WO2016132811A1 - Method for producing nickel alloy porous body - Google Patents

Method for producing nickel alloy porous body Download PDF

Info

Publication number
WO2016132811A1
WO2016132811A1 PCT/JP2016/051784 JP2016051784W WO2016132811A1 WO 2016132811 A1 WO2016132811 A1 WO 2016132811A1 JP 2016051784 W JP2016051784 W JP 2016051784W WO 2016132811 A1 WO2016132811 A1 WO 2016132811A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nickel alloy
metal
porous body
powder
Prior art date
Application number
PCT/JP2016/051784
Other languages
French (fr)
Japanese (ja)
Inventor
奥野 一樹
孝浩 東野
知之 粟津
真嶋 正利
西村 淳一
賢吾 塚本
斉 土田
英敏 斉藤
Original Assignee
住友電気工業株式会社
富山住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 富山住友電工株式会社 filed Critical 住友電気工業株式会社
Priority to EP16752200.2A priority Critical patent/EP3260579B1/en
Priority to US15/550,474 priority patent/US20180030607A1/en
Priority to KR1020177019564A priority patent/KR20170118701A/en
Priority to CN201680010206.XA priority patent/CN107208294B/en
Priority to JP2017500565A priority patent/JP6653313B2/en
Publication of WO2016132811A1 publication Critical patent/WO2016132811A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer

Definitions

  • the present invention relates to a method for producing a nickel alloy porous body that can be used as a current collector for a battery, a filter, a catalyst carrier, etc., has excellent strength and toughness, is low in cost, and corresponds to a wide range of materials.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 07-150270 (Patent Document 1), reinforcing fine particles such as oxides, carbides and nitrides of elements belonging to groups II to VI of the periodic table are formed on the skeleton surface of a three-dimensional network resin having communication holes. Obtained by applying a paint containing Ni, and providing a Ni alloy or Cu alloy metal plating layer on the paint film, followed by heat treatment to disperse the fine particles in the metal plating layer. Strong metal porous bodies have been proposed.
  • the porous metal body since the reinforcing fine particles are dispersed in the metal plating layer which is the base layer, the porous metal body has a high breaking strength but a small breaking elongation, and is suitable for processing involving plastic deformation such as bending and crushing. Is weak and has the problem of breaking.
  • Patent Document 2 Japanese Patent Publication No. 38-17554
  • Patent Document 3 Japanese Patent Application Laid-Open No. 09-017432
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2001-226723
  • a slurry of metal or metal oxide powder and resin is disclosed.
  • a porous metal body obtained by applying or spraying to a three-dimensional network resin and performing a drying treatment after drying.
  • the porous metal body produced by the sintering method forms a skeleton by sintering metal or metal oxide powders, even if the particle size of the powder is reduced, not a few pores are generated in the skeleton cross section. Resulting in.
  • Patent Document 5 Japanese Patent Laid-Open No. 08-0112929 (Patent Document 5) and Japanese Patent Laid-Open No. 08-232033 (Patent Document 6), a Ni porous film formed by a plating method using a three-dimensional network resin imparted with conductivity as a support.
  • a porous metal body obtained by a diffusion permeation method in which a body is embedded in Cr or Al and NH 4 Cl powder and subjected to heat treatment in an Ar or H 2 gas atmosphere has been proposed.
  • the diffusion permeation method is expensive because of low productivity, and there is a problem that the elements that can be alloyed with the Ni porous body are limited to Cr and Al.
  • Patent Document 7 when the surface of a resin molded body having a three-dimensional network structure is subjected to a conductive treatment, a metal powder is mixed and applied to the carbon paint, and then the desired shape is applied. There has been proposed a method of obtaining a homogeneous alloy porous body by electroplating a metal and heat-treating it.
  • Patent Document 7 a porous metal body suitable for battery current collectors, filters, catalyst carriers, etc., excellent in strength and toughness, low in cost, and compatible with a wide range of materials is manufactured. Can do.
  • the method described in Patent Document 7 makes it easy to control the concentration when the content of the metal to be added is small (for example, about 5% by mass or less). It was found that there was room for improvement. As a result of further investigation about this cause, when the resin molded body is burned and removed, the phenomenon that the metal particles remain attached to the surface of the resin molded body and cannot be taken into the metal plating layer is partially seen. I found it to be the cause.
  • FIGS. 3A to 3C are conceptual diagrams showing the state of the cross section of the resin molded body skeleton in each step when a porous metal body is produced by the method described in Patent Document 7.
  • FIG. 1 in order to make the surface of the resin molded body 1 conductive, a carbon paint containing the metal powder 2 is applied to the surface of the resin molded body 1 (see FIG. 3A). Thereby, the surface of the resin molding 1 becomes conductive. Subsequently, a desired metal is coated by electrolytic plating. Thereby, as shown in FIG. 3B, the metal plating layer 3 is formed on the surface of the resin molded body 1.
  • the present invention provides a method for producing a nickel alloy porous body that can easily control the concentration and can uniformly diffuse the added metal into the porous body even when the concentration of the metal added to nickel is low.
  • the purpose is to provide.
  • the method for producing a nickel alloy porous body includes: (1) applying a paint containing nickel alloy powder of nickel and an additive metal to the surface of the skeleton of a resin molded body having a three-dimensional network structure; A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied; Removing the resin molded body; Diffusing the additive metal into the nickel by heat treatment; The manufacturing method of the nickel alloy porous body which has this.
  • a paint containing nickel alloy powder of nickel and an additive metal is applied to the surface of a skeleton of a resin molded body having a three-dimensional network structure. And a process of A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied; Removing the resin molded body; Diffusing the additive metal into the nickel by heat treatment; The manufacturing method of the nickel alloy porous body which has this. According to the invention described in (1) above, even when the concentration of the metal added to nickel is low, the concentration can be easily controlled and the added metal can be uniformly diffused into the porous body. A method for producing a nickel alloy porous body can be provided.
  • the additive metal is selected from the group consisting of Cr, Sn, Co, Cu, Al, Ti, Mn, Fe, Mo, and W. Any one or more metals are preferable. According to the invention described in (2) above, any one or more additive metals selected from the group consisting of Al, Ti, Cr, Mn, Fe, Co, Cu, Mo, Sn, and W in the nickel porous body Can be uniformly distributed, and the concentration can be easily controlled.
  • the particle diameter of the nickel alloy powder can be reduced to facilitate the diffusion of the additive metal into the nickel layer.
  • the paint containing the nickel alloy powder preferably further contains carbon powder. According to the invention as described in said (4), the electroconductivity of the surface of a resin molding can be improved more and nickel plating can be performed easily.
  • FIGS. 1A to 1C are conceptual diagrams showing the state of the cross section of a resin molded body skeleton in each step when a nickel alloy porous body is manufactured by a method for manufacturing a nickel alloy porous body according to an embodiment of the present invention.
  • the resin molding 1 used as the base material of a nickel alloy porous body is prepared.
  • a paint containing conductive powder is applied to the surface of the skeleton of the resin molded body 1.
  • an alloy powder 4 of metal and nickel added to the nickel porous body is used (see FIG. 1A).
  • the nickel plating layer 3 is formed on the surface of the skeleton of the resin molded body 1. Since the surface of the skeleton of the resin molded body 1 is conductive, the nickel plating layer 3 can be formed by electrolytic plating. Thereby, as shown to FIG. 1B, the layer by the nickel alloy powder 4 and the nickel plating layer 3 are formed in the surface of the frame
  • the method for producing a nickel alloy porous body includes a step of applying a paint containing nickel alloy powder on the surface of a skeleton of a resin molded body, a step of plating nickel, and the resin A step of removing the formed body and a step of diffusing the nickel alloy powder into nickel.
  • a step of applying a paint containing nickel alloy powder on the surface of a skeleton of a resin molded body includes a step of plating nickel, and the resin A step of removing the formed body and a step of diffusing the nickel alloy powder into nickel.
  • a resin foam, a nonwoven fabric, a felt, a woven fabric, or the like is used, but these may be used in combination as necessary.
  • a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.
  • a resin foam as a resin molded body having a three-dimensional network structure.
  • the resin foam any known or commercially available resin may be used as long as it is porous. Examples thereof include urethane foam and foamed styrene. Among these, urethane foam is preferable from the viewpoint of particularly high porosity.
  • the thickness, porosity, and average pore diameter of the foamed resin are not limited, and can be appropriately set according to the application.
  • the nickel alloy powder used for conducting the conductive treatment on the surface of the skeleton of the resin molded body has a volume average particle diameter of 10 ⁇ m or less.
  • the volume average particle size is preferably smaller and more preferably 3 ⁇ m or less. Moreover, what is necessary is just to select suitably according to the diameter of frame
  • the additive metal alloyed with nickel is not particularly limited, and a desired metal may be selected according to the purpose.
  • a desired metal may be selected according to the purpose.
  • the nickel alloy powder may form a completely homogeneous alloy of nickel and an additive metal, a mixed type, a core-shell type, or a composite type. It may be a composite powder of the type. In the present invention, all the powders of these embodiments are called nickel alloy powders.
  • the mixed powder refers to a powder in which a plurality of single particles of additive metal are present inside nickel particles or a layered additive metal is present inside nickel particles.
  • the core-shell type means that the surface of a single additive metal is coated with nickel.
  • the composite type refers to, for example, a core-shell structure of an additive metal and a nickel alloy, or a state in which the additive metal is partially present in the form of particles or layers in the core-shell structure.
  • a material in which most of the surface of the nickel alloy particles is nickel or a homogeneous nickel alloy is used so that the nickel alloy particles are easily diffused in the nickel plating layer.
  • Such a nickel alloy powder can be obtained by a pulverization method for pulverizing a nickel alloy, an atomization method, or the like.
  • the nickel alloy powder is oxidized.
  • a nickel alloy powder having a smaller volume average particle diameter is easier to pulverize when the nickel alloy as a material is oxidized.
  • the additive metal can be easily diffused into the nickel.
  • the nickel alloy powder obtained by pulverizing the oxidized nickel alloy has at least a surface oxidized state, but can be reduced in a heat treatment step in which the additive metal is diffused into nickel.
  • a step of reducing the metal oxide by performing a heat treatment in a reducing atmosphere may be performed.
  • the volume average particle size of the carbon powder is preferably 10 ⁇ m or less, and more preferably 3 ⁇ m or less, like the nickel alloy porous body. Moreover, what is necessary is just to select suitably according to the diameter of the frame
  • the material of the carbon powder include crystalline graphite and amorphous carbon black. Among these, graphite is particularly preferable in that the particle diameter generally tends to be small.
  • a conductive paint can be produced by adding the nickel alloy powder and, if necessary, carbon powder to a binder and mixing them.
  • the paint may be applied to the surface of the skeleton of the resin molded body.
  • the application method is not particularly limited, and examples thereof include a dipping method and a method using a brush.
  • a conductive coating layer is formed on the surface of the skeleton of the resin molded body.
  • the conductive coating layer may be formed continuously on the surface of the skeleton of the resin molded body.
  • the basis weight of the conductive coating layer is not particularly limited, and is usually about 0.1 g / m 2 or more and 300 g / m 2 or less, and about 1 g / m 2 or more and 100 g / m 2 or less. It is preferable.
  • Nickel plating process In the step of plating nickel, a known plating method can be used, and an electroplating method is preferably used. In addition to the electroplating treatment, if the thickness of the plating film is increased by electroless plating treatment and / or sputtering treatment, there is no need for electroplating treatment, but it is not preferable from the viewpoint of productivity and cost. For this reason, as described above, the resin molded body is first subjected to a conductive treatment, and then a method of forming a nickel plating layer by an electroplating method can be used to produce the resin molded body with high productivity and low cost. Further, a highly stable nickel alloy porous body having a skeleton cross-sectional porosity of less than 1% can be obtained.
  • the plating layer may be a multilayer, but the first plating layer is a nickel plating layer. Thereby, the nickel alloy particles can be easily diffused into the nickel plating layer.
  • a metal plating layer may be appropriately formed on the nickel plating layer according to the purpose.
  • the nickel plating layer should just be formed on the said conductive coating layer to such an extent that the said conductive coating layer is not exposed.
  • the basis weight of the nickel plating layer is not limited and may be appropriately selected depending on the thickness of the nickel alloy porous body. However, in order to achieve both strength and porosity, the basis weight per 1 mm thickness is usually 100 g / m 2 or more. About 600 g / m 2 or less, and more preferably about 200 g / m 2 or more and 500 g / m 2 or less.
  • the resin molded body can be removed by heat-treating the resin-metal composite obtained in the above steps in the air.
  • the heat treatment temperature is preferably 700 ° C. or higher and 1200 ° C. or lower. When the temperature is 700 ° C. or higher, the resin molded body can be removed and the nickel alloy powder can be easily diffused into the nickel plating layer. Moreover, it can suppress that nickel oxidizes too much by being 1200 degrees C or less. From these viewpoints, the heat treatment temperature is more preferably 750 ° C. or more and 1100 ° C. or less, and further preferably 800 ° C. or more and 1050 ° C. or less. Moreover, what is necessary is just to change heat processing time suitably according to heat processing temperature. For example, when the heat treatment is performed at 800 ° C., the resin molded body can be removed satisfactorily in about 10 minutes to 30 minutes.
  • This step is a step for further uniformly diffusing the additive metal taken into the nickel plating layer. What is necessary is just to select the heat processing temperature and heat processing time suitably according to the added metal. For example, when producing a nickel alloy porous body using nickel chromium alloy powder or nickel tungsten powder, heat treatment may be performed at 1100 ° C. for 30 minutes or more. If an alloy powder of tin, cobalt, copper, aluminum, titanium, manganese, iron, molybdenum and nickel is used, heat treatment may be performed at 1000 ° C. for 15 minutes or more.
  • the nickel alloy powder or the nickel alloy oxide powder and the nickel plating layer can be reduced by performing the heat treatment in a reducing atmosphere using H 2 gas or the like.
  • the carbon powder contained in the conductive coating layer acts as a strong reducing agent at a high temperature to reduce the nickel alloy powder or the nickel alloy oxide powder and the nickel plating layer.
  • heat treatment is performed at an optimum temperature and time according to the added metal species.
  • reduction of nickel alloy reduction of oxygen concentration in the metal
  • alloying by thermal diffusion crystal grains Can be coarsened.
  • the strength and toughness of the nickel alloy porous body are improved, and a tough nickel alloy porous body that does not break even with processing involving plastic deformation such as bending or crushing is obtained.
  • Example 1 (Conductive treatment of resin molding) First, as a resin molded body having a three-dimensional network structure, a 1.5 mm thick foamed polyurethane sheet (pore diameter 0.45 mm) was prepared. Subsequently, 100 g of graphite having a volume average particle diameter of 10 ⁇ m, 20 g of carbon black having a volume average particle diameter of 0.1 ⁇ m, and 100 g of nickel alloy oxide powder having a volume average particle diameter shown in Table 1 of 0.5 L of 10% acrylic ester Dispersed in an aqueous resin solution, an adhesive paint was prepared at this ratio.
  • nickel alloy oxide powder nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder were used.
  • Each nickel alloy oxide powder was used by pulverizing and classifying oxidized nickel alloy powder and setting the volume average particle size to 0.5 ⁇ m to 1.5 ⁇ m.
  • the foamed polyurethane sheet is continuously dipped in the paint, squeezed with a roll and then dried to form a conductive coating layer on the surface of the resin molded body having a three-dimensional network structure.
  • the viscosity of the conductive coating was adjusted with a thickener, and the coating weight per unit area of the coating was 20 g / m 2 in terms of alloy powder. Table 1 shows the coating weight per unit area.
  • Nickel plating process A nickel plating layer was formed to 300 g / m 2 by electroplating on the surface of the skeleton of the resin molded body having a three-dimensional network structure subjected to the conductive treatment.
  • the plating solution a nickel sulfamate plating solution was used.
  • ⁇ Evaluation> 2A to 2D show the results of observing the cross sections of the skeletons of the nickel alloy porous bodies 1 to 4 obtained above with an electron microscope (SEM). As shown in FIGS. 2A to 2D, in the nickel alloy porous bodies 1 to 4, no additive metal particles remain on the inner surface of the skeleton of the nickel alloy porous body, and the additive metal diffuses uniformly in the nickel. It was confirmed that
  • Example 2 In Example 1, instead of nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder, nickel-chromium alloy powder, nickel-cobalt Nickel alloy porous bodies 5 to 8 were produced in the same manner as in Example 1 except that alloy powder, nickel-tin alloy powder, and nickel-copper alloy powder were used. Table 1 shows the volume average particle diameter and the coating weight of each nickel alloy powder. When the cross section of the skeleton of the nickel alloy porous bodies 5 to 8 was observed with an electron microscope in the same manner as in Example 1, no additional metal particles remained on the inner surface of the skeleton of the nickel alloy porous body, and the added metal was nickel. It was confirmed that it diffused uniformly.
  • Example 1 In Example 1, instead of nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder, chromium oxide powder, cobalt oxide powder, oxidation Nickel alloy porous bodies 9 to 12 were produced in the same manner as in Example 1 except that tin powder and copper oxide powder were used. In addition, each metal oxide powder used what oxidized and grind
  • Example 2 In Example 1, instead of nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder, chromium powder, cobalt powder, tin powder, Further, nickel alloy porous bodies 13 to 16 were produced in the same manner as in Example 1 except that copper powder was used. When the cross section of the skeleton of the nickel alloy porous bodies 13 to 16 was observed with an electron microscope in the same manner as in Example 1, it was confirmed that some of the added metal particles remained on the inner surface of the skeleton of the nickel alloy porous body. It was.
  • the metal porous body which is the nickel alloy porous body of the present invention can be suitably used for hydrogen production by water electrolysis in addition to the fuel cell.
  • FIG. 4 is a conceptual diagram showing a conventional water splitting apparatus.
  • Current collectors 6 are provided at both ends of the ion permeable membrane 5.
  • the ion permeable membrane 5 mainly transmits hydrogen or oxygen, and the current collector 6 has a gas flow path composed of a stainless corrugated plate or a grooved carbon structure on the side in contact with the ion permeable membrane. ing. Water vapor is introduced into the gas flow path.
  • decomposed hydrogen ions pass through the ion permeable membrane 5 and are discharged from the gas flow path on the opposite side, and the decomposed oxygen remains as it is together with the undecomposed water vapor. Discharged.
  • FIG. 5 is a conceptual diagram showing a water splitting apparatus using a porous metal body according to one embodiment of the present invention. Although it differs from the conventional water splitting device of FIG. 4 in that the gas flow path is formed of the porous metal body 7, it has the same configuration in other respects. By forming the gas flow path of the current collector 6 with the metal porous body 7 in this way, hydrogen can be produced by water splitting more efficiently than before.
  • the anode and the cathode are immersed in a strong alkaline aqueous solution, and water is electrolyzed by applying a voltage.
  • a metal porous body as an electrode, the contact area between water and the electrode is increased, and the efficiency of water electrolysis can be increased.
  • the pore diameter of the metal porous body is preferably 100 ⁇ m or more and 5000 ⁇ m or less. If it is smaller than 100 ⁇ m, the generated hydrogen / oxygen bubbles are not easily removed, and the area where water contacts the electrode is reduced, resulting in a reduction in efficiency. On the other hand, if it is larger than 5000 ⁇ m, the surface area of the electrode becomes small, and the efficiency is lowered. From the same viewpoint, it is more preferably 400 ⁇ m or more and 4000 ⁇ m or less.
  • the thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment because it causes a deflection or the like when the electrode area increases.
  • a plurality of porous metal bodies having different pore diameters can be used in combination in order to achieve both the elimination of bubbles and the securing of the surface area.
  • the PEM method (2) is a method in which water is electrolyzed using a solid polymer electrolyte membrane.
  • An anode and a cathode are arranged on both sides of the solid polymer electrolyte membrane, and a voltage is applied while flowing water on the anode side.
  • hydrogen ions generated by electrolysis of water are moved to the cathode side through the solid polymer electrolyte membrane and taken out as hydrogen on the cathode side.
  • the operating temperature is about 100 ° C.
  • the polymer electrolyte fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since the anode side and the cathode side are completely separated, there is an advantage that high purity hydrogen can be taken out. Since both the anode and the cathode must pass through the electrode and allow water and hydrogen gas to pass through, the electrode needs a conductive porous body.
  • the metal porous body of the present invention has a high porosity and good electrical conductivity, it can be suitably used for PEM water electrolysis as well as a polymer electrolyte fuel cell. .
  • the pore diameter of the metal porous body is preferably 100 ⁇ m or more and 5000 ⁇ m or less. If it is smaller than 100 ⁇ m, the generated hydrogen / oxygen bubbles are not easily removed, and the area where water comes into contact with the solid polymer electrolyte is reduced, thereby lowering the efficiency. On the other hand, if it is larger than 5000 ⁇ m, the water retention property is deteriorated, so that water passes through before sufficiently reacting and the efficiency is lowered. From the same viewpoint, 400 ⁇ m or more and 4000 ⁇ m or less are more preferable.
  • the thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Further, in this method, the electrical connection between the solid polymer electrolyte and the electrode is a pressure bonding. Therefore, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practically acceptable range.
  • the amount of metal is preferably 400 g / m 2 or more.
  • a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
  • the SOEC method (3) is a method in which water is electrolyzed using a solid oxide electrolyte membrane, and the configuration differs depending on whether the electrolyte membrane is proton conduction or oxygen ion conduction.
  • oxygen ion conductive membrane hydrogen is generated on the cathode side where water vapor is introduced, so that the hydrogen purity is lowered. Therefore, a proton conductive membrane is preferable from the viewpoint of hydrogen production.
  • the operating temperature is about 600 ° C to 800 ° C.
  • a solid oxide fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since both the anode and the cathode need to pass through the electrode and allow water vapor / hydrogen gas to pass through, the electrode needs to be conductive and have a porous body that can withstand a high-temperature oxidizing atmosphere, particularly on the anode side.
  • the porous metal body of the present invention has high porosity, good electrical conductivity, and high oxidation resistance and heat resistance, it can be used in a solid oxide fuel cell as in the SOEC system. It can also be suitably used for water electrolysis. It is preferable to use a Ni alloy to which a metal having high oxidation resistance such as Cr is added for the electrode on the side that becomes an oxidizing atmosphere.
  • the pore diameter of the metal porous body is preferably 100 ⁇ m or more and 5000 ⁇ m or less. If it is smaller than 100 ⁇ m, the passage of water vapor and generated hydrogen becomes worse, the area where the water vapor contacts the solid oxide electrolyte is reduced, and the efficiency is lowered. Moreover, since pressure loss will become low too much when it is larger than 5000 micrometers, before water vapor
  • the thickness of the metal porous body and the amount of metal may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water vapor increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Further, in this method, since the electrical connection between the solid oxide electrolyte and the electrode is a pressure bonding, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practical range.
  • the amount of metal is preferably 400 g / m 2 or more.
  • a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
  • -Additional notes- Applying a paint containing nickel alloy powder of nickel and an additive metal to the surface of the skeleton of the resin molded body having a three-dimensional network structure; A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied; Removing the resin molded body; Diffusing the additive metal into the nickel by heat treatment; A current collector comprising a nickel alloy porous body manufactured by: A water splitting device comprising an ion permeable membrane having the current collector at both ends.
  • the nickel alloy porous body is: Applying a paint containing nickel alloy powder of nickel and an additive metal to the surface of the skeleton of the resin molded body having a three-dimensional network structure; A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied; Removing the resin molded body; Diffusing the additive metal into the nickel by heat treatment, and A step of forming an ion permeable membrane having the current collector at both ends; A step of introducing water vapor into the current collector and taking out hydrogen that has permeated through the ion permeable membrane.
  • the nickel alloy porous body of the present invention is excellent in mechanical properties and corrosion resistance, and can be kept low in cost. Therefore, it can be suitably used for a current collector of a secondary battery such as a lithium ion battery, a capacitor, or a fuel cell, and a water splitting device.
  • a secondary battery such as a lithium ion battery, a capacitor, or a fuel cell

Abstract

A method for producing a nickel alloy porous body, which comprises: a step wherein the surface of the skeleton of a resin molded body having a three-dimensional network structure is coated with a coating material that contains a nickel alloy powder of nickel and an additive metal having a volume average particle diameter of 10 μm or less; a step wherein the surface of the skeleton of the resin molded body, which has been coated with the coating material, is plated with nickel; a step wherein the resin molded body is removed; and a step wherein the additive metal is diffused into the nickel by means of a heat treatment.

Description

ニッケル合金多孔体の製造方法Method for producing porous nickel alloy
  本発明は、電池用集電体、フィルター、触媒担持体等として利用し得る、強度、靭性ともに優れ、低コストで、且つ広範な材質に対応するニッケル合金多孔体の製造方法に関する。 The present invention relates to a method for producing a nickel alloy porous body that can be used as a current collector for a battery, a filter, a catalyst carrier, etc., has excellent strength and toughness, is low in cost, and corresponds to a wide range of materials.
  従来、金属多孔体は電池用集電体、フィルター、触媒担持体等、様々な用途に利用されている。このため、金属多孔体の製造技術として、以下に示すように多くの公知文献が挙げられる。
  特開平07-150270号公報(特許文献1)では、連通孔を有する三次元網状樹脂の骨格表面に、周期表のII~VI族に属する元素の酸化物、炭化物、窒化物等の強化用微粒子を含ませた塗料を塗布し、さらに、この塗料の塗膜上にNi合金あるいはCu合金の金属めっき層を設け、その後、熱処理して微粒子を金属めっき層内に分散させることで得られる、高強度の金属多孔体が提案されている。しかしながら、同金属多孔体は、母層である金属めっき層内に強化用微粒子が分散しているために、破断強度は高いものの破断伸びが小さく、曲げる、潰す等の塑性変形を伴う加工に対しては弱く、破断してしまう課題がある。
Conventionally, metal porous bodies have been used in various applications such as battery current collectors, filters, and catalyst carriers. For this reason, many well-known literatures are mentioned as a manufacturing technique of a metal porous body as shown below.
In Japanese Patent Application Laid-Open No. 07-150270 (Patent Document 1), reinforcing fine particles such as oxides, carbides and nitrides of elements belonging to groups II to VI of the periodic table are formed on the skeleton surface of a three-dimensional network resin having communication holes. Obtained by applying a paint containing Ni, and providing a Ni alloy or Cu alloy metal plating layer on the paint film, followed by heat treatment to disperse the fine particles in the metal plating layer. Strong metal porous bodies have been proposed. However, since the reinforcing fine particles are dispersed in the metal plating layer which is the base layer, the porous metal body has a high breaking strength but a small breaking elongation, and is suitable for processing involving plastic deformation such as bending and crushing. Is weak and has the problem of breaking.
  特公昭38-17554号公報(特許文献2)、特開平09-017432号公報(特許文献3)及び特開2001-226723号公報(特許文献4)では、金属あるいは金属酸化物粉末と樹脂のスラリーを三次元網目状樹脂に塗布もしくはスプレーし、乾燥後焼結処理を行うことによって得られる金属多孔体が提案されている。しかしながら、焼結法で作製した金属多孔体は、金属あるいは金属酸化物粉末同士の焼結によって骨格を形成するために、その粉末粒径を小さくしても、骨格断面において少なからず空孔が発生してしまう。その結果、単一金属あるいは合金種の設計により破断強度が高いものが得られても、上記同様に、破断伸びは小さいために、曲げる、潰す等の塑性変形を伴う加工に対しては弱く、破断してしまう課題がある。 In Japanese Patent Publication No. 38-17554 (Patent Document 2), Japanese Patent Application Laid-Open No. 09-017432 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2001-226723 (Patent Document 4), a slurry of metal or metal oxide powder and resin is disclosed. There has been proposed a porous metal body obtained by applying or spraying to a three-dimensional network resin and performing a drying treatment after drying. However, since the porous metal body produced by the sintering method forms a skeleton by sintering metal or metal oxide powders, even if the particle size of the powder is reduced, not a few pores are generated in the skeleton cross section. Resulting in. As a result, even if high fracture strength is obtained by the design of a single metal or alloy type, as described above, because the elongation at break is small, it is weak against processing involving plastic deformation such as bending and crushing, There is a problem that breaks.
  特開平08-013129号公報(特許文献5)、及び特開平08-232003号公報(特許文献6)では、導電性を付与した三次元網目状樹脂を支持体とし、めっき法で形成したNi多孔体を、CrあるいはAl及びNH4Cl粉末中に埋めて、ArまたはH2ガス雰囲気中で熱処理を施す拡散浸透法によって得られる金属多孔体が提案されている。しかしながら、拡散浸透法は生産性が低いためにコストが高く、また、Ni多孔体と合金化できる元素がCrとAlに限定される課題がある。 In Japanese Patent Laid-Open No. 08-0112929 (Patent Document 5) and Japanese Patent Laid-Open No. 08-232033 (Patent Document 6), a Ni porous film formed by a plating method using a three-dimensional network resin imparted with conductivity as a support. A porous metal body obtained by a diffusion permeation method in which a body is embedded in Cr or Al and NH 4 Cl powder and subjected to heat treatment in an Ar or H 2 gas atmosphere has been proposed. However, the diffusion permeation method is expensive because of low productivity, and there is a problem that the elements that can be alloyed with the Ni porous body are limited to Cr and Al.
  特開2013-133504号公報(特許文献7)においては、三次元網目状構造を有する樹脂成形体の表面を導電化処理する際に、カーボン塗料に金属粉末を混ぜて塗布し、その後に所望の金属を電気めっきして熱処理することで均質な合金の多孔体を得る方法が提案されている。 In Japanese Patent Laid-Open No. 2013-133504 (Patent Document 7), when the surface of a resin molded body having a three-dimensional network structure is subjected to a conductive treatment, a metal powder is mixed and applied to the carbon paint, and then the desired shape is applied. There has been proposed a method of obtaining a homogeneous alloy porous body by electroplating a metal and heat-treating it.
特開平07-150270号公報Japanese Patent Application Laid-Open No. 07-150270 特公昭38-17554号公報Japanese Patent Publication No. 38-17554 特開平09-017432号公報Japanese Patent Laid-Open No. 09-017432 特開2001-226723号公報JP 2001-226723 A 特開平08-013129号公報Japanese Unexamined Patent Publication No. 08-013129 特開平08-232003号公報Japanese Patent Application Laid-Open No. 08-23003 特開2013-133504号公報JP 2013-133504 A
  特許文献7に記載の方法によれば、電池用集電体、フィルター、触媒担持体等に適し、強度、靭性ともに優れ、低コストで、且つ広範な材質に対応する金属多孔体を製造することができる。
  しかしながら本発明者等が研究を重ねた結果、特許文献7に記載の方法では、添加する金属の含有量が少ない場合(例えば5質量%以下程度)には、濃度の制御を容易にするという点で改良の余地があることが見出された。この原因について更に探求を重ねた結果、樹脂成形体を燃焼除去する際に樹脂成形体の表面に金属粒子が付着したままになり金属めっき層に取り込まれないという現象が一部に見られることが原因であると分かった。これは、金属粒子が金属めっき層に拡散するよりも、金属粒子が保持されている樹脂成形体の収縮の方が早く、一部の金属粒子が金属めっき層より剥離して拡散しないまま骨格の内側表面に残ってしまうというものである。特に、Cr系酸化物粒子の熱処理において顕著に見出された。
According to the method described in Patent Document 7, a porous metal body suitable for battery current collectors, filters, catalyst carriers, etc., excellent in strength and toughness, low in cost, and compatible with a wide range of materials is manufactured. Can do.
However, as a result of repeated researches by the present inventors, the method described in Patent Document 7 makes it easy to control the concentration when the content of the metal to be added is small (for example, about 5% by mass or less). It was found that there was room for improvement. As a result of further investigation about this cause, when the resin molded body is burned and removed, the phenomenon that the metal particles remain attached to the surface of the resin molded body and cannot be taken into the metal plating layer is partially seen. I found it to be the cause. This is because the resin molded body holding the metal particles shrinks faster than the metal particles diffuse into the metal plating layer, and some of the metal particles peel from the metal plating layer and do not diffuse. It will remain on the inner surface. In particular, it was remarkably found in the heat treatment of Cr-based oxide particles.
  上記の現象を、図3A~図3Cを用いて詳述する。
  図3A~図3Cは特許文献7に記載の方法によって金属多孔体を製造する場合の、各工程における樹脂成形体骨格の断面の状態を表す概念図である。
  まず、樹脂成形体1の表面を導電化処理するために、樹脂成形体1の表面に金属粉末2を含有するカーボン塗料を塗布する(図3A参照)。これにより樹脂成形体1の表面が導電性となる。続いて電解めっきによって所望の金属を被覆する。これにより、図3Bに示すように、樹脂成形体1の表面には金属めっき層3が形成される。続いて、樹脂成形体1を除去するために熱処理を行うが、この際に、図3Cに示すように、樹脂成形体1が収縮し、樹脂成形体1の表面に付着していた金属粒子2のうちの一部が樹脂成形体1に付着したままになってしまい金属めっき層3に取り込まれないという現象が見出された。
  このことが原因で、金属多孔体の所期の合金濃度に必要な量よりも多く金属粒子を添加しておかなければならなくなっていた。
The above phenomenon will be described in detail with reference to FIGS. 3A to 3C.
3A to 3C are conceptual diagrams showing the state of the cross section of the resin molded body skeleton in each step when a porous metal body is produced by the method described in Patent Document 7. FIG.
First, in order to make the surface of the resin molded body 1 conductive, a carbon paint containing the metal powder 2 is applied to the surface of the resin molded body 1 (see FIG. 3A). Thereby, the surface of the resin molding 1 becomes conductive. Subsequently, a desired metal is coated by electrolytic plating. Thereby, as shown in FIG. 3B, the metal plating layer 3 is formed on the surface of the resin molded body 1. Subsequently, a heat treatment is performed to remove the resin molded body 1. At this time, as shown in FIG. 3C, the resin molded body 1 contracts and the metal particles 2 adhered to the surface of the resin molded body 1. A phenomenon was found in which a part of them remained attached to the resin molded body 1 and was not taken into the metal plating layer 3.
Because of this, it has been necessary to add more metal particles than is necessary for the desired alloy concentration of the metal porous body.
  そこで本発明は、ニッケルに添加する金属の濃度が低い場合であっても、濃度の制御が容易で、かつ多孔体中に添加金属を均一に拡散させることが可能なニッケル合金多孔体の製造方法を提供することを目的とする。 Therefore, the present invention provides a method for producing a nickel alloy porous body that can easily control the concentration and can uniformly diffuse the added metal into the porous body even when the concentration of the metal added to nickel is low. The purpose is to provide.
  本発明の一態様に係るニッケル合金多孔体の製造方法は、
(1)三次元網目状構造を有する樹脂成形体の骨格の表面に、ニッケルと添加金属とのニッケル合金粉末を含有する塗料を塗布する工程と、
  前記塗料を塗布した前記樹脂成形体の骨格の表面にニッケルをめっきする工程と、
  前記樹脂成形体を除去する工程と、
  熱処理によって前記添加金属を前記ニッケル中に拡散させる工程と、
を有するニッケル合金多孔体の製造方法、である。
The method for producing a nickel alloy porous body according to an aspect of the present invention includes:
(1) applying a paint containing nickel alloy powder of nickel and an additive metal to the surface of the skeleton of a resin molded body having a three-dimensional network structure;
A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied;
Removing the resin molded body;
Diffusing the additive metal into the nickel by heat treatment;
The manufacturing method of the nickel alloy porous body which has this.
  上記発明によれば、ニッケルに添加する金属の濃度が低い場合であっても、濃度の制御が容易で、かつ多孔体中に添加金属を均一に拡散させることが可能なニッケル合金多孔体の製造方法を提供することができる。 According to the above invention, even when the concentration of the metal added to nickel is low, the production of a nickel alloy porous body that is easy to control the concentration and can uniformly diffuse the added metal into the porous body A method can be provided.
本発明の一態様に係るニッケル合金多孔体の製造方法において、樹脂成形体の骨格の表面に塗料を塗布した状態の骨格断面を表す概念図である。In the manufacturing method of the nickel alloy porous body which concerns on 1 aspect of this invention, it is a conceptual diagram showing the frame | skeleton cross section of the state which apply | coated the coating material on the surface of the frame | skeleton of a resin molding. 本発明の一態様に係るニッケル合金多孔体の製造方法において、樹脂成形体の骨格の表面にニッケルをめっきした状態の骨格断面を表す概念図である。In the manufacturing method of the nickel alloy porous body which concerns on 1 aspect of this invention, it is a conceptual diagram showing the frame | skeleton cross section of the state which plated nickel on the surface of the frame | skeleton of a resin molding. 本発明の一態様に係るニッケル合金多孔体の製造方法において、樹脂成形体を除去する工程における骨格断面の状態を表す概念図である。In the manufacturing method of the nickel alloy porous body which concerns on 1 aspect of this invention, it is a conceptual diagram showing the state of the frame | skeleton cross section in the process of removing a resin molding. 実施例1において製造したニッケル合金多孔体1の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 1 manufactured in Example 1 with the electron microscope. 実施例1において製造したニッケル合金多孔体2の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 2 manufactured in Example 1 with the electron microscope. 実施例1において製造したニッケル合金多孔体3の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 3 manufactured in Example 1 with the electron microscope. 実施例1において製造したニッケル合金多孔体4の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 4 manufactured in Example 1 with the electron microscope. 比較例1において製造したニッケル合金多孔体9の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 9 manufactured in the comparative example 1 with the electron microscope. 比較例1において製造したニッケル合金多孔体10の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 10 manufactured in the comparative example 1 with the electron microscope. 比較例1において製造したニッケル合金多孔体11の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 11 manufactured in the comparative example 1 with the electron microscope. 比較例1において製造したニッケル合金多孔体12の骨格の断面を電子顕微鏡によって観察した結果を表す写真である。It is a photograph showing the result of having observed the cross section of the frame | skeleton of the nickel alloy porous body 12 manufactured in the comparative example 1 with the electron microscope. 従来の合金多孔体の製造方法において、樹脂成形体の骨格の表面に塗料を塗布した状態の骨格断面を表す概念図である。In the manufacturing method of the conventional alloy porous body, it is a conceptual diagram showing the frame | skeleton cross section of the state which applied the coating material on the surface of the frame | skeleton of a resin molding. 従来の合金多孔体の製造方法において、樹脂成形体の骨格の表面にニッケルをめっきした状態の骨格断面を表す概念図である。In the conventional manufacturing method of a porous alloy body, it is a conceptual diagram showing the frame | skeleton cross section of the state which plated nickel on the surface of the frame | skeleton of a resin molding. 従来の合金多孔体の製造方法において、樹脂成形体を除去する工程における骨格断面の状態を表す概念図である。In the manufacturing method of the conventional alloy porous body, it is a conceptual diagram showing the state of the frame | skeleton cross section in the process of removing a resin molding. 従来の水分解装置を表す概念図である。It is a conceptual diagram showing the conventional water splitting apparatus. 本発明の一態様に係る金属多孔体を用いた水分解装置を表す概念図である。It is a conceptual diagram showing the water splitting apparatus using the metal porous body which concerns on 1 aspect of this invention.
[本発明の実施形態の説明]
  最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係るニッケル合金多孔体の製造方法は、三次元網目状構造を有する樹脂成形体の骨格の表面に、ニッケルと添加金属とのニッケル合金粉末を含有する塗料を塗布する工程と、
  前記塗料を塗布した前記樹脂成形体の骨格の表面にニッケルをめっきする工程と、
  前記樹脂成形体を除去する工程と、
  熱処理によって前記添加金属を前記ニッケル中に拡散させる工程と、
を有するニッケル合金多孔体の製造方法、である。
  上記(1)に記載の発明によれば、ニッケルに添加する金属の濃度が低い場合であっても、濃度の制御が容易で、かつ多孔体中に添加金属を均一に拡散させることが可能なニッケル合金多孔体の製造方法を提供することができる。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1) In the method for producing a nickel alloy porous body according to one aspect of the present invention, a paint containing nickel alloy powder of nickel and an additive metal is applied to the surface of a skeleton of a resin molded body having a three-dimensional network structure. And a process of
A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied;
Removing the resin molded body;
Diffusing the additive metal into the nickel by heat treatment;
The manufacturing method of the nickel alloy porous body which has this.
According to the invention described in (1) above, even when the concentration of the metal added to nickel is low, the concentration can be easily controlled and the added metal can be uniformly diffused into the porous body. A method for producing a nickel alloy porous body can be provided.
(2)上記(1)に記載のニッケル合金多孔体の製造方法は、前記添加金属が、Cr、Sn、Co、Cu、Al、Ti、Mn、Fe、Mo、及びWからなる群より選ばれるいずれか一種以上の金属であることが好ましい。
  上記(2)に記載の発明によれば、ニッケル多孔体中にAl、Ti、Cr、Mn、Fe、Co、Cu、Mo、Sn、及びWがなる群より選ばれるいずれか一種以上の添加金属を均一に分布させることができ、かつその濃度制御を容易に行うことができる。
(2) In the method for producing a nickel alloy porous body according to (1), the additive metal is selected from the group consisting of Cr, Sn, Co, Cu, Al, Ti, Mn, Fe, Mo, and W. Any one or more metals are preferable.
According to the invention described in (2) above, any one or more additive metals selected from the group consisting of Al, Ti, Cr, Mn, Fe, Co, Cu, Mo, Sn, and W in the nickel porous body Can be uniformly distributed, and the concentration can be easily controlled.
(3)上記(1)又は(2)に記載のニッケル合金多孔体の製造方法は、前記ニッケル合金粉末の少なくとも表面が酸化されていることが好ましい。
  上記(3)に記載の発明によれば、ニッケル合金粉末の粒径を小さくして、ニッケル層中に添加金属を拡散させやすくすることができる。
(3) In the method for producing a nickel alloy porous body according to the above (1) or (2), it is preferable that at least the surface of the nickel alloy powder is oxidized.
According to the invention described in (3) above, the particle diameter of the nickel alloy powder can be reduced to facilitate the diffusion of the additive metal into the nickel layer.
(4)上記(1)から上記(3)のいずれか一項に記載のニッケル合金多孔体の製造方法は、前記ニッケル合金粉末を含有する塗料が、更にカーボン粉末を含有していることが好ましい。
  上記(4)に記載の発明によれば、樹脂成形体の表面の導電性をより向上させて、ニッケルめっきを行いやすくすることができる。
(4) In the method for producing a nickel alloy porous body according to any one of (1) to (3) above, the paint containing the nickel alloy powder preferably further contains carbon powder. .
According to the invention as described in said (4), the electroconductivity of the surface of a resin molding can be improved more and nickel plating can be performed easily.
[本発明の実施形態の詳細]
  本発明の実施形態に係るニッケル合金多孔体の製造方法の具体例を、以下に、より詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
The specific example of the manufacturing method of the nickel alloy porous body which concerns on embodiment of this invention is demonstrated in detail below. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.
  本発明の実施形態に係るニッケル合金多孔体の製造方法を、図1A~図1Cを用いて詳述する。
  図1A~図1Cは本発明の実施形態に係るニッケル合金多孔体の製造方法によってニッケル合金多孔体を製造する場合の、各工程における樹脂成形体骨格の断面の状態を表す概念図である。
  まず、ニッケル合金多孔体の基材となる樹脂成形体1を用意する。そして、樹脂成形体1の骨格の表面が導電性を有するようにするために、前記樹脂成形体1の骨格の表面に導電性粉末を含有する塗料を塗布する。この導電性粉末として、ニッケル多孔体に添加する金属とニッケルとの合金粉末4を用いる(図1A参照)。続いて、樹脂成形体1の骨格の表面にニッケルめっき層3を形成する。樹脂成形体1の骨格の表面は導電性になっているため電解めっきによってニッケルめっき層3を形成することが可能である。これにより、図1Bに示すように、樹脂成形体1の骨格の表面にニッケル合金粉末4による層とニッケルめっき層3とが形成される。
A method for producing a nickel alloy porous body according to an embodiment of the present invention will be described in detail with reference to FIGS. 1A to 1C.
1A to 1C are conceptual diagrams showing the state of the cross section of a resin molded body skeleton in each step when a nickel alloy porous body is manufactured by a method for manufacturing a nickel alloy porous body according to an embodiment of the present invention.
First, the resin molding 1 used as the base material of a nickel alloy porous body is prepared. Then, in order to make the surface of the skeleton of the resin molded body 1 have conductivity, a paint containing conductive powder is applied to the surface of the skeleton of the resin molded body 1. As this conductive powder, an alloy powder 4 of metal and nickel added to the nickel porous body is used (see FIG. 1A). Subsequently, the nickel plating layer 3 is formed on the surface of the skeleton of the resin molded body 1. Since the surface of the skeleton of the resin molded body 1 is conductive, the nickel plating layer 3 can be formed by electrolytic plating. Thereby, as shown to FIG. 1B, the layer by the nickel alloy powder 4 and the nickel plating layer 3 are formed in the surface of the frame | skeleton of the resin molding 1. FIG.
  そして、前記樹脂成形体を除去すべく熱処理を行うが、このとき、樹脂成形体の骨格の表面のニッケル合金粉末4はニッケルめっき層3中に速やかに拡散を始める。このため、樹脂成形体1が収縮し始めた場合に、ニッケル合金粉末4は樹脂成形体1の表面に付着して移動するのではなく、ニッケルめっき層1に取り込まれたままとなる(図1C参照)。
すなわち、従来の方法では樹脂成形体の骨格の表面の金属粉末が金属めっき層中に拡散を始める前に樹脂成形体の骨格表面に引っ張られてしまい金属めっき層に取り込まれないという現象が一部でみられた(図3C参照)が、本発明の実施形態に係るニッケル合金多孔体の製造方法ではこのような現象が起こらず、ニッケル合金粉末を全て有効に利用することができる。
Then, heat treatment is performed to remove the resin molded body. At this time, the nickel alloy powder 4 on the surface of the skeleton of the resin molded body starts to diffuse quickly into the nickel plating layer 3. Therefore, when the resin molded body 1 starts to shrink, the nickel alloy powder 4 does not adhere to the surface of the resin molded body 1 and moves, but remains taken into the nickel plating layer 1 (FIG. 1C). reference).
That is, in the conventional method, there is a phenomenon that the metal powder on the surface of the skeleton of the resin molded body is pulled to the surface of the skeleton of the resin molded body before starting to diffuse into the metal plating layer and is not taken into the metal plating layer. (See FIG. 3C), however, such a phenomenon does not occur in the method for producing a nickel alloy porous body according to the embodiment of the present invention, and all of the nickel alloy powder can be used effectively.
  上記のように本発明の実施形態に係るニッケル合金多孔体の製造方法は、樹脂成形体の骨格の表面にニッケル合金粉末を含有する塗料を塗布する工程と、ニッケルをめっきする工程と、前記樹脂成形体を除去する工程と、ニッケル合金粉末をニッケル中に拡散させる工程と、を有するものである。
  以下に各工程について詳述する。
As described above, the method for producing a nickel alloy porous body according to an embodiment of the present invention includes a step of applying a paint containing nickel alloy powder on the surface of a skeleton of a resin molded body, a step of plating nickel, and the resin A step of removing the formed body and a step of diffusing the nickel alloy powder into nickel.
Each step will be described in detail below.
(ニッケル合金粉末を含有する塗料を塗布する工程)
-樹脂成形体-
  三次元網目状構造を有する樹脂成形体としては、樹脂発泡体、不織布、フェルト、織布などが用いられるが必要に応じてこれらを組み合わせて用いることもできる。また、素材としては特に限定されるものではないが、金属をめっきした後焼却処理により除去できるものが好ましい。また、樹脂成形体の取扱い上、特にシート状のものにおいては剛性が高いと折れるので柔軟性のある素材であることが好ましい。
(Process of applying paint containing nickel alloy powder)
-Resin molding-
As the resin molding having a three-dimensional network structure, a resin foam, a nonwoven fabric, a felt, a woven fabric, or the like is used, but these may be used in combination as necessary. Moreover, although it does not specifically limit as a raw material, The thing which can be removed by incineration after plating a metal is preferable. In addition, in handling the resin molded body, a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.
  本発明の実施形態に係るニッケル合金多孔体の製造方法においては、三次元網目状構造を有する樹脂成形体として樹脂発泡体を用いることが好ましい。樹脂発泡体は、多孔性のものであればよく公知又は市販のものを使用でき、例えば、発泡ウレタン、発泡スチレン等が挙げられる。これらの中でも、特に多孔度が大きい観点から、発泡ウレタンが好ましい。発泡状樹脂の厚み、多孔度、平均孔径は限定的でなく、用途に応じて適宜に設定することができる。 に お い て In the method for producing a nickel alloy porous body according to an embodiment of the present invention, it is preferable to use a resin foam as a resin molded body having a three-dimensional network structure. As the resin foam, any known or commercially available resin may be used as long as it is porous. Examples thereof include urethane foam and foamed styrene. Among these, urethane foam is preferable from the viewpoint of particularly high porosity. The thickness, porosity, and average pore diameter of the foamed resin are not limited, and can be appropriately set according to the application.
-ニッケル合金粉末-
  前記樹脂成形体の骨格の表面を導電化処理するために用いるニッケル合金粉末は、体積平均粒径が10μm以下のものを用いる。前記ニッケル合金粉末をバインダーや溶剤中に添加して塗料を作製するためには、体積平均粒径は小さいほうが好ましく、3μm以下であることがより好ましい。また、用いる樹脂成形体の骨格の径に合わせて適宜選択すればよい。
-Nickel alloy powder-
The nickel alloy powder used for conducting the conductive treatment on the surface of the skeleton of the resin molded body has a volume average particle diameter of 10 μm or less. In order to prepare the coating material by adding the nickel alloy powder to a binder or a solvent, the volume average particle size is preferably smaller and more preferably 3 μm or less. Moreover, what is necessary is just to select suitably according to the diameter of frame | skeleton of the resin molding to be used.
  前記ニッケル合金粉末において、ニッケルと合金化する添加金属は特に限定されるものではなく、目的に応じて所望の金属を選択すればよい。例えば、Cr、Sn、Co、Cu、Al、Ti、Mn、Fe、Mo、及びWからなる群より選ばれるいずれか一種以上の金属を用いることが好ましい。 に お い て In the nickel alloy powder, the additive metal alloyed with nickel is not particularly limited, and a desired metal may be selected according to the purpose. For example, it is preferable to use at least one metal selected from the group consisting of Cr, Sn, Co, Cu, Al, Ti, Mn, Fe, Mo, and W.
  本発明の実施形態に係るニッケル合金多孔体の製造方法においては、前記ニッケル合金粉末はニッケルと添加金属とが完全に均質な合金を形成していてもよいし、混合型やコアシェル型、あるいは複合型の複合粉末であってもよい。本発明においてはこれらの態様の粉末を全てニッケル合金粉末と呼ぶものとする。
  なお、前記混合型の粉末とは、ニッケル粒子の内部に添加金属の複数の単体粒子が存在していたり、ニッケル粒子の内部に層状の添加金属が存在したりしているものをいう。また、コアシェル型とは、単体の添加金属の表面がニッケルで被覆されているものをいう。
複合型とは、例えば、添加金属とニッケル合金とのコアシェル構造や、コアシェル構造中に部分的に添加金属が粒子状や層状で存在しているなどの状態のものをいう。
In the method for producing a nickel alloy porous body according to an embodiment of the present invention, the nickel alloy powder may form a completely homogeneous alloy of nickel and an additive metal, a mixed type, a core-shell type, or a composite type. It may be a composite powder of the type. In the present invention, all the powders of these embodiments are called nickel alloy powders.
The mixed powder refers to a powder in which a plurality of single particles of additive metal are present inside nickel particles or a layered additive metal is present inside nickel particles. The core-shell type means that the surface of a single additive metal is coated with nickel.
The composite type refers to, for example, a core-shell structure of an additive metal and a nickel alloy, or a state in which the additive metal is partially present in the form of particles or layers in the core-shell structure.
  いずれのものも、ニッケルめっき層中にニッケル合金粒子が拡散しやすいように、ニッケル合金粒子の表面の大部分がニッケルあるいは均質なニッケル合金となっているものを用いる。
  このようなニッケル合金粉末は、ニッケル合金を粉砕する粉砕法や、アトマイズ法などによって得ることができる。
In any case, a material in which most of the surface of the nickel alloy particles is nickel or a homogeneous nickel alloy is used so that the nickel alloy particles are easily diffused in the nickel plating layer.
Such a nickel alloy powder can be obtained by a pulverization method for pulverizing a nickel alloy, an atomization method, or the like.
  前記ニッケル合金粉末は、少なくとも表面が酸化されていることが好ましい。
  ニッケルと添加金属との合金を粉砕することによってニッケル合金粉末を作製する場合には、材料となるニッケル合金が酸化された状態の方が粉砕し易く、体積平均粒径がより小さいニッケル合金粉末を得ることができる。このような小粒径のニッケル合金粉末を用いることで、ニッケル中に添加金属を拡散させ易くすることができる。また、酸化された状態のニッケル合金を粉砕して得られるニッケル合金粉末は、少なくとも表面が酸化された状態になっているが、添加金属をニッケル中に拡散させる熱処理工程において還元させることができる。あるいは、別途、還元性雰囲気下において熱処理を行って金属酸化物を還元させる工程を行ってもよい。
It is preferable that at least the surface of the nickel alloy powder is oxidized.
When producing a nickel alloy powder by pulverizing an alloy of nickel and an additive metal, a nickel alloy powder having a smaller volume average particle diameter is easier to pulverize when the nickel alloy as a material is oxidized. Obtainable. By using such a small-diameter nickel alloy powder, the additive metal can be easily diffused into the nickel. In addition, the nickel alloy powder obtained by pulverizing the oxidized nickel alloy has at least a surface oxidized state, but can be reduced in a heat treatment step in which the additive metal is diffused into nickel. Alternatively, a step of reducing the metal oxide by performing a heat treatment in a reducing atmosphere may be performed.
-カーボン粉末-
  前記ニッケル合金粉末の少なくとも表面が酸化されており導電性の粉末ではない場合には、カーボン粉末を更に添加して用いることが好ましい。これにより前記塗料の導電性を高めることができる。カーボン粉末の体積平均粒径は前記ニッケル合金多孔体と同様に10μm以下であることが好ましく、3μm以下であることがより好ましい。また、樹脂成形体の骨格の径に合わせて適宜選択すればよい。
  カーボン粉末の材質としては、例えば、結晶性のグラファイト、非晶質のカーボンブラック等が挙げられる。これらの中でも、一般的に粒子径が小さい傾向があるという点で、特にグラファイトが好ましい。
-Carbon powder-
When at least the surface of the nickel alloy powder is oxidized and is not a conductive powder, it is preferable to add carbon powder and use it. Thereby, the electroconductivity of the said coating material can be improved. The volume average particle size of the carbon powder is preferably 10 μm or less, and more preferably 3 μm or less, like the nickel alloy porous body. Moreover, what is necessary is just to select suitably according to the diameter of the frame | skeleton of a resin molding.
Examples of the material of the carbon powder include crystalline graphite and amorphous carbon black. Among these, graphite is particularly preferable in that the particle diameter generally tends to be small.
-塗料-
  前記ニッケル合金粉末と、必要な場合にはカーボン粉末とをバインダーに添加して混合することで導電性の塗料を作製することができる。
  前記樹脂成形体の骨格の表面を導電化処理するためには、前記塗料を前記樹脂成形体の骨格の表面に塗布すればよい。塗布する方法は特に限定されるものではなく、浸漬による方法や、刷毛などを用いて塗布する方法が挙げられる。これにより前記樹脂成形体の骨格の表面に導電性被覆層が形成される。
  前記導電性被覆層は前記樹脂成形体の骨格の表面に連続的に形成されていればよい。また、導電性被覆層の目付量は特に限定的ではなく、通常は0.1g/m2以上300g/m2以下程度とすればよく、1g/m2以上、100g/m2以下程度とすることが好ましい。
-paint-
A conductive paint can be produced by adding the nickel alloy powder and, if necessary, carbon powder to a binder and mixing them.
In order to conduct the conductive treatment on the surface of the skeleton of the resin molded body, the paint may be applied to the surface of the skeleton of the resin molded body. The application method is not particularly limited, and examples thereof include a dipping method and a method using a brush. Thereby, a conductive coating layer is formed on the surface of the skeleton of the resin molded body.
The conductive coating layer may be formed continuously on the surface of the skeleton of the resin molded body. Further, the basis weight of the conductive coating layer is not particularly limited, and is usually about 0.1 g / m 2 or more and 300 g / m 2 or less, and about 1 g / m 2 or more and 100 g / m 2 or less. It is preferable.
(ニッケルをめっきする工程)
  ニッケルをめっきする工程においては、公知のめっき法を利用することができ、電気めっき法を用いることが好ましい。電気めっき処理以外にも、無電解めっき処理及び/又はスパッタリング処理によってめっき膜の厚みを増していけば電気めっき処理の必要性はないが、生産性、コストの観点から好ましくない。このため、上記したように、まず樹脂成形体を導電化処理した後に、電気めっき法によってニッケルめっき層を形成する方法を採用することによって、高い生産性、低コストで作製できる。また、骨格断面の空孔率が1%未満の安定性の高いニッケル合金多孔体が得られる。
(Nickel plating process)
In the step of plating nickel, a known plating method can be used, and an electroplating method is preferably used. In addition to the electroplating treatment, if the thickness of the plating film is increased by electroless plating treatment and / or sputtering treatment, there is no need for electroplating treatment, but it is not preferable from the viewpoint of productivity and cost. For this reason, as described above, the resin molded body is first subjected to a conductive treatment, and then a method of forming a nickel plating layer by an electroplating method can be used to produce the resin molded body with high productivity and low cost. Further, a highly stable nickel alloy porous body having a skeleton cross-sectional porosity of less than 1% can be obtained.
  なお、めっき層は多層になっていてもよいが、最初のめっき層はニッケルめっき層とする。これにより、前記ニッケル合金粒子がニッケルめっき層中に拡散しやすくすることができる。ニッケルめっき層の上には目的に応じて適宜金属めっき層を形成してよい。
  ニッケルめっき層は、前記導電性被覆層が露出しない程度に当該導電性被覆層上に形成されていればよい。ニッケルめっき層の目付量は限定的ではなく、ニッケル合金多孔体の厚みによって適宜選択すればよいが、強度と気孔率を両立するため、厚さ1mmあたりの目付量として、通常100g/m2以上、600g/m2以下程度とすればよく、200g/m2以上、500g/m2以下程度とすることがより好ましい。
The plating layer may be a multilayer, but the first plating layer is a nickel plating layer. Thereby, the nickel alloy particles can be easily diffused into the nickel plating layer. A metal plating layer may be appropriately formed on the nickel plating layer according to the purpose.
The nickel plating layer should just be formed on the said conductive coating layer to such an extent that the said conductive coating layer is not exposed. The basis weight of the nickel plating layer is not limited and may be appropriately selected depending on the thickness of the nickel alloy porous body. However, in order to achieve both strength and porosity, the basis weight per 1 mm thickness is usually 100 g / m 2 or more. About 600 g / m 2 or less, and more preferably about 200 g / m 2 or more and 500 g / m 2 or less.
(樹脂成形体を除去する工程)
  以上の工程で得られた樹脂と金属の複合体を大気中で熱処理することにより、樹脂成形体を除去することができる。
  熱処理温度は、700℃以上、1200℃以下とすることが好ましい。700℃以上であることにより樹脂成形体を除去すると共に、ニッケル合金粉末をニッケルめっき層中に拡散させやすくすることができる。また、1200℃以下であることにより、ニッケルが酸化しすぎることを抑制することができる。これらの観点から熱処理温度は750℃以上、1100℃以下であることがより好ましく、800℃以上、1050℃以下であることが更に好ましい。
  また、熱処理時間は熱処理温度に応じて適宜変更すればよい。例えば、800℃で熱処理を行う場合には、10分以上、30分以下程度で良好に樹脂成形体を除去することができる。
(Process of removing the resin molding)
The resin molded body can be removed by heat-treating the resin-metal composite obtained in the above steps in the air.
The heat treatment temperature is preferably 700 ° C. or higher and 1200 ° C. or lower. When the temperature is 700 ° C. or higher, the resin molded body can be removed and the nickel alloy powder can be easily diffused into the nickel plating layer. Moreover, it can suppress that nickel oxidizes too much by being 1200 degrees C or less. From these viewpoints, the heat treatment temperature is more preferably 750 ° C. or more and 1100 ° C. or less, and further preferably 800 ° C. or more and 1050 ° C. or less.
Moreover, what is necessary is just to change heat processing time suitably according to heat processing temperature. For example, when the heat treatment is performed at 800 ° C., the resin molded body can be removed satisfactorily in about 10 minutes to 30 minutes.
(熱処理によって添加金属を拡散させる工程)
  この工程はニッケルめっき層中に取り込まれた添加金属を更に均一に拡散させるための工程である。
  熱処理温度と熱処理時間は、添加した金属に応じて適宜選択すればよい。例えば、ニッケルクロム合金粉末あるいはニッケルタングステン粉末を用いてニッケル合金多孔体を作製する場合には、1100℃で30分間以上熱処理すればよい。スズやコバルト、銅、アルミ、チタン、マンガン、鉄、モリブデンとニッケルとの合金粉末を用いる場合であれば1000℃で15分以上熱処理すればよい。
  また、熱処理を、H2ガス等を用いて還元雰囲気で行うことで、ニッケル合金粉末あるいはニッケル合金酸化物粉末とニッケルめっき層を還元することができる。また、前記導電性被覆層中に含まれるカーボン粉末は、高温下で強力な還元剤として作用し、ニッケル合金粉末あるいはニッケル合金酸化物粉末とニッケルめっき層を還元する。
  また、添加金属種に応じた最適な温度、時間で熱処理を行うことによって、カーボン粉末を用いた場合には、ニッケル合金の還元(金属中の酸素濃度低減)、熱拡散による合金化、結晶粒の粗大化を行うことがでる。その結果、ニッケル合金多孔体の強度、靭性ともに向上し、曲げる、潰す等の塑性変形を伴う加工に対しても破断しない強靱なニッケル合金多孔体が得られる。
(Process to diffuse added metal by heat treatment)
This step is a step for further uniformly diffusing the additive metal taken into the nickel plating layer.
What is necessary is just to select the heat processing temperature and heat processing time suitably according to the added metal. For example, when producing a nickel alloy porous body using nickel chromium alloy powder or nickel tungsten powder, heat treatment may be performed at 1100 ° C. for 30 minutes or more. If an alloy powder of tin, cobalt, copper, aluminum, titanium, manganese, iron, molybdenum and nickel is used, heat treatment may be performed at 1000 ° C. for 15 minutes or more.
Further, the nickel alloy powder or the nickel alloy oxide powder and the nickel plating layer can be reduced by performing the heat treatment in a reducing atmosphere using H 2 gas or the like. The carbon powder contained in the conductive coating layer acts as a strong reducing agent at a high temperature to reduce the nickel alloy powder or the nickel alloy oxide powder and the nickel plating layer.
In addition, when carbon powder is used, heat treatment is performed at an optimum temperature and time according to the added metal species. When carbon powder is used, reduction of nickel alloy (reduction of oxygen concentration in the metal), alloying by thermal diffusion, crystal grains Can be coarsened. As a result, the strength and toughness of the nickel alloy porous body are improved, and a tough nickel alloy porous body that does not break even with processing involving plastic deformation such as bending or crushing is obtained.
  以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の金属多孔体はこれらに限定されるものではない。本発明の範囲は請求の範囲の範囲によって示され、請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 Hereinafter, the present invention will be described in more detail based on examples. However, these examples are illustrative, and the metal porous body of the present invention is not limited thereto. The scope of the present invention is defined by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.
[実施例1]
(樹脂成形体の導電化処理)
  最初に、三次元網目状構造を有する樹脂成形体として、1.5mm厚の発泡ポリウレタンシート(孔径0.45mm)を用意した。続いて、体積平均粒径10μmのグラファイト100g、及び体積平均粒径0.1μmのカーボンブラック20g、表1に示す体積平均粒径のニッケル合金酸化物粉末100gを0.5Lの10%アクリル酸エステル系樹脂水溶液に分散し、この比率で粘着塗料を作製した。
  前記ニッケル合金酸化物粉末としては、ニッケル-クロム合金酸化物粉末、ニッケル-コバルト合金酸化物粉末、ニッケル-スズ合金酸化物粉末、及びニッケル-銅合金酸化物粉末を用いた。また、各ニッケル合金酸化物粉末は、各ニッケル合金粉末を酸化させたものを粉砕・分級し、体積平均粒径を0.5μm~1.5μmにして用いた。
[Example 1]
(Conductive treatment of resin molding)
First, as a resin molded body having a three-dimensional network structure, a 1.5 mm thick foamed polyurethane sheet (pore diameter 0.45 mm) was prepared. Subsequently, 100 g of graphite having a volume average particle diameter of 10 μm, 20 g of carbon black having a volume average particle diameter of 0.1 μm, and 100 g of nickel alloy oxide powder having a volume average particle diameter shown in Table 1 of 0.5 L of 10% acrylic ester Dispersed in an aqueous resin solution, an adhesive paint was prepared at this ratio.
As the nickel alloy oxide powder, nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder were used. Each nickel alloy oxide powder was used by pulverizing and classifying oxidized nickel alloy powder and setting the volume average particle size to 0.5 μm to 1.5 μm.
  次に前記発泡ポリウレタンシートを前記塗料に連続的に漬け、ロールで絞った後乾燥させることによって導電化処理を施し、三次元網目状構造を有する樹脂成形体の表面に導電性被覆層を形成した。なお、導電性塗料の粘度は増粘剤によって調整し、塗料の塗布目付量は合金粉末換算で20g/m2とした。塗布目付量を表1に示す。 Next, the foamed polyurethane sheet is continuously dipped in the paint, squeezed with a roll and then dried to form a conductive coating layer on the surface of the resin molded body having a three-dimensional network structure. . The viscosity of the conductive coating was adjusted with a thickener, and the coating weight per unit area of the coating was 20 g / m 2 in terms of alloy powder. Table 1 shows the coating weight per unit area.
(ニッケルめっき工程)
  導電化処理を施した三次元網目状構造を有する樹脂成形体の骨格の表面に、電気めっきによってニッケルめっき層を300g/m2となるように形成した。めっき液としては、スルファミン酸ニッケルめっき液を用いた。
(Nickel plating process)
A nickel plating layer was formed to 300 g / m 2 by electroplating on the surface of the skeleton of the resin molded body having a three-dimensional network structure subjected to the conductive treatment. As the plating solution, a nickel sulfamate plating solution was used.
(樹脂成形体を除去する工程)
  大気中で、800℃、15分の熱処理をすることで、樹脂成形体を燃焼除去し、還元性水素雰囲気で1000℃、15分の熱処理をして酸化した金属多孔体を還元した。
(添加金属を拡散させる工程)
  水素雰囲気下で、1100℃、30分の熱処理をすることで、添加金属をニッケル中に充分に拡散させた。
  以上のようにしてニッケル合金多孔体1~4を作製した。
(Process of removing the resin molding)
The heat treatment at 800 ° C. for 15 minutes in the atmosphere burned and removed the resin molded body, and the oxidized porous metal body was reduced by heat treatment at 1000 ° C. for 15 minutes in a reducing hydrogen atmosphere.
(Process to diffuse added metal)
By performing heat treatment at 1100 ° C. for 30 minutes in a hydrogen atmosphere, the added metal was sufficiently diffused into the nickel.
Nickel alloy porous bodies 1 to 4 were produced as described above.
<評価>
  上記で得たニッケル合金多孔体1~4の骨格の断面を電子顕微鏡(SEM)によって観察した結果を図2A~図2Dに示す。図2A~図2Dに示すように、ニッケル合金多孔体1~4においては、ニッケル合金多孔体の骨格の内部表面に添加金属粒子が残っておらず、添加金属がニッケル中に均一に拡散していることが確認された。
<Evaluation>
2A to 2D show the results of observing the cross sections of the skeletons of the nickel alloy porous bodies 1 to 4 obtained above with an electron microscope (SEM). As shown in FIGS. 2A to 2D, in the nickel alloy porous bodies 1 to 4, no additive metal particles remain on the inner surface of the skeleton of the nickel alloy porous body, and the additive metal diffuses uniformly in the nickel. It was confirmed that
[実施例2]
  実施例1において、ニッケル-クロム合金酸化物粉末、ニッケル-コバルト合金酸化物粉末、ニッケル-スズ合金酸化物粉末、及びニッケル-銅合金酸化物粉末の替わりに、ニッケル-クロム合金粉末、ニッケル-コバルト合金粉末、ニッケル-スズ合金粉末、及びニッケル-銅合金粉末を用いた以外は実施例1と同様にしてニッケル合金多孔体5~8を作製した。各ニッケル合金粉末の体積平均粒径及び塗布目付量を表1に示す。
  実施例1と同様にしてニッケル合金多孔体5~8の骨格の断面を電子顕微鏡によって観察したところ、ニッケル合金多孔体の骨格の内部表面には添加金属粒子が残っておらず、添加金属がニッケル中に均一に拡散していることが確認された。
[Example 2]
In Example 1, instead of nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder, nickel-chromium alloy powder, nickel-cobalt Nickel alloy porous bodies 5 to 8 were produced in the same manner as in Example 1 except that alloy powder, nickel-tin alloy powder, and nickel-copper alloy powder were used. Table 1 shows the volume average particle diameter and the coating weight of each nickel alloy powder.
When the cross section of the skeleton of the nickel alloy porous bodies 5 to 8 was observed with an electron microscope in the same manner as in Example 1, no additional metal particles remained on the inner surface of the skeleton of the nickel alloy porous body, and the added metal was nickel. It was confirmed that it diffused uniformly.
[比較例1]
  実施例1において、ニッケル-クロム合金酸化物粉末、ニッケル-コバルト合金酸化物粉末、ニッケル-スズ合金酸化物粉末、及びニッケル-銅合金酸化物粉末の替わりに、酸化クロム粉末、酸化コバルト粉末、酸化スズ粉末、及び酸化銅粉末を用いた以外は実施例1と同様にしてニッケル合金多孔体9~12を作製した。なお、各酸化金属粉末は、各金属粉末を酸化させて粉砕・分級したものを用いた。各酸化金属粉末の体積平均粒径及び塗布目付量を表1に示す。
  実施例1と同様にしてニッケル合金多孔体9~12の骨格の断面を電子顕微鏡によって観察した結果を図2E~図2Hに示す。図2E~図2Hに示すように、金属多孔体9~12においては、添加金属粒子の一部がニッケル合金多孔体の骨格の内部表面に留まっていることが確認された。
[Comparative Example 1]
In Example 1, instead of nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder, chromium oxide powder, cobalt oxide powder, oxidation Nickel alloy porous bodies 9 to 12 were produced in the same manner as in Example 1 except that tin powder and copper oxide powder were used. In addition, each metal oxide powder used what oxidized and grind | pulverized and classified each metal powder. Table 1 shows the volume average particle diameter and the coating weight of each metal oxide powder.
2E to 2H show the results of observing cross sections of the skeletons of the nickel alloy porous bodies 9 to 12 with an electron microscope in the same manner as in Example 1. FIG. As shown in FIGS. 2E to 2H, in the metal porous bodies 9 to 12, it was confirmed that some of the added metal particles remained on the inner surface of the skeleton of the nickel alloy porous body.
[比較例2]
  実施例1において、ニッケル-クロム合金酸化物粉末、ニッケル-コバルト合金酸化物粉末、ニッケル-スズ合金酸化物粉末、及びニッケル-銅合金酸化物粉末の替わりに、クロム粉末、コバルト粉末、スズ粉末、及び銅粉末を用いた以外は実施例1と同様にしてニッケル合金多孔体13~16を作製した。
  実施例1と同様にしてニッケル合金多孔体13~16の骨格の断面を電子顕微鏡によって観察したところ、添加金属粒子の一部がニッケル合金多孔体の骨格の内部表面に留まっていることが確認された。
[Comparative Example 2]
In Example 1, instead of nickel-chromium alloy oxide powder, nickel-cobalt alloy oxide powder, nickel-tin alloy oxide powder, and nickel-copper alloy oxide powder, chromium powder, cobalt powder, tin powder, Further, nickel alloy porous bodies 13 to 16 were produced in the same manner as in Example 1 except that copper powder was used.
When the cross section of the skeleton of the nickel alloy porous bodies 13 to 16 was observed with an electron microscope in the same manner as in Example 1, it was confirmed that some of the added metal particles remained on the inner surface of the skeleton of the nickel alloy porous body. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
本発明のニッケル合金多孔体である金属多孔体は、燃料電池以外に、水電解による水素製造用途にも好適に使用できる。 The metal porous body which is the nickel alloy porous body of the present invention can be suitably used for hydrogen production by water electrolysis in addition to the fuel cell.
図4は従来の水分解装置を表す概念図である。イオン透過膜5の両端にそれぞれ集電体6が設けられている。イオン透過膜5は主に水素または酸素を透過し、集電体6はステンレス製の波型プレートや溝付きのカーボン構造体などで構成されるガス流路をイオン透過膜と接する側に有している。水蒸気はこのガス流路内に導入され、例えば、分解された水素イオンがイオン透過膜5を透過し反対側のガス流路から排出されるとともに、分解された酸素は分解されなかった水蒸気とともにそのまま排出される。 FIG. 4 is a conceptual diagram showing a conventional water splitting apparatus. Current collectors 6 are provided at both ends of the ion permeable membrane 5. The ion permeable membrane 5 mainly transmits hydrogen or oxygen, and the current collector 6 has a gas flow path composed of a stainless corrugated plate or a grooved carbon structure on the side in contact with the ion permeable membrane. ing. Water vapor is introduced into the gas flow path. For example, decomposed hydrogen ions pass through the ion permeable membrane 5 and are discharged from the gas flow path on the opposite side, and the decomposed oxygen remains as it is together with the undecomposed water vapor. Discharged.
図5は本発明の一態様に係る金属多孔体を用いた水分解装置を表す概念図である。ガス流路が金属多孔体7で形成されている点で図4の従来の水分解装置と異なるが、その他の点では同様の構成である。このように集電体6のガス流路を金属多孔体7で形成することで、従来に比べさらに効率的に水分解による水素を製造することができる。 FIG. 5 is a conceptual diagram showing a water splitting apparatus using a porous metal body according to one embodiment of the present invention. Although it differs from the conventional water splitting device of FIG. 4 in that the gas flow path is formed of the porous metal body 7, it has the same configuration in other respects. By forming the gas flow path of the current collector 6 with the metal porous body 7 in this way, hydrogen can be produced by water splitting more efficiently than before.
(1)のアルカリ電解方式では、強アルカリ水溶液に陽極と陰極を浸漬し、電圧を印加することで水を電気分解する方式である。金属多孔体を電極として使用することで水と電極の接触面積が大きくなり、水の電気分解の効率を高めることができる。金属多孔体の孔径は100μm以上5000μm以下が好ましい。100μmより小さいと、発生した水素・酸素の気泡の抜けが悪くなり、水が電極と接触する面積が減って効率が低下する。また、5000μmより大きいと電極の表面積が小さくなるので効率が低下する。同様の観点から、400μm以上4000μm以下がさらに好ましい。 In the alkaline electrolysis method (1), the anode and the cathode are immersed in a strong alkaline aqueous solution, and water is electrolyzed by applying a voltage. By using a metal porous body as an electrode, the contact area between water and the electrode is increased, and the efficiency of water electrolysis can be increased. The pore diameter of the metal porous body is preferably 100 μm or more and 5000 μm or less. If it is smaller than 100 μm, the generated hydrogen / oxygen bubbles are not easily removed, and the area where water contacts the electrode is reduced, resulting in a reduction in efficiency. On the other hand, if it is larger than 5000 μm, the surface area of the electrode becomes small, and the efficiency is lowered. From the same viewpoint, it is more preferably 400 μm or more and 4000 μm or less.
金属多孔体の厚さや金属量は、電極面積が大きくなるとたわみなどの原因となるため、設備の規模によって適宜選択すればよい。気泡の抜けと表面積の確保を両立するために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。 The thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment because it causes a deflection or the like when the electrode area increases. A plurality of porous metal bodies having different pore diameters can be used in combination in order to achieve both the elimination of bubbles and the securing of the surface area.
(2)のPEM方式は、固体高分子電解質膜を用いて水を電気分解する方法で、固体高分子電解質膜の両面に陽極と陰極を配置し、陽極側に水を流しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体高分子電解質膜を通して陰極側へ移動させ、陰極側で水素として取り出す方式である。動作温度は100℃程度である。水素と酸素で発電して水を排出する固体高分子型燃料電池と、同様の構成で全く逆の動作をさせるものである。陽極側と陰極側は完全に分離されているため、純度の高い水素を取り出せる利点がある。陽極・陰極共に電極を透過させて水・水素ガスを通す必要があるため、電極には導電性の多孔体が必要である。 The PEM method (2) is a method in which water is electrolyzed using a solid polymer electrolyte membrane. An anode and a cathode are arranged on both sides of the solid polymer electrolyte membrane, and a voltage is applied while flowing water on the anode side. In this way, hydrogen ions generated by electrolysis of water are moved to the cathode side through the solid polymer electrolyte membrane and taken out as hydrogen on the cathode side. The operating temperature is about 100 ° C. The polymer electrolyte fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since the anode side and the cathode side are completely separated, there is an advantage that high purity hydrogen can be taken out. Since both the anode and the cathode must pass through the electrode and allow water and hydrogen gas to pass through, the electrode needs a conductive porous body.
本発明の金属多孔体は高い気孔率と良好な電気伝導性を備えているため、固体高分子型燃料電池に好適に使用できるのと同じように、PEM方式の水電解にも好適に使用できる。金属多孔体の孔径は100μm以上5000μm以下が好ましい。100μmより小さいと、発生した水素・酸素の気泡の抜けが悪くなり、水が固体高分子電解質と接触する面積が減って効率が低下する。また、5000μmより大きいと保水性が悪くなるため、水が十分に反応する前に通り抜けてしまい効率が低下する。同様の観点から、400μm以上4000μm以下がさらに好ましい。 Since the metal porous body of the present invention has a high porosity and good electrical conductivity, it can be suitably used for PEM water electrolysis as well as a polymer electrolyte fuel cell. . The pore diameter of the metal porous body is preferably 100 μm or more and 5000 μm or less. If it is smaller than 100 μm, the generated hydrogen / oxygen bubbles are not easily removed, and the area where water comes into contact with the solid polymer electrolyte is reduced, thereby lowering the efficiency. On the other hand, if it is larger than 5000 μm, the water retention property is deteriorated, so that water passes through before sufficiently reacting and the efficiency is lowered. From the same viewpoint, 400 μm or more and 4000 μm or less are more preferable.
金属多孔体の厚さや金属量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水を投入するための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属量を調整することが好ましい。また、本方式では固体高分子電解質と電極の導通は圧着になるため、加圧時の変形・クリープによる電気抵抗増加が、実用上問題ない範囲になるように金属量を調節する必要がある。金属量としては400g/m以上が好ましい。他、気孔率の確保と電気的接続の両立のために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。 The thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Further, in this method, the electrical connection between the solid polymer electrolyte and the electrode is a pressure bonding. Therefore, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practically acceptable range. The amount of metal is preferably 400 g / m 2 or more. In addition, a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
(3)のSOEC方式は、固体酸化物電解質膜を用いて水を電気分解する方法で、電解質膜がプロトン伝導か酸素イオン伝導かによって構成が異なる。酸素イオン伝導膜では、水蒸気を投入する陰極側で水素が発生するため、水素純度が下がる。そのため、水素製造の観点からはプロトン伝導膜が好ましい。プロトン伝導膜の両側に陽極と陰極を配置し、陽極側に水蒸気を導入しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体酸化物電解質膜を通して陰極側へ移動させ、陰極側で水素のみを取り出す方式である。動作温度は600℃~800℃程度である。水素と酸素で発電して水を排出する固体酸化物型燃料電池と、同様の構成で全く逆の動作をさせるものである。陽極・陰極共に電極を透過させて水蒸気・水素ガスを通す必要があるため、電極には導電性かつ、特に陽極側で高温の酸化雰囲気に耐える多孔体が必要である。 The SOEC method (3) is a method in which water is electrolyzed using a solid oxide electrolyte membrane, and the configuration differs depending on whether the electrolyte membrane is proton conduction or oxygen ion conduction. In the oxygen ion conductive membrane, hydrogen is generated on the cathode side where water vapor is introduced, so that the hydrogen purity is lowered. Therefore, a proton conductive membrane is preferable from the viewpoint of hydrogen production. By placing an anode and a cathode on both sides of the proton conducting membrane and applying a voltage while introducing water vapor to the anode side, hydrogen ions generated by water electrolysis are moved to the cathode side through the solid oxide electrolyte membrane. In this method, only hydrogen is extracted on the cathode side. The operating temperature is about 600 ° C to 800 ° C. A solid oxide fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since both the anode and the cathode need to pass through the electrode and allow water vapor / hydrogen gas to pass through, the electrode needs to be conductive and have a porous body that can withstand a high-temperature oxidizing atmosphere, particularly on the anode side.
本発明の金属多孔体は高い気孔率と良好な電気伝導性と高い耐酸化性・耐熱性を備えているため、固体酸化物型燃料電池に好適に使用できるのと同じように、SOEC方式の水電解にも好適に使用できる。酸化性雰囲気となる側の電極には、Crなどの高い耐酸化性を有する金属を添加したNi合金の使用が好ましい。金属多孔体の孔径は100μm以上5000μm以下が好ましい。100μmより小さいと、水蒸気や発生した水素の通りが悪くなり、水蒸気が固体酸化物電解質と接触する面積が減って効率が低下する。また、5000μmより大きいと圧損が低くなり過ぎるため、水蒸気が十分に反応する前に通り抜けてしまい効率が低下する。同様の観点から、400μm以上4000μm以下がさらに好ましい。 Since the porous metal body of the present invention has high porosity, good electrical conductivity, and high oxidation resistance and heat resistance, it can be used in a solid oxide fuel cell as in the SOEC system. It can also be suitably used for water electrolysis. It is preferable to use a Ni alloy to which a metal having high oxidation resistance such as Cr is added for the electrode on the side that becomes an oxidizing atmosphere. The pore diameter of the metal porous body is preferably 100 μm or more and 5000 μm or less. If it is smaller than 100 μm, the passage of water vapor and generated hydrogen becomes worse, the area where the water vapor contacts the solid oxide electrolyte is reduced, and the efficiency is lowered. Moreover, since pressure loss will become low too much when it is larger than 5000 micrometers, before water vapor | steam reacts sufficiently, efficiency will fall. From the same viewpoint, it is more preferably 400 μm or more and 4000 μm or less.
金属多孔体の厚さや金属量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水蒸気を投入するための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属量を調整することが好ましい。また、本方式では固体酸化物電解質と電極の導通は圧着になるため、加圧時の変形・クリープによる電気抵抗増加が、実用上問題ない範囲になるように金属量を調節する必要がある。金属量としては400g/m以上が好ましい。他、気孔率の確保と電気的接続の両立のために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。 The thickness of the metal porous body and the amount of metal may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water vapor increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Further, in this method, since the electrical connection between the solid oxide electrolyte and the electrode is a pressure bonding, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practical range. The amount of metal is preferably 400 g / m 2 or more. In addition, a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
-付記-
(水分解装置)
  三次元網目状構造を有する樹脂成形体の骨格の表面に、ニッケルと添加金属とのニッケル合金粉末を含有する塗料を塗布する工程と、
  前記塗料を塗布した前記樹脂成形体の骨格の表面にニッケルをめっきする工程と、
  前記樹脂成形体を除去する工程と、
  熱処理によって前記添加金属を前記ニッケル中に拡散させる工程と、
によって製造されたニッケル合金多孔体を含む集電体と、
 前記集電体を両端に有するイオン透過膜とを備える、水分解装置。
-Additional notes-
(Water splitting device)
Applying a paint containing nickel alloy powder of nickel and an additive metal to the surface of the skeleton of the resin molded body having a three-dimensional network structure;
A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied;
Removing the resin molded body;
Diffusing the additive metal into the nickel by heat treatment;
A current collector comprising a nickel alloy porous body manufactured by:
A water splitting device comprising an ion permeable membrane having the current collector at both ends.
(水分解方法)
  ニッケル合金多孔体を含む集電体を準備する工程を備え、
前記ニッケル合金多孔体は、
三次元網目状構造を有する樹脂成形体の骨格の表面に、ニッケルと添加金属とのニッケル合金粉末を含有する塗料を塗布する工程と、
  前記塗料を塗布した前記樹脂成形体の骨格の表面にニッケルをめっきする工程と、
  前記樹脂成形体を除去する工程と、
  熱処理によって前記添加金属を前記ニッケル中に拡散させる工程と、によって製造され、
 さらに、前記集電体を両端に有するイオン透過膜を形成する工程と、
 水蒸気を前記集電体に導入し前記イオン透過膜を透過した水素を取り出す工程とを備える、水分解方法。
(Water splitting method)
Providing a current collector including a nickel alloy porous body;
The nickel alloy porous body is:
Applying a paint containing nickel alloy powder of nickel and an additive metal to the surface of the skeleton of the resin molded body having a three-dimensional network structure;
A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied;
Removing the resin molded body;
Diffusing the additive metal into the nickel by heat treatment, and
A step of forming an ion permeable membrane having the current collector at both ends;
A step of introducing water vapor into the current collector and taking out hydrogen that has permeated through the ion permeable membrane.
  本発明のニッケル合金多孔体は、機械特性と耐食性に優れ、コストも低く抑えられるので、リチウムイオン電池、キャパシタ、燃料電池等の二次電池の集電体、水分解装置に好適に使用できる。 The nickel alloy porous body of the present invention is excellent in mechanical properties and corrosion resistance, and can be kept low in cost. Therefore, it can be suitably used for a current collector of a secondary battery such as a lithium ion battery, a capacitor, or a fuel cell, and a water splitting device.
    1  樹脂成形体の断面
    2  金属粉末
    3  ニッケルめっき層
    4  合金粉末
  5 イオン透過膜
  6 集電体
  7 金属多孔体
DESCRIPTION OF SYMBOLS 1 Section of resin molding 2 Metal powder 3 Nickel plating layer 4 Alloy powder 5 Ion permeation membrane 6 Current collector 7 Metal porous body

Claims (4)

  1.   三次元網目状構造を有する樹脂成形体の骨格の表面に、ニッケルと添加金属とのニッケル合金粉末を含有する塗料を塗布する工程と、
      前記塗料を塗布した前記樹脂成形体の骨格の表面にニッケルをめっきする工程と、
      前記樹脂成形体を除去する工程と、
      熱処理によって前記添加金属を前記ニッケル中に拡散させる工程と、
    を有するニッケル合金多孔体の製造方法。
    Applying a paint containing nickel alloy powder of nickel and an additive metal to the surface of the skeleton of the resin molded body having a three-dimensional network structure;
    A step of plating nickel on the surface of the skeleton of the resin molded body to which the paint is applied;
    Removing the resin molded body;
    Diffusing the additive metal into the nickel by heat treatment;
    The manufacturing method of the nickel alloy porous body which has this.
  2. 前記添加金属は、Cr、Sn、Co、Cu、Al、Ti、Mn、Fe、Mo、及びWからなる群より選ばれるいずれか一種以上の金属である請求項1に記載のニッケル合金多孔体の製造方法。 2. The nickel alloy porous body according to claim 1, wherein the additive metal is one or more metals selected from the group consisting of Cr, Sn, Co, Cu, Al, Ti, Mn, Fe, Mo, and W. 3. Production method.
  3.   前記ニッケル合金粉末は、少なくとも表面が酸化されたニッケル合金粉末である請求項1又は請求項2に記載のニッケル合金多孔体の製造方法。 The nickel alloy powder according to claim 1 or 2, wherein the nickel alloy powder is a nickel alloy powder having at least a surface oxidized.
  4.   前記ニッケル合金粉末を含有する塗料が、更にカーボン粉末を含有している請求項1から請求項3のいずれか一項に記載のニッケル合金多孔体の製造方法。 The method for producing a nickel alloy porous body according to any one of claims 1 to 3, wherein the paint containing the nickel alloy powder further contains a carbon powder.
PCT/JP2016/051784 2015-02-18 2016-01-22 Method for producing nickel alloy porous body WO2016132811A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16752200.2A EP3260579B1 (en) 2015-02-18 2016-01-22 Method for producing nickel alloy porous body
US15/550,474 US20180030607A1 (en) 2015-02-18 2016-01-22 Method for producing nickel alloy porous body
KR1020177019564A KR20170118701A (en) 2015-02-18 2016-01-22 Method for producing nickel alloy porous body
CN201680010206.XA CN107208294B (en) 2015-02-18 2016-01-22 The manufacturing method of nickel alloy porous body
JP2017500565A JP6653313B2 (en) 2015-02-18 2016-01-22 Method for producing porous nickel alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015029654 2015-02-18
JP2015-029654 2015-02-18

Publications (1)

Publication Number Publication Date
WO2016132811A1 true WO2016132811A1 (en) 2016-08-25

Family

ID=56688791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051784 WO2016132811A1 (en) 2015-02-18 2016-01-22 Method for producing nickel alloy porous body

Country Status (6)

Country Link
US (1) US20180030607A1 (en)
EP (1) EP3260579B1 (en)
JP (1) JP6653313B2 (en)
KR (1) KR20170118701A (en)
CN (1) CN107208294B (en)
WO (1) WO2016132811A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244480A1 (en) * 2018-06-21 2019-12-26 住友電気工業株式会社 Porous body, current collector including same, and fuel cell
WO2020235266A1 (en) * 2019-05-22 2020-11-26 住友電気工業株式会社 Porous body, fuel cell equipped with same, and steam electrolysis device equipped with same
JPWO2021130849A1 (en) * 2019-12-24 2021-07-01
CN114761593A (en) * 2019-12-24 2022-07-15 住友电气工业株式会社 Porous body and fuel cell including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474493A (en) * 2019-03-01 2021-10-01 田中贵金属工业株式会社 Porous body, electrochemical cell, and method for producing porous body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150270A (en) * 1993-11-30 1995-06-13 Sumitomo Electric Ind Ltd Metallic porous material, its production and electrode for battery using the same
JP2003147570A (en) * 2001-11-08 2003-05-21 Sumitomo Electric Ind Ltd Method of manufacturing fine metallic parts
JP2013133504A (en) * 2011-12-27 2013-07-08 Toyama Sumitomo Denko Kk Method for producing metal porous body, and metal porous body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5952149B2 (en) * 2012-09-27 2016-07-13 住友電気工業株式会社 Metal porous body and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150270A (en) * 1993-11-30 1995-06-13 Sumitomo Electric Ind Ltd Metallic porous material, its production and electrode for battery using the same
JP2003147570A (en) * 2001-11-08 2003-05-21 Sumitomo Electric Ind Ltd Method of manufacturing fine metallic parts
JP2013133504A (en) * 2011-12-27 2013-07-08 Toyama Sumitomo Denko Kk Method for producing metal porous body, and metal porous body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260579A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244480A1 (en) * 2018-06-21 2019-12-26 住友電気工業株式会社 Porous body, current collector including same, and fuel cell
JPWO2019244480A1 (en) * 2018-06-21 2021-05-13 住友電気工業株式会社 Porous, current collector and fuel cell containing it
US11329295B2 (en) 2018-06-21 2022-05-10 Sumitomo Electric Industries, Ltd. Porous body, current collector including the same, and fuel cell
JP7230826B2 (en) 2018-06-21 2023-03-01 住友電気工業株式会社 POROUS BODY, CURRENT COLLECTOR AND FUEL CELL CONTAINING THE SAME
WO2020235266A1 (en) * 2019-05-22 2020-11-26 住友電気工業株式会社 Porous body, fuel cell equipped with same, and steam electrolysis device equipped with same
JPWO2021130849A1 (en) * 2019-12-24 2021-07-01
WO2021130849A1 (en) * 2019-12-24 2021-07-01 住友電気工業株式会社 Porous body and fuel cell comprising same
CN113383100A (en) * 2019-12-24 2021-09-10 住友电气工业株式会社 Porous body and fuel cell including the same
CN114761593A (en) * 2019-12-24 2022-07-15 住友电气工业株式会社 Porous body and fuel cell including the same
CN113383100B (en) * 2019-12-24 2022-10-25 住友电气工业株式会社 Porous body and fuel cell including the same
JP7314940B2 (en) 2019-12-24 2023-07-26 住友電気工業株式会社 Porous body and fuel cell containing the same
US11757106B2 (en) 2019-12-24 2023-09-12 Sumitomo Electric Industries, Ltd. Porous body and fuel cell including the same

Also Published As

Publication number Publication date
JPWO2016132811A1 (en) 2017-11-24
JP6653313B2 (en) 2020-02-26
CN107208294A (en) 2017-09-26
EP3260579B1 (en) 2018-10-17
EP3260579A4 (en) 2018-01-24
US20180030607A1 (en) 2018-02-01
KR20170118701A (en) 2017-10-25
EP3260579A1 (en) 2017-12-27
CN107208294B (en) 2019-07-30

Similar Documents

Publication Publication Date Title
CN103328693B (en) There is porous metal bodies and the manufacture method thereof of high corrosion resistance
WO2016132811A1 (en) Method for producing nickel alloy porous body
EP2600968B1 (en) Use of a platinum alloy catalyst for fuel cells
JP6614131B2 (en) Porous current collector, fuel cell, and method for producing porous current collector
WO2013099532A1 (en) Method for producing porous metal body and porous metal body
JP6300315B2 (en) Fuel cell current collector and fuel cell
WO2017026291A1 (en) Metallic porous body, fuel cell, and method for manufacturing metallic porous body
JP2017033917A (en) Metal porous body, fuel cell, and manufacturing method of metal porous body
JP2017054797A (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
WO2017022542A1 (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
KR20200029439A (en) Metal porous body, solid oxide fuel cell, and method for manufacturing metal porous body
JP4066154B2 (en) Porous metal gas diffusion sheet for polymer electrolyte fuel cell that exhibits excellent contact surface conductivity over a long period of time
WO2017043365A1 (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
WO2020049851A1 (en) Metal porous body, fuel cell, and production method for metal porous body
JP2004047125A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JP4066155B2 (en) Porous metal gas diffusion sheet for polymer electrolyte fuel cell that exhibits excellent contact surface conductivity over a long period of time
KR20200030533A (en) Metal porous body, solid oxide fuel cell, and method for manufacturing metal porous body
JP2004047126A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500565

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177019564

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016752200

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE