WO2018221802A1 - Ultra-high voltage direct current power cable - Google Patents

Ultra-high voltage direct current power cable Download PDF

Info

Publication number
WO2018221802A1
WO2018221802A1 PCT/KR2017/014068 KR2017014068W WO2018221802A1 WO 2018221802 A1 WO2018221802 A1 WO 2018221802A1 KR 2017014068 W KR2017014068 W KR 2017014068W WO 2018221802 A1 WO2018221802 A1 WO 2018221802A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
high voltage
power cable
ultra
ethylene
Prior art date
Application number
PCT/KR2017/014068
Other languages
French (fr)
Korean (ko)
Inventor
정현정
남진호
유정석
양이슬
조민상
허성익
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170147052A external-priority patent/KR102256323B1/en
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to JP2019557843A priority Critical patent/JP2020518108A/en
Priority to EP17911827.8A priority patent/EP3633693A4/en
Priority to US16/612,217 priority patent/US20230377768A1/en
Priority to CN201780091435.3A priority patent/CN110692112B/en
Publication of WO2018221802A1 publication Critical patent/WO2018221802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • the present invention relates to an ultra-high voltage direct current power cable. Specifically, the present invention relates to an ultra-high voltage DC power cable capable of simultaneously preventing or minimizing electric field distortion, a decrease in DC dielectric strength, and a decrease in impulse breakdown strength due to accumulation of space charge in an insulator.
  • the power transmission method can be largely divided into an AC power transmission method and a DC power transmission method.
  • the DC power transmission method refers to the transmission of electrical energy by direct current. Specifically, the DC power transmission method first converts the AC power of the power transmission side to a suitable voltage, converts it to DC by a forward conversion device, and then sends it to the power receiver through the power transmission line. This is how you convert it.
  • the DC transmission method is advantageous in transporting a large amount of power over a long distance and can be interconnected with the asynchronous power system, and is widely used because DC has less power loss and higher stability than AC in long distance transmission. There is a situation.
  • the insulator of the (ultra) high voltage direct current transmission cable used in the DC transmission method may be formed from an insulation composition impregnated with insulating oil or an insulation composition based on a polyolefin resin, and recently, the cable may be operated at a relatively high temperature. Insulators formed of an insulating composition containing a polyolefin resin that can increase the transmission capacity and have no fear of insulating oil leakage have been widely used.
  • the polyolefin resin has a linear molecular chain structure, it is applied to the cable insulation layer by improving mechanical and thermal properties through a crosslinking process, and the cable insulation is insulated due to the crosslinking by-products inevitably decomposed during the crosslinking process. There is a problem of accumulating space charge in the layer, and the space charge may distort the electric field in the (ultra) high voltage direct current transmission cable insulator and cause insulation breakdown at a voltage lower than the first designed breakdown voltage.
  • inorganic additives such as magnesium oxide are uniformly dispersed in the cable insulation layer in order to solve the above-mentioned problems. Inorganic additives are polarized and trap the space charge, thereby minimizing electric field distortion caused by space charge accumulation.
  • VSC voltage-type direct current transmission
  • polarity inversion is unnecessary, and an insulation composition with an organic additive added to optimize the electrical stress applied to the cable insulator requires precise control of the space charge content in the insulation layer. There is.
  • VSC voltage type DC power transmission
  • An object of the present invention is to provide an ultra-high voltage DC power cable capable of simultaneously preventing or minimizing electric field distortion caused by accumulation of space charge in an insulator, a decrease in DC dielectric strength, and a decrease in impulse breaking strength.
  • An ultra-high voltage DC power cable comprising: a conductor formed by stranded wires; An inner semiconducting layer surrounding the conductor; An insulation layer surrounding the inner semiconducting layer; And an outer semiconducting layer surrounding the insulating layer, wherein the insulating layer is formed from an insulating composition comprising a polyolefin resin and a crosslinking agent, wherein the insulating layer is divided into three layers by dividing its thickness into an inner layer, a middle layer, and an outer layer.
  • ⁇ -CA ⁇ -cumyl alcohol
  • AP acetophenone
  • ⁇ -MS ⁇ -methyl styrene
  • the total content of the three specific cross-linked by-products contained in the inner layer of the insulating layer is characterized in that, 3,990 ppm or less, to provide an ultra-high voltage DC power cable.
  • FEF Field Enhancement Factor
  • FEF (maximumly increased field on insulated specimen / field applied to insulated specimen) * 100
  • the insulating specimen is a specimen prepared by crosslinking the insulating composition forming the insulating layer and having a thickness of 120 ⁇ m,
  • the electric field applied to the insulated specimen is 50 kV / mm as a direct current applied to electrodes connected to the surfaces facing each other in the insulated specimen,
  • the maximum increased electric field in the insulated specimen is the maximum value of the increased electric field during the application of a 50 kV / mm direct current electric field to the insulated specimen for one hour.
  • the polyolefin resin provides an ultra high voltage DC power cable, characterized in that it comprises a polyethylene resin.
  • the crosslinking agent provides an ultrahigh voltage direct current power cable, characterized in that the peroxide crosslinking agent.
  • the peroxide crosslinking agent is dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di
  • It provides an ultra-high voltage DC power cable, characterized in that it comprises one or more selected from the group consisting of (t-butyl peroxy) hexane and di-t-butyl peroxide.
  • the insulation composition provides an ultra-high voltage DC power cable, characterized in that it further comprises one or more additives selected from the group consisting of antioxidants, extrudability enhancers and crosslinking aids.
  • the semiconductive composition forming the inner and outer semiconducting layer provides an ultra-high voltage DC power cable, characterized in that the content of the crosslinking agent is 0.1 to 5 parts by weight based on 100 parts by weight of the base resin.
  • the base resin is ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acrylate (EEA), ethylene ethyl methacrylate (EEMA), ethylene (iso) Propyl acrylate (EPA), ethylene (iso) propyl methacrylate (EPMA), ethylene butyl acrylate (EBA) and ethylene butyl methacrylate (EBMA)
  • EVA ethylene vinyl acetate
  • EMA ethylene methyl acrylate
  • EMMA ethylene methyl methacrylate
  • EEMA ethylene ethyl acrylate
  • EEMA ethylene ethyl methacrylate
  • EEMA ethylene ethyl methacrylate
  • EPA ethylene ethyl methacrylate
  • EPMA ethylene butyl acrylate
  • EBMA ethylene butyl methacrylate
  • the ultra high voltage direct current power cable according to the present invention is an insulator by precisely controlling the content of the crosslinking agent added to the insulating composition forming the insulating layer and the specific crosslinking by-products generated during crosslinking by controlling the degree of crosslinking by appropriate modification of the base resin. It exhibits an excellent effect of simultaneously preventing or minimizing the electric field distortion, the decrease in DC dielectric strength and the impulse breakdown strength due to the accumulation of space charge in the interior.
  • FIG. 1 schematically illustrates a longitudinal cross-sectional view of an ultra-high voltage direct current power cable.
  • FIG. 2 is a graph showing the results of measuring the electric field increase coefficient (FEF) in the embodiment.
  • Figure 1 schematically shows a longitudinal cross-sectional view of the ultra-high voltage DC power cable according to the present invention.
  • the power cable 200 includes a conductor 210 formed by connecting a plurality of wires, an inner semiconducting layer 212 surrounding the conductor, an insulating layer 214 surrounding the inner semiconducting layer 212, Including an outer semiconducting layer 216 surrounding the insulating layer 214, and transmits power only in the cable length direction along the conductor 210, and has a cable core portion to prevent current leakage in the cable radial direction do.
  • the conductor 210 serves as a passage through which current flows to transmit power, and has a high conductivity to minimize power loss and a material having strength and flexibility suitable for cable production and use, for example, copper or aluminum. It may be configured as.
  • the conductor 210 may be a circular compressed conductor compressed in a circular shape by twisting a plurality of circular small wires, and may be a flat rectangular wire 210B twisted to surround a circular center element wire 210A and the circular center element wire 210A. It may be a flat conductor having a flat rectangular wire layer 210C and having a circular cross section as a whole.
  • the flat conductor has an advantage of reducing the outer diameter of a cable due to a relatively high drop ratio compared to a circular compressed conductor.
  • the conductor 210 is formed by twisting a plurality of element wires, the surface thereof is not smooth, so that an electric field may be uneven, and corona discharge is likely to occur partially.
  • insulation performance may be degraded.
  • the inner semiconducting layer 212 is formed outside the conductor 210.
  • the inner semiconducting layer 212 has semiconductivity by adding conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like to an insulating material, between the conductor 210 and the insulating layer 214 to be described later. It prevents a sudden electric field change and stabilizes insulation performance. In addition, by suppressing non-uniform charge distribution on the conductor surface, the electric field is made uniform, and the gap between the conductor 210 and the insulating layer 214 is prevented to prevent corona discharge and insulation breakdown.
  • conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like
  • An insulating layer 214 is provided on the outer side of the inner semiconducting layer 212 to electrically insulate the outside so that current flowing along the conductor 210 does not leak to the outside.
  • the insulating layer 214 has a high breakdown voltage and should be able to be stably maintained for a long time.
  • the dielectric loss is low and must have heat resistance such as heat resistance.
  • the insulating layer 214 may be a polyolefin resin such as polyethylene and polypropylene, and further preferably, polyethylene resin.
  • the polyethylene resin may be made of a crosslinked resin.
  • An outer semiconducting layer 216 is provided outside the insulating layer 214.
  • the outer semiconducting layer 216 is formed of a material having semiconductivity by adding conductive particles, such as carbon black, carbon nanotubes, carbon nanoplates, graphite, etc., to an insulating material like the inner semiconducting layer 212, The nonuniform charge distribution between the insulating layer 214 and the metal sheath 22 described later is suppressed to stabilize the insulating performance.
  • the outer semiconducting layer 216 smoothes the surface of the insulating layer 214 in the cable to mitigate electric field concentration to prevent corona discharge, and also physically protects the insulating layer 214. .
  • the cable core part in particular, the inner semiconducting layer 212, the insulating layer 214, and the outer semiconducting layer 216 are most concerned with electric field distortion caused by the generation, accumulation, and injection of the above-mentioned space charges and the resulting insulation breakdown. Detailed description thereof as a part will be described later.
  • the core part may further include a moisture absorbing layer for preventing moisture from penetrating the cable.
  • the moisture absorbing layer may be formed between stranded wires and / or outside the conductor 210, and has a high rate of absorbing moisture penetrating into the cable and a super absorbent polymer having excellent ability to maintain an absorbing state. It is formed in the form of a powder, a tape, a coating layer or a film including SAP) serves to prevent the penetration of moisture in the cable longitudinal direction.
  • the moisture absorbing layer may have a semiconductivity to prevent a sudden electric field change.
  • a protection sheath part is provided outside the core part, and a power cable installed in an environment in which water is exposed to moisture, such as the seabed, further includes an exterior part.
  • the protective sheath and the sheath protect the cable core from various environmental factors such as moisture penetration, mechanical trauma, and corrosion, which can affect the power transmission performance of the cable.
  • the protective sheath portion includes a metal sheath layer 218 and an inner sheath 220 to protect the cable core portion from accidental currents, external forces or other external environmental factors.
  • the metal sheath layer 218 is grounded at the end of the power cable to serve as a passage through which an accident current flows in case of an accident such as a ground fault or a short circuit, to protect the cable from external shocks, and to prevent the electric field from being discharged to the outside of the cable. have.
  • the metal sheath layer 218 is formed to seal the core part, thereby preventing foreign matter such as moisture from invading and deteriorating insulation performance.
  • the molten metal may be extruded to the outside of the core to be formed to have a seamless outer surface so that the ordering performance may be excellent.
  • Lead or aluminum is used as the metal, and in particular, in the case of submarine cables, it is preferable to use lead having excellent corrosion resistance to seawater, and lead alloy containing a metal element to complement mechanical properties. More preferably).
  • the metal sheath layer 218 is coated with an anti-corrosion compound, for example, blown asphalt, etc. on the surface in order to further improve the corrosion resistance, water resistance, etc. of the cable and to improve adhesion to the inner sheath 220.
  • an anti-corrosion compound for example, blown asphalt, etc.
  • a copper wire straight tape (not shown) to a moisture absorbing layer may be further provided between the metal sheath layer 218 and the core part.
  • the copper wire direct tape consists of a copper wire and a nonwoven tape to facilitate electrical contact between the outer semiconducting layer 216 and the metal sheath layer 218, and the moisture absorbing layer absorbs moisture that has penetrated the cable.
  • SAP super absorbent polymer
  • the inner sheath 220 made of a resin such as polyvinyl chloride (PVC), polyethylene, etc. is formed outside the metal sheath layer 218 to improve corrosion resistance, water resistance, and the like of the mechanical trauma and heat, It can also protect the cable from other external environmental factors such as UV light.
  • PVC polyvinyl chloride
  • polyethylene resin having excellent degree of orderability
  • polyvinyl chloride resin is preferably used in an environment where flame retardancy is required.
  • the protective sheath portion is made of a semi-conductive nonwoven tape or the like further includes an outer sheath made of a resin such as a metal reinforcing layer for buffering the external force applied to the power cable, polyvinyl chloride to polyethylene, etc. to further improve corrosion resistance and water resistance of the power cable. And further protect the cable from mechanical trauma and other external environmental factors such as heat and ultraviolet radiation.
  • the power cable installed on the seabed is easy to be damaged by anchors of ships, and may be damaged by bending force due to currents or waves, friction with the sea bottom, etc. Can be.
  • the exterior part may include an armor layer and a serving layer.
  • the armor layer may be made of steel, galvanized steel, copper, brass, bronze, and the like, and may be constituted by at least one layer by cross winding a wire having a circular cross section or the like.
  • the armor layer not only serves to enhance the mechanical properties and performance of the cable, but also additionally protects the cable from external forces.
  • the serving layer made of polypropylene yarn or the like is formed in one or more layers on the upper and / or lower portion of the armor layer to protect the cable, and the outermost serving layer is made of two or more materials of different colors. Visibility of cables laid on the sea floor can be ensured.
  • the above-described inner semiconducting layer 212 and outer semiconducting layer 216 have conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like dispersed in a base resin, and a crosslinking agent, an antioxidant, a scorch inhibitor, and the like are added. It is formed by the extrusion of the semiconducting composition added thereto.
  • the base resin may be a olefin resin of a similar series to the base resin of the insulating composition for forming the insulating layer 214 for the interlayer adhesion between the semiconductive layers 212 and 216 and the insulating layer 214, More preferably, in consideration of compatibility with the conductive particles, olefins and polar monomers such as ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acryl Elate, Ethylene Ethyl Methacrylate (EEMA), Ethylene (Iso) propyl Acrylate (EPA), Ethylene (Iso) propyl Methacrylate (EPMA), Ethylene Butyl Acrylate (EBA), Ethylene Butyl Methacrylate It is preferable to use (EBMA) or the like.
  • EVA ethylene vinyl acetate
  • EMA ethylene methyl acrylate
  • EMMA
  • the crosslinking agent is a silane crosslinking agent, or dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t-butyl cumyl peroxide, di (t-) according to the crosslinking method of the base resin included in the semiconductive layers 212 and 216.
  • Organic peroxide crosslinking agents such as butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane and di-t-butyl peroxide.
  • the semiconducting compositions forming the inner and outer semiconducting layers 212 and 216 may include 45 to 70 parts by weight of conductive particles such as carbon black based on 100 parts by weight of the base resin.
  • conductive particles such as carbon black
  • the content of the conductive particles is less than 45 parts by weight, sufficient semiconducting properties may not be realized, whereas when the content of the conductive particles is greater than 70 parts by weight, the extrudability of the inner and outer semiconducting layers 212 and 216 may be deteriorated, resulting in deterioration of surface properties or cable productivity There is a problem of deterioration.
  • the semiconducting compositions forming the inner and outer semiconducting layers 212 and 216 may be precisely adjusted to 0.1 to 5 parts by weight, preferably 0.1 to 1.5 parts by weight based on 100 parts by weight of the base resin. have.
  • the content of the crosslinking agent is greater than 5 parts by weight, the content of crosslinking by-products which are essentially generated when crosslinking the base resin included in the semiconducting composition is excessive, and the crosslinking byproducts are separated from the semiconducting layers 212 and 216.
  • the distortion of the electric field may be increased, causing a problem of lowering the dielectric breakdown voltage of the insulating layer 214.
  • the mechanical properties, heat resistance and the like of the semiconducting layers (212,216) may be insufficient.
  • the insulating layer 214 may be, for example, a polyolefin resin such as polyethylene or polypropylene as a base resin, and may be preferably formed by extrusion of an insulating composition containing a polyethylene resin.
  • the polyethylene resin may be ultra low density polyethylene (ULDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or a combination thereof.
  • the polyethylene resin may be a homopolymer, a random or block copolymer of ethylene and an ⁇ -olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, or a combination thereof.
  • the insulating composition for forming the insulating layer 214 includes a crosslinking agent, so that the insulating layer 214 is crosslinked polyolefin (XLPO), preferably crosslinked polyethylene (XLPE) by a separate crosslinking process during or after extrusion. It can be made of).
  • the insulation composition may further include other additives such as antioxidants, extrusion enhancers, crosslinking aids, and the like.
  • the crosslinking agent included in the insulating composition may be the same as the crosslinking agent included in the semiconductive composition.
  • a silane crosslinking agent or dicumyl peroxide, benzoyl peroxide, and lauryl peroxide depending on the crosslinking method of the polyolefin.
  • organic compounds such as t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane and di-t-butyl peroxide It may be a peroxide crosslinking agent.
  • the crosslinking agent included in the insulation composition may be included in an amount of less than 1% by weight, for example, 0.1% by weight or more and less than 1% by weight based on the total weight of the insulation composition.
  • crosslinking by-products that cause space charge generation among crosslinking by-products inevitably generated during crosslinking of the insulating layer 214 include ⁇ -cumyl alcohol ( ⁇ -CA), acetophenone (AP), and acetophenone (AP).
  • ⁇ -CA ⁇ -cumyl alcohol
  • AP acetophenone
  • AP acetophenone
  • ⁇ -methyl styrene ( ⁇ -MS) and the content of the crosslinking agent included in the insulating composition forming the insulating layer 214 is limited to less than 1 wt% and the insulating layer Degasing after crosslinking of (214) may limit the content of the specific crosslinking byproduct, and in particular, may limit the content of the specific crosslinking byproduct by position in the thickness of the insulating layer, Due to the limitation of the content, it is possible to significantly reduce the space charge generation and the electric field distortion, and consequently to prevent the decrease in the DC dielectric strength and the impulse breakdown strength of the insulating layer 214 at the same time. By experimentally it confirmed that it is possible to digest the present invention has been completed.
  • the inventors of the present invention have a problem that the degree of crosslinking of the insulating layer 214 is lowered because the content of the crosslinking agent is limited to less than 1% by weight, and as a result, the mechanical and thermal properties of the insulating layer 214 may be lowered.
  • the present invention was completed by experimentally confirming that by increasing the vinyl group content of the base resin included in the insulating composition forming (214), a degree of crosslinking of 60% or more, for example, 60 to 70% can be achieved and solved.
  • the insulating layer 214 is divided into three layers of the inner layer, which is a lower layer disposed directly on the conductor 10, a middle layer disposed on the inner layer, and an outer layer disposed on the middle layer.
  • the average value of the total contents of the three specific crosslinking by-products is adjusted to 3,890 ppm or less so that the generation of space charges in the insulating layer 214 is suppressed, thereby indicating the degree of electric field distortion in the insulating layer 214.
  • Field Enhancement Factor (FEF) of Equation 1 is adjusted to about 140% or less, and as a result, it is possible to simultaneously prevent or minimize the reduction of the DC dielectric strength and the impulse breakdown strength of the insulating layer 214. .
  • FEF (maximumly increased field on insulated specimen / field applied to insulated specimen) * 100
  • the insulating specimen is a specimen prepared by crosslinking the insulating composition forming the insulating layer 214 and having a thickness of 120 ⁇ m,
  • the electric field applied to the insulated specimen is 50 kV / mm as a direct current applied to electrodes connected to the surfaces facing each other in the insulated specimen,
  • the maximum increased electric field in the insulated specimen is the maximum value of the increased electric field during the application of a 50 kV / mm direct current electric field to the insulated specimen for one hour.
  • the inner layer of the insulating layer 214 is disposed directly on the conductor 210 to form a heterogeneous interface with the inner semiconducting layer 212, and is included in the inner layer because a relatively high field is applied to the insulating layer. More preferably, the total content of the three specific crosslinking byproducts is controlled to 3,990 ppm or less.
  • the amount of By controlling the amount of, by dividing the thickness of the insulating layer by the content of the cross-linked by-products of each layer / cross-linked by-product type of the inner layer, middle layer and outer layer is adjusted as shown in Table 1 below the model cable of the Examples to Comparative Examples Each manufactured.
  • the crosslinking byproduct content was measured by taking specimens at any intermediate point in each layer.
  • the insulation specimens of Comparative Examples 1 to 3 in which the content of three specific crosslinking by-products are not controlled, have an electric field increase coefficient (FEF) of 160%, indicating electric field distortion due to generation of space charge. It was found to be close to, which is expected to significantly reduce the dielectric strength.
  • FEF electric field increase coefficient
  • the content of three specific cross-linked by-products is precisely controlled, thereby suppressing the generation of space charges, which results in an electric field increase coefficient (FEF) of less than 140%.
  • FEF electric field increase coefficient

Abstract

The present invention relates to an ultra-high voltage direct current power cable. Specifically, the present invention relates to an ultra-high voltage direct current power cable enabling the simultaneous prevention or minimization of electric field distortion, DC dielectric strength degradation and impulse breakdown strength degradation caused by the accumulation of space charge in an insulator.

Description

초고압 직류 전력케이블Ultra High Voltage DC Power Cable
본 발명은 초고압 직류 전력케이블에 관한 것이다. 구체적으로, 본 발명은 절연체 내의 공간전하(space charge) 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 초고압 직류 전력케이블에 관한 것이다.The present invention relates to an ultra-high voltage direct current power cable. Specifically, the present invention relates to an ultra-high voltage DC power cable capable of simultaneously preventing or minimizing electric field distortion, a decrease in DC dielectric strength, and a decrease in impulse breakdown strength due to accumulation of space charge in an insulator.
일반적으로 대용량과 장거리 송전이 요망되는 대형 전력계통에서는 전력손실의 감소, 건설용지 문제, 송전용량 증대 등의 관점에서 송전전압을 높이는 고압송전이 필수적이라 할 수 있다.In general, in a large power system where large capacity and long distance transmission are desired, high voltage transmission to increase the transmission voltage is essential in view of reduction of power loss, construction site problem, and transmission capacity increase.
송전방식은 크게 교류송전방식과 직류송전방식으로 구분될 수 있으며, 이 중 직류송전방식은 직류로 전기 에너지를 보내는 것을 말한다. 구체적으로, 상기 직류송전방식은 먼저 송전 쪽의 교류전력을 적당한 전압으로 바꾸고 순변환장치에 의해 직류로 변환한 뒤 송전선로를 통해 수전 쪽으로 보내면, 수전 쪽에서는 역변환장치에 의해 직류전력을 다시 교류전력으로 변환하는 방식이다.The power transmission method can be largely divided into an AC power transmission method and a DC power transmission method. Among these, the DC power transmission method refers to the transmission of electrical energy by direct current. Specifically, the DC power transmission method first converts the AC power of the power transmission side to a suitable voltage, converts it to DC by a forward conversion device, and then sends it to the power receiver through the power transmission line. This is how you convert it.
특히, 상기 직류전송방식은 대용량의 전력을 장거리 수송하는데 유리하고 비동기 전력계통의 상호 연계가 가능하다는 장점이 있을 뿐만 아니라, 장거리 송전에 있어서 직류가 교류보다 전력 손실이 적고 안정도가 높으므로 많이 이용되고 있는 실정이다.In particular, the DC transmission method is advantageous in transporting a large amount of power over a long distance and can be interconnected with the asynchronous power system, and is widely used because DC has less power loss and higher stability than AC in long distance transmission. There is a situation.
상기 직류송전방식에 사용되는 (초)고압 직류 송전 케이블의 절연체는 절연유에 함침된 절연지 또는 폴리올레핀 수지를 베이스 수지로 하는 절연 조성물로부터 형성될 수 있는데, 최근에는 상대적으로 고온에서 케이블을 작동시킬 수 있어 송전용량을 증가시킬 수 있고 절연유 누유의 우려가 없는 폴리올레핀 수지를 포함하는 절연 조성물로 형성된 절연체가 많이 사용되고 있다.The insulator of the (ultra) high voltage direct current transmission cable used in the DC transmission method may be formed from an insulation composition impregnated with insulating oil or an insulation composition based on a polyolefin resin, and recently, the cable may be operated at a relatively high temperature. Insulators formed of an insulating composition containing a polyolefin resin that can increase the transmission capacity and have no fear of insulating oil leakage have been widely used.
그러나, 상기 폴리올레핀 수지는 직선형 분자쇄 구조를 갖고 있어 가교 과정을 통해 기계적, 열적 특성을 향상시켜 케이블 절연층에 적용되며, 상기 가교과정에서 가교제가 분해되며 필연적으로 발생하는 가교 부산물의 영향으로 케이블 절연층에 공간전하가 축적되는 문제가 있고, 상기 공간전하는 (초)고압 직류 송전 케이블 절연체 내의 전기장을 왜곡시켜 최초 설계된 절연 파괴전압보다 낮은 전압에서 절연 파괴를 일으킬 수 있다.However, since the polyolefin resin has a linear molecular chain structure, it is applied to the cable insulation layer by improving mechanical and thermal properties through a crosslinking process, and the cable insulation is insulated due to the crosslinking by-products inevitably decomposed during the crosslinking process. There is a problem of accumulating space charge in the layer, and the space charge may distort the electric field in the (ultra) high voltage direct current transmission cable insulator and cause insulation breakdown at a voltage lower than the first designed breakdown voltage.
송전 방향 전환을 위해 극성반전이 필요한 전류형 직류송전(LCC)에 사용되는 케이블의 경우에는 상술한 문제를 해결하기 위하여 산화마그네슘 등과 같은 무기 첨가제가 케이블 절연층에 골고루 분산되어 있고, 직류 전기장 하에서 상기 무기 첨가제가 분극화되며 공간전하를 트랩(trap)하여 공간전하 축적에 의한 전계왜곡을 최소화할 수 있다. 하지만, 전압형 직류송전(VSC)의 경우에는 극성반전이 불필요하며, 케이블 절연체가 받는 전기적 응력에 최적화되도록 유기 첨가제가 첨가된 절연 조성물을 사용하는바 절연층에서의 공간전하 함량을 정밀히 제어할 필요가 있다.In the case of a cable used in a current type direct current transmission (LCC) that requires polarity inversion to change the direction of transmission, inorganic additives such as magnesium oxide are uniformly dispersed in the cable insulation layer in order to solve the above-mentioned problems. Inorganic additives are polarized and trap the space charge, thereby minimizing electric field distortion caused by space charge accumulation. However, in the case of voltage-type direct current transmission (VSC), polarity inversion is unnecessary, and an insulation composition with an organic additive added to optimize the electrical stress applied to the cable insulator requires precise control of the space charge content in the insulation layer. There is.
따라서, 절연체 내의 공간전하(space charge) 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있고 특히 전압형 직류송전(VSC)에 사용하기 적합한 초고압 직류 전력케이블이 절실히 요구되고 있는 실정이다.Therefore, it is possible to simultaneously prevent or minimize the electric field distortion caused by the accumulation of space charge in the insulator, the decrease of the DC dielectric strength and the decrease of the impulse breakdown strength, and is particularly suitable for use in voltage type DC power transmission (VSC). There is an urgent need for cables.
본 발명은 절연체 내의 공간전하(space charge) 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 초고압 직류 전력케이블을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an ultra-high voltage DC power cable capable of simultaneously preventing or minimizing electric field distortion caused by accumulation of space charge in an insulator, a decrease in DC dielectric strength, and a decrease in impulse breaking strength.
상기 과제를 해결하기 위해, 본 발명은,In order to solve the above problems, the present invention,
초고압 직류 전력케이블로서, 복수의 소선이 연선되어 형성된 도체; 상기 도체를 감싸는 내부 반도전층; 상기 내부 반도전층을 감싸는 절연층; 및 상기 절연층을 감싸는 외부 반도전층을 포함하고, 상기 절연층은 폴리올레핀 수지 및 가교제를 포함하는 절연 조성물로부터 형성되며, 상기 절연층은 이의 두께를 3등분하여 내층, 중층 및 외층으로 구분할 때 각 층에 포함된 가교 부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)의 3종의 특정한 가교 부산물의 총 함량들의 평균값이 3,890 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.An ultra-high voltage DC power cable, comprising: a conductor formed by stranded wires; An inner semiconducting layer surrounding the conductor; An insulation layer surrounding the inner semiconducting layer; And an outer semiconducting layer surrounding the insulating layer, wherein the insulating layer is formed from an insulating composition comprising a polyolefin resin and a crosslinking agent, wherein the insulating layer is divided into three layers by dividing its thickness into an inner layer, a middle layer, and an outer layer. Three specific crosslinking byproducts of α-cumyl alcohol (α-CA), acetophenone (AP) and α-methyl styrene (α-MS) among the crosslinking by-products included in It provides an ultra-high voltage DC power cable, characterized in that the average value of the total content of the 3,890 ppm or less.
여기서, 상기 절연층 중 상기 내층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량이 3,990 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.Here, the total content of the three specific cross-linked by-products contained in the inner layer of the insulating layer is characterized in that, 3,990 ppm or less, to provide an ultra-high voltage DC power cable.
또한, 아래 수학식 1로 정의되는 전계상승계수(Field Enhancement Factor; FEF)가 140% 이하인 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.In addition, it provides an ultra-high voltage DC power cable, characterized in that the Field Enhancement Factor (FEF), which is defined by Equation 1 below, is 140% or less.
[수학식 1][Equation 1]
FEF=(절연 시편에서 최대로 증가된 전계/절연 시편에 인가된 전계)*100FEF = (maximumly increased field on insulated specimen / field applied to insulated specimen) * 100
상기 수학식 1에서,In Equation 1,
상기 절연 시편은 상기 절연층을 형성하는 절연 조성물의 가교에 의해 제조되고 두께가 120 ㎛인 시편이고,The insulating specimen is a specimen prepared by crosslinking the insulating composition forming the insulating layer and having a thickness of 120 μm,
상기 절연 시편에 인가된 전계는 상기 절연 시편에서 서로 마주보는 면에 각각 연결된 전극에 인가된 직류 전계로서 50kV/mm이고,The electric field applied to the insulated specimen is 50 kV / mm as a direct current applied to electrodes connected to the surfaces facing each other in the insulated specimen,
상기 절연 시편에서 최대로 증가된 전계는 상기 절연 시편에 1시간 동안 50kV/mm의 직류 전계를 인가하는 과정에서 증가된 전계 중 최대값이다.The maximum increased electric field in the insulated specimen is the maximum value of the increased electric field during the application of a 50 kV / mm direct current electric field to the insulated specimen for one hour.
나아가, 상기 폴리올레핀 수지는 폴리에틸렌 수지를 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.Furthermore, the polyolefin resin provides an ultra high voltage DC power cable, characterized in that it comprises a polyethylene resin.
그리고, 상기 가교제는 과산화물계 가교제인 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.In addition, the crosslinking agent provides an ultrahigh voltage direct current power cable, characterized in that the peroxide crosslinking agent.
여기서, 상기 과산화물계 가교제는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.Here, the peroxide crosslinking agent is dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di It provides an ultra-high voltage DC power cable, characterized in that it comprises one or more selected from the group consisting of (t-butyl peroxy) hexane and di-t-butyl peroxide.
또한, 상기 절연 조성물은 산화방지제, 압출성 향상제 및 가교조제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.In addition, the insulation composition provides an ultra-high voltage DC power cable, characterized in that it further comprises one or more additives selected from the group consisting of antioxidants, extrudability enhancers and crosslinking aids.
한편, 상기 내부 및 외부 반도전층을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 가교제의 함량이 0.1 내지 5 중량부인 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.On the other hand, the semiconductive composition forming the inner and outer semiconducting layer provides an ultra-high voltage DC power cable, characterized in that the content of the crosslinking agent is 0.1 to 5 parts by weight based on 100 parts by weight of the base resin.
여기서, 상기 베이스 수지는 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA) 및 에틸렌 부틸 메타크릴레이트(EBMA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블을 제공한다.Here, the base resin is ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acrylate (EEA), ethylene ethyl methacrylate (EEMA), ethylene (iso) Propyl acrylate (EPA), ethylene (iso) propyl methacrylate (EPMA), ethylene butyl acrylate (EBA) and ethylene butyl methacrylate (EBMA) To provide an ultra-high voltage DC power cable.
본 발명에 따른 초고압 직류 전력케이블은 절연층을 형성하는 절연 조성물에 첨가되는 가교제의 함량과 베이스 수지의 적절한 개질에 의한 가교도 조절을 통해 가교시 생성되는 특정 가교 부산물의 함량을 정밀하게 제어함으로써 절연체 내의 공간전하 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 우수한 효과를 나타낸다.The ultra high voltage direct current power cable according to the present invention is an insulator by precisely controlling the content of the crosslinking agent added to the insulating composition forming the insulating layer and the specific crosslinking by-products generated during crosslinking by controlling the degree of crosslinking by appropriate modification of the base resin. It exhibits an excellent effect of simultaneously preventing or minimizing the electric field distortion, the decrease in DC dielectric strength and the impulse breakdown strength due to the accumulation of space charge in the interior.
도 1은 초고압 직류 전력케이블의 종단면도를 개략적으로 도시한 것이다.1 schematically illustrates a longitudinal cross-sectional view of an ultra-high voltage direct current power cable.
도 2는 실시예에서 전계상승계수(FEF)를 측정한 결과를 그래프로 도시한 것이다.2 is a graph showing the results of measuring the electric field increase coefficient (FEF) in the embodiment.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. Like numbers refer to like elements throughout.
도 1은 본 발명에 따른 초고압 직류 전력케이블의 종단면도를 개략적으로 도시한 것이다.Figure 1 schematically shows a longitudinal cross-sectional view of the ultra-high voltage DC power cable according to the present invention.
도 1을 참조하면, 전력케이블(200)은 복수의 소선이 연선되어 형성된 도체(210), 상기 도체를 감싸는 내부반도전층(212), 상기 내부반도전층(212)을 감싸는 절연층(214), 상기 절연층(214)을 감싸는 외부반도전층(216)을 포함하여, 상기 도체(210)를 따라 케이블 길이 방향으로만 전력을 전송하고, 케이블 반경 방향으로는 전류가 누설되지 않도록 하는 케이블 코어부를 구비한다.Referring to FIG. 1, the power cable 200 includes a conductor 210 formed by connecting a plurality of wires, an inner semiconducting layer 212 surrounding the conductor, an insulating layer 214 surrounding the inner semiconducting layer 212, Including an outer semiconducting layer 216 surrounding the insulating layer 214, and transmits power only in the cable length direction along the conductor 210, and has a cable core portion to prevent current leakage in the cable radial direction do.
상기 도체(210)는 전력을 전송하기 위해 전류가 흐르는 통로 역할을 하며, 전력 손실을 최소화할 수 있도록 도전율이 우수하고 케이블 제조 및 사용에 적절한 강도와 유연성을 가진 소재, 예를 들어 구리 또는 알루미늄 등으로 구성될 수 있다. 상기 도체(210)는 복수개의 원형소선을 연선하여 원형으로 압축한 원형 압축도체일 수 있고, 원형의 중심소선(210A)과 상기 원형 중심소선(210A)을 감싸도록 연선된 평각소선(210B)으로 이루어진 평각소선층(210C)을 구비하며 전체적으로 원형의 단면을 가지는 평각도체일 수 있으며, 상기 평각도체는 원형 압축도체에 비하여 점적율이 상대적으로 높아 케이블 외경을 축소할 수 있는 장점이 있다.The conductor 210 serves as a passage through which current flows to transmit power, and has a high conductivity to minimize power loss and a material having strength and flexibility suitable for cable production and use, for example, copper or aluminum. It may be configured as. The conductor 210 may be a circular compressed conductor compressed in a circular shape by twisting a plurality of circular small wires, and may be a flat rectangular wire 210B twisted to surround a circular center element wire 210A and the circular center element wire 210A. It may be a flat conductor having a flat rectangular wire layer 210C and having a circular cross section as a whole. The flat conductor has an advantage of reducing the outer diameter of a cable due to a relatively high drop ratio compared to a circular compressed conductor.
그런데, 도체(210)는 복수의 소선을 연선하여 형성되므로 그 표면이 평활하지 않아 전계가 불균일할 수 있으며, 부분적으로 코로나 방전이 일어나기 쉽다. 또한, 도체(210) 표면과 후술하는 절연층(214) 사이에 공극이 생기게 되면 절연성능이 저하될 수 있다. 상기와 같은 문제점을 해결하기 위하여 도체(210) 외부에는 내부반도전층(212)이 형성된다.However, since the conductor 210 is formed by twisting a plurality of element wires, the surface thereof is not smooth, so that an electric field may be uneven, and corona discharge is likely to occur partially. In addition, when a gap is formed between the surface of the conductor 210 and the insulating layer 214 to be described later, insulation performance may be degraded. In order to solve the above problems, the inner semiconducting layer 212 is formed outside the conductor 210.
상기 내부반도전층(212)은 절연성 물질에 카본블랙, 카본 나노튜브, 카본나노플레이트, 그라파이트 등의 도전성 입자가 첨가되어 반도전성을 가지게 되며, 상기 도체(210)와 후술하는 절연층(214) 사이에서 급격한 전계변화가 발생하는 것을 방지하여 절연성능을 안정화하는 기능을 수행한다. 또한, 도체면의 불균일한 전하분포를 억제함으로써 전계를 균일하게 하고, 도체(210)와 절연층(214) 간의 공극 형성을 방지하여 코로나 방전, 절연파괴 등을 억제하는 역할도 하게 된다.The inner semiconducting layer 212 has semiconductivity by adding conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like to an insulating material, between the conductor 210 and the insulating layer 214 to be described later. It prevents a sudden electric field change and stabilizes insulation performance. In addition, by suppressing non-uniform charge distribution on the conductor surface, the electric field is made uniform, and the gap between the conductor 210 and the insulating layer 214 is prevented to prevent corona discharge and insulation breakdown.
상기 내부반도전층(212)의 바깥쪽에는 절연층(214)이 구비되어 도체(210)를 따라 흐르는 전류가 외부로 누설되지 않도록 외부와 전기적으로 절연시켜 준다. 일반적으로 상기 절연층(214)은 파괴전압이 높고, 절연성능이 장기간 안정적으로 유지될 수 있어야 한다. 나아가 유전손실이 적으며 내열성 등의 열에 대한 저항 성능을 지니고 있어야 한다. 따라서, 상기 절연층(214)은 폴리에틸렌 및 폴리프로필렌 등의 폴리올레핀 수지가 사용될 수 있으며, 나아가 폴리에틸렌 수지가 바람직하다. 여기서, 상기 폴리에틸렌 수지는 가교수지로 이루어질 수 있다.An insulating layer 214 is provided on the outer side of the inner semiconducting layer 212 to electrically insulate the outside so that current flowing along the conductor 210 does not leak to the outside. In general, the insulating layer 214 has a high breakdown voltage and should be able to be stably maintained for a long time. Furthermore, the dielectric loss is low and must have heat resistance such as heat resistance. Accordingly, the insulating layer 214 may be a polyolefin resin such as polyethylene and polypropylene, and further preferably, polyethylene resin. Here, the polyethylene resin may be made of a crosslinked resin.
상기 절연층(214)의 외부에는 외부반도전층(216)이 구비된다. 상기 외부반도전층(216)은 내부반도전층(212)과 같이 절연성 물질에 도전성 입자, 예를 들면 카본블랙, 카본나뉴튜브, 카본나노플레이트, 그라파이트 등이 첨가되어 반도전성을 가지는 물질로 형성되어, 상기 절연층(214)과 후술하는 금속시스(22) 사이의 불균일한 전하 분포를 억제하여 절연 성능을 안정화한다. 또한, 상기 외부반도전층(216)은 케이블에 있어서 절연층(214)의 표면을 평활하게 하여 전계집중을 완화시켜 코로나 방전을 방지하며, 상기 절연층(214)을 물리적으로 보호하는 기능도 수행한다.An outer semiconducting layer 216 is provided outside the insulating layer 214. The outer semiconducting layer 216 is formed of a material having semiconductivity by adding conductive particles, such as carbon black, carbon nanotubes, carbon nanoplates, graphite, etc., to an insulating material like the inner semiconducting layer 212, The nonuniform charge distribution between the insulating layer 214 and the metal sheath 22 described later is suppressed to stabilize the insulating performance. In addition, the outer semiconducting layer 216 smoothes the surface of the insulating layer 214 in the cable to mitigate electric field concentration to prevent corona discharge, and also physically protects the insulating layer 214. .
상기 케이블 코어부, 특히 상기 내부반도전층(212), 절연층(214) 내지 외부반도전층(216)은 전술한 공간전하의 생성, 축적 내지 주입에 따른 전계왜곡 및 이로 인한 절연파괴가 가장 우려되는 부분으로서 이에 대한 구체적인 설명은 별도로 후술한다.The cable core part, in particular, the inner semiconducting layer 212, the insulating layer 214, and the outer semiconducting layer 216 are most concerned with electric field distortion caused by the generation, accumulation, and injection of the above-mentioned space charges and the resulting insulation breakdown. Detailed description thereof as a part will be described later.
상기 코어부는 케이블에 수분이 침투하는 것을 방지하기 위한 수분흡수층을 추가적으로 구비할 수 있다. 상기 수분흡수층은 연선된 소선 사이 및/또는 도체(210)의 외부에 형성될 수 있으며, 케이블에 침투한 수분을 흡수하는 속도가 빠르고, 흡수 상태를 유지하는 능력이 우수한 고흡수성 수지(super absorbent polymer; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 수분흡수층은 급격한 전계 변화를 방지하기 위하여 반도전성을 가질 수 있다.The core part may further include a moisture absorbing layer for preventing moisture from penetrating the cable. The moisture absorbing layer may be formed between stranded wires and / or outside the conductor 210, and has a high rate of absorbing moisture penetrating into the cable and a super absorbent polymer having excellent ability to maintain an absorbing state. It is formed in the form of a powder, a tape, a coating layer or a film including SAP) serves to prevent the penetration of moisture in the cable longitudinal direction. In addition, the moisture absorbing layer may have a semiconductivity to prevent a sudden electric field change.
상기 코어부의 외부에는 보호시스부가 구비되며, 해저와 같이 수분에 노출이 많이 되는 환경에 포설되는 전력케이블은 외장부를 추가적으로 구비한다. 상기 보호시스부 및 외장부는 케이블의 전력 전송 성능에 영향을 미칠 수 있는 수분침투, 기계적 외상, 부식 등의 다양한 환경요인으로부터 상기 케이블 코어부를 보호한다.A protection sheath part is provided outside the core part, and a power cable installed in an environment in which water is exposed to moisture, such as the seabed, further includes an exterior part. The protective sheath and the sheath protect the cable core from various environmental factors such as moisture penetration, mechanical trauma, and corrosion, which can affect the power transmission performance of the cable.
상기 보호시스부는 금속 시스층(218)와 내부 시스(220)를 포함하여, 사고전류, 외력 내지 기타 외부환경 요인으로부터 상기 케이블 코어부를 보호한다.The protective sheath portion includes a metal sheath layer 218 and an inner sheath 220 to protect the cable core portion from accidental currents, external forces or other external environmental factors.
상기 금속 시스층(218)는 전력케이블 단부에서의 접지되어 지락 또는 단락 등의 사고 발생시 사고 전류가 흐르는 통로 역할을 하며, 외부의 충격으로부터 케이블을 보호하고, 전계가 케이블 외부로 방전되지 못하도록 할 수 있다. 또한, 해저 등의 환경에 부설되는 케이블의 경우, 상기 금속 시스층(218)이 상기 코어부를 실링하도록 형성되어 수분과 같은 이물질이 침입하여 절연 성능이 저하되는 것을 방지할 수 있다. 예를 들면, 상기 코어부 외부에 용융된 금속을 압출하여 이음새가 없는 연속적인 외면을 가지도록 형성하여 차수성능이 우수하게 할 수 있다. 상기 금속으로는 납(Lead) 또는 알루미늄을 사용하며, 특히 해저 케이블의 경우에는 해수에 대한 내식성이 우수한 납을 사용하는 것이 바람직하고, 기계적 성질을 보완하기 위해 금속 원소를 첨가한 합금연(Lead alloy)을 사용하는 것이 더욱 바람직하다.The metal sheath layer 218 is grounded at the end of the power cable to serve as a passage through which an accident current flows in case of an accident such as a ground fault or a short circuit, to protect the cable from external shocks, and to prevent the electric field from being discharged to the outside of the cable. have. In addition, in the case of a cable installed in an environment such as a seabed, the metal sheath layer 218 is formed to seal the core part, thereby preventing foreign matter such as moisture from invading and deteriorating insulation performance. For example, the molten metal may be extruded to the outside of the core to be formed to have a seamless outer surface so that the ordering performance may be excellent. Lead or aluminum is used as the metal, and in particular, in the case of submarine cables, it is preferable to use lead having excellent corrosion resistance to seawater, and lead alloy containing a metal element to complement mechanical properties. More preferably).
또한, 상기 금속 시스층(218)은 케이블의 내식성, 차수성 등을 추가로 향상시키고 상기 내부 시스(220)와의 접착력을 향상시키기 위해 표면에 부식 방지 컴파운드, 예를 들어, 블로운 아스팔트 등이 도포될 수 있다. 뿐만 아니라, 상기 금속 시스층(218)과 상기 코어부 사이에는 동선직입 테이프(미도시) 내지 수분 흡수층이 추가적으로 구비될 수 있다. 상기 동선직입 테이프는 동선(Copper wire)과 부직포 테이프 등으로 구성되어 외부반도전층(216)과 금속 시스층(218)간의 전기적 접촉을 원활히 하는 작용을 하며, 상기 수분흡수층은 케이블에 침투한 수분을 흡수하는 속도가 빠르고, 흡수 상태를 유지하는 능력이 우수한 고흡수성 수지(super absorbent polymer; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 수분흡수층에서의 급격한 전계 변화를 방지하기 위해 수분 흡수층에 동선을 포함시켜 구성할 수도 있다.In addition, the metal sheath layer 218 is coated with an anti-corrosion compound, for example, blown asphalt, etc. on the surface in order to further improve the corrosion resistance, water resistance, etc. of the cable and to improve adhesion to the inner sheath 220. Can be. In addition, a copper wire straight tape (not shown) to a moisture absorbing layer may be further provided between the metal sheath layer 218 and the core part. The copper wire direct tape consists of a copper wire and a nonwoven tape to facilitate electrical contact between the outer semiconducting layer 216 and the metal sheath layer 218, and the moisture absorbing layer absorbs moisture that has penetrated the cable. It is composed of powder, tape, coating layer or film including super absorbent polymer (SAP) that absorbs quickly and has excellent ability to maintain the absorption state. It plays a role. In addition, in order to prevent a sudden electric field change in the water absorbing layer may be configured to include a copper wire in the water absorbing layer.
상기 금속 시스층(218)의 외부에는 폴리염화비닐(PVC), 폴리에틸렌(polyethylene) 등과 같은 수지로 구성된 내부 시스(220)가 형성되어 케이블의 내식성, 차수성 등을 향상시키고, 기계적 외상 및 열, 자외선 등의 기타 외부 환경 요인으로 부터 케이블을 보호하는 기능을 수행할 수 있다. 특히, 해저에 포설되는 전력케이블의 경우에는 차수성이 우수한 폴리에틸렌 수지를 사용하는 것이 바람직하며, 난연성이 요구되는 환경에서는 폴리염화비닐 수지를 사용하는 것이 바람직하다.The inner sheath 220 made of a resin such as polyvinyl chloride (PVC), polyethylene, etc. is formed outside the metal sheath layer 218 to improve corrosion resistance, water resistance, and the like of the mechanical trauma and heat, It can also protect the cable from other external environmental factors such as UV light. In particular, in the case of power cables laid on the sea floor, it is preferable to use polyethylene resin having excellent degree of orderability, and polyvinyl chloride resin is preferably used in an environment where flame retardancy is required.
상기 보호 시스부는 반도전성 부직포 테이프 등으로 이루어져 전력케이블에 가해지는 외력을 완충하는 금속보강층, 폴리염화비닐 내지 폴리에틸렌 등의 수지로 구성되는 외부 시스를 더 구비하여 전력케이블의 내식성, 차수성 등을 더욱 향상시키고, 기계적 외상 및 열, 자외선 등의 기타 외부 환경 요인으로 부터 케이블을 추가적으로 보호할 수 있다.The protective sheath portion is made of a semi-conductive nonwoven tape or the like further includes an outer sheath made of a resin such as a metal reinforcing layer for buffering the external force applied to the power cable, polyvinyl chloride to polyethylene, etc. to further improve corrosion resistance and water resistance of the power cable. And further protect the cable from mechanical trauma and other external environmental factors such as heat and ultraviolet radiation.
또한, 해저에 포설되는 전력케이블은 선박의 닻 등에 의해 외상을 입기 쉬우며, 해류나 파랑 등에 의한 굽힘력, 해저면과의 마찰력 등에 의해서도 파손될 수 있으므로 이를 막기 위하여 상기 보호 시스부의 외부에는 외장부가 형성될 수 있다.In addition, the power cable installed on the seabed is easy to be damaged by anchors of ships, and may be damaged by bending force due to currents or waves, friction with the sea bottom, etc. Can be.
상기 외장부는 아머층 및 써빙층을 포함할 수 있다. 상기 아머층은 강철, 아연도금강, 구리, 황동, 청동 등으로 이루어지고 단면 형태가 원형, 평각형 등인 와이어를 횡권하여 적어도 1층 이상으로 구성할 수 있다. 상기 아머층은 케이블의 기계적 특성과 성능을 강화하는 기능을 수행할 뿐만 아니라 외력으로부터 케이블을 추가적으로 보호한다. 폴리프로필렌 얀 등으로 구성되는 상기 써빙층은 상기 아머층의 상부 및/또는 하부에 1층 이상으로 형성되어 케이블을 보호하며, 최외곽에 형성되는 써빙층은 색상이 다른 2종 이상의 재료로 구성되어 해저에서 포설된 케이블의 가시성을 확보할 수 있다.The exterior part may include an armor layer and a serving layer. The armor layer may be made of steel, galvanized steel, copper, brass, bronze, and the like, and may be constituted by at least one layer by cross winding a wire having a circular cross section or the like. The armor layer not only serves to enhance the mechanical properties and performance of the cable, but also additionally protects the cable from external forces. The serving layer made of polypropylene yarn or the like is formed in one or more layers on the upper and / or lower portion of the armor layer to protect the cable, and the outermost serving layer is made of two or more materials of different colors. Visibility of cables laid on the sea floor can be ensured.
상술한 내부 반도전층(212) 및 외부 반도전층(216)은 베이스 수지에 카본블랙, 카본나뉴튜브, 카본나노플레이트, 그라파이트 등의 전도성 입자가 분산되어 있고, 가교제, 산화방지제, 스코치 억제제 등이 추가로 첨가된 반도전 조성물의 압출에 의해 형성된다.The above-described inner semiconducting layer 212 and outer semiconducting layer 216 have conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like dispersed in a base resin, and a crosslinking agent, an antioxidant, a scorch inhibitor, and the like are added. It is formed by the extrusion of the semiconducting composition added thereto.
여기서, 상기 베이스 수지는 상기 반도전층(212,216)과 상기 절연층(214)의 층간 접착력을 위해 상기 절연층(214)을 형성하는 절연 조성물의 베이스 수지와 유사한 계열의 올레핀 수지를 사용하는 것이 바람직하고, 더욱 바람직하게는 상기 전도성 입자와의 상용성을 고려하여 올레핀과 극성 단량체, 예를 들어 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA), 에틸렌 부틸 메타크릴레이트(EBMA) 등을 사용하는 것이 바람직하다.Here, the base resin may be a olefin resin of a similar series to the base resin of the insulating composition for forming the insulating layer 214 for the interlayer adhesion between the semiconductive layers 212 and 216 and the insulating layer 214, More preferably, in consideration of compatibility with the conductive particles, olefins and polar monomers such as ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acryl Elate, Ethylene Ethyl Methacrylate (EEMA), Ethylene (Iso) propyl Acrylate (EPA), Ethylene (Iso) propyl Methacrylate (EPMA), Ethylene Butyl Acrylate (EBA), Ethylene Butyl Methacrylate It is preferable to use (EBMA) or the like.
또한, 상기 가교제는 상기 반도전층(212,216)에 포함된 베이스 수지의 가교방식에 따라 실란계 가교제, 또는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산, 디-t-부틸 퍼옥사이드 등의 유기과산화물계 가교제일 수 있다.In addition, the crosslinking agent is a silane crosslinking agent, or dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t-butyl cumyl peroxide, di (t-) according to the crosslinking method of the base resin included in the semiconductive layers 212 and 216. Organic peroxide crosslinking agents such as butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane and di-t-butyl peroxide.
그리고, 상기 내부 및 외부 반도전층(212,216)을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 카본블랙 등의 전도성 입자를 45 내지 70 중량부로 포함할 수 있다. 상기 전도성 입자의 함량이 45 중량부 미만인 경우 충분한 반도전 특성이 구현될 수 없는 반면, 70 중량부 초과시 상기 내부 및 외부 반도전층(212,216)의 압출성이 저하되어 표면특성이 저하되거나 케이블의 생산성이 저하되는 문제가 있다.The semiconducting compositions forming the inner and outer semiconducting layers 212 and 216 may include 45 to 70 parts by weight of conductive particles such as carbon black based on 100 parts by weight of the base resin. When the content of the conductive particles is less than 45 parts by weight, sufficient semiconducting properties may not be realized, whereas when the content of the conductive particles is greater than 70 parts by weight, the extrudability of the inner and outer semiconducting layers 212 and 216 may be deteriorated, resulting in deterioration of surface properties or cable productivity There is a problem of deterioration.
또한, 상기 내부 및 외부 반도전층(212,216)을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 상기 가교제의 함량이 0.1 내지 5 중량부, 바람직하게는 0.1 내지 1.5 중량부로 정밀하게 조절될 수 있다.In addition, the semiconducting compositions forming the inner and outer semiconducting layers 212 and 216 may be precisely adjusted to 0.1 to 5 parts by weight, preferably 0.1 to 1.5 parts by weight based on 100 parts by weight of the base resin. have.
여기서, 상기 가교제의 함량이 5 중량부 초과인 경우 상기 반도전 조성물에 포함된 베이스 수지의 가교시 필수적으로 생성되는 가교부산물의 함량이 과다하고, 이러한 가교부산물이 상기 반도전층(212,216)과 상기 절연층(214) 사이의 계면을 통해 상기 절연층(214) 내부로 이동하여 이종전하(heterocharge)를 축적시킴으로써 전계의 왜곡을 가중시켜 상기 절연층(214)의 절연파괴 전압을 저하시키는 문제를 유발할 수 있는 반면, 0.1 중량부 미만인 경우 가교도가 불충분하여 상기 반도전층(212,216)의 기계적 특성, 내열성 등이 불충분할 수 있다.Here, when the content of the crosslinking agent is greater than 5 parts by weight, the content of crosslinking by-products which are essentially generated when crosslinking the base resin included in the semiconducting composition is excessive, and the crosslinking byproducts are separated from the semiconducting layers 212 and 216. By moving into the insulating layer 214 through the interface between the layers 214 to accumulate heterocharges, the distortion of the electric field may be increased, causing a problem of lowering the dielectric breakdown voltage of the insulating layer 214. On the other hand, if less than 0.1 parts by weight of the cross-linking degree is insufficient, the mechanical properties, heat resistance and the like of the semiconducting layers (212,216) may be insufficient.
상기 절연층(214)은 예를 들어 베이스 수지로서 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지일 수 있고, 바람직하게는 폴리에틸렌 수지를 포함하는 절연 조성물의 압출에 의해 형성될 수 있다.The insulating layer 214 may be, for example, a polyolefin resin such as polyethylene or polypropylene as a base resin, and may be preferably formed by extrusion of an insulating composition containing a polyethylene resin.
상기 폴리에틸렌 수지는 초저밀도 폴리에틸렌(ULDPE), 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 중밀도 폴리에틸렌(MDPE), 고밀도 폴리에틸렌(HDPE), 또는 이들의 조합일 수 있다. 또한, 상기 폴리에틸렌 수지는 단독중합체, 에틸렌과 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐 등의 α-올레핀과의 랜덤 또는 블록 공중합체, 또는 이들의 조합일 수 있다.The polyethylene resin may be ultra low density polyethylene (ULDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or a combination thereof. In addition, the polyethylene resin may be a homopolymer, a random or block copolymer of ethylene and an α-olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, or a combination thereof.
또한, 상기 절연층(214)을 형성하는 절연 조성물은 가교제를 포함함으로써, 상기 절연층(214)은 압출시 또는 압출 후 별도의 가교 공정에 의해 가교 폴리올레핀(XLPO), 바람직하게는 가교 폴리에틸렌(XLPE)으로 이루어질 수 있다. 또한, 상기 절연 조성물은 산화방지제, 압출성향상제, 가교조제 등의 기타 첨가제를 추가로 포함할 수 있다.In addition, the insulating composition for forming the insulating layer 214 includes a crosslinking agent, so that the insulating layer 214 is crosslinked polyolefin (XLPO), preferably crosslinked polyethylene (XLPE) by a separate crosslinking process during or after extrusion. It can be made of). In addition, the insulation composition may further include other additives such as antioxidants, extrusion enhancers, crosslinking aids, and the like.
상기 절연 조성물에 포함되는 가교제는 상기 반도전 조성물에 포함되는 가교제와 동일할 수 있고, 예를 들어, 상기 폴리올레핀의 가교방식에 따라 실란계 가교제, 또는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산, 디-t-부틸 퍼옥사이드 등의 유기과산화물계 가교제일 수 있다. 여기서, 상기 절연 조성물에 포함되는 가교제는 상기 절연 조성물의 총 중량을 기준으로 1 중량% 미만, 예를 들어, 0.1 중량% 이상 1 중량% 미만의 함량으로 포함될 수 있다.The crosslinking agent included in the insulating composition may be the same as the crosslinking agent included in the semiconductive composition. For example, a silane crosslinking agent, or dicumyl peroxide, benzoyl peroxide, and lauryl peroxide depending on the crosslinking method of the polyolefin. organic compounds such as t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane and di-t-butyl peroxide It may be a peroxide crosslinking agent. Here, the crosslinking agent included in the insulation composition may be included in an amount of less than 1% by weight, for example, 0.1% by weight or more and less than 1% by weight based on the total weight of the insulation composition.
본 발명자들은 상기 절연층(214)의 가교시 불가피하게 생성되는 가교 부산물 중 공간전하 생성을 유발하는 특정한 가교 부산물이 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)임을 실험적으로 확인했고, 상기 절연층(214)을 형성하는 절연 조성물에 포함되는 가교제의 함량을 1 중량% 미만으로 제한하고 상기 절연층(214)의 가교 후 탈가스화(degasing)를 통해 상기 특정한 가교 부산물의 함량을 제한할 수 있고, 특히 절연층의 두께에서 위치별로 상기 특정한 가교 부산물의 함량을 제한할 수 있으며, 이러한 특정한 가교 부산물의 함량의 제한에 의해 공간전하 생성과 전계왜곡을 현저히 저감시킬 수 있고, 결과적으로 상기 절연층(214)의 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.The present inventors have found that specific crosslinking by-products that cause space charge generation among crosslinking by-products inevitably generated during crosslinking of the insulating layer 214 include α-cumyl alcohol (α-CA), acetophenone (AP), and acetophenone (AP). ) And α-methyl styrene (α-MS), and the content of the crosslinking agent included in the insulating composition forming the insulating layer 214 is limited to less than 1 wt% and the insulating layer Degasing after crosslinking of (214) may limit the content of the specific crosslinking byproduct, and in particular, may limit the content of the specific crosslinking byproduct by position in the thickness of the insulating layer, Due to the limitation of the content, it is possible to significantly reduce the space charge generation and the electric field distortion, and consequently to prevent the decrease in the DC dielectric strength and the impulse breakdown strength of the insulating layer 214 at the same time. By experimentally it confirmed that it is possible to digest the present invention has been completed.
나아가, 본 발명자들은 가교제의 함량이 1 중량% 미만으로 제한됨으로써 절연층(214)의 가교도가 저하되고, 결과적으로 상기 절연층(214)의 기계적, 열적 특성이 저하될 수 있는 문제는 상기 절연층(214)을 형성하는 절연 조성물에 포함되는 베이스 수지의 비닐기 함량을 증가시켜 60% 이상, 예를 들어 60 내지 70%의 가교도를 달성하여 해결할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.Furthermore, the inventors of the present invention have a problem that the degree of crosslinking of the insulating layer 214 is lowered because the content of the crosslinking agent is limited to less than 1% by weight, and as a result, the mechanical and thermal properties of the insulating layer 214 may be lowered. The present invention was completed by experimentally confirming that by increasing the vinyl group content of the base resin included in the insulating composition forming (214), a degree of crosslinking of 60% or more, for example, 60 to 70% can be achieved and solved.
구체적으로, 상기 절연층(214)은 이의 두께를 3등분하여 도체(10) 직상에 배치되는 하층인 내층, 상기 내층 위에 배치되는 중층 및 상기 중층 위에 배치되는 외층으로 구분할 때, 각 층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량들의 평균값이 3,890 ppm 이하로 조절되어 상기 절연층(214) 내의 공간전하 생성이 억제됨으로써, 상기 절연층(214) 내에서의 전계왜곡의 정도를 나타내는 아래 수학식 1의 전계상승계수(Field Enhancement Factor; FEF)가 약 140% 이하로 조절되고, 결과적으로 상기 절연층(214)의 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있다.In detail, the insulating layer 214 is divided into three layers of the inner layer, which is a lower layer disposed directly on the conductor 10, a middle layer disposed on the inner layer, and an outer layer disposed on the middle layer. The average value of the total contents of the three specific crosslinking by-products is adjusted to 3,890 ppm or less so that the generation of space charges in the insulating layer 214 is suppressed, thereby indicating the degree of electric field distortion in the insulating layer 214. Field Enhancement Factor (FEF) of Equation 1 is adjusted to about 140% or less, and as a result, it is possible to simultaneously prevent or minimize the reduction of the DC dielectric strength and the impulse breakdown strength of the insulating layer 214. .
[수학식 1][Equation 1]
FEF=(절연 시편에서 최대로 증가된 전계/절연 시편에 인가된 전계)*100FEF = (maximumly increased field on insulated specimen / field applied to insulated specimen) * 100
상기 수학식 1에서,In Equation 1,
상기 절연 시편은 상기 절연층(214)을 형성하는 절연 조성물의 가교에 의해 제조되고 두께가 120 ㎛인 시편이고,The insulating specimen is a specimen prepared by crosslinking the insulating composition forming the insulating layer 214 and having a thickness of 120 μm,
상기 절연 시편에 인가된 전계는 상기 절연 시편에서 서로 마주보는 면에 각각 연결된 전극에 인가된 직류 전계로서 50kV/mm이고,The electric field applied to the insulated specimen is 50 kV / mm as a direct current applied to electrodes connected to the surfaces facing each other in the insulated specimen,
상기 절연 시편에서 최대로 증가된 전계는 상기 절연 시편에 1시간 동안 50kV/mm의 직류 전계를 인가하는 과정에서 증가된 전계 중 최대값이다.The maximum increased electric field in the insulated specimen is the maximum value of the increased electric field during the application of a 50 kV / mm direct current electric field to the insulated specimen for one hour.
나아가, 상기 절연층(214) 중 상기 내층은 도체(210) 직상에 배치되어 내부반도전층(212)과의 이종계면을 형성하며, 상대적으로 고전계가 인가되어 절연에 취약한 부분이므로 상기 내층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량이 3,990 ppm 이하로 조절되는 것이 더욱 바람직하다.Furthermore, the inner layer of the insulating layer 214 is disposed directly on the conductor 210 to form a heterogeneous interface with the inner semiconducting layer 212, and is included in the inner layer because a relatively high field is applied to the insulating layer. More preferably, the total content of the three specific crosslinking byproducts is controlled to 3,990 ppm or less.
[실시예]EXAMPLE
1. 모델 케이블의 제조예1. Manufacturing Example of Model Cable
내부반도전층, 절연층 및 외부반도전층을 포함하여 절연 두께가 약 4mm이며, 도체 단면적이 약 400SQ인 모델 케이블로서, 상기 절연층에 첨가된 가교제의 함량을 조절하고 가교 및 탈가스화를 통해 가교부산물의 함량을 조절함으로써, 상기 절연층의 두께를 3등분하여 구분되는 내층, 중층 및 외층의 층별/가교 부산물 종류별 가교 부산물의 함량이 아래 표 1에 나타난 바와 같이 조절된 실시예 내지 비교예의 모델 케이블을 각각 제조했다. 상기 가교 부산물 함량은 상기 각 층별 중간 임의의 지점에서 시편을 채취하여 측정했다.A model cable having an insulation thickness of about 4 mm and a conductor cross-sectional area of about 400 SQ including an inner semiconducting layer, an insulating layer, and an outer semiconducting layer, wherein the crosslinking byproduct is controlled by controlling the content of the crosslinking agent added to the insulating layer and crosslinking and degassing. By controlling the amount of, by dividing the thickness of the insulating layer by the content of the cross-linked by-products of each layer / cross-linked by-product type of the inner layer, middle layer and outer layer is adjusted as shown in Table 1 below the model cable of the Examples to Comparative Examples Each manufactured. The crosslinking byproduct content was measured by taking specimens at any intermediate point in each layer.
가교부산물 함량(ppm)Crosslinked Byproduct Content (ppm)
α-CAα-CA APAP α-MSα-MS 총합total
비교예 1Comparative Example 1 내층Inner layer 31123112 11631163 149149 44244424
중층Middle layer 30373037 14061406 568568 50115011
외층Outer layer 19191919 10111011 569569 34993499
평균Average 2689.32689.3 1193.31193.3 428.7428.7 4311.34311.3
비교예 2Comparative Example 2 내층Inner layer 29472947 11591159 181181 42874287
중층Middle layer 28852885 14431443 641641 49694969
외층Outer layer 16671667 853853 475475 29952995
평균Average 2499.72499.7 1151.71151.7 432.3432.3 4083.74083.7
비교예 3Comparative Example 3 내층Inner layer 26582658 10731073 261261 39923992
중층Middle layer 25952595 13781378 722722 46954695
외층Outer layer 17301730 835835 476476 30413041
평균Average 2327.72327.7 1095.31095.3 486.3486.3 3909.33909.3
실시예 1Example 1 내층Inner layer 26812681 10521052 257257 39903990
중층Middle layer 25092509 12781278 737737 45244524
외층Outer layer 17991799 859859 498498 31563156
평균Average 2329.72329.7 1063.01063.0 497.3497.3 3890.03890.0
실시예 2Example 2 내층Inner layer 24122412 896896 274274 35823582
중층Middle layer 23592359 10461046 553553 39583958
외층Outer layer 14631463 540540 373373 23762376
평균Average 2078.02078.0 827.3827.3 400.0400.0 3305.33305.3
실시예 3Example 3 내층Inner layer 22542254 854854 259259 33673367
중층Middle layer 25012501 10651065 507507 40734073
외층Outer layer 15931593 610610 394394 25972597
평균Average 2116.02116.0 843.0843.0 386.7386.7 3345.73345.7
2. 전계상승계수(FEF) 측정2. Measurement of field rise coefficient (FEF)
상기 비교예 및 실시예 각각의 모델 케이블의 절연층에서 두께가 약 120 ㎛인 절연 시편을 채취한 후 PEA(pulsed electro acoustic) 시스템을 기반으로 상기 절연 시편에 직류 전계 50 kV/mm를 1시간 동안 인가하며 수학식 1의 전계상승계수(FEF)를 측정했다. 측정 결과는 아래 표 2 및 도 2에 나타난 바와 같으며, 가교부산물 함량과 전계상승계수 간의 상관관계 확인을 위하여 가교부산물 함량 측정과 동일 시점에 전계상승계수(FEF) 측정을 진행했다.Comparative Examples and Examples After taking an insulating specimen having a thickness of about 120 μm from the insulation layer of each model cable, a DC electric field of 50 kV / mm was applied to the insulation specimen for 1 hour based on a pulsed electro acoustic (PEA) system. While applying, the electric field rise coefficient (FEF) of Equation 1 was measured. The measurement results are shown in Table 2 and FIG. 2 below. In order to confirm the correlation between the crosslinked byproduct content and the electric field increase coefficient, the electric field increase coefficient (FEF) was measured at the same time as the crosslinked byproduct content measurement.
FEF(%)FEF (%)
비교예 1Comparative Example 1 159159
비교예 2Comparative Example 2 157157
비교예 3Comparative Example 3 165165
실시예 1Example 1 137137
실시예 2Example 2 135135
실시예 3Example 3 132132
상기 표 2 및 도 2에 나타난 바와 같이, 3종의 특정 가교 부산물의 함량이 조절되지 않은 비교예 1 내지 3의 절연 시편은 공간전하 생성에 의한 전계왜곡을 나타내는 전계상승계수(FEF)가 160%에 가깝게 높게 나타났고, 이로써 절연내력이 크게 저하될 것으로 예측되었다.As shown in Table 2 and FIG. 2, the insulation specimens of Comparative Examples 1 to 3, in which the content of three specific crosslinking by-products are not controlled, have an electric field increase coefficient (FEF) of 160%, indicating electric field distortion due to generation of space charge. It was found to be close to, which is expected to significantly reduce the dielectric strength.
반면, 본 발명에 따른 실시예 1 내지 3의 절연 시편은 3종의 특정 가교 부산물의 함량이 정밀하게 제어됨으로써 공간전하 생성이 억제되고 이로써 전계왜곡을 나타내는 전계상승계수(FEF)가 140% 이하로 낮게 조절되었고 결과적으로 절연내력의 저하가 최소화될 것으로 예측되었다.On the other hand, in the insulating specimens of Examples 1 to 3 according to the present invention, the content of three specific cross-linked by-products is precisely controlled, thereby suppressing the generation of space charges, which results in an electric field increase coefficient (FEF) of less than 140%. The adjustment was made low and consequently the degradation of dielectric strength was expected to be minimal.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the present specification has been described with reference to preferred embodiments of the invention, those skilled in the art may variously modify and change the invention without departing from the spirit and scope of the invention as set forth in the claims set forth below. Could be done. Therefore, it should be seen that all modifications included in the technical scope of the present invention are basically included in the scope of the claims of the present invention.

Claims (9)

  1. 초고압 직류 전력케이블로서,Ultra high voltage DC power cable,
    복수의 소선이 연선되어 형성된 도체;A conductor formed by stranding a plurality of strands;
    상기 도체를 감싸는 내부 반도전층;An inner semiconducting layer surrounding the conductor;
    상기 내부 반도전층을 감싸는 절연층; 및An insulation layer surrounding the inner semiconducting layer; And
    상기 절연층을 감싸는 외부 반도전층을 포함하고,An outer semiconducting layer surrounding the insulating layer,
    상기 절연층은 폴리올레핀 수지 및 가교제를 포함하는 절연 조성물로부터 형성되며,The insulating layer is formed from an insulating composition comprising a polyolefin resin and a crosslinking agent,
    상기 절연층은 이의 두께를 3등분하여 내층, 중층 및 외층으로 구분되며, 상기 내층에 포함된 가교 부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)의 총 함량, 상기 중층에 포함된 가교부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)의 총 함량 및 상기 외층에 포함된 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)의 총 함량의 평균값이 4,000 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블.The insulating layer is divided into three thicknesses and divided into an inner layer, a middle layer and an outer layer. Among the crosslinking by-products included in the inner layer, α-cumyl alcohol (α-CA), acetophenone (AP) and Total content of α-methyl styrene (α-MS), α-cumyl alcohol (α-CA), acetophenone (AP) and α in crosslinked by-products included in the middle layer The total content of α-methyl styrene (α-MS) and the α-cumyl alcohol (α-CA), acetophenone (AP) and α-methylstyrene (α-MS) contained in the outer layer; Ultra-high voltage direct current power cable, characterized in that the average value of the total content of α-methyl styrene;
  2. 제1항에 있어서,The method of claim 1,
    상기 절연층 중 상기 내층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량이 3,990 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블.An ultra-high voltage direct current power cable, characterized in that the total content of the three specific crosslinking by-products contained in the inner layer of the insulating layer is 3,990 ppm or less.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    아래 수학식 1로 정의되는 전계상승계수(Field Enhancement Factor; FEF)가 140% 이하인 것을 특징으로 하는, 초고압 직류 전력케이블.Ultra-high voltage DC power cable, characterized in that the Field Enhancement Factor (FEF) is defined by Equation 1 below 140% or less.
    [수학식 1][Equation 1]
    FEF=(절연 시편에서 최대로 증가된 전계/절연 시편에 인가된 전계)*100FEF = (maximumly increased field on insulated specimen / field applied to insulated specimen) * 100
    상기 수학식 1에서,In Equation 1,
    상기 절연 시편은 상기 절연층을 형성하는 절연 조성물의 가교에 의해 제조되고 두께가 120 ㎛인 시편이고,The insulating specimen is a specimen prepared by crosslinking the insulating composition forming the insulating layer and having a thickness of 120 μm,
    상기 절연 시편에 인가된 전계는 상기 절연 시편에서 서로 마주보는 면에 각각 연결된 전극에 인가된 직류 전계로서 50kV/mm이고,The electric field applied to the insulated specimen is 50 kV / mm as a direct current applied to electrodes connected to the surfaces facing each other in the insulated specimen,
    상기 절연 시편에서 최대로 증가된 전계는 상기 절연 시편에 1시간 동안 50kV/mm의 직류 전계를 인가하는 과정에서 증가된 전계 중 최대값이다.The maximum increased electric field in the insulated specimen is the maximum value of the increased electric field during the application of a 50 kV / mm direct current electric field to the insulated specimen for one hour.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 폴리올레핀 수지는 폴리에틸렌 수지를 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블.The polyolefin resin is characterized in that it comprises a polyethylene resin, ultra-high voltage DC power cable.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 가교제는 과산화물계 가교제인 것을 특징으로 하는, 초고압 직류 전력케이블.The crosslinking agent is a peroxide-based crosslinking agent, ultra-high voltage DC power cable.
  6. 제5항에 있어서,The method of claim 5,
    상기 과산화물계 가교제는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블.The peroxide crosslinking agent is dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di (t -Butyl peroxy) hexane and di-t-butyl peroxide, characterized in that it comprises one or more selected from the group consisting of, ultra high voltage DC power cable.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 절연 조성물은 산화방지제, 압출성 향상제 및 가교조제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블.The insulation composition further comprises at least one additive selected from the group consisting of antioxidants, extrudability enhancers and crosslinking aids, ultra high voltage DC power cable.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 내부 및 외부 반도전층을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 가교제의 함량이 0.1 내지 5 중량부인 것을 특징으로 하는, 초고압 직류 전력케이블. Semiconducting composition forming the inner and outer semiconducting layer is characterized in that the content of the cross-linking agent is 0.1 to 5 parts by weight based on 100 parts by weight of the base resin, ultra-high voltage DC power cable.
  9. 제8항에 있어서,The method of claim 8,
    상기 베이스 수지는 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA) 및 에틸렌 부틸 메타크릴레이트(EBMA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블.The base resin is ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acrylate (EEA), ethylene ethyl methacrylate (EEMA), ethylene (iso) propyl Characterized in that it comprises one or more selected from the group consisting of acrylate (EPA), ethylene (iso) propyl methacrylate (EPMA), ethylene butyl acrylate (EBA) and ethylene butyl methacrylate (EBMA), Ultra high voltage DC power cable.
PCT/KR2017/014068 2017-05-31 2017-12-04 Ultra-high voltage direct current power cable WO2018221802A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019557843A JP2020518108A (en) 2017-05-31 2017-12-04 Ultra high voltage DC power cable
EP17911827.8A EP3633693A4 (en) 2017-05-31 2017-12-04 Ultra-high voltage direct current power cable
US16/612,217 US20230377768A1 (en) 2017-05-31 2017-12-04 Ultra-high voltage direct current power cable
CN201780091435.3A CN110692112B (en) 2017-05-31 2017-12-04 Ultra-high voltage direct current power cable

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0067561 2017-05-31
KR20170067561 2017-05-31
KR10-2017-0147052 2017-11-07
KR1020170147052A KR102256323B1 (en) 2017-05-31 2017-11-07 High Voltage direct current power cable

Publications (1)

Publication Number Publication Date
WO2018221802A1 true WO2018221802A1 (en) 2018-12-06

Family

ID=64454749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014068 WO2018221802A1 (en) 2017-05-31 2017-12-04 Ultra-high voltage direct current power cable

Country Status (1)

Country Link
WO (1) WO2018221802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100280664A1 (en) * 2007-07-05 2010-11-04 Skunkworks Laboratories Measurement and control by solid and gas phase raman spectroscopy of manufacturing processes for chemically crosslinked polyethylene for insulated electric cables and for other products
KR20120103497A (en) * 2011-03-08 2012-09-19 넥쌍 Medium-tension or high-tension electrical cable
KR101388136B1 (en) * 2010-04-07 2014-04-23 엘에스전선 주식회사 DC Power Cable Using Semiconductive Composition And Insulation Composition
KR101408925B1 (en) * 2011-01-25 2014-06-18 엘에스전선 주식회사 Light Weight Power Cable Using Semiconductive Composition And Insulation Composition
KR20150016500A (en) * 2012-05-10 2015-02-12 다우 글로벌 테크놀로지스 엘엘씨 Ethylene polymer conductor coatings prepared with polybutadiene cross-linking coagents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100280664A1 (en) * 2007-07-05 2010-11-04 Skunkworks Laboratories Measurement and control by solid and gas phase raman spectroscopy of manufacturing processes for chemically crosslinked polyethylene for insulated electric cables and for other products
KR101388136B1 (en) * 2010-04-07 2014-04-23 엘에스전선 주식회사 DC Power Cable Using Semiconductive Composition And Insulation Composition
KR101408925B1 (en) * 2011-01-25 2014-06-18 엘에스전선 주식회사 Light Weight Power Cable Using Semiconductive Composition And Insulation Composition
KR20120103497A (en) * 2011-03-08 2012-09-19 넥쌍 Medium-tension or high-tension electrical cable
KR20150016500A (en) * 2012-05-10 2015-02-12 다우 글로벌 테크놀로지스 엘엘씨 Ethylene polymer conductor coatings prepared with polybutadiene cross-linking coagents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633693A4 *

Similar Documents

Publication Publication Date Title
KR102012603B1 (en) High Voltage direct current power cable
AU8859598A (en) Optical fibre cable having high tracking resistance
US7435908B2 (en) Low voltage power cable with insulation layer comprising polyolefin having polar groups, hydrolysable silane groups, and including a silanol condensation catalyst
KR102256323B1 (en) High Voltage direct current power cable
KR102256351B1 (en) High Voltage direct current power cable
US20210118593A1 (en) Direct current power cable
KR102499648B1 (en) High voltage DC power cable joint system
WO2018221803A1 (en) Ultra-high voltage direct current power cable
WO2022010244A1 (en) High-voltage power cable
WO2018221804A1 (en) Intermediate connection system for ultra-high-voltage direct current power cable
US20200185122A1 (en) Insulation composition and direct-current power cable having insulating layer formed from the same
WO2018221802A1 (en) Ultra-high voltage direct current power cable
KR102604898B1 (en) High voltage DC power cable system
JP2020518971A (en) DC power cable
WO2023090466A1 (en) High-voltage power cable
WO2018135700A1 (en) Power cable
KR20220005831A (en) High voltage power cable
WO2018182071A1 (en) Power cable
WO2018182073A1 (en) Power cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017911827

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017911827

Country of ref document: EP

Effective date: 20200102