味する。 Here, “substantially matching shape” means not only a completely matching shape but also a case where a slight difference in shape occurs due to a dimensional error or the like when manufactured with the intention of a matching shape. Even if the curved portion side direction inner wall concave portion 113A, the rear wall side direction inner wall concave portion 114A, and the gas control portion direction inner wall concave portion 115A are formed, the radial thickness of the tubular gas flow portion main body 110A is almost the same. It means that the curved portion side convex portion 116A, the back wall side convex portion 117A, and the gas control portion direction convex portion 118A are formed to such an extent that a so-called sink does not occur during molding.
 気体噴出制御機構101Aの下端部は、被係止部102、103を有している。被係止部103は、気体噴出制御機構101Aの下端部から、気体噴出制御機構101Aの半径方向外方(図12における左方向)へ突出している。被係止部102は、気体噴出制御機構101Aの下端部から、階段状に下方向D22へ一段下がり、気体噴出制御機構101Aの半径方向外方(図12における右方向)へ突出している。気体噴出制御機構101Aの半径方向外方(図12における右方向)へ突出している被係止部102の部分には、貫通孔が形成されている。被係止部102の貫通孔に係止部121Aが挿通され、被係止部103がフック部122Aに掛けられることにより、気体噴出制御機構101Aの下端部が、接続部120Aの上端部に固定される。 The lower end of the gas ejection control mechanism 101A has locked portions 102 and 103. The locked portion 103 protrudes radially outward (leftward in FIG. 12) of the gas ejection control mechanism 101A from the lower end of the gas ejection control mechanism 101A. The locked portion 102 is lowered stepwise in a downward direction D22 from the lower end portion of the gas ejection control mechanism 101A and protrudes radially outward (rightward in FIG. 12) of the gas ejection control mechanism 101A. A through hole is formed in the portion of the locked portion 102 that protrudes outward in the radial direction of the gas ejection control mechanism 101A (right direction in FIG. 12). The locking portion 121A is inserted into the through hole of the locked portion 102, and the locked portion 103 is hooked on the hook portion 122A, whereby the lower end portion of the gas ejection control mechanism 101A is fixed to the upper end portion of the connecting portion 120A. Is done.
 次に上述の基板収納空間27の置換状況の比較を行う試験を行った。試験では、本実施形態における気体噴出制御機構101Aを用いたものをパターン4(図13)とした。また、本実施形態における気体噴出制御機構101Aにおいて、湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aが形成されていない構成とし、これ以外の構成は、本実施形態における気体噴出制御機構101Aと同一の構成としたものをパターン5(図14)とした。 Next, a test was performed to compare the replacement status of the substrate storage space 27 described above. In the test, a pattern 4 (FIG. 13) using the gas ejection control mechanism 101 </ b> A in the present embodiment was used. Further, in the gas ejection control mechanism 101A in the present embodiment, the curved portion side direction inner wall concave portion 113A, the back wall side direction inner wall concave portion 114A, and the gas control portion direction inner wall concave portion 115A are not formed, and other configurations The pattern 5 (FIG. 14) is the same as that of the gas ejection control mechanism 101A in the present embodiment.
 また、本実施形態における気体噴出制御機構101Aにおいて、湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aの深さをそれぞれ1mmとし、これ以外の構成は、本実施形態における気体噴出制御機構101Aと同一の構成としたものをパターン6(図15)とした。また、本実施形態における気体噴出制御機構101Aについて上下方向D2における高さを更に高くして、基板方向開口部130A、気体制御部方向開口部140A、湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aの数をそれぞれ12個ずつ増やしたものをパターン7(図16)とした。 Further, in the gas ejection control mechanism 101A in the present embodiment, the depths of the curved portion side direction inner wall recess 113A, the back wall side direction inner wall recess 114A, and the gas control portion direction inner wall recess 115A are each 1 mm, and other configurations The pattern 6 (FIG. 15) is the same as that of the gas ejection control mechanism 101A in the present embodiment. Further, the height in the vertical direction D2 of the gas ejection control mechanism 101A in the present embodiment is further increased so that the substrate direction opening 130A, the gas control unit direction opening 140A, the curved portion side direction inner wall concave portion 113A, and the back wall side direction. Pattern 7 (FIG. 16) was obtained by increasing the number of inner wall recesses 114A and gas control unit direction inner wall recesses 115A by 12 each.
 従って、パターン7においては、基板方向開口部130Aは、それぞれ、基板収納空間27に収納された複数の基板Wのうちの下から1枚目の基板Wから1番上に位置する基板Wまでの、それぞれの基板同士の間の空間と、1番上に位置する基板Wと上壁23との間の空間と、にそれぞれ対向する位置関係を有する。 Accordingly, in the pattern 7, each of the substrate-direction openings 130 </ b> A extends from the bottom of the plurality of substrates W stored in the substrate storage space 27 to the substrate W positioned at the top from the first substrate W. , And the space between the substrates and the space between the substrate W located on the top and the upper wall 23 respectively have a positional relationship facing each other.
 試験では基板収納空間27に収納された25枚の基板のうち、1枚目、7枚目、13枚目、25枚目の基板中央部に湿度センサーを設置した。そして基板収納空間27へ工業用圧縮窒素を毎分50リットルで供給し、湿度低下状態を確認した。今回の試験では容器本体2から蓋体3を取り外した状態で2分間の窒素パージを行った。本来であれば、窒素濃度を測定すべきであるが、窒素ガス濃度を測定する代わりに、窒素ガスが絶乾状態であることを利用し、窒素ガスの置換の状態を湿度の変化として測定した。初期状態は、試験環境における空気の湿度の値が縦軸に現われている。窒素ガス濃度が高い状態とは、本試験では、湿度が低い状態である。 In the test, a humidity sensor was installed at the center of the first, seventh, thirteenth, and twenty-fifth substrates among the 25 substrates stored in the substrate storage space 27. Then, industrial compressed nitrogen was supplied to the substrate storage space 27 at a rate of 50 liters per minute, and the humidity reduction state was confirmed. In this test, nitrogen was purged for 2 minutes with the lid 3 removed from the container body 2. Originally, the nitrogen concentration should be measured, but instead of measuring the nitrogen gas concentration, the nitrogen gas substitution state was measured as a change in humidity using the fact that the nitrogen gas was completely dry. . In the initial state, the value of air humidity in the test environment appears on the vertical axis. The state where the nitrogen gas concentration is high is a state where the humidity is low in this test.
 試験結果は、図13~図16に示すとおりである。図13は、本発明の効果を確かめる試験で用いられた、パターン4の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。図14は、本発明の効果を確かめる試験で用いられた、パターン5の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。図15は、本発明の効果を確かめる試験で用いられた、パターン6の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。図16は、本発明の効果を確かめる試験で用いられた、パターン7の置換効率を確認する基板上の湿度センサーの波形を示したグラフである。 The test results are as shown in FIGS. FIG. 13 is a graph showing the waveform of the humidity sensor on the substrate used to confirm the replacement efficiency of the pattern 4 used in the test for confirming the effect of the present invention. FIG. 14 is a graph showing the waveform of the humidity sensor on the substrate used in the test for confirming the effect of the present invention to confirm the replacement efficiency of the pattern 5. FIG. 15 is a graph showing the waveform of the humidity sensor on the substrate used to confirm the replacement efficiency of the pattern 6 used in the test for confirming the effect of the present invention. FIG. 16 is a graph showing the waveform of the humidity sensor on the substrate used to confirm the replacement efficiency of the pattern 7 used in the test for confirming the effect of the present invention.
 図13に示すように、パターン4では、1枚目、7枚目、13枚目、25枚目のいずれの基板の位置においても、湿度の値は、初期状態に対して大きく低下しており、基板収納空間27のいずれの位置においても、窒素ガス濃度が高い状態になることが分かる。即ち、窒素パージが基板収納空間27のいずれの位置においても十分に行われていることが分かる。 As shown in FIG. 13, in the pattern 4, the humidity value is greatly reduced with respect to the initial state at any of the positions of the first, seventh, thirteenth and twenty-fifth substrates. It can be seen that the nitrogen gas concentration is high at any position of the substrate storage space 27. That is, it can be seen that the nitrogen purge is sufficiently performed at any position in the substrate storage space 27.
 これに対して、パターン5では、図14に示すように、7枚目の基板の位置において、ほとんど湿度の値が低下しておらず、窒素ガス濃度が高い状態にならないことが分かる。また、1枚目の基板の位置においては、湿度の値が安定しておらず、従って、窒素ガス濃度が安定しないことが分かる。 On the other hand, in pattern 5, as shown in FIG. 14, it can be seen that the humidity value is hardly lowered at the position of the seventh substrate, and the nitrogen gas concentration is not high. It can also be seen that the humidity value is not stable at the position of the first substrate, and therefore the nitrogen gas concentration is not stable.
 また、パターン6では、図15に示すように、1、13、25枚目の基板の位置においては、湿度の値が安定して低下しており、従って、窒素ガス濃度が安定して高い状態になっていることが分かるが、7枚目の基板の位置においては、ほとんど湿度の値が低下しておらず、窒素ガス濃度が高い状態にならないことが分かる。 In the pattern 6, as shown in FIG. 15, the humidity value stably decreases at the positions of the first, thirteenth, and twenty-fifth substrates, and therefore the nitrogen gas concentration is stably high. As can be seen, at the position of the seventh substrate, the humidity value hardly decreases and the nitrogen gas concentration does not become high.
 また、パターン7では、7枚目及び13枚目の基板の位置において、ほとんど湿度の値が低下しておらず、窒素ガス濃度が高い状態にならないことが分かる。また、7枚目の基板の位置においては、湿度の値が安定しておらず、従って、窒素ガス濃度が安定しないことが分かる。 Also, it can be seen that in pattern 7, the humidity value is hardly lowered at the positions of the seventh and thirteenth substrates, and the nitrogen gas concentration does not become high. It can also be seen that the humidity value is not stable at the position of the seventh substrate, and therefore the nitrogen gas concentration is not stable.
 上記構成の実施形態に係る基板収納容器1によれば、以下のような効果を得ることができる。 According to the substrate storage container 1 according to the embodiment having the above configuration, the following effects can be obtained.
 上述のように基板収納容器1は、一端部に容器本体開口部21が形成され他端部が閉塞された筒状の壁部20を備え、壁部の内面によって、複数の基板を収納可能であり容器本体開口部に連通する基板収納空間27が形成された容器本体2と、容器本体開口部に対して着脱可能であり、容器本体開口部を閉塞可能な蓋体3と、基板収納空間と容器本体の外部の空間とを連通可能な通気路と、通気路に配置されたフィルタ83と、を有し、壁部に配置され、フィルタを通して容器本体の外部の空間と基板収納空間との間で気体が通過可能なフィルタ部と、フィルタ部の通気路に流入した気体を、基板収納空間に供給する気体噴出ノズル部としての気体噴出制御機構101Aと、フィルタ部から気体噴出ノズル部へ気体を流通可能に連通する連通部と、を備える。気体噴出ノズル部としての気体噴出制御機構101Aは、通気路に連通するノズル部内部空間と気体噴出ノズル部の外部空間とを連通する貫通孔(基板方向開口部130A及び気体制御部方向開口部140A)と、ノズル部内部空間を形成する気体噴出ノズル部の内面に形成され、ノズル部内部空間における気体の乱流を生じさせる凹凸部(湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115A)と、を有する。 As described above, the substrate storage container 1 includes the cylindrical wall portion 20 in which the container main body opening 21 is formed at one end and the other end is closed, and a plurality of substrates can be stored by the inner surface of the wall portion. A container main body 2 in which a substrate storage space 27 communicating with the container main body opening is formed; a lid 3 that is detachable from the container main body opening and can close the container main body opening; and a substrate storage space; An air passage that can communicate with a space outside the container body, and a filter 83 that is disposed in the air passage. The air passage is disposed on the wall and is disposed between the space outside the container body and the substrate storage space through the filter. The gas jet control mechanism 101A as a gas jet nozzle part that supplies gas to the substrate storage space, and the gas from the filter part to the gas jet nozzle part. Communicable communication It comprises a part, a. The gas ejection control mechanism 101A serving as the gas ejection nozzle section has through-holes (substrate direction opening 130A and gas control section direction opening 140A) communicating the nozzle section internal space communicating with the air passage and the external space of the gas ejection nozzle section. ) And the concavo-convex portions (curved portion side direction inner wall concave portion 113A, back wall side direction inner wall concave portion 114A) that are formed on the inner surface of the gas ejection nozzle portion forming the nozzle portion inner space and cause turbulent gas flow in the nozzle portion inner space. And gas control part direction inner wall concave part 115A).
 この構成により、凹凸部を構成する湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aが、ノズル部内部空間である管状気体流通部本体110Aの内部空間における気体の乱流を生じさせることができる。これにより、パージガスが管状気体流通部本体110Aの先端に向って強く流れることを阻害して流れを弱めることができる。この結果、管状気体流通部本体110Aの上端部近傍、下端部近傍に関わらず、いずれの基板方向開口部130A及び気体制御部方向開口部140Aからも、均一にパージガスを基板収納空間27へ噴射することができる。 With this configuration, the curved wall side direction inner wall recess 113A, the back wall side direction inner wall recess 114A, and the gas control unit direction inner wall recess 115A that constitute the uneven part are inside the tubular gas circulation part main body 110A that is the nozzle part internal space. A turbulent flow of gas in the space can be generated. Thereby, it can inhibit that purge gas flows strongly toward the front-end | tip of 110 A of tubular gas distribution | circulation part main bodies, and can weaken a flow. As a result, regardless of the vicinity of the upper end portion and the vicinity of the lower end portion of the tubular gas circulation portion main body 110A, the purge gas is uniformly injected into the substrate storage space 27 from any of the substrate direction opening portion 130A and the gas control portion direction opening portion 140A. be able to.
 また、多孔質材料で構成されたバリアフィルタ等の部品を必要としない構成とすることができ、このため、部品点数が増えることを抑え、組立工数が増えることを抑えることができる。更に、多孔質材料で構成されたバリアフィルタ等の部品を必要とする構成の場合には、多孔質材料による圧力損失が生じるが、このような多孔質材料で構成されたバリアフィルタを用いないため、圧力損失の低下を抑えることができる。この結果、パージガスを、基板方向開口部130A及び気体制御部方向開口部140Aから勢い良く基板収納空間27へ噴出できるため、ガスパージをより短い時間で行うことができる。 Also, a configuration that does not require parts such as a barrier filter made of a porous material can be used, and therefore, it is possible to suppress an increase in the number of parts and an increase in the number of assembly steps. Furthermore, in the case of a configuration that requires parts such as a barrier filter made of a porous material, pressure loss due to the porous material occurs, but a barrier filter made of such a porous material is not used. , Pressure loss can be suppressed. As a result, the purge gas can be ejected vigorously from the substrate direction opening 130A and the gas control unit direction opening 140A to the substrate storage space 27, so that the gas purge can be performed in a shorter time.
 また、凹凸部は、気体噴出ノズル部の内面において窪んで形成された凹部(湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115A)により構成される。凹部の深さは、2.0mm以上である。 In addition, the concavo-convex part is constituted by a concave part (curved part side direction inner wall concave part 113A, back wall side direction inner wall concave part 114A, and gas control part direction inner wall concave part 115A) formed to be depressed on the inner surface of the gas ejection nozzle part. . The depth of the recess is 2.0 mm or more.
 凹部の深さが2.0mm未満では、パージガスの乱流を十分に生じさせることができず、管状気体流通部本体110Aの下端部近傍に位置する基板方向開口部130Aからのパージガスの噴出量が少なくなる。このため、ガスパージの効率が低下する。しかし、上記構成により、凹凸部を構成する湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aの深さは、2.0mm以上であるため、パージガスの乱流を十分に生じさせることができ、管状気体流通部本体110Aの下端部近傍の位置する基板方向開口部130Aからのパージガスの噴出量が少なくなることを抑えることができる。 If the depth of the recess is less than 2.0 mm, the purge gas cannot be sufficiently turbulent, and the amount of purge gas ejected from the substrate-direction opening 130A located near the lower end of the tubular gas circulation portion main body 110A is small. Less. For this reason, the efficiency of gas purge falls. However, with the above configuration, the depths of the curved portion side inner wall recess 113A, the back wall side inner wall recess 114A, and the gas control portion inner wall recess 115A constituting the concavo-convex portion are 2.0 mm or more. Turbulent flow can be sufficiently generated, and the amount of purge gas ejected from the substrate-direction opening 130A located in the vicinity of the lower end of the tubular gas circulation portion main body 110A can be suppressed.
 また、凹凸部(湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A)は、貫通孔(基板方向開口部130A及び気体制御部方向開口部140A)に対向する位置関係を有する。この構成により、凹凸部を構成する湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114Aにより発生した乱流により、基板方向開口部130A及び気体制御部方向開口部140Aから、より多くのパージガスを噴出することができる。 Further, the concavo-convex portions (the curved portion side direction inner wall concave portion 113A, the back wall side direction inner wall concave portion 114A) have a positional relationship facing the through holes (the substrate direction opening portion 130A and the gas control portion direction opening portion 140A). With this configuration, a larger amount of purge gas is generated from the substrate direction opening 130A and the gas control unit direction opening 140A due to the turbulent flow generated by the curved portion side inner wall recess 113A and the rear wall side inner wall recess 114A constituting the uneven portion. Can be erupted.
 また、凹凸部が形成されている気体噴出ノズル部の部分においては、凹部が形成されている気体噴出ノズル部の内面に対する気体噴出ノズル部の外面の部分には、凹部と略一致する形状の凸部(湾曲部側方向凸部116A、奥壁側方向凸部117A、及び、気体制御部方向凸部118A)が形成されている。 In addition, in the portion of the gas ejection nozzle portion where the concavo-convex portion is formed, the outer surface portion of the gas ejection nozzle portion with respect to the inner surface of the gas ejection nozzle portion where the recess portion is formed has a convex shape substantially matching the recess. Are formed (curved portion side convex portion 116A, back wall side convex portion 117A, and gas control portion direction convex portion 118A).
 この構成により、凹凸部を構成する湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aが形成されていることにより管状気体流通部本体110Aの肉厚が薄肉になることを抑えることができる。この結果、管状気体流通部本体110Aの成形時に、いわゆる「ひけ」による変形が大きく生じることを抑えることができる。 With this configuration, the curved portion side inner wall concave portion 113A, the inner wall concave portion 114A in the back wall side direction, and the inner wall concave portion 115A in the gas control portion direction, which form the concave and convex portions, are formed, so that the thickness of the tubular gas circulation portion main body 110A is increased. Can be suppressed from becoming thin. As a result, large deformation due to so-called “sinking” can be suppressed when the tubular gas circulation portion main body 110A is molded.
 また、基板収納空間は、複数の基板を所定の等間隔で離間させて並列させた状態で収納可能である。貫通孔は、複数形成され、基板収納空間に収納された複数の基板のうちの隣接する基板同士の間の空間にそれぞれ対向する位置関係を有する。この構成により、各基板Wにパージガスを噴出することができる。 Further, the substrate storage space can store a plurality of substrates in a state where they are arranged in parallel with a predetermined interval. A plurality of through-holes are formed and have a positional relationship facing the space between adjacent substrates among the plurality of substrates stored in the substrate storage space. With this configuration, the purge gas can be ejected to each substrate W.
 また、基板収納空間は、25枚の基板を所定の等間隔で離間させて並列させた状態で収納可能である。貫通孔は、複数形成され、基板収納空間に収納された複数の基板のうちの1枚目の基板から14枚目の基板までのそれぞれの基板同士の間の空間にそれぞれ対向する位置関係を有する。 Further, the substrate storage space can store 25 substrates in a state where they are arranged in parallel at a predetermined equal interval. A plurality of through-holes are formed and have a positional relationship facing the spaces between the respective substrates from the first substrate to the fourteenth substrate among the plurality of substrates stored in the substrate storage space. .
 この構成により、給気用フィルタ部80に供給されたパージガスは、管状気体流通部本体110Aを通過する際に管状気体流通部本体110Aの上面にぶつかり圧力が高められた状態で容器本体2に収納されている基板Wの中央部に一旦噴出され、その後、基板Wの中央部近傍で交わり合い、容器本体開口部21側へ向きを変えることで、あたかも奥壁22の左右方向D3の中央部にパージガスが供給されたのと同じ状態となる。 With this configuration, the purge gas supplied to the air supply filter unit 80 is stored in the container main body 2 in a state in which the purge gas collides with the upper surface of the tubular gas circulation unit main body 110A and the pressure is increased when passing through the tubular gas circulation unit main body 110A. Is once ejected to the central portion of the substrate W, and then intersects in the vicinity of the central portion of the substrate W and changes direction toward the container body opening 21 side, as if in the central portion of the back wall 22 in the left-right direction D3. The state is the same as when the purge gas is supplied.
 さらに、側壁の気体制御部151に向けてもパージガスが噴出される。気体制御部151に向け噴出されたパージガスは気体制御部151で反射され、奥壁22でかつ上壁23の方向に向けて、その向きを変える。その後、押し出される形で容器本体開口部21へ流れる。つまり、パージガスは、容器本体2の基板収納空間27内で滞留することなく、給気用フィルタ部80から排気用フィルタ部81あるいは容器本体開口部21に流れ、容器内部の気体が外部に放出され置換が行われる。さらに管状気体流通部の開口や流体制御部を適宜設計することで、容器内部を流れるガスパージの気体の流量も、容器の上下方向D2において、均一にすることができる。 Furthermore, purge gas is also ejected toward the gas control unit 151 on the side wall. The purge gas ejected toward the gas control unit 151 is reflected by the gas control unit 151 and changes its direction toward the rear wall 22 and the upper wall 23. Then, it flows into the container body opening 21 in an extruded form. That is, the purge gas does not stay in the substrate storage space 27 of the container body 2 and flows from the air supply filter section 80 to the exhaust filter section 81 or the container body opening 21, and the gas inside the container is released to the outside. Replacement is performed. Furthermore, by appropriately designing the opening of the tubular gas circulation part and the fluid control part, the flow rate of the gas purge gas flowing inside the container can be made uniform in the vertical direction D2 of the container.
 よって、容器本体の基板収納空間内の気体の置換を効率的に行い、短時間で且つ均一なガスパージを行える基板収納容器を提供することができる。このため、半導体の処理工程において基板W(シリコンウェーハ)がパージガスにさらされている割合を長くし、しかも均一な気体置換が行えるため、基板W上に作製される半導体チップの歩留まりを向上させることができる。さらに、短時間で効率よく気体置換を行うことができるので、プロセス時間を短縮させ、コストダウンにも寄与する。 Therefore, it is possible to provide a substrate storage container that can efficiently replace the gas in the substrate storage space of the container body and perform a uniform gas purge in a short time. For this reason, the rate at which the substrate W (silicon wafer) is exposed to the purge gas in the semiconductor processing step is increased and uniform gas replacement can be performed, so that the yield of semiconductor chips fabricated on the substrate W is improved. Can do. Furthermore, since the gas replacement can be performed efficiently in a short time, the process time is shortened and the cost is reduced.
 本発明は、上述した実施形態に限定されることはなく、特許請求の範囲に記載された技術的範囲において変形が可能である。
 例えば、湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aの深さは、2.0mmであったが、この値に限定されない。2.0mm以上であればよい。湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aの深さの上限値は、パージガスが管状気体流通部本体110Aの内部において管状気体流通部本体110Aの上端部に至るまで流通する流路が、管状気体流通部本体110Aにおいて確保できる程度の深さの値であり、且つ、管状気体流通部本体110Aが薄くなりすぎることにより、管状気体流通部本体110Aを成形する際に、いわゆる「ひけ」により大きく変形することを生じさせない程度の深さの値であればよい。
The present invention is not limited to the above-described embodiments, and can be modified within the technical scope described in the claims.
For example, the depths of the curved portion side inner wall recess 113A, the back wall side inner wall recess 114A, and the gas control portion direction inner wall recess 115A are 2.0 mm, but are not limited to this value. What is necessary is just 2.0 mm or more. The upper limit values of the depths of the curved portion side inner wall recess 113A, the rear wall side inner wall recess 114A, and the gas control portion direction inner wall recess 115A are as follows: the purge gas is inside the tubular gas circulation portion main body 110A and the tubular gas circulation portion main body 110A. The flow path that circulates up to the upper end of the tube has a depth value that can be secured in the tubular gas flow portion main body 110A, and the tubular gas flow portion main body 110A becomes too thin. When forming 110A, it may be a depth value that does not cause significant deformation due to so-called “sinking”.
 また、本実施形態では、凹凸部を構成する湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114A、及び、気体制御部方向内壁凹部115Aが形成されている管状気体流通部本体110Aの部分においては、湾曲部側方向凸部116A、奥壁側方向凸部117A、及び、気体制御部方向凸部118Aが形成されていたが、この構成に限定されない。
 例えば、管状気体流通部本体110Aの内面に形成された凹凸部が凸部を有する場合には、凸部が形成されている気体噴出ノズル部の内面に対する気体噴出ノズル部の外面の部分には、凸部と略一致する形状の凹部が形成されていればよい。また、気体噴出ノズル部の外面にこのような凹部や、湾曲部側方向凸部116A、奥壁側方向凸部117A、及び、気体制御部方向凸部118Aが形成されていなくてもよい。
Further, in the present embodiment, the portion of the tubular gas circulation portion main body 110A in which the curved portion side inner wall recess 113A, the rear wall side inner wall recess 114A, and the gas control portion inner wall recess 115A are formed. , The curved portion side convex portion 116A, the back wall side convex portion 117A, and the gas control portion direction convex portion 118A are formed, but the configuration is not limited thereto.
For example, when the concavo-convex portion formed on the inner surface of the tubular gas circulation portion main body 110A has a convex portion, the outer surface portion of the gas ejection nozzle portion with respect to the inner surface of the gas ejection nozzle portion where the convex portion is formed, It suffices if a concave portion having a shape substantially coincident with the convex portion is formed. Further, such a concave portion, the curved portion side convex portion 116A, the back wall side convex portion 117A, and the gas control portion direction convex portion 118A may not be formed on the outer surface of the gas ejection nozzle portion.
 また、本実施形態においては、凹凸部を構成する湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114Aは、気体噴出制御機構101Aの上端部近傍の位置から下端部近傍の位置に至るまで形成されていたが、この構成に限定されない。例えば、気体噴出制御機構101Aの上端部近傍においては、基板方向開口部130A及び気体制御部方向開口部140Aからパージガスが管状気体流通部本体110Aの内部から基板収納空間27へ流出しやすいため、管状気体流通部本体110Aの下端部近傍のみに湾曲部側方向内壁凹部113A、奥壁側方向内壁凹部114Aが形成されている構成としてもよい。 In the present embodiment, the curved portion side direction inner wall recess 113A and the back wall side direction inner wall recess 114A constituting the concavo-convex portion extend from a position near the upper end of the gas ejection control mechanism 101A to a position near the lower end. Although formed, it is not limited to this structure. For example, in the vicinity of the upper end portion of the gas ejection control mechanism 101A, the purge gas easily flows out from the inside of the tubular gas circulation portion main body 110A to the substrate storage space 27 from the substrate direction opening portion 130A and the gas control portion direction opening portion 140A. It is good also as a structure by which 113 A of curved wall side direction inner wall recessed parts and the inner wall recessed part 114A of back wall side direction are formed only in the lower end part vicinity of 110 A of gas distribution | circulation part main bodies.
 また、管状気体流通部や奥壁気体流通部、気体噴出制御部の形状は、本実施形態の形状に限定されない。特に、開口の数、配置、大きさは、適宜変更可能性である。また、容器本体及び蓋体の形状、容器本体に収納可能な基板Wの枚数や寸法は、本実施形態における容器本体2及び蓋体3の形状、容器本体2に収納可能な基板Wの枚や寸法に限定されない。 Further, the shapes of the tubular gas circulation part, the back wall gas circulation part, and the gas ejection control part are not limited to the shapes of the present embodiment. In particular, the number, arrangement, and size of the openings can be changed as appropriate. The shape of the container main body and the lid, the number and dimensions of the substrates W that can be stored in the container main body are the shape of the container main body 2 and the lid 3 in this embodiment, the number of substrates W that can be stored in the container main body 2, It is not limited to dimensions.
1 基板収納容器
2 容器本体
3 蓋体
20 壁部
21 容器本体開口部
27 基板収納空間
80 給気用フィルタ部(フィルタ部)
83 フィルタ
101A 気体噴出制御機構(気体噴出ノズル部)
113A 湾曲部側方向内壁凹部(凹凸部、凹部)
114A 奥壁側方向内壁凹部(凹凸部、凹部)
115A 気体制御部方向内壁凹部(凹凸部、凹部)
116A 湾曲部側方向凸部(凸部)
117A 奥壁側方向凸部(凸部)
118A 気体制御部方向凸部(凸部)
120A 接続部(連通部)
130A 基板方向開口部(貫通孔)
140A 気体制御部方向開口部(貫通孔)
W 基板
DESCRIPTION OF SYMBOLS 1 Substrate storage container 2 Container main body 3 Lid 20 Wall part 21 Container main body opening part 27 Substrate storage space 80 Air supply filter part (filter part)
83 Filter 101A Gas ejection control mechanism (gas ejection nozzle part)
113A Curved portion side inner wall concave portion (concave portion, concave portion)
114A Back wall side direction inner wall concave part (concave part, concave part)
115A Gas control part direction inner wall concave part (concave part, concave part)
116A Convex part side convex part (convex part)
117A Back wall side direction convex part (convex part)
118A Gas control part direction convex part (convex part)
120A connection part (communication part)
130A Substrate direction opening (through hole)
140A Gas control unit direction opening (through hole)
W substrate

Claims (6)

  1.  一端部に容器本体開口部が形成され他端部が閉塞された筒状の壁部を備え、前記壁部の内面によって、複数の基板を収納可能であり前記容器本体開口部に連通する基板収納空間が形成された容器本体と、
     前記容器本体開口部に対して着脱可能であり、前記容器本体開口部を閉塞可能な蓋体と、
     前記基板収納空間と前記容器本体の外部の空間とを連通可能な通気路と、前記通気路に配置されたフィルタと、を有し、前記壁部に配置され、前記フィルタを通して前記容器本体の外部の空間と前記基板収納空間との間で気体が通過可能なフィルタ部と、
     前記フィルタ部の前記通気路に流入した気体を、前記基板収納空間に供給する気体噴出ノズル部と、
     前記フィルタ部から前記気体噴出ノズル部へ気体を流通可能に連通する連通部と、を備え、
     前記気体噴出ノズル部は、前記通気路に連通するノズル部内部空間と前記気体噴出ノズル部の外部空間とを連通する貫通孔と、前記ノズル部内部空間を形成する前記気体噴出ノズル部の内面に形成され、前記ノズル部内部空間における気体の乱流を生じさせる凹凸部と、を有する基板収納容器。
    A substrate housing that includes a cylindrical wall portion that is formed with a container body opening at one end and is closed at the other end, and can accommodate a plurality of substrates by the inner surface of the wall and communicate with the container body opening. A container body in which a space is formed;
    A lid that can be attached to and detached from the container body opening, and can close the container body opening;
    An air passage that allows communication between the substrate storage space and a space outside the container body; and a filter disposed in the air passage, and is disposed on the wall portion and passes through the filter to the outside of the container body. A filter portion through which gas can pass between the space and the substrate storage space;
    A gas ejection nozzle part for supplying the gas flowing into the ventilation path of the filter part to the substrate housing space;
    A communication part that allows gas to flow from the filter part to the gas ejection nozzle part, and
    The gas ejection nozzle part is formed on a through hole communicating with the nozzle part internal space communicating with the air passage and the external space of the gas ejection nozzle part, and on the inner surface of the gas ejection nozzle part forming the nozzle part internal space. A substrate storage container having a concavo-convex portion that is formed and generates a turbulent gas flow in the nozzle portion internal space.
  2.  前記凹凸部は、前記気体噴出ノズル部の内面において窪んで形成された凹部により構成され、
     前記凹部の深さは、2.0mm以上である請求項1に記載の基板収納容器。
    The concavo-convex portion is constituted by a concave portion formed in a recess on the inner surface of the gas ejection nozzle portion,
    The depth of the said recessed part is 2.0 mm or more, The board | substrate storage container of Claim 1.
  3.  前記凹凸部は、前記貫通孔に対向する位置関係を有する請求項1又は請求項2に記載の基板収納容器。 3. The substrate storage container according to claim 1, wherein the concavo-convex portion has a positional relationship facing the through-hole.
  4.  前記凹凸部が形成されている前記気体噴出ノズル部の部分においては、前記凹凸部が凹部を有する場合には、前記凹部が形成されている前記気体噴出ノズル部の内面に対する前記気体噴出ノズル部の外面の部分には、前記凹部と略一致する形状の凸部が形成され、前記凹凸部が凸部を有する場合には、前記凸部が形成されている前記気体噴出ノズル部の内面に対する前記気体噴出ノズル部の外面の部分には、前記凸部と略一致する形状の凹部が形成されている請求項1~請求項3のいずれかに記載の基板収納容器。 In the portion of the gas ejection nozzle portion where the uneven portion is formed, when the uneven portion has a recess, the gas ejection nozzle portion with respect to the inner surface of the gas ejection nozzle portion where the recess is formed A convex portion having a shape substantially coinciding with the concave portion is formed on the outer surface portion, and when the concave and convex portion has a convex portion, the gas with respect to the inner surface of the gas ejection nozzle portion on which the convex portion is formed The substrate storage container according to any one of claims 1 to 3, wherein a concave portion having a shape substantially coincident with the convex portion is formed on an outer surface portion of the ejection nozzle portion.
  5.  前記基板収納空間は、複数の基板を所定の等間隔で離間させて並列させた状態で収納可能であり、
     前記貫通孔は、複数形成され、前記基板収納空間に収納された複数の基板のうちの隣接する基板同士の間の空間にそれぞれ対向する位置関係を有する請求項1~請求項4のいずれかに記載の基板収納容器。
    The substrate storage space can be stored in a state in which a plurality of substrates are spaced apart in parallel at a predetermined equal interval,
    The plurality of through-holes are formed and have a positional relationship facing each of the spaces between adjacent substrates among the plurality of substrates stored in the substrate storage space. The substrate storage container as described.
  6.  前記基板収納空間は、25枚の基板を所定の等間隔で離間させて並列させた状態で収納可能であり、
     前記貫通孔は、複数形成され、前記基板収納空間に収納された複数の基板のうちの1枚目の基板から14枚目の基板までのそれぞれの基板同士の間の空間にそれぞれ対向する位置関係を有する請求項1~請求項4のいずれかに記載の基板収納容器。
    The substrate storage space can be stored in a state where 25 substrates are spaced apart and arranged in parallel at a predetermined equal interval,
    A plurality of the through holes are formed, and the positional relationship is opposed to the space between the respective substrates from the first substrate to the fourteenth substrate among the plurality of substrates stored in the substrate storage space. 5. The substrate storage container according to claim 1, comprising:
PCT/JP2015/055878 2015-02-27 2015-02-27 Substrate storing container WO2016135952A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/055878 WO2016135952A1 (en) 2015-02-27 2015-02-27 Substrate storing container
JP2017501798A JPWO2016135952A1 (en) 2015-02-27 2015-02-27 Substrate storage container
TW105105052A TW201630668A (en) 2015-02-27 2016-02-22 Substrate storing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055878 WO2016135952A1 (en) 2015-02-27 2015-02-27 Substrate storing container

Publications (1)

Publication Number Publication Date
WO2016135952A1 true WO2016135952A1 (en) 2016-09-01

Family

ID=56788030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055878 WO2016135952A1 (en) 2015-02-27 2015-02-27 Substrate storing container

Country Status (3)

Country Link
JP (1) JPWO2016135952A1 (en)
TW (1) TW201630668A (en)
WO (1) WO2016135952A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179964A1 (en) * 2017-03-27 2018-10-04 信越ポリマー株式会社 Substrate storage container
CN110870054A (en) * 2018-06-12 2020-03-06 未来儿股份有限公司 Substrate storage container
CN112074944A (en) * 2018-04-25 2020-12-11 未来儿股份有限公司 Substrate storage container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307623A (en) * 1998-04-16 1999-11-05 Tokyo Electron Ltd Object to be treated housing device and carrying in/out stage
JP2007227619A (en) * 2006-02-23 2007-09-06 Kondo Kogyo Kk Charger for charging dry air or nitrogen gas into semiconductor wafer container, and wafer static electricity remover using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307623A (en) * 1998-04-16 1999-11-05 Tokyo Electron Ltd Object to be treated housing device and carrying in/out stage
JP2007227619A (en) * 2006-02-23 2007-09-06 Kondo Kogyo Kk Charger for charging dry air or nitrogen gas into semiconductor wafer container, and wafer static electricity remover using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179964A1 (en) * 2017-03-27 2018-10-04 信越ポリマー株式会社 Substrate storage container
JPWO2018179964A1 (en) * 2017-03-27 2020-02-06 信越ポリマー株式会社 Substrate storage container
US11646214B2 (en) 2017-03-27 2023-05-09 Shin-Etsu Polymer Co., Ltd. Substrate storage container
CN112074944A (en) * 2018-04-25 2020-12-11 未来儿股份有限公司 Substrate storage container
JPWO2019207690A1 (en) * 2018-04-25 2021-05-13 ミライアル株式会社 Board storage container
JP7032521B2 (en) 2018-04-25 2022-03-08 ミライアル株式会社 Board storage container
US11948821B2 (en) 2018-04-25 2024-04-02 Miraial Co., Ltd. Substrate storing container
CN110870054A (en) * 2018-06-12 2020-03-06 未来儿股份有限公司 Substrate storage container
CN110870054B (en) * 2018-06-12 2023-10-24 未来儿股份有限公司 Substrate container

Also Published As

Publication number Publication date
JPWO2016135952A1 (en) 2017-12-21
TW201630668A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6613390B2 (en) Substrate storage container
JP6351317B2 (en) Substrate storage container
JP6325374B2 (en) Substrate storage container
JP2012114133A (en) Substrate storing container
JP6817499B2 (en) Board storage container
WO2016135952A1 (en) Substrate storing container
JP2016105443A (en) Substrate housing container
KR102430081B1 (en) board storage container
TWI804609B (en) Substrate storage container
JP7550857B2 (en) Substrate storage container
WO2016098516A1 (en) Substrate housing container
WO2021014653A1 (en) Substrate storage container
JP6498758B2 (en) Substrate storage container
JP2017195340A (en) Substrate storage container
JP7113031B2 (en) Substrate storage container molding method, mold, and substrate storage container
US20240145284A1 (en) Substrate storing container
TWI856142B (en) Substrate storage container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883246

Country of ref document: EP

Kind code of ref document: A1