WO2016134584A1 - 一种满足egr循环需要的可变截面废气旁通涡轮机 - Google Patents
一种满足egr循环需要的可变截面废气旁通涡轮机 Download PDFInfo
- Publication number
- WO2016134584A1 WO2016134584A1 PCT/CN2015/086000 CN2015086000W WO2016134584A1 WO 2016134584 A1 WO2016134584 A1 WO 2016134584A1 CN 2015086000 W CN2015086000 W CN 2015086000W WO 2016134584 A1 WO2016134584 A1 WO 2016134584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- turbine
- wastegate
- intake
- flow passage
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
- F02B37/183—Arrangements of bypass valves or actuators therefor
- F02B37/186—Arrangements of actuators or linkage for bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/041—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/045—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector for radial flow machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/02—Gas passages between engine outlet and pump drive, e.g. reservoirs
- F02B37/025—Multiple scrolls or multiple gas passages guiding the gas to the pump drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
- F02B37/183—Arrangements of bypass valves or actuators therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/22—Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/105—Final actuators by passing part of the fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/026—Scrolls for radial machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B2075/1804—Number of cylinders
- F02B2075/1824—Number of cylinders six
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/128—Nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/14—Casings or housings protecting or supporting assemblies within
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to the field of engine technology, and more particularly to a variable section wastegate turbine that meets the needs of an RGR cycle.
- EGR Exhaust Gas Recirculation
- Chinese translation for exhaust gas recirculation is to send a small part of the exhaust gas generated by the engine back to the cylinder for combustion.
- NOx is a gas that is extremely harmful to the human body. It is mainly produced under conditions of high temperature and oxygen enrichment. The higher the combustion temperature and oxygen concentration, the longer the duration, and the more NOx is produced.
- the exhaust gas can absorb and carry out part of the heat generated by the combustion, and bring out the intake air. A certain dilution, thus reducing the maximum temperature and oxygen content of the engine combustion, thereby reducing the formation of NOx compounds.
- variable-section turbocharger adjusts the pressure difference between the front PT of the turbine and the PK after the intermediate cooling by the cross-sectional change of the supercharger to drive the EGR valve.
- the most variable-section turbocharger is to add rotating nozzle vanes inside the turbine.
- the opening degree of the nozzle vanes By changing the opening degree of the nozzle vanes, the flow passage of the turbine is changed, and the control is convenient.
- the exhaust gas emitted by the engine has a high exhaust temperature of about 700 degrees Celsius, and there is a tendency to further increase, the exhaust high temperature has strict requirements on the nozzle vane, the transmission mechanism, the nozzle ring support plate, and the external control system, and the engine discharges. Impurities in high temperature exhaust gases pose a reliability hazard to complex moving parts.
- variable-section application that is used more is the two-stage flow-path variable-section turbocharger developed by Kangyue Technology.
- Kangyue Technology Through the structural design of the traditional turbine shell, the combination of the inner and outer double-layer intake passages is used to form different The flow cross section, the effective segmentation utilizes the exhaust energy of the engine, can realize all the functions of the variable-section turbine, and does not need to set a complicated rotary vane pneumatic adjustment mechanism, the cost is greatly reduced, the reliability is greatly improved, and it will be the future.
- Kangyue Technology Another variable-section application that is used more is the two-stage flow-path variable-section turbocharger developed by Kangyue Technology.
- the distribution of the inner and outer flow channels will produce a plurality of vortex tongues, and the gas flow is easy to affect each other, resulting in a decrease in turbine efficiency;
- the turbine with internal and external double-flow passages has a complicated structure, and the turbine is a cast part, so the production consistency is difficult to control, and the casting deviation of the double-flow passage is large, which has a great influence on the matching performance of the turbine.
- the present invention provides a variable-section exhaust gas bypass turbine that satisfies the requirements of the RGR cycle, and the turbine can reduce the expansion loss instantaneously when the valve is opened, while satisfying the EGR rate.
- the present invention provides a variable-section exhaust gas bypass turbine that meets the requirements of an RGR cycle, including a turbine casing and a power turbine, the turbine casing being provided with a pilot engine exhaust gas to the power turbine to drive the intake of the power turbine to rotate Flow path and intake air flow path,
- the turbine casing is further provided with a waste gas bypass pipe that exhausts the exhaust gas without passing through the power turbine, and a waste gas bypass valve that controls the exhaust gas bypass pipe to open and close; the intake air amount of the exhaust gas entering the turbine exceeds At a predetermined value, the wastegate valve opens to allow a portion of the exhaust gas to exit through the wastegate line.
- an adjustment valve with an adjustable opening is provided for adjusting an intake air amount of the intake air flow passage
- the regulating valve is arranged in linkage with the wastegate bypass valve to: when the regulating valve is opened to a predetermined angle, the exhaust gas bypass valve is driven to open, and at this time, the intake air amount reaches the predetermined value.
- the regulating valve is a rotatable central valve, and when rotating, the exhaust gas can enter through both sides of the valve body.
- the regulating valve and the wastegate valve have an adjustment surface whose axial height changes in a direction of adjusting a valve rotation, and the other has a linkage portion that is in contact with the adjustment surface. Therefore, when the regulating valve rotates, the wastegate valve can be driven to move along the axial direction of the regulating valve to open.
- the regulating valve and the wastegate valve are axially contactable along the regulating valve; and further comprising a driving portion, the driving portion comprising an end cover mounted to the turbine casing, the end Covering an end surface of the regulating valve to drive the adjusting valve to rotate;
- the end cap and the regulating valve have an adjustment surface whose axial height changes in a direction of adjusting the valve rotation, and the other has a linkage portion that is in contact with the adjustment surface, so that the adjustment valve When rotating, the wastegate valve can be driven to move along the axial direction of the regulating valve to open.
- an axial height of the adjustment surface is spirally raised around a rotation axis of the adjustment valve, and the linkage portion is an adjustment rod that is in contact with the adjustment surface.
- the adjusting surface has a convex portion that is gently convex along the rotating direction of the adjusting valve, and correspondingly forms a concave portion on the adjusting surface;
- the linking portion is an axial protrusion, and the axial protrusion The axial projections can sequentially slide over the concave portion and the convex portion when rotated relative to the adjustment surface.
- the regulating valve is provided with a cam that rotates therewith, and the wastegate valve is provided with an adjusting rod that can be in contact with the cam edge.
- a spring is further included, and the spring controls the wastegate valve to be in a closed state when the power of the regulating valve and the wastegate valve is cancelled.
- valve seat further comprises: a valve seat inner flow channel interface, a valve seat outer flow channel interface, a valve seat waste gas bypass inlet, a valve seat waste gas bypass outlet; the regulating valve and the waste gas bypass valve Both are disposed in the valve seat;
- the valve seat is disposed between the exhaust pipe and an intake end of the turbine casing.
- the wastegate valve is directly mounted to the turbine casing, and the regulating valve is inserted into the turbine casing to directly adjust the amount of intake air entering the intake outer flow passage.
- the turbine is provided with two sets of the intake air flow passages corresponding to the six-cylinder engine, An intake inner flow passage and a waste gas bypass line, the regulating valve includes two valve bodies connected to each other, and after inserting the turbine casing, the two valve bodies respectively control two of the said The amount of intake air from the outflow channel.
- the utility model further includes a vane support disk disposed at an annular inlet end face of the power turbine;
- the vane support discs are arranged along the circumferential direction thereof with a plurality of first flow guiding channels and a second flow guiding channel, the first guiding channels and the second guiding channels having a predetermined angle so that the Exhaust gas flowing out of the intake inner flow passage can be guided to the power turbine through the first flow guiding passage, and exhaust gas flowing out of the intake outer flow passage can be guided to the power turbine through the second guiding passage .
- the annular support surface of the vane support disk is provided with a plurality of guide vanes protruding from the annular surface, and the guide vanes are opened with a guide groove extending through the guide vanes to form a slotted guide vane;
- a passage between adjacent ones of the slotted guide vanes forms the first flow guiding channel, and the flow guiding groove forms the second flow guiding channel.
- the annular surface of the vane support disk is provided with a long guide vane and a short guide vane protruding from the annular surface and spaced apart, and the long guide vane to the short guide vane in a counterclockwise direction
- the passage between the two forms the second flow guiding passage
- the passage between the short guide vane and the long guide vane forms the first flow guiding passage
- the arrangement angle B of the long guide vanes is 68°-80°
- the turbine provided by the present invention is provided with a waste gas bypass line that exhausts the exhaust gas without passing through the power turbine.
- a waste gas bypass valve that controls the opening and closing of the waste gas bypass line is also provided.
- the waste gas bypass valve is opened to allow a part of the exhaust gas to be discharged through the waste gas bypass line. Therefore, when the engine is in a high speed condition, the waste bypass valve can be opened to allow part of the exhaust gas to be exhausted through the waste bypass line to avoid overspeeding of the supercharger.
- the intake air flow passage need not be set to a large area in order to avoid overspeed of the supercharger at a high speed, and can be set to a small area to ensure the turbine drive performance and circulation of the medium and medium load; and, by the low speed and low load work
- the small area difference between the inner and outer flow paths reduces the expansion loss.
- the present invention provides a variable-section exhaust gas bypass turbine that meets the needs of an EGR cycle, including a turbine casing having an intake inner flow passage and an intake outer flow passage, an intake inner flow passage and an intake outer flow passage.
- the non-peripheral structure is adopted respectively, and the intake inner flow passage is responsible for the intake of the power turbine from 0° to (150 to 230)°, and the intake outer flow passage is responsible for the intake of (150 to 230)° to 360°;
- the turbine casing There is also a waste gas bypass line which is arranged in parallel with the intake outer flow passage and the intake inner flow passage, but does not pass through the power turbine.
- the turbine also includes a power turbine, a valve seat, an exhaust pipe, and a control accessory thereof, the turbine casing, the valve seat, and the exhaust pipe being sealingly coupled together.
- a valve for adjusting the intake air flow rate of the intake air passage is installed in the valve seat.
- the regulating valve is installed in the valve seat by adjusting the valve sleeve, and one end of the regulating valve is connected with the control accessory.
- the other end of the regulating valve is provided with an adjusting surface, and the adjusting surface is a spiral structure, and its axial height spirals around its own axis.
- the waste gas bypass line is provided with a waste gas bypass valve that can cooperate with the regulating valve, and the waste gas bypass valve is installed in the valve seat through the wastegate valve bushing, the waste gas bypass valve and the waste gas bypass valve shaft
- the sleeve is equipped with a spring, and the side of the waste bypass valve close to the regulating valve is provided with an adjusting rod that cooperates with the adjusting surface.
- the control accessory drives the adjustment valve to rotate, adjusts the intake air volume of the intake air passage, adjusts the adjustment surface of the valve to push the adjustment rod, the waste gas bypass valve opens, and compresses the spring. At this time, the bypass exhaust gas bypasses the exhaust gas. The pipeline is discharged. When the valve is adjusted, the wastegate valve returns to the position under the spring force, and the exhaust gas is no longer bypassed.
- a guide vane support disc is arranged in the turbine shell near the power turbine, and the vane support disc is provided with a plurality of slotted vanes, and the plurality of slotted vanes are uniformly arranged in a ring shape.
- a guide groove is arranged in the middle of the slotted guide vane, and the arrangement angle of the slotted guide vane is 68°-80°, and the two groove sides of the guide groove are obtained by rotating the cutting line around the center of the guide vane support disc, and the slot width is the most The narrow part is controlled by 3mm.
- the slotted guide vane is in the form of a gas-solid composite nozzle.
- the inner passage of the turbine intake air acts.
- the vane angle of the inner flow passage of the intake air is designed according to the intake angle of the inner flow passage of the intake air to ensure that the two angles are basically the same.
- the gas enters the vane along the inner flow passage of the intake air, and then enters the power turbine along the vane, and there is no turning loss in the middle. , high pneumatic efficiency.
- the outer flow path intake angle is also determined by the A/r of the intake air flow path, and the angle of the guide groove is pressed.
- the intake angle of the out-of-gas flow passage is designed to ensure that the two angles are basically the same.
- the gas enters the guide trough along the outer flow passage of the intake air, and then enters the turbine along the guide trough to avoid impact loss when installing the complete guide vane (without the guide trough). And the loss of turning, not only improved efficiency, but also widened the flow.
- the radial velocity component rises faster, and the presence of the diversion groove makes the flow rate widening of the high speed section more obvious.
- the regulating valve is closed, and the intake air is along the exhaust pipe, the valve seat gas inlet, the valve seat inner flow passage interface, the turbine casing inner flow passage inlet, the intake inner flow passage, and the opening.
- the trough guide vanes flow into the turbine to drive the turbine to work.
- the airflow flows to the turbine along the middle of the two slotted guide vanes to drive the turbine to work.
- only the intake inner passage acts, the cross section is small, and the flow through the vane It also flows only along the vane angle, and the airflow is concentrated, which can increase the pre-vortex pressure and increase the EGR rate.
- the regulating valve starts to open, part of the airflow flows through the regulating valve, and flows into the turbine along the outer flow passage interface of the valve seat, the outer runner inlet of the turbine casing, the outer flow passage of the intake air, and the slotted guide vane to adapt to the gradual adaptation.
- Increased flow demand, in this process, by adjusting the opening of the regulating valve, the pre-vortex pressure can be adjusted to determine the appropriate EGR rate.
- the adjusting rod drives the waste bypass valve to compress the spring, the waste gas bypass passage is opened, and the exhaust gas bypasses the exhaust pipe exhaust gas.
- the outlet, the valve seat waste bypass inlet, the valve seat waste bypass outlet, the turbine casing waste bypass inlet, and the turbine casing waste bypass outlet flow out, and a part of the exhaust gas energy is discharged to ensure the supercharger vortex pressure at high speed and high load of the engine. Not too big.
- the intake air volume increases, the intake air flows along the guide grooves on the slotted guide vanes, avoiding the airflow at the high speed section. Blocked.
- the slotted guide vane includes a long guide vane and a short guide vane, the length of the long guide vane is larger than the length of the short guide vane, and the long guide vane and the short guide vane are spaced apart.
- the trailing edge of the small vane is spaced apart from the leading edge of the long vane by a distance in the circumferential direction. It facilitates the flow of air from this point during high-speed engine operation, which can widen the flow and reduce the blockage.
- the function is similar to that of the slotted guide vane.
- the invention adopts a gas-solid composite nozzle, combined with the advantages of both the variable flow passage and the rotary nozzle vane, solves the above problems and forms an innovative variable section solution.
- the slotted guide vane and the long and short guide vane structure of the present invention can change the intake angle, widen the high-speed flow range, and balance the high and low speed turbine performance with the fixed-length guide vane structure.
- the guide vane realizes the adjustment of the intake angle which can be realized by rotating the nozzle vane, the turbine efficiency is obviously improved, the presence of the vane reduces the backflow of the airflow, not only improves the efficiency of the turbine, but also makes the airflow flow smoothly, avoiding the airflow at the throat. Disturbance, the fuel consumption rate achieves a substantial reduction in the entire matching line.
- FIG. 1 is a schematic diagram of a closed state of a double-flow runner variable-section turbocharger valve in the background art of the present invention
- Figure 2 is a schematic view showing the open state of the double-flow flow path variable-section turbocharger valve in the background art of the present invention
- FIG. 3 is a schematic view of the overall installation of Embodiment 1 of the present invention, which shows the connection of the turbine to the exhaust pipe;
- Figure 4 is a schematic structural view of a turbine in Embodiment 1 of the present invention, which mainly shows a turbine end intake end position and an internal power turbine;
- Figure 5 is a schematic structural view of a turbine casing in Embodiment 1 of the present invention.
- Figure 6 is a schematic structural view of an exhaust pipe in Embodiment 1 of the present invention.
- Figure 7 is a schematic view showing the valve adjusting structure in the embodiment 1 of the present invention, which shows the control execution And valve seat installation and cooperation;
- Figure 8 is a schematic structural view of a valve seat in Embodiment 1 of the present invention.
- Figure 9 is a schematic sectional view showing the valve seat of the first embodiment of the present invention.
- Figure 10 is a schematic view showing the structure of an adjusting valve in Embodiment 1 of the present invention, which shows the cooperation of the regulating valve and the waste gas bypass valve;
- Figure 11 is a schematic view showing the arrangement of the regulating valve and the end cover in the second embodiment of the present invention.
- Figure 12 is a structural view of an end cap in Embodiment 2 of the present invention.
- Figure 13 is a structural view of a regulating valve in Embodiment 2 of the present invention.
- Figure 14 is a schematic view showing the cooperation of the regulating valve, the end cover and the waste gas bypass valve in the second embodiment of the present invention.
- Figure 15 is a schematic view showing the structure of a wastegate bypass valve assembly and a regulating valve having a cam type regulating surface according to Embodiment 3 of the present invention
- Figure 16 is a schematic view showing the arrangement of a wastegate bypass valve assembly installed in a turbine according to Embodiment 3 of the present invention.
- Figure 17 is a schematic view showing a regulating valve of a wastegate valve assembly in accordance with a spiral type adjusting surface and mounted on a turbine in Embodiment 3 of the present invention
- Figure 18 is a schematic view showing the cooperation of the wastegate bypass valve assembly and the regulating valve of Figure 17;
- Figure 19 is an axial cross-sectional view of the wastegate valve assembly of Figure 18;
- Figure 20 is a cross-sectional view of the wastegate valve assembly of Figure 18 and the regulating valve inserted into the turbine casing;
- Figure 21 is a schematic view showing the arrangement of a turbine in Embodiment 4 of the present invention.
- Figure 22 is a schematic view showing the structure of a regulating valve and a bypass valve in Embodiment 4 of the present invention.
- Figure 23 is a schematic structural view of a slotted guide vane according to Embodiment 1 of the present invention.
- Figure 24 is a schematic view of the turbine casing A, r;
- Figure 25 is a schematic view showing the flow of unguided gas in Embodiment 1 of the present invention.
- Figure 26 is a schematic view showing the flow of a vane gas in the first embodiment of the present invention.
- Figure 27 is a graph of efficiency comparison, wherein the A line is the turbine efficiency line of the present invention, and the B line is the turbine efficiency line before the improvement;
- Figure 28 is a graph showing a comparison of fuel consumption when the turbine and the engine are operated in combination
- Figure 29 is a schematic view showing the structure of long and short guide vanes in Embodiment 5 of the present invention.
- Figure 30 is a graph of efficiency comparison of long and short vane turbines and slotted vane turbines, existing conventional wastegate turbines.
- Embodiment 1 as shown in FIGS. 3, 4, and 5, a variable-section exhaust gas bypass turbine that satisfies the requirements of an EGR cycle, including a turbine casing 1, a power turbine 31, a valve seat 15, an exhaust pipe 14, and a control attachment thereof
- the valve seat 15 is disposed between the exhaust pipe 14 and the turbine casing 1.
- the turbine casing 1, the valve seat 15, and the exhaust pipe 14 are sealingly connected together.
- the turbine casing 1 is provided with an intake inner flow passage 3 and an intake outer flow passage 2, and exhaust gas discharged from the engine exhaust pipe 14 can enter the intake inner flow passage 3 and the intake outer flow passage 2.
- the intake inner flow passage 3 and the intake outer flow passage 2 respectively adopt a non-full circumference structure.
- the intake inner flow passage 3 bears a power turbine of 0° to (150 to 230)°.
- the air and the intake air flow passage 2 bear the intake air of (150 to 230) ° to 360 °. Simulation analysis and practice show that this kind of angle distribution setting, each work The efficiency is optimal.
- An end surface portion of the turbine casing 1 connected to the valve seat 15 (ie, an intake end surface of the turbine casing 1) is provided with a turbine casing outer runner inlet 10 and a turbine respectively communicating with the intake outer runner 2 and the intake inner runner 3.
- the exhaust gas discharged from the exhaust pipe 14 can flow from the two inlets, and flows into the power turbine 31 from the intake outer flow passage 2 and the intake inner flow passage 3, respectively, to drive the power turbine 31 to rotate, thereby driving the turbine.
- the compressor end of the supercharger operates to effect intake boost.
- the turbine casing 1 is further provided with a waste gas bypass line which is arranged in parallel with the intake outer flow passage 2 and the intake inner flow passage 3, but does not pass through the power turbine 31. That is, part of the exhaust gas may flow to the waste gas bypass line, but will be discharged to the outside without driving the rotation of the power turbine 31.
- the end surface portion of the turbine casing 1 connected to the valve seat 15 is further provided with a turbine casing waste gas inlet inlet 9 communicating with the waste gas bypass pipe, and the exhaust hole end wall of the turbine casing 1 is provided There is a turbine casing waste bypass outlet 13 in communication with the wastegate bypass line.
- the valve seat 15 is provided with a valve seat inner flow channel interface 18, a valve seat outer flow channel interface 19, a valve seat waste gas bypass outlet 20, and a turbine casing inner flow passage inlet 11, a turbine outer outer runner inlet 10, and a turbine casing waste bypass.
- the inlet 9 is in communication; the valve seat 15 is also provided with a valve seat gas inlet 23 and a valve seat waste bypass inlet 24.
- the valve seat inner flow channel interface 18, the valve seat outer flow channel interface 19, the valve seat waste gas bypass outlet 20 are disposed at the top of the valve seat 15, and the valve seat gas inlet 23 and the valve seat waste gas bypass inlet 24 are provided at bottom.
- the exhaust pipe 14 is provided with an exhaust pipe gas outlet 17 communicating with the turbine casing outer runner inlet 10 and the turbine casing inner runner inlet 11 through the valve seat 15, and passing through the valve seat 15
- An exhaust pipe exhaust gas outlet 16 that communicates with the turbine casing waste bypass inlet 9.
- bypass exhaust gas flows out from the exhaust pipe exhaust gas outlet 16 through the valve seat 15 into the connected turbine casing waste gas bypass inlet 9 and flows out from the turbine casing waste gas outlet 13 without passing through the power turbine 31.
- the turbine casing 1 is discharged.
- valve seat 15 is provided with a valve seat inner flow channel interface 18, a valve seat outer flow channel interface 19, and a valve seat waste gas bypass outlet 20, and a valve seat inner flow channel interface.
- the two ends of the valve are respectively communicated with the inner flow passage inlet 11 and the exhaust gas outlet 17 of the turbine casing, and the two ends of the outer flow passage 19 of the valve seat are respectively communicated with the outer runner inlet 10 and the exhaust gas outlet 17 of the turbine casing;
- valve seat waste bypass outlet 20 and the valve seat waste bypass inlet 24 are in communication with the turbine casing waste bypass inlet 9 and the exhaust pipe waste bypass outlet 16, respectively.
- valve seat 15 is also installed with an adjustment valve 5 that can adjust the intake air flow of the intake air flow passage 2;
- the regulating valve 5 is mounted in the valve seat 15 by adjusting the valve sleeve 22, and one end of the regulating valve 5 is connected to the valve pin assembly 6, and is connected to the control accessory through the valve pin assembly 6.
- the control attachment comprises a control actuator 7 connected to the valve pin assembly 6; the control actuator 7 and the valve pin assembly 6 are arranged outside the turbine casing 1.
- the regulating valve 5 preferably employs a rotatable centering valve, as shown in Figure 10, the regulating valve 5 is rotatable about its central axis.
- the door body of the regulating valve 5 completely blocks the passage between the valve seat outer flow passage interface 19 and the valve seat gas inlet 23, and when the regulating valve 5 is rotated by the valve pin assembly 6, the two sides thereof
- the inner wall of the above passage forms an opening to allow passage of exhaust gas.
- the center valve structure Compared with the deflation valve structure shown in the background art, the center valve structure has a proportional relationship between the opening degree and the rotation angle when the rotation is opened, and the intake air amount and the intake pressure can be accurately controlled. This achieves a good match with the engine and improves the precise control of the EGR rate so that the engine meets the emission standards.
- the turbine provided in the above embodiment is provided with a waste gas bypass line that exhausts the exhaust gas without passing through the power turbine 31, and at this time, a waste gas bypass valve 26 that controls the opening and closing of the waste gas bypass line is also provided. And, when the intake air amount of the exhaust gas entering the turbine exceeds a predetermined value, the waste gas bypass valve is opened to allow a part of the exhaust gas to be discharged through the waste gas bypass line. Therefore, when the engine is in a high speed condition, the wastegate valve 26 can be opened to allow part of the exhaust gas to be exhausted through the waste bypass line to avoid overspeeding of the supercharger.
- the intake outer flow passage 2 does not need to be set to a large area in order to avoid overspeed of the supercharger at a high speed, and can be set to a small area to ensure the turbine drive performance and the EGR cycle of the medium and medium load; and, by the low speed and the low speed When the load condition is turned to the medium speed condition and the regulating valve 5 is opened, the small area difference of the inner and outer flow passages causes the expansion loss to be reduced.
- wastegate valve 26 and the regulating valve 25 may be linked and configured to: when the regulating valve 5 is opened to a predetermined angle, the wastegate valve 26 is driven to open, and at this time, the intake air amount reaches the predetermined value.
- the specific linkage method can be as follows:
- one end of the regulating valve 5 is mounted to the valve seat 15 through the adjusting valve bushing 22.
- the other end of the adjusting valve 5 is provided with an adjusting surface 25, and the adjusting surface 25 is a spiral structure, and its axial height is around its own axis. The heart spirals upwards.
- the waste gas bypass line is provided with a waste gas bypass valve 26 that can cooperate with the regulating valve 5, and the waste gas bypass valve 26 is installed in the valve seat 15 through the wastegate valve bushing 21, and the waste gas bypass valve 26
- a spring 27 is mounted between the wastegate valve bushing 21, and an end of the wastegate valve 26 adjacent to the regulating valve 5 is provided with an adjusting rod 28 that cooperates with the regulating surface 25.
- the wastegate valve 26 and the regulating valve 5 are arranged in parallel with each other, and the adjusting lever 28 faces the adjusting surface 25 and is in contact with it.
- the control actuator 7 pushes the valve pin assembly 6, and the valve pin assembly 6 drives the adjustment valve 5 to rotate, and adjusts the intake air amount of the intake outer flow passage 2, and when the rotation angle reaches a certain value, the adjustment rod 28 It can move along the spiral direction of the adjustment surface 25, and the adjustment surface 25 of the adjustment valve 5 can push the adjustment rod 28 to move axially, the waste gas bypass valve 26 opens, and compresses the spring 27, at which time the bypass exhaust gas is from the valve seat exhaust
- the inlet 24 flows in, flows from the valve seat waste bypass outlet 20 to the turbine casing waste bypass inlet 9, and flows out from the turbine casing waste bypass outlet 13.
- the wastegate valve 26 is at the spring 27 Returning under the action of elastic force, the exhaust gas is no longer bypassed.
- An embodiment 2 is also provided below, which is basically the same as the first embodiment, but adopts different linkage modes, and the structure of the adjustment valve 5 is also slightly modified (to be mentioned later), please refer to FIG. 11-14.
- one end of the regulating valve 5 connected to the valve pin assembly 6 is provided with an adjustment surface 25 of axial height variation.
- the end cover 46 is further included with the end cover of the adjusting valve 5, and the end cover 46 can be fixed to the casing of the turbine casing 1.
- the end cover 46 is provided with a structure matched with the adjusting surface 25 opposite thereto, the valve pin
- the sheet assembly 6 is located outside the end cap 46 and is capable of driving the adjustment valve 5 to rotate.
- the end cover 46 is provided with a matching adjustment surface 47 that cooperates with the adjustment surface 25, and the adjustment adjustment surface 47 has an axial protrusion 47a; the adjustment surface 25 is provided with a recess provided along the rotation direction.
- a convex portion is formed which gradually transitions to the convex portion relatively gently.
- the regulating valve 5 and the wastegate valve 26 can be axially contacted along the regulating valve, and when the adjusting valve 5 is axially moved by the adjusting surface 46, the waste bypass valve 26 is also axially moved to open. Waste gas bypass valve 26.
- the interlocking arrangement in the above two embodiments is to form an adjustment surface 25 with an axial height change on one component, and then provide a linkage portion (such as the adjustment lever 28 and the adjustment adjustment surface 47) that is matched with the other component.
- the axial projection converts the rotary motion into a linear motion to achieve linkage control.
- the adjusting surface 25 and the matching manner of the matching portion are not limited to the above two types.
- the adjusting surface 25 may be disposed on the wastegate valve 26, and the adjusting rod 28 is disposed on the regulating valve 5, of course.
- the adjusting rod 28 is disposed on the wastegate valve 26 to prevent the regulating surface 25 from interfering with the exhaust gas flow; the adjusting surface 25 can be disposed on the end cover, and the adjusting surface 46 is disposed on the regulating valve 5.
- the snap-fit matching arrangement of the end cap and the regulating valve 5 also makes the stability of the entire linkage mechanism better. Accordingly, as shown in FIGS. 12 and 13, the axial projections and the recesses are both provided in two, and are symmetrically disposed along the center line of the end surface of the corresponding member, so that the stability is higher after the fitting, and the offset is less likely to occur.
- the present invention also provides a third embodiment. As shown in FIG. 15, the embodiment is substantially the same as the first embodiment and the second embodiment, but different linkage cooperation modes are adopted, and the structure of the waste gas bypass valve 26 and the regulating valve 5 is also slightly omitted. Changes will be made below.
- One end of the regulating valve 5 is connected to the valve pin assembly 6, and the other end is provided with a cam-type regulating surface 25, and the wastegate valve 26 is provided with an adjusting rod 28 which can be in contact with the cam edge. Then, when the regulating valve 5 is rotated, the adjusting lever 8 is axially moved along the wastegate valve 26 to open the valve.
- the cam-type adjustment surface 25 should be designed such that when rotated to a predetermined angle, the adjustment lever 28 is brought into contact with the cam edge to be moved upward to satisfy the aforementioned intake air amount to a certain extent before the wastegate valve is opened. 26.
- the wastegate bypass valve 26 and the regulating valve 5 realize the linkage control, and only the driving portion of the regulating valve 5 can be provided, and the components for controlling the wastegate valve 26 need not be separately provided, and the structure is compact and simple;
- the wastegate valve 26 is controlled by the change in the opening degree of the regulating valve 5, Then, the opening and closing control of the wastegate valve 25 can conform to the actual change of the intake air amount, and the control is obviously more accurate than the individual control.
- valve seat 15 is provided to install the adjusting valve 5, the waste gas bypass valve 26 and the like, thereby facilitating the installation of the components and achieving the controllable communication between the turbine casing 1 and the exhaust pipe 14.
- the present invention also provides another valve arrangement and is more compact in construction, as shown in Figures 15-20.
- a wastegate valve assembly 37 is provided, which is disposed separately from the regulating valve 5, the wastegate bypass valve 37 assembly is directly mounted to the turbine casing 1, and the regulating valve 5 is directly installed in the turbine casing 1, as shown in FIG.
- the door of the regulating valve 5 is directly inserted into the intake outer flow passage 2, and the outer periphery of the door body can be sealingly fitted with the inner wall of the intake outer flow passage 2, and when the door body rotates, an opening is formed to conduct the exhaust gas.
- the regulating valve 5 extends through the intake mounting end of the turbine casing 1, one end is connected to the wastegate valve assembly 37, and the other end is connected to the valve pin assembly 6 that drives its rotation.
- the intake mounting end surface of the turbine casing 1 can be directly communicated with the exhaust pipe 14, and accordingly, the exhaust pipe 14 is correspondingly provided with exhaust corresponding to the intake inner flow passage 3 and the intake outer flow passage 2, respectively. mouth.
- the bypass valve assembly 37 specifically includes a wastegate valve 26, an upper casing 38, and a lower casing 41.
- the upper casing 38 and the lower casing 41 are connected to form a valve cavity.
- An assembly waste gas bypass outlet 41a is opened in the side wall of the casing 41.
- the wastegate valve 26 may be supported by a bypass valve support shaft 42 that is disposed within the valve cavity and is provided with a spring 27 at the end of the upper housing 38 to provide a return force.
- the end of the lower casing 41 is provided with a valve port, and when the wastegate bypass valve 26 is opened, the exhaust gas enters the assembly waste gas bypass outlet 41a through the valve port.
- the end surface of the wastegate valve 26 protrudes to form an adjustment rod 28, that is, the adjustment rod 28 is integrally formed in the wastegate valve 26 for easy processing, and the linkage control is also more reliable.
- a guide sleeve 43 may be disposed in the valve cavity of the wastegate valve assembly 37.
- the bypass valve support shaft 42 extends through the guide sleeve 43. When the wastegate valve 26 moves axially, the bypass valve support shaft 42 is along the guide sleeve 43. Sliding to prevent the waste bypass valve 26 from shifting axially, affecting the waste bypass. In Fig. 19, the bypass valve support shaft 42 has a large diameter end to support the spring 27.
- the turbine provided in the above embodiment is applicable not only to a four-cylinder engine but also to a six-cylinder engine.
- the structure of Figure 4-10 corresponds to the four-cylinder, and the six-cylinder needs to be provided with two sets of intake inner flow passage 3, intake outer flow passage 2, and waste gas bypass passage, as shown in Figs. 16 and 17, the turbine casing 1
- the intake mounting end faces are correspondingly provided with two turbine casing waste bypass inlets 9, a turbine casing outer runner inlet 10, and a turbine casing inner runner inlet 11. At this time, two sets of the above valves can be provided.
- This paper also provides a valve structure that is more compact and smaller in size and simpler and more precise for a six-cylinder engine.
- the regulating valve 5 includes two valve bodies that are connected to each other. After being inserted into the turbine casing 1, the two valve bodies respectively control the intake air amounts of the two outer flow passages 2.
- the regulating valve 5 is still installed in linkage with a wastegate valve 26, that is, a valve door body is added to the original regulating valve 5, which is applicable to a six-cylinder engine, which is equivalent to one valve controlling the intake air amount of the two flow passages. Easy to achieve precise control.
- the wastegate valve 26 can also be equipped with a corresponding waste bypass valve control actuator 48, and the waste gas bypass valve can be controlled according to the corresponding intake signal. 26 opening and closing.
- the wastegate valve control actuator 48 operates in the same manner as the control actuator 7. As shown in Fig. 22, the rod end of the wastegate valve control actuator 48 is extended under air pressure to drive the pin assembly to rotate and drive The wastegate valve 26 is rotated to close or open the valve port.
- the exhaust gas bypass valve 26 can be reset to the initial state by providing the spring 27.
- the spring 27 is combined with the above-mentioned various adjustment surfaces 25 to cooperate, and the opening of the wastegate valve 26 is realized simply and reliably. It can be understood that when the wastegate valve 26 is controlled by the wastegate control actuator 48 to open and close, there is no need to provide a reset device. In fact, in addition to the exhaust bypass valve 26 linkage scheme already mentioned, there are other solutions that enable the linkage of the wastegate valve 26 and the regulating valve 5 without the need to provide a return structure.
- the end of the regulating valve 5 is provided with a gear
- the wastegate bypass valve 26 is provided with a rack
- the regulating valve 5 is provided with a nut
- the exhaust gas bypass The valve 26 is provided with a screw.
- the present invention also improves the manner of driving the power turbine 31.
- a vaneless nozzle is provided in the turbine casing 1 at a position close to the power turbine 31 to introduce the exhaust gas discharged from the intake inner flow passage 3 and the intake outer flow passage 2 to the power turbine 31.
- the slotted vane 12 is mounted near the vaneless nozzle, and a vane support disc 30 is mounted in the turbine shell 1 at a position close to the power turbine 31.
- the vane support disc 30 is provided with a plurality of vanes.
- the slotted vanes 12, in order to achieve a more uniform intake, a plurality of slotted vanes 12 are evenly arranged in a ring shape.
- a guide groove 29 is provided at an intermediate position of the slotted vane 12. That is, a plurality of guide vanes protruding from the annulus are provided in the circumferential direction of the annular surface of the vane support disk 30, and then a guide groove 29 penetrating through the vanes is formed to form the grooved guide vanes.
- the arrangement angle B of the slotted vanes 12 (as shown in Fig.
- the angle is the tangent to the central axis of the slotted vane 12, the tip of the slotted vane 12 near the center of the vane support disc 30 and the center of the vane support disc 30
- the connection may be between 68° and 80°, and the two groove sides of the guide groove 29 may be cut by the cutting line 36 (the slotted guide vane 12 is close to the tip of the guide vane support disc 30 and the vane support disc 30)
- the center line is connected around the center of the vane support disk 30, and the narrowest groove width is controlled by 3 mm.
- the slotted vane 12 is in the form of a gas-solid composite nozzle, which combines the functions of a gas flow and a solid nozzle.
- the turbine intake passage 3 acts, as will be known to those skilled in the art.
- the vane angle (the angle between the two slotted vanes 12) is designed according to the intake angle of the intake inner flow passage 3 to ensure that the two angles are substantially the same, and the gas enters the slotted vane along the intake inner flow passage 3. 12, and then enter the power turbine 31 along the slotted guide vane 12, there is no turning loss in the middle, and the aerodynamic efficiency is high.
- the gas flow rate is increased, and the intake outer flow passage 2 participates in the intake with the opening of the regulating valve 5, and the intake angle of the intake outer flow passage 2 is also determined by the A/r of the intake outer flow passage 2,
- the angle of the guide groove 29 is designed according to the intake angle of the intake passage 2 to ensure that the two angles are substantially uniform, the gas enters the guide groove 29 along the intake passage 2, and enters the power turbine 31 along the guide groove 29 to avoid installation. Impact loss and cornering loss when the complete vane (without the guide groove 29) is not only High efficiency and widened traffic.
- the radial velocity component of the airflow rises faster, and the presence of the flow guiding groove 29 makes the flow width expansion of the high speed section more obvious.
- Figure 23 is a schematic diagram of gas flow.
- the airflow enters the power turbine 31 only in the N direction (angle ⁇ , ie, the intake angle).
- angle ⁇ ie, the intake angle
- M the angle is ⁇
- the two directions of N, that is, the intake angle) and N, are combined to act on the power turbine 31, and ⁇ is a range in which the direction of the airflow flowing into the power turbine 31 changes.
- the exhaust gas flow path will be described by taking an embodiment in which the valve seat 15 is provided as an example.
- the airflow flows to the power turbine 31 along the middle portion of the two slotted guide vanes 12, and the power turbine 31 is driven to work.
- the intake inner runner 3 acts, the cross section is small, and only when flowing through the slotted vane 12
- the vane angle inflow that is, the N direction in Fig. 20, and the airflow is concentrated, which can increase the pre-vortex pressure and increase the EGR rate.
- the regulating valve 5 When the engine speed and load gradually increase, the regulating valve 5 starts to open, part of the airflow flows through the regulating valve 5, along the valve seat outer runner interface 19, the turbine casing outer runner inlet 10, the intake outer runner 2, and the slotted vane 12 The power turbine 31 flows into the power turbine 31 to accommodate the increasing flow demand. In this process, by adjusting the opening degree of the regulating valve 5, the pre-vortex pressure can be adjusted to determine an appropriate EGR rate.
- the adjusting rod 28 is applied with a thrust through the adjusting surface 25, and the adjusting rod 28 drives the wastegate valve 26 to compress the spring 27 Opening the waste gas bypass line, the exhaust gas along the exhaust pipe waste gas outlet outlet 16, the valve seat waste gas bypass inlet 24, the valve seat waste gas bypass outlet 20, the turbine casing waste gas bypass inlet 9, the turbine casing waste gas bypass outlet 13 Outflow, exhaust a part of the exhaust gas energy, to ensure that the supercharger vortex front pressure is not too large when the engine is at high speed and high load.
- the intake air flows along the guide groove 29 on the slotted guide vane 12, that is, the M direction in FIG. 23, and the M direction and the N direction simultaneously intake air, thereby avoiding the air flow in the high speed section. Blocked.
- the presence of the vanes reduces the backflow of the airflow, which not only improves the efficiency of the turbine, but also smoothes the flow of the airflow, avoids airflow disturbances at the throat, and ensures turbine efficiency.
- the pressure ratio and flow rate of the turbine have a great influence on the performance thereof, and the flow passage determines the flow passage cross section.
- the prior art relies on the flow passage design of the turbine casing 1 to control the flow passage cross section, but as described in the background art, The production consistency of the foundry turbine is difficult to control, and the flow rate is difficult to control accordingly.
- the vane structure is provided, and the flow passage area can be controlled by the vane, and the vane structure can be precisely processed, and the flow passage area can be precisely controlled, so as not to be affected by the machining accuracy of the turbine shell 1 itself.
- the efficiency of the turbine is obviously improved.
- the efficiency comparison chart is shown in Fig. 27.
- the thicker black line A above is the efficiency line of the invention, and the thinner black line B below is the turbine efficiency line before the improvement.
- the present invention further provides another vane arrangement form.
- the guide vane includes a long guide vane 32 and a short guide vane 33, and the length of the long guide vane 32 is longer than short.
- the length of the vane 33, the long vane 32 and the short vane 33 are spaced apart.
- the size of the long vane 32 and the short vane 33 is determined according to the flow analysis, but the trailing edge 34 of the short vane 33 and the leading edge 35 of the long vane 32 are at a distance in the circumferential direction to facilitate air flow at the engine speed. From time to time, the flow can be widened and the blockage can be reduced, and the function achieved is similar to that of the slotted vane 12 of the previous embodiment. That is, the long guide vanes 32 are arranged circumferentially along the guide vane support disk 30 at an angle, and the short guide vanes 33 are arranged at another angle, and the passage between the long guide vanes 32 and the short guide vanes 33 is formed in the counterclockwise direction.
- the specific working process can be understood by referring to the slotted vane 12 described above.
- the arrangement angle B is a tangent to the central axis of the long guide vane 32, the tip of the long guide vane 32 near the center of the vane support disk 30 and the center line of the vane support disk 30, the angle between the two;
- the arrangement angle A is The tangent of the central axis of the short vane 31, the short guide vane 31 is close to the center of the vane support disc 30 and the center line of the vane support disc 30, the angle between the two.
- the thinnest black line A above is the long and short vane turbine efficiency line
- the thickest black C line below is the general waste bypass turbine efficiency line
- the middle black line B is the slotted vane turbine efficiency line.
- both the slotted vane 12 and the mating arrangement of the long vane 32 and the short vane 33 are formed to form two first diversion channels and a second diversion having a predetermined angle.
- the passages ie, the two are not arranged in parallel, the angle value is related to the intake angle of the intake inner flow passage 3 and the intake outer flow passage 2), so that the exhaust gas flowing out of the intake inner flow passage 3 can pass through the first flow guiding passage Diverted to the power turbine 31, the exhaust gas flowing out of the intake outer flow passage 2 can be diverted to the power turbine 31 via the second flow guiding passage.
- the passage between the adjacent slotted vanes 12 forms the first flow guiding passage
- the guiding groove 29 forms a second guiding passage; in the counterclockwise direction, between the long vane 32 and the short vane 33
- the passage forms a second flow guiding passage
- the passage between the short guide vane 33 and the long guide vane 32 forms a first flow guiding passage.
- the formation manner of the two flow passages is not limited.
- the above-described slotted vane 12 and long guide vane 32 and short guide vane 33 of course, the structure of the above embodiment is easy to process, and does not hinder the air flow, and the flow guiding effect is the best.
- the flow guiding support disk 30 is separated from the turbine casing 31, and the flow guiding support disk 30 can be finished with precision, and the accuracy is easily ensured, thereby further ensuring the distribution of the airflow and ensuring the efficiency of the turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
Abstract
一种满足RGR循环需要的可变截面废气旁通涡轮机,包括涡轮壳和动力涡轮,涡轮壳设有导流发动机废气至动力涡轮处以驱动动力涡轮旋转的进气内流道和进气外流道,涡轮壳还设有不经过动力涡轮而排出废气的废气旁通管路,以及控制废气旁通管路通断的废气旁通阀门;废气进入涡轮机的进气量超过预定值时,废气旁通阀门开启以使部分废气能够通过废气旁通管路排出。当发动机处于高速工况时,可打开废气旁通阀门,以使部分废气能够经废气旁通管路排出,避免增压器超速。则进气外流道无需为了避免高速时增压器超速而设置成大面积,由低速、低负荷工况转至中速工况而打开调节阀门时,内、外流道的较小面积差使得膨胀损失得以减小。
Description
本申请要求下述三项中国专利申请的优先权,其全部内容通过引用结合在本申请中。
1、2015年06月25日提交中国专利局、申请号为201510358065.8、发明名称为“一种满足EGR循环需要的可变截面废气旁通涡轮机”的中国专利申请;
2、2015年02月25日提交中国专利局、申请号为201510086729.X、发明名称为“一种满足EGR循环需要的可变截面废气旁通涡轮机”的中国专利申请。
本发明涉及发动机技术领域,特别涉及一种满足RGR循环需要的可变截面废气旁通涡轮机。
随着排放法规的日益严格,EGR越来越多的应用在发动机上,EGR全称为Exhaust Gas Recirculation,中文译为废气再循环,是将发动机产生废气的一小部分再送回气缸参与燃烧,作用是减少NOx的排放量。
NOx是一种对人体危害极大的气体,主要是在高温富氧的条件下生成,燃烧温度和氧浓度越高,持续时间越长,NOx的生成物也越多。在发动机工作过程中,如果适时、适量地将部分废气再次引入气缸内,因废气中的主要成份CO2比热容较大,所以废气可将燃烧产生的部分热量吸收并带出气缸,并对进气有一定的稀释作用,因此降低了发动机燃烧的最高温度和氧含量,从而减少了NOx化合物的生成。
在增压中冷柴油机上,实现废气再循环的主要方式是将涡轮前的废气引入中冷器之后,称为高压废气再循环,为了确保不同工况的EGR率,最好的方式是采用可变截面涡轮增压器,通过增压器的截面变化来调节涡轮前PT与中冷后PK的压差,驱动EGR阀。
目前采用最多的可变截面涡轮增压器是在涡轮机内部增加旋转喷嘴叶片,通过改变喷嘴叶片的开度来改变涡轮机的流通通道,控制比较方便。但由于发动机排出的废气具有700摄氏度左右的排气高温,并且有进一步提升的趋势,排气高温对喷嘴叶片、传动机构、喷嘴环支撑盘及外部的控制系统都有严格的要求,发动机排出的高温废气中的杂质对复杂的运动部件造成了可靠性隐患。
而且,该类产品由于昂贵的价格因素,仅被用于高端发动机增压领域,该类型可变截面涡轮增压器从成本和可靠性两方面限制了市场推广。除了上述主要因素外,也存在一些其他技术问题:
问题1,当流量减小时,需关小喷嘴叶片开度,涡轮进气周向速度加大,涡轮变为冲动式叶轮,不利于废气能量的充分利用,涡轮效率偏低,且造成发动机排气背压过高。
问题2,小叶片开度时,涡轮进气流动路径增加,沿程流动损失加大;喷嘴叶片距离涡轮过远,气流混合损失上升。
问题3,叶片两端必须留有间隙,以便于叶片旋转,但此间隙会造成漏气损失,降低涡轮机效率。
另外一种使用较多的可变截面应用是康跃科技研发的双层流道可变截面涡轮增压器,通过对传统涡轮壳的结构设计,采用内外双层的进气通道组合,形成不同的通流截面,有效的分段利用发动机的废气能量,可以实现变截面涡轮机的所有功能,并且不需要设置复杂的旋叶式气动调节机构,成本大大降低、可靠性大大提升,将是未来的一个研究方向。
该类产品的结构原理如图1所示,当发动机运行在低速、低负荷时,增压压力低,调节阀门5关闭,涡轮壳1只有进气内流道3起作用,气流沿内流道流动方向4流入,驱动涡轮做功。
如图2所示,当增压压力达到一定程度,控制执行器7推动阀门销片组件6,阀门销片组件6带动调节阀门5打开,进气内流道3与进气外流道2同时起作用,气流沿内流道流动方向4和外流道流动方向8流入,驱动涡轮做功。但这种结构在实际的配试和应用过程中,也发现了很多问题。
如下:
一、发动机高速时,排出的废气量较大,为了保证高速性能,避免高速时涡轮机压力过大而超速,双层流道面积较大,但在双层流道的面积分配上,如果内流道面积分配较大,则影响发动机的低速性能和EGR率,如果内流道分配较小,内、外流道面积差很大,则调节阀门5打开时,瞬间的膨胀损失过大,发动机的中速、中负荷段更难以控制。
二、在发动机的中速、中负荷段,图1、2中所示的简单的阀门结构无法精确控制流量和压力,而流量、压力的控制偏差不但会影响匹配性能,更会影响EGR率的控制,导致发动机排放超标。
三、内、外流道的分配会产生多个涡舌,气体流动易于相互影响,导致涡轮机效率降低;
四、设有内、外双流道的涡轮机结构复杂,涡轮机又为铸造件,故生产一致性很难控制,而双流道的铸造偏差大,对涡轮机的匹配性能影响较大。
发明内容
为解决上述技术问题一,本发明提供一种满足RGR循环需要的可变截面废气旁通涡轮机,该涡轮机在满足EGR率的前提下,又可减小调节阀门打开时瞬间的膨胀损失。
本发明提供的满足RGR循环需要的可变截面废气旁通涡轮机,包括涡轮壳和动力涡轮,所述涡轮壳设有导流发动机废气至所述动力涡轮处以驱动所述动力涡轮旋转的进气内流道和进气外流道,
所述涡轮壳还设有不经过所述动力涡轮而排出废气的废气旁通管路,以及控制所述废气旁通管路通断的废气旁通阀门;废气进入所述涡轮机的进气量超过预定值时,所述废气旁通阀门开启以使部分废气能够通过所述废气旁通管路排出。
可选的,还包括开度可调的调节阀门,用于调节所述进气外流道的进气量;且,
所述调节阀门与所述废气旁通阀门联动配置为:所述调节阀门开启至预定角度时,带动所述废气旁通阀门开启,此时,进气量达到所述预定值。
可选的,所述调节阀门为可旋转的中置阀门,转动时,废气可经阀门本体的两侧进入。
可选的,所述调节阀门和所述废气旁通阀门,二者之一具有在调节阀门转动方向上,轴向高度变化的调节面,另一者具有与所述调节面接触配合的联动部,以便所述调节阀门转动时能够带动所述废气旁通阀门沿所述调节阀门轴向移动而开启。
可选的,所述调节阀门与所述废气旁通阀门能够沿所述调节阀门轴向接触;且,还包括驱动部,所述驱动部包括安装于所述涡轮壳的端盖,所述端盖卡盖所述调节阀门的一端面以驱动所述调节阀门转动;
所述端盖和所述调节阀门,二者之一具有在调节阀门转动方向上,轴向高度变化的调节面,另一者具有与所述调节面接触配合的联动部,以便所述调节阀门转动时能够带动所述废气旁通阀门沿所述调节阀门轴向移动而开启。
可选的,所述调节面的轴向高度绕所述调节阀门的转动轴心螺旋上升,所述联动部为与所述调节面接触配合的调节杆。
可选的,所述调节面具有沿所述调节阀门转动方向平缓凸起的凸部,相应地在所述调节面上形成凹部;所述联动部为轴向凸起,所述轴向凸起相对所述调节面转动时,所述轴向凸起能够依次滑过所述凹部、所述凸部。
可选的,所述调节阀门设有随之转动的凸轮,所述废气旁通阀门设有能够与所述凸轮边缘接触配合的调节杆。
可选的,还包括弹簧,当所述调节阀门与所述废气旁通阀门的联动力撤销时,所述弹簧控制所述废气旁通阀门复位至关闭状态。
可选的,还包括阀门座,其开设有阀门座内流道接口、阀门座外流道接口、阀门座废气旁通入口、阀门座废气旁通出口;所述调节阀门和所述废气旁通阀门均设于所述阀门座;
所述阀门座设于所述排气管与所述涡轮壳的进气端之间。
可选的,所述废气旁通阀门直接安装于所述涡轮壳,所述调节阀门插装于所述涡轮壳内,以直接调节进入所述进气外流道的进气量。
可选的,所述涡轮机设有对应于六缸发动机的两组所述进气外流道、
进气内流道以及废气旁通管路,所述调节阀门包括相接的两个阀门本体,插装入所述涡轮壳后,两个所述阀门本体分别、同时对应控制两个所述进气外流道的进气量。
可选的,
还包括设于所述动力涡轮进气端面位置并呈环状的导叶支撑盘;
所述导叶支撑盘沿其周向间隔布置有若干第一导流通道和第二导流通道,所述第一导流通道和所述第二导流通道具有预定夹角,以使所述进气内流道流出的废气能够经所述第一导流通道导流至所述动力涡轮,所述进气外流道流出的废气能够经所述第二导流通道导流至所述动力涡轮。
可选的,所述导叶支撑盘的环面周向设有若干凸起于所述环面的导叶,所述导叶开有贯通所述导叶的导流槽,以形成开槽导叶;
相邻所述开槽导叶之间的通道形成所述第一导流通道,所述导流槽形成所述第二导流通道。
可选的,所述导叶支撑盘的环面设有凸起于所述环面并间隔设置的长导叶和短导叶,按照逆时针方向,所述长导叶至所述短导叶之间的通道形成所述第二导流通道,所述短导叶至所述长导叶之间的通道形成所述第一导流通道。
可选的,所述长导叶的排列角度B为68°~80°,所述短导叶的排列角度A,满足:B-A=0°~5°。
本发明提供的涡轮机设有不经过动力涡轮而排出废气的废气旁通管路,此时,还设置控制废气旁通管路通断的废气旁通阀门。并且,当废气进入所述涡轮机的进气量超过预定值时,开启废气旁通阀门以使部分废气能够通过所述废气旁通管路排出。因此,当发动机处于高速工况时,可打开废气旁通阀门,以使部分废气能够经废气旁通管路排出,避免增压器超速。则进气外流道无需为了避免高速时增压器超速而设置成大面积,可以设置成较小面积以保证中速、中负荷的涡轮驱动性能和循环即可;而且,由低速、低负荷工况转至中速工况而打开调节阀门时,内、外流道的较小面积差使得膨胀损失得以减小。
本发明提供一种满足EGR循环需要的可变截面废气旁通涡轮机,包括涡轮壳,所述涡轮壳内设置有进气内流道和进气外流道,进气内流道和进气外流道分别采用非全周结构,进气内流道承担动力涡轮0°~(150~230)°的进气,进气外流道承担(150~230)°~360°的进气;所述涡轮壳内还设有废气旁通管路,该废气旁通管路与进气外流道、进气内流道平行设置,但不经过动力涡轮。
以下是本发明对上述方案的进一步优化:
该涡轮机还包括动力涡轮、阀门座、排气管及其控制附件,所述涡轮壳、阀门座、排气管密封连接在一起。
进一步优化:所述阀门座内安装有可调节进气外流道进气流量的调节阀门。
进一步优化:调节阀门通过调节阀门轴套安装在阀门座内,调节阀门的其中一端与控制附件传动连接。
进一步优化:调节阀门的另一端设有调节面,调节面为螺旋型结构,其轴向高度绕自身轴心呈螺旋上升。
进一步优化:
所述废气旁通管路内设置有可与调节阀门相配合动作的废气旁通阀门,废气旁通阀门通过废气旁通阀轴套安装在阀门座内,废气旁通阀门与废气旁通阀轴套间安装有弹簧,废气旁通阀门靠近调节阀门的一侧设置有与调节面相配合动作的调节杆。
动作时,控制附件带动调节阀门旋转,调节进气外流道进气量的同时,调节阀门的调节面推动调节杆,废气旁通阀门打开,并压缩弹簧,此时,旁通废气从废气旁通管路排出,当调节阀门回位时,废气旁通阀门在弹簧弹力作用下回位,废气不再旁通。
进一步优化:所述涡轮壳内靠近动力涡轮的位置安装有导叶支撑盘,导叶支撑盘上设置有若干个开槽导叶,若干个开槽导叶呈环形均匀排列。
开槽导叶中间位置设有导流槽,开槽导叶的排列角度为68°~80°,导流槽的两槽边由切割线围绕导叶支撑盘的中心进行旋转获得,槽宽最窄处按3mm控制。
所述开槽导叶采用气固复合喷嘴形式,发动机低速低负荷时,涡轮机进气内流道起作用,此时进气内流道的进气角由公式tan(α)=2πb/(A/r)获得,其中b为涡轮进口宽度,是定值,进气角由进气内流道的A/r决定,
进气内流道的导叶角按进气内流道进气角进行设计,确保两角度基本一致,气体沿进气内流道进入导叶,再沿导叶进入动力涡轮,中间没有转弯损失,气动效率高。
随着发动机转速逐渐提升,气体流量加大,进气外流道会随着调节阀门的打开参与进气,外流道进气角也由进气外流道的A/r决定,导流槽角度按进气外流道进气角进行设计,确保两角度基本一致,气体沿进气外流道进入导流槽,再沿导流槽进入涡轮,避免产生安装完整导叶(没有导流槽)时的撞击损失和拐弯损失,不但提高了效率,更是拓宽了流量。而且,随着气流速度的加快,径向速度分量上升更快,导流槽的存在,使高速段的流量拓宽更加明显。
实际工作中,当发动机处于低速、低负荷时,调节阀门关闭,进气沿排气管、阀门座气体入口、阀门座内流道接口、涡轮壳内流道入口、进气内流道、开槽导叶流入涡轮,驱动涡轮做功,此时,气流沿两开槽导叶中间区域流向涡轮,驱动涡轮做功,此时只有进气内流道起作用,截面较小,而且流经导叶时也只沿导叶角流入,气流集中,可以提高涡前压力、提升EGR率。
当发动机转速、负荷逐渐升高时,调节阀门开始开启,部分气流流过调节阀门,沿阀门座外流道接口、涡轮壳外流道入口、进气外流道、开槽导叶流入涡轮,以适应逐渐增大的流量需求,在此过程,通过调节调节阀门的开度,可以调整涡前压力,确定合适的EGR率。
在调节调节阀门的过程中,调节阀门转到一定角度后,会通过调节面给调节杆施加推力,调节杆带动废气旁通阀门压缩弹簧,打开废气旁通通道,废气沿排气管废气旁通出口、阀门座废气旁通入口、阀门座废气旁通出口、涡轮壳废气旁通入口、涡轮壳废气旁通出口流出,排掉一部分废气能量,确保发动机高速、高负荷时增压器涡前压力不致过大。而且,随着进气量的增大,进气会沿开槽导叶上的导流槽流入,避免了高速段的气流
堵塞。
另一种优化方案:开槽导叶包括长导叶和短导叶,长导叶的长度大于短导叶的长度,长导叶和短导叶间隔设置。
小导叶的尾缘与长导叶的前缘在圆周方向上间隔一定距离。便于气流在发动机高速工况时从此流入,可以拓宽流量、减小堵塞,实现的功能类似于开槽导叶。
长导叶的排列角度为68°~80°,长导叶的排列角度B与短导叶33的排列角度A的角度差为:B-A=0°~5°。
本发明采用气固复合喷嘴,结合可变流道和旋转喷嘴叶片两者的优点,解决了他们存在的上述问题,形成一个创新的可变截面解决方案。而且,本发明中的开槽导叶、长短导叶结构,相比已经有应用的全长导叶结构,能够改变进气角、拓宽高速流量范围,兼顾发动机高低速的涡轮机性能,用固定式导叶,实现了旋转喷嘴叶片才能实现的进气角调整,涡轮机效率明显提升,导叶的存在,减少了气流回流,不但提高了涡轮机效率,更使气流流动顺畅,避免了喉口处的气流扰动,油耗率实现整条匹配线上的大幅度降低。
附图1是本发明背景技术中双层流道可变截面涡轮增压器阀门关闭状态的原理图;
附图2是本发明背景技术中双层流道可变截面涡轮增压器阀门开启状态的原理图;
附图3是本发明实施例1的总体安装示意图,该图示出涡轮机与排气管连接;
附图4是本发明实施例1中涡轮机的结构示意图,该图主要示出涡轮端进气端面位置以及内部动力涡轮;
附图5是本发明实施例1中的涡轮壳结构示意图;
附图6是本发明实施例1中的排气管结构示意图;
附图7是本发明实施例1中阀门调节结构示意图,该图示出控制执行
器和阀门座安装配合;
附图8是本发明实施例1中阀门座结构示意图;
附图9是本发明实施例1中阀门座剖开结构示意图;
附图10是本发明实施例1中调节阀门结构示意图,该图示出调节阀门和废气旁通阀门的配合;
附图11是本发明实施例2中调节阀门与端盖排布示意图;
附图12是本发明实施例2中端盖结构图;
附图13是本发明实施例2中调节阀门结构图;
图14为是本发明实施例2中调节阀门、端盖、废气旁通阀门配合的示意图;
附图15是本发明实施例3中废气旁通阀门总成与具有凸轮型调节面的调节阀门配合的结构示意图;
附图16是本发明实施例3中废气旁通阀门总成安装于涡轮机的排布示意图;
附图17是本发明实施例3中废气旁通阀门总成配合螺旋型调节面的调节阀门并安装于涡轮机的示意图;
附图18是图17中废气旁通阀门总成与调节阀门的配合示意图;
附图19是图18中废气旁通阀门总成的轴向剖面图;
附图20是图18中废气旁通阀门总成以及调节阀门插装于涡轮壳的剖面图;
附图21是本发明实施例4中涡轮机排布示意图;
附图22是本发明实施例4中调节阀门与旁通阀门结构示意图;
附图23是本发明实施例1中开槽导叶的结构示意图;
附图24为涡轮壳A、r示意图;
附图25是本发明实施例1中未加导叶气体流动示意图;
附图26是本发明实施例1中加导叶气体流动示意图;
附图27是效率对比图,其中,A线为本发明涡轮机效率线,B线为未改进之前的涡轮机效率线;
附图28是涡轮机与发动机联合运行时油耗对比曲线图;
附图29是本发明实施例5中长、短导叶结构示意图;
附图30是长、短导叶涡轮机和开槽导叶涡轮机、现有一般废气旁通涡轮机的效率比对曲线图。
图中:1-涡轮壳;2-进气外流道;3-进气内流道;4-内流道流动方向;5-调节阀门;6-阀门销片组件;7-控制执行器;8-外流道流动方向;9-涡轮壳废气旁通入口;10-涡轮壳外流道入口;11-涡轮壳内流道入口;12-开槽导叶;13-涡轮壳废气旁通出口;14-排气管;15-阀门座;16-排气管废气旁通出口;17-排气管气体出口;18-阀门座内流道接口;19-阀门座外流道接口;20-阀门座废气旁通出口;21-废气旁通阀轴套;22-调节阀门轴套;23-阀门座气体入口;24-阀门座废气旁通入口;25-调节面;26-废气旁通阀门;27-弹簧;28-调节杆;29-导流槽;30-导叶支撑盘;31-动力涡轮;32-长导叶;33-短导叶;34-尾缘;35-前缘;36-切割线;37-旁通阀门总成;38-上壳体;39-上下壳体密封垫;40-旁通阀门总成密封垫;41-下壳体;41a-总成废气旁通出口;42-旁通阀门支承轴;43-导向套;44、螺栓;45-螺钉;46、端盖;47-配合调节面;47a-轴向凸起;48-废气旁通阀门控制执行器。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
实施例1,如图3、4、5所示,一种满足EGR循环需要的可变截面废气旁通涡轮机,包括涡轮壳1、动力涡轮31、阀门座15、排气管14及其控制附件,阀门座15设于排气管14和涡轮壳1之间。为了保证有效工作,所述涡轮壳1、阀门座15、排气管14密封连接在一起。
所述涡轮壳1内设置有进气内流道3和进气外流道2,发动机排气管14排出的废气能够进入进气内流道3和进气外流道2。本实施例中,进气内流道3和进气外流道2分别采用非全周结构,如图5所示,进气内流道3承担动力涡轮0°~(150~230)°的进气,进气外流道2承担(150~230)°~360°的进气。模拟分析和实践表明,该种角度的分配设置,各工
况下的效率最优。
所述涡轮壳1上与阀门座15连接的端面部位(即涡轮壳1的进气端面)设有分别与进气外流道2和进气内流道3连通的涡轮壳外流道入口10、涡轮壳内流道入口11,排气管14排出的废气可从两入口流入,并分别从进气外流道2、进气内流道3流入动力涡轮31,以驱动动力涡轮31旋转,从而带动涡轮增压器的压气机端动作,以便实施进气增压。
所述涡轮壳1内还设有废气旁通管路,该废气旁通管路与进气外流道2、进气内流道3并列设置,但不经过动力涡轮31。即部分废气可流向废气旁通管路,但会排出至外部,而不起驱动动力涡轮31转动的作用。
此时,所述涡轮壳1上与阀门座15连接的端面部位还设有与废气旁通管路连通的涡轮壳废气旁通入口9,所述涡轮壳1的排气端内孔壁上设有与废气旁通管路连通的涡轮壳废气旁通出口13。
阀门座15设有阀门座内流道接口18、阀门座外流道接口19、阀门座废气旁通出口20,分别与涡轮壳内流道入口11、涡轮壳外流道入口10、涡轮壳废气旁通入口9连通;阀门座15还设有阀门座气体入口23和阀门座废气旁通入口24。图7、8中,阀门座内流道接口18、阀门座外流道接口19、阀门座废气旁通出口20设于阀门座15顶部,阀门座气体入口23和阀门座废气旁通入口24设于底部。
相应地,如图6所示,所述排气管14上设有通过阀门座15与涡轮壳外流道入口10和涡轮壳内流道入口11连通的排气管气体出口17和通过阀门座15与涡轮壳废气旁通入口9连通的排气管废气旁通出口16。
排气管14排出的废气一部分通过排气管气体出口17流出,通过阀门座15流入到涡轮壳外流道入口10和涡轮壳内流道入口11内进行分配后再进入动力涡轮31。
另一部分旁通废气从排气管废气旁通出口16流出,通过阀门座15流入连接在一起的涡轮壳废气旁通入口9,从涡轮壳废气旁通出口13流出,不经过动力涡轮31,直接排出涡轮壳1。
如图7、8、9、10所示,所述阀门座15上设置有阀门座内流道接口18、阀门座外流道接口19和阀门座废气旁通出口20,阀门座内流道接口
18的两端分别与涡轮壳内流道入口11和排气管气体出口17连通,阀门座外流道接口19的两端分别与涡轮壳外流道入口10和排气管气体出口17连通;
阀门座废气旁通出口20和阀门座废气旁通入口24分别与涡轮壳废气旁通入口9和排气管废气旁通出口16连通。
本实施例中,所述阀门座15内还安装有可调节进气外流道2进气流量的的调节阀门5;
具体地,调节阀门5通过调节阀门轴套22安装在阀门座15内,调节阀门5的其中一端连接有阀门销片组件6,通过阀门销片组件6与控制附件传动连接。
控制附件包括与阀门销片组件6连接的控制执行器7;控制执行器7和阀门销片组件6设置在涡轮壳1的外部。
该调节阀门5优选采用可旋转的中置阀门,如图10所示,调节阀门5可绕其中心轴线旋转。图9中,调节阀门5的门体将阀门座外流道接口19和阀门座气体入口23之间的通道全部堵住,调节阀门5在阀门销片组件6的驱动下转动时,其两侧与上述通道的内壁形成开口,则允许废气通过。
相较于背景技术中示出的放气阀门结构,该种中置阀门结构,在旋转开启时,其开度和旋转角度之间呈正比例关系,进气量和进气压力能够实现精准控制,从而实现与发动机的良好匹配,并提高对EGR率的精准控制,使发动机满足排放标准。
上述实施例中提供的涡轮机设有不经过动力涡轮31而排出废气的废气旁通管路,此时,还设置控制废气旁通管路通断的废气旁通阀门26。并且,当废气进入所述涡轮机的进气量超过预定值时,开启废气旁通阀门以使部分废气能够通过所述废气旁通管路排出。因此,当发动机处于高速工况时,可打开废气旁通阀门26,以使部分废气能够经废气旁通管路排出,避免增压器超速。则进气外流道2无需为了避免高速时增压器超速而设置成大面积,可以设置成较小面积以保证中速、中负荷的涡轮驱动性能和EGR循环即可;而且,由低速、低负荷工况转至中速工况而打开调节阀门5时,内、外流道的较小面积差使得膨胀损失得以减小。
进一步地,废气旁通阀门26和调节阀门25可以联动并配置为:调节阀门5开启至预定角度时,带动所述废气旁通阀门26开启,此时,进气量达到所述预定值。
具体的联动方式可以如下:
如图9所示,调节阀门5的一端通过调节阀门轴套22安装于阀门座15,调节阀门5的另一端设有调节面25,调节面25为螺旋型结构,其轴向高度绕自身轴心呈螺旋上升。
所述废气旁通管路内设置有可与调节阀门5相配合动作的废气旁通阀门26,废气旁通阀门26通过废气旁通阀轴套21安装在阀门座15内,废气旁通阀门26与废气旁通阀轴套21间安装有弹簧27,废气旁通阀门26靠近调节阀门5的一端设置有与调节面25相配合动作的调节杆28。如图9所示,废气旁通阀门26和调节阀门5轴线平行地设置,调节杆28朝向调节面25,并与之接触配合。
动作时,所述控制执行器7推动阀门销片组件6,阀门销片组件6带动调节阀门5旋转,调节进气外流道2进气量的同时,当旋转角度达到一定值时,调节杆28可沿调节面25的螺旋方向移动,则调节阀门5的调节面25可推动调节杆28轴向移动,废气旁通阀门26打开,并压缩弹簧27,此时,旁通废气从阀门座废气旁通入口24流入,从阀门座废气旁通出口20流至涡轮壳废气旁通入口9,并从涡轮壳废气旁通出口13流出,当调节阀门5回位时,废气旁通阀门26在弹簧27弹力作用下回位,废气不再旁通。
下面还提供一实施例2,与实施例1基本相同,但采用了不同的联动方式,调节阀门5结构也略作改动(将在后文提及),请继续参考图11-14。
该实施例中,调节阀门5与阀门销片组件6相连接的一端设有轴向高度变化的调节面25。此时,还包括与调节阀门5端部卡盖配合的端盖46,端盖46可固定于涡轮壳1的壳体上,端盖46设有与其相对的调节面25配合的结构,阀门销片组件6位于端盖46外侧,并能驱动调节阀门5转动。
具体地,此实施例中端盖46设有与调节面25配合的配合调节面47,配合调节面47具有轴向凸起47a;调节面25设有沿所述转动方向设置的凹部,
相应地形成凸部,凹部相对平缓地过渡至凸部。如图11、14所示,当阀门销片组件6转动驱动调节阀门5转动时,调节面25相对配合调节面46转动,当轴向凸起47a滑过凹部而接触凸部时,继续转动,则轴向凸起47a缓慢地顶起调节面25,调节阀门5相应地沿轴向移动。
故设计为调节阀门5与废气旁通阀门26能够沿调节阀门轴向接触,则调节阀门5在配合调节面46驱动下轴向移动时,也同时带动废气旁通阀门26轴向移动,以便开启废气旁通阀门26。
上述两实施例中的联动设置方式,均是在一部件上形成一轴向高度变化的调节面25,再于另一部件设置与其匹配接触的联动部(比如调节杆28、配合调节面47的轴向凸起),从而将旋转运动转化为直线运动,实现联动控制。可知,上述实施例中,调节面25和与其匹配的联动部设置方式并不限于上述两种,比如,调节面25可以设于废气旁通阀门26,而调节杆28设于调节阀门5,当然,调节杆28设于废气旁通阀门26可避免调节面25干涉废气流通;调节面25可以设于端盖,而配合调节面46设于调节阀门5。
上述端盖和调节阀门5的卡合匹配设置,还使得整个联动机构的稳定性较好。据此,如图12、13所示,轴向凸起、凹部均设为两个,并沿对应部件端面的中心线对称设置,则配合后,稳定性更高,不易发生偏移。
本发明还提供一种实施例3,如图15所示,该实施例与实施例1、2大致相同,但采用了不同的联动配合方式,废气旁通阀门26与调节阀门5的结构也略作改动,下文将陆续表述。
调节阀门5一端连接阀门销片组件6,另一端设有凸轮式的调节面25,废气旁通阀门26设有能够与凸轮边缘接触配合的调节杆28。则当调节阀门5转动时,调节杆8沿废气旁通阀门26轴向移动,从而打开阀门。此处,凸轮式的调节面25应当设计为,转动至预定角度时,调节杆28才与凸轮边缘接触而被顶开移动,以满足前述的进气量达到一定程度时才开启废气旁通阀门26。
上述实施例中,废气旁通阀门26和调节阀门5实现联动控制,则只需设置调节阀门5的驱动部即可,无需另设控制废气旁通阀门26的部件,结构紧凑、简单;而且,废气旁通阀门26由调节阀门5的开度变化而控制,
则废气旁通阀门25的启闭控制能够符合实际进气量变化,相比较单独控制,显然控制地更加准确。
需要说明的是,上述实施例中,设置阀门座15以安装调节阀门5、废气旁通阀门26等部件,从而便于各部件的安装,并实现涡轮壳1与排气管14的可控连通。本发明还提供另一种阀门设置方式,并且结构更加紧凑,如图15-20所示。
该实施例中,设有废气旁通阀门总成37,与调节阀门5分开设置,废气旁通阀门37总成直接安装于涡轮壳1,调节阀门5直接安装于涡轮壳1内,如图20所示,调节阀门5的门体直接插入进气外流道2中,门体的外周能够与进气外流道2的内壁密封配合,门体转动时,形成开口以导通废气。图中,调节阀门5贯穿涡轮壳1的进气安装端,一端连接废气旁通阀门总成37,另一端连接驱动其转动的阀门销片组件6。
此时,涡轮壳1的进气安装端面则可直接与排气管14连通,相应地,排气管14相应地设置出分别与进气内流道3、进气外流道2对应的排气口。
由于联动方式不同,阀门的安装要求也不同。可比较图16、17理解,螺旋型的调节面25、轴向凸起型的调节面25,废气旁通阀门26和调节阀门5轴向平行地设置,而设置为凸轮型的调节面25时,则废气旁通阀门26与调节阀门5将呈一定的角度设置,图15、16,二者几乎垂直设置。
如图18、19所示,该旁通阀门总成37具体包括废气旁通阀门26、上壳体38、下壳体41,上壳体38和下壳体41相连接而形成阀腔,下壳体41侧壁开设有总成废气旁通出口41a。废气旁通阀门26可以由旁通阀门支承轴42支撑连接,旁通阀门支撑轴42置于阀腔内,并与上壳体38的端部设有弹簧27,以提供复位力。下壳体41的端部设有阀口,当废气旁通阀门26开启时,废气经阀口进入总成废气旁通出口41a。
图19中,废气旁通阀门26的端面突出形成调节杆28,即调节杆28一体形成于废气旁通阀门26,便于加工,联动控制也更为可靠。
废气旁通阀门总成37的阀腔内还可以设置导向套43,旁通阀门支承轴42贯穿该导向套43,废气旁通阀门26轴向移动时,旁通阀门支承轴42沿导向套43滑动,以免废气旁通阀门26偏移轴向移动,影响废气旁通。
图19中,旁通阀门支承轴42具有大径端,以支撑弹簧27。
以上实施例提供的涡轮机不仅适用于四缸发动机,还可以适用于六缸发动机。图4-10的结构即对应于四缸,六缸时需要设置两组进气内流道3、进气外流道2、废气旁通管路,如图16、17所示,涡轮壳1的进气安装端面相应地设有两个涡轮壳废气旁通入口9、涡轮壳外流道入口10、涡轮壳内流道入口11。此时,可以设置两组上述的阀门即可。
本文还提供一种针对六缸发动机,结构更为紧凑、体积小,且控制更为简单、精准的阀门结构。
如图13、18、20所示,调节阀门5包括相接的两个阀门本体,插装入涡轮壳1后,两个阀门本体分别对应控制两个外流道2的进气量。该调节阀门5依然与一个废气旁通阀门26联动安装,即在原有调节阀门5上加设一阀门门体,即可适用于六缸发动机,相当于一个阀门控制两个流道的进气量,易于实现精准控制。
上述实施例中提供了多种调节阀门5和废气旁通阀门26联动的方式,可以理解,单独控制废气旁通阀门26也是可行的,如图21、22所示的实施例4。与背景技术中提及的进气外流道放气阀类似,也可以为废气旁通阀门26配备相应的废气旁通阀门控制执行器48,则可根据相应的进气信号,控制废气旁通阀门26的启闭。废气旁通阀门控制执行器48与控制执行器7的工作原理相同,如图22所示,废气旁通阀门控制执行器48的杆端会在气压下伸长,带动销片组件旋转,进而驱动废气旁通阀门26转动,以关闭或开启阀口。
需要说明的是,上述实施例中,调节阀门5和废气旁通阀门26联动时,当联动力撤销时,通过设置弹簧27,使得废气旁通阀门26可复位至初始状态。弹簧27结合上述多种调节面25配合的联动方式,简单、可靠地实现了废气旁通阀门26的开启。可以理解,当由废气旁通阀门控制执行器48控制废气旁通阀门26启闭时,则无需设置复位装置。实际上,除了已提到的废气旁通阀门26联动方案,还有其他方案可实现废气旁通阀门26和调节阀门5的联动,而无需设置回位结构。比如,调节阀门5的端部设有齿轮,废气旁通阀门26设有齿条,或者调节阀门5设有螺母,废气旁通
阀门26设有螺杆,当然,上述的设置方式相对简易,也不易干涉阀口。
本发明还对驱动动力涡轮31的进气方式作了改进。
如图4、23所示,所述涡轮壳1内靠近动力动力涡轮31的位置设有无叶喷嘴,以便将进气内流道3和进气外流道2排出的废气导入到动力涡轮31的叶片,本实施例在靠近无叶喷嘴的位置安装有开槽导叶12,所述涡轮壳1内靠近动力涡轮31的位置安装有导叶支撑盘30,导叶支撑盘30上设置有若干个开槽导叶12,为实现更为均匀地进气,若干个开槽导叶12呈环形均匀排列。
开槽导叶12的中间位置设有导流槽29。即在导叶支撑盘30的环面周向设置若干凸起于环面的导叶,然后开设贯穿导叶的导流槽29,则形成开槽导叶。开槽导叶12的排列角度B(如图23所示,该角度为开槽导叶12中轴线的切线、开槽导叶12靠近导叶支撑盘30中心的尖端与导叶支撑盘30中心连线,二者的夹角)可为68°~80°,导流槽29的两槽边可由切割线36(开槽导叶12靠近导叶支撑盘30中心的尖端与导叶支撑盘30中线连线)围绕导叶支撑盘30的中心进行旋转获得,槽宽最窄处按3mm控制。
所述开槽导叶12采用气固复合喷嘴形式,即结合了气体流动和固体喷嘴的功能,发动机低速低负荷时,涡轮机进气内流道3起作用,本领域技术人员可知,此时进气内流道3进气角由公式tan(α)=2πb/(A/r)获得,其中b为涡轮进口宽度,是定值,进气角则由进气内流道3的A/r决定,其中,A是涡轮壳1零截面积,R为零截面质心到涡轮壳1轴心的距离,如图24所示,图24为涡轮壳A、r示意图。
导叶角(两个开槽导叶12之间的夹角)按进气内流道3进气角进行设计,确保两角度基本一致,则气体沿进气内流道3进入开槽导叶12,再沿开槽导叶12进入动力涡轮31,中间没有转弯损失,气动效率高。
随着发动机转速逐渐提升,气体流量加大,进气外流道2会随着调节阀门5的打开参与进气,进气外流道2进气角也由进气外流道2的A/r决定,导流槽29角度按进气外流道2进气角进行设计,确保两角度基本一致,气体沿进气外流道2进入导流槽29,再沿导流槽29进入动力涡轮31,避免产生安装完整导叶(没有导流槽29)时的撞击损失和拐弯损失,不但提
高了效率,更是拓宽了流量。而且,随着气流速度的加快,气流径向速度分量上升更快,导流槽29的存在,使高速段的流量拓宽更加明显。
图23中附有气体流动示意图,在发动机低速低负荷时,气流只沿N向(角度为α,即进气角)进入动力涡轮31,当发动机转速逐渐提升,气流会沿M(角度为β,即进气角)、N两个方向汇合成H向对动力涡轮31起作用,图中δ为流入动力涡轮31的气流方向变化范围。
此处以设置阀门座15时的实施例为例说明废气流动路径。
实际工作中,当发动机处于低速、低负荷时,调节阀门5关闭,进气沿排气管14、阀门座气体入口23、阀门座内流道接口18、涡轮壳内流道入口11、进气内流道3、相邻开槽导叶12之间的通道流入动力涡轮31,驱动动力涡轮31做功。
此时,气流沿两开槽导叶12中间区域流向动力涡轮31,驱动动力涡轮31做功,只有进气内流道3起作用,截面较小,而且流经开槽导叶12时也只沿导叶角流入,即图20中N向,气流集中,可以提高涡前压力、提升EGR率。
当发动机转速、负荷逐渐升高时,调节阀门5开始开启,部分气流流过调节阀门5,沿阀门座外流道接口19、涡轮壳外流道入口10、进气外流道2、开槽导叶12流入动力涡轮31,以适应逐渐增大的流量需求,在此过程,通过调节调节阀门5的开度,可以调整涡前压力,确定合适的EGR率。
在调节调节阀门5的过程中,调节阀门5转到一定角度后(通常对应于发动机高速段),会通过调节面25给调节杆28施加推力,调节杆28带动废气旁通阀门26压缩弹簧27,打开废气旁通管路,废气沿排气管废气旁通出口16、阀门座废气旁通入口24、阀门座废气旁通出口20、涡轮壳废气旁通入口9、涡轮壳废气旁通出口13流出,排掉一部分废气能量,确保发动机高速、高负荷时增压器涡前压力不致过大。
而且,随着进气量的增大,进气会沿开槽导叶12上的导流槽29流入,即图23中M向,M向、N向同时进气,避免了高速段的气流堵塞。
如图25、26所示,导叶的存在,减少了气流回流,不但提高了涡轮机效率,更使气流流动顺畅,避免了喉口处的气流扰动,保证涡轮机效率。
此外,涡轮机的压比、流量对其性能影响较大,而对流量其决定作用的是通流截面,现有技术依靠涡轮壳1的流道设计控制通流截面,但如背景技术所述,铸造涡轮机的生产一致性难以控制,相应地流量难以控制。本实施例中设有导叶结构,则可由导叶控制通流面积,而导叶结构能够精密加工形成,通流面积可得到精密控制,从而不受涡轮壳1本身加工精度的影响。
设置导叶后,使得涡轮机、发动机获得了明显的性能提升,如下:
1、涡轮机效率明显提升,效率对比图如图27所示,上方较粗的黑色线A为本发明效率线,下方较细的黑色线B为未改进之前的涡轮机效率线。
2、与发动机联合运行油耗对比曲线如图28所示,采用本发明的涡轮增压器,油耗率实现整条匹配线上的大幅度降低。
实施例5,在上述实施例基础上,本发明还提供另一种导叶设置形式,如图29所示,导叶包括长导叶32和短导叶33,长导叶32的长度大于短导叶33的长度,长导叶32和短导叶33间隔设置。
长导叶32和短导叶33的大小根据流动分析来定,但短导叶33的尾缘34与长导叶32的前缘35在圆周方向上要有一段距离,便于气流在发动机高速工况时从此流入,可以拓宽流量、减小堵塞,实现的功能类似于前一实施例的开槽导叶12。即长导叶32按照一定角度沿导叶支撑盘30周向排列,短导叶33按照另一角度排列,则按照逆时针方向,长导叶32和短导叶33之间的通道形成与进气内流道3导通的导流流道,短导叶33和长导叶32之间的通道形成与进气外流道2导通的导流流道。具体工作过程可参照上述的开槽导叶12理解。
长导叶32的排列角度B可设计为68°~80°,长导叶32的排列角度B与短导叶33的排列角度A的角度差为:B-A=0°~5°。
其中,排列角度B为,长导叶32中轴线的切线、长导叶32靠近导叶支撑盘30中心的尖端与导叶支撑盘30的中心连线,二者的夹角;排列角度A为,短导叶31中轴线的切线、短导叶31靠近导叶支撑盘30中心的尖端与导叶支撑盘30的中心连线,二者的夹角。
该种导叶设置方式的涡轮机效率更优,效率对比图如图30所示:
上方最细的黑色线A为长短导叶涡轮机效率线、下方最粗的黑色C线为一般废气旁通涡轮机效率线、中间的黑色线B为开槽导叶涡轮机效率线。通过上表可以看出,设置长导叶32、短导叶33的涡轮机效率甚至还要高于开槽导叶12结构。
从以上描述可看出,无论是开槽导叶12,还是长导叶32、短导叶33的配合设置,均是为了形成两种具有预定夹角的第一导流通道、第二导流通道(即二者不平行设置,该夹角值和进气内流道3、进气外流道2的进气角有关),以便进气内流道3流出的废气能够经第一导流通道导流至所述动力涡轮31,进气外流道2流出的废气能够经所述第二导流通道导流至所述动力涡轮31。如上,则相邻开槽导叶12之间的通道形成所述第一导流通道,导流槽29形成第二导流通道;按照逆时针方向,长导叶32至短导叶33之间的通道形成第二导流通道,短导叶33至长导叶32之间的通道形成第一导流通道。
只要能够将进气内流道3和进气外流道2的废气分别引向动力涡轮31,拓宽流量范围,即可以产生如上所述的技术效果,显然,两种流道的形成方式并不限于上述的开槽导叶12以及长导叶32、短导叶33,当然,上述实施例的结构,易于加工,而且不阻碍气流,导流效果最好。另外,导流支撑盘30与涡轮壳31分设,而导流支撑盘30可以采取精加工,精度易于保证,从而进一步保证气流的分配,确保涡轮机效率。
现在我们已经按照国家专利法对发明进行了详细的说明,对于本领域的技术人员会识别本文所公开的具体实施例的改进或代替。这些修改是在本发明的精神和范围内的。
Claims (22)
- 一种满足RGR循环需要的可变截面废气旁通涡轮机,包括涡轮壳(1)和动力涡轮(31),所述涡轮壳(1)设有导流发动机废气至所述动力涡轮(31)处以驱动所述动力涡轮(31)旋转的进气内流道(3)和进气外流道(2),其特征在于,所述涡轮壳(1)还设有不经过所述动力涡轮(31)而排出废气的废气旁通管路,以及控制所述废气旁通管路通断的废气旁通阀门(26);废气进入所述涡轮机的进气量超过预定值时,所述废气旁通阀门(26)开启以使部分废气能够通过所述废气旁通管路排出。
- 如权利要求1所述的可变截面废气旁通涡轮机,其特征在于,还包括开度可调的调节阀门(5),用于调节所述进气外流道(2)的进气量;且,所述调节阀门(5)与所述废气旁通阀门(26)联动配置为:所述调节阀门(5)开启至预定角度时,带动所述废气旁通阀门(5)开启,此时,进气量达到所述预定值。
- 如权利要求2所述的可变截面废气旁通涡轮机,其特征在于,所述调节阀门(5)为可旋转的中置阀门,转动时,废气可经阀门本体的两侧进入。
- 如权利要求3所述的可变截面废气旁通涡轮机,其特征在于,所述调节阀门(5)和所述废气旁通阀门(26),二者之一具有在调节阀门(26)转动方向上,轴向高度变化的调节面(25),另一者具有与所述调节面(25)接触配合的联动部,以便所述调节阀门(5)转动时能够带动所述废气旁通阀门(26)沿所述调节阀门(5)轴向移动而开启。
- 如权利要求3所述的可变截面废气旁通涡轮机,其特征在于,所述调节阀门(5)与所述废气旁通阀门(26)能够沿所述调节阀门(5)轴向接触;且,还包括驱动部,所述驱动部包括安装于所述涡轮壳(1)的端盖(46),所述端盖(46)卡盖所述调节阀门(5)的一端面以驱动所述调节阀门(5)转动;所述端盖(46)和所述调节阀门(5),二者之一具有在调节阀门(5)转动方向上,轴向高度变化的调节面(25),另一者具有与所述调节面(25) 接触配合的联动部,以便所述调节阀门(25)转动时能够带动所述废气旁通阀门(26)沿所述调节阀门(5)轴向移动而开启。
- 如权利要求4或5所述的可变截面废气旁通涡轮机,其特征在于,所述调节面(25)的轴向高度绕所述调节阀门(5)的转动轴心螺旋上升,所述联动部为与所述调节面(25)接触配合的调节杆(28)。
- 如权利要求4或5所述的可变截面废气旁通涡轮机,其特征在于,所述调节面(25)具有沿所述调节阀门(5)转动方向平缓凸起的凸部,相应地在所述调节面(25)上形成凹部;所述联动部为轴向凸起(47a),所述轴向凸起(47a)相对所述调节面(25)转动时,所述轴向凸起(47a)能够依次滑过所述凹部、所述凸部。
- 如权利要求3所述的可变截面废气旁通涡轮机,其特征在于,所述调节阀门(5)设有随之转动的凸轮,所述废气旁通阀门(26)设有能够与所述凸轮边缘接触配合的调节杆(28)。
- 如权利要求2-8任一项所述的可变截面废气旁通涡轮机,其特征在于,还包括弹簧(27),当所述调节阀门(5)与所述废气旁通阀门(26)的联动力撤销时,所述弹簧(27)控制所述废气旁通阀门(26)复位至关闭状态。
- 如权利要求2-8任一项所述的可变截面废气旁通涡轮机,其特征在于,还包括阀门座(15),其开设有阀门座内流道接口(18)、阀门座外流道接口(19)、阀门座废气旁通入口(23)、阀门座废气旁通出口(20);所述调节阀门(5)和所述废气旁通阀门(26)均设于所述阀门座(15);所述阀门座(15)设于所述排气管(14)与所述涡轮壳(1)的进气端之间。
- 如权利要求2-8任一项所述的可变截面废气旁通涡轮机,其特征在于,所述废气旁通阀门(26)直接安装于所述涡轮壳(1),所述调节阀门(5)插装于所述涡轮壳(1)内,以直接调节进入所述进气外流道(2)的进气量。
- 如权利要求11所述的可变截面废气旁通涡轮机,其特征在于,所述涡轮机设有对应于六缸发动机的两组所述进气外流道(2)、进气内流道 (3)以及废气旁通管路,所述调节阀门(5)包括相接的两个阀门本体,插装入所述涡轮壳(1)后,两个所述阀门本体分别、同时对应控制两个所述进气外流道(2)的进气量。
- 如权利要求1-8任一项所述的可变截面废气旁通涡轮机,其特征在于,还包括设于所述动力涡轮(31)进气端面位置并呈环状的导叶支撑盘(30);所述导叶支撑盘(30)沿其周向间隔布置有若干第一导流通道和第二导流通道,所述第一导流通道和所述第二导流通道具有预定夹角,以使所述进气内流道(3)流出的废气能够经所述第一导流通道导流至所述动力涡轮(31),所述进气外流道(2)流出的废气能够经所述第二导流通道导流至所述动力涡轮(31)。
- 如权利要求13所述的可变截面废气旁通涡轮机,其特征在于,所述导叶支撑盘(30)的环面周向设有若干凸起于所述环面的导叶,所述导叶开有贯通所述导叶的导流槽(29),以形成开槽导叶(12);相邻所述开槽导叶(12)之间的通道形成所述第一导流通道,所述导流槽(29)形成所述第二导流通道。
- 如权利要求13所述的可变截面废气旁通涡轮机,其特征在于,所述导叶支撑盘(30)的环面设有凸起于所述环面并间隔设置的长导叶(32)和短导叶(33),按照逆时针方向,所述长导叶(32)至所述短导叶(33)之间的通道形成所述第二导流通道,所述短导叶(33)至所述长导叶(32)之间的通道形成所述第一导流通道。
- 如权利要求15所述的可变截面废气旁通涡轮机,其特征在于,所述长导叶(32)的排列角度B为68°~80°,所述短导叶(33)的排列角度A,满足:B-A=0°~5°。
- 一种满足EGR循环需要的可变截面废气旁通涡轮机,包括涡轮壳(1),所述涡轮壳(1)内设置有进气内流道(3)和进气外流道(2),进气内流道(3)和进气外流道(2)分别采用非全周结构,进气内流道承担动力涡轮0°~(150~230)°的进气,进气外流道承担(150~230)°~360° 的进气;所述涡轮壳(1)内还设有废气旁通管路,该废气旁通管路与进气外流道(2)、进气内流道(3)平行设置,但不经过动力涡轮(31)。
- 根据权利要求17所述的一种满足EGR循环需要的可变截面废气旁通涡轮机,其特征在于:该涡轮机还包括动力涡轮(31)、阀门座(15)、排气管(14)及其控制附件,所述涡轮壳(1)、阀门座(15)、排气管(14)密封连接在一起;所述阀门座(15)内安装有可调节进气外流道(2)进气流量的调节阀门(5);调节阀门(5)的另一端设有调节面(25),调节面(25)为螺旋型结构,其轴向高度绕自身轴心呈螺旋上升。
- 根据权利要求18所述的一种满足EGR循环需要的可变截面废气旁通涡轮机,其特征在于:所述废气旁通管路内设置有可与调节阀门(5)相配合动作的废气旁通阀门(26),废气旁通阀门(26)通过废气旁通阀轴套(21)安装在阀门座(15)内,废气旁通阀门(26)与废气旁通阀轴套(21)间安装有弹簧(27),废气旁通阀门(26)靠近调节阀门(5)的一侧设置有与调节面(25)相配合动作的调节杆(28);动作时,控制附件带动调节阀门(5)旋转,调节进气外流道(2)进气量的同时,调节阀门(5)的调节面(25)推动调节杆(28),废气旁通阀门(26)打开,并压缩弹簧(27),此时,旁通废气从废气旁通管路排出,当调节阀门(5)回位时,废气旁通阀门(26)在弹簧(27)弹力作用下回位,废气不再旁通。
- 根据权利要求17所述的一种满足EGR循环需要的可变截面废气旁通涡轮机,其特征在于:所述涡轮壳(1)内靠近动力涡轮(31)的位置安装有导叶支撑盘(30),导叶支撑盘(30)上设置有若干个开槽导叶(12),若干个开槽导叶(12)呈环形均匀排列;所述开槽导叶(12)采用气固复合喷嘴形式,发动机低速低负荷时,涡轮机进气内流道(3)起作用,此时进气内流道(3)的进气角由公式tan(α)=2πb/(A/r)获得,其中b为涡轮进口宽度,是定值,进气角由进气内流道(3)的A/r决定,进气内流道(3)的导叶角按进气内流道(3)进气角进行设计,确保两角度基本一致,气体沿进气内流道(3)进入导叶,再沿导叶进入动力涡 轮(31),中间没有转弯损失。
- 根据权利要求20所述的一种满足EGR循环需要的可变截面废气旁通涡轮机,其特征在于:开槽导叶(12)中间位置设有导流槽(29),开槽导叶(12)的排列角度(B)为68°~80°,导流槽(29)的两槽边由切割线(36)围绕导叶支撑盘(30)的中心进行旋转获得,槽宽最窄处按3mm控制。
- 根据权利要求20所述的一种满足EGR循环需要的可变截面废气旁通涡轮机,其特征在于:开槽导叶(12)包括长导叶(32)和短导叶(33),长导叶(32)的长度大于短导叶(33)的长度,长导叶(32)和短导叶(33)间隔设置;小导叶(33)的尾缘(34)与长导叶(32)的前缘(35)在圆周方向上间隔一定距离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/553,542 US10662870B2 (en) | 2015-02-25 | 2015-08-04 | Variable geometry wastegate turbine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510086729.X | 2015-02-25 | ||
CN201510086729.XA CN104675452A (zh) | 2015-02-25 | 2015-02-25 | 满足egr循环需要的可变截面废气旁通涡轮机 |
CN201510358065.8A CN104895667B (zh) | 2015-02-25 | 2015-06-25 | 一种满足egr循环需要的可变截面废气旁通涡轮机 |
CN201510358065.8 | 2015-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016134584A1 true WO2016134584A1 (zh) | 2016-09-01 |
Family
ID=53310973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/086000 WO2016134584A1 (zh) | 2015-02-25 | 2015-08-04 | 一种满足egr循环需要的可变截面废气旁通涡轮机 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10662870B2 (zh) |
CN (1) | CN104675452A (zh) |
WO (1) | WO2016134584A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10578048B2 (en) | 2018-01-15 | 2020-03-03 | Ford Global Technologies, Llc | Wide range active compressor for HP-EGR engine systems |
CN111197526A (zh) * | 2018-11-20 | 2020-05-26 | 现代自动车株式会社 | 涡轮增压器 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104675452A (zh) * | 2015-02-25 | 2015-06-03 | 康跃科技股份有限公司 | 满足egr循环需要的可变截面废气旁通涡轮机 |
WO2016078444A1 (zh) * | 2014-11-20 | 2016-05-26 | 康跃科技股份有限公司 | 满足egr循环需要的可变截面废气旁通涡轮机及导叶组件 |
FR3069609B1 (fr) * | 2017-07-26 | 2019-08-23 | Mmt ag | Vanne de dosage de fluide |
JP6908472B2 (ja) * | 2017-08-31 | 2021-07-28 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機 |
GB201818505D0 (en) * | 2018-11-13 | 2018-12-26 | Cummins Ltd | Rotary valve |
CN113544369B (zh) | 2019-03-06 | 2023-04-04 | 株式会社Ihi | 涡轮机 |
CN110094238B (zh) * | 2019-06-05 | 2024-07-26 | 无锡康明斯涡轮增压技术有限公司 | 一种废气涡轮增压器涡壳组件 |
JP7288982B2 (ja) * | 2020-01-07 | 2023-06-08 | 三菱重工エンジン&ターボチャージャ株式会社 | タービン及びターボチャージャ |
EP4265892A4 (en) * | 2020-12-18 | 2024-01-03 | Nissan Motor Co., Ltd. | TURBOCHARGER |
JP2022161312A (ja) * | 2021-04-08 | 2022-10-21 | 三菱重工マリンマシナリ株式会社 | 過給機ガスケーシング及び過給機 |
US12116902B2 (en) * | 2022-03-11 | 2024-10-15 | Garrett Transportation I Inc. | Twin scroll turbine housing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201794626U (zh) * | 2010-09-14 | 2011-04-13 | 康跃科技股份有限公司 | 一种可变截面双流道进气涡轮 |
CN102182544A (zh) * | 2011-03-01 | 2011-09-14 | 康跃科技股份有限公司 | 可变流道涡轮进气调节装置 |
CN202417695U (zh) * | 2012-01-11 | 2012-09-05 | 康跃科技股份有限公司 | 一种阶段式可调流量涡轮壳 |
CN102959196A (zh) * | 2010-04-30 | 2013-03-06 | 霍尼韦尔国际公司 | 具有涡轮机喷嘴叶片和环形旋转旁通阀的涡轮增压器 |
CN103670680A (zh) * | 2012-08-29 | 2014-03-26 | 三菱电机株式会社 | 内燃机的废气旁通阀控制装置 |
CN104675452A (zh) * | 2015-02-25 | 2015-06-03 | 康跃科技股份有限公司 | 满足egr循环需要的可变截面废气旁通涡轮机 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6983596B2 (en) * | 2001-11-02 | 2006-01-10 | Borgwarner Inc. | Controlled turbocharger with integrated bypass |
DE102004055571A1 (de) * | 2004-11-18 | 2006-06-08 | Daimlerchrysler Ag | Abgasturbolader für eine Brennkraftmaschine |
JP4359313B2 (ja) | 2007-01-11 | 2009-11-04 | 株式会社日本自動車部品総合研究所 | ベルト駆動機構 |
US20090000296A1 (en) | 2007-06-29 | 2009-01-01 | David Andrew Pierpont | Turbocharger having divided housing with integral valve |
US8196403B2 (en) * | 2008-07-31 | 2012-06-12 | Caterpillar Inc. | Turbocharger having balance valve, wastegate, and common actuator |
US8893493B2 (en) | 2010-01-14 | 2014-11-25 | GM Global Technology Operations LLC | Engine exhaust system and method of operation |
US8485498B2 (en) * | 2010-06-30 | 2013-07-16 | Denso Corporation | Valve control apparatus |
AT510236B1 (de) | 2010-07-26 | 2015-12-15 | MAN Truck & Bus Österreich AG | Verfahren zur motorbremsung |
CN201802477U (zh) | 2010-09-14 | 2011-04-20 | 康跃科技股份有限公司 | 一种双流道涡轮旁通放气装置 |
CN202266306U (zh) | 2011-10-08 | 2012-06-06 | 康跃科技股份有限公司 | 一种可变几何的脉冲进气涡轮机的蜗壳装置 |
US9359939B2 (en) * | 2013-02-20 | 2016-06-07 | Ford Global Technologies, Llc | Supercharged internal combustion engine with two-channel turbine and method |
KR20170093155A (ko) * | 2014-12-12 | 2017-08-14 | 보르그워너 인코퍼레이티드 | 트윈 스크롤 터보차저를 제어하기 위한 모노 또는 듀얼 동축 슬라이더 밸브 |
US10227889B2 (en) * | 2015-02-05 | 2019-03-12 | Garrett Transportation I Inc. | Variable geometry nozzle for partitioned volute |
US10570814B2 (en) * | 2015-03-05 | 2020-02-25 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Waste-gate valve and turbocharger |
-
2015
- 2015-02-25 CN CN201510086729.XA patent/CN104675452A/zh active Pending
- 2015-08-04 WO PCT/CN2015/086000 patent/WO2016134584A1/zh active Application Filing
- 2015-08-04 US US15/553,542 patent/US10662870B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102959196A (zh) * | 2010-04-30 | 2013-03-06 | 霍尼韦尔国际公司 | 具有涡轮机喷嘴叶片和环形旋转旁通阀的涡轮增压器 |
CN201794626U (zh) * | 2010-09-14 | 2011-04-13 | 康跃科技股份有限公司 | 一种可变截面双流道进气涡轮 |
CN102182544A (zh) * | 2011-03-01 | 2011-09-14 | 康跃科技股份有限公司 | 可变流道涡轮进气调节装置 |
CN202417695U (zh) * | 2012-01-11 | 2012-09-05 | 康跃科技股份有限公司 | 一种阶段式可调流量涡轮壳 |
CN103670680A (zh) * | 2012-08-29 | 2014-03-26 | 三菱电机株式会社 | 内燃机的废气旁通阀控制装置 |
CN104675452A (zh) * | 2015-02-25 | 2015-06-03 | 康跃科技股份有限公司 | 满足egr循环需要的可变截面废气旁通涡轮机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10578048B2 (en) | 2018-01-15 | 2020-03-03 | Ford Global Technologies, Llc | Wide range active compressor for HP-EGR engine systems |
CN111197526A (zh) * | 2018-11-20 | 2020-05-26 | 现代自动车株式会社 | 涡轮增压器 |
Also Published As
Publication number | Publication date |
---|---|
CN104675452A (zh) | 2015-06-03 |
US10662870B2 (en) | 2020-05-26 |
US20180238226A1 (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016134584A1 (zh) | 一种满足egr循环需要的可变截面废气旁通涡轮机 | |
CN103534461B (zh) | 双流涡轮机壳体式涡轮增压器 | |
CN1680683B (zh) | 可变几何结构透平 | |
US10294856B2 (en) | VTG turbocharger with wastegate controlled by a common actuator | |
US8480360B2 (en) | Turbocharger turbine | |
JP2005299660A5 (zh) | ||
KR20140119128A (ko) | 가변 터빈 구조를 구비한 혼류 터보차저 | |
CN101694166B (zh) | 双层流道变截面涡轮机控制装置 | |
CN111148903A (zh) | 用于内燃发动机的增压装置的具有虹膜式隔板机构的径流式压缩机、增压装置和虹膜式隔板机构的叶片 | |
WO2012034347A1 (zh) | 可变截面双流道进气涡轮 | |
CN101769178A (zh) | 旁通进气变截面涡轮机装置 | |
EP2749738B1 (en) | Assembly for a turbocharger and turbocharger | |
CN104895667B (zh) | 一种满足egr循环需要的可变截面废气旁通涡轮机 | |
CN101985897A (zh) | 可变截面复合涡轮装置 | |
WO2012094781A1 (zh) | 可变截面轴径流复合涡轮增压装置 | |
WO2016078444A1 (zh) | 满足egr循环需要的可变截面废气旁通涡轮机及导叶组件 | |
WO2016029622A1 (zh) | 一种具有三级可调喷嘴的废气涡轮增压器系统 | |
WO2013127033A1 (zh) | 多层可变几何蜗壳装置 | |
CN102536435B (zh) | 混合式可变流量蜗壳 | |
CN202500652U (zh) | 一种混合式可变流量蜗壳 | |
CN201802444U (zh) | 一种可变截面复合涡轮装置 | |
US10240518B2 (en) | Integrated vane stops for variable-geometry turbocharger mechanism | |
CN201581937U (zh) | 一种双层流道变截面涡轮机控制装置 | |
CN102562185A (zh) | 带导流叶片的双通道变截面蜗壳装置 | |
CN102852572B (zh) | 可变几何蜗壳装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15883021 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15553542 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15883021 Country of ref document: EP Kind code of ref document: A1 |