WO2016133332A1 - Power cable - Google Patents

Power cable Download PDF

Info

Publication number
WO2016133332A1
WO2016133332A1 PCT/KR2016/001535 KR2016001535W WO2016133332A1 WO 2016133332 A1 WO2016133332 A1 WO 2016133332A1 KR 2016001535 W KR2016001535 W KR 2016001535W WO 2016133332 A1 WO2016133332 A1 WO 2016133332A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
insulation layer
cable
insulating layer
Prior art date
Application number
PCT/KR2016/001535
Other languages
French (fr)
Korean (ko)
Inventor
고경로
이주연
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150167050A external-priority patent/KR101819289B1/en
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to EP16752662.3A priority Critical patent/EP3261098B1/en
Priority to CN201680009512.1A priority patent/CN107408423B/en
Priority to US15/549,828 priority patent/US10199143B2/en
Publication of WO2016133332A1 publication Critical patent/WO2016133332A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/20Metal tubes, e.g. lead sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • the present invention relates to power cables, in particular ultra high voltage underground or submarine cables.
  • the present invention has a high dielectric strength of the insulating layer itself, effectively absorbs the electric field applied to the insulating layer, prevents deterioration of the insulating layer during the operation and connection of the cable, and extends its life.
  • the flexibility of the cable, installation, workability and the like relates to a power cable.
  • a power cable using a polymer insulator such as crosslinked polyethylene (XLPE) is used.
  • XLPE crosslinked polyethylene
  • an ultra-high voltage DC power transmission cable is impregnated with insulating oil in a cross winding insulating paper so as to surround a conductor.
  • Paper-insulated cables having an insulating layer are used.
  • the ground insulation cable includes an OF (Oil Filled) cable for circulating low viscosity insulation oil, a Mass Impregnated Non Draining (MIND) cable impregnated with high viscosity insulation oil, and the OF cable has a limitation in the transmission length of hydraulic pressure for circulation of the insulation oil. It is not suitable for long distance transmission cables, and in particular, there is a problem that it is difficult to install insulating oil circulation facilities on the seabed, which is not suitable for submarine cables.
  • OF Oil Filled
  • MIND Mass Impregnated Non Draining
  • MIND cable is commonly used for long distance direct current transmission or subsea high voltage cable.
  • the MIND cable is formed by wrapping the insulating paper in a plurality of layers when forming the insulating layer, for example, using a kraft paper (Kraft paper) or a semi-synthetic laminated laminated thermoplastic resin such as kraft paper and polypropylene resin (Polypropylene) resin Can be used.
  • the temperature difference occurs in the insulating layer portion in the semiconductive layer direction. Therefore, the insulating oil of the insulating layer portion of the inner semiconducting layer, which is higher in temperature, has a lower viscosity and is thermally expanded to move to the insulating layer of the outer semiconducting layer.
  • the oil-free voids may be formed in the radially inner side, that is, the portion of the insulating layer toward the inner semiconducting layer.
  • the deoiled voids may be shortened in the life of the cable due to the absence of the insulating oil and the electric field is concentrated to cause partial discharge, insulation breakdown, and the like.
  • the insulating layer is formed of semi-synthetic paper
  • the flow of the insulating oil can be suppressed by thermal expansion of a thermoplastic resin such as a polypropylene resin which is not impregnated with oil during the operation of the cable, and the polypropylene resin has a kraft paper with an insulation resistance. Because of the larger size, even if deoiled voids are produced, the voltage sharing can be relaxed.
  • the polypropylene resin is not impregnated with the insulating oil, it is possible not only to prevent the insulating oil from flowing in the radial direction of the cable due to gravity, but also according to the impregnation temperature at the time of cable manufacture or the operating temperature at the time of cable operation. Since thermal expansion expands surface pressure on kraft paper, the flow of insulating oil can be further suppressed.
  • Japanese Laid-Open Patent Publication Nos. 2010-097778, 2013-098136, 2011-216292, etc. suppresses the formation of the deoiling voids and at the same time avoids the concentration of the electric field directly above the conductor and directly under the sheath.
  • the optimum insulation design that is, it is difficult to realize the desired resistance of the insulation layer and minimize the thickness of the insulation layer, and thus, there is a problem that the life of the cable is shortened or the thickness of the insulation layer is increased due to the decrease in insulation strength. .
  • the insulation layer may be deteriorated by heat generated during welding in the cable connecting process, particularly in the case of soft connection, which may further shorten the life of the cable.
  • the insulation strength of the insulation layer is high, the electric field applied to the insulation layer is effectively buffered, and the degradation of the insulation layer can be prevented during the operation and connection of the cable, thereby extending the life and
  • the present invention provides a power cable that can improve the flexibility, installation, workability, etc. of the cable because the insulation strength is high and the life can be extended to minimize the thickness of the insulation layer to reduce the outer diameter of the cable.
  • an object of the present invention is to provide a power cable capable of suppressing deterioration of an insulating layer from external heat during a cable connecting step and extending the life of the cable.
  • Conductor An inner semiconducting layer surrounding the conductor; An insulation layer surrounding the inner semiconducting layer and having an inner insulation layer, an intermediate insulation layer, and an outer insulation layer sequentially stacked; An outer semiconducting layer surrounding the insulating layer; A metal sheath layer surrounding the outer semiconducting layer; And a cable protection layer surrounding the metal sheath layer, wherein the inner insulating layer and the outer insulating layer are each formed of kraft paper impregnated with insulating oil, and the intermediate insulating layer is formed of a semi-synthetic paper impregnated with insulating oil.
  • the semi-synthetic paper includes a plastic film and kraft paper laminated on at least one surface of the plastic film, and based on the total thickness of the insulating layer, the thickness of the inner insulating layer is 1 to 10%, and the thickness of the intermediate insulating layer. Is at least 75%, the thickness of the outer insulation layer is 5 to 15%, and the resistivity of the inner insulation layer and the outer insulation layer is less than the resistivity of the intermediate insulation layer, provides a power cable.
  • the electric power cable characterized in that the maximum impulse electric field value of the inner insulating layer is smaller than the maximum impulse electric field value of the intermediate insulating layer.
  • the maximum impulse electric field value of the intermediate insulating layer is 100 kV / mm or less.
  • the thickness of the plastic film characterized in that 40 to 70% of the total thickness of the semi-synthetic paper, provides a power cable.
  • the thickness of the outer insulation layer is greater than that of the inner insulation layer.
  • the thickness of the outer insulation layer is 1.25 to 3 times the thickness of the inner insulation layer, provides a power cable.
  • the thickness of the inner insulating layer is 0.1 to 2.0 mm
  • the thickness of the outer insulating layer is 1.0 to 3.0 mm
  • the thickness of the intermediate insulating layer is 15 to 25 mm, provides a power cable. .
  • the thickness of the kraft paper of the inner insulating layer and the outer insulating layer is greater than the thickness of the kraft paper of the semi-synthetic paper, provides a power cable.
  • the thickness of the semi-synthetic paper is 70 to 200 ⁇ m
  • the thickness of the kraft paper of the inner insulating layer and the outer insulating layer is 50 to 150 ⁇ m, it provides a power cable.
  • the conductor is made of copper or aluminum, it is a circular compression conductor compressed after the circular element wire in a multi-layer on the flat conductor or circular center line consisting of a multi-layered flat element wire on the circular center line, characterized in that the power cable to provide.
  • the plastic film is provided with a polypropylene homopolymer resin, it provides a power cable.
  • the insulating oil provides a power cable, characterized in that the high viscosity insulating oil having a kinematic viscosity of 60 °C or more than 500 centistokes.
  • the cable protection layer is characterized in that it comprises an inner sheath, a bedding layer, a metal reinforcing layer and an outer sheath, provides a power cable.
  • the cable protective layer further provides a power cable, characterized in that it further comprises an outer wire and the outer serving layer.
  • the power cable according to the present invention exhibits an excellent effect of simultaneously achieving the desired dielectric strength and minimization of the insulation layer through precise control of the structure and thickness of the insulation layer.
  • the power cable according to the present invention exhibits an excellent effect of extending the life of the cable by suppressing deterioration of the insulating layer by heat during the connection process of the cable by controlling the thickness of each layer of the insulating layer.
  • Figure 1 schematically shows the cross-sectional structure of one embodiment of a power cable according to the present invention.
  • FIG. 2 schematically illustrates a longitudinal cross-sectional structure of the power cable shown in FIG. 1.
  • FIG. 3 is a graph schematically illustrating a process in which an electric field is buffered inside an insulation layer of a power cable according to the present invention.
  • FIG. 4 schematically illustrates a cross-sectional structure of a semisynthetic paper forming an intermediate insulation layer of the power cable shown in FIG. 1.
  • FIG. 1 and 2 schematically show cross-sectional and longitudinal cross-sectional structures of one embodiment of a power cable according to the invention, respectively.
  • the power cable according to the present invention includes a conductor 100, an inner semiconducting layer 200 surrounding the conductor 100, and an insulating layer 300 surrounding the inner semiconducting layer 200.
  • An outer semiconducting layer 400 surrounding the insulating layer 300, a metal sheath layer 500 surrounding the outer semiconducting layer 400, a cable protection layer 600 surrounding the metal sheath layer 500, and the like. can do.
  • the conductor 100 is a movement path for electric current for transmission, and has high electrical conductivity to minimize power loss, and has high purity copper (Cu), aluminum (Al), etc. having appropriate strength and flexibility required for use as a conductor of a cable.
  • it may be made of a linkage line having a high elongation and a high conductivity.
  • the cross-sectional area of the conductor 100 may be different depending on the amount of power transmission, the use of the cable.
  • the conductor 100 may be composed of a circular compression conductor compressed by placing a flat element wire in multiple layers on a flat conductor or a circular center line composed of multiple flat angle wires on a circular center line. Since the conductor 100 made of a flat conductor formed by a so-called keystone method has a high conductor area ratio, it is possible to reduce the outer diameter of the cable and to form a large cross-sectional area of each element wire. It is economical to reduce.
  • the inner semiconducting layer 200 suppresses uneven charge distribution on the surface of the conductor 100, alleviates electric field distribution from inside the cable, and removes a gap between the conductor 100 and the insulating layer 300 to partially discharge To suppress dielectric breakdown, etc.
  • the inner semiconducting layer 200 may be formed by, for example, a transverse winding of carbon paper treated with conductive carbon black on insulating paper, and the thickness of the inner semiconducting layer 200 may be about 0.2 to 1.5 mm.
  • the insulation layer 300 includes an inner insulation layer 310, an intermediate insulation layer 320, and an outer insulation layer 330, and the inner insulation layer 310 and the outer insulation layer 330 are the intermediate insulation. It is made of a material having a lower resistivity than the layer 320, so that the inner insulating layer 310 and the outer insulating layer 330 are each formed by a current flowing through the conductor 100 when the cable is operated. An electric field buffering function for suppressing application of an electric field directly above the conductor 100 or directly below the metal sheath layer 500 is performed, and further, a function for suppressing deterioration of the intermediate insulating layer 320.
  • FIG. 3 is a graph schematically illustrating a process in which an electric field is buffered inside an insulation layer of a power cable according to the present invention.
  • a high electric field is applied directly on the conductor 100 and directly under the metal sheath layer 500 by buffering an electric field in the internal insulating layer 310 and the external insulating layer 330 having a relatively low resistivity.
  • the deterioration of the intermediate insulating layer 320 can be suppressed by controlling the maximum impulse electric field applied to the intermediate insulating layer 320 to 100 kV / mm or less.
  • the impulse electric field means an electric field applied to the cable when an impulse voltage is applied to the cable.
  • the inner electric field E i and the outer electric field E o of each of the inner insulation layer 310, the intermediate insulation layer 320, and the outer insulation layer 330 may be calculated by Equation 1 below.
  • U o is the rated voltage of the cable
  • D io is the outer diameter of each insulating layer
  • d ii is the internal diameter of each insulating layer.
  • the maximum impulse electric field value of the internal insulation layer is designed to be smaller than the maximum impulse electric field value of the intermediate insulation layer so that the high electric field does not act directly on the conductor or directly under the sheath.
  • the maximum impulse electric field applied to 320 is an inner electric field E i of the intermediate insulating layer 320, and the inner electric field E i is controlled to be 100 kV / mm or less, thereby deteriorating the intermediate insulating layer 320. Can be suppressed.
  • the high electric field is suppressed from being applied to the inner insulation layer 310 and the outer insulation layer 330, particularly, a cable connection member vulnerable to an electric field, and further, the degradation of the intermediate insulation layer 320 is suppressed, thereby preventing the insulation.
  • the degradation of the dielectric strength and other physical properties of the layer 300 can be suppressed, and as a result, the shortening of the life of the cable can be suppressed.
  • the inner insulating layer 310 and the outer insulating layer 330 may be formed by transversely kraft paper made of kraft pulp and impregnated with an insulating oil, respectively.
  • the insulating layer 310 and the outer insulating layer 330 may have a lower resistivity and a higher dielectric constant than the intermediate insulating layer 320.
  • the kraft paper can be prepared by washing the kraft pulp with deionized water in order to remove the organic electrolyte in the kraft pulp to obtain good dielectric loss tangent and permittivity.
  • the intermediate insulating layer 320 may be formed by transversely winding a semi-synthetic paper having kraft paper laminated on an upper surface, a lower surface, or both of the plastic film and impregnating insulating oil.
  • the intermediate insulating layer 320 formed as described above has a higher resistivity and a lower dielectric constant than the inner insulating layer 310 and the outer insulating layer 330 since the plastic film is included, and has a high resistivity of the intermediate insulating layer 320. This makes it possible to reduce the outer diameter of the cable.
  • the plastic film prevents the insulating oil impregnated in the insulating layer 300 from moving toward the outer semiconductive layer 400 due to heat generation during operation of the cable.
  • the production of deoiled voids due to the movement of the insulating oil can be suppressed, and as a result, electric field concentration and insulation breakdown by the deoiled voids can be suppressed.
  • the plastic film may be made of a polyolefin resin such as polyethylene, polypropylene, polybutylene, fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer, Preferably it may be made of a polypropylene homopolymer resin excellent in heat resistance.
  • a polyolefin resin such as polyethylene, polypropylene, polybutylene
  • fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer
  • ethylene-tetrafluoroethylene copolymer ethylene-tetrafluoroethylene copolymer
  • the semi-synthetic paper may be 40 to 70% of the total thickness of the plastic film.
  • the resistivity of the intermediate insulating layer 320 may be insufficient, so that the outer diameter of the cable may increase, whereas when the thickness of the plastic film is greater than 70%, the intermediate insulating layer 320 This may cause a problem in which a high field is applied.
  • the inner insulating layer 310 may have a thickness of 1 to 10% of the total thickness of the insulating layer 300, and the outer insulating layer 330 may have a thickness of 5 to 15% of the total thickness of the insulating layer 300.
  • the intermediate insulating layer 320 may have a thickness of 75% or more of the total thickness of the insulating layer 300.
  • the maximum impulse electric field value of the inner insulation layer 310 may be lower than the maximum impulse electric field value of the intermediate insulation layer 320. If the thickness of the inner insulation layer is increased more than necessary, the maximum impulse electric field value of the inner insulation layer 310 is larger than the maximum impulse electric field value of the intermediate insulation layer 320, and the cable outer diameter is increased. Will occur.
  • the outer insulating layer 330 preferably has a sufficient thickness than the inner insulating layer, which will be described later.
  • the internal insulating layer 310 and the external insulating layer 330 having a small resistivity are provided to prevent the high electric field from being applied directly above the conductor 100 and directly below the metal sheath layer 500.
  • the thickness of the intermediate insulating layer 320 with high resistivity to 75% or more, the cable outer diameter can be reduced.
  • the inner insulation layer 310, the intermediate insulation layer 320, and the outer insulation layer 330 constituting the insulation layer 300 each have the precisely controlled thickness, so that the insulation layer ( 300 may have a desired dielectric strength while minimizing the outer diameter of the cable.
  • the most efficient buffering of the electric field applied to the insulating layer 300 to suppress the high electric field is applied directly above the conductor 100 and directly below the metal sheath layer 500, in particular, the cable connection vulnerable to the electric field The insulation strength of a member and other physical property fall can be avoided.
  • the thickness of the outer insulation layer 330 is greater than the thickness of the inner insulation layer 310, for example, the thickness of the inner insulation layer 310 is 0.1 to 2.0 mm, the outer insulation layer The thickness of the 330 may be 1.0 to 3.0 mm, and the thickness of the intermediate insulating layer 320 may be 15 to 25 mm.
  • the heat generated during soft connection for the cable connection according to the present invention is applied to the insulating layer 300 to melt the plastic film of the semi-synthetic paper forming the intermediate insulating layer 320, the plastic from the heat
  • it is necessary to sufficiently secure the thickness of the outer insulating layer 330 and it is preferable to be formed thicker than the thickness of the inner insulating layer 310, the thickness of the outer insulating layer 330 It may be 1.5 to 30 times the thickness of the internal insulating layer 310.
  • the thickness of the semi-synthetic paper forming the intermediate insulating layer 320 may be 70 to 200 ⁇ m
  • the thickness of the kraft paper forming the inner and outer insulating layers 310, 320 may be 50 to 150 ⁇ m.
  • the thickness of the kraft paper forming the inner and outer insulating layers 310 and 320 is greater than that of the kraft paper constituting the semi-synthetic paper.
  • the thickness of the kraft paper forming the inner and outer insulating layers (310,320) is too thin, the strength is insufficient and can be damaged during the transverse winding and the number of the transverse windings to form the insulating layer of the desired thickness increases the productivity of the cable
  • the thickness of the kraft paper is excessively thick, the total volume of the gap between the kraft paper during the transverse winding of the kraft paper is reduced, which may take a long time when the insulating oil is impregnated, and the content of the insulating oil impregnated is lowered so that the desired insulation It may be difficult to implement the history.
  • the insulating oil impregnated in the insulating layer 300 is fixed without being circulated like the insulating oil used in the OF cable, a high viscosity insulating oil having a relatively high viscosity is used.
  • the insulating oil may perform a lubrication role to facilitate the movement of the insulating paper when the cable is bent, as well as the function of implementing the desired dielectric strength of the insulating layer 300.
  • the insulating oil is not particularly limited, but should not be oxidized by heat in contact with copper and aluminum constituting the conductor 100, and an impregnation temperature, for example, 100, may be used to facilitate the impregnation of the insulating layer 300. It should have a sufficiently low viscosity above ° C, whereas it should have a sufficiently high viscosity so that it does not flow down at the operating temperature of the cable, for example 80 to 90 ° C. For example, a high viscosity with a kinematic viscosity of 60 ° C or above 500 centistokes.
  • Insulating oil in particular, naphthenic insulating oil, polystyrene insulating oil, mineral oil, at least one insulating oil selected from the group consisting of alkyl benzene or polybutene synthetic oil, heavy alkylate and the like can be used.
  • the kraft paper constituting the inner insulating layer 310, the intermediate insulating layer 320 and the outer insulating layer 330 are formed to a desired thickness, respectively And semi-wound each of the semi-synthetic papers, and vacuum-dried to remove residual moisture, foreign matters, etc. of the insulating layer 300, and a predetermined time in the insulating oil heated to an impregnation temperature, for example, 100 ⁇ 120 °C under a high pressure environment After impregnation for a second time, followed by slow cooling.
  • the outer semiconducting layer 400 suppresses the uneven charge distribution between the insulating layer 300 and the metal sheath layer 500 to mitigate electric field distribution, and the insulating layer may be formed from various types of metal sheath layers 500. 300) to physically protect.
  • the outer semiconducting layer 400 may be formed by, for example, a transverse winding of carbon paper treated with conductive carbon black on insulating paper and metallization paper laminated with aluminum thin film on kraft paper, and the thickness of the outer semiconducting layer 400 is about 0.1 to 1.5 mm.
  • the metallized paper may have a plurality of perforations to facilitate the impregnation of the insulating oil of the insulating layer 300 disposed under the outer semiconducting layer 400.
  • the metal sheath layer 500 equalizes the electric field inside the insulation layer 300, prevents the electric field from going out of the cable, and provides an electrostatic shielding effect, and provides a ground fault or a ground through the ground at one end of the cable. It acts as a return of fault current in the event of a short circuit accident, promotes safety, protects the cable from shocks, pressures, etc. outside the cable, and improves the cable's orderability and flame retardancy.
  • the metal sheath layer 500 may be formed by, for example, soft psi made of a lead alloy.
  • the soft sheath has a relatively low electrical resistance, which serves as a shield for a large current, and may further improve the order, mechanical strength, and fatigue characteristics of the cable when formed as a seamless type. have.
  • the soft psi is a surface of the anti-corrosion compound, for example, in order to further improve the corrosion resistance, water resistance of the cable and the adhesion between the metal sheath layer 500 and the cable protection layer 600, Blown asphalt, or the like.
  • the cable protection layer 600 may include, for example, an inner sheath 610, a metal reinforcement layer 630, bedding layers 620 and 640 disposed above and under the metal reinforcement layer 630, and an outer sheath 650.
  • the inner sheath 610 improves the corrosion resistance, the degree of ordering of the cable, and performs a function of protecting the cable from mechanical trauma, heat, fire, ultraviolet rays, insects or animals.
  • the inner sheath 610 is not particularly limited, but may be made of polyethylene having excellent cold resistance, oil resistance, chemical resistance, and the like, or polyvinyl chloride having excellent chemical resistance, flame resistance, and the like.
  • the metal reinforcement layer 630 may serve to protect the cable from mechanical shock, and may be formed of galvanized steel tape to prevent corrosion, and the galvanized steel tape may be coated with an anticorrosion compound on its surface.
  • the bedding layers 620 and 640 disposed above and below the metal reinforcing layer 630 may function to buffer shocks, pressures, and the like from the outside, and may be formed by, for example, a nonwoven tape.
  • the outer sheath 650 has substantially the same functions and characteristics as the inner sheath 610, and fires in submarine tunnels, land tunnel sections, etc. are used in the region because they are dangerous factors that greatly affect the safety of personnel or facilities.
  • the outer sheath of the cable is applied to polyvinyl chloride excellent in flame retardant properties, the cable outer sheath of the pipe section can be applied to polyethylene with excellent mechanical strength and cold resistance.
  • the cable protection layer 600 may further include, for example, an outer serving layer 670 made of an iron sheath 660, polypropylene yarn, or the like.
  • the outer wire sheath 660, the outer serving layer 670 may perform a function of additionally protecting the cable from the sea current, reefs and the like.

Landscapes

  • Insulated Conductors (AREA)

Abstract

The present invention relates to a power cable and, particularly, to an extra-high voltage underground or submarine cable. Particularly, the present invention relates to a power cable in which an insulation layer, itself, has high dielectric strength, an electric field to be applied to the insulation layer is effectively buffered, degradation of the insulation layer can be prevented during a cable connection step such that the life of the power cable is extended and simultaneously, the thickness of the insulation layer is minimized such that an outer diameter of the cable is reduced, thereby enabling flexibility, installability, workability and the like of the cable to be improved.

Description

전력 케이블Power cable
본 발명은 전력 케이블, 특히 초고압 지중 또는 해저 케이블에 관한 것이다. 구체적으로, 본 발명은 절연층의 자체적인 절연내력이 높고, 상기 절연층에 인가되는 전계가 효과적으로 완충되며, 케이블의 운전 및 접속 공정시 절연층의 열화를 방지할 수 있어, 수명이 연장되는 동시에, 절연층의 두께를 최소화하여 케이블의 외경을 감소시킬 수 있기 때문에 케이블의 유연성, 포설성, 작업성 등이 향상될 수 있는, 전력 케이블에 관한 것이다.FIELD OF THE INVENTION The present invention relates to power cables, in particular ultra high voltage underground or submarine cables. Specifically, the present invention has a high dielectric strength of the insulating layer itself, effectively absorbs the electric field applied to the insulating layer, prevents deterioration of the insulating layer during the operation and connection of the cable, and extends its life. In order to reduce the outer diameter of the cable by minimizing the thickness of the insulating layer, the flexibility of the cable, installation, workability and the like relates to a power cable.
절연층으로서 가교 폴리에틸렌(XLPE) 등의 고분자 절연체를 이용한 전력 케이블이 사용되고 있지만, 직류 고전계에서 공간 전하가 형성되는 문제 때문에, 초고압 직류 송전 케이블은 도체 등을 감싸도록 횡권한 절연지에 절연유를 함침시켜 절연층을 형성한 지절연 케이블(Paper-insulated Cable)이 사용되고 있다.As an insulating layer, a power cable using a polymer insulator such as crosslinked polyethylene (XLPE) is used.However, due to a problem of forming a space charge in a DC high electric field, an ultra-high voltage DC power transmission cable is impregnated with insulating oil in a cross winding insulating paper so as to surround a conductor. Paper-insulated cables having an insulating layer are used.
상기 지절연 케이블에는 저점도 절연유를 순환시키는 OF(Oil Filled) 케이블, 고점도 절연유가 함침된 MIND(Mass Impregnated Non Draining) 케이블 등이 있고, 상기 OF 케이블은 절연유의 순환을 위한 유압의 전달길이에 한계가 있어 장거리 송전용 케이블에는 부적합하고, 특히 해저에는 절연유 순환 설비를 설치하기 곤란한 문제가 있어 해저 케이블에도 부적합하다.The ground insulation cable includes an OF (Oil Filled) cable for circulating low viscosity insulation oil, a Mass Impregnated Non Draining (MIND) cable impregnated with high viscosity insulation oil, and the OF cable has a limitation in the transmission length of hydraulic pressure for circulation of the insulation oil. It is not suitable for long distance transmission cables, and in particular, there is a problem that it is difficult to install insulating oil circulation facilities on the seabed, which is not suitable for submarine cables.
따라서, 장거리 직류 송전용 또는 해저용 초고압 케이블은 MIND 케이블이 흔히 사용되고 있다. Therefore, MIND cable is commonly used for long distance direct current transmission or subsea high voltage cable.
이러한 MIND 케이블은 절연층 형성시 절연지를 복수의 층으로 감싸서 형성되며, 절연지로는 예를 들어 크라프트지(Kraft paper)를 사용하거나 크라프트지와 폴리프로필렌(Polypropylene) 수지 등과 같은 열가소성 수지가 적층된 반합성지를 사용할 수 있다. The MIND cable is formed by wrapping the insulating paper in a plurality of layers when forming the insulating layer, for example, using a kraft paper (Kraft paper) or a semi-synthetic laminated laminated thermoplastic resin such as kraft paper and polypropylene resin (Polypropylene) resin Can be used.
크라프트지만을 권취하여 절연유를 함침시킨 케이블의 경우에는 케이블 작동 시(통전 시) 케이블 도체에 흐르는 전류에 의하여 반경방향으로 안쪽, 즉 내부반도전층 방향의 절연층 부분에서 반경방향으로 바깥쪽, 즉 외부반도전층 방향의 절연층 부분으로 온도차가 발생하게 된다. 따라서, 보다 고온인 내부반도전층 쪽의 절연층 부분의 절연유가 점도가 낮아지고 열팽창을 하여 외부반도전층 쪽의 절연층으로 이동하게 되며, 온도 하강 시에는 열팽창에 의하여 이동한 절연유가 점도가 높아지고 원래대로 되돌아가지 않게 되어 반경방향으로 안쪽, 즉 내부반도전층 쪽의 절연층 부분에 탈유 보이드(void)가 형성될 수 있다. 이러한 탈유 보이드는 절연유가 부재하여 전계가 집중됨으로써 이를 기점으로 부분 방전, 절연 파괴 등이 일어나 케이블의 수명이 단축될 수 있다.Cables impregnated with insulating oil impregnated with kraft only, in the radial direction of the inner layer of the insulating layer in the direction of the inner semiconducting layer by the current flowing through the cable conductors during cable operation (when energizing) The temperature difference occurs in the insulating layer portion in the semiconductive layer direction. Therefore, the insulating oil of the insulating layer portion of the inner semiconducting layer, which is higher in temperature, has a lower viscosity and is thermally expanded to move to the insulating layer of the outer semiconducting layer. The oil-free voids may be formed in the radially inner side, that is, the portion of the insulating layer toward the inner semiconducting layer. The deoiled voids may be shortened in the life of the cable due to the absence of the insulating oil and the electric field is concentrated to cause partial discharge, insulation breakdown, and the like.
하지만, 반합성지로 절연층을 형성하는 경우, 케이블 작동 시 기름에 함침되지 않는 폴리프로필렌(Polypropylene) 수지 등과 같은 열가소성 수지가 열팽창함으로써 절연유의 유동을 억제할 수 있으며, 폴리프로필렌 수지는 절연 저항이 크라프트지보다 크기 때문에 탈유 보이드가 생성되더라도 이에 분담되는 전압을 완화할 수 있다. However, when the insulating layer is formed of semi-synthetic paper, the flow of the insulating oil can be suppressed by thermal expansion of a thermoplastic resin such as a polypropylene resin which is not impregnated with oil during the operation of the cable, and the polypropylene resin has a kraft paper with an insulation resistance. Because of the larger size, even if deoiled voids are produced, the voltage sharing can be relaxed.
또한, 폴리프로필렌 수지는 절연유가 함침되지 않기 때문에 중력에 의하여 절연유가 케이블 직경 방향으로 유동하는 것을 억제할 수 있을 뿐만 아니라, 케이블 제조시의 함침 온도 또는 케이블 작동시의 작동 온도에 따라 폴리프로필렌 수지가 열팽창하여 크라프트지에 면압을 가하게 되므로 절연유의 유동을 더욱 억제할 수 있다.In addition, since the polypropylene resin is not impregnated with the insulating oil, it is possible not only to prevent the insulating oil from flowing in the radial direction of the cable due to gravity, but also according to the impregnation temperature at the time of cable manufacture or the operating temperature at the time of cable operation. Since thermal expansion expands surface pressure on kraft paper, the flow of insulating oil can be further suppressed.
한편, 일본공개특허공보 제2010-097778호, 제2013-098136호, 제2011-216292호 등에서는 상기 탈유 보이드의 생성을 억제하는 동시에 도체 직상 및 시스 직하의 전계 집중을 회피하기 위해 반합성지와 크라프트지를 혼용하고 있으나, 이러한 경우 최적의 절연 설계, 즉 절연층의 목적한 저항 구현 및 절연층 두께의 최소화가 어려워, 절연내력 저하에 의해 케이블의 수명이 단축되거나 절연층의 두께가 증가하는 문제가 있다. 나아가, 반합성지를 구성하는 폴리프로필렌 등의 수지는 열에 취약하므로, 케이블의 접속 공정 특히 연공 접속의 경우 용접시 발생하는 열에 의해 절연층이 열화되어 케이블의 수명이 추가로 단축될 수 있다.On the other hand, Japanese Laid-Open Patent Publication Nos. 2010-097778, 2013-098136, 2011-216292, etc., suppresses the formation of the deoiling voids and at the same time avoids the concentration of the electric field directly above the conductor and directly under the sheath. In this case, the optimum insulation design, that is, it is difficult to realize the desired resistance of the insulation layer and minimize the thickness of the insulation layer, and thus, there is a problem that the life of the cable is shortened or the thickness of the insulation layer is increased due to the decrease in insulation strength. . Furthermore, since the resin such as polypropylene constituting the semi-synthetic paper is susceptible to heat, the insulation layer may be deteriorated by heat generated during welding in the cable connecting process, particularly in the case of soft connection, which may further shorten the life of the cable.
그러므로, 절연층의 자체적인 절연내력이 높고, 상기 절연층에 인가되는 전계가 효과적으로 완충되며, 케이블의 운전 및 접속 공정시 절연층의 열화를 방지할 수 있어, 수명이 연장되는 동시에, 절연층의 두께를 최소화하고 케이블의 외경이 감소되어 케이블의 유연성, 포설성, 작업성 등이 향상될 수 있는, 전력 케이블이 절실히 요구되고 있는 실정이다.Therefore, the insulation strength of the insulation layer is high, the electric field applied to the insulation layer is effectively buffered, and the degradation of the insulation layer can be prevented during the operation and connection of the cable, thereby extending the life and There is an urgent need for power cables that can minimize the thickness and reduce the outer diameter of the cable, thereby improving the flexibility, installation, workability, and the like of the cable.
본 발명은 자체적인 절연내력이 높아 수명이 연장되는 동시에 절연층의 두께를 최소화하여 케이블의 외경을 감소시킬 수 있기 때문에 케이블의 유연성, 포설성, 작업성 등이 향상될 수 있는 전력 케이블을 제공하는 것을 목적으로 한다.The present invention provides a power cable that can improve the flexibility, installation, workability, etc. of the cable because the insulation strength is high and the life can be extended to minimize the thickness of the insulation layer to reduce the outer diameter of the cable. For the purpose of
또한, 본 발명은 케이블의 접속 공정시 외부의 열로부터 절연층의 열화를 억제할 수 있어 케이블의 수명을 연장시킬 수 있는 전력 케이블을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a power cable capable of suppressing deterioration of an insulating layer from external heat during a cable connecting step and extending the life of the cable.
상기 과제를 해결하기 위해, 본 발명은,In order to solve the above problems, the present invention,
도체; 상기 도체를 감싸는 내부 반도전층; 상기 내부 반도전층을 감싸고 내부 절연층, 중간 절연층 및 외부 절연층이 순차적으로 적층된 절연층; 상기 절연층을 감싸는 외부 반도전층; 상기 외부 반도전층을 감싸는 금속시스층; 및 상기 금속시스층을 감싸는 케이블보호층을 포함하고, 상기 내부 절연층 및 상기 외부 절연층은 각각 절연유가 함침된 크라프트(kraft)지로 형성되고, 상기 중간 절연층은 절연유가 함침된 반합성지로 형성되며, 상기 반합성지는 플라스틱 필름 및 상기 플라스틱 필름의 적어도 한면에 적층된 크라프트지를 포함하고, 상기 절연층의 전체 두께를 기준으로, 상기 내부 절연층의 두께는 1 내지 10%이고, 상기 중간 절연층의 두께는 75% 이상이며, 상기 외부 절연층의 두께는 5 내지 15%이고, 상기 내부 절연층 및 상기 외부 절연층의 저항율이 상기 중간 절연층의 저항율보다 작은 것을 특징으로 하는, 전력 케이블을 제공한다.Conductor; An inner semiconducting layer surrounding the conductor; An insulation layer surrounding the inner semiconducting layer and having an inner insulation layer, an intermediate insulation layer, and an outer insulation layer sequentially stacked; An outer semiconducting layer surrounding the insulating layer; A metal sheath layer surrounding the outer semiconducting layer; And a cable protection layer surrounding the metal sheath layer, wherein the inner insulating layer and the outer insulating layer are each formed of kraft paper impregnated with insulating oil, and the intermediate insulating layer is formed of a semi-synthetic paper impregnated with insulating oil. The semi-synthetic paper includes a plastic film and kraft paper laminated on at least one surface of the plastic film, and based on the total thickness of the insulating layer, the thickness of the inner insulating layer is 1 to 10%, and the thickness of the intermediate insulating layer. Is at least 75%, the thickness of the outer insulation layer is 5 to 15%, and the resistivity of the inner insulation layer and the outer insulation layer is less than the resistivity of the intermediate insulation layer, provides a power cable.
여기서, 상기 내부 절연층의 최대 임펄스 전계 값이 상기 중간 절연층의 최대 임펄스 전계 값보다 작은 것을 특징으로 하는, 전력 케이블을 제공한다.Here, the electric power cable, characterized in that the maximum impulse electric field value of the inner insulating layer is smaller than the maximum impulse electric field value of the intermediate insulating layer.
그리고, 상기 중간 절연층의 최대 임펄스 전계 값이 100 kV/mm 이하인 것을 특징으로 하는, 전력 케이블을 제공한다.And, it provides a power cable, characterized in that the maximum impulse electric field value of the intermediate insulating layer is 100 kV / mm or less.
또한, 상기 플라스틱 필름의 두께는 상기 반합성지의 전체 두께의 40 내지 70%인 것을 특징으로 하는, 전력 케이블을 제공한다.In addition, the thickness of the plastic film, characterized in that 40 to 70% of the total thickness of the semi-synthetic paper, provides a power cable.
그리고, 상기 외부 절연층의 두께가 상기 내부 절연층의 두께보다 큰 것을 특징으로 하는, 전력 케이블을 제공한다.The thickness of the outer insulation layer is greater than that of the inner insulation layer.
나아가, 상기 외부 절연층의 두께는 상기 내부 절연층의 두께의 1.25 내지 3배인 것을 특징으로 하는, 전력 케이블을 제공한다.Furthermore, the thickness of the outer insulation layer is 1.25 to 3 times the thickness of the inner insulation layer, provides a power cable.
한편, 상기 내부 절연층의 두께는 0.1 내지 2.0 mm이고, 상기 외부 절연층의 두께는 1.0 내지 3.0 mm이며, 상기 중간 절연층의 두께는 15 내지 25 mm인 것을 특징으로 하는, 전력 케이블을 제공한다.On the other hand, the thickness of the inner insulating layer is 0.1 to 2.0 mm, the thickness of the outer insulating layer is 1.0 to 3.0 mm, the thickness of the intermediate insulating layer is 15 to 25 mm, provides a power cable. .
그리고, 상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 상기 반합성지의 크라프트지의 두께보다 큰 것을 특징으로 하는, 전력 케이블을 제공한다.And, the thickness of the kraft paper of the inner insulating layer and the outer insulating layer is greater than the thickness of the kraft paper of the semi-synthetic paper, provides a power cable.
또한, 상기 반합성지의 두께는 70 내지 200 ㎛이고, 상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 50 내지 150 ㎛인 것을 특징으로 하는, 전력 케이블을 제공한다.In addition, the thickness of the semi-synthetic paper is 70 to 200 ㎛, and the thickness of the kraft paper of the inner insulating layer and the outer insulating layer is 50 to 150 ㎛, it provides a power cable.
한편, 상기 도체는 구리 또는 알루미늄으로 이루어지고, 원형 중심선 위에 평각 소선을 다층으로 얹어 구성시킨 평각도체 또는 원형 중심선 위에 원형 소선을 다층으로 얹은 후 압축한 원형압축도체인 것을 특징으로 하는, 전력 케이블을 제공한다.On the other hand, the conductor is made of copper or aluminum, it is a circular compression conductor compressed after the circular element wire in a multi-layer on the flat conductor or circular center line consisting of a multi-layered flat element wire on the circular center line, characterized in that the power cable to provide.
또한, 상기 플라스틱 필름은 폴리프로필렌 단독중합체 수지로 형성된 것을 특징으로 하는, 전력 케이블을 제공한다.In addition, the plastic film is provided with a polypropylene homopolymer resin, it provides a power cable.
그리고, 상기 절연유는 60℃의 동점도가 500 센티스트로크 이상인 고점도 절연유인 것을 특징으로 하는, 전력 케이블을 제공한다.In addition, the insulating oil provides a power cable, characterized in that the high viscosity insulating oil having a kinematic viscosity of 60 ℃ or more than 500 centistokes.
한편, 상기 케이블보호층은 내부시스, 베딩층, 금속보강층 및 외부시스를 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.On the other hand, the cable protection layer is characterized in that it comprises an inner sheath, a bedding layer, a metal reinforcing layer and an outer sheath, provides a power cable.
여기서, 상기 케이블보호층은 철선외장 및 외부 써빙층을 추가로 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.Here, the cable protective layer further provides a power cable, characterized in that it further comprises an outer wire and the outer serving layer.
본 발명에 따른 전력 케이블은 절연층의 구조 및 두께의 정밀한 제어를 통해 목적한 절연 내력 및 절연층 두께 최소화를 동시에 달성할 수 있는 우수한 효과를 나타낸다.The power cable according to the present invention exhibits an excellent effect of simultaneously achieving the desired dielectric strength and minimization of the insulation layer through precise control of the structure and thickness of the insulation layer.
또한, 본 발명에 따른 전력 케이블은 절연층의 층별 두께 조절을 통해 케이블의 접속 공정시 열에 의해 절연층이 열화되는 것을 억제함으로써 케이블의 수명을 연장시킬 수 있는 우수한 효과를 나타낸다.In addition, the power cable according to the present invention exhibits an excellent effect of extending the life of the cable by suppressing deterioration of the insulating layer by heat during the connection process of the cable by controlling the thickness of each layer of the insulating layer.
도 1은 본 발명에 따른 전력 케이블의 일실시예의 횡단면 구조를 개략적으로 도시한 것이다.Figure 1 schematically shows the cross-sectional structure of one embodiment of a power cable according to the present invention.
도 2는 도 1에 도시된 전력 케이블의 종단면 구조를 개략적으로 도시한 것이다.FIG. 2 schematically illustrates a longitudinal cross-sectional structure of the power cable shown in FIG. 1.
도 3은 본 발명에 따른 전력 케이블의 절연층 내부에서 전계가 완충되는 과정을 개략적으로 나타내는 그래프를 도시한 것이다.3 is a graph schematically illustrating a process in which an electric field is buffered inside an insulation layer of a power cable according to the present invention.
도 4는 도 1에 도시된 전력 케이블 중 중간 절연층을 형성하는 반합성지의 단면 구조를 개략적으로 도시한 것이다.FIG. 4 schematically illustrates a cross-sectional structure of a semisynthetic paper forming an intermediate insulation layer of the power cable shown in FIG. 1.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the invention to those skilled in the art. Like numbers refer to like elements throughout.
도 1 및 2는 본 발명에 따른 전력 케이블의 일실시예의 횡단면 및 종단면 구조를 개략적으로 각각 도시한 것이다.1 and 2 schematically show cross-sectional and longitudinal cross-sectional structures of one embodiment of a power cable according to the invention, respectively.
도 1 및 2에 도시된 바와 같이, 본 발명에 따른 전력 케이블은 도체(100), 상기 도체(100)를 감싸는 내부 반도전층(200), 상기 내부 반도전층(200)을 감싸는 절연층(300), 상기 절연층(300)을 감싸는 외부 반도전층(400), 상기 외부 반도전층(400)을 감싸는 금속시스층(500), 상기 금속시스층(500)을 감싸는 케이블보호층(600) 등을 포함할 수 있다.As shown in FIGS. 1 and 2, the power cable according to the present invention includes a conductor 100, an inner semiconducting layer 200 surrounding the conductor 100, and an insulating layer 300 surrounding the inner semiconducting layer 200. , An outer semiconducting layer 400 surrounding the insulating layer 300, a metal sheath layer 500 surrounding the outer semiconducting layer 400, a cable protection layer 600 surrounding the metal sheath layer 500, and the like. can do.
상기 도체(100)는 송전을 위한 전류의 이동 통로로서 전력 손실이 최소화되도록 도전율이 우수하고 케이블의 도체로 사용하기 위해 요구되는 적절한 강도와 유연성을 갖는 고순도의 구리(Cu), 알루미늄(Al) 등, 특히 신장율이 크고 도전율이 높은 연동선으로 이루어질 수 있다. 또한, 상기 도체(100)의 단면적은 케이블의 송전량, 용도 등에 따라 상이할 수 있다.The conductor 100 is a movement path for electric current for transmission, and has high electrical conductivity to minimize power loss, and has high purity copper (Cu), aluminum (Al), etc. having appropriate strength and flexibility required for use as a conductor of a cable. In particular, it may be made of a linkage line having a high elongation and a high conductivity. In addition, the cross-sectional area of the conductor 100 may be different depending on the amount of power transmission, the use of the cable.
바람직하게는, 상기 도체(100)는 원형 중심선 위에 평각 소선을 다층으로 얹어 구성시킨 평각도체 또는 원형 중심선 위에 원형 소선을 다층으로 얹은 후 압축한 원형압축도체로 이루어질 수 있다. 소위 키스톤(keystone) 방식에 의해 형성된 평각도체로 이루어진 상기 도체(100)는 도체의 점적율이 높아 케이블의 외경을 축소할 수 있는 동시에 각 소선의 단면적을 크게 성형하는 것이 가능하므로 전체 소선의 수를 줄일 수 있어 경제적이다.Preferably, the conductor 100 may be composed of a circular compression conductor compressed by placing a flat element wire in multiple layers on a flat conductor or a circular center line composed of multiple flat angle wires on a circular center line. Since the conductor 100 made of a flat conductor formed by a so-called keystone method has a high conductor area ratio, it is possible to reduce the outer diameter of the cable and to form a large cross-sectional area of each element wire. It is economical to reduce.
상기 내부 반도전층(200)은 상기 도체(100) 표면의 불균일한 전하 분포를 억제하고 케이블 내부로부터의 전계 분포를 완화시키며 상기 도체(100)와 상기 절연층(300) 사이의 틈을 없애 부분 방전, 절연 파괴 등을 억제하는 기능을 수행한다.The inner semiconducting layer 200 suppresses uneven charge distribution on the surface of the conductor 100, alleviates electric field distribution from inside the cable, and removes a gap between the conductor 100 and the insulating layer 300 to partially discharge To suppress dielectric breakdown, etc.
상기 내부 반도전층(200)은 예를 들어 절연지에 도전성 카본 블랙을 처리한 카본지의 횡권에 의해 형성될 수 있고, 상기 내부 반도전층(200)의 두께는 약 0.2 내지 1.5 mm일 수 있다.The inner semiconducting layer 200 may be formed by, for example, a transverse winding of carbon paper treated with conductive carbon black on insulating paper, and the thickness of the inner semiconducting layer 200 may be about 0.2 to 1.5 mm.
상기 절연층(300)은 내부 절연층(310), 중간 절연층(320) 및 외부 절연층(330)을 포함하고, 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 상기 중간 절연층(320)에 비해 저항율이 낮은 소재로 이루어지며, 이로써 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 각각 상기 케이블의 운용시 상기 도체(100)에 흐르는 전류에 의해 형성되는 높은 전계가 상기 도체(100) 직상 또는 상기 금속시스층(500) 직하에 인가되는 것을 억제하는 전계 완충 작용을 하고, 나아가, 상기 중간 절연층(320)의 열화를 억제하기 위한 작용을 한다.The insulation layer 300 includes an inner insulation layer 310, an intermediate insulation layer 320, and an outer insulation layer 330, and the inner insulation layer 310 and the outer insulation layer 330 are the intermediate insulation. It is made of a material having a lower resistivity than the layer 320, so that the inner insulating layer 310 and the outer insulating layer 330 are each formed by a current flowing through the conductor 100 when the cable is operated. An electric field buffering function for suppressing application of an electric field directly above the conductor 100 or directly below the metal sheath layer 500 is performed, and further, a function for suppressing deterioration of the intermediate insulating layer 320.
도 3은 본 발명에 따른 전력 케이블의 절연층 내부에서 전계가 완충되는 과정을 개략적으로 나타내는 그래프를 도시한 것이다. 도 3에 나타난 바와 같이, 상대적으로 저항율이 낮은 내부 절연층(310) 및 외부 절연층(330)에서 전계가 완충됨으로써 상기 도체(100) 직상 및 상기 금속 시스층(500) 직하에 높은 전계가 인가되는 것을 효과적으로 억제할 수 있을 뿐만 아니라, 상기 중간 절연층(320)에 인가되는 최대 임펄스 전계를 100 kV/mm 이하로 제어함으로써 상기 중간 절연층(320)의 열화를 억제할 수 있다.3 is a graph schematically illustrating a process in which an electric field is buffered inside an insulation layer of a power cable according to the present invention. As shown in FIG. 3, a high electric field is applied directly on the conductor 100 and directly under the metal sheath layer 500 by buffering an electric field in the internal insulating layer 310 and the external insulating layer 330 having a relatively low resistivity. In addition, the deterioration of the intermediate insulating layer 320 can be suppressed by controlling the maximum impulse electric field applied to the intermediate insulating layer 320 to 100 kV / mm or less.
여기서, 상기 임펄스 전계란 케이블에 임펄스 전압이 인가되었을 때 케이블에 걸리는 전계를 의미한다. 또한, 내부 절연층(310), 중간 절연층(320) 및 외부 절연층(330) 각각의 내측 전계(Ei) 및 외측 전계(Eo)는 아래 수학식 1에 의해 계산할 수 있다.Here, the impulse electric field means an electric field applied to the cable when an impulse voltage is applied to the cable. In addition, the inner electric field E i and the outer electric field E o of each of the inner insulation layer 310, the intermediate insulation layer 320, and the outer insulation layer 330 may be calculated by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2016001535-appb-I000001
Figure PCTKR2016001535-appb-I000001
Figure PCTKR2016001535-appb-I000002
Figure PCTKR2016001535-appb-I000002
상기 수학식 1에서,In Equation 1,
Uo는 케이블의 정격 전압이고,U o is the rated voltage of the cable,
Dio는 각 절연층의 외경이고,D io is the outer diameter of each insulating layer,
dii는 각 절연층의 내경이다.d ii is the internal diameter of each insulating layer.
따라서, 도 3에 도시된 바와 같이, 내부 절연층의 최대 임펄스 전계값이 중간 절연층의 최대 임펄스 전계값보다 작도록 설계함으로써 고전계가 도체 직상, 시스 직하에 작용하지 않도록 하며, 상기 중간 절연층(320)에 인가되는 최대 임펄스 전계는 상기 중간 절연층(320)의 내측 전계(Ei)이고, 상기 내측 전계(Ei)가 100 kV/mm 이하로 제어됨으로써 상기 중간 절연층(320)의 열화를 억제할 수 있다.Therefore, as shown in FIG. 3, the maximum impulse electric field value of the internal insulation layer is designed to be smaller than the maximum impulse electric field value of the intermediate insulation layer so that the high electric field does not act directly on the conductor or directly under the sheath. The maximum impulse electric field applied to 320 is an inner electric field E i of the intermediate insulating layer 320, and the inner electric field E i is controlled to be 100 kV / mm or less, thereby deteriorating the intermediate insulating layer 320. Can be suppressed.
따라서, 상기 내부 절연층(310) 및 상기 외부 절연층(330), 특히 전계에 취약한 케이블 접속부재 등에 고전계가 인가되는 것을 억제하고, 나아가 상기 중간 절연층(320)의 열화를 억제하여, 상기 절연층(300)의 절연 내력, 기타 물성이 저하되는 것을 억제할 수 있고, 결과적으로 케이블의 수명 단축을 억제할 수 있다.Therefore, the high electric field is suppressed from being applied to the inner insulation layer 310 and the outer insulation layer 330, particularly, a cable connection member vulnerable to an electric field, and further, the degradation of the intermediate insulation layer 320 is suppressed, thereby preventing the insulation. The degradation of the dielectric strength and other physical properties of the layer 300 can be suppressed, and as a result, the shortening of the life of the cable can be suppressed.
본 발명의 실시예에 따르면, 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 각각 크라프트 펄프를 원료로 하는 크라프트(kraft)지를 횡권하고 절연유를 함침시킴으로써 형성할 수 있고, 이로써 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 중간 절연층(320)에 비해 낮은 저항율 및 높은 유전율을 가질 수 있다. 상기 크라프트지는 크라프트 펄프 중의 유기 전해질을 제거하여 우수한 유전정접 및 유전율을 얻기 위해 크라프트 펄프를 탈 이온수로 수세처리함으로써 제조될 수 있다.According to an embodiment of the present invention, the inner insulating layer 310 and the outer insulating layer 330 may be formed by transversely kraft paper made of kraft pulp and impregnated with an insulating oil, respectively. The insulating layer 310 and the outer insulating layer 330 may have a lower resistivity and a higher dielectric constant than the intermediate insulating layer 320. The kraft paper can be prepared by washing the kraft pulp with deionized water in order to remove the organic electrolyte in the kraft pulp to obtain good dielectric loss tangent and permittivity.
상기 중간 절연층(320)은 플라스틱 필름의 상부면, 하부면, 또는 이들 모두에 크라프트지가 적층된 반합성지를 횡권하고 절연유를 함침시킴으로써 형성할 수 있다. 이렇게 형성된 중간 절연층(320)은 플라스틱 필름을 포함하고 있으므로 상기 내부 절연층(310) 및 상기 외부 절연층(330)에 비해 높은 저항율 및 낮은 유전율을 갖고, 상기 중간 절연층(320)의 높은 저항율에 의해 상기 케이블의 외경을 축소하는 것이 가능해진다. The intermediate insulating layer 320 may be formed by transversely winding a semi-synthetic paper having kraft paper laminated on an upper surface, a lower surface, or both of the plastic film and impregnating insulating oil. The intermediate insulating layer 320 formed as described above has a higher resistivity and a lower dielectric constant than the inner insulating layer 310 and the outer insulating layer 330 since the plastic film is included, and has a high resistivity of the intermediate insulating layer 320. This makes it possible to reduce the outer diameter of the cable.
상기 중간 절연층(320)을 형성하는 반합성지에서 상기 플라스틱 필름은 상기 케이블의 운용시 발열에 의해 상기 절연층(300)에 함침된 절연유가 상기 외부 반도전층(400) 쪽으로 이동하는 것을 억제하여 상기 절연유의 이동에 의한 탈유 보이드의 생성을 억제하고, 결과적으로 상기 탈유 보이드에 의한 전계 집중 및 절연 파괴를 억제할 수 있다. 여기서, 상기 플라스틱 필름은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 등의 폴리올레핀계 수지나 테트라플루오로에틸렌-헥사플루오로 폴리프로필렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체 등의 불소 수지로 이루어질 수 있고, 바람직하게는 내열성이 우수한 폴리프로필렌 단독중합체 수지로 이루어질 수 있다.In the semi-synthetic paper forming the intermediate insulating layer 320, the plastic film prevents the insulating oil impregnated in the insulating layer 300 from moving toward the outer semiconductive layer 400 due to heat generation during operation of the cable. The production of deoiled voids due to the movement of the insulating oil can be suppressed, and as a result, electric field concentration and insulation breakdown by the deoiled voids can be suppressed. Here, the plastic film may be made of a polyolefin resin such as polyethylene, polypropylene, polybutylene, fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer, Preferably it may be made of a polypropylene homopolymer resin excellent in heat resistance.
또한, 상기 반합성지는 상기 플라스틱 필름의 두께가 전체 두께의 40 내지 70%일 수 있다. 상기 플라스틱 필름의 두께가 상기 반합성지 전체 두께의 40% 미만인 경우 상기 중간 절연층(320)의 저항율이 불충분하여 케이블의 외경이 증가할 수 있는 반면, 70% 초과인 경우 상기 중간 절연층(320)에 고전계가 인가되는 문제가 유발될 수 있다.In addition, the semi-synthetic paper may be 40 to 70% of the total thickness of the plastic film. When the thickness of the plastic film is less than 40% of the total thickness of the semi-synthetic paper, the resistivity of the intermediate insulating layer 320 may be insufficient, so that the outer diameter of the cable may increase, whereas when the thickness of the plastic film is greater than 70%, the intermediate insulating layer 320 This may cause a problem in which a high field is applied.
상기 내부 절연층(310)은 상기 절연층(300) 전체 두께의 1 내지 10%의 두께를 가질 수 있고, 상기 외부 절연층(330)은 상기 절연층(300) 전체 두께의 5 내지 15%의 두께를 가질 수 있고, 상기 중간 절연층(320)은 상기 절연층(300) 전체 두께의 75% 이상의 두께를 가질 수 있다. 이로써, 상기 내부 절연층(310)의 최대 임펄스 전계 값이 상기 중간 절연층(320)의 최대 임펄스 전계 값보다 낮을 수 있다. 만약 내부 절연층의 두께가 필요 이상으로 증가될 경우, 내부 절연층(310)의 최대 임펄스 전계 값이 상기 중간 절연층(320)의 최대 임펄스 전계 값보다 커지게 되며, 케이블 외경이 증가되는 문제점이 발생하게 된다. 그리고, 외부 절연층(330)은 내부 절연층보다 두께를 충분히 확보하는 것이 바람직한데, 이에 대해서는 후술한다.The inner insulating layer 310 may have a thickness of 1 to 10% of the total thickness of the insulating layer 300, and the outer insulating layer 330 may have a thickness of 5 to 15% of the total thickness of the insulating layer 300. The intermediate insulating layer 320 may have a thickness of 75% or more of the total thickness of the insulating layer 300. As a result, the maximum impulse electric field value of the inner insulation layer 310 may be lower than the maximum impulse electric field value of the intermediate insulation layer 320. If the thickness of the inner insulation layer is increased more than necessary, the maximum impulse electric field value of the inner insulation layer 310 is larger than the maximum impulse electric field value of the intermediate insulation layer 320, and the cable outer diameter is increased. Will occur. In addition, the outer insulating layer 330 preferably has a sufficient thickness than the inner insulating layer, which will be described later.
그리고, 본 발명에서는 저항율이 작은 내부 절연층(310)과 외부 절연층(330)을 구비함으로써, 고전계가 상기 도체(100)의 직상 및 상기 금속시스층(500)의 직하에 인가되는 것을 억제하면서도, 저항율이 높은 중간 절연층(320)의 두께를 75% 이상으로 설계함으로써, 케이블 외경을 축소하는 것이 가능해진다. In the present invention, the internal insulating layer 310 and the external insulating layer 330 having a small resistivity are provided to prevent the high electric field from being applied directly above the conductor 100 and directly below the metal sheath layer 500. By designing the thickness of the intermediate insulating layer 320 with high resistivity to 75% or more, the cable outer diameter can be reduced.
이와 같이, 상기 절연층(300)을 구성하는 상기 내부 절연층(310), 상기 중간 절연층(320) 및 상기 외부 절연층(330)이 각각 정밀하게 제어된 상기 두께를 가짐으로써 상기 절연층(300)이 목적한 절연 내력을 가질 수 있는 동시에 케이블의 외경이 최소화될 수 있다. 또한, 상기 절연층(300)에 인가되는 전계를 가장 효율적으로 완충시켜 고전계가 상기 도체(100)의 직상 및 상기 금속시스층(500)의 직하에 인가되는 것을 억제하여, 특히 전계에 취약한 케이블 접속부재의 절연 내력, 기타 물성 저하를 회피할 수 있다.As such, the inner insulation layer 310, the intermediate insulation layer 320, and the outer insulation layer 330 constituting the insulation layer 300 each have the precisely controlled thickness, so that the insulation layer ( 300 may have a desired dielectric strength while minimizing the outer diameter of the cable. In addition, the most efficient buffering of the electric field applied to the insulating layer 300 to suppress the high electric field is applied directly above the conductor 100 and directly below the metal sheath layer 500, in particular, the cable connection vulnerable to the electric field The insulation strength of a member and other physical property fall can be avoided.
바람직하게는, 상기 외부 절연층(330)의 두께가 상기 내부 절연층(310)의 두께보다 크고, 예를 들어, 상기 내부 절연층(310)의 두께는 0.1 내지 2.0 mm이고, 상기 외부 절연층(330)의 두께는 1.0 내지 3.0 mm이며, 상기 중간 절연층(320)의 두께는 15 내지 25 mm일 수 있다. Preferably, the thickness of the outer insulation layer 330 is greater than the thickness of the inner insulation layer 310, for example, the thickness of the inner insulation layer 310 is 0.1 to 2.0 mm, the outer insulation layer The thickness of the 330 may be 1.0 to 3.0 mm, and the thickness of the intermediate insulating layer 320 may be 15 to 25 mm.
본 발명에 따른 케이블의 접속을 위한 연공 접속시 발생하는 열이 상기 절연층(300)에 인가되어 상기 중간 절연층(320)을 형성하는 반합성지의 플라스틱 필름이 녹을 수 있기 때문에, 상기 열로부터 상기 플라스틱 필름을 보호하기 위해 상기 외부 절연층(330)의 두께를 충분히 확보하는 것이 필요하고, 상기 내부 절연층(310)의 두께에 비해 두껍게 형성되는 것이 바람직하며, 상기 외부 절연층(330)의 두께는 상기 내부 절연층(310) 두께의 1.5 내지 30배일 수 있다.Since the heat generated during soft connection for the cable connection according to the present invention is applied to the insulating layer 300 to melt the plastic film of the semi-synthetic paper forming the intermediate insulating layer 320, the plastic from the heat In order to protect the film, it is necessary to sufficiently secure the thickness of the outer insulating layer 330, and it is preferable to be formed thicker than the thickness of the inner insulating layer 310, the thickness of the outer insulating layer 330 It may be 1.5 to 30 times the thickness of the internal insulating layer 310.
또한, 상기 중간 절연층(320)을 형성하는 반합성지의 두께는 70 내지 200 ㎛이고, 상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께는 50 내지 150 ㎛일 수 있다.In addition, the thickness of the semi-synthetic paper forming the intermediate insulating layer 320 may be 70 to 200 ㎛, the thickness of the kraft paper forming the inner and outer insulating layers 310, 320 may be 50 to 150 ㎛.
그리고, 상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께는 상기 반합성지를 구성하는 크라프트지의 두께보다 크도록 형성한다.The thickness of the kraft paper forming the inner and outer insulating layers 310 and 320 is greater than that of the kraft paper constituting the semi-synthetic paper.
상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께가 과도하게 얇은 경우 강도가 불충분하여 횡권시 파손될 수 있고 목적한 두께의 절연층을 형성하기 위한 횡권의 횟수가 증가하게 되어 케이블의 생산성이 저하될 수 있는 반면, 상기 크라프트지의 두께가 과도하게 두꺼운 경우 상기 크라프트지의 횡권시 크라프트지 사이의 간극의 전체 체적이 감소하여 절연유 함침시 장시간이 소요될 수 있고 함침되는 절연유의 함량이 저하되어 목적한 절연 내력을 구현하기 곤란할 수 있다.If the thickness of the kraft paper forming the inner and outer insulating layers (310,320) is too thin, the strength is insufficient and can be damaged during the transverse winding and the number of the transverse windings to form the insulating layer of the desired thickness increases the productivity of the cable On the other hand, if the thickness of the kraft paper is excessively thick, the total volume of the gap between the kraft paper during the transverse winding of the kraft paper is reduced, which may take a long time when the insulating oil is impregnated, and the content of the insulating oil impregnated is lowered so that the desired insulation It may be difficult to implement the history.
상기 절연층(300)에 함침되는 절연유는 종래 OF 케이블에 사용되는 절연유와 같이 순환되지 않고 고정되므로 상대적으로 높은 점도를 갖는 고점도 절연유를 사용한다. 상기 절연유는 상기 절연층(300)의 목적한 절연 내력을 구현하는 작용 뿐만 아니라 케이블의 굴곡시 절연지의 운동이 용이하도록 윤활 역할을 함께 수행할 수 있다.Since the insulating oil impregnated in the insulating layer 300 is fixed without being circulated like the insulating oil used in the OF cable, a high viscosity insulating oil having a relatively high viscosity is used. The insulating oil may perform a lubrication role to facilitate the movement of the insulating paper when the cable is bent, as well as the function of implementing the desired dielectric strength of the insulating layer 300.
상기 절연유는 특별히 제한되지 않지만 상기 도체(100)를 구성하는 구리 및 알루미늄과 접촉하여 열에 의해 산화되지 않아야 하고, 상기 절연층(300)에 대한 함침이 용이하게 하기 위해 함침온도, 예를 들어, 100℃ 이상에서 충분히 낮은 점도를 가져야 하는 반면 케이블의 운전시 운전온도, 예를 들어, 80~90℃에서는 흘러내리지 않도록 충분히 높은 점도를 가져야 하고, 예를 들어, 60℃의 동점도가 500 센티스트로크 이상인 고점도 절연유, 특히 나프텐계 절연유, 폴리스틸렌계 절연유, 광유, 알킬 벤젠이나 폴리부텐계 합성유, 중질 알킬레이트 등으로 이루어진 그룹으로부터 선택된 1종 이상의 절연유를 사용할 수 있다.The insulating oil is not particularly limited, but should not be oxidized by heat in contact with copper and aluminum constituting the conductor 100, and an impregnation temperature, for example, 100, may be used to facilitate the impregnation of the insulating layer 300. It should have a sufficiently low viscosity above ° C, whereas it should have a sufficiently high viscosity so that it does not flow down at the operating temperature of the cable, for example 80 to 90 ° C. For example, a high viscosity with a kinematic viscosity of 60 ° C or above 500 centistokes. Insulating oil, in particular, naphthenic insulating oil, polystyrene insulating oil, mineral oil, at least one insulating oil selected from the group consisting of alkyl benzene or polybutene synthetic oil, heavy alkylate and the like can be used.
상기 절연층(300)에 절연유를 함침시키는 공정은 상기 내부 절연층(310), 상기 중간 절연층(320) 및 상기 외부 절연층(330)이 각각 목적한 두께로 형성되도록 이들을 구성하는 상기 크라프트지 및 상기 반합성지를 각각 복수회 횡권하고, 진공 건조시켜 상기 절연층(300)의 잔존 수분, 이물질 등을 제거하며, 고압 환경 하에서 함침온도, 예를 들어, 100~120℃로 가열된 절연유에 일정 시간 동안 함침시킨 후, 서서히 냉각시킴으로써 수행될 수 있다.In the process of impregnating the insulating layer 300 with the insulating oil, the kraft paper constituting the inner insulating layer 310, the intermediate insulating layer 320 and the outer insulating layer 330 are formed to a desired thickness, respectively And semi-wound each of the semi-synthetic papers, and vacuum-dried to remove residual moisture, foreign matters, etc. of the insulating layer 300, and a predetermined time in the insulating oil heated to an impregnation temperature, for example, 100 ~ 120 ℃ under a high pressure environment After impregnation for a second time, followed by slow cooling.
상기 외부 반도전층(400)은 상기 절연층(300)과 상기 금속시스층(500) 사이의 불균일한 전하 분포를 억제하여 전계분포를 완화시키며 다양한 형태의 금속시스층(500)으로부터 상기 절연층(300)을 물리적으로 보호하는 기능을 수행한다.The outer semiconducting layer 400 suppresses the uneven charge distribution between the insulating layer 300 and the metal sheath layer 500 to mitigate electric field distribution, and the insulating layer may be formed from various types of metal sheath layers 500. 300) to physically protect.
상기 외부 반도전층(400)은 예를 들어 절연지에 도전성 카본 블랙을 처리한 카본지 및 크라프트지에 알루미늄 박막을 적층한 금속화지의 횡권에 의해 형성될 수 있고, 상기 외부 반도전층(400)의 두께는 약 0.1 내지 1.5 mm일 수 있다. 특히, 상기 금속화지는 상기 외부 반도전층(400) 아래에 배치된 상기 절연층(300)의 절연유 함침이 용이하도록 복수개의 천공이 존재할 수 있다.The outer semiconducting layer 400 may be formed by, for example, a transverse winding of carbon paper treated with conductive carbon black on insulating paper and metallization paper laminated with aluminum thin film on kraft paper, and the thickness of the outer semiconducting layer 400 is about 0.1 to 1.5 mm. In particular, the metallized paper may have a plurality of perforations to facilitate the impregnation of the insulating oil of the insulating layer 300 disposed under the outer semiconducting layer 400.
상기 금속시스층(500)은 상기 절연층(300) 내부의 전계를 균일화시키고, 전계가 케이블 외부로 나가지 못하게 하여 정전 차폐 효과를 얻을 수 있도록 하며, 케이블 일말단에서의 접지를 통해 케이블의 지락 또는 단락 사고 발생시 고장전류의 귀로로서 작용하여 안전을 도모하고, 케이블 외부의 충격, 압력 등으로부터 케이블을 보호하고, 케이블의 차수성, 난연성 등을 향상시키는 작용을 한다.The metal sheath layer 500 equalizes the electric field inside the insulation layer 300, prevents the electric field from going out of the cable, and provides an electrostatic shielding effect, and provides a ground fault or a ground through the ground at one end of the cable. It acts as a return of fault current in the event of a short circuit accident, promotes safety, protects the cable from shocks, pressures, etc. outside the cable, and improves the cable's orderability and flame retardancy.
상기 금속시스층(500)은 예를 들어 합금연(lead alloy)으로 이루어진 연피시스에 의해 형성될 수 있다. 상기 금속시스층(500)으로서 상기 연피시스는 전기저항이 비교적 낮아 대전류용 차폐체 기능을 겸하고, 심리스 타입(seamless type)으로 형성시 케이블의 차수성, 기계적 강도, 피로특성 등을 추가로 향상시킬 수 있다.The metal sheath layer 500 may be formed by, for example, soft psi made of a lead alloy. As the metal sheath layer 500, the soft sheath has a relatively low electrical resistance, which serves as a shield for a large current, and may further improve the order, mechanical strength, and fatigue characteristics of the cable when formed as a seamless type. have.
또한, 상기 연피시스는 케이블의 내식성, 차수성 등을 추가로 향상시키고 상기 금속시스층(500)과 상기 케이블보호층(600) 사이의 접착력을 향상시키기 위해 표면이 부식 방지 컴파운드, 예를 들어, 블로운 아스팔트 등으로 도포될 수 있다.In addition, the soft psi is a surface of the anti-corrosion compound, for example, in order to further improve the corrosion resistance, water resistance of the cable and the adhesion between the metal sheath layer 500 and the cable protection layer 600, Blown asphalt, or the like.
상기 케이블보호층(600)은 예를 들어 내부시스(610), 금속보강층(630), 상기 금속보강층(630) 상하에 배치된 베딩층(620,640) 및 외부시스(650)를 포함할 수 있다. 여기서, 상기 내부시스(610)는 케이블의 내식성, 차수성 등을 향상시키고, 기계적 외상, 열, 화재, 자외선, 곤충이나 동물로부터 케이블을 보호하는 기능을 수행한다. 상기 내부시스(610)는 특별히 제한되지 않지만 내한성, 내유성, 내약품성 등이 우수한 폴리에틸렌이나, 내약품성, 난연성 등이 우수한 폴리염화비닐 등으로 이루어질 수 있다.The cable protection layer 600 may include, for example, an inner sheath 610, a metal reinforcement layer 630, bedding layers 620 and 640 disposed above and under the metal reinforcement layer 630, and an outer sheath 650. Here, the inner sheath 610 improves the corrosion resistance, the degree of ordering of the cable, and performs a function of protecting the cable from mechanical trauma, heat, fire, ultraviolet rays, insects or animals. The inner sheath 610 is not particularly limited, but may be made of polyethylene having excellent cold resistance, oil resistance, chemical resistance, and the like, or polyvinyl chloride having excellent chemical resistance, flame resistance, and the like.
상기 금속보강층(630)은 기계적 충격으로부터 케이블을 보호하는 기능을 수행하고, 부식을 방지하기 위해 아연 도금 강철 테이프로 형성될 수 있고, 상기 아연 도금 강철 테이프는 표면에 부식 방지 컴파운드가 도포될 수 있다. 또한, 상기 금속보강층(630) 상하에 배치된 베딩층(620,640)은 외부로부터의 충격, 압력 등을 완충하는 기능을 수행하고, 예를 들어, 부직포 테이프에 의해 형성될 수 있다.The metal reinforcement layer 630 may serve to protect the cable from mechanical shock, and may be formed of galvanized steel tape to prevent corrosion, and the galvanized steel tape may be coated with an anticorrosion compound on its surface. . In addition, the bedding layers 620 and 640 disposed above and below the metal reinforcing layer 630 may function to buffer shocks, pressures, and the like from the outside, and may be formed by, for example, a nonwoven tape.
상기 외부시스(650)는 상기 내부시스(610)와 실질적으로 동일한 기능 및 특성을 갖고, 해저터널, 육상터널구간 등에서의 화재는 인력 또는 설비 안전에 큰 영향을 주는 위험요소이므로 해당 지역에서 사용되는 케이블의 외부시스는 난연 특성이 우수한 폴리염화비닐을 적용하고, 관로구간의 케이블 외부시스는 기계적 강도, 내한성이 우수한 폴리에틸렌을 적용할 수 있다.The outer sheath 650 has substantially the same functions and characteristics as the inner sheath 610, and fires in submarine tunnels, land tunnel sections, etc. are used in the region because they are dangerous factors that greatly affect the safety of personnel or facilities. The outer sheath of the cable is applied to polyvinyl chloride excellent in flame retardant properties, the cable outer sheath of the pipe section can be applied to polyethylene with excellent mechanical strength and cold resistance.
또한, 상기 케이블이 해저케이블인 경우 상기 케이블보호층(600)은 예를 들어 철선외장(660), 폴리프로필렌 얀 등으로 이루어진 외부 써빙층(670) 등을 추가로 포함할 수 있다. 상기 철선외장(660), 외부 써빙층(670) 등은 해저의 해류, 암초 등으로부터 케이블을 추가적으로 보호하는 기능을 수행할 수 있다.In addition, when the cable is a submarine cable, the cable protection layer 600 may further include, for example, an outer serving layer 670 made of an iron sheath 660, polypropylene yarn, or the like. The outer wire sheath 660, the outer serving layer 670 may perform a function of additionally protecting the cable from the sea current, reefs and the like.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the present specification has been described with reference to preferred embodiments of the invention, those skilled in the art may variously modify and change the invention without departing from the spirit and scope of the invention as set forth in the claims set forth below. Could be done. Therefore, it should be seen that all modifications included in the technical scope of the present invention are basically included in the scope of the claims of the present invention.

Claims (14)

  1. 도체;Conductor;
    상기 도체를 감싸는 내부 반도전층;An inner semiconducting layer surrounding the conductor;
    상기 내부 반도전층을 감싸고 내부 절연층, 중간 절연층 및 외부 절연층이 순차적으로 적층된 절연층;An insulation layer surrounding the inner semiconducting layer and having an inner insulation layer, an intermediate insulation layer, and an outer insulation layer sequentially stacked;
    상기 절연층을 감싸는 외부 반도전층;An outer semiconducting layer surrounding the insulating layer;
    상기 외부 반도전층을 감싸는 금속시스층; 및A metal sheath layer surrounding the outer semiconducting layer; And
    상기 금속시스층을 감싸는 케이블보호층을 포함하고,A cable protective layer surrounding the metal sheath layer,
    상기 내부 절연층 및 상기 외부 절연층은 각각 절연유가 함침된 크라프트(kraft)지로 형성되고, 상기 중간 절연층은 절연유가 함침된 반합성지로 형성되며, 상기 반합성지는 플라스틱 필름 및 상기 플라스틱 필름의 적어도 한면에 적층된 크라프트지를 포함하고,The inner insulating layer and the outer insulating layer are each formed of kraft paper impregnated with insulating oil, and the intermediate insulating layer is formed of semi-synthetic paper impregnated with insulating oil, and the semi-synthetic paper is formed on at least one surface of the plastic film and the plastic film. Including laminated kraft paper,
    상기 절연층의 전체 두께를 기준으로, 상기 내부 절연층의 두께는 1 내지 10%이고, 상기 중간 절연층의 두께는 75% 이상이며, 상기 외부 절연층의 두께는 5 내지 15%이고,Based on the total thickness of the insulating layer, the thickness of the inner insulating layer is 1 to 10%, the thickness of the intermediate insulating layer is 75% or more, the thickness of the outer insulating layer is 5 to 15%,
    상기 내부 절연층 및 상기 외부 절연층의 저항율이 상기 중간 절연층의 저항율보다 작은 것을 특징으로 하는, 전력 케이블.And the resistivity of the inner insulation layer and the outer insulation layer is smaller than that of the intermediate insulation layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 외부 절연층의 두께가 상기 내부 절연층의 두께보다 큰 것을 특징으로 하는, 전력 케이블.And the thickness of the outer insulation layer is greater than the thickness of the inner insulation layer.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 내부 절연층의 두께는 0.1 내지 2.0 mm이고, 상기 외부 절연층의 두께는 1.0 내지 3.0 mm이며, 상기 중간 절연층의 두께는 15 내지 25 mm인 것을 특징으로 하는, 전력 케이블.The thickness of the inner insulation layer is 0.1 to 2.0 mm, the thickness of the outer insulation layer is 1.0 to 3.0 mm, the thickness of the intermediate insulation layer is 15 to 25 mm, power cable.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 외부 절연층의 두께는 상기 내부 절연층의 두께의 1.5 내지 30배인 것을 특징으로 하는, 전력 케이블.Wherein the thickness of the outer insulation layer is 1.5 to 30 times the thickness of the inner insulation layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 상기 반합성지의 크라프트지의 두께보다 큰 것을 특징으로 하는, 전력 케이블.And the thickness of the kraft paper of the inner insulation layer and the outer insulation layer is larger than the thickness of the kraft paper of the semi-synthetic paper.
  6. 제1항에 있어서,The method of claim 1,
    상기 내부 절연층의 최대 임펄스 전계 값이 상기 중간 절연층의 최대 임펄스 전계 값보다 작은 것을 특징으로 하는, 전력 케이블.The maximum impulse electric field value of the inner insulation layer is less than the maximum impulse electric field value of the intermediate insulation layer.
  7. 제1항에 있어서,The method of claim 1,
    상기 중간 절연층의 최대 임펄스 전계 값이 100 kV/mm 이하인 것을 특징으로 하는, 전력 케이블.And the maximum impulse electric field value of the intermediate insulation layer is 100 kV / mm or less.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 플라스틱 필름의 두께는 상기 반합성지의 전체 두께의 40 내지 70%인 것을 특징으로 하는, 전력 케이블.Wherein the thickness of the plastic film is 40 to 70% of the total thickness of the semisynthetic paper.
  9. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 반합성지의 두께는 70 내지 200 ㎛이고, 상기 내부 절연층 및 상기 외부 절연층의 크라프트지의 두께는 50 내지 150 ㎛인 것을 특징으로 하는, 전력 케이블.The thickness of the semi-synthetic paper is 70 to 200 ㎛, the thickness of the kraft paper of the inner insulating layer and the outer insulating layer is 50 to 150 ㎛, power cable.
  10. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 도체는 연동선 또는 알루미늄으로 이루어지고, 원형 중심선 위에 평각 소선을 다층으로 얹어 구성시킨 평각도체 또는 원형 중심선 위에 원형 소선을 다층으로 얹은 후 압축한 원형압축도체인 것으로 특징으로 하는, 전력 케이블.The conductor is made of an interlocking line or aluminum, characterized in that the circular compression conductor compressed after the circular element wire in a multi-layer on a flat conductor or circular center line consisting of a multi-layered flat element wire on a circular center line, characterized in that the compressed.
  11. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 플라스틱 필름은 폴리프로필렌 단독중합체 수지로 형성된 것을 특징으로 하는, 전력 케이블.Wherein said plastic film is formed of a polypropylene homopolymer resin.
  12. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 절연유는 60℃의 동점도가 500 센티스트로크 이상인 고점도 절연유인 것을 특징으로 하는, 전력 케이블.Wherein said insulating oil is a high viscosity insulating oil having a kinematic viscosity of 60 [deg.] C. or more at 500 centistroke or more.
  13. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 케이블보호층은 내부시스, 베딩층, 금속보강층 및 외부시스를 포함하는 것을 특징으로 하는, 전력 케이블.Wherein said cable protection layer comprises an inner sheath, a bedding layer, a metal reinforcement layer and an outer sheath.
  14. 제13항에 있어서,The method of claim 13,
    상기 케이블보호층은 철선외장 및 외부 써빙층을 추가로 포함하는 것을 특징으로 하는, 전력 케이블.The cable protective layer is characterized in that it further comprises a wire sheath and an outer serving layer, power cable.
PCT/KR2016/001535 2015-02-17 2016-02-16 Power cable WO2016133332A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16752662.3A EP3261098B1 (en) 2015-02-17 2016-02-16 Power cable
CN201680009512.1A CN107408423B (en) 2015-02-17 2016-02-16 Power cable
US15/549,828 US10199143B2 (en) 2015-02-17 2016-02-16 Power cable

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0024385 2015-02-17
KR20150024385 2015-02-17
KR1020150167050A KR101819289B1 (en) 2015-02-17 2015-11-27 Power cable
KR10-2015-0167050 2015-11-27

Publications (1)

Publication Number Publication Date
WO2016133332A1 true WO2016133332A1 (en) 2016-08-25

Family

ID=56688962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001535 WO2016133332A1 (en) 2015-02-17 2016-02-16 Power cable

Country Status (1)

Country Link
WO (1) WO2016133332A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711470A (en) * 2018-06-07 2018-10-26 安徽和义新能源汽车充电设备有限公司 A kind of new-energy automobile charging cable
EP3584807A4 (en) * 2017-02-16 2020-11-25 LS Cable & System Ltd. Power cable
EP3605560A4 (en) * 2017-03-24 2020-12-09 LS Cable & System Ltd. Power cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199338A (en) * 1996-11-18 1998-07-31 Tomoegawa Paper Co Ltd Manufacture of electric insulating laminated paper, and oil imersed power cable using the laminated paper
KR20040038180A (en) * 2002-10-31 2004-05-08 한국전력공사 Waterproof underground power cable applications
KR20090043198A (en) * 2007-10-29 2009-05-06 엘에스전선 주식회사 High strength foam cable for ship
JP2010097778A (en) * 2008-10-15 2010-04-30 Sumitomo Electric Ind Ltd Solid cable
KR101102100B1 (en) * 2010-11-11 2012-01-02 대한전선 주식회사 Optical fiber composite electrical power cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199338A (en) * 1996-11-18 1998-07-31 Tomoegawa Paper Co Ltd Manufacture of electric insulating laminated paper, and oil imersed power cable using the laminated paper
KR20040038180A (en) * 2002-10-31 2004-05-08 한국전력공사 Waterproof underground power cable applications
KR20090043198A (en) * 2007-10-29 2009-05-06 엘에스전선 주식회사 High strength foam cable for ship
JP2010097778A (en) * 2008-10-15 2010-04-30 Sumitomo Electric Ind Ltd Solid cable
KR101102100B1 (en) * 2010-11-11 2012-01-02 대한전선 주식회사 Optical fiber composite electrical power cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584807A4 (en) * 2017-02-16 2020-11-25 LS Cable & System Ltd. Power cable
US11049631B2 (en) 2017-02-16 2021-06-29 Ls Cable & System Ltd. Power cable
EP3605560A4 (en) * 2017-03-24 2020-12-09 LS Cable & System Ltd. Power cable
CN108711470A (en) * 2018-06-07 2018-10-26 安徽和义新能源汽车充电设备有限公司 A kind of new-energy automobile charging cable

Similar Documents

Publication Publication Date Title
KR101819289B1 (en) Power cable
CN108369841B (en) Fire-resistant cable
WO2018151371A1 (en) Power cable
WO2018174330A1 (en) Power cable
WO2016133332A1 (en) Power cable
WO2018034404A1 (en) Power cable
CN115171968B (en) High-efficiency energy-saving medium-voltage fireproof cable
WO2018135700A1 (en) Power cable
WO2018182073A1 (en) Power cable
WO2018182070A1 (en) Power cable
WO2018182071A1 (en) Power cable
WO2018182075A1 (en) Power cable
WO2020096241A1 (en) Joint system of power cable
WO2018221803A1 (en) Ultra-high voltage direct current power cable
WO2018221804A1 (en) Intermediate connection system for ultra-high-voltage direct current power cable
KR101818879B1 (en) Power cable
CN213459145U (en) Mineral insulated cable
KR102343496B1 (en) Power cable
WO2018182121A1 (en) Direct current power cable joining system
WO2020101161A1 (en) Ultra high voltage direct current power cable system
WO2018182076A1 (en) Direct current power cable joining system using joint box for power cable and direct current power cable joint method
WO2018221802A1 (en) Ultra-high voltage direct current power cable
WO2018182079A1 (en) Direct current power cable joining system
WO2018182078A1 (en) Direct current power cable joining system
WO2023052745A1 (en) A composite cable and method of manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752662

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016752662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15549828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE