WO2018135700A1 - Power cable - Google Patents

Power cable Download PDF

Info

Publication number
WO2018135700A1
WO2018135700A1 PCT/KR2017/003511 KR2017003511W WO2018135700A1 WO 2018135700 A1 WO2018135700 A1 WO 2018135700A1 KR 2017003511 W KR2017003511 W KR 2017003511W WO 2018135700 A1 WO2018135700 A1 WO 2018135700A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconducting
insulating
cable
film
Prior art date
Application number
PCT/KR2017/003511
Other languages
French (fr)
Korean (ko)
Inventor
이인회
남기준
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2018135700A1 publication Critical patent/WO2018135700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring

Definitions

  • the present invention relates to direct current transmission power cables, in particular ultra-high voltage underground or submarine cables. Specifically, the present invention suppresses the occurrence of deoiling voids in the insulating layer and the like, thereby suppressing partial discharge, insulation breakdown and the like caused by the electric field concentrated in the voids, thereby extending the lifespan, and copper powder from the copper conductor is applied to the insulating layer. It effectively prevents the breakdown of the dielectric strength by penetrating, further extending the service life, and preventing the breakage of the insulating paper and the semiconducting film even after repeated bending and bending, thereby maintaining the interlayer structure formed by the winding thereof.
  • the present invention relates to a power cable that can improve flexibility, flexibility, installation, workability, and the like.
  • a power cable using a polymer insulator such as crosslinked polyethylene (XLPE) is used.
  • XLPE crosslinked polyethylene
  • an ultra-high voltage DC power transmission cable is impregnated with insulating oil in a cross winding insulating paper so as to surround a conductor.
  • Paper-insulated cables having an insulating layer are used.
  • the geo-insulated cable includes an OF (Oil Filled) cable for circulating low-viscosity insulating oil, a Mass Impregnated Non Draining (MIND) cable impregnated with high-viscosity or medium viscosity insulating oil, and the OF cable transmits hydraulic pressure for circulation of the insulating oil.
  • OF Oil Filled
  • MIND Mass Impregnated Non Draining
  • MIND cable is commonly used for long distance direct current transmission or subsea high voltage cable.
  • the MIND cable is formed by wrapping insulation paper such as kraft paper, semi-synthetic paper laminated with thermoplastic resin such as kraft paper and polypropylene resin when the insulation layer is formed in a plurality of layers, and an internal semiconducting layer inside and outside the insulation layer and
  • the outer semiconducting layer may be formed by enclosing a semiconducting battery such as carbon black paper in a plurality of layers, and the insulating oil is impregnated in the semisynthetic paper, the semiconducting battery, and the like.
  • the insulating paper which forms the insulating layer and the semiconducting layer by the heat generation of the conductor during the operation thereof, the insulating oil impregnated in the semiconductor battery, and the insulating oil filled in the gap generated when the insulating paper and the semiconductor battery are wound are expanded.
  • the insulation oil contracts when the heating of the cable stops, and the heating of the conductor stops when the electricity is stopped, and the internal temperature of the cable starts to decrease, so that the insulation oil, the semi-conducting layer, the gap, or the interface between the layers is absent. Deoiling voids are formed, and partial discharge occurs due to an electric field concentrated in the voids generated by the insulating paper, resulting in a breakdown of the insulation.
  • the conventional MIND cable is advantageous in terms of securing the movement path of the insulating oil when the insulating oil is impregnated when the insulating layer and the inner semiconducting layer are formed by the gap winding of the insulating paper, the semiconductor battery, etc. as described above, but is shown in FIG.
  • copper powder of the conductor portion 20 in particular, copper powder from the copper stranded wire conductor is dispersed in the insulating oil, thereby easily penetrating into the insulating layer with the movement of the insulating oil, thereby causing a problem that the insulation strength is greatly reduced.
  • the present invention suppresses deoiling voids in the inner semiconducting layer, the insulating layer, the outer semiconducting layer, the gap or the interlayer interface, and thus prolongs the lifespan by suppressing partial discharge and insulation breakdown due to the electric field concentrated in the voids. It is an object to provide a power cable.
  • an object of this invention is to provide the electric power cable which extends a lifetime by effectively preventing copper powder from a copper conductor penetrating into an insulating layer, and falling insulation strength.
  • an object of the present invention is to provide a power cable capable of maintaining the interlayer structure formed by the winding of the insulating paper, semi-conducting film and the like is suppressed even after repeated bending and bending.
  • an object of the present invention is to provide a power cable that can be improved in flexibility, flexibility, installation, workability and the like.
  • the inner semiconducting layer is formed by a transverse winding of a semi-conductive film formed from a polymer composite material in which conductive particles are incorporated into a polymer resin.
  • a power cable is provided.
  • the polymer resin provides a power cable, characterized in that the melting point (Tm) is 120 °C or more.
  • the polymer resin is high density polyethylene (HDPE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polypropylene (PP), polyvinylidene fluoride (PVDF), fluorine
  • a power cable comprising at least one member selected from the group consisting of rubber and silicone rubber.
  • the conductive particles provide 10 to 50% by weight of carbon black based on the total weight of the polymer composite material.
  • the polymer composite material is characterized in that it comprises 0.05 to 2% by weight antioxidant, 0.05 to 2% by weight thermal stabilizer and 0.05 to 2% by weight metal antioxidant based on the total weight of the polymer composite material, Provide the cable.
  • the inner semiconducting layer includes a plurality of layers formed by the transverse winding of the semiconducting film, the plurality of layers comprises at least one layer formed by the wrap winding of the semiconducting film, power cable To provide.
  • the remaining layer other than the layer formed by the wrap winding of the semiconducting film of the plurality of layers includes a layer formed by the gap winding of the semiconducting film, provides a power cable.
  • At least one layer formed by the wrap winding of the semiconducting film characterized in that it comprises a layer disposed directly above the conductor, provides a power cable.
  • At least one layer formed by the wrap winding of the semiconducting film provides an electric power cable, characterized in that the overlap rate is 20 to 60% of the overlapping ratio of the width of the semiconducting film forming it. .
  • the plurality of layers of the semiconducting film is 2 to 25, the total thickness of the inner semiconducting layer is 0.1 to 3.0 mm, the width of the semiconducting film is characterized in that the power cable is 10 to 30 mm, to provide.
  • the insulating layer further includes a plurality of layers formed by the transverse winding of the insulating paper, and the plurality of layers includes a layer formed by the gap winding of the insulating paper.
  • the insulating layer is formed by the transverse winding of the insulating paper
  • the insulating paper includes kraft paper or semi-synthetic paper impregnated with insulating oil
  • the semi-synthetic paper is kraft (kraft) laminated on at least one side of the plastic film and the plastic film It provides a power cable, characterized in that it comprises a).
  • the insulating layer is formed by sequentially stacking an inner insulating layer, an intermediate insulating layer and an outer insulating layer, and the inner insulating layer and the outer insulating layer are each formed of kraft paper impregnated with insulating oil, and the intermediate insulating layer Provided is a power cable, characterized in that formed from a semi-synthetic paper impregnated with insulating oil.
  • the insulating oil provides a power cable, characterized in that it comprises a high viscosity insulating oil.
  • the high viscosity insulating oil provides a power cable, characterized in that the kinematic viscosity of 60 °C more than 500 centistokes (cSt).
  • the cable protection layer is characterized in that it comprises an inner sheath, a bedding layer, a metal reinforcing layer and an outer sheath, provides a power cable.
  • the cable protective layer further provides a power cable, characterized in that it further comprises an outer wire and the outer serving layer.
  • the power cable according to the present invention improves the adhesion between the conductor and the semiconducting layer and suppresses the movement of insulating oil by replacing the semiconducting battery applied to form the inner semiconducting layer of the conventional cable with the polymer composite material and forming the deoiling voids. Minimize or avoid, thereby preventing the occurrence of partial discharge, insulation breakdown, etc. due to the electric field concentrated in the voids exhibits an excellent effect of extending the life.
  • the power cable according to the present invention by forming at least one of the plurality of layers formed in the process of drawing the semi-conducting film to form the inner semi-conducting layer on the conductor portion by the wrap winding of the semi-conducting film, By effectively preventing copper powder from penetrating into the insulating layer and lowering the dielectric strength, an excellent effect of extending the service life is obtained.
  • the power cable according to the present invention by precisely controlling the overlap rate of the semi-conducting film wrapped in the plurality of layers formed by the winding of the semi-conducting film and the remaining layer is formed by the gap winding of the semi-conducting layer, iterative bending The breakage of the semiconducting film is suppressed even in the bending and bending, and the interlayer structure formed by the winding thereof can be maintained.
  • the power cable according to the present invention exhibits an excellent effect of improving flexibility, flexibility, laying property, workability, etc. by avoiding unnecessary increase in outer diameter.
  • FIG. 1 schematically shows a case in which a semiconductor cell is gap-wound on a conductor part in a conventional power cable, and copper from the conductor part penetrates into the insulating layer on the semi-conducting layer through the movement path of the insulating oil formed by the gap winding. .
  • Figure 2 schematically shows the cross-sectional structure of one embodiment of a power cable according to the invention.
  • FIG. 3 schematically illustrates a longitudinal cross-sectional structure of the power cable shown in FIG. 2.
  • FIG. 4 is a graph schematically illustrating a process in which an electric field is relaxed in an insulating layer of a power cable according to the present invention.
  • FIGS. 2 and 3 schematically show the cross-sectional and longitudinal cross-sectional structures of one embodiment of a power cable according to the invention, respectively.
  • the power cable according to the present invention includes a conductor 100, an inner semiconducting layer 200 surrounding the conductor 100, and an insulating layer surrounding the inner semiconducting layer 200 ( 300, an outer semiconducting layer 400 surrounding the insulating layer 300, a metal sheath layer 500 surrounding the outer semiconducting layer 400, and a cable protection layer surrounding the metal sheath layer 500 ( 600) and the like.
  • the conductor 100 is a movement path for electric current for transmission, and has high electrical conductivity to minimize power loss, and has high purity copper (Cu), aluminum (Al), etc. having appropriate strength and flexibility required for use as a conductor of a cable.
  • it may be made of a linkage line having a high elongation and a high conductivity.
  • the cross-sectional area of the conductor 100 may be different depending on the amount of power transmission, the use of the cable.
  • the conductor 100 may be composed of a circular compression conductor compressed by placing a flat element wire in multiple layers on a flat conductor or a circular center line composed of multiple flat angle wires on a circular center line. Since the conductor 100 made of a flat conductor formed by a so-called keystone method has a high conductor area ratio, it is possible to reduce the outer diameter of the cable and to form a large cross-sectional area of each element wire. It is economical to reduce. Moreover, since there are few voids in the conductor 100 and the weight of the insulating oil contained in the conductor 100 can be made small, it is effective.
  • the inner semiconducting layer 200 suppresses electric field distortion and electric field concentration due to surface unevenness of the conductor 100, thereby interfacing the inner semiconducting layer 200 and the insulating layer 300 or inside the insulating layer 300. It functions to suppress partial discharge and insulation breakdown caused by electric field concentrated on.
  • the inner semiconductive layer 200 includes a plurality of semi-conductive films formed from a polymer composite material formed by mixing conductive particles such as carbon black in a polymer resin. It can form by transverse winding in two layers.
  • the semiconducting film formed from the polymer composite material has an excellent adhesion to the conductor 100 when wound on the conductor 100 due to excellent elasticity, surface adhesiveness, etc., which is realized from the material thereof, and thus the conductor 100 and the inner semiconducting film.
  • the gap between the front layer 200 and the gap between the internal semiconducting layer 200 and the insulating layer 300 may be effectively removed to more effectively suppress partial discharge and dielectric breakdown.
  • the conductor 100, the conductor 100 and the semiconducting layer 200 since the polymer composite material forming the semiconducting film does not pass the insulating oil, unlike the conventional semiconducting battery, the conductor 100, the conductor 100 and the semiconducting layer 200 by the heat generation of the conductor 100 when the cable is operated. It is possible to suppress the movement of the insulating oil between the outside of the cable to minimize or avoid the formation of deoiling voids.
  • the polymer composite material forming the semiconductive film may contain an insulating oil to some extent by impregnating the insulating oil.
  • the semiconductive film is expanded by swelling, so that the conductor 100 and the internal semiconducting layer ( Partial discharge, dielectric breakdown, etc. can be further suppressed by effectively eliminating gaps and deoiling voids between the gaps 200 and gaps and voids between the internal semiconducting layer 200 and the insulating layer 300.
  • the transverse winding of the semiconducting film to form the internal semiconducting layer 200 is performed when the internal semiconducting layer is formed through the extrusion process of the polymer composite material separately from the insulating paper winding process for forming the insulating layer.
  • the semiconducting film has excellent adhesion with the conductor 100 and the internal semiconducting layer or the internal semiconducting layer in the conductor. It effectively suppresses the movement of insulating oil and expands when the insulating oil is contained, effectively eliminating gaps and voids between conductors and internal semiconducting layers, and gaps and voids between internal semiconducting layers and insulating layers. It can be minimized or avoided more effectively.
  • the polymer resin included in the polymer composite material forming the semiconductive film has a melting point (Tm) of 120 ° C. or higher in consideration of the high temperature environment applied during the insulation oil impregnation process and the heat generation of the conductor during cable operation, and should not be dissolved in the insulation oil.
  • Tm melting point
  • the melting point (Tm) of the polymer resin was measured while heating up at a temperature increase rate of 10 ° C./min from room temperature to 300 ° C. using a DSC (Differential Scanning Calorimeter) device.
  • the polymer resin is, for example, high density polyethylene (HDPE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polypropylene (PP), polyvinylidene fluoride (PVDF), Fluorine rubber, silicone rubber, etc. may be included, and among these, it is preferable to select a material having high heat resistance such as polypropylene (PP).
  • HDPE high density polyethylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PA polyamide
  • PP polypropylene
  • PVDF polyvinylidene fluoride
  • Fluorine rubber silicone rubber, etc.
  • the polymer composite material may include 10 to 50% by weight of conductive particles, such as carbon black, based on the total weight of the polymer composite material to implement semiconductive properties, and additionally 0.05 to 2% by weight of an antioxidant, 0.05 to 2% by weight of the thermal stabilizer, 0.05 to 2% by weight of the metal antioxidant, and the like.
  • conductive particles such as carbon black
  • At least one layer 210 of the plurality of layers of the semiconducting film overlaps a portion of the width of the semiconducting film when the wrap winding of the semiconducting film, that is, the transverse winding of the semiconducting film,
  • the remaining layers 220 are transversely wound so that a constant gap is formed between the semi-conductive film, that is, between the semiconducting films, and the gap is the semiconducting film.
  • a new semiconducting film is rolled on top of it, it is covered by the new semiconducting film and at the same time it can be rolled in such a way that it is repeatedly rolled so that a gap is formed between the new semiconducting films.
  • at least one layer formed by the wrap winding of the semiconductive film may include an innermost layer, that is, a layer in contact with the conductor 100.
  • the layer 210 formed by the wrap winding of the semiconducting film may have a gap in the layer, that is, the same amount from the conductor 100. Since there is no passage therein, the copper powder is prevented from moving through the internal semiconducting layer 200 to the insulating layer 300, thereby effectively reducing the dielectric strength of the insulating layer 300 by the copper powder. It is possible to suppress, thereby extending the life of the power cable and at the same time avoid unnecessary increase in the outer diameter of the power cable can be improved flexibility, flexibility, installation, workability and the like.
  • the layer 220 formed by the gap winding of the semiconducting film forming the remaining layer other than the layer 210 formed by the wrap winding of the semiconducting film may be a semiconductive film forming an arbitrary layer.
  • the semiconducting films forming the outer and inner layers of the respective layers and the outermost layer are stably slid between the insulating layers, so that even if repeated bending and flexing are applied to the power cable, By preventing friction or collision between conductive films, the damage of the semiconducting film may be suppressed and the structure of the inner semiconducting layer 200 may be stably maintained.
  • the movement of the same from the conductor 100 can be blocked at the source.
  • the overlapping portion between adjacent semiconducting films can be suppressed during bending of the power cable by adjusting an overlap rate, which is a ratio at which the semiconducting films overlap with each other when the wrapper of the semiconducting film is wrapped. It is possible to prevent the collision between the semiconducting film during bending, and as a result, it is possible to stably maintain the structure of the inner semiconducting layer 200 by suppressing the breakage of the semiconducting film.
  • the number of the plurality of layers of the semiconducting film may be 2 to 25, whereby the total thickness of the inner semiconducting layer 200 may be about 0.1 to 3.0 mm, while the width of the semiconducting film is about It may be 10 to 30 mm, the overlap rate of the wrapper of the semiconducting film is formed by the outer diameter of the conductor 100, the width of the semiconducting film, wrap wrap of the semiconducting film in the inner semiconducting layer 200 It may be different depending on the position of the layer 210 to be, for example, may be 20 to 60%.
  • the overlap rate of the semiconducting film is less than 20%, the overlapped portions between the semiconducting films are separated during the bending of the power cable, and the semiconducting films separated during the bending of the power cable are trying to overlap again. While the semiconducting film may be damaged due to a collision, the excess of the semiconducting film unnecessarily increases the productivity of the power cable due to the excessive overlap of the semiconducting film, and the outer diameter of the power cable is unnecessarily increased, resulting in flexibility, flexibility, laying property, and work. Sex and the like may be degraded.
  • two or more semiconducting films may be simultaneously wrapped in the wrapper of the semiconducting film in order to continuously perform layer formation by the wrap winding and the gap winding of the semiconducting film.
  • the insulating layer 300 is formed by wrapping the insulating paper in a plurality of layers, and the insulating paper is, for example, using a kraft paper or a semi-synthetic paper in which a thermoplastic resin such as kraft paper and a polypropylene resin is laminated. Can be used.
  • the insulating layer 300 includes an inner insulating layer 310, an intermediate insulating layer 320 and an outer insulating layer 330, the inner insulating layer 310 and the outer
  • the insulating layer 330 is made of a material having a lower resistivity than the intermediate insulating layer 320, whereby the inner insulating layer 310 and the outer insulating layer 330 are each connected to the conductor 100 when the cable is operated.
  • FIG. 4 is a graph schematically illustrating a process in which an electric field is relaxed in an insulating layer of a power cable according to the present invention.
  • a direct current (DC) electric field is relaxed in the inner insulation layer 310 and the outer insulation layer 330 having a relatively low resistivity, thereby directly above the conductor 100 and directly below the metal sheath layer 500.
  • an internal insulation layer is controlled while controlling the maximum impulse electric field applied to the intermediate insulation layer 320 to 100 kV / mm or less.
  • the impulse electric field means an electric field applied to the cable when an impulse voltage is applied to the cable.
  • the maximum impulse electric field value of the internal insulation layer 310 is designed to be smaller than the maximum impulse electric field value of the intermediate insulation layer 320 so that the high electric field does not act directly on or under the sheath.
  • the maximum impulse electric field applied to the intermediate insulating layer 320 is an inner electric field of the intermediate insulating layer 320, and the inner electric field is the maximum impulse electric field of the intermediate insulating layer 320, for example, 100 kV / mm.
  • the high electric field is suppressed from being applied to the inner insulation layer 310 and the outer insulation layer 330, particularly, a cable connection member vulnerable to an electric field, and further, the performance of the intermediate insulation layer 320 is maximized.
  • the entire insulation layer 300 can be made compact, the deterioration can be suppressed, and the insulation strength and other physical properties of the insulation layer 300 can be suppressed from being lowered.
  • the impulse withstand voltage is higher than that of the cable. Not only can it be done with a cable, but it can also suppress the shortening of the cable life.
  • the inner insulating layer 310 and the outer insulating layer 330 may be formed by transversely kraft paper made of kraft pulp and impregnated with an insulating oil, whereby the inner insulating layer 310 and the outer layer are impregnated.
  • the insulating layer 330 may have a lower resistivity and a higher dielectric constant than the intermediate insulating layer 320.
  • the kraft paper can be prepared by washing the kraft pulp with deionized water in order to remove the organic electrolyte in the kraft pulp to obtain good dielectric loss tangent and permittivity.
  • the intermediate insulating layer 320 may be formed by transversely winding a semi-synthetic paper having kraft paper laminated on the surface, the back surface, or both of the plastic film and impregnating insulating oil.
  • the intermediate insulating layer 320 formed as described above has a higher resistivity, lower dielectric constant, higher DC dielectric strength, and impulse breakdown voltage than the inner insulating layer 310 and the outer insulating layer 330 because it includes a plastic film. Due to the high resistivity of the intermediate insulating layer 320, a direct current field is concentrated on the intermediate insulating layer 320 resistant to the DC electric field strength, and an impulse electric field is applied to the intermediate insulating layer 320 resistant to the impulse electric field at a low dielectric constant. By concentrating, the insulating layer 300 as a whole can be made compact, and as a result, the outer diameter of the cable can be reduced.
  • the kraft paper or semi-synthetic paper which forms the inner insulating layer 310, the intermediate insulating layer 320 and the outer insulating layer 330, respectively, is transversely wound by a gap winding when transverse winding, so that the insulating oil is impregnated when the insulating oil is impregnated. It is advantageous to secure a passage so that the impregnation time can be shortened, and at the same time, the breakage of the kraft paper and the semi-synthetic paper can be effectively suppressed even when repeated bending and bending are applied to the power cable.
  • the plastic film is expanded by heat generation during operation of the cable to increase the oil resistance
  • the insulating oil impregnated in the insulating layer 300 is the outer semiconducting layer 400 It is possible to suppress the movement toward the side) to suppress the production of deoiled voids due to the movement of the insulating oil, and consequently to suppress electric field concentration and dielectric breakdown caused by the deoiled voids.
  • the plastic film may be made of a polyolefin resin such as polyethylene, polypropylene, polybutylene, fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer, Preferably it may be made of a polypropylene homopolymer resin excellent in heat resistance.
  • a polyolefin resin such as polyethylene, polypropylene, polybutylene
  • fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer
  • ethylene-tetrafluoroethylene copolymer ethylene-tetrafluoroethylene copolymer
  • the semi-synthetic paper may be 40 to 70% of the total thickness of the plastic film.
  • the resistivity of the intermediate insulating layer 320 may be insufficient, so that the outer diameter of the cable may be increased. Difficulties can be made difficult due to lack of distribution of insulating oil, which can be expensive.
  • the inner insulating layer 310 may have a thickness of 1 to 10% of the total thickness of the insulating layer 300, and the outer insulating layer 330 may have a thickness of 1 to 15% of the total thickness of the insulating layer 300.
  • the intermediate insulating layer 320 may have a thickness of 75% or more of the total thickness of the insulating layer 300.
  • the maximum impulse electric field value of the inner insulation layer 310 may be lower than the maximum impulse electric field value of the intermediate insulation layer 320. If the thickness of the inner insulation layer is increased more than necessary, the maximum impulse electric field value of the intermediate insulation layer 320 becomes larger than the allowable maximum impulse electric field value, and in order to alleviate this problem, the cable outer diameter increases. Done.
  • the outer insulating layer 330 preferably has a sufficient thickness than the inner insulating layer, which will be described later.
  • the internal insulation layer 310 and the external insulation layer 330 having a small resistivity are provided to prevent the direct current high electric field from being applied directly above the conductor 100 and directly below the metal sheath layer 500.
  • the thickness of the intermediate insulating layer 320 having a high resistivity of 75% or more it is possible to reduce the cable outer diameter while maintaining a sufficient dielectric strength.
  • the inner insulation layer 310, the intermediate insulation layer 320, and the outer insulation layer 330 constituting the insulation layer 300 each have the precisely controlled thickness, so that the insulation layer ( 300 may have a desired dielectric strength while minimizing the outer diameter of the cable.
  • the direct current and the impulse electric field applied to the insulating layer 300 can be most effectively designed on the electric field, and the high electric field of the direct current and the impulse is directly above the conductor 100 and directly below the metal sheath layer 500. It is possible to apply design means that can raise the dielectric strength of the cable connection member, which is particularly susceptible to electric fields, to a sufficient height.
  • the thickness of the outer insulating layer 330 is greater than the thickness of the inner insulating layer 310, for example, in a cable of 500 kV DC, the thickness of the inner insulating layer 310 is 0.1 to 2.0 mm.
  • the thickness of the outer insulating layer 330 may be 0.1 to 3.0 mm, and the thickness of the intermediate insulating layer 320 may be 15 to 25 mm.
  • the heat generated during soft connection for the cable connection according to the present invention is applied to the insulating layer 300 to melt the plastic film of the semi-synthetic paper forming the intermediate insulating layer 320, the plastic from the heat
  • the thickness of the internal insulating layer 310 is preferably 1 to 30 times.
  • the thickness of the sheet of semi-synthetic paper forming the intermediate insulating layer 320 is 70 to 200 ⁇ m, the thickness of the kraft paper forming the inner and outer insulating layers 310, 320 may be 50 to 150 ⁇ m. The thickness of the kraft paper forming the inner and outer insulating layers 310 and 320 is greater than that of the kraft paper constituting the semi-synthetic paper.
  • the thickness of the kraft paper forming the inner and outer insulating layers (310,320) is too thin, the strength is insufficient, can cause mechanical damage when the paper rolls, and the number of side windings for forming the insulating layer of the desired thickness is increased
  • Productivity of the kraft paper may be reduced, and the total volume of the gap between the kraft papers forming the main passage of the insulating oil when the kraft paper is transversely reduced may take a long time when the insulating oil is impregnated, and the content of the insulating oil impregnated is lowered, thereby reducing the desired dielectric strength. It may be difficult to implement.
  • the insulating oil impregnated in the insulating layer 300 is fixed without being circulated in the cable length direction like a low viscosity insulating oil used in a conventional OF cable, an insulating oil having a relatively high viscosity is used.
  • the insulating oil may perform a lubrication role to facilitate the movement of the insulating paper when the cable is bent, as well as the function of implementing the desired dielectric strength of the insulating layer 300.
  • the insulating oil is not particularly limited but may be a medium viscosity insulating oil having a kinematic viscosity of 5 to 500 centistokes (cSt) at 60 ° C., or a high viscosity insulating oil having a kinematic viscosity of 60 ° C. or more at 500 centistokes (cSt) or more.
  • a medium viscosity insulating oil having a kinematic viscosity of 5 to 500 centistokes (cSt) at 60 ° C. or a high viscosity insulating oil having a kinematic viscosity of 60 ° C. or more at 500 centistokes (cSt) or more.
  • one or more insulating oils selected from the group consisting of naphthenic insulating oils, polystyrene insulating oils, mineral oils, alkyl benzene or polybutene synthetic oils, heavy alkylates, and the like can be synthe
  • the kraft paper constituting the inner insulating layer 310, the intermediate insulating layer 320 and the outer insulating layer 330 are formed to a desired thickness, respectively
  • each of the semi-synthetic paper is rolled up a plurality of times, and vacuum dried to remove residual moisture of the insulating layer 300, and then the insulating oil is heated to a high temperature impregnation temperature, for example, 100 to 120 ° C. under a high pressure environment.
  • a high temperature impregnation temperature for example, 100 to 120 ° C. under a high pressure environment.
  • the outer semiconducting layer 400 suppresses the uneven charge distribution between the insulating layer 300 and the metal sheath layer 500 to mitigate electric field distribution, and the insulating layer may be formed from various types of metal sheath layers 500. 300) to physically protect.
  • the outer semiconducting layer 400 may be formed by a transverse winding of a semi-conductive paper, such as, for example, carbon paper treated with conductive carbon black on insulating paper, and preferably formed by the transverse winding of the semiconducting battery.
  • a semi-conductive paper such as, for example, carbon paper treated with conductive carbon black on insulating paper
  • the lower layer and the semiconductor cell and the metallization paper may include an upper layer formed to be transversely wound in a gap winding or an empty winding.
  • the metallization paper and the semiconductor cell may be alternately rolled so as to overlap, for example, about 20 to 80%.
  • the metallized paper may have a structure in which a metal foil such as aluminum tape and aluminum foil is laminated on a base paper such as kraft paper or carbon paper, and the insulating oil easily penetrates into a semiconductor cell, an insulating paper, a semi-synthetic paper, and the like below the metal foil.
  • a plurality of perforations may exist so that the semiconductor cell of the lower layer is in smooth electrical contact with the metal foil of the metallized paper through the semiconductor cell of the upper layer, and as a result, the external semiconducting layer 400 and the As the metal sheath layer 500 is in smooth electrical contact, a uniform electric field distribution may be formed between the insulating layer 300 and the metal sheath layer 500.
  • the outer semiconducting layer 400 may further include a copper wire direct fabric (not shown) between the metal sheath layer 500.
  • the copper wire direct fabric has a structure in which 2 to 8 strands of copper wire are directly inserted into a nonwoven fabric and performs a function of smoothly and electrically contacting the outer semiconducting layer 400 and the metal sheath layer 500 by the copper wire.
  • the wound semi-conductor cell, metallized paper, etc. may perform a function of tightly binding them so as to maintain the above-described structure without being released. As the metal sheath layer 500 moves during bending, damage to the metallized paper or the like may be prevented.
  • the metal sheath layer 500 prevents the insulating oil from leaking to the outside of the cable, and fixes the voltage applied to the cable during direct current transmission between the conductor 100 and the metal sheath layer 500 so as to ground at one end of the cable. It acts as a return of fault current in the event of a ground fault or short circuit of the cable to protect safety, protect the cable from shocks, pressures, etc. outside the cable, and improve cable order and flame retardancy.
  • the metal sheath layer 500 may be formed by, for example, a soft sheath made of pure lead or lead alloy.
  • the soft sheath has a relatively low electric resistance, which serves as a large current collector, and can further improve cable ordering, mechanical strength, and fatigue characteristics when formed as a seamless type. have.
  • the soft psi is a surface of the anti-corrosion compound, for example, in order to further improve the corrosion resistance, water resistance of the cable and the adhesion between the metal sheath layer 500 and the cable protection layer 600, Blown asphalt, or the like.
  • the cable protection layer 600 includes, for example, a metal reinforcement layer 630 and an outer sheath 650, and further includes an inner sheath 610 and bedding layers 620 and 640 disposed above and below the metal reinforcement layer 630. It can be included as.
  • the inner sheath 610 improves the corrosion resistance, the degree of ordering of the cable, and performs a function of protecting the cable from mechanical trauma, heat, fire, ultraviolet rays, insects or animals.
  • the inner sheath 610 is not particularly limited, but may be made of polyethylene having excellent cold resistance, oil resistance, chemical resistance, and the like, or polyvinyl chloride having excellent chemical resistance, flame resistance, and the like.
  • the metal reinforcement layer 630 may be formed of a galvanized steel tape, a stainless steel tape, etc. to perform a function of protecting a cable from mechanical shock and to prevent corrosion, and the galvanized steel tape may have an anti-corrosion compound on its surface. Can be applied.
  • the bedding layers 620 and 640 disposed above and below the metal reinforcing layer 630 may perform a function of alleviating impact, pressure, and the like from the outside, and may be formed by, for example, a nonwoven tape.
  • the metal reinforcement layer 630 may be provided directly on the metal sheath layer 500 or through the bedding layers 620 and 640.
  • the expansion deformation of the metal sheath layer 500 by the high temperature expansion of the insulating oil in the metal reinforcing layer 630 is suppressed to improve the mechanical reliability of the cable and at the same time, the insulating layer 300 and the metal sheath layer 500.
  • the portion of the semiconducting layers 200 and 400 is intrinsically pressured to improve the dielectric strength.
  • the outer sheath 650 has substantially the same functions and characteristics as the inner sheath 610, and fires in submarine tunnels, land tunnel sections, etc. are used in the region because they are dangerous factors that greatly affect the safety of personnel or facilities.
  • the outer sheath of the cable is applied to polyvinyl chloride excellent in flame retardant properties, the cable outer sheath of the pipe section can be applied to polyethylene with excellent mechanical strength and cold resistance.
  • the metal sheath 500 may be provided with a metal reinforcing layer 630 immediately omitted, and a bedding layer may be provided inside and outside the metal reinforcing layer 630 as necessary. have. That is, the metal sheath layer may be formed to be provided with a bedding layer, a metal reinforcing layer, a bedding layer and an outer sheath sequentially.
  • the metal reinforcement layer 630 allows deformation of the metal sheath 500, but suppresses the change in the outer circumference, it is preferable in view of the fatigue characteristics of the metal sheath 500, and the cable insulation layer in the metal sheath 500 during cable energization.
  • the cable protection layer 600 may further include, for example, an outer serving layer 670 made of an iron sheath 660 and polypropylene yarn.
  • the outer wire sheath 660, the outer serving layer 670 may perform a function of additionally protecting the cable from the sea current, reefs and the like.
  • the cable protection layer 600 may further include, for example, an outer serving layer 670 made of an iron sheath 660, polypropylene yarn, or the like.
  • the outer wire sheath 660, the outer serving layer 670 may perform a function of additionally protecting the cable from the sea current, reefs and the like.

Abstract

The present invention relates to a direct current power transmission cable, particularly, an extra-high voltage underground or submarine cable. Specifically, the present invention relates to a power cable which: can suppress the occurrence of a deoiled void in an insulation layer and the like to suppress partial discharge, dielectric breakdown, etc., which may be caused by an electric field concentrated on the void, and thus extends lifespan of the cable; can effectively prevent degradation of dielectric strength, which may be caused by permeation of copper powder from a copper conductor into the insulation layer, and thus additionally extends lifespan of the cable; can restrain the damage of an insulation sheet, a semi-conductive film, etc. in spite of repetitive bending and unbending, thereby maintaining an interlayer structure formed by winding thereof; and can have improved flexibility and workability, and an improved bending property and pulling installation property, etc.

Description

전력 케이블Power cable
본 발명은 직류 송전 전력케이블, 특히 초고압 지중 또는 해저 케이블에 관한 것이다. 구체적으로, 본 발명은 절연층 등에 탈유 공극(void)이 발생하는 것을 억제하여 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 억제함으로써 수명이 연장되고, 구리 도체로부터의 동분이 절연층에 침투하여 절연 내력이 저하되는 것을 효과적으로 방지함으로써 추가로 수명이 연장되고, 반복적인 굴곡과 굴곡핌에도 절연지, 반도전필름 등의 파손이 억제되어 이들의 권취에 의해 형성되는 층간 구조가 유지될 수 있으며, 굴곡성, 유연성, 포설성, 작업성 등이 향상될 수 있는 전력 케이블에 관한 것이다.The present invention relates to direct current transmission power cables, in particular ultra-high voltage underground or submarine cables. Specifically, the present invention suppresses the occurrence of deoiling voids in the insulating layer and the like, thereby suppressing partial discharge, insulation breakdown and the like caused by the electric field concentrated in the voids, thereby extending the lifespan, and copper powder from the copper conductor is applied to the insulating layer. It effectively prevents the breakdown of the dielectric strength by penetrating, further extending the service life, and preventing the breakage of the insulating paper and the semiconducting film even after repeated bending and bending, thereby maintaining the interlayer structure formed by the winding thereof. The present invention relates to a power cable that can improve flexibility, flexibility, installation, workability, and the like.
절연층으로서 가교 폴리에틸렌(XLPE) 등의 고분자 절연체를 이용한 전력 케이블이 사용되고 있지만, 직류 고전계에서 공간 전하가 형성되는 문제 때문에, 초고압 직류 송전 케이블은 도체 등을 감싸도록 횡권한 절연지에 절연유를 함침시켜 절연층을 형성한 지절연 케이블(Paper-insulated Cable)이 사용되고 있다.As an insulating layer, a power cable using a polymer insulator such as crosslinked polyethylene (XLPE) is used.However, due to a problem of forming a space charge in a DC high electric field, an ultra-high voltage DC power transmission cable is impregnated with insulating oil in a cross winding insulating paper so as to surround a conductor. Paper-insulated cables having an insulating layer are used.
상기 지절연 케이블에는 저점도 절연유를 순환시키는 OF(Oil Filled) 케이블, 고점도 또는 중점도 절연유가 함침된 MIND(Mass Impregnated Non Draining) 케이블 등이 있고, 상기 OF 케이블은 절연유의 순환을 위한 유압의 전달길이에 한계가 있어 장거리 송전용 케이블에는 부적합하고, 특히 해저에는 절연유 순환 설비를 설치하기 곤란한 문제가 있어 해저 케이블에도 부적합하다.The geo-insulated cable includes an OF (Oil Filled) cable for circulating low-viscosity insulating oil, a Mass Impregnated Non Draining (MIND) cable impregnated with high-viscosity or medium viscosity insulating oil, and the OF cable transmits hydraulic pressure for circulation of the insulating oil. Due to the limitation in length, it is unsuitable for long distance transmission cables, and in particular, there is a problem that it is difficult to install insulating oil circulating equipment in the seabed, which is also unsuitable for submarine cables.
따라서, 장거리 직류 송전용 또는 해저용 초고압 케이블은 MIND 케이블이 흔히 사용되고 있다. 이러한 MIND 케이블은 절연층 형성시 크래프트지(Kraft paper), 크래프트지와 폴리프로필렌 수지 등과 같은 열가소성 수지가 적층된 반합성지 등의 절연지를 복수의 층으로 감싸서 형성되며, 절연층 내외부의 내부반도전층 및 외부반도전층은 카본 블랙지(Carbon black paper) 등의 반도전지를 복수의 층으로 감싸서 형성될 수 있고, 상기 반합성지, 반도전지 등에 절연유가 함침된다.Therefore, MIND cable is commonly used for long distance direct current transmission or subsea high voltage cable. The MIND cable is formed by wrapping insulation paper such as kraft paper, semi-synthetic paper laminated with thermoplastic resin such as kraft paper and polypropylene resin when the insulation layer is formed in a plurality of layers, and an internal semiconducting layer inside and outside the insulation layer and The outer semiconducting layer may be formed by enclosing a semiconducting battery such as carbon black paper in a plurality of layers, and the insulating oil is impregnated in the semisynthetic paper, the semiconducting battery, and the like.
그런데, 종래 MIND 케이블은 이의 운용시 도체의 발열에 의해 절연층과 반도전층을 형성하는 절연지와 반도전지에 함침된 절연유 및 상기 절연지와 반도전지를 감았을 시에 발생하는 갭에 충진되는 절연유가 팽창하면서 케이블 외측으로 이동하게 되고, 그 후 통전을 멈췄을 때 도체 발열이 멈추어 케이블 내부 온도가 내려가기 시작하면 상기 절연유가 수축하기 때문에 절연층, 반도전층, 갭 또는 층간 계면 등에 절연유가 부재하는 복수개의 탈유 공극(void)이 형성되며, 상기 절연지의 발생하는 공극에 집중된 전계에 의해 부분방전이 발생하여 절연파괴 등이 일어나는 문제가 있다.However, in the conventional MIND cable, the insulating paper which forms the insulating layer and the semiconducting layer by the heat generation of the conductor during the operation thereof, the insulating oil impregnated in the semiconductor battery, and the insulating oil filled in the gap generated when the insulating paper and the semiconductor battery are wound are expanded. The insulation oil contracts when the heating of the cable stops, and the heating of the conductor stops when the electricity is stopped, and the internal temperature of the cable starts to decrease, so that the insulation oil, the semi-conducting layer, the gap, or the interface between the layers is absent. Deoiling voids are formed, and partial discharge occurs due to an electric field concentrated in the voids generated by the insulating paper, resulting in a breakdown of the insulation.
한편, 도 1에 도시된 바와 같이 상기 반도전지(10)를 도체부(20)에 횡권하여 복수의 층을 형성할 때는 각 층을 구성하기 위해 권취되는 반도전지의 사이에 일정한 갭(gap)(30)이 형성되고 임의의 층에 형성된 상기 갭(gap)(30)들은 상기 임의의 층의 외층 및 내층을 각각 구성하는 반도전지(10) 등에 의해 커버되도록 하는 갭권이 일반적으로 적용되고 있고, 상기 절연지를 권취하여 절연층을 형성하는 경우에도 절연유 함침시 절연유의 이동경로를 확보하는데 유리한 갭권이 일반적으로 적용되고 있다.On the other hand, as shown in FIG. 1, when forming the plurality of layers by transversely winding the semiconductor cell 10 to the conductor portion 20, a constant gap (gap) between the semiconductor cells wound to form each layer ( 30 is formed, and the gaps 30 formed in an arbitrary layer are generally applied with a gap right to be covered by the semiconductor cell 10 or the like constituting the outer and inner layers of the arbitrary layer, respectively. Even when winding insulating paper to form an insulating layer, a gap winding that is advantageous for securing a moving path of insulating oil is generally applied.
그러나, 종래 MIND 케이블은 이의 절연층과 내부반도전층이 앞서 기술한 바와 같이 절연지, 반도전지 등의 갭권에 의해 형성되는 경우 절연유 함침시 절연유의 이동경로를 확보하는 측면에서는 유리하나, 도 1에 도시된 바와 같이 도체부(20)의 구리 도체, 특히 구리 연선 도체로부터의 동분이 절연유 내에 분산되어 상기 절연유의 이동과 함께 용이하게 절연층에 침투함으로써 절연 내력이 크게 저하되는 문제가 있다.However, the conventional MIND cable is advantageous in terms of securing the movement path of the insulating oil when the insulating oil is impregnated when the insulating layer and the inner semiconducting layer are formed by the gap winding of the insulating paper, the semiconductor battery, etc. as described above, but is shown in FIG. As described above, copper powder of the conductor portion 20, in particular, copper powder from the copper stranded wire conductor is dispersed in the insulating oil, thereby easily penetrating into the insulating layer with the movement of the insulating oil, thereby causing a problem that the insulation strength is greatly reduced.
따라서, 내부반도전층, 절연층, 외부반도전층, 갭 또는 층간 계면 등에 탈유 공극(void)이 발생하는 것을 억제하여 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 억제함으로써 케이블의 절연성능을 높임과 동시에 케이블 수명이 연장되고, 구리 도체로부터의 동분이 절연층에 침투하여 절연 내력이 저하되는 것을 효과적으로 방지함으로써 추가로 수명이 연장되는 전력 케이블이 절실히 요구되고 있는 실정이다.Therefore, it is possible to prevent deoiling voids from occurring in the inner semiconducting layer, the insulating layer, the outer semiconducting layer, the gap or the interface between the layers, and to suppress partial discharge and insulation breakdown due to the electric field concentrated in the voids, thereby reducing the insulation performance of the cable. Increasing the cable life and increasing the life of the cable, effectively preventing the copper from being penetrated into the insulating layer to lower the dielectric strength, there is an urgent need for a power cable that further extends the life.
본 발명은 내부반도전층, 절연층, 외부반도전층, 갭 또는 층간 계면 등에 탈유 공극(void)이 발생하는 것을 억제하여 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등을 억제함으로써 수명이 연장되는 전력 케이블을 제공하는 것을 목적으로 한다.The present invention suppresses deoiling voids in the inner semiconducting layer, the insulating layer, the outer semiconducting layer, the gap or the interlayer interface, and thus prolongs the lifespan by suppressing partial discharge and insulation breakdown due to the electric field concentrated in the voids. It is an object to provide a power cable.
또한, 본 발명은 구리 도체로부터의 동분이 절연층에 침투하여 절연 내력이 저하되는 것을 효과적으로 방지함으로써 수명이 연장되는 전력 케이블을 제공하는 것을 목적으로 한다.Moreover, an object of this invention is to provide the electric power cable which extends a lifetime by effectively preventing copper powder from a copper conductor penetrating into an insulating layer, and falling insulation strength.
그리고, 본 발명은 반복적인 굴곡과 굴곡핌에도 절연지, 반도전필름 등의 파손이 억제되어 이들의 권취에 의해 형성되는 층간 구조가 유지될 수 있는 전력 케이블을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a power cable capable of maintaining the interlayer structure formed by the winding of the insulating paper, semi-conducting film and the like is suppressed even after repeated bending and bending.
나아가, 본 발명은 굴곡성, 유연성, 포설성, 작업성 등이 향상될 수 있는 전력 케이블을 제공하는 것을 목적으로 한다.Further, an object of the present invention is to provide a power cable that can be improved in flexibility, flexibility, installation, workability and the like.
상기 과제를 해결하기 위해, 본 발명은,In order to solve the above problems, the present invention,
도체; 상기 도체를 둘러싸는 내부 반도전층; 상기 내부 반도전층을 둘러싸는 절연층; 상기 절연층을 둘러싸는 외부 반도전층; 상기 외부 반도전층을 둘러싸는 금속시스층; 및 상기 금속시스층을 둘러싸는 케이블보호층을 포함하고, 상기 내부 반도전층은 고분자 수지에 도전성 입자가 혼입된 고분자 복합소재로부터 형성된 반도전필름(semi-conductive film)의 횡권에 의해 형성되는 것을 특징으로 하는, 전력 케이블을 제공한다.Conductor; An inner semiconducting layer surrounding the conductor; An insulating layer surrounding the inner semiconducting layer; An outer semiconducting layer surrounding the insulating layer; A metal sheath layer surrounding the outer semiconducting layer; And a cable protection layer surrounding the metal sheath layer, wherein the inner semiconducting layer is formed by a transverse winding of a semi-conductive film formed from a polymer composite material in which conductive particles are incorporated into a polymer resin. A power cable is provided.
여기서, 상기 고분자 수지는 융점(Tm)이 120℃ 이상인 것을 특징으로 하는, 전력 케이블을 제공한다.Here, the polymer resin provides a power cable, characterized in that the melting point (Tm) is 120 ℃ or more.
또한, 상기 고분자 수지는 고밀도 폴리에틸렌(HDPE), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리아미드(PA), 폴리프로필렌(PP), 폴리비닐리덴플루오라이드(PVDF), 불소고무 및 실리콘고무로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.In addition, the polymer resin is high density polyethylene (HDPE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polypropylene (PP), polyvinylidene fluoride (PVDF), fluorine Provided is a power cable comprising at least one member selected from the group consisting of rubber and silicone rubber.
그리고, 상기 도전성 입자는 상기 고분자 복합소재의 총 중량을 기준으로 카본블랙 10 내지 50 중량%를 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.The conductive particles provide 10 to 50% by weight of carbon black based on the total weight of the polymer composite material.
나아가, 상기 고분자 복합소재는 상기 고분자 복합소재의 총 중량을 기준으로 산화방지제 0.05 내지 2 중량%, 열안정제 0.05 내지 2 중량% 및 금속 산화방지제 0.05 내지 2 중량%를 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.Further, the polymer composite material is characterized in that it comprises 0.05 to 2% by weight antioxidant, 0.05 to 2% by weight thermal stabilizer and 0.05 to 2% by weight metal antioxidant based on the total weight of the polymer composite material, Provide the cable.
한편, 상기 내부반도전층은 반도전필름의 횡권에 의해 형성되는 복수 개의 층을 포함하고, 상기 복수 개의 층은 반도전필름의 랩권에 의해 형성되는 하나 이상의 층을 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.On the other hand, the inner semiconducting layer includes a plurality of layers formed by the transverse winding of the semiconducting film, the plurality of layers comprises at least one layer formed by the wrap winding of the semiconducting film, power cable To provide.
여기서, 상기 복수 개의 층 중 상기 반도전필름의 랩권에 의해 형성되는 층 이외의 나머지 층은 반도전필름의 갭권에 의해 형성되는 층을 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.Here, the remaining layer other than the layer formed by the wrap winding of the semiconducting film of the plurality of layers includes a layer formed by the gap winding of the semiconducting film, provides a power cable.
또한, 상기 반도전필름의 랩권에 의해 형성되는 하나 이상의 층은 상기 도체의 직상에 배치되는 층을 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.In addition, at least one layer formed by the wrap winding of the semiconducting film, characterized in that it comprises a layer disposed directly above the conductor, provides a power cable.
그리고, 상기 반도전필름의 랩권에 의해 형성되는 하나 이상의 층은 이를 형성하는 반도전필름의 폭 중 오버랩(overlap)되는 비율인 오버랩율이 20 내지 60%인 것을 특징으로 하는, 전력 케이블을 제공한다.And, at least one layer formed by the wrap winding of the semiconducting film provides an electric power cable, characterized in that the overlap rate is 20 to 60% of the overlapping ratio of the width of the semiconducting film forming it. .
나아가, 상기 반도전필름의 복수 개의 층은 2 내지 25개이고, 상기 내부 반도전층의 전체 두께는 0.1 내지 3.0 mm이며, 상기 반도전필름의 폭은 10 내지 30 mm인 것을 특징으로 하는, 전력 케이블을 제공한다.Further, the plurality of layers of the semiconducting film is 2 to 25, the total thickness of the inner semiconducting layer is 0.1 to 3.0 mm, the width of the semiconducting film is characterized in that the power cable is 10 to 30 mm, to provide.
또한, 상기 절연층은 절연지의 횡권에 의해 형성되는 복수 개의 층을 포함하고, 상기 복수 개의 층은 절연지의 갭권에 의해 형성되는 층을 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.The insulating layer further includes a plurality of layers formed by the transverse winding of the insulating paper, and the plurality of layers includes a layer formed by the gap winding of the insulating paper.
한편, 상기 절연층은 절연지의 횡권에 의해 형성되고, 상기 절연지는 절연유가 함침된 크라프트(kraft)지 또는 반합성지를 포함하고, 상기 반합성지는 플라스틱 필름 및 상기 플라스틱 필름의 적어도 한면에 적층된 크라프트(kraft)지를 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.On the other hand, the insulating layer is formed by the transverse winding of the insulating paper, the insulating paper includes kraft paper or semi-synthetic paper impregnated with insulating oil, the semi-synthetic paper is kraft (kraft) laminated on at least one side of the plastic film and the plastic film It provides a power cable, characterized in that it comprises a).
여기서, 상기 절연층은 내부 절연층, 중간 절연층 및 외부 절연층이 순차적으로 적층되고, 상기 내부 절연층 및 상기 외부 절연층은 각각 절연유가 함침된 크라프트(kraft)지로 형성되고, 상기 중간 절연층은 절연유가 함침된 반합성지로 형성는 것을 특징으로 하는, 전력 케이블을 제공한다.Here, the insulating layer is formed by sequentially stacking an inner insulating layer, an intermediate insulating layer and an outer insulating layer, and the inner insulating layer and the outer insulating layer are each formed of kraft paper impregnated with insulating oil, and the intermediate insulating layer Provided is a power cable, characterized in that formed from a semi-synthetic paper impregnated with insulating oil.
또한, 상기 절연유는 고점도 절연유를 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.In addition, the insulating oil provides a power cable, characterized in that it comprises a high viscosity insulating oil.
여기서, 상기 고점도 절연유는 60℃의 동점도가 500 센티스토크스(cSt) 이상인 것을 특징으로 하는, 전력 케이블을 제공한다.Here, the high viscosity insulating oil provides a power cable, characterized in that the kinematic viscosity of 60 ℃ more than 500 centistokes (cSt).
한편, 상기 케이블보호층은 내부시스, 베딩층, 금속보강층 및 외부시스를 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.On the other hand, the cable protection layer is characterized in that it comprises an inner sheath, a bedding layer, a metal reinforcing layer and an outer sheath, provides a power cable.
여기서, 상기 케이블보호층은 철선외장 및 외부 써빙층을 추가로 포함하는 것을 특징으로 하는, 전력 케이블을 제공한다.Here, the cable protective layer further provides a power cable, characterized in that it further comprises an outer wire and the outer serving layer.
본 발명에 따른 전력 케이블은 종래 케이블의 내부반도전층을 형성하기 위해적용된 반도전지를 고분자 복합소재의 반도전필름으로 대체함으로써 도체와 반도전층의 밀착력을 향상시키고 절연유의 이동을 억제하여 탈유 공극의 형성을 최소화하거나 회피하고, 이로써 상기 공극에 집중된 전계에 의한 부분방전, 절연파괴 등의 유발을 방지하여 수명이 연장되는 우수한 효과를 나타낸다.The power cable according to the present invention improves the adhesion between the conductor and the semiconducting layer and suppresses the movement of insulating oil by replacing the semiconducting battery applied to form the inner semiconducting layer of the conventional cable with the polymer composite material and forming the deoiling voids. Minimize or avoid, thereby preventing the occurrence of partial discharge, insulation breakdown, etc. due to the electric field concentrated in the voids exhibits an excellent effect of extending the life.
또한, 본 발명에 따른 전력 케이블은 도체부 위에 내부 반도전층을 형성하기 위해 반도전필름을 귄취하는 과정에서 형성되는 복수개의 층 중 하나 이상을 상기 반도전필름의 랩권에 의해 형성함으로써, 상기 도체부의 구리 도체로부터의 동분이 절연층에 침투하여 절연 내력이 저하되는 것을 효과적으로 방지함으로써 수명이 연장되는 우수한 효과를 나타낸다.In addition, the power cable according to the present invention by forming at least one of the plurality of layers formed in the process of drawing the semi-conducting film to form the inner semi-conducting layer on the conductor portion by the wrap winding of the semi-conducting film, By effectively preventing copper powder from penetrating into the insulating layer and lowering the dielectric strength, an excellent effect of extending the service life is obtained.
그리고, 본 발명에 따른 전력 케이블은 반도전필름의 권취에 의해 형성되는 복수개의 층 중 랩권되는 반도전필름의 오버랩률을 정밀하게 조절하고 나머지층은 반도전층의 갭권에 의해 형성함으로써, 반복적인 굴곡과 굴곡핌에도 반도전필름의 파손이 억제되어 이들의 권취에 의해 형성되는 층간 구조가 유지될 수 있는 우수한 효과를 나타낸다.And, the power cable according to the present invention by precisely controlling the overlap rate of the semi-conducting film wrapped in the plurality of layers formed by the winding of the semi-conducting film and the remaining layer is formed by the gap winding of the semi-conducting layer, iterative bending The breakage of the semiconducting film is suppressed even in the bending and bending, and the interlayer structure formed by the winding thereof can be maintained.
나아가, 본 발명에 따른 전력 케이블은 불필요한 외경의 증가를 회피하여 굴곡성, 유연성, 포설성, 작업성 등이 향상되는 우수한 효과를 나타낸다.Furthermore, the power cable according to the present invention exhibits an excellent effect of improving flexibility, flexibility, laying property, workability, etc. by avoiding unnecessary increase in outer diameter.
도 1은 종래 전력 케이블에 있어서 도체부 위에 반도전지가 갭권되고 이러한 갭권에 의해 형성되는 절연유의 이동경로를 통해 도체부로부터의 동분이 반도전층 위의 절연층으로 침투하는 모습을 개략적으로 도시한 것이다.FIG. 1 schematically shows a case in which a semiconductor cell is gap-wound on a conductor part in a conventional power cable, and copper from the conductor part penetrates into the insulating layer on the semi-conducting layer through the movement path of the insulating oil formed by the gap winding. .
도 2는 본 발명에 따른 전력 케이블의 일실시예의 횡단면 구조를 개략적으로 도시한 것이다.Figure 2 schematically shows the cross-sectional structure of one embodiment of a power cable according to the invention.
도 3은 도 2에 도시된 전력 케이블의 종단면 구조를 개략적으로 도시한 것이다.FIG. 3 schematically illustrates a longitudinal cross-sectional structure of the power cable shown in FIG. 2.
도 4는 본 발명에 따른 전력 케이블의 절연층 내부에서 전계가 완화되는 과정을 개략적으로 나타내는 그래프를 도시한 것이다.4 is a graph schematically illustrating a process in which an electric field is relaxed in an insulating layer of a power cable according to the present invention.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. Like numbers refer to like elements throughout.
도 2 및 3은 본 발명에 따른 전력 케이블의 일실시예의 횡단면 및 종단면 구조를 개략적으로 각각 도시한 것이다.2 and 3 schematically show the cross-sectional and longitudinal cross-sectional structures of one embodiment of a power cable according to the invention, respectively.
도 2 및 3에 도시된 바와 같이, 본 발명에 따른 전력 케이블은 도체(100), 상기 도체(100)를 둘러싸는 내부 반도전층(200), 상기 내부 반도전층(200)을 둘러싸는 절연층(300), 상기 절연층(300)을 둘러싸는 외부 반도전층(400), 상기 외부 반도전층(400)을 둘러싸는 금속시스층(500), 상기 금속시스층(500)을 둘러싸는 케이블보호층(600) 등을 포함할 수 있다.As shown in FIGS. 2 and 3, the power cable according to the present invention includes a conductor 100, an inner semiconducting layer 200 surrounding the conductor 100, and an insulating layer surrounding the inner semiconducting layer 200 ( 300, an outer semiconducting layer 400 surrounding the insulating layer 300, a metal sheath layer 500 surrounding the outer semiconducting layer 400, and a cable protection layer surrounding the metal sheath layer 500 ( 600) and the like.
상기 도체(100)는 송전을 위한 전류의 이동 통로로서 전력 손실이 최소화되도록 도전율이 우수하고 케이블의 도체로 사용하기 위해 요구되는 적절한 강도와 유연성을 갖는 고순도의 구리(Cu), 알루미늄(Al) 등, 특히 신장율이 크고 도전율이 높은 연동선으로 이루어질 수 있다. 또한, 상기 도체(100)의 단면적은 케이블의 송전량, 용도 등에 따라 상이할 수 있다.The conductor 100 is a movement path for electric current for transmission, and has high electrical conductivity to minimize power loss, and has high purity copper (Cu), aluminum (Al), etc. having appropriate strength and flexibility required for use as a conductor of a cable. In particular, it may be made of a linkage line having a high elongation and a high conductivity. In addition, the cross-sectional area of the conductor 100 may be different depending on the amount of power transmission, the use of the cable.
바람직하게는, 상기 도체(100)는 원형 중심선 위에 평각 소선을 다층으로 얹어 구성시킨 평각도체 또는 원형 중심선 위에 원형 소선을 다층으로 얹은 후 압축한 원형압축도체로 이루어질 수 있다. 소위 키스톤(keystone) 방식에 의해 형성된 평각도체로 이루어진 상기 도체(100)는 도체의 점적율이 높아 케이블의 외경을 축소할 수 있는 동시에 각 소선의 단면적을 크게 성형하는 것이 가능하므로 전체 소선의 수를 줄일 수 있어 경제적이다. 또한, 도체(100) 내부에 공극이 적고, 도체(100) 내부에 포함되는 절연유의 중량을 작게할 수 있기 때문에 효과적이다.Preferably, the conductor 100 may be composed of a circular compression conductor compressed by placing a flat element wire in multiple layers on a flat conductor or a circular center line composed of multiple flat angle wires on a circular center line. Since the conductor 100 made of a flat conductor formed by a so-called keystone method has a high conductor area ratio, it is possible to reduce the outer diameter of the cable and to form a large cross-sectional area of each element wire. It is economical to reduce. Moreover, since there are few voids in the conductor 100 and the weight of the insulating oil contained in the conductor 100 can be made small, it is effective.
상기 내부 반도전층(200)은 상기 도체(100)의 표면 불균일에 의한 전계왜곡 및 전계집중을 억제함으로써 상기 내부 반도전층(200)과 상기 절연층(300)의 계면 또는 상기 절연층(300) 내부에 집중된 전계에 의한 부분방전, 절연파괴 등을 억제하는 기능을 수행한다.The inner semiconducting layer 200 suppresses electric field distortion and electric field concentration due to surface unevenness of the conductor 100, thereby interfacing the inner semiconducting layer 200 and the insulating layer 300 or inside the insulating layer 300. It functions to suppress partial discharge and insulation breakdown caused by electric field concentrated on.
도 3에 도시된 바와 같이, 상기 내부 반도전층(200)은 예를 들어 고분자 수지에 카본블랙 등의 도전성 입자가 혼입되어 형성되는 고분자 복합소재로부터 형성되는 반도전필름(semi-conductive film)을 복수개의 층으로 횡권함으로써 형성할 수 있다.As shown in FIG. 3, the inner semiconductive layer 200 includes a plurality of semi-conductive films formed from a polymer composite material formed by mixing conductive particles such as carbon black in a polymer resin. It can form by transverse winding in two layers.
상기 고분자 복합소재로부터 형성된 반도전필름은 이의 소재로부터 구현되는 우수한 신축성, 표면접착성 등에 의해 상기 도체(100) 위에 권취시 상기 도체(100)에 대한 밀착성이 우수하기 때문에 도체(100)와 내부반도전층(200) 사이의 틈, 내부반도전층(200)과 절연층(300) 사이의 틈을 효과적으로 없애 부분 방전, 절연 파괴 등을 더욱 효과적으로 억제할 수 있다.The semiconducting film formed from the polymer composite material has an excellent adhesion to the conductor 100 when wound on the conductor 100 due to excellent elasticity, surface adhesiveness, etc., which is realized from the material thereof, and thus the conductor 100 and the inner semiconducting film. The gap between the front layer 200 and the gap between the internal semiconducting layer 200 and the insulating layer 300 may be effectively removed to more effectively suppress partial discharge and dielectric breakdown.
또한, 상기 반도전필름을 형성하는 고분자 복합소재는 종래 반도전지와 달리 절연유를 통과시키지 않기 때문에 케이블의 운용시 도체(100)의 발열에 의해 연선 도체 내부, 도체(100)와 반도전층(200) 사이의 절연유가 케이블 외측으로 이동하는 것을 억제하여 탈유 공극(void)의 형성을 최소화하거나 회피할 수 있다.In addition, since the polymer composite material forming the semiconducting film does not pass the insulating oil, unlike the conventional semiconducting battery, the conductor 100, the conductor 100 and the semiconducting layer 200 by the heat generation of the conductor 100 when the cable is operated. It is possible to suppress the movement of the insulating oil between the outside of the cable to minimize or avoid the formation of deoiling voids.
나아가, 상기 반도전필름을 형성하는 고분자 복합소재는 절연유 함침에 의해 어느 정도 절연유를 함유하게 될 수 있고, 이러한 경우 상기 반도전필름이 팽윤에 의해 팽창하게 되어, 도체(100)와 내부반도전층(200) 사이의 틈과 탈유 공극, 내부반도전층(200)과 절연층(300) 사이의 틈과 공극을 효과적으로 없애 부분 방전, 절연 파괴 등을 추가로 억제할 수 있다.Furthermore, the polymer composite material forming the semiconductive film may contain an insulating oil to some extent by impregnating the insulating oil. In this case, the semiconductive film is expanded by swelling, so that the conductor 100 and the internal semiconducting layer ( Partial discharge, dielectric breakdown, etc. can be further suppressed by effectively eliminating gaps and deoiling voids between the gaps 200 and gaps and voids between the internal semiconducting layer 200 and the insulating layer 300.
본 발명의 전력 케이블에서, 내부반도전층(200)을 형성하기 위해 반도전필름을 횡권하는 것은, 절연층 형성을 위한 절연지 권취 공정과 별도로 고분자 복합소재의 압출 공정을 통해 내부반도전층을 형성하는 경우에 비해 제조설비가 간단하고 절연지를 감는 공정과 통합이 가능하여 생산성이 크게 향상되고, 상기 반도전필름은 종래 반도전지에 비해 도체(100)와의 밀착성이 우수하고 도체에서 내부반도전층 또는 내부반도전층 내의 절연유의 이동을 효과적으로 억제하며 절연유 함유시 팽창하는 성질에 의해 도체와 내부반도전층 사이의 틈과 탈유 공극, 내부반도전층과 절연층 사이의 틈과 공극을 더욱 효과적으로 없애 부분 방전, 절연 파괴 등을 더욱 효과적으로 최소화하거나 회피할 수 있다.In the electric power cable of the present invention, the transverse winding of the semiconducting film to form the internal semiconducting layer 200 is performed when the internal semiconducting layer is formed through the extrusion process of the polymer composite material separately from the insulating paper winding process for forming the insulating layer. Compared to the conventional semiconductor cell, the semiconducting film has excellent adhesion with the conductor 100 and the internal semiconducting layer or the internal semiconducting layer in the conductor. It effectively suppresses the movement of insulating oil and expands when the insulating oil is contained, effectively eliminating gaps and voids between conductors and internal semiconducting layers, and gaps and voids between internal semiconducting layers and insulating layers. It can be minimized or avoided more effectively.
상기 반도전필름을 형성하는 고분자 복합소재에 포함되는 고분자 수지는 절연유 함침 공정시 적용되는 고온 환경, 케이블 운전시 도체의 발열 등을 고려하여 융점(Tm)이 120℃ 이상이고, 절연유에 녹지 않아야 한다. 여기서, 상기 고분자 수지의 융점(Tm)은 DSC(Differential Scanning Calorimeter) 장비를 활용하여 상온에서 300℃까지 10℃/min의 승온속도로 승온시키면서 측정하였다.The polymer resin included in the polymer composite material forming the semiconductive film has a melting point (Tm) of 120 ° C. or higher in consideration of the high temperature environment applied during the insulation oil impregnation process and the heat generation of the conductor during cable operation, and should not be dissolved in the insulation oil. . Here, the melting point (Tm) of the polymer resin was measured while heating up at a temperature increase rate of 10 ° C./min from room temperature to 300 ° C. using a DSC (Differential Scanning Calorimeter) device.
상기 고분자 수지는 예를 들어 고밀도 폴리에틸렌(HDPE), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리아미드(PA), 폴리프로필렌(PP), 폴리비닐리덴플루오라이드(PVDF), 불소고무, 실리콘고무 등을 포함할 수 있으며, 이 중에서도 폴리프로필렌(PP)과 같이 내열성이 높은 재료를 선택하는 것이 바람직하다.The polymer resin is, for example, high density polyethylene (HDPE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polypropylene (PP), polyvinylidene fluoride (PVDF), Fluorine rubber, silicone rubber, etc. may be included, and among these, it is preferable to select a material having high heat resistance such as polypropylene (PP).
상기 고분자 복합소재는 반도전 특성을 구현하기 위해 카본블랙 등의 도전성 입자를 상기 고분자 복합소재의 총 중량을 기준으로 10 내지 50 중량%로 포함할 수 있고, 추가로 산화방지제 0.05 내지 2 중량%, 열안정제 0.05 내지 2 중량%, 금속 산화방지제 0.05 내지 2 중량% 등을 포함할 수 있다.The polymer composite material may include 10 to 50% by weight of conductive particles, such as carbon black, based on the total weight of the polymer composite material to implement semiconductive properties, and additionally 0.05 to 2% by weight of an antioxidant, 0.05 to 2% by weight of the thermal stabilizer, 0.05 to 2% by weight of the metal antioxidant, and the like.
도 3에 도시된 바와 같이, 상기 반도전필름의 복수 개의 층 중 하나 이상의 층(210)은 반도전필름의 랩권, 즉 상기 반도전필름의 횡권시 상기 반도전필름의 폭 중 일부분이 오버랩(overlap)되도록 횡권함으로써 형성될 수 있고, 나머지 층(220)들은 반도전필름의 갭권, 즉 상기 반도전필름의 사이 사이에 일정한 갭(gap)이 형성되도록 횡권되고 상기 갭(gap)은 상기 반도전필름의 상부에 새로운 반도전필름이 횡권될 때에 상기 새로운 반도전필름에 의해 덮혀지면서 동시에 상기 새로운 반도전필름의 사이 사이에 또한 갭(gap)이 형성되도록 횡권되는 것이 계속하여 반복되는 방식으로 횡권될 수 있으며, 바람직하게는 상기 반도전필름의 랩권에 의해 형성되는 하나 이상의 층은 최내층, 즉 상기 도체(100)와 접촉하는 층을 포함할 수 있다.As illustrated in FIG. 3, at least one layer 210 of the plurality of layers of the semiconducting film overlaps a portion of the width of the semiconducting film when the wrap winding of the semiconducting film, that is, the transverse winding of the semiconducting film, The remaining layers 220 are transversely wound so that a constant gap is formed between the semi-conductive film, that is, between the semiconducting films, and the gap is the semiconducting film. When a new semiconducting film is rolled on top of it, it is covered by the new semiconducting film and at the same time it can be rolled in such a way that it is repeatedly rolled so that a gap is formed between the new semiconducting films. Preferably, at least one layer formed by the wrap winding of the semiconductive film may include an innermost layer, that is, a layer in contact with the conductor 100.
상기 반도전필름의 랩권에 의해 형성되는 층(210)은 상기 반도전필름의 갭권에 의해 형성되는 층(220)과 달리 층 내에 갭(gap), 즉 상기 도체(100)로부터의 동분이 이동할 수 있는 통로가 존재하지 않기 때문에 상기 동분이 상기 내부반도전층(200)을 통과해 상기 절연층(300)으로 이동하는 것을 억제함으로써 상기 동분에 의해 상기 절연층(300)의 절연 내력이 저하되는 것을 효과적으로 억제할 수 있으며, 이로써 상기 전력 케이블의 수명을 연장시키는 동시에 상기 전력 케이블의 불필요한 외경 증가를 회피할 수 있어 굴곡성, 유연성, 포설성, 작업성 등이 향상될 수 있다.Unlike the layer 220 formed by the gap winding of the semiconducting film, the layer 210 formed by the wrap winding of the semiconducting film may have a gap in the layer, that is, the same amount from the conductor 100. Since there is no passage therein, the copper powder is prevented from moving through the internal semiconducting layer 200 to the insulating layer 300, thereby effectively reducing the dielectric strength of the insulating layer 300 by the copper powder. It is possible to suppress, thereby extending the life of the power cable and at the same time avoid unnecessary increase in the outer diameter of the power cable can be improved flexibility, flexibility, installation, workability and the like.
나아가, 상기 반도전필름의 랩권에 의해 형성되는 층(210) 이외의 나머지 층을 형성하는 상기 반도전필름의 갭권에 의해 형성되는 층(220)은 임의의 층을 형성하는 반도전필름이 상기 임의의 층의 외층 및 내층을 각각 형성하는 반도전필름 사이 및 최외층은 절연층과의 사이에서 안정적으로 슬라이딩(sliding) 되도록 함으로써, 상기 전력 케이블에 반복적인 굴곡 및 굴곡핌이 적용되는 경우에도 인접한 반도전필름 사이의 마찰이나 충돌을 방지하여 상기 반도전필름의 파손을 억제하고 상기 내부반도전층(200)의 구조를 안정적으로 유지할 수 있다.Further, the layer 220 formed by the gap winding of the semiconducting film forming the remaining layer other than the layer 210 formed by the wrap winding of the semiconducting film may be a semiconductive film forming an arbitrary layer. Between the semiconducting films forming the outer and inner layers of the respective layers and the outermost layer are stably slid between the insulating layers, so that even if repeated bending and flexing are applied to the power cable, By preventing friction or collision between conductive films, the damage of the semiconducting film may be suppressed and the structure of the inner semiconducting layer 200 may be stably maintained.
바람직하게는, 상기 반도전필름의 랩권에 의해 형성되는 층(210)을 최내층, 즉 상기 도체(100) 직상에 배치함으로써, 상기 도체(100)로부터의 동분의 이동을 원천적으로 차단할 수 있을 뿐만 아니라, 상기 반도전필름의 랩권시 상기 반도전필름끼리 오버랩되는 비율인 오버랩율을 조절함으로써 상기 전력 케이블의 굴곡시 인접한 반도전필름 사이의 오버랩되는 부분이 분리되는 것을 억제할 수 있어 상기 전력 케이블의 굴곡핌시 반도전필름 사이의 충돌을 방지할 수 있고, 결과적으로 상기 반도전필름의 파손을 억제하여 상기 내부반도전층(200)의 구조를 안정적으로 유지할 수 있다.Preferably, by disposing the layer 210 formed by the wrap winding of the semiconducting film directly on the innermost layer, that is, the conductor 100, the movement of the same from the conductor 100 can be blocked at the source. Instead, the overlapping portion between adjacent semiconducting films can be suppressed during bending of the power cable by adjusting an overlap rate, which is a ratio at which the semiconducting films overlap with each other when the wrapper of the semiconducting film is wrapped. It is possible to prevent the collision between the semiconducting film during bending, and as a result, it is possible to stably maintain the structure of the inner semiconducting layer 200 by suppressing the breakage of the semiconducting film.
여기서, 상기 반도전필름의 복수 개의 층의 갯수는 2 내지 25개일 수 있고, 이로써 상기 내부반도전층(200)의 전체 두께는 약 0.1 내지 3.0 mm일 수 있으며, 한편 상기 반도전필름의 폭은 약 10 내지 30 mm일 수 있고, 상기 반도전필름의 랩권시 오버랩률은 상기 도체(100)의 외경, 상기 반도전필름의 폭, 상기 내부반도전층(200)에서 상기 반도전필름의 랩권에 의해 형성되는 층(210)의 위치 등에 따라 상이할 수 있으며 예를 들어 20 내지 60%일 수 있다.Here, the number of the plurality of layers of the semiconducting film may be 2 to 25, whereby the total thickness of the inner semiconducting layer 200 may be about 0.1 to 3.0 mm, while the width of the semiconducting film is about It may be 10 to 30 mm, the overlap rate of the wrapper of the semiconducting film is formed by the outer diameter of the conductor 100, the width of the semiconducting film, wrap wrap of the semiconducting film in the inner semiconducting layer 200 It may be different depending on the position of the layer 210 to be, for example, may be 20 to 60%.
상기 반도전필름의 랩권시 오버랩률이 20% 미만인 경우 상기 전력 케이블의 굴곡시 상기 반도전필름 사이에서 오버랩된 부분이 분리되고 상기 전력 케이블의 굴곡핌시 분리된 상기 반도전필름이 다시 오버랩되려고 하면서 충돌하여 상기 반도전필름이 파손될 수 있는 반면, 60% 초과시 불필요하게 과도한 반도전필름의 오버랩으로 상기 전력 케이블의 생산성이 저하되고 상기 전력 케이블의 외경이 불필요하게 증가하여 굴곡성, 유연성, 포설성, 작업성 등이 저하될 수 있다.When the overlap rate of the semiconducting film is less than 20%, the overlapped portions between the semiconducting films are separated during the bending of the power cable, and the semiconducting films separated during the bending of the power cable are trying to overlap again. While the semiconducting film may be damaged due to a collision, the excess of the semiconducting film unnecessarily increases the productivity of the power cable due to the excessive overlap of the semiconducting film, and the outer diameter of the power cable is unnecessarily increased, resulting in flexibility, flexibility, laying property, and work. Sex and the like may be degraded.
한편, 상기 내부반도전층(200)을 형성함에 있어서 상기 반도전필름의 랩권과 갭권에 의해 층 형성을 연속적으로 수행하기 위해 상기 반도전필름의 랩권시 상기 반도전필름 2매 이상을 동시에 랩권할 수 있다.Meanwhile, in forming the inner semiconducting layer 200, two or more semiconducting films may be simultaneously wrapped in the wrapper of the semiconducting film in order to continuously perform layer formation by the wrap winding and the gap winding of the semiconducting film. have.
상기 절연층(300)은 절연지를 복수의 층으로 감싸서 형성되며, 절연지로는 예를 들어 크래프트지(Kraft paper)를 사용하거나 크래프트지와 폴리프로필렌(Polypropylene) 수지 등과 같은 열가소성 수지가 적층된 반합성지를 사용할 수 있다.The insulating layer 300 is formed by wrapping the insulating paper in a plurality of layers, and the insulating paper is, for example, using a kraft paper or a semi-synthetic paper in which a thermoplastic resin such as kraft paper and a polypropylene resin is laminated. Can be used.
본 발명의 바람직한 실시예에 따르면, 상기 절연층(300)은 내부 절연층(310), 중간 절연층(320) 및 외부 절연층(330)을 포함하고, 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 상기 중간 절연층(320)에 비해 저항율이 낮은 소재로 이루어지며, 이로써 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 각각 상기 케이블의 운용시 상기 도체(100)에 인가되어 형성되는 높은 전계가 상기 도체(100) 직상 또는 상기 금속시스층(500) 직하에 인가되는 것을 억제하는 전계 완화 작용을 하고, 나아가, 상기 중간 절연층(320)의 열화를 억제하기 위한 작용을 한다.According to a preferred embodiment of the present invention, the insulating layer 300 includes an inner insulating layer 310, an intermediate insulating layer 320 and an outer insulating layer 330, the inner insulating layer 310 and the outer The insulating layer 330 is made of a material having a lower resistivity than the intermediate insulating layer 320, whereby the inner insulating layer 310 and the outer insulating layer 330 are each connected to the conductor 100 when the cable is operated. To suppress the application of a high electric field formed by applying a direct current above the conductor 100 or directly below the metal sheath layer 500, and further suppress the deterioration of the intermediate insulating layer 320 It works for.
도 4는 본 발명에 따른 전력 케이블의 절연층 내부에서 전계가 완화되는 과정을 개략적으로 나타내는 그래프를 도시한 것이다. 도 4에 나타난 바와 같이, 상대적으로 저항율이 낮은 내부 절연층(310) 및 외부 절연층(330)에서 직류(DC) 전계가 완화됨으로써 상기 도체(100) 직상 및 상기 금속 시스층(500) 직하에 통상 직류 케이블에서 발생하는 높은 전계가 인가되는 것을 효과적으로 억제할 수 있을 뿐만 아니라, 임펄스인 경우에도 상기 중간 절연층(320)에 인가되는 최대 임펄스 전계를 100 kV/mm 이하로 제어하면서 내부 절연층에 걸리는 높은 임펄스 전계를 낮추어 내부절연층(310)의 열화를 억제하기 때문에, 함께 상기 중간 절연층(320)의 열화도 억제할 수 있다. 여기서, 상기 임펄스 전계란 케이블에 임펄스 전압이 인가되었을 때 케이블에 걸리는 전계를 의미한다.4 is a graph schematically illustrating a process in which an electric field is relaxed in an insulating layer of a power cable according to the present invention. As shown in FIG. 4, a direct current (DC) electric field is relaxed in the inner insulation layer 310 and the outer insulation layer 330 having a relatively low resistivity, thereby directly above the conductor 100 and directly below the metal sheath layer 500. In addition to effectively suppressing the application of a high electric field generated in a conventional DC cable, in the case of an impulse, an internal insulation layer is controlled while controlling the maximum impulse electric field applied to the intermediate insulation layer 320 to 100 kV / mm or less. Since the high impulse electric field applied is reduced to suppress the deterioration of the internal insulating layer 310, the deterioration of the intermediate insulating layer 320 can also be suppressed. Here, the impulse electric field means an electric field applied to the cable when an impulse voltage is applied to the cable.
따라서, 도 4에 도시된 바와 같이, 내부 절연층(310)의 최대 임펄스 전계값이 중간 절연층(320)의 최대 임펄스 전계값보다 작도록 설계함으로써 고전계가 도체 직상, 시스 직하에 작용하지 않도록 하며, 상기 중간 절연층(320)에 인가되는 최대 임펄스 전계는 상기 중간 절연층(320)의 내측 전계이고, 상기 내측 전계가 중간절연층(320)의 최대 임펄스 전계, 예를 들면, 100 kV/mm 이하로 제어됨으로써 상기 중간 절연층(320)의 열화를 억제할 수 있다.Therefore, as shown in FIG. 4, the maximum impulse electric field value of the internal insulation layer 310 is designed to be smaller than the maximum impulse electric field value of the intermediate insulation layer 320 so that the high electric field does not act directly on or under the sheath. The maximum impulse electric field applied to the intermediate insulating layer 320 is an inner electric field of the intermediate insulating layer 320, and the inner electric field is the maximum impulse electric field of the intermediate insulating layer 320, for example, 100 kV / mm. By controlling below, the degradation of the intermediate insulating layer 320 can be suppressed.
따라서, 상기 내부 절연층(310) 및 상기 외부 절연층(330), 특히 전계에 취약한 케이블 접속부재 등에 고전계가 인가되는 것을 억제하고, 나아가 상기 중간 절연층(320)이 가진 성능을 최대한으로 이끌어 내는 것으로 절연층(300) 전체를 컴팩트화 할 수 있으며, 그 열화를 억제하여, 상기 절연층(300)의 절연 내력, 기타 물성이 저하되는 것을 억제할 수 있고, 결과적으로 케이블보다 높은 임펄스 내압의 컴팩트 케이블로 할 수 있을 뿐만 아니라 케이블의 수명 단축을 억제할 수 있다.Accordingly, the high electric field is suppressed from being applied to the inner insulation layer 310 and the outer insulation layer 330, particularly, a cable connection member vulnerable to an electric field, and further, the performance of the intermediate insulation layer 320 is maximized. In this way, the entire insulation layer 300 can be made compact, the deterioration can be suppressed, and the insulation strength and other physical properties of the insulation layer 300 can be suppressed from being lowered. As a result, the impulse withstand voltage is higher than that of the cable. Not only can it be done with a cable, but it can also suppress the shortening of the cable life.
상기 내부 절연층(310) 및 상기 외부 절연층(330)은 각각 크라프트 펄프를 원료로 하는 크라프트(kraft)지를 횡권하고 절연유를 함침시킴으로써 형성할 수 있고, 이로써 상기 내부 절연층(310) 및 상기 외부 절연층(330)은 중간 절연층(320)에 비해 낮은 저항율 및 높은 유전율을 가질 수 있다. 상기 크라프트지는 크라프트 펄프 중의 유기 전해질을 제거하여 우수한 유전정접 및 유전율을 얻기 위해 크라프트 펄프를 탈 이온수로 수세처리함으로써 제조될 수 있다.The inner insulating layer 310 and the outer insulating layer 330 may be formed by transversely kraft paper made of kraft pulp and impregnated with an insulating oil, whereby the inner insulating layer 310 and the outer layer are impregnated. The insulating layer 330 may have a lower resistivity and a higher dielectric constant than the intermediate insulating layer 320. The kraft paper can be prepared by washing the kraft pulp with deionized water in order to remove the organic electrolyte in the kraft pulp to obtain good dielectric loss tangent and permittivity.
상기 중간 절연층(320)은 플라스틱 필름의 표면, 이면, 또는 이들 모두에 크라프트지가 적층된 반합성지를 횡권하고 절연유를 함침시킴으로써 형성할 수 있다. 이렇게 형성된 중간 절연층(320)은 플라스틱 필름을 포함하고 있으므로 상기 내부 절연층(310) 및 상기 외부 절연층(330)에 비해 높은 저항율, 낮은 유전율, 높은 직류절연내력 및 임펄스 파괴내압을 지니고 있으며, 상기 중간 절연층(320)의 높은 저항율에 의해 직류전계를 직류 내전계 강도에 강한 상기 중간 절연층(320)에 집중시키고, 또한 낮은 유전율로 임펄스 전계에 강한 중간 절연층(320)에 임펄스 전계를 집중시키는 것으로 전체로써의 절연층(300)을 컴팩트하게 하여, 그 결과, 상기 케이블의 외경을 축소하는 것이 가능해진다. The intermediate insulating layer 320 may be formed by transversely winding a semi-synthetic paper having kraft paper laminated on the surface, the back surface, or both of the plastic film and impregnating insulating oil. The intermediate insulating layer 320 formed as described above has a higher resistivity, lower dielectric constant, higher DC dielectric strength, and impulse breakdown voltage than the inner insulating layer 310 and the outer insulating layer 330 because it includes a plastic film. Due to the high resistivity of the intermediate insulating layer 320, a direct current field is concentrated on the intermediate insulating layer 320 resistant to the DC electric field strength, and an impulse electric field is applied to the intermediate insulating layer 320 resistant to the impulse electric field at a low dielectric constant. By concentrating, the insulating layer 300 as a whole can be made compact, and as a result, the outer diameter of the cable can be reduced.
여기서, 상기 내부 절연층(310), 상기 중간 절연층(320) 및 상기 외부 절연층(330)을 각각 형성하는 크라프트지 또는 반합성지는 횡권시 바람직하게는 갭권에 의해 횡권됨으로써 절연유 함침시 절연유가 이동하는 통로를 확보하는 것이 유리하여 함침시간을 단축할 수 있고, 동시에 상기 전력 케이블에 반복적인 굴곡 및 굴곡핌이 적용되는 경우에도 상기 크라프트지 및 상기 반합성지의 파손을 효과적으로 억제할 수 있다.Here, the kraft paper or semi-synthetic paper which forms the inner insulating layer 310, the intermediate insulating layer 320 and the outer insulating layer 330, respectively, is transversely wound by a gap winding when transverse winding, so that the insulating oil is impregnated when the insulating oil is impregnated. It is advantageous to secure a passage so that the impregnation time can be shortened, and at the same time, the breakage of the kraft paper and the semi-synthetic paper can be effectively suppressed even when repeated bending and bending are applied to the power cable.
상기 중간 절연층(320)을 형성하는 반합성지에서 상기 플라스틱 필름은 상기 케이블의 운용시 발열에 의해 팽창하여 유류저항을 증가시키는 것으로 상기 절연층(300)에 함침된 절연유가 상기 외부 반도전층(400) 쪽으로 이동하는 것을 억제하여 상기 절연유의 이동에 의한 탈유 보이드의 생성을 억제하고, 결과적으로 상기 탈유 보이드에 의한 전계 집중 및 절연 파괴를 억제할 수 있다. 여기서, 상기 플라스틱 필름은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 등의 폴리올레핀계 수지나 테트라플루오로에틸렌-헥사플루오로 폴리프로필렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체 등의 불소 수지로 이루어질 수 있고, 바람직하게는 내열성이 우수한 폴리프로필렌 단독중합체 수지로 이루어질 수 있다.In the semi-synthetic paper forming the intermediate insulating layer 320, the plastic film is expanded by heat generation during operation of the cable to increase the oil resistance, the insulating oil impregnated in the insulating layer 300 is the outer semiconducting layer 400 It is possible to suppress the movement toward the side) to suppress the production of deoiled voids due to the movement of the insulating oil, and consequently to suppress electric field concentration and dielectric breakdown caused by the deoiled voids. Here, the plastic film may be made of a polyolefin resin such as polyethylene, polypropylene, polybutylene, fluorine resin such as tetrafluoroethylene-hexafluoro polypropylene copolymer, ethylene-tetrafluoroethylene copolymer, Preferably it may be made of a polypropylene homopolymer resin excellent in heat resistance.
또한, 상기 반합성지는 상기 플라스틱 필름의 두께가 전체 두께의 40 내지 70%일 수 있다. 상기 플라스틱 필름의 두께가 상기 반합성지 전체 두께의 40% 미만인 경우 상기 중간 절연층(320)의 저항율이 불충분하여 케이블의 외경이 증가할 수 있는 반면, 70% 초과인 경우 반합성지의 가공, 즉 제조가 어려워지며 절연유의 유통로 부족으로 함침이 어려워질 수 있고, 고가가 될 가능성이 있다.In addition, the semi-synthetic paper may be 40 to 70% of the total thickness of the plastic film. When the thickness of the plastic film is less than 40% of the total thickness of the semi-synthetic paper, the resistivity of the intermediate insulating layer 320 may be insufficient, so that the outer diameter of the cable may be increased. Difficulties can be made difficult due to lack of distribution of insulating oil, which can be expensive.
상기 내부 절연층(310)은 상기 절연층(300) 전체 두께의 1 내지 10%의 두께를 가질 수 있고, 상기 외부 절연층(330)은 상기 절연층(300) 전체 두께의 1 내지 15%의 두께를 가질 수 있고, 상기 중간 절연층(320)은 상기 절연층(300) 전체 두께의 75% 이상의 두께를 가질 수 있다. 이로써, 상기 내부 절연층(310)의 최대 임펄스 전계 값이 상기 중간 절연층(320)의 최대 임펄스 전계 값보다 낮을 수 있다. 만약 내부 절연층의 두께가 필요 이상으로 증가될 경우, 중간 절연층(320)의 최대 임펄스 전계 값이 허용 최대 임펄스 전계 값보다 커지게 되며, 이를 완화하기 위해선 역으로 케이블 외경이 증가되는 문제점이 발생하게 된다. 그리고, 외부 절연층(330)은 내부 절연층보다 두께를 충분히 확보하는 것이 바람직한데, 이에 대해서는 후술한다.The inner insulating layer 310 may have a thickness of 1 to 10% of the total thickness of the insulating layer 300, and the outer insulating layer 330 may have a thickness of 1 to 15% of the total thickness of the insulating layer 300. The intermediate insulating layer 320 may have a thickness of 75% or more of the total thickness of the insulating layer 300. As a result, the maximum impulse electric field value of the inner insulation layer 310 may be lower than the maximum impulse electric field value of the intermediate insulation layer 320. If the thickness of the inner insulation layer is increased more than necessary, the maximum impulse electric field value of the intermediate insulation layer 320 becomes larger than the allowable maximum impulse electric field value, and in order to alleviate this problem, the cable outer diameter increases. Done. In addition, the outer insulating layer 330 preferably has a sufficient thickness than the inner insulating layer, which will be described later.
그리고, 본 발명에서는 저항율이 작은 내부 절연층(310)과 외부 절연층(330)을 구비함으로써, 직류 고전계가 상기 도체(100)의 직상 및 상기 금속시스층(500)의 직하에 인가되는 것을 억제하면서도, 저항율이 높은 중간 절연층(320)의 두께를 75% 이상으로 설계함으로써, 충분한 절연 내력을 유지하면서 케이블 외경을 축소하는 것이 가능해진다.In addition, in the present invention, the internal insulation layer 310 and the external insulation layer 330 having a small resistivity are provided to prevent the direct current high electric field from being applied directly above the conductor 100 and directly below the metal sheath layer 500. In addition, by designing the thickness of the intermediate insulating layer 320 having a high resistivity of 75% or more, it is possible to reduce the cable outer diameter while maintaining a sufficient dielectric strength.
이와 같이, 상기 절연층(300)을 구성하는 상기 내부 절연층(310), 상기 중간 절연층(320) 및 상기 외부 절연층(330)이 각각 정밀하게 제어된 상기 두께를 가짐으로써 상기 절연층(300)이 목적한 절연 내력을 가질 수 있는 동시에 케이블의 외경이 최소화될 수 있다. 또한, 상기 절연층(300)에 인가되는 직류 및 임펄스전계를 내전계상 가장 가장 유효하게 설계할 수 있으며, 직류와 임펄스의 고전계가 상기 도체(100)의 직상 및 상기 금속시스층(500)의 직하에 인가되는 것을 억제하여, 특히 전계에 취약한 케이블 접속부재의 절연 내력을 충분한 높이까지 상승시킬 수 있는 설계 수단을 적용할 수 있게 한다.As such, the inner insulation layer 310, the intermediate insulation layer 320, and the outer insulation layer 330 constituting the insulation layer 300 each have the precisely controlled thickness, so that the insulation layer ( 300 may have a desired dielectric strength while minimizing the outer diameter of the cable. In addition, the direct current and the impulse electric field applied to the insulating layer 300 can be most effectively designed on the electric field, and the high electric field of the direct current and the impulse is directly above the conductor 100 and directly below the metal sheath layer 500. It is possible to apply design means that can raise the dielectric strength of the cable connection member, which is particularly susceptible to electric fields, to a sufficient height.
바람직하게는, 상기 외부 절연층(330)의 두께가 상기 내부 절연층(310)의 두께보다 크고, 예를 들어, 직류 500 kV의 케이블에선 상기 내부 절연층(310)의 두께는 0.1 내지 2.0 mm이고, 상기 외부 절연층(330)의 두께는 0.1 내지 3.0 mm이며, 상기 중간 절연층(320)의 두께는 15 내지 25 mm일 수 있다.Preferably, the thickness of the outer insulating layer 330 is greater than the thickness of the inner insulating layer 310, for example, in a cable of 500 kV DC, the thickness of the inner insulating layer 310 is 0.1 to 2.0 mm. The thickness of the outer insulating layer 330 may be 0.1 to 3.0 mm, and the thickness of the intermediate insulating layer 320 may be 15 to 25 mm.
본 발명에 따른 케이블의 접속을 위한 연공 접속시 발생하는 열이 상기 절연층(300)에 인가되어 상기 중간 절연층(320)을 형성하는 반합성지의 플라스틱 필름이 녹을 수 있기 때문에, 상기 열로부터 상기 플라스틱 필름을 보호하기 위해 상기 외부 절연층(330)의 두께를 충분히 확보하는 것이 필요하고, 상기 내부 절연층(310)의 두께에 비해 두껍게 형성되는 것이 바람직하며, 상기 외부 절연층(330)의 두께는 상기 내부 절연층(310) 두께의 1 내지 30배로 하는 것이 바람직하다.Since the heat generated during soft connection for the cable connection according to the present invention is applied to the insulating layer 300 to melt the plastic film of the semi-synthetic paper forming the intermediate insulating layer 320, the plastic from the heat In order to protect the film, it is necessary to sufficiently secure the thickness of the outer insulating layer 330, and it is preferable to be formed thicker than the thickness of the inner insulating layer 310, the thickness of the outer insulating layer 330 The thickness of the internal insulating layer 310 is preferably 1 to 30 times.
또한, 상기 중간 절연층(320)을 형성하는 반합성지의 시트의 두께는 70 내지 200 ㎛이고, 상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께는 50 내지 150 ㎛일 수 있다. 그리고, 상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께는 상기 반합성지를 구성하는 크라프트지의 두께보다 크도록 형성한다.In addition, the thickness of the sheet of semi-synthetic paper forming the intermediate insulating layer 320 is 70 to 200 ㎛, the thickness of the kraft paper forming the inner and outer insulating layers 310, 320 may be 50 to 150 ㎛. The thickness of the kraft paper forming the inner and outer insulating layers 310 and 320 is greater than that of the kraft paper constituting the semi-synthetic paper.
상기 내부 및 외부 절연층(310,320)을 형성하는 크라프트지의 두께가 과도하게 얇은 경우 강도가 불충분하여 지권시 기계적 손상을 줄 수 있고 목적한 두께의 절연층을 형성하기 위한 횡권의 횟수가 증가하게 되어 케이블의 생산성이 저하될 수 있으며, 상기 크라프트지의 횡권시 절연유의 주된 통로를 이루는 크라프트지 사이의 간극의 전체 체적이 감소하여 절연유 함침시 장시간이 소요될 수 있고 함침되는 절연유의 함량이 저하되어 목적한 절연 내력을 구현하기 곤란할 수 있다.If the thickness of the kraft paper forming the inner and outer insulating layers (310,320) is too thin, the strength is insufficient, can cause mechanical damage when the paper rolls, and the number of side windings for forming the insulating layer of the desired thickness is increased Productivity of the kraft paper may be reduced, and the total volume of the gap between the kraft papers forming the main passage of the insulating oil when the kraft paper is transversely reduced may take a long time when the insulating oil is impregnated, and the content of the insulating oil impregnated is lowered, thereby reducing the desired dielectric strength. It may be difficult to implement.
상기 절연층(300)에 함침되는 절연유는 종래 OF 케이블에 사용되는 저점도 절연유와 같이 케이블 길이 방향으로 순환되지 않고 고정되므로 상대적으로 높은 점도를 갖는 절연유를 사용한다. 상기 절연유는 상기 절연층(300)의 목적한 절연 내력을 구현하는 작용 뿐만 아니라 케이블의 굴곡시 절연지의 운동이 용이하도록 윤활 역할을 함께 수행할 수 있다.Since the insulating oil impregnated in the insulating layer 300 is fixed without being circulated in the cable length direction like a low viscosity insulating oil used in a conventional OF cable, an insulating oil having a relatively high viscosity is used. The insulating oil may perform a lubrication role to facilitate the movement of the insulating paper when the cable is bent, as well as the function of implementing the desired dielectric strength of the insulating layer 300.
상기 절연유는 특별히 제한되지 않지만 60℃의 동점도가 5 내지 500 센티스토크스(cSt)인 중점도 절연유를 사용하거나, 60℃의 동점도가 500 센티스토크스(cSt) 이상인 고점도 절연유를 사용하는 것도 가능하다. 예를 들어 나프텐계 절연유, 폴리스틸렌계 절연유, 광유, 알킬 벤젠이나 폴리부텐계 합성유, 중질 알킬레이트 등으로 이루어진 그룹으로부터 선택된 1종 이상의 절연유를 합성하여 사용할 수 있다. The insulating oil is not particularly limited but may be a medium viscosity insulating oil having a kinematic viscosity of 5 to 500 centistokes (cSt) at 60 ° C., or a high viscosity insulating oil having a kinematic viscosity of 60 ° C. or more at 500 centistokes (cSt) or more. . For example, one or more insulating oils selected from the group consisting of naphthenic insulating oils, polystyrene insulating oils, mineral oils, alkyl benzene or polybutene synthetic oils, heavy alkylates, and the like can be synthesized and used.
상기 절연층(300)에 절연유를 함침시키는 공정은 상기 내부 절연층(310), 상기 중간 절연층(320) 및 상기 외부 절연층(330)이 각각 목적한 두께로 형성되도록 이들을 구성하는 상기 크라프트지 및 상기 반합성지를 각각 복수회 횡권하고, 진공 건조되어 상기 절연층(300)의 잔존 수분을 제거하고, 그 후, 절연유를 고압 환경 하에서 고온함침온도를 예를 들어, 100~120℃로 가열된 상기 절연유를 탱크에 주입하여 그 조건으로 일정 시간 동안 절연유를 절연층(300)에 함침시킨 후, 서서히 냉각됨으로써 수행될 수 있다.In the process of impregnating the insulating layer 300 with the insulating oil, the kraft paper constituting the inner insulating layer 310, the intermediate insulating layer 320 and the outer insulating layer 330 are formed to a desired thickness, respectively And each of the semi-synthetic paper is rolled up a plurality of times, and vacuum dried to remove residual moisture of the insulating layer 300, and then the insulating oil is heated to a high temperature impregnation temperature, for example, 100 to 120 ° C. under a high pressure environment. After the insulating oil is injected into the tank and the insulating oil is impregnated in the insulating layer 300 for a predetermined time under the condition, it may be performed by gradually cooling.
상기 외부 반도전층(400)은 상기 절연층(300)과 상기 금속시스층(500) 사이의 불균일한 전하 분포를 억제하여 전계분포를 완화시키며 다양한 형태의 금속시스층(500)으로부터 상기 절연층(300)을 물리적으로 보호하는 기능을 수행한다.The outer semiconducting layer 400 suppresses the uneven charge distribution between the insulating layer 300 and the metal sheath layer 500 to mitigate electric field distribution, and the insulating layer may be formed from various types of metal sheath layers 500. 300) to physically protect.
상기 외부 반도전층(400)은 예를 들어 절연지에 도전성 카본 블랙을 처리한 카본지 등 반도전지(semi-conductive paper)의 횡권에 의해 형성될 수 있고, 바람직하게는 상기 반도전지의 횡권에 의해 형성되는 하부층 및 상기 반도전지와 금속화지가 갭권 또는 공권으로 횡권되어 형성되는 상부층을 포함할 수 있다.The outer semiconducting layer 400 may be formed by a transverse winding of a semi-conductive paper, such as, for example, carbon paper treated with conductive carbon black on insulating paper, and preferably formed by the transverse winding of the semiconducting battery. The lower layer and the semiconductor cell and the metallization paper may include an upper layer formed to be transversely wound in a gap winding or an empty winding.
또한, 상기 상부층에서 상기 반도전지와 상기 금속화지가 공권되는 경우 상기 금속화지와 상기 반도전지가 일정 부분 예를 들어 약 20 내지 80% 오버랩(overlap)되도록 교대로 횡권될 수 있다.In addition, when the semiconductor cell and the metallization paper are wound in the upper layer, the metallization paper and the semiconductor cell may be alternately rolled so as to overlap, for example, about 20 to 80%.
여기서, 상기 금속화지는 크라프트지, 카본지 등의 베이스 종이 위에 알루미늄 테이프, 알루미늄박 같은 금속박이 적층된 구조를 가질 수 있고, 상기 금속박에는 그 하부의 반도전지, 절연지, 반합성지 등에 절연유가 용이하게 침투할 수 있도록 복수개의 천공이 존재할 수 있으며, 이로써 상기 하부층의 반도전지가 상기 상부층의 반도전지를 통해 상기 금속화지의 금속박까지 원활하게 전기적으로 접촉하게 되고, 결과적으로 상기 외부 반도전층(400)과 상기 금속시스층(500)이 원활하게 전기적으로 접촉하게 됨으로써 상기 절연층(300)과 상기 금속시스층(500) 사이에 균일한 전계 분포가 형성될 수 있다.Here, the metallized paper may have a structure in which a metal foil such as aluminum tape and aluminum foil is laminated on a base paper such as kraft paper or carbon paper, and the insulating oil easily penetrates into a semiconductor cell, an insulating paper, a semi-synthetic paper, and the like below the metal foil. A plurality of perforations may exist so that the semiconductor cell of the lower layer is in smooth electrical contact with the metal foil of the metallized paper through the semiconductor cell of the upper layer, and as a result, the external semiconducting layer 400 and the As the metal sheath layer 500 is in smooth electrical contact, a uniform electric field distribution may be formed between the insulating layer 300 and the metal sheath layer 500.
또한, 상기 외부 반도전층(400)은 상기 금속시스층(500)과의 사이에 동선직입포(미도시)를 추가로 포함할 수 있다. 상기 동선직입포는 부직포에 구리 와이어 2 내지 8 가닥이 직입된 구조로 상기 동선에 의해 상기 외부 반도전층(400)과 상기 금속시스층(500)을 원활하게 전기적으로 접촉시키는 기능을 수행하고, 추가로 상기 외부 반도전층(400)을 형성하기 위해 권취된 반도전지, 금속화지 등이 풀어지지 않고 앞서 기술한 구조를 유지할 수 있도록 이들을 견고하게 묶어주는 기능을 수행할 수 있으며, 열신축에 의한 케이블의 굴곡시 금속시스층(500)의 움직임에 따라 상기 금속화지 등이 찢어지는 등의 손상을 방지할 수 있다.In addition, the outer semiconducting layer 400 may further include a copper wire direct fabric (not shown) between the metal sheath layer 500. The copper wire direct fabric has a structure in which 2 to 8 strands of copper wire are directly inserted into a nonwoven fabric and performs a function of smoothly and electrically contacting the outer semiconducting layer 400 and the metal sheath layer 500 by the copper wire. To form the outer semiconducting layer 400, the wound semi-conductor cell, metallized paper, etc. may perform a function of tightly binding them so as to maintain the above-described structure without being released. As the metal sheath layer 500 moves during bending, damage to the metallized paper or the like may be prevented.
상기 금속시스층(500)은 케이블 내부에서 절연유가 외부로 새지 않게 하고, 직류 송전시의 케이블에 걸리는 전압을 도체(100)와 상기 금속시스층(500) 사이에 고정하여 케이블 일말단에서의 접지를 통해 케이블의 지락 또는 단락 사고 발생시 고장전류의 귀로로서 작용하여 안전을 도모하고, 케이블 외부의 충격, 압력 등으로부터 케이블을 보호하고, 케이블의 차수성, 난연성 등을 향상시키는 작용을 한다.The metal sheath layer 500 prevents the insulating oil from leaking to the outside of the cable, and fixes the voltage applied to the cable during direct current transmission between the conductor 100 and the metal sheath layer 500 so as to ground at one end of the cable. It acts as a return of fault current in the event of a ground fault or short circuit of the cable to protect safety, protect the cable from shocks, pressures, etc. outside the cable, and improve cable order and flame retardancy.
상기 금속시스층(500)은 예를 들어 순연 내지 합금연(lead alloy)으로 이루어진 연피시스에 의해 형성될 수 있다. 상기 금속시스층(500)으로서 상기 연피시스는 전기저항이 비교적 낮아 대전류통전체 기능을 겸하고, 심리스 타입(seamless type)으로 형성시 케이블의 차수성, 기계적 강도, 피로특성 등을 추가로 향상시킬 수 있다.The metal sheath layer 500 may be formed by, for example, a soft sheath made of pure lead or lead alloy. As the metal sheath layer 500, the soft sheath has a relatively low electric resistance, which serves as a large current collector, and can further improve cable ordering, mechanical strength, and fatigue characteristics when formed as a seamless type. have.
또한, 상기 연피시스는 케이블의 내식성, 차수성 등을 추가로 향상시키고 상기 금속시스층(500)과 상기 케이블보호층(600) 사이의 접착력을 향상시키기 위해 표면이 부식 방지 컴파운드, 예를 들어, 블로운 아스팔트 등으로 도포될 수 있다.In addition, the soft psi is a surface of the anti-corrosion compound, for example, in order to further improve the corrosion resistance, water resistance of the cable and the adhesion between the metal sheath layer 500 and the cable protection layer 600, Blown asphalt, or the like.
상기 케이블보호층(600)은 예를 들어 금속보강층(630) 및 외부시스(650)를 포함하고, 내부시스(610), 상기 금속보강층(630) 상하에 배치된 베딩층(620,640) 등을 추가로 포함할 수 있다. 여기서, 상기 내부시스(610)는 케이블의 내식성, 차수성 등을 향상시키고, 기계적 외상, 열, 화재, 자외선, 곤충이나 동물로부터 케이블을 보호하는 기능을 수행한다. 상기 내부시스(610)는 특별히 제한되지 않지만 내한성, 내유성, 내약품성 등이 우수한 폴리에틸렌이나, 내약품성, 난연성 등이 우수한 폴리염화비닐 등으로 이루어질 수 있다.The cable protection layer 600 includes, for example, a metal reinforcement layer 630 and an outer sheath 650, and further includes an inner sheath 610 and bedding layers 620 and 640 disposed above and below the metal reinforcement layer 630. It can be included as. Here, the inner sheath 610 improves the corrosion resistance, the degree of ordering of the cable, and performs a function of protecting the cable from mechanical trauma, heat, fire, ultraviolet rays, insects or animals. The inner sheath 610 is not particularly limited, but may be made of polyethylene having excellent cold resistance, oil resistance, chemical resistance, and the like, or polyvinyl chloride having excellent chemical resistance, flame resistance, and the like.
상기 금속보강층(630)은 기계적 충격으로부터 케이블을 보호하는 기능을 수행하고, 부식을 방지하기 위해 아연 도금 강철 테이프, 스테인레스강 테이프 등으로 형성될 수 있고, 상기 아연 도금 강철 테이프는 표면에 부식 방지 컴파운드가 도포될 수 있다. 또한, 상기 금속보강층(630) 상하에 배치된 베딩층(620,640)은 외부로부터의 충격, 압력 등을 완화하는 기능을 수행하고, 예를 들어, 부직포 테이프에 의해 형성될 수 있다.The metal reinforcement layer 630 may be formed of a galvanized steel tape, a stainless steel tape, etc. to perform a function of protecting a cable from mechanical shock and to prevent corrosion, and the galvanized steel tape may have an anti-corrosion compound on its surface. Can be applied. In addition, the bedding layers 620 and 640 disposed above and below the metal reinforcing layer 630 may perform a function of alleviating impact, pressure, and the like from the outside, and may be formed by, for example, a nonwoven tape.
또한, 상기 금속보강층(630)은 상기 금속시스층(500)의 직상에 직접 또는 베딩층(620,640)을 통해 설치하는 것도 가능하다. 이러한 경우 상기 금속보강층(630) 내의 절연유의 고온 팽창에 의한 상기 금속시스층(500)의 팽창 변형을 억제하여 케이블의 기계적 신뢰성을 향상시킴과 동시에 금속시스층(500) 내의 절연층(300)과 반도전층(200,400)의 부분을 고유압화하여 절연내력을 향상시키는 효과가 있다.In addition, the metal reinforcement layer 630 may be provided directly on the metal sheath layer 500 or through the bedding layers 620 and 640. In this case, the expansion deformation of the metal sheath layer 500 by the high temperature expansion of the insulating oil in the metal reinforcing layer 630 is suppressed to improve the mechanical reliability of the cable and at the same time, the insulating layer 300 and the metal sheath layer 500. The portion of the semiconducting layers 200 and 400 is intrinsically pressured to improve the dielectric strength.
상기 외부시스(650)는 상기 내부시스(610)와 실질적으로 동일한 기능 및 특성을 갖고, 해저터널, 육상터널구간 등에서의 화재는 인력 또는 설비 안전에 큰 영향을 주는 위험요소이므로 해당 지역에서 사용되는 케이블의 외부시스는 난연 특성이 우수한 폴리염화비닐을 적용하고, 관로구간의 케이블 외부시스는 기계적 강도, 내한성이 우수한 폴리에틸렌을 적용할 수 있다.The outer sheath 650 has substantially the same functions and characteristics as the inner sheath 610, and fires in submarine tunnels, land tunnel sections, etc. are used in the region because they are dangerous factors that greatly affect the safety of personnel or facilities. The outer sheath of the cable is applied to polyvinyl chloride excellent in flame retardant properties, the cable outer sheath of the pipe section can be applied to polyethylene with excellent mechanical strength and cold resistance.
또한, 여기에선 도시하지 않았지만 금속시스(500)의 위에 내부시스(610)를 생략하고 바로 금속보강층(630)을 설치할 수 있으며, 금속보강층(630) 내측과 외측에는 필요에 따라 베딩층을 설치할 수 있다. 즉, 상기 금속시스층에서 외측을 향해 순차적으로 베딩층, 금속보강층, 베딩층 및 외부시스가 구비되도록 형성할 수 있다. 이 경우는 금속보강층(630)이 금속시스(500)의 변형은 허용해도 외주의 변화는 억제하기 때문에, 금속시스(500)의 피로특성상 바람직하며 케이블 통전시의 금속시스(500) 내의 케이블 절연층(300)의 유압을 높히고, 반대로 케이블 통전을 off했을 시의 온도 하강에 의한 절연유의 수축에 따른 유압의 하강을 보상하며, 유압이 높은 부분에서 내부반도전층(200)에서와 같이 급격하게 유압이 내려가는 부분에 유압차로 기름을 이동시켜 보충하는 효과가 발생하여 바람직하다. In addition, although not shown here, the metal sheath 500 may be provided with a metal reinforcing layer 630 immediately omitted, and a bedding layer may be provided inside and outside the metal reinforcing layer 630 as necessary. have. That is, the metal sheath layer may be formed to be provided with a bedding layer, a metal reinforcing layer, a bedding layer and an outer sheath sequentially. In this case, since the metal reinforcement layer 630 allows deformation of the metal sheath 500, but suppresses the change in the outer circumference, it is preferable in view of the fatigue characteristics of the metal sheath 500, and the cable insulation layer in the metal sheath 500 during cable energization. Increasing the hydraulic pressure of (300) and, on the contrary, compensates for the lowering of the hydraulic pressure due to shrinkage of the insulating oil due to the temperature drop when the cable is turned off, and the hydraulic pressure is rapidly increased as in the inner semiconducting layer 200 in the high hydraulic pressure portion. It is desirable to have the effect of replenishing the oil by moving the oil to the down portion.
또한, 상기 케이블이 해저케이블인 경우 상기 케이블보호층(600)은 예를 들어 철선외장(660)과 폴리프로필렌 얀 등으로 이루어진 외부 써빙층(670) 등을 추가로 포함할 수 있다. 상기 철선외장(660), 외부 써빙층(670) 등은 해저의 해류, 암초 등으로부터 케이블을 추가적으로 보호하는 기능을 수행할 수 있다.In addition, when the cable is a submarine cable, the cable protection layer 600 may further include, for example, an outer serving layer 670 made of an iron sheath 660 and polypropylene yarn. The outer wire sheath 660, the outer serving layer 670 may perform a function of additionally protecting the cable from the sea current, reefs and the like.
또한, 상기 케이블이 해저케이블인 경우 상기 케이블보호층(600)은 예를 들어 철선외장(660), 폴리프로필렌 얀 등으로 이루어진 외부 써빙층(670) 등을 추가로 포함할 수 있다. 상기 철선외장(660), 외부 써빙층(670) 등은 해저의 해류, 암초 등으로부터 케이블을 추가적으로 보호하는 기능을 수행할 수 있다.In addition, when the cable is a submarine cable, the cable protection layer 600 may further include, for example, an outer serving layer 670 made of an iron sheath 660, polypropylene yarn, or the like. The outer wire sheath 660, the outer serving layer 670 may perform a function of additionally protecting the cable from the sea current, reefs and the like.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the present specification has been described with reference to preferred embodiments of the invention, those skilled in the art may variously modify and change the invention without departing from the spirit and scope of the invention as set forth in the claims set forth below. Could be done. Therefore, it should be seen that all modifications included in the technical scope of the present invention are basically included in the scope of the claims of the present invention.

Claims (17)

  1. 도체;Conductor;
    상기 도체를 둘러싸는 내부 반도전층;An inner semiconducting layer surrounding the conductor;
    상기 내부 반도전층을 둘러싸는 절연층;An insulating layer surrounding the inner semiconducting layer;
    상기 절연층을 둘러싸는 외부 반도전층;An outer semiconducting layer surrounding the insulating layer;
    상기 외부 반도전층을 둘러싸는 금속시스층; 및A metal sheath layer surrounding the outer semiconducting layer; And
    상기 금속시스층을 둘러싸는 케이블보호층을 포함하고,A cable protective layer surrounding the metal sheath layer;
    상기 내부 반도전층은 고분자 수지에 도전성 입자가 혼입된 고분자 복합소재로부터 형성된 반도전필름(semi-conductive film)의 횡권에 의해 형성된 것을 특징으로 하는, 전력 케이블.The inner semiconducting layer is a power cable, characterized in that formed by the transverse winding of a semi-conductive film (semi-conductive film) formed from a polymer composite material in which conductive particles are incorporated in a polymer resin.
  2. 제1항에 있어서,The method of claim 1,
    상기 고분자 수지는 융점(Tm)이 120℃ 이상인 것을 특징으로 하는, 전력 케이블.The polymer resin is characterized in that the melting point (Tm) is 120 ℃ or more, power cable.
  3. 제2항에 있어서,The method of claim 2,
    상기 고분자 수지는 고밀도 폴리에틸렌(HDPE), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리아미드(PA), 폴리프로필렌(PP), 폴리비닐리덴플루오라이드(PVDF), 불소고무 및 실리콘고무로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 전력 케이블.The polymer resin is high density polyethylene (HDPE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polypropylene (PP), polyvinylidene fluoride (PVDF), fluorine rubber and A power cable, characterized in that it comprises one or more selected from the group consisting of silicone rubber.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 도전성 입자는 상기 고분자 복합소재의 총 중량을 기준으로 카본블랙 10 내지 50 중량%를 포함하는 것을 특징으로 하는, 전력 케이블.The conductive particles, characterized in that containing 10 to 50% by weight carbon black based on the total weight of the polymer composite material, power cable.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 고분자 복합소재는 상기 고분자 복합소재의 총 중량을 기준으로 산화방지제 0.05 내지 2 중량%, 열안정제 0.05 내지 2 중량% 및 금속 산화방지제 0.05 내지 2 중량%를 포함하는 것을 특징으로 하는, 전력 케이블.The polymer composite material is characterized in that it comprises 0.05 to 2% by weight antioxidant, 0.05 to 2% by weight thermal stabilizer and 0.05 to 2% by weight metal antioxidant based on the total weight of the polymer composite material.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 내부반도전층은 반도전필름의 횡권에 의해 형성되는 복수 개의 층을 포함하고,The inner semiconducting layer includes a plurality of layers formed by the transverse winding of the semiconducting film,
    상기 복수 개의 층은 반도전필름의 공권에 의해 형성되는 하나 이상의 층을 포함하는 것을 특징으로 하는, 전력 케이블.Wherein the plurality of layers comprises one or more layers formed by the voids of the semiconducting film.
  7. 제6항에 있어서,The method of claim 6,
    상기 복수 개의 층 중 상기 반도전필름의 공권에 의해 형성되는 층 이외의 나머지 층은 반도전필름의 갭권에 의해 형성되는 층을 포함하는 것을 특징으로 하는, 전력 케이블.The remaining cable other than the layer formed by the void of the semiconducting film among the plurality of layers includes a layer formed by the gap winding of the semiconducting film.
  8. 제6항에 있어서,The method of claim 6,
    상기 반도전필름의 공권에 의해 형성되는 하나 이상의 층은 상기 도체의 직상에 배치되는 층을 포함하는 것을 특징으로 하는, 전력 케이블.And at least one layer formed by the void of the semiconducting film includes a layer disposed directly above the conductor.
  9. 제6항에 있어서,The method of claim 6,
    상기 반도전필름의 공권에 의해 형성되는 하나 이상의 층은 이를 형성하는 반도전필름의 폭 중 오버랩(overlap)되는 비율인 오버랩율이 20 내지 60%인 것을 특징으로 하는, 전력 케이블.At least one layer formed by the void of the semiconducting film has an overlap ratio of 20 to 60%, the overlapping ratio of the width of the semiconducting film forming the power cable.
  10. 제6항에 있어서,The method of claim 6,
    상기 반도전필름의 복수 개의 층은 2 내지 25개이고, 상기 내부 반도전층의 전체 두께는 0.1 내지 3.0 mm이며, 상기 반도전필름의 지폭은 10 내지 30 mm인 것을 특징으로 하는, 전력 케이블.The plurality of layers of the semiconducting film is 2 to 25, the total thickness of the inner semiconducting layer is 0.1 to 3.0 mm, the paper width of the semiconducting film, characterized in that 10 to 30 mm, the power cable.
  11. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 절연층은 절연지의 횡권에 의해 형성되는 복수 개의 층을 포함하고,The insulating layer includes a plurality of layers formed by the transverse winding of the insulating paper,
    상기 복수 개의 층은 절연지의 갭권에 의해 형성되는 층을 포함하는 것을 특징으로 하는, 전력 케이블.And the plurality of layers comprises a layer formed by a gap winding of insulating paper.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 절연층은 절연지의 횡권에 의해 형성되고,The insulating layer is formed by the transverse winding of the insulating paper,
    상기 절연지는 절연유가 함침된 크라프트(kraft)지 또는 반합성지를 포함하고,The insulating paper includes kraft paper or semi-synthetic paper impregnated with insulating oil,
    상기 반합성지는 플라스틱 필름 및 상기 플라스틱 필름의 적어도 한면에 적층된 크라프트(kraft)지를 포함하는 것을 특징으로 하는, 전력 케이블.The semi-synthetic paper comprises a plastic film and kraft paper laminated on at least one side of the plastic film.
  13. 제12항에 있어서,The method of claim 12,
    상기 절연층은 내부 절연층, 중간 절연층 및 외부 절연층이 순차적으로 적층되고,The insulating layer is an inner insulating layer, an intermediate insulating layer and an outer insulating layer are sequentially stacked,
    상기 내부 절연층 및 상기 외부 절연층은 각각 절연유가 함침된 크라프트(kraft)지로 형성되고, 상기 중간 절연층은 절연유가 함침된 반합성지로 형성는 것을 특징으로 하는, 전력 케이블.And the inner insulation layer and the outer insulation layer are each formed of kraft paper impregnated with insulating oil, and the intermediate insulation layer is formed of semi-synthetic paper impregnated with insulating oil.
  14. 제12항에 있어서,The method of claim 12,
    상기 절연유는 고점도 절연유를 포함하는 것을 특징으로 하는, 전력 케이블.And the insulating oil comprises a high viscosity insulating oil.
  15. 제14항에 있어서,The method of claim 14,
    상기 고점도 절연유는 60℃의 동점도가 500 센티스토크스(cSt) 이상인 것을 특징으로 하는, 전력 케이블.The high viscosity insulating oil is a power cable, characterized in that the kinematic viscosity of 60 ℃ more than 500 centistokes (cSt).
  16. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 케이블보호층은 내부시스, 베딩층, 금속보강층 및 외부시스를 포함하는 것을 특징으로 하는, 전력 케이블.Wherein said cable protection layer comprises an inner sheath, a bedding layer, a metal reinforcement layer and an outer sheath.
  17. 제16항에 있어서,The method of claim 16,
    상기 케이블보호층은 철선외장 및 외부 써빙층을 추가로 포함하는 것을 특징으로 하는, 전력 케이블.The cable protective layer is characterized in that it further comprises a wire sheath and an outer serving layer, power cable.
PCT/KR2017/003511 2017-01-20 2017-03-30 Power cable WO2018135700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170009957 2017-01-20
KR10-2017-0009957 2017-01-20

Publications (1)

Publication Number Publication Date
WO2018135700A1 true WO2018135700A1 (en) 2018-07-26

Family

ID=62622447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003511 WO2018135700A1 (en) 2017-01-20 2017-03-30 Power cable

Country Status (2)

Country Link
KR (1) KR101867224B1 (en)
WO (1) WO2018135700A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951493A (en) * 2021-01-29 2021-06-11 青岛科技大学 Breakdown-resistant high-voltage cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346981A (en) * 2004-05-31 2005-12-15 Toshiba Corp Prevention method of performance degradation of power cable and power cable executing this prevention method of performance degradation
JP2015119840A (en) * 2013-12-24 2015-07-02 プレモ株式会社 Game related information processing system
KR20150126736A (en) * 2013-04-05 2015-11-12 에이비비 테크놀로지 리미티드 Mixed solid insulation material for a transmission system
KR20160101643A (en) * 2015-02-17 2016-08-25 엘에스전선 주식회사 Power cable
KR20160121873A (en) * 2015-04-13 2016-10-21 엘에스전선 주식회사 Power cable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110087043A (en) * 2010-01-25 2011-08-02 엘에스전선 주식회사 Power cable having pressure-resistant property in high temperature condition
KR101605989B1 (en) * 2014-02-19 2016-03-23 엘에스전선 주식회사 Power cable
FR3023054B1 (en) * 2014-06-30 2017-11-24 Nexans JONCS COMPOSITES ELECTRICITY TRANSPORT CABLE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346981A (en) * 2004-05-31 2005-12-15 Toshiba Corp Prevention method of performance degradation of power cable and power cable executing this prevention method of performance degradation
KR20150126736A (en) * 2013-04-05 2015-11-12 에이비비 테크놀로지 리미티드 Mixed solid insulation material for a transmission system
JP2015119840A (en) * 2013-12-24 2015-07-02 プレモ株式会社 Game related information processing system
KR20160101643A (en) * 2015-02-17 2016-08-25 엘에스전선 주식회사 Power cable
KR20160121873A (en) * 2015-04-13 2016-10-21 엘에스전선 주식회사 Power cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951493A (en) * 2021-01-29 2021-06-11 青岛科技大学 Breakdown-resistant high-voltage cable
CN112951493B (en) * 2021-01-29 2022-05-17 青岛科技大学 Breakdown-resistant high-voltage cable

Also Published As

Publication number Publication date
KR101867224B1 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
KR101819289B1 (en) Power cable
WO2014081096A1 (en) Fire resistant cable for medium or high voltage
US10515741B2 (en) Fire resistant electric cable
WO2018174330A1 (en) Power cable
WO2018151371A1 (en) Power cable
WO2016133332A1 (en) Power cable
WO2018135700A1 (en) Power cable
WO2018034404A1 (en) Power cable
KR20180089837A (en) Apparatus and method for compaensating pressure of joint box
WO2018182070A1 (en) Power cable
WO2018182073A1 (en) Power cable
WO2018182071A1 (en) Power cable
WO2018182075A1 (en) Power cable
WO2020096241A1 (en) Joint system of power cable
KR101818879B1 (en) Power cable
WO2018221804A1 (en) Intermediate connection system for ultra-high-voltage direct current power cable
WO2015129968A1 (en) Power cable having end connecting portion
WO2018221803A1 (en) Ultra-high voltage direct current power cable
KR102343496B1 (en) Power cable
WO2018182078A1 (en) Direct current power cable joining system
WO2020101161A1 (en) Ultra high voltage direct current power cable system
CN214796808U (en) Fire-resistant cable
WO2018182076A1 (en) Direct current power cable joining system using joint box for power cable and direct current power cable joint method
WO2018182121A1 (en) Direct current power cable joining system
KR20190029990A (en) Power cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893172

Country of ref document: EP

Kind code of ref document: A1