WO2016133255A1 - 혈액순환장애 측정 장치 및 그 방법 - Google Patents

혈액순환장애 측정 장치 및 그 방법 Download PDF

Info

Publication number
WO2016133255A1
WO2016133255A1 PCT/KR2015/008859 KR2015008859W WO2016133255A1 WO 2016133255 A1 WO2016133255 A1 WO 2016133255A1 KR 2015008859 W KR2015008859 W KR 2015008859W WO 2016133255 A1 WO2016133255 A1 WO 2016133255A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
blood circulation
value point
electrocardiogram
circulation disorder
Prior art date
Application number
PCT/KR2015/008859
Other languages
English (en)
French (fr)
Inventor
임채헌
이영범
이무용
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to JP2017558343A priority Critical patent/JP6725533B2/ja
Priority to US15/546,245 priority patent/US11083385B2/en
Priority to CN201580076894.5A priority patent/CN107427245A/zh
Priority to EP15882788.1A priority patent/EP3251593B1/en
Priority to AU2015383230A priority patent/AU2015383230A1/en
Publication of WO2016133255A1 publication Critical patent/WO2016133255A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval

Definitions

  • the present invention relates to an apparatus for measuring blood circulation disorder using pulse wave propagation time, and more particularly, to a blood circulation disorder using pulse wave propagation time between pulse waves measured at different points or transfer time between pulse wave and electrocardiogram.
  • the present invention relates to a blood circulation disorder measuring apparatus and a method thereof.
  • Blood vessels are the lifeline that nourishes 60 trillion cells of our body.
  • the blood discharged by the heartbeat must flow along the arteries throughout the body without clogging and return blood back to the heart through veins. In this way, oxygen and nutrients can be supplied to each tissue of the body, and waste products consumed through metabolism can be removed.
  • vascular health is a direct part of our health, and poor vascular management can lead to serious diseases.
  • Fats, blood clots and plaques build up on the inner walls of blood vessels, causing inflammation, and the accumulation of inflammatory substances accumulates and the walls of blood vessels become hard. Accumulation accumulates in the walls of blood vessels, narrowing blood vessels, causing blood and oxygen supply disorders, and various vascular diseases.
  • Representative vascular diseases include, for example, angina pectoris, myocardial infarction, stroke, and lower extremity artery occlusion.
  • the lack of sufficient blood and oxygen to the heart and brain, the key organs for life support can cause paralysis or sudden death.
  • Cardiovascular and cerebrovascular diseases are the leading causes of death in the world as well as in Korea. These vascular diseases proceed silently and do not have any special symptoms until they are no longer blocked, resulting in irreversible conditions if neglected. Therefore, it is important to diagnose and prevent cardiovascular disease, cerebrovascular disease, and caustic arteriosclerosis risk factors early even in the absence of subjective symptoms.
  • Invasive methods include angiography, in which a contrast medium is injected into a blood vessel, a method using a catheter, and microscopic ultrasonography in an artery.
  • non-invasive methods include magnetic resonance imaging (MRI), computer tomography (CT), ultrasound imaging, ultrasound wave pulse rate (PWV) measurement, reflected waves
  • MRI magnetic resonance imaging
  • CT computer tomography
  • PWV ultrasound wave pulse rate
  • reflected waves There is an AI (Augmentation Index) measuring method that indicates the change in pulse pressure by the.
  • AI Application Index
  • Pulse waves are graphs of the wavelengths at which blood propagates in the heart.
  • the pulse wave propagation time means the time taken for the pulse wave to move between two arterial pulsations, and the pulse wave propagation speed can be obtained by dividing the vessel length between two points for detecting the pulse wave by the propagated time difference. Hardening of the arterial vessels increases the rate of pulse wave delivery and is therefore used as a quantitative indicator of atherosclerosis.
  • the technical problem to be achieved by the present invention is to provide an apparatus and method for measuring blood circulation disorders that can measure blood circulation disorders using pulse wave delivery time.
  • measuring unit for measuring the pulse wave and electrocardiogram of the subject, the peak value of the measured ECG
  • a detector for detecting the time information of the peak and the peak value of the point and pulse wave point, the peak value and the minimum value of the ECG and pulse waves detected for a certain period of time by the above method Computing the average value of the pulse wave transmission time using the time information of the point, and using this calculation unit for calculating the blood circulation disorder discrimination indicator, and a diagnostic unit for diagnosing blood circulation disorder using the calculated blood circulation disorder discrimination indicator do.
  • the measurement unit may measure the pulse wave of at least one portion of the carotid artery, the upper arm, the radius and the femur.
  • the calculator may calculate a disease group / normal group discrimination index for determining whether a vascular disease is present using an average of pulse wave propagation times between a peak value point of an electrocardiogram and a foot value point of pulse waves.
  • the calculation unit may include EFf divided by EBf (EFf / EBf), EFf divided by ERf (EFf / ERf), CFf divided by CBf (CFf / CBf), and CFf divided by CRf (CFf /
  • the disease group / normal group discrimination index may be calculated using at least one of CRf), and the EFf is a parameter representing an average of pulse wave propagation time between the maximum value point of ECG and the minimum value point of pulse wave measured at the thigh.
  • the EBf is a parameter representing an average of pulse wave propagation time between the maximum value point of the electrocardiogram and the minimum value point of the pulse wave measured at the upper arm
  • the ERf is the pulse wave propagation time between the maximum value point of the electrocardiogram and the minimum value point of the pulse wave measured at the radius.
  • CFf is a parameter representing the mean
  • CFf is a parameter representing the average of the pulse propagation time between the minimum value point of the pulse wave measured in the carotid artery and the femur
  • CBf is the minimum value of the pulse wave measured in the carotid artery and the upper arm
  • a parameter representing an average of the pulse wave propagation time between the CRf is the average of the pulse wave passes between the minimum points of the pulse waves measured at the carotid and radial time.
  • the operation unit may calculate a cardiovascular disease group / cerebrovascular disease determination index for determining the type of vascular disease by using the average of the pulse wave transmission time between the peak value of the electrocardiogram and pulse wave.
  • the calculating unit may include the cardiovascular vessel using at least one of ECp divided by a parameter EFp (ECp / EFp), parameter ECp divided by a parameter EBp (ECp / EBp), and ECp divided by ERp (ECp / ERp).
  • the EFp is a parameter representing the average of the pulse wave propagation time between the maximum value point of the ECG and the maximum value of the pulse wave measured in the femoral region
  • the EBp is the maximum of the ECG
  • ERp is a parameter representing the average pulse wave propagation time between the maximum value point of the electrocardiogram and the pulse wave measured at the radius.
  • the ECp represents the average of pulse wave propagation time between the maximum value point of the electrocardiogram and the maximum value point of the pulse wave measured in the carotid artery.
  • the method for measuring blood circulation disorder using the pulse wave propagation time measuring the pulse wave and the electrocardiogram of the subject, the peak point of the measured electrocardiogram and the measured Detecting time information of a peak value point and a foot value point of a pulse wave, and calculating a pulse wave propagation time using time information of the detected peak value point and a foot value point And calculating a blood circulation disorder determination index using the pulse wave transmission time, and diagnosing a blood circulation disorder using the calculated blood circulation disorder determination index.
  • the present invention in the future simple pulse transit time (Pulse transit time) measurement can be utilized for the primary screening of the normal group and the cardiovascular disease group.
  • the present invention can be utilized in various parts, such as medical examination of the hospital, well-being platform (wellness platform) of the current national concern, and other personal health care programs.
  • FIG. 1 is a block diagram showing a blood circulation disorder measuring apparatus according to an embodiment of the present invention.
  • Figure 2a is a graph showing the analysis results of disease group / normal group discrimination index according to an embodiment of the present invention.
  • Figure 2b is a graph showing the logistic regression results of the discrimination index of the disease group / normal group according to an embodiment of the present invention.
  • Figure 3a is a graph showing the analysis results of cardiovascular disease group / cerebrovascular disease group discrimination indicator according to an embodiment of the present invention.
  • Figure 3b is a graph showing the logistic regression results of the cardiovascular disease group / cerebrovascular disease discrimination index according to an embodiment of the present invention.
  • Figure 4 is a flow chart showing a blood circulation disorder measuring method according to an embodiment of the present invention.
  • FIG. 1 is a view showing the configuration of a blood circulation disorder measuring apparatus.
  • the apparatus for measuring blood circulation disorder includes a measuring unit 110, a detecting unit 120, a calculating unit 130, and a diagnosing unit 140.
  • the measuring unit 110 measures the electrocardiogram (EKG) and pulse wave of the human body to be measured.
  • pulse wave refers to a pulse formed by the pulse transmitted to the peripheral nerve. If there is atherosclerosis, the shape of the wave changes and the speed of propagation increases.
  • the measuring unit 110 may measure pulse waves at each part of the human body, and each part of the human body may include a carotid, a brachial, a radial, and a femoral.
  • the measuring unit 110 may include an IR or semiconductor pulse wave signal acquisition sensor for measuring pulse waves.
  • Electrocardiogram refers to the recording of electrical changes occurring locally by cardiac activity. Electric changes can be recorded on the body surface because they are transmitted to the body that makes up the volumetric conductors and reach the body surface. Humans usually record electrodes by attaching electrodes to specific parts of the body's surface.
  • the measuring unit 110 measures the electrocardiogram of the human body, wherein the measuring method of the electrocardiogram includes the derivation method derived from both hands, the derivation method derived from the right hand-left foot, the derivation method derived from the left hand-left foot, and the derivation method by unipolar induction.
  • the above derivation method is a well-known technique that can be easily implemented by those skilled in the art, and thus a detailed description thereof will be omitted.
  • the measurement unit 110 transmits the data of the electrocardiogram and pulse wave measured from the measurement target to the detection unit 120.
  • the detector 120 detects time information of peak and foot values through the pulse wave and electrocardiogram data received from the measurement unit 110.
  • the detector 120 detects the time information of the maximum value point and the minimum value point from the pulse wave measurement data transmitted from the measurement unit 110 and the time information of the maximum value point from the ECG measurement data.
  • the maximum value point of the ECG means the R point in the QRS group of the ECG.
  • the detector 120 detects the time information of the maximum and minimum value points of the pulse wave and the time information of the maximum value point of the electrocardiogram from the data received from the measurement unit 110 and transmits the time information to the operation unit 130.
  • the calculating unit 130 calculates an average of the pulse wave propagation time using time information on the maximum value point and the minimum value point of the pulse wave and the maximum value point of the electrocardiogram received from the detector 120.
  • Table 1 is a table for explaining the parameter of the average value of the pulse wave propagation time using the minimum (foot) point of the pulse wave in accordance with an embodiment of the present invention.
  • the parameter representing the average value of the pulse wave propagation time using the minimum point of the pulse wave includes EFf, EBf, ERf, CFf, CBf, and CRf, and may further include other parameters.
  • the average value of the pulse wave propagation time using the minimum point of the pulse wave means a value obtained by averaging the time between the foot values of each period detected in the pulse wave.
  • EFf is a parameter representing the average pulse wave propagation time between the maximum value point of ECG and the minimum value point of the pulse wave measured at the thigh
  • EBf is the maximum value point of the ECG and the minimum value point of the pulse wave measured at the upper arm. This parameter represents the average of pulse wave propagation time.
  • ERf is a parameter representing the average of the pulse wave propagation time between the maximum value point of the electrocardiogram and the minimum value of the pulse wave measured in the radial
  • CFf is a parameter representing the average of the pulse wave transmission time between the minimum value point of the pulse wave measured in the carotid artery and thigh to be.
  • CBf is a parameter representing the average pulse wave propagation time between the minimum value point of the pulse wave measured in the carotid artery and the upper arm
  • CRf is a parameter representing the average pulse wave propagation time between the minimum value point of the pulse wave measured in the carotid artery and the radial arm.
  • Table 2 is a table for explaining a parameter of the average value of the pulse wave propagation time using the peak value of the pulse wave in accordance with an embodiment of the present invention.
  • the parameter representing the average value of the pulse wave propagation time using the peak value of the pulse wave includes EFp, EBp, ERp, and ECp, and may further include other parameters.
  • the average value of the pulse wave propagation time using the peak point of the pulse wave means a value obtained by averaging time between peak values of each period detected in the pulse wave.
  • EFp is a parameter representing the average of pulse wave propagation time between the maximum value point of ECG and the maximum value of pulse wave measured at the thigh
  • EBp is the pulse wave transmission between the maximum value point of ECG and the maximum value of pulse wave measured at the upper arm. This parameter represents the average of time.
  • ERp is a parameter representing the average of the pulse wave propagation time between the maximum value point of the electrocardiogram and the pulse wave maximum point measured in the radial
  • ECp is the pulse wave transmission between the maximum value point of the electrocardiogram and the pulse point measured in the carotid artery This parameter represents the average of time.
  • the calculating unit 130 may calculate the blood circulation disorder determination index by using a parameter representing the average of the pulse wave transmission time.
  • Blood circulation disorder discrimination indicators include disease / normal group discrimination index and cardiovascular disease / cerebrovascular disease discrimination index.
  • the disease group / normal group discrimination index calculated by the operation unit 130 using a parameter representing an average of pulse wave propagation time using the minimum point of the pulse wave will be described.
  • Distinguishing indicators of the disease group and the normal group includes A1 to A11, and may further include other disease group / normal group discrimination indicators.
  • Disease group / normal group discrimination indexes A1 to A4 are calculated using a parameter representing an average of pulse wave propagation times using the minimum point value of the pulse wave.
  • Disease group / normal group discrimination index A1 represents parameter EFf divided by parameter EBf (EFf / EBf), and disease group / normal group discrimination index A2 represents parameter EFf divided by parameter ERf (EFf / ERf).
  • Disease group / normal group discrimination index A3 represents the parameter CFf divided by parameter CBf (CFf / CBf), and disease group / normal group discrimination index A4 represents the parameter CFf divided by parameter CRf (CFf / CRf).
  • the disease group / normal group discrimination indexes A5 to A10 are calculated using the disease group / normal group discrimination indexes A1 to A4.
  • Disease group / normal group discrimination index A5 is a discrimination index indicating the sum of two items among disease group / normal group discrimination indexes A1 to A4.A1 + A2, A1 + A3, A1 + A4, A2 + A3, A2 + It may have any one of A4 and A3 + A4.
  • A6 is a discrimination index indicating the sum of three items among A1 to A4.A1 + A2 + A3, A1 + A2 + A4, A1 + A3 + A4, A2 + A3 + A4 It can have one value.
  • the disease group / normal group discrimination index A7 is a discrimination index obtained by adding A1 to A4 and may have a value of A1 + A2 + A3 + A4.
  • Disease group / normal group discrimination index A8 is a discrimination index indicating a multiplication value of two items among A1 to A4, and among A1 * A2, A1 * A3, A1 * A4, A2 * A3, A2 * A4, and A3 * A4 It can have either value.
  • Disease group / normal group discrimination index A9 is a discrimination index indicating a multiplication value for three items among A1 to A4, among A1 * A2 * A3, A1 * A2 * A4, A1 * A3 * A4, and A2 * A3 * A4. It can have either value.
  • the disease / normal group discrimination index A10 is a discrimination index obtained by adding A1 to A4 and may have a value of A1 * A2 * A3 * A4.
  • disease / normal group discrimination index A11 represents the sum of two values among the values of the disease group / normal group discrimination index A8. Therefore, disease / normal group discrimination index A11 is (A1 * A2) + (A1 * A3), (A1 * A2) + (A1 * A4), (A1 * A2) + (A2 * A3), (A1 * A2) + (A2 * A4), (A1 * A2) + (A3 * A4), (A1 * A3) + (A1 * A4), (A1 * A3) + (A2 * A3), (A1 * A3) + (A2 * A4), (A1 * A3) + (A3 * A4), (A1 * A4) + (A2 * A3), (A1 * A4) + (A2 * A4), (A1 * A4) + (A2 * A4), (A1 * A4) + (A3 * A4), (A2 * A3) + (A2 * A4), (A1 * A4) + (A2 * A
  • Cardiovascular disease group / cerebrovascular disease discrimination indicators include B1 to B8 and may further include other cardiovascular disease / cerebrovascular disease discrimination indicators.
  • the cardiovascular disease group / cerebrovascular disease determination index B1 to B3 is calculated using a parameter representing the average of the pulse wave delivery time using the peak value of the pulse wave (peak) point.
  • Cardiovascular disease group / cerebrovascular disease discrimination indicator B1 represents the parameter ECp divided by the parameter EFp (ECp / EFp), and cardiovascular disease / cerebrovascular disease discrimination index B2 is the parameter ECp divided by the parameter EBp (ECp). / EBp).
  • cardiovascular disease group / cerebrovascular disease group discrimination index B3 represents the value of the parameter ECp divided by the parameter ERp (ECp / ERp).
  • the cardiovascular disease group / cerebrovascular disease group discrimination indexes B4 to B8 are calculated using the cardiovascular disease group / cerebrovascular disease group discrimination indexes B1 to B3.
  • Cardiovascular disease group / cerebrovascular disease discrimination indicator B4 is the sum of the discrimination index of the cardiovascular disease group / cerebrovascular disease group discrimination indicators B1 to B3 for the two items, the value of B1 + B2, B1 + B3, B2 + B3 It may have any one of.
  • Cardiovascular disease group / cerebrovascular disease discrimination index B5 is a total sum of the B1 to B3 discrimination index, it may have a value of B1 + B2 + B3.
  • Cardiovascular disease group / cerebrovascular disease discrimination index B6 is a discrimination index showing the multiplication value of two items of cardiovascular disease / cerebrovascular disease group discrimination index B1 to B3, B1 * B2, B1 * B3, B2 * B3 It can have any one of the values of.
  • the cardiovascular disease group / cerebrovascular disease discrimination index B7 is a discrimination index indicating a total multiplication value of B1 to B3 and may have a value of B1 * B2 * B3.
  • the cardiovascular disease group / cerebrovascular disease discrimination index B8 is the sum of two values of the cardiovascular disease / cerebrovascular disease discrimination index B6, and it is (B1 * B2) + (B1 * B3) and (B1). It may have any one of * B2) + (B2 * B3) and (B1 * B3) + (B2 * B3).
  • the calculating unit 130 determines the calculated blood circulation disorder.
  • the indicator is transmitted to the diagnosis unit 140.
  • the blood circulation disorder discrimination index includes disease / normal group discrimination index (A1 to A11) and cardiovascular disease group / cerebrovascular disease discrimination index (B1 to B8).
  • the diagnosis unit 140 diagnoses the blood circulation disorder by using the blood circulation disorder discrimination indicator received from the operation unit 130.
  • the diagnosis unit 140 may determine whether the disease is a vascular disease through the disease group / normal group discrimination indicators A1 to A11 received from the calculator 130.
  • the diagnosis unit 140 may determine whether the type of vascular disease is a cardiovascular disease or a cerebrovascular disease through the cardiovascular disease group / cerebrovascular disease group determination indicators B1 to B8 received from the operation unit 130.
  • FIGS. 2A and 2B exemplarily show an analysis result for disease group / normal group discrimination index A7.
  • Table 3 shows the diagnostic criteria for determining the disease group and the normal group according to an embodiment of the present invention.
  • the range of A7 indicator values corresponding to the boundary area ranges from 4.12 to 4.36, and if it exceeds 4.36, it corresponds to the normal group. If it is less than 4.12, it corresponds to the disease group.
  • the threshold for discriminating between the disease group and the normal group is an experimentally obtained value, which can be changed according to the results of the clinical trial.
  • Figure 2a is a graph showing the results of the analysis of the discrimination indicator of the disease group / normal group according to an embodiment of the present invention.
  • Figure 2b is a graph showing the logistic regression results of the disease group / normal group discrimination index according to an embodiment of the present invention.
  • the estimated probability is set to 50% and the boundary area is set at a ratio from side to side to calculate sensitivity and specificity for the vascular disease group and the normal group. It was. A case where the estimated probability is 0 is a vascular disease group, and a case where 1 is a normal group.
  • the estimated probability is based on 50%, and the sensitivity and specificity for the vascular disease group and the normal group when the left 10% area and the right 20% area are set as the boundary area.
  • the specificities were 90% each.
  • 3A and 3B will be described for the determination of cardiovascular disease.
  • 3A and 3B exemplarily show an analysis result of the discrimination index for the B1 + B3 value, that is, the (ECp / EFp) + (ECp / ERp) value in the cardiovascular disease group / cerebrovascular disease discrimination index B4.
  • Table 4 shows the diagnostic criteria for determining the cardiovascular disease group and cerebrovascular disease group according to an embodiment of the present invention.
  • the range of B4-2 indicator values (B1 + B3, ie, (ECp / EFp) + (ECp / ERp)) corresponding to the boundary area ranges from 1.89 to 2.17, which exceeds 2.17.
  • the threshold for discriminating the cardiovascular disease group and the cerebrovascular disease group is an experimentally obtained value and may be changed according to the results of the clinical experiment.
  • Figure 3a is a graph showing the analysis results of cardiovascular disease group / cerebrovascular disease group discrimination indicator according to an embodiment of the present invention.
  • Cardiovascular disease group / cerebrovascular disease discrimination indicators analysis results cardiovascular disease group (1) in the cardiovascular disease / cerebrovascular disease group discrimination indicators B4-2 value was found to be concentrated around 1.75 lower than 1.89 Can be. On the other hand, in the cerebrovascular disease group (2), the value of the cardiovascular disease group / cerebrovascular disease discrimination index B4-2 can be seen to be distributed around 2.25 higher than 2.17.
  • Figure 3b is a graph showing the logistic regression results of the cardiovascular disease group / cerebrovascular disease discrimination index according to an embodiment of the present invention.
  • the estimated probability was set to 50% and the boundary area was set at a ratio from side to side to calculate sensitivity and specificity for the cardiovascular disease group.
  • the cardiovascular disease group is 1, and the case where 1 is the cerebrovascular disease group.
  • the estimated probability is based on 50%, and the sensitivity and specificity for cardiovascular disease group is set when the 30% left and 15% right areas are used as boundary areas. specificity) was 90%.
  • Figure 4 is a flow chart showing a blood circulation disorder measuring method according to an embodiment of the present invention.
  • the measurement unit 110 measures the electrocardiogram and pulse wave of the measurement target (S410).
  • the measuring unit 110 may measure pulse waves at each part of the human body, and each part of the human body may include a carotid, a brachial, a radial, and a femoral.
  • the measuring unit 110 may include an IR or semiconductor pulse wave signal acquisition sensor for measuring pulse waves.
  • the measurement unit 110 transmits the measured electrocardiogram data and pulse wave data to the detection unit 120.
  • the detector 120 detects time information on peak values of the electrocardiogram, peak values of the electrocardiogram, and peak and minimum values of the pulse waves using the electrocardiogram data and the pulse wave data transmitted from the measuring unit 110. (S420).
  • the detector 120 transmits the time information of the maximum value and the minimum value point of the pulse wave and the maximum value point of the ECG, that is, the time information of the R point of the QRS group, to the calculation unit 130.
  • the calculating unit 130 calculates a pulse transit time using time information of the maximum value point of the ECG received from the detector 120 and time information of the maximum value and the minimum value point of the pulse wave (S430).
  • the calculator 130 may calculate the parameters EFf, EBf, ERf, CFf, CBf, and CRf representing the average value of the pulse wave propagation time using the time information of the minimum value point of the pulse wave.
  • the calculation unit 130 may calculate parameters EFp, EBp, ERp, and ECp representing the average of the pulse wave propagation time using time information of the peak value of the pulse wave.
  • the calculation unit 130 may calculate the blood circulation disorder determination index by using the parameter of calculating the average value of the pulse wave propagation time using the time information of the maximum and minimum value points of the pulse wave and the time information of the maximum value point of the electrocardiogram. It may be (S440).
  • the blood circulation disorder discrimination index may include discrimination indexes (A1 to A11) for discriminating a disease group and a normal group, and discrimination indexes (B1 to B8) for discriminating cardiovascular and cerebrovascular diseases.
  • the operation unit 130 calculates a blood circulation disorder determination index and transmits it to the diagnosis unit 140.
  • the diagnosis unit 140 determines the blood circulation disorder by using the blood circulation disorder determination indicator received from the calculator 130 (S450).
  • the diagnosis unit 140 compares the calculated blood circulation disorder determination index with a threshold, and determines whether the measurement target is included in the vascular disease group and the normal group, and whether the cardiovascular disease and the cerebrovascular disease.
  • the present invention in the future simple pulse transit time (Pulse transit time) measurement can be utilized for the primary screening of the normal group and the cardiovascular disease group.
  • the present invention can be utilized in various parts, such as medical examination of the hospital, well-being platform (wellness platform) of the current national concern, and other personal health care programs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 발명은 혈액순환장애 측정 장치 및 그 방법에 관한 것이다. 본 발명에 따르면, 맥파전달시간을 이용한 혈액순환장애 측정 장치에 있어서, 측정 대상자의 맥파 및 심전도를 측정하는 측정부, 상기 측정된 심전도의 최대(peak)값 지점 및 맥파의 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 검출하는 검출부, 상기 검출된 심전도의 최대(peak)값 지점 및 맥파의 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간의 평균값을 계산하고, 이를 이용하여 혈액순환장애 판별 지표를 연산하는 연산부, 그리고 상기 연산된 혈액순환장애 판별지표를 이용하여 혈액순환장애를 진단하는 진단부를 포함한다. 이와 같이 본 발명에 따르면, 맥파(Pulse wave)와 심전도(EKG)의 측정을 통하여 혈관 질환 위험도의 예측이 가능한바 비침습적이고 저렴한 비용으로 혈액순환장애를 측정할 수 있다. 또한 본 발명을 이용하여 향후 간단한 맥파전달시간(Pulse transit time) 측정을 통해 정상군과 심뇌혈관 질환군을 1차 스크리닝하는데 활용될 수 있다. 또한 본 발명은 병의원의 건강검진, 현재 국가적으로 관심사인 웰빙 플렛폼(wellness platform), 기타 개인의 건강관리 프로그램 등 다양한 부분에서 활용이 가능하다.

Description

혈액순환장애 측정 장치 및 그 방법
본 발명은 맥파전달시간을 이용한 혈액순환장애 측정 장치 및 그 방법에 관한 것으로, 더욱 상세하게는 서로 다른 지점에서 측정된 맥파간의 맥파전달시간 또는 맥파와 심전도 사이의 전달시간을 이용하여 혈액순환장애를 측정하는 혈액순환장애 측정 장치 및 그 방법에 관한 것이다.
혈관은 우리 몸의 60조개 세포에 영양을 공급하는 생명줄이다. 인간의 생명을 유지하기 위해서는 심장의 박동에 의해 방출된 혈액을 동맥을 따라 신체 곳곳에 막힘 없이 흘려주고, 정맥을 통해 다시 심장으로 혈액을 돌려받는 과정이 필요하다. 이로써, 산소와 영양분을 신체의 각 조직에 공급하고, 대사를 통해 소비된 노폐물을 제거할 수 있다. 이처럼 혈관 건강은 우리 건강과 직결되는 부분으로 혈관관리를 잘못하면 심각한 질환을 초래할 수 있다.
하지만 최근 서구화된 식습관과 스트레스, 비만, 운동부족, 과식, 음주, 흡연 및 각종 환경오염물질 등으로 우리의 혈관은 점점 막혀가고 있다.
지방, 혈전, 플라크 등이 혈관 내벽에 쌓이면 염증을 일으키고 염증물질들이 쌓여 축적되어 혈관벽이 단단해지게 된다. 혈관벽에 축적물이 쌓여 혈관이 좁아지면 혈액과 산소공급 장애가 발생하며 다양한 혈관 질환들이 나타나게 된다. 예를 들어 대표적인 혈관 질환으로서 협심증, 심근경색, 뇌졸중, 하지동맥폐색증 등이 있다. 특히 생명유지에 핵심기관인 심장과 뇌에 충분한 혈액과 산소가 공급되지 못하면 신체마비 또는 급사가 유발될 수 있다.
우리나라만이 아니라 세계의 주요 사망원인으로 심혈관 질환 및 뇌혈관 질환이 꼽히고 있다. 이러한 혈관질환은 소리없이 진행되며 어느 이상 막힐 때까지 특별한 자각 증상이 없기 때문에 소홀히 할 경우 돌이킬 수 없는 상태에 이르게 된다. 그러므로 자각증상이 없는 경우에도 심혈관질환 및 뇌혈관질환 그리고 그 원인이 되는 동맥경화의 위험 요인을 조기에 진단하여 예방하는 것이 중요하다.
심혈관 상태 및 동맥 경화를 진단하기 위한 방법은 침습적인(invasive) 방법과 비 침습적인(non-invasive) 방법으로 나눌 수 있다. 침습적인 방법으로는 혈관에 조영제(contrast media)를 주입한 후 촬영하는 혈관 조영술, 도자(catheter)를 이용한 방법, 동맥 내 미세 초음파 영상술 등이 있다.
또한, 비 침습적인 방법으로는 자기공명 영상(MRI;magnetic resonance imaging), 컴퓨터 단층촬영(CT;computer tomography), 초음파 등을 이용한 영상 진단, 맥파 전달 속도(PWV,;pulse wave velocity) 측정법, 반사파에 의한 맥압 크기의 변화를 나타내는 AI(Augmentation Index) 측정법 등이 있다. 최근에는 주로 비침습적인 방법을 이용하여 혈관 상태의 진단에 많이 활용하고 있다.
맥파는 혈액이 심장에서 파상을 이루며 전파하는 파장을 그래프로 나타낸 것이다. 맥파전달시간은 두 동맥 박동처 사이를 맥파가 이동하는데 걸리는 시간을 의미하며, 맥파를 검출하는 두 지점 간의 혈관 길이를 전파된 시간차로 나눔으로써 맥파전달속도를 구할 수 있다. 동맥혈관이 딱딱해지면 맥파 전달 속도가 커지므로, 동맥 경화의 정량적 지표로 이용된다.
본 발명의 배경이 되는 기술은 국내공개특허 제10-2013-0095664호(2013.08.28 공개)에 개시되어 있다.
본 발명이 이루고자 하는 기술적 과제는 맥파전달시간을 이용하여 혈액순환장애를 측정할 수 있는 혈액순환장애 측정 장치 및 그 방법을 제공하기 위한 것이다.
이러한 기술적 과제를 달성하기 위한 본 발명의 실시예에 따르면, 맥파전달시간을 이용한 혈액순환장애 측정 장치에 있어서, 측정 대상자의 맥파 및 심전도를 측정하는 측정부, 상기 측정된 심전도의 최대(peak)값 지점 및 맥파의 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 검출하는 검출부, 상기 방법으로 일정기간 동안 검출된 심전도 및 맥파들에서 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간의 평균값을 계산하고, 이를 이용하여 혈액순환장애 판별 지표를 연산하는 연산부, 그리고 상기 연산된 혈액순환장애 판별지표를 이용하여 혈액순환장애를 진단하는 진단부를 포함한다.
상기 측정부는, 경동맥, 상완, 요골 및 대퇴부 중 적어도 어느 한 부위의 맥파를 측정할 수 있다.
상기 연산부는, 심전도의 최고(peak)값 지점과 맥파들의 최소(foot)값 지점 사이의 맥파전달시간의 평균을 이용하여 혈관 질환 여부를 판별하는 질환군/정상군 판별지표를 연산할 수 있다.
상기 연산부는, EFf를 EBf로 나눈 값(EFf/EBf), EFf를 ERf로 나눈 값(EFf/ERf), CFf를 CBf로 나눈 값(CFf/CBf), 및 CFf를 CRf로 나눈 값(CFf/CRf) 중에서 적어도 하나를 이용하여 상기 질환군/정상군 판별지표를 연산할 수 있으며, 상기 EFf는 심전도의 최대값 지점과 대퇴부에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 EBf는 심전도의 최대값 지점과 상완에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이며, 상기 ERf는 심전도의 최대값 지점과 요골에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, CFf는 경동맥과 대퇴부에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이며, 상기 CBf는 경동맥과 상완에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 CRf는 경동맥과 요골에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타낸다.
상기 연산부는, 심전도 및 맥파의 최고(peak)값 지점 사이의 맥파전달시간의 평균을 이용하여 혈관 질환의 종류를 판별하는 심혈관질환군/뇌혈관질환군 판별지표를 연산할 수 있다.
상기 연산부는, ECp를 파라미터 EFp로 나눈 값(ECp/EFp), 파라미터 ECp를 파라미터 EBp로 나눈 값(ECp/EBp) 및 ECp를 ERp로 나눈 값(ECp/ERp) 중에서 적어도 하나를 이용하여 상기 심혈관질환군/뇌혈관질환군 판별지표를 연산할 수 있으며, 상기 EFp는 심전도의 최대값 지점과 대퇴부에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 EBp 는 심전도의 최대값 지점과 상완에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이며, 상기 ERp 는 심전도의 최대값 지점과 요골에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 ECp 는 심전도의 최대값 지점과 경동맥에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타낸다.
본 발명의 다른 실시예에 따르면, 맥파전달시간을 이용하여 혈액순환장애를 측정하는 방법에 있어서, 측정 대상자의 맥파 및 심전도를 측정하는 단계, 상기 측정된 심전도의 최대(peak)값 지점 및 측정된 맥파의 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 검출하는 단계, 상기 검출된 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간을 계산하는 단계, 상기 맥파전달시간을 이용하여 혈액순환장애 판별지표를 연산하는 단계, 그리고 상기 연산된 혈액순환장애 판별지표를 이용하여 혈액순환장애를 진단하는 단계를 포함한다.
이와 같이 본 발명에 따르면, 맥파(Pulse wave)와 심전도(EKG)의 측정을 통하여 혈관 질환 위험도의 예측이 가능한바 비침습적이고 저렴한 비용으로 혈액순환장애를 측정할 수 있다.
본 발명을 이용하여 향후 간단한 맥파전달시간(Pulse transit time) 측정을 통해 정상군과 심뇌혈관 질환군을 1차 스크리닝하는데 활용될 수 있다. 또한 본 발명은 병의원의 건강검진, 현재 국가적으로 관심사인 웰빙 플렛폼(wellness platform), 기타 개인의 건강관리 프로그램 등 다양한 부분에서 활용이 가능하다.
도 1는 본 발명의 실시예에 따른 혈액순환장애 측정 장치를 나타낸 구성도이다.
도 2a는 본 발명의 실시예에 따른 질환군/정상군 판별 지표 분석 결과를 나타낸 그래프이다.
도 2b는 본 발명의 실시예에 따른 질환군/정상군의 판별 지표의 로지스틱 회귀분석(logistic regression) 결과를 나타낸 그래프이다.
도 3a는 본 발명의 실시예에 따른 심혈관질환군/뇌혈관질환군 판별 지표 분석 결과를 나타낸 그래프이다.
도 3b는 본 발명의 실시예에 따른 심혈관질환군/뇌혈관질환군 판별 지표의 로지스틱 회귀분석(logistic regression) 결과를 나타낸 그래프이다.
도 4는 본 발명의 실시예에 따른 혈액순환장애 측정 방법을 나타낸 순서도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
그러면 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
먼저, 도 1을 통해 본 발명의 실시예에 따른 혈액순환장애 측정 장치의 구성에 대하여 설명한다. 도1은 혈액순환장애 측정 장치의 구성을 나타낸 도면이다.
도 1에서 나타낸 바와 같이 본 발명의 실시예에 따른 혈액순환장애 측정 장치(100)는 측정부(110), 검출부(120), 연산부(130) 및 진단부(140)를 포함한다.
먼저, 측정부(110)는 측정 대상 인체의 심전도(EKG) 및 맥파(Pulse wave)를 측정한다.
여기서 맥파(Pulse wave)란 맥박이 말초 신경까지 전하여지면서 이루는 파동을 의미하며 동맥 경화증이 있으면 이 파동의 형태가 변하고 전파 속도도 빨라진다. 측정부(110)는 인체의 각 부위에서 맥파를 측정할 수 있으며, 이때 인체 각 부위는 경동맥(Carotid), 상완(Brachial), 요골(Radial) 및 대퇴부(Femoral)를 포함할 수 있다. 측정부(110)는 맥파의 측정을 위해 IR 혹은 반도체형 맥파신호획득용 센서를 포함할 수 있다.
심전도(EKG)란 심장활동에 의해 국소적으로 발생하는 전기변화를 기록한 것을 의미한다. 전기변화는 용적도체를 이루는 조직에 전해져 체표에 미치기 때문에 체표면에서도 기록할 수 있다. 사람은 보통 체표면의 특정 부위에 전극을 붙여 전위를 유도해 기록한다. 측정부(110)는 인체의 심전도를 측정하며 이때 심전도의 측정법은 양손에서 유도된 도출방법, 오른손-왼발에서 유도된 도출방법, 왼손-왼발에서 유도된 도출방법, 단극유도에 의한 도출방법을 포함할 수 있으며, 상기의 도출 방법은 당업자라면 용이하게 실시할 수 있는 공지 기술이므로, 이에 대한 상세한 설명은 생략한다.
측정부(110)는 측정 대상자로부터 측정한 심전도 및 맥파의 데이터를 검출부(120)로 전달한다.
검출부(120)는 측정부(110)로부터 전달받은 맥파 및 심전도의 데이터를 통해 최대(peak)값 및 최소(foot)값 지점의 시간정보를 검출한다.
검출부(120)는 측정부(110)로부터 전달받은 맥파의 측정 데이터로부터 최대값 지점과 최소값 지점의 시간 정보와 심전도의 측정 데이터로부터 최대값 지점의 시간 정보를 검출한다. 이때 심전도의 최대값 지점은 심전도의 QRS군에서R지점을 의미한다.
이와 같이 검출부(120)는 측정부(110)로부터 전달받은 데이터로부터 검출된 맥파의 최대값 및 최소값 지점의 시간정보와 심전도의 최대값 지점의 시간정보를 검출하여 연산부(130)로 전달한다.
연산부(130)는 검출부(120)로부터 전달받은 맥파의 최대값 지점 및 최소값 지점 그리고 심전도의 최대값 지점에 대한 시간정보를 이용하여 맥파전달시간의 평균을 계산한다.
이하에서는 표 1 및 표 2를 통해 맥파전달시간의 평균 값을 나타내는 파라미터에 대하여 설명한다.
먼저, 표 1는 본 발명의 실시예에 따른 맥파의 최소(foot)값 지점을 이용한 맥파전달시간의 평균값의 파라미터를 설명하기 위한 표이다.
파라미터 의미
EFf EKG R peak - femoral pulse wave foot 간의 Pulse transit time 평균
EBf EKG R peak - brachial pulse wave foot 간의 Pulse transit time 평균
ERf EKG R peak - radial pulse wave foot 간의 Pulse transit time 평균
CFf carotid - femoral pulse wave foot 간의 Pulse transit time 평균
CBf carotid - brachial pulse wave foot 간의 Pulse transit time 평균
CRf carotid - radial pulse wave foot 간의 Pulse transit time 평균
표 1와 같이 맥파의 최소(foot)값 지점을 이용한 맥파전달시간의 평균값을 나타내는 파라미터는 EFf, EBf, ERf, CFf, CBf, CRf를 포함하며 이외의 파라미터를 더 포함할 수 있다.
여기서, 맥파의 최소(foot)값 지점을 이용한 맥파전달시간의 평균값이란 맥파에서 검출되는 각 주기의 최소(foot)값들 사이의 시간들을 평균처리한 값을 의미한다.
표 1에 나타낸 것처럼, EFf는 심전도의 최대값 지점과 대퇴부에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, EBf는 심전도의 최대값 지점과 상완에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이다.
또한, ERf는 심전도의 최대값 지점과 요골에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, CFf는 경동맥과 대퇴부에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이다.
그리고, CBf는 경동맥과 상완에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이며, CRf는 경동맥과 요골에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이다.
표 2은 본 발명의 실시예에 따른 맥파의 최대(peak)값 지점을 이용한 맥파전달시간의 평균값의 파라미터를 설명하기 위한 표이다.
파라미터 의미
EFp EKG R peak - femoral pulse wave peak 간의 Pulse transit time 평균
EBp EKG R peak - brachial pulse wave peak 간의 Pulse transit time 평균
ERp EKG R peak - radial pulse wave peak 간의 Pulse transit time 평균
ECp EKG R peak - carotid pulse wave peak 간의 Pulse transit time 평균
표 2와 같이 맥파의 최대(peak)값 지점을 이용한 맥파전달시간의 평균값을 나타내는 파라미터는 EFp, EBp, ERp, ECp를 포함하며 이외의 파라미터를 더 포함할 수 있다.
여기서, 맥파의 최대(peak)값 지점을 이용한 맥파전달시간의 평균값이란 맥파에서 검출되는 각 주기의 최대(peak)값 사이의 시간들을 평균처리한 값을 의미한다.
먼저, EFp는 심전도의 최대값 지점과 대퇴부에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, EBp 는 심전도의 최대값 지점과 상완에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이다.
또한, ERp 는 심전도의 최대값 지점과 요골에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, ECp 는 심전도의 최대값 지점과 경동맥에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이다.
또한 연산부(130)는 맥파전달시간의 평균을 나타내는 파라미터를 이용하여 혈액순환장애 판별지표를 연산할 수 있다. 혈액순환장애 판별지표는 질환군/정상군 판별지표 및 심혈관질환군/뇌혈관질환군 판별지표를 포함한다.
먼저 연산부(130)가 맥파의 최소(foot)값 지점을 이용한 맥파전달시간의 평균을 나타내는 파라미터를 이용하여 산출한 질환군/정상군 판별지표에 대해 설명한다.
질환군과 정상군의 판별지표는 A1 내지 A11을 포함하며, 이외의 질환군/정상군 판별지표를 더 포함할 수 있다.
질환군/정상군 판별지표 A1 내지 A4는 맥파의 최소(foot)값 지점을 이용한 맥파전달시간의 평균을 나타내는 파라미터를 이용하여 계산된다.
질환군/정상군 판별지표 A1은 파라미터 EFf를 파라미터 EBf로 나눈 값(EFf/EBf)을 나타내며, 질환군/정상군 판별지표 A2는 파라미터 EFf를 파라미터 ERf로 나눈 값(EFf/ERf)을 나타낸다.
질환군/정상군 판별지표 A3은 파라미터CFf를 파라미터 CBf로 나눈 값(CFf/CBf)을 나타내며, 질환군/정상군 판별지표 A4는 파라미터 CFf를 파라미터 CRf로 나눈 값(CFf/CRf)을 나타낸다.
그리고, 질환군/정상군 판별지표 A5 내지 A10은 질환군/정상군 판별지표 A1 내지 A4를 이용하여 연산된다.
질환군/정상군 판별지표 A5는 질환군/정상군 판별지표 A1 내지 A4 중에서 2개의 항목에 대한 합산을 나타낸 판별지표로서, A1+A2, A1+A3, A1+A4, A2+A3, A2+A4, A3+A4 중에서 어느 하나의 값을 가질 수 있다.
질환군/정상군 판별지표 A6는 A1 내지 A4중에서 3개 항목에 대한 합산을 나타낸 판별지표로서, A1+A2+A3, A1+A2+A4, A1+A3+A4, A2+A3+A4 중에서 어느 하나의 값을 가질 수 있다.
질환군/정상군 판별지표 A7은 A1내지 A4를 합산한 판별지표로서, A1+A2+A3+A4의 값을 가질 수 있다.
질환군/정상군 판별지표 A8은 A1 내지 A4 중에서 2개의 항목에 대한 곱셈값을 나타낸 판별지표로서, A1*A2, A1*A3, A1*A4, A2*A3, A2*A4, A3*A4 중에서 어느 하나의 값을 가질 수 있다.
질환군/정상군 판별지표 A9는 A1 내지 A4중에서 3개 항목에 대한 곱셈값을 나타낸 판별지표로서, A1*A2*A3, A1*A2*A4, A1*A3*A4, A2*A3*A4 중에서 어느 하나의 값을 가질 수 있다.
질환군/정상군 판별지표 A10은 A1내지 A4를 합산한 판별지표로서, A1*A2*A3*A4의 값을 가질 수 있다.
질환군/정상군 판별지표 A11은 질환군/정상군 판별지표 A8이 가지는 값 중에서 2개 값의 합산을 나타낸 값이다. 따라서, 질환군/정상군 판별지표 A11은 (A1*A2)+(A1*A3), (A1*A2)+(A1*A4), (A1*A2)+(A2*A3), (A1*A2)+(A2*A4), (A1*A2)+(A3*A4), (A1*A3)+(A1*A4), (A1*A3)+(A2*A3), (A1*A3)+(A2*A4), (A1*A3)+(A3*A4), (A1*A4)+(A2*A3), (A1*A4)+(A2*A4), (A1*A4)+(A3*A4), (A2*A3)+(A2*A4), (A2*A3)+(A3*A4), (A2*A4)+(A3*A4) 중에서 어느 하나의 값을 가질 수 있다.
다음으로 연산부(130)가 맥파의 최대(peak)값 지점을 이용한 맥파전달시간의 평균을 나타내는 파라미터를 이용하여 심혈관질환군/뇌혈관질환군 판별지표를 산출하는 과정에 대해 설명한다.
심혈관질환군/뇌혈관질환군 판별지표는 B1 내지 B8을 포함하며 이외의 심혈관질환군/뇌혈관질환군 판별지표를 더 포함할 수 있다.
먼저, 심혈관질환군/뇌혈관질환군 판별지표 B1 내지 B3는 맥파의 최대(peak)값 지점을 이용한 맥파전달시간의 평균을 나타내는 파라미터를 이용하여 계산된다.
심혈관질환군/뇌혈관질환군 판별지표 B1은 파라미터 ECp를 파라미터 EFp로 나눈 값(ECp/EFp)을 나타내며, 심혈관질환군/뇌혈관질환군 판별지표 B2는 파라미터 ECp를 파라미터 EBp로 나눈 값(ECp/EBp)을 나타낸다.
또한 심혈관질환군/뇌혈관질환군 판별지표 B3는 파라미터 ECp를 파라미터 ERp로 나눈 값(ECp/ERp)을 나타낸다.
심혈관질환군/뇌혈관질환군 판별지표 B4 내지 B8은 심혈관질환군/뇌혈관질환군 판별지표 B1 내지 B3을 이용하여 연산된다.
심혈관질환군/뇌혈관질환군 판별지표 B4는 심혈관질환군/뇌혈관질환군 판별지표 B1 내지 B3중 2개 항목에 대한 합산한 판별지표로서, B1+B2, B1+B3, B2+B3의 값 중에서 어느 하나를 가질 수 있다.
심혈관질환군/뇌혈관질환군 판별지표 B5는 B1내지 B3의 전체 합산한 판별지표로서, B1+B2+B3의 값을 가질 수 있다.
심혈관질환군/뇌혈관질환군 판별지표 B6는 심혈관질환군/뇌혈관질환군 판별지표 B1 내지 B3중 2개 항목에 대한 곱셈값을 나타낸 판별지표로서, B1*B2, B1*B3, B2*B3의 값 중에서 어느 하나를 가질 수 있다.
심혈관질환군/뇌혈관질환군 판별지표 B7은 B1내지 B3의 전체 곱셈 값을 나타낸 판별지표로서, B1*B2*B3의 값을 가질 수 있다.
심혈관질환군/뇌혈관질환군 판별지표 B8은 심혈관질환군/뇌혈관질환군 판별지표 B6의 값 중 2개 값의 합산한 판별지표로서, (B1*B2)+(B1*B3), (B1*B2)+(B2*B3), (B1*B3)+(B2*B3) 중에서 어느 하나의 값을 가질 수 있다.
이와 같이 연산부(130)가 질환군/정상군 판별지표(A1 내지 A11)와 심혈관질환군/뇌혈관질환군 판별지표(B1 내지 B8)를 연산하면, 연산부(130)는 연산된 혈액순환장애 판별지표를 진단부(140)로 전달한다. 혈액순환장애 판별지표는 질환군/정상군 판별지표(A1 내지 A11) 및 심혈관질환군/뇌혈관질환군 판별지표(B1 내지 B8)를 포함한다.
진단부(140)는 연산부(130)로부터 전달받은 혈액순환장애 판별지표를 이용하여 혈액순환장애를 진단한다. 진단부(140)는 연산부(130)로부터 전달받은 질환군/정상군 판별지표(A1 내지 A11)를 통하여 혈관질환 여부를 판단할 수 있다. 또한 진단부(140)는 연산부(130)로부터 전달받은 심혈관질환군/뇌혈관질환군 판별지표(B1 내지 B8)를 통하여 혈관질환의 종류가 심혈관질환인지 뇌혈관질환인지를 판단할 수 있다.
이하에서는 도 2a 및 도 2b를 통해 본 발명의 실시예에 따른 혈관질환 여부의 판단방법에 대하여 설명한다. 도 2a 및 도 2b는 질환군/정상군 판별지표 A7에 대한 분석 결과를 예시적으로 나타낸 것이다.
표 3은 본 발명의 실시예에 따른 질환군과 정상군을 판별하기 위한 진단 기준을 나타낸 것이다.
A7 지표 진단기준
정상군 4.36 초과
경계영역 4.12 ~ 4.36
질환군 4.12 미만
표 3에서 보는 바와 같이 경계영역에 해당하는 A7 지표 값의 범위는 4.12내지 4.36의 범위에 해당하며, 4.36을 초과하는 경우 정상군에 해당하고. 4.12 미만인 경우에는 질환군에 해당하는 것으로 예시하였다.
여기서, 질환군과 정상군을 판별하기 위한 임계값은 실험적으로 획득된 값으로, 임상 실험의 결과에 따라 변경이 가능하다.
도 2a는 본 발명의 실시예에 따른 질환군/정상군의 판별지표 분석 결과를 나타낸 그래프이다.
질환군/정상군 판별지표 분석 결과, 혈관 질환군(1)의 경우 판별지표A7의 값은 4.12보다 낮은 3.75를 중심으로 집중되어 분포된 것을 볼 수 있고, 반면에 정상군(2)의 경우 판별지표 A7의 값은 4.36보다 높은 4.75를 중심으로 분포된 것을 볼 수 있다.
도 2b는 본 발명의 실시예에 따른 질환군/정상군 판별지표의 로지스틱 회귀분석(logistic regression) 결과를 나타낸 그래프이다.
로지스틱 회귀분석(logistic regression) 결과, 추정 확률은 50%를 기준으로 하여, 좌우로 일정 비율로 경계 영역을 설정하여, 혈관 질환군과 정상군에 대한 민감도(sensitivity)와 특이도(specificity)를 계산하였다. 추정 확률이 0인 경우가 혈관 질환군이며, 1인 경우가 정상군을 의미한다.
로지스틱 회귀분석(logistic regression) 결과, 추정 확률은 50%를 기준으로 하여, 좌로 10% 영역, 우로 20% 영역을 경계영역으로 설정하였을 때, 혈관 질환군과 정상군에 대한 민감도(sensitivity)와 특이도(specificity)가 각각 90%로 나타났다.
도 3a 및 도 3b를 통해 심뇌혈관 질환의 판단에 대하여 설명한다. 도 3a 및 도 3b는 심혈관질환군/뇌혈관질환군 판별지표 B4중 B1+B3값, 즉 (ECp/EFp)+(ECp/ERp) 값에 대한 판별지표의 분석결과를 예시적으로 나타내고 있다.
먼저, 표 4는 본 발명의 실시예에 따른 심혈관 질환군과 뇌혈관 질환군을 판별하기 위한 진단 기준을 나타낸 것이다.
B4-2 지표 진단기준
뇌혈관 질환 2.17 초과
경계영역 1.89 ~ 2.17
심혈관 질환 1.89 미만
표 4에서 보는 바와 같이 경계영역에 해당하는 B4-2 지표 값(B1+B3값, 즉 (ECp/EFp)+(ECp/ERp))의 범위는 1.89내지 2.17의 범위에 해당하며, 2.17을 초과하는 경우 뇌혈관 질환군에 해당하고, 1.89 미만인 경우에는 심혈관 질환군에 해당하는 것으로 예시하였다.
여기서, 심혈관 질환군과 뇌혈관 질환군을 판별하기 위한 임계값은 실험적으로 획득된 값으로, 임상 실험의 결과에 따라 변경이 가능하다.
도 3a는 본 발명의 실시예에 따른 심혈관질환군/뇌혈관질환군 판별 지표 분석 결과를 나타낸 그래프이다.
심혈관질환군/뇌혈관질환군 판별지표 분석 결과, 심혈관 질환군(1)의 경우 심혈관질환군/뇌혈관질환군 판별지표B4-2의 값은 1.89보다 낮은 1.75를 중심으로 집중되어 분포된 것을 볼 수 있다. 반면에 뇌혈관 질환군(2)의 경우 심혈관질환군/뇌혈관질환군 판별지표 B4-2의 값은 2.17보다 높은 2.25를 중심으로 분포된 것을 볼 수 있다.
도 3b는 본 발명의 실시예에 따른 심혈관질환군/뇌혈관질환군 판별 지표의 로지스틱 회귀분석(logistic regression) 결과를 나타낸 그래프이다.
로지스틱 회귀분석(logistic regression) 결과, 추정 확률은 50%를 기준으로 하여, 좌우로 일정 비율로 경계 영역을 설정하여, 심뇌혈관 질환군에 대한 민감도(sensitivity)와 특이도(specificity)를 계산하였다. 추정 확률이 0인 경우가 심혈관 질환군이며, 1인 경우가 뇌혈관 질환군을 의미한다.
로지스틱 회귀분석(logistic regression) 결과, 추정 확률은 50%를 기준으로 하여, 좌로 30% 영역, 우로 15% 영역을 경계영역으로 설정하였을 때, 심뇌혈관 질환군에 대한 민감도(sensitivity)와 특이도(specificity)가 각각 90%로 나타났다.
이하에서는 도 4를 통해서 본 발명의 실시예에 따른 혈액순환장애 측정 방법에 대해 설명한다.
도 4는 본 발명의 실시예에 따른 혈액순환장애 측정 방법을 나타낸 순서도이다.
먼저 측정부(110)는 측정 대상자의 심전도 및 맥파를 측정한다(S410).
측정부(110)는 인체의 각 부위에서 맥파를 측정할 수 있으며, 이때 인체 각 부위는 경동맥(Carotid), 상완(Brachial), 요골(Radial) 및 대퇴부(Femoral)를 포함할 수 있다. 측정부(110)는 맥파의 측정을 위해 IR 혹은 반도체형 맥파신호획득용 센서를 포함할 수 있다. 그리고, 측정부(110)는 측정된 심전도 데이터 및 맥파 데이터를 검출부(120)로 전달한다.
검출부(120)는 측정부(110)로부터 전달받은 심전도 데이터 및 맥파 데이터를 이용하여 심전도의 최대(peak)값 지점 및 맥파의 최대(peak)값과 최소(foot)값 지점에 대한 시간정보를 검출한다(S420).
검출부(120)는 맥파의 최대값 및 최소값 지점의 시간정보와 심전도의 최대값 지점, 즉 QRS군의 R지점에 대한 시간 정보를 연산부(130)로 전달한다.
연산부(130)는 검출부(120)로부터 전달받은 심전도의 최대값 지점의 시간정보와 맥파의 최대값 및 최소값 지점의 시간정보를 이용하여 맥파전달시간(Pulse transit time)을 계산한다(S430).
연산부(130)는 맥파의 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간의 평균값을 나타내는 파라미터(EFf, EBf, ERf, CFf, CBf, CRf)를 산출할 수 있다. 또한 연산부(130)는 맥파의 최대(peak)값 지점의 시간정보를 이용하여 맥파전달시간의 평균을 나타내는 파라미터(EFp, EBp, ERp, ECp)를 산출할 수 있다.
연산부(130)가 맥파전달시간의 평균값을 나타내는 파라미터를 획득하는 과정은 앞에서 설명하였으므로, 중복되는 설명은 생략한다.
다음으로, 연산부(130)는 맥파의 최대값 및 최소값 지점의 시간정보와 심전도의 최대값 지점의 시간정보를 이용하여 맥파전달시간의 평균값을 산출한 파라미터를 이용하여 혈액순환장애 판별지표를 연산할 수 있다(S440). 혈액순환장애 판별지표는 질환군과 정상군을 판별하는 판별지표(A1 내지 A11)와 심혈관질환과 뇌혈관질환을 판별하는 판별지표(B1 내지 B8)를 포함할 수 있다.
연산부(130)가 혈액순환장애 판별지표를 연산하는 과정은 앞에서 설명하였으므로, 중복되는 설명은 생략한다.
이와 같이 연산부(130)는 혈액순환장애 판별지표를 연산하여 진단부(140)로 전달한다.
진단부(140)는 연산부(130)로부터 전달받은 혈액순환장애 판별지표를 이용하여 혈액순환장애를 판단한다(S450).
즉, 진단부(140)는 연산된 혈액순환장애 판별지표를 임계치와 비교하여, 측정 대상자가 혈관 질환군와 정상군 중에서 어디에 포함되는지 여부, 심혈관질환과 뇌혈관질환 여부를 판단한다.
이상과 같은 본 발명에 따르면, 맥파(Pulse wave)와 심전도(EKG)의 측정을 통하여 혈관 질환 위험도의 예측이 가능한바 비침습적이고 저렴한 비용으로 혈액순환장애를 측정할 수 있다.
본 발명을 이용하여 향후 간단한 맥파전달시간(Pulse transit time) 측정을 통해 정상군과 심뇌혈관 질환군을 1차 스크리닝하는데 활용될 수 있다. 또한 본 발명은 병의원의 건강검진, 현재 국가적으로 관심사인 웰빙 플렛폼(wellness platform), 기타 개인의 건강관리 프로그램 등 다양한 부분에서 활용이 가능하다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (10)

  1. 맥파전달시간을 이용한 혈액순환장애 측정 장치에 있어서,
    측정 대상자의 맥파 및 심전도를 측정하는 측정부,
    상기 측정된 심전도의 최대(peak)값 지점 및 맥파의 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 검출하는 검출부,
    상기 검출된 심전도의 최대(peak)값 지점 및 맥파의 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간의 평균값을 계산하고, 이를 이용하여 혈액순환장애 판별 지표를 연산하는 연산부, 그리고
    상기 연산된 혈액순환장애 판별지표를 이용하여 혈액순환장애를 진단하는 진단부를 포함하는 혈액순환장애 측정 장치.
  2. 제1항에 있어서,
    상기 측정부는,
    경동맥, 상완, 요골 및 대퇴부 중 적어도 어느 한 부위의 맥파를 측정하는 혈액순환장애 측정 장치.
  3. 제2항에 있어서,
    상기 연산부는,
    심전도의 최고(peak)값 지점과 맥파의 최소(foot)값 지점 사이의 맥파전달시간의 평균을 이용하여 혈관 질환 여부를 판별하는 질환군/정상군 판별지표를 연산하는 혈액순환장애 측정 장치.
  4. 제3항에 있어서,
    상기 연산부는,
    EFf를 EBf로 나눈 값(EFf/EBf), EFf를 ERf로 나눈 값(EFf/ERf), CFf를 CBf로 나눈 값(CFf/CBf), 및 CFf를 CRf로 나눈 값(CFf/CRf) 중에서 적어도 하나를 이용하여 상기 질환군/정상군 판별지표를 연산하며,
    상기 EFf는 심전도의 최대값 지점과 대퇴부에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 EBf는 심전도의 최대값 지점과 상완에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이며, 상기 ERf는 심전도의 최대값 지점과 요골에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, CFf는 경동맥과 대퇴부에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이며, 상기 CBf는 경동맥과 상완에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 CRf는 경동맥과 요골에서 측정된 맥파의 최소값 지점간의 맥파전달시간의 평균을 나타내는 파라미터인 혈액순환장애 측정 장치.
  5. 제2항에 있어서,
    상기 연산부는,
    심전도 및 맥파의 최고(peak)값 지점 사이의 맥파전달시간의 평균을 이용하여 혈관 질환의 종류를 판별하는 심혈관질환군/뇌혈관질환군 판별지표를 연산하는 혈액순환장애 측정 장치.
  6. 제5항에 있어서,
    상기 연산부는,
    ECp를 파라미터 EFp로 나눈 값(ECp/EFp), 파라미터 ECp를 파라미터 EBp로 나눈 값(ECp/EBp) 및 ECp를 ERp로 나눈 값(ECp/ERp) 중에서 적어도 하나를 이용하여 상기 심혈관질환군/뇌혈관질환군 판별지표를 연산하며,
    상기 EFp는 심전도의 최대값 지점과 대퇴부에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 EBp 는 심전도의 최대값 지점과 상완에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이며, 상기 ERp 는 심전도의 최대값 지점과 요골에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터이고, 상기 ECp 는 심전도의 최대값 지점과 경동맥에서 측정된 맥파의 최대값 지점간의 맥파전달시간의 평균을 나타내는 파라미터인 혈액순환장애 측정 장치.
  7. 맥파전달시간을 이용하여 혈액순환장애를 측정하는 방법에 있어서,
    측정 대상자의 맥파 및 심전도를 측정하는 단계,
    상기 측정된 심전도의 최대(peak)값 지점 및 측정된 맥파의 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 검출하는 단계,
    상기 검출된 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간을 계산하는 단계,
    상기 맥파전달시간을 이용하여 혈액순환장애 판별지표를 연산하는 단계, 그리고
    상기 연산된 혈액순환장애 판별지표를 이용하여 혈액순환장애를 진단하는 단계를 포함하는 혈액순환장애 측정 방법.
  8. 제7항에 있어서,
    상기 맥파 및 심전도를 측정하는 단계는,
    경동맥, 상완, 요골 및 대퇴부 중 적어도 어느 한 부위의 맥파를 측정하는 혈액순환장애 측정 방법.
  9. 제7항에 있어서,
    상기 검출된 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간을 계산하고 혈액순환장애 판별지표를 연산하는 단계는,
    심전도의 최고(peak)값 지점과 맥파의 최소(foot)값 지점 사이의 맥파전달시간의 평균을 이용하여 혈관 질환 여부를 판별하는 질환군/정상군 지표를 연산하는 혈액순환장애 측정 방법.
  10. 제7항에 있어서,
    상기 검출된 최대(peak)값 지점과 최소(foot)값 지점의 시간정보를 이용하여 맥파전달시간을 계산하고 혈액순환장애 판별지표를 연산하는 단계는,
    심전도 및 맥파의 최고(peak)값 지점 사이의 맥파전달시간의 평균을 이용하여 혈관 질환 종류를 판별하는 심혈관질환군/뇌혈관질환군 지표를 연산하는 혈액순환장애 측정 방법.
PCT/KR2015/008859 2015-01-26 2015-08-25 혈액순환장애 측정 장치 및 그 방법 WO2016133255A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017558343A JP6725533B2 (ja) 2015-01-26 2015-08-25 血行障害測定装置
US15/546,245 US11083385B2 (en) 2015-01-26 2015-08-25 Apparatus for measuring blood circulation disorders, and method therefor
CN201580076894.5A CN107427245A (zh) 2015-01-26 2015-08-25 血液循环障碍测量装置及其方法
EP15882788.1A EP3251593B1 (en) 2015-01-26 2015-08-25 Apparatus for measuring blood circulation disorders
AU2015383230A AU2015383230A1 (en) 2015-01-26 2015-08-25 Apparatus for measuring blood circulation disorders, and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0012097 2015-01-26
KR1020150012097A KR101646439B1 (ko) 2015-01-26 2015-01-26 혈액순환장애 측정 장치 및 그 방법

Publications (1)

Publication Number Publication Date
WO2016133255A1 true WO2016133255A1 (ko) 2016-08-25

Family

ID=56692619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008859 WO2016133255A1 (ko) 2015-01-26 2015-08-25 혈액순환장애 측정 장치 및 그 방법

Country Status (7)

Country Link
US (1) US11083385B2 (ko)
EP (1) EP3251593B1 (ko)
JP (1) JP6725533B2 (ko)
KR (1) KR101646439B1 (ko)
CN (1) CN107427245A (ko)
AU (1) AU2015383230A1 (ko)
WO (1) WO2016133255A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10842464B2 (en) * 2015-05-28 2020-11-24 Koninklijke Philips N.V. Apparatus and method for determining blood flow velocity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111244A (ja) * 2005-10-20 2007-05-10 Seiko Instruments Inc 血液循環状態測定装置
KR20080017525A (ko) * 2006-08-21 2008-02-27 한양대학교 산학협력단 혈압 조절기능 측정 장치 및 프로그램이 기록된 기록매체.
JP2010148690A (ja) * 2008-12-25 2010-07-08 Idm:Kk 血液情報抽出装置
KR20130095664A (ko) * 2012-02-20 2013-08-28 연세대학교 원주산학협력단 맥압과 맥파를 이용한 혈액순환장애 측정 시스템
KR20140148074A (ko) * 2013-06-21 2014-12-31 가톨릭관동대학교산학협력단 맥파와 심전도를 이용한 혈류속도 측정장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099853A (en) * 1986-12-25 1992-03-31 Colin Electronics Co., Ltd. Blood pressure monitoring system
JPH082350B2 (ja) * 1987-05-02 1996-01-17 コ−リン電子株式会社 脈波検出装置
JPH053858A (ja) * 1991-06-28 1993-01-14 Colleen Denshi Kk 血圧モニタ装置
US6331162B1 (en) * 1999-02-01 2001-12-18 Gary F. Mitchell Pulse wave velocity measuring device
FR2794961B1 (fr) * 1999-06-16 2001-09-21 Global Link Finance Procede de determination du decalage temporel entre les instants de passage d'une meme onde de pouls en deux points de mesure distincts d'un reseau arteriel d'un etre vivant et d'estimation de sa pression aortique
JP2004313468A (ja) * 2003-04-16 2004-11-11 Omron Healthcare Co Ltd 脈波測定装置および生体波解析プログラム
CN1698536A (zh) * 2004-05-20 2005-11-23 香港中文大学 采用自动补偿的无袖带式连续血压测量方法
US7621876B2 (en) * 2005-03-17 2009-11-24 Ge Medical Systems Information Technologies, Inc. Continuous, non-invasive technique for determining blood pressure using a transmission line model and transcutaneous ultrasound measurements
TWI258359B (en) * 2005-05-20 2006-07-21 Dailycare Biomedical Inc Apparatus for evaluating cardiovascular functions
CN101006915A (zh) * 2006-01-26 2007-08-01 香港中文大学 非接触式关键生理参数测量方法
US20080027330A1 (en) * 2006-05-15 2008-01-31 Endothelix, Inc. Risk assessment method for acute cardiovascular events
US20080221461A1 (en) * 2007-03-05 2008-09-11 Triage Wireless, Inc. Vital sign monitor for cufflessly measuring blood pressure without using an external calibration
US8047998B2 (en) * 2007-04-17 2011-11-01 General Electric Company Non-invasive blood pressure determination method
US8419649B2 (en) * 2007-06-12 2013-04-16 Sotera Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
CN201088579Y (zh) * 2007-08-06 2008-07-23 北京麦邦光电仪器有限公司 一种动脉硬化检测和评估装置
KR101124641B1 (ko) * 2008-10-02 2012-03-22 현석산 뇌혈관 분석 장치
JP5687994B2 (ja) * 2010-11-09 2015-03-25 日本光電工業株式会社 生体信号測定装置および生体信号測定方法
ES2398439B1 (es) * 2011-07-29 2014-03-05 Universitat Politècnica De Catalunya Método y aparato para obtener información cardiovascular midiendo entre dos extremidades
WO2014022906A1 (en) 2012-08-10 2014-02-13 Cnv Systems Ltd. Mobile device system for measurement of cardiovascular health
US20140073969A1 (en) * 2012-09-12 2014-03-13 Neurosky, Inc. Mobile cardiac health monitoring
CN103598876B (zh) * 2013-11-22 2016-08-17 哈尔滨工业大学深圳研究生院 数据处理方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111244A (ja) * 2005-10-20 2007-05-10 Seiko Instruments Inc 血液循環状態測定装置
KR20080017525A (ko) * 2006-08-21 2008-02-27 한양대학교 산학협력단 혈압 조절기능 측정 장치 및 프로그램이 기록된 기록매체.
JP2010148690A (ja) * 2008-12-25 2010-07-08 Idm:Kk 血液情報抽出装置
KR20130095664A (ko) * 2012-02-20 2013-08-28 연세대학교 원주산학협력단 맥압과 맥파를 이용한 혈액순환장애 측정 시스템
KR20140148074A (ko) * 2013-06-21 2014-12-31 가톨릭관동대학교산학협력단 맥파와 심전도를 이용한 혈류속도 측정장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3251593A4 *

Also Published As

Publication number Publication date
KR101646439B1 (ko) 2016-08-08
US11083385B2 (en) 2021-08-10
CN107427245A (zh) 2017-12-01
EP3251593B1 (en) 2022-06-29
JP6725533B2 (ja) 2020-07-22
EP3251593A1 (en) 2017-12-06
JP2018508323A (ja) 2018-03-29
EP3251593A4 (en) 2018-08-22
US20170367595A1 (en) 2017-12-28
KR20160092101A (ko) 2016-08-04
AU2015383230A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
Aboukhalil et al. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform
Choi et al. Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method
US20140031709A1 (en) Apparatus and method for identifying myocardial ischemia using analysis of high frequency qrs potentials
Nepi et al. Validation of the heart-rate signal provided by the Zephyr bioharness 3.0
Graham et al. Associations between heart rate variability measured with a wrist-worn sensor and older adults’ physical function: observational study
Saghir et al. A comparison of manual electrocardiographic interval and waveform analysis in lead 1 of 12-lead ECG and Apple Watch ECG: a validation study
US20180125384A1 (en) Data processing apparatus for assessing a condition of a myocardium
Roy et al. Comparison of electrocardiogram quality and clinical interpretations using prepositioned ECG electrodes and conventional individual electrodes
WO2016133255A1 (ko) 혈액순환장애 측정 장치 및 그 방법
Striepe et al. Use of the Apple Watch iECG in adult congenital heart disease patients
Morag et al. Do patients with a negative Emergency Department evaluation for syncope require hospital admission?
WO2017146303A1 (ko) 맥파전달시간을 이용한 혈액순환장애 진단 장치 및 이를 이용한 혈액순환장애 진단 방법
Thomaseth et al. Heart rate spectral analysis for assessing autonomic regulation in diabetic patients
KR101231421B1 (ko) 비 침습에 의한 심혈관질환에 대한 건강검진 시스템
Lee et al. Prediabetes and blood pressure effects on heart rate variability, QT-interval duration, and left ventricular hypertrophy in overweight-obese adolescents
Cheshmedzhiev et al. Electronic sensor system for registering ECG and PPG signals
Wahyu Kusuma et al. Design of arrhythmia detection device based on fingertip pulse sensor
KR101839758B1 (ko) 혈액순환장애 측정 장치 및 그 방법
KR101692742B1 (ko) 혈액순환장애 측정 장치 및 그 방법
KR101692743B1 (ko) 혈액순환장애 측정 장치 및 그 방법
Shellhaas et al. American Clinical Neurophysiology Society's guideline on continuous EEG monitoring in neonates
Ostrowska et al. Prevalence of electrocardiographic left ventricular hypertrophy among patients with coronary artery disease and diabetes mellitus
Murray Computerized QT and QTc Measurements from Bedside ICU Monitors are Similar to those Derived from a Standard 12-lead ECG
Klinge et al. Towards automatic pathology classification for a 24/7 ECG-based telemonitoring service
Do et al. Predicting severe angiographic coronary artery disease using computerization of clinical and exercise test data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558343

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015882788

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015383230

Country of ref document: AU

Date of ref document: 20150825

Kind code of ref document: A