WO2017043365A1 - Metal porous body, fuel cell, and method for manufacturing metal porous body - Google Patents

Metal porous body, fuel cell, and method for manufacturing metal porous body Download PDF

Info

Publication number
WO2017043365A1
WO2017043365A1 PCT/JP2016/075290 JP2016075290W WO2017043365A1 WO 2017043365 A1 WO2017043365 A1 WO 2017043365A1 JP 2016075290 W JP2016075290 W JP 2016075290W WO 2017043365 A1 WO2017043365 A1 WO 2017043365A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
nickel
porous body
porous
layer
Prior art date
Application number
PCT/JP2016/075290
Other languages
French (fr)
Japanese (ja)
Inventor
奥野 一樹
孝浩 東野
真嶋 正利
知之 粟津
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016014148A external-priority patent/JP6701601B2/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP16844226.7A priority Critical patent/EP3349282A4/en
Priority to US15/758,457 priority patent/US20180261853A1/en
Priority to CN201680052666.9A priority patent/CN108140845A/en
Priority to KR1020187002722A priority patent/KR20180050645A/en
Publication of WO2017043365A1 publication Critical patent/WO2017043365A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a metal porous body, a fuel cell, and a method for producing a metal porous body.
  • a polymer polymer fuel cell (PEFC) using an ion exchange membrane as an electrolyte has been put into practical use for cogeneration, and a vehicle using this as a power source has begun to be put into practical use.
  • the basic structure of a polymer electrolyte fuel cell includes an anode, a membrane, and a cathode.
  • the membrane is an ion exchange membrane, and a fluorine-based exchange membrane having a sulfone group is mainly employed. Due to the improvement of the characteristics of the membrane, the practical use of the polymer electrolyte fuel cell is promoted.
  • a solid polymer fuel cell is a unit cell in which a gas diffusion layer and a separator are arranged on the back of each electrode of an anode and a cathode, and this is used as a laminated structure (for example, Patent Document 1).
  • the operating temperature is in the range of about 70 ° C. to 110 ° C. in consideration of performance, removal from the system due to evaporation of generated water, lifespan, and the like. Increasing the operating temperature improves the discharge characteristics. For cogeneration, there is an advantage that high-temperature exhaust heat can be obtained, but the lifetime is shorter than that at low temperatures.
  • the gas diffusion layer carbon paper obtained by processing carbon fibers into a nonwoven fabric is generally used, and the gas diffusion layer also functions as a current collector. Also, as a gas diffusion layer, a groove is provided in a carbon plate used as a separator to facilitate gas supply and discharge. Thus, it is common to use carbon paper and a groove together as a gas diffusion layer. Note that the carbon paper also functions to suppress the membrane electrode assembly (MEA) from biting into the grooves of the separator.
  • MEA membrane electrode assembly
  • the porous metal body according to one aspect of the present invention is a porous metal body having a three-dimensional network structure composed of a skeleton and having an outer shape that is a flat plate shape having a pair of main surfaces and end faces connecting the pair of main surfaces.
  • the skeleton includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer.
  • the porous metal body A porous metal body in which the oxide layer is not formed in a portion forming a pair of main surfaces.
  • FIG. 1 is a diagram illustrating an outline of an example of a configuration of a cell of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the evaluation results of the corrosion resistance of the porous metal bodies 1 to 3 produced in the examples.
  • FIG. 3 is a graph showing the evaluation results of the power generation characteristics of the batteries A to D produced in the examples.
  • the porosity of the groove formed in the carbon plate used as the separator for the solid polymer fuel depends on how much the carbon plate is provided, but is practically about 50%. That is, the groove is provided in about 1 ⁇ 2 of the area of one surface of the carbon plate. Further, the shape of the groove is a rectangle, and the width thereof is about 500 ⁇ m.
  • the width of the groove is preferably increased and deepened, and the ratio of the groove per unit area is preferably increased.
  • the greater the number of grooves provided in the separator the lower the conductivity of the separator, thereby reducing the battery characteristics. Since the influence of the conductivity of the separator on the battery characteristics is large, from the viewpoint of battery characteristics, the ratio of the grooves is small, and it is preferable that the groove is shallow.
  • the smaller the groove width and the greater the number of grooves the more uniformly the gas is supplied to the MEA.
  • the groove width decreases, the MEA is less likely to be grooved by the pressure applied when the cells are integrated, and the MEA is deformed and the function as the groove is reduced. This adverse effect becomes more prominent as the size of the battery increases and the number of batteries increases. In other words, the larger the electrode, the greater the number of cells, and the greater the required load, the greater.
  • the present inventors examined using a metal porous body having a three-dimensional network structure as a gas diffusion layer.
  • the porous metal body having a three-dimensional network structure has a very high porosity and can reduce pressure loss.
  • the conventional metal porous body made of nickel is inferior in corrosion resistance as compared with the carbon material, so there is room for improvement in this respect.
  • a metal porous body made of nickel having improved corrosion resistance a metal porous body in which nickel is alloyed with tin or chromium has already been proposed. Although these nickel-tin alloy porous bodies and nickel-chromium alloy porous bodies are excellent in corrosion resistance as compared with metal porous bodies made of nickel, they do not achieve the same corrosion resistance as that of carbon materials.
  • the corrosion resistance of the metal porous body used as the gas diffusion layer does not always discharge, but is particularly problematic when used for a fuel cell that performs intermittent discharge such that discharge is stopped for a certain period and then discharged again.
  • the reason is as follows.
  • hydrogen containing water vapor is supplied to an anode to become hydrogen ions.
  • This hydrogen ion moves to the cathode side through the ion exchange membrane, generates water by an electrochemical reaction, and goes out of the system.
  • the supply of hydrogen and air is stopped and the discharge is stopped, the generated water remaining in the gas diffusion layer flows backward and touches the ion exchange membrane.
  • the gas diffusion layer is a metal material and even a very small amount of metal is eluted in the generated water, it will adversely affect the ion exchange membrane, reducing the water retention of the membrane and reducing the discharge characteristics. End up. Therefore, the more severe the corrosion resistance is required for the gas diffusion layer of such a fuel cell with many pauses.
  • an object of the present invention is to provide a porous metal body that is excellent in corrosion resistance and can be used as a gas diffusion layer of a fuel cell.
  • the metal porous body according to one aspect of the present invention is: A porous metal body having a three-dimensional network structure composed of a skeleton, and having an outer shape of a flat plate having a pair of main surfaces and an end surface connecting the pair of main surfaces,
  • the skeleton is A main metal layer made of nickel or a nickel alloy; An oxide layer formed on the surface of the main metal layer; With Of the surface of the main metal layer, the oxide layer is not formed on the portion forming the pair of main surfaces of the metal porous body, the metal porous body, It is.
  • a pair of main surfaces of the metal porous body refers to a pair of main surfaces in the outer shape of the metal porous body, and the main surface includes a cross-sectional portion of the skeleton. Is located.
  • the porous metal body according to the embodiment of the present invention is the porous metal body according to (1), wherein the skeleton includes a conductive layer formed on a surface of the oxide layer. According to the invention described in (2) above, a porous metal body having a conductive skeleton surface can be provided.
  • the porous metal body according to the embodiment of the present invention is the porous metal body according to (2), wherein the conductive layer includes carbon powder and a binder. According to the invention described in (3) above, it is possible to provide a porous metal body having a conductive layer having excellent corrosion resistance and adhesion on the surface of the skeleton.
  • the porous metal body according to the embodiment of the present invention is the porous metal body according to (2) or (3), wherein the conductive layer contains silver. According to the invention as described in said (4), the porous metal body which has the electroconductive layer excellent in electroconductivity on the surface of frame
  • the porous metal body according to the embodiment of the present invention is the porous metal body according to any one of (1) to (5) above, wherein the oxide layer is nickel oxide. According to the invention as described in said (5) or said (6), the metal porous body which has the frame
  • a fuel cell according to an embodiment of the present invention is a fuel cell using the porous metal body according to any one of (1) to (6) above as a gas diffusion layer. According to the invention described in (7) above, it is possible to provide a fuel cell having high output and excellent power generation per volume.
  • a method for producing a porous metal body according to an embodiment of the present invention includes: A method for producing a porous metal body according to (1) above, A porous structure having a three-dimensional network structure composed of a skeleton, the outer shape being a flat plate shape having a pair of main surfaces and end faces connecting the pair of main surfaces, and the skeleton including a main metal layer made of nickel or a nickel alloy A preparation process for preparing the body; A heat treatment step of forming an oxide layer on the surface of the main metal layer by heating the porous body in an oxidizing atmosphere; A removing step of removing an oxide layer formed on a portion of the surface of the main metal layer that forms the pair of main surfaces; It is a manufacturing method of the metal porous body which has this. According to the invention as described in said (8), the manufacturing method of the porous metal body which is excellent in corrosion resistance and can be utilized as a gas diffusion layer of a fuel cell can be provided.
  • a method for producing a porous metal body according to an embodiment of the present invention includes: After the preparation step and before the heat treatment step, It is a manufacturing method of the metal porous body as described in said (8) which has the acid treatment process which immerses the said porous body in an acidic solution, and dries.
  • a method for producing a porous metal body according to an embodiment of the present invention includes: The method for producing a porous metal body according to (9), wherein the acidic solution is nitric acid, sulfuric acid, hydrochloric acid, or acetic acid. According to the invention as described in said (9) or said (10), the manufacturing method of the metal porous body which has a thick oxide layer on the surface of frame
  • a method for producing a porous metal body according to an embodiment of the present invention includes: After the heat treatment step, The method for producing a porous metal body according to any one of (8) to (10), further including a conductive layer forming step of forming a conductive layer on a surface of the oxide layer.
  • a conductive layer forming step of forming a conductive layer on a surface of the oxide layer According to the invention described in (11) above, it is possible to provide a method for producing the porous metal body described in (2) above.
  • the conductive layer formation step may be performed any time after the heat treatment step, may be performed before the removal step, or may be performed after the removal step.
  • the porous metal body according to the embodiment of the present invention is a flat plate having an outer shape having a pair of main surfaces and end surfaces connecting the pair of main surfaces, and the skeleton has a three-dimensional network structure.
  • the skeleton includes a main metal layer made of nickel or a nickel alloy and an oxide layer formed on the surface of the main metal layer.
  • the said oxide layer is not formed in the part which comprises a pair of main surface of a metal porous body among the surfaces of a main metal layer.
  • the main metal layer is a portion made of nickel or a nickel alloy in the skeleton of the metal porous body.
  • the cross section of the skeleton is exposed on the main surface of the metal porous body.
  • an oxide layer of an element constituting the main metal layer is formed on the surface of the main metal layer constituting the skeleton of the metal porous body.
  • nickel, a nickel alloy, or a metal oxide layer forming a nickel alloy is formed on the surface of the main metal layer. Since the oxide layer is formed on the surface of the main metal layer, the metal porous body according to the embodiment of the present invention is superior in corrosion resistance to sulfuric acid or the like than nickel. For example, when nickel oxide is formed as an oxide layer on the surface of the main metal layer of the metal porous body, the nickel oxide has better corrosion resistance than nickel, so the corrosion resistance of the metal porous body is also improved.
  • the said oxide layer is not formed in a pair of main surface of the metal porous body which concerns on embodiment of this invention, ie, the cross-sectional part of frame
  • it can be made conductive by making a pair of main surface of a metal porous body contact other conductive materials.
  • porous metal body according to the embodiment of the present invention has better corrosion resistance against sulfuric acid or the like than a conventional porous metal body made of nickel or a nickel alloy, it is preferably used as a gas diffusion layer for a fuel cell. Can do.
  • porous metal has a high porosity and a three-dimensional network structure, so when used as a gas diffusion layer, gas pressure loss is reduced and gas diffusibility is improved. Can be made. Thereby, the power generation performance in MEA of a fuel cell can be improved.
  • a conductive layer is preferably formed on the oxide layer.
  • the surface of the skeleton of the metal porous body can be made conductive.
  • the material constituting the conductive layer is not particularly limited as long as it has conductivity and is formed into a film shape on the surface of the oxide layer of the porous metal body. It is preferable that it contains an agent. Thereby, a film-like conductive layer that adheres to the surface of the oxide layer of the metal porous body is formed.
  • carbon powder can be preferably used. Carbon powder is preferable because it is lightweight and easily available. As the carbon powder, for example, carbon black, activated carbon, graphite or the like can be used alone or in combination. In addition to carbon powder, conductive powder such as gold, silver, palladium, copper, and aluminum can be used. Among these, silver powder can be preferably used in terms of corrosion resistance and conductivity.
  • a resin can be preferably used.
  • a resin having excellent film forming ability (film forming ability) and heat resistance can be preferably used. It is preferable to withstand heat of about 70 ° C. to 110 ° C., which is the operating temperature of the polymer electrolyte fuel cell.
  • polyolefins such as polyethylene and polypropylene, polyacrylic acid ester, polyvinyl acetate, vinyl alcohol-polystyrene copolymer, ethylene-acrylic acid methyl ester copolymer, polymethacrylic acid ester, formalized polyvinyl Alcohol or the like can be used. These may be used alone or in combination.
  • polyurethane, silicone resin, polyimide, and fluorine resin can also be preferably used as the resin.
  • the nickel alloy constituting the metal porous body is not particularly limited, and examples thereof include tin, chromium, aluminum, titanium, copper, cobalt, tungsten, iron, manganese, silver, gold, phosphorus, and boron.
  • An alloy of at least one and nickel can be mentioned. It is preferably an alloy with a metal that forms an alloy with nickel and is superior in corrosion resistance to sulfuric acid or the like than nickel. From the viewpoint of corrosion resistance and manufacturing cost, the nickel alloy is preferably an alloy containing nickel and at least one of chromium, tin, and tungsten. In the nickel alloy, the metal component contained other than nickel may be only one kind or plural kinds.
  • the nickel alloy is preferably nickel chromium, nickel tin, or nickel tungsten.
  • the metal porous body which concerns on embodiment of this invention may contain the component which does not form an alloy with nickel intentionally or unavoidable besides nickel and a nickel alloy.
  • the thickness of the outer shape of the porous metal body that is, the height of the end face connecting one main surface and the other main surface is preferably 0.10 mm or more and 1.20 mm or less.
  • the thickness of the outer shape of the metal porous body is 0.10 mm or more and 1.20 mm or less, it can contribute to miniaturization of the fuel cell when used as a gas diffusion layer of the fuel cell.
  • the porous metal body has little gas pressure loss and excellent gas diffusibility, the output of the fuel cell can be increased.
  • the thickness of the outer shape of the metal porous body is 0.10 mm or more, the mechanical strength of the metal porous body is maintained and the gas has a sufficient gas diffusion capacity.
  • the thickness of the outer shape of the metal porous body is 1.20 mm or less, it is possible to contribute to miniaturization of the fuel cell. From these viewpoints, the thickness of the outer shape of the metal porous body is preferably 0.20 mm or more and 1.0 mm or less, and more preferably 0.30 mm or more and 0.80 mm or less.
  • the porous metal body according to the embodiment of the present invention preferably has a porosity of 51% or more and 90% or less.
  • the porosity is 51% or more, gas pressure loss can be further reduced when the metal porous body is used as a gas diffusion layer of a fuel cell.
  • the porosity is 90% or less, gas diffusibility can be further enhanced when the metal porous body is used as a gas diffusion layer of a fuel cell. This is because, since the metal porous body has a three-dimensional network structure, when the porosity decreases, the rate at which the gas hits the skeleton of the metal porous body increases.
  • the porosity of the metal porous body is 85% or less, the conductivity becomes excellent. From these viewpoints, the porosity of the metal porous body according to the embodiment of the present invention is more preferably 55% or more and 88% or less, and further preferably 60% or more and 85% or less.
  • the basis weight of nickel is preferably about 200 g / m 2 or more and 1200 g / m 2 or less.
  • the basis weight of the total amount of the metal components is preferably about 200 g / m 2 or more and 1200 g / m 2 or less.
  • the strength and conductivity of the metal porous body can be sufficiently increased.
  • the raise of a manufacturing cost and the increase in a weight can be suppressed because the sum total of the metal amount of metal shall be 1200 g / m ⁇ 2 > or less.
  • the metal porous body according to the embodiment of the present invention preferably has a basis weight of 300 g / m 2 or more and 1100 g / m 2 or less, more preferably 400 g / m 2 or more and 1000 g / m 2 or less. More preferably it is.
  • the pore diameter viewed from above the metal porous body is preferably 100 ⁇ m or more and 700 ⁇ m or less.
  • the hole diameter is 100 ⁇ m or more, a high-power fuel cell can be obtained while suppressing the pressure loss of the fuel gas.
  • the hole diameter is 700 ⁇ m or less, the fuel gas can be diffused smoothly, and the fuel use efficiency can be improved.
  • the pore diameter of the metal porous body is more preferably 150 ⁇ m or more and 650 ⁇ m or less, and further preferably 200 ⁇ m or more and 600 ⁇ m or less.
  • “viewed from above” refers to the case of viewing from the thickness direction of the planar metal porous body.
  • the average pore diameter is a value obtained from the reciprocal of the number of cells of the metal porous body.
  • the number of cells is a numerical value obtained by counting the number of cells on the outermost surface intersecting the line when a line having a length of 1 inch is drawn on the main surface of the metal porous body, and the unit is cell / inch. However, 1 inch shall be 2.54 cm.
  • the fuel cell according to the embodiment of the present invention is a fuel cell using the porous metal body according to the embodiment of the present invention as a gas diffusion layer.
  • the type of the fuel cell is not particularly limited, and may be a solid polymer fuel cell or a solid oxide fuel cell.
  • a solid polymer fuel cell will be described as an example.
  • ion exchange membranes and the like in the polymer electrolyte fuel cell can be used.
  • a membrane / electrode assembly obtained by bonding an ion exchange membrane and a catalyst layer a commercially available one can be used as it is.
  • Both the anode and cathode platinum catalysts are integrated using a gas diffusion electrode carrying about 0.5 mg / cm 2 and Nafion (registered trademark) 112 as an ion exchange membrane.
  • FIG. 1 is a schematic cross-sectional view of a single cell of a polymer electrolyte fuel cell.
  • a membrane-electrode assembly (MEA) M has activated carbon layers (2-1, 2-2) containing gas diffusion electrodes, that is, platinum catalysts, on both surfaces of an ion exchange membrane 1-1.
  • a hydrogen electrode as an anode and an air electrode as a cathode, respectively.
  • the current collector (3-1, 3-2) also serves as a bipolar current collector and a gas diffusion layer.
  • commercially available carbon paper treated with water repellency can be used.
  • As the carbon paper for example, a paper having water repellency to which a porosity of about 50% and a fluororesin of about 15% are added can be used.
  • the separator (4-1, 4-2) for example, a commercially available graphite plate can be used.
  • the gas diffusion layer (4-1-1, 4-2-1) is a porous metal body according to the embodiment of the present invention, and also serves as a gas supply / discharge path. Since the porous metal body according to the embodiment of the present invention is very thin compared to the conventional porous metal body, the fuel cell can be downsized.
  • FIG. 1 shows a single cell, a fuel cell that has been put to practical use is configured by stacking cells so that a desired voltage can be handled via a separator.
  • each cell is connected in series, if one side of the separator is a cathode, it is assembled so that the anode of the next cell comes to the other side, and the periphery is pressurized and integrated with bolts, nuts and the like.
  • the metal porous body according to the embodiment of the present invention can be produced by various methods. Examples of the production method include the methods described in the above (8) to (11). Below, each process of the manufacturing method of a metal porous body is demonstrated in detail.
  • This step is a step of preparing a porous body including a main metal layer made of nickel or a nickel alloy as a starting material.
  • the porous body is a flat plate having an outer shape having a pair of main surfaces and end surfaces connecting the main surfaces, the skeleton has a three-dimensional network structure, and includes a main metal layer made of nickel or a nickel alloy. I just need it.
  • a method for producing a porous body having a main metal layer made of nickel or a nickel alloy is not particularly limited, but is preferably produced by the following plating method.
  • the surface of the skeleton of a resin molded body having a three-dimensional network structure is subjected to a conductive treatment, and subsequently plated with nickel or a nickel alloy, and then the resin molded body as a base material is removed, A porous body having a main metal layer made of a nickel alloy can be produced.
  • any known or commercially available one may be used as long as it is porous.
  • a resin foam, nonwoven fabric, felt, woven fabric, or the like can be used.
  • these can also be used in combination as needed.
  • a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.
  • a resin foam As the resin molding.
  • the resin foam include foamed urethane, foamed styrene, and foamed melamine resin.
  • foamed urethane is preferable from the viewpoint of particularly high porosity.
  • the porosity of the resin molded body is not limited, and is usually about 60% to 97%, preferably about 80% to 96%.
  • the thickness of the resin molded body is not limited, and is appropriately determined according to the use of the obtained porous metal body. Usually, it is about 600 ⁇ m or more and 5000 ⁇ m or less, preferably about 800 ⁇ m or more and 2000 ⁇ m or less.
  • the resin molded body has a very high porosity, a flat plate shape cannot be maintained when the thickness is 500 ⁇ m or less.
  • a foamed resin is used as a resin molded body having a three-dimensional network structure will be described as an example.
  • the conductive treatment of the skeleton surface of the resin molded body is not particularly limited as long as it is a method capable of providing a conductive layer on the surface of the skeleton of the resin molded body.
  • the material constituting the conductive layer include metals such as nickel, tin, chromium, copper, iron, tungsten, titanium, and stainless steel, and carbon powder such as carbon powder.
  • Specific examples of the conductive treatment include metal powders such as nickel, tin, and chromium, and conductive paints obtained by adding a binder to graphite powder, electroless plating treatment, sputtering, vapor deposition, ion plating, and the like. Preferred examples include phase treatment.
  • the electroless plating treatment using nickel can be performed by immersing the foamed resin in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. If necessary, the resin molded body may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.
  • a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent.
  • the resin molded body may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.
  • a resin molded body is attached to a substrate holder, and then a DC voltage is applied between the holder and a target (nickel or chromium) while introducing an inert gas.
  • the ionized inert gas thus collides with nickel or chromium, and the blown-off nickel particles or chromium particles may be deposited on the surface of the resin molded body.
  • a conductive paint such as carbon powder or metal powder
  • powder having conductivity on the surface of the skeleton of the resin molded body for example, powder of metal material such as stainless steel, crystalline graphite, amorphous
  • a method of applying a mixture of carbon powder such as carbon black for example, chromium powder, tin powder, or tungsten powder may be used in combination with the carbon powder.
  • the porous body which consists of nickel chromium, nickel tin, and nickel tungsten can be manufactured.
  • carbon powder carbon black, activated carbon, graphite or the like can be used, and the material is not particularly limited. Carbon black may be used for the purpose of making the conductivity uniform, and fine graphite powder may be used for considering the strength of the conductive coating layer. Moreover, it is preferable to mix including activated carbon. You may add the thickener generally used, for example, carboxymethylcellulose (CMC) etc., when producing a slurry.
  • the surface of the skeleton of the resin molded body can be made conductive by applying this slurry to the skeleton of the resin molded body that has been cut into a plate shape or a strip shape by adjusting the thickness.
  • the nickel plating layer may be formed using either electroless nickel plating or electrolytic nickel plating, but electrolytic nickel plating is preferable because of its higher efficiency. What is necessary is just to perform an electrolytic nickel plating process in accordance with a conventional method.
  • a known or commercially available bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like.
  • the resin molded body having a conductive coating layer formed on the surface thereof by electroless plating or sputtering is immersed in a plating bath, and the resin molded body is connected to the cathode and the nickel counter electrode is connected to the anode to allow direct current or pulse intermittent current to flow.
  • a nickel plating layer can be formed on the conductive coating layer.
  • the basis weight of an electrolytic nickel plating layer so that the content rate of nickel may be 50 mass% or more as a final metal composition of a porous body.
  • the amount of nickel is about 200 g / m ⁇ 2 > or more and about 1200 g / m ⁇ 2 > or less.
  • the basis weight of the total metal amount is preferably about 200 g / m 2 or more and 1200 g / m 2 or less.
  • the basis weight of nickel or nickel alloy is more preferably 300 g / m 2 or more and 1100 g / m 2 or less, and further preferably 400 g / m 2 or more and 1000 g / m 2 or less.
  • a chromium plating layer or a tin plating layer is further formed on the nickel plating layer, followed by heat treatment. It may be alloyed.
  • (Chrome plating layer formation) When forming a chromium plating layer on a nickel plating layer, it can carry out as follows, for example. That is, it may be carried out according to a known chrome plating method, and a known or commercially available plating bath can be used. For example, a hexavalent chromium bath or a trivalent chromium bath can be used.
  • a chrome plating layer can be formed by immersing a porous body to be plated in the chrome plating bath and connecting it to the cathode, connecting a chrome plate to the anode as a counter electrode, and applying a direct current or pulse intermittent current.
  • the process of forming a tin plating layer on a nickel plating layer can be performed as follows, for example. That is, as a sulfuric acid bath, a plating bath having a composition of stannous sulfate 55 g / L, sulfuric acid 100 g / L, cresol sulfonic acid 100 g / L, gelatin 2 g / L, and ⁇ -naphthol 1 g / L is prepared.
  • tin plating is performed by setting the cathode current density to 2 A / dm 2 , the anode current density to 1 A / dm 2 or less, the temperature to 20 ° C., and the stirring (cathode oscillation) to 2 m / min.
  • a layer can be formed.
  • strike nickel plating it is desirable to perform strike nickel plating immediately before to remove the surface oxide film of the porous body and put it into the tin plating bath without being dried. Thereby, the adhesiveness of a tin plating layer can be improved.
  • the conditions for strike nickel plating can be as follows, for example.
  • a wood strike nickel bath having a composition of nickel chloride 240 g / L, hydrochloric acid (having a specific gravity of about 1.18) 125 ml / L, setting the temperature to room temperature, and using nickel or carbon for the anode It can be carried out.
  • the above plating procedure is summarized as follows: degreasing with an A-screen (cathodic electrolytic degreasing 5 A / dm 2 ⁇ 1 minute), hot water washing, water washing, acid activity (hydrochloric acid immersion 1 minute), wood strike nickel plating treatment (5 to 10 A / dm) 2 ⁇ 1 min), processed to tin plating, washed and dried without washing and drying.
  • plating solution circulation during plating In general, it is difficult to uniformly plate a substrate such as a resin molded body having a three-dimensional network structure. It is preferable to circulate the plating solution in order to prevent non-attachment to the inside or to reduce the difference in the amount of plating adhesion between the inside and the outside.
  • a circulation method there are methods such as using a pump and installing a fan inside the plating tank. Also, if a plating solution is sprayed onto the resin molded body using these methods, or if the resin molded body is placed adjacent to the suction port, the plating solution can easily flow inside the resin molded body, which is effective.
  • a porous body having a main metal layer made of nickel or a nickel alloy can be obtained by removing a resin molded body used as a substrate from a resin structure having a nickel plating layer or a nickel alloy plating layer formed on the surface. .
  • the nickel plating layer or the nickel alloy plating layer becomes the main metal layer of the skeleton of the porous body.
  • the method for removing the resin molding is not limited, and examples thereof include chemical treatment and combustion removal by incineration.
  • the heating may be performed in an oxidizing atmosphere such as air of about 600 ° C. or higher.
  • the obtained porous body is heat-treated in a reducing atmosphere as necessary to reduce the metal, thereby obtaining a porous body having a main metal layer made of nickel or a nickel alloy.
  • This step is a step of heat-treating the porous body including the main metal layer made of nickel or nickel alloy prepared above in an oxidizing atmosphere.
  • an oxide layer of an element constituting the main metal layer is formed on the surface of the main metal layer.
  • the oxidizing atmosphere is not particularly limited as long as it is an atmosphere in which nickel or nickel alloy constituting the skeleton is oxidized. For example, it may be performed in an air atmosphere or an atmosphere containing 10% or more of oxygen.
  • the heat processing temperature is at about 300 degreeC or more and 1000 degrees C or less.
  • the oxidation of nickel or a nickel alloy can be accelerated
  • skeleton can be suppressed because it is 1000 degrees C or less.
  • the heat treatment temperature is more preferably 300 ° C. or more and 900 ° C. or less, and further preferably 350 ° C. or more and 850 ° C. or less.
  • the heat treatment time may be a time during which nickel or a nickel alloy can be oxidized.
  • the soaking time may be about 15 minutes or more and about 2 hours or less.
  • the heat treatment time is more preferably 20 minutes or longer and 1.5 hours or shorter, and further preferably 30 minutes or longer and 1 hour or shorter.
  • This step is a step of removing the oxide layer formed on the portion forming the pair of main surfaces of the porous body from the oxide layer formed on the surface of the main metal layer by the heat treatment. Since the oxide layer is not formed on the portion constituting the main surface of the metal porous body, it is possible to conduct by bringing the main surface of the metal porous body into contact with another conductive material.
  • the method for removing the oxide layer formed on the main surface of the porous body including the main metal layer made of nickel or nickel alloy is not particularly limited, and the nickel or nickel alloy constituting the main metal layer is exposed. Any method can be used. For example, a method of polishing using sandpaper or an abrasive, a method of etching with a chemical solution, a method of using a reducing agent, and the like can be preferably used.
  • the metal porous body which concerns on embodiment of this invention can be manufactured with the above manufacturing method.
  • a porous body including a main metal layer made of nickel or a nickel alloy is dipped in an acidic solution and dried, and then the heat treatment step is performed.
  • the surface of the porous body is oxidized and roughened, whereby the oxidation easily proceeds, and the thickness of the oxide layer formed on the surface of the main metal layer can be increased.
  • the acidic solution for example, nitric acid, sulfuric acid, hydrochloric acid, acetic acid and the like can be used. It is preferable to use an aqueous solution of these acidic solutions. For example, when dilute nitric acid is used, the surface of the porous body becomes nickel nitrate, which is heated at 250 ° C.
  • the metal porous body in which the oxide layer is formed exhibits excellent corrosion resistance in the generated water as compared with the metal porous body not having the oxide layer. Therefore, the metal porous body on which the oxide layer is formed can be used for a member that requires corrosion resistance in the generated water. For example, it is preferable as a gas diffusion layer for a fuel cell in which the number of stops increases due to long-term use. Can be used.
  • the conductive layer formation process It is preferable to further form a conductive layer on the surface of the oxide layer of the porous metal body on which the oxide layer is formed. Thereby, the surface of the skeleton of the metal porous body can be made conductive.
  • the conductive layer is not particularly limited as long as it is a conductive layer. However, considering that the metal porous body is used as a gas diffusion layer of a fuel cell, the conductive layer is preferably excellent in corrosion resistance. Note that the conductive layer formation step may be performed any time after the heat treatment step, may be performed before the removal step, or may be performed after the removal step.
  • the conductive layer can be formed by applying a slurry containing conductive powder and a binder to the surface of the oxide layer of the metal porous body and drying it.
  • a slurry containing conductive powder and a binder can be used as the conductive powder.
  • Carbon powder is preferable because it is lightweight and easily available.
  • the carbon powder for example, carbon black, activated carbon, graphite or the like can be used alone or in combination.
  • the conductive powders such as gold, silver, palladium, copper, and aluminum can be used in addition to the carbon powder.
  • silver powder can be preferably used in terms of corrosion resistance and conductivity.
  • a resin can be preferably used.
  • a resin having excellent film forming ability (film forming ability) and heat resistance can be preferably used. It is preferable to withstand heat of about 70 ° C. to 110 ° C., which is the operating temperature of the polymer electrolyte fuel cell.
  • polyolefins such as polyethylene and polypropylene, polyacrylic acid ester, polyvinyl acetate, vinyl alcohol-polystyrene copolymer, ethylene-acrylic acid methyl ester copolymer, polymethacrylic acid ester, formalized polyvinyl Alcohol or the like can be used. These may be used alone or in combination.
  • polyurethane, silicone resin, polyimide, and fluorine resin can also be preferably used as the resin.
  • the porous metal body obtained as described above preferably further includes a step of rolling to adjust the thickness of the outer shape to 0.10 mm or more and 1.20 mm or less.
  • -Thickening process This step is a step of rolling the metal porous body and adjusting the thickness so that the thickness of the outer shape becomes 0.10 mm or more and 1.20 mm or less. Rolling can be performed by, for example, a roller press or a flat plate press.
  • By adjusting the thickness of the metal porous body it is possible to make the thickness of the outer shape of the metal porous body uniform and eliminate the unevenness of the surface unevenness. Moreover, the porosity can be reduced by rolling the metal porous body.
  • the thickness of the outer shape of the metal porous body is 0.20 mm or more and 1.0 mm or less, and it is more preferable to roll so that the thickness is 0.30 mm or more and 0.80 mm or less.
  • the metal porous body is used as the gas diffusion layer of the fuel cell, a metal porous body having a thickness slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell is manufactured, The metal porous body may be deformed by the pressure at the time of incorporation so that the thickness becomes 0.10 mm or more and 1.20 mm or less.
  • the porous metal body may be slightly rolled in advance to form a porous metal body having a thickness slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell.
  • the adhesion between the MEA of the fuel cell and the gas diffusion layer (metal porous body) can be further enhanced.
  • the metal porous body which concerns on embodiment of this invention can be used conveniently also for the hydrogen production use by water electrolysis besides a fuel cell use.
  • Hydrogen production methods are broadly classified into [1] alkaline water electrolysis method, [2] PEM method, and [3] SOEC method, and any of these methods can use a porous metal body.
  • the alkaline water electrolysis method [1] is a method in which water is electrolyzed by immersing an anode and a cathode in a strong alkaline aqueous solution and applying a voltage.
  • a metal porous body as an electrode, the contact area between water and the electrode is increased, and the efficiency of water electrolysis can be increased.
  • the metal porous body preferably has a pore diameter of 100 ⁇ m or more and 5000 ⁇ m or less when viewed from above.
  • the pore size when the metal porous body is viewed from above is 100 ⁇ m or more, the generated hydrogen / oxygen bubbles are prevented from clogging the pores of the metal porous body and reducing the contact area between water and the electrode. be able to.
  • the pore diameter is 5000 ⁇ m or less, the surface area of the electrode is sufficiently increased, and the efficiency of water electrolysis can be increased.
  • the pore size when the metal porous body is viewed from above is more preferably 400 ⁇ m or more and 4000 ⁇ m or less.
  • the thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment because it causes a deflection or the like when the electrode area increases.
  • a plurality of porous metal bodies having different pore diameters can be used in combination in order to achieve both the elimination of bubbles and the securing of the surface area.
  • the metal porous body which concerns on embodiment of this invention as an electrode in an alkaline water electrolysis system, what is necessary is just to use the metal porous body which has a conductive layer on the surface of an oxide layer.
  • the PEM method of [2] is a method of electrolyzing water using a solid polymer electrolyte membrane.
  • a solid polymer electrolyte membrane By placing an anode and a cathode on both sides of the solid polymer electrolyte membrane and applying a voltage while flowing water to the anode side, hydrogen ions generated by water electrolysis move to the cathode side through the solid polymer electrolyte membrane And is taken out as hydrogen on the cathode side.
  • the operating temperature is about 100 ° C.
  • the polymer electrolyte fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since the anode side and the cathode side are completely separated, there is an advantage that high purity hydrogen can be taken out. Since both the anode and the cathode must pass through the electrode and allow water and hydrogen gas to pass through, the electrode needs a conductive porous body.
  • the porous metal body according to the embodiment of the present invention has high porosity and good electrical conductivity, it can be used for PEM water electrolysis as well as it can be suitably used for polymer electrolyte fuel cells. It can be used suitably.
  • the metal porous body preferably has a pore diameter of 100 ⁇ m or more and 700 ⁇ m or less when viewed from above. When the porous metal body is viewed from above, the pore diameter is 100 ⁇ m or more, and the generated hydrogen / oxygen bubbles are clogged in the pores of the porous metal body, reducing the contact area between water and the solid polymer electrolyte membrane. Can be suppressed.
  • the pore diameter is 700 ⁇ m or less, so that sufficient water retention can be ensured, and water is prevented from passing through before reacting. Electrolysis can be performed. From the same viewpoint, the pore diameter when the metal porous body is viewed from above is more preferably 150 ⁇ m or more and 650 ⁇ m or less, and further preferably 200 ⁇ m or more and 600 ⁇ m or less.
  • the thickness and the amount of metal of the porous metal body may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for allowing water to pass increases, so the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Also, in the PEM method, the electrical connection between the solid polymer electrolyte membrane and the electrode is a pressure bonding, so it is necessary to adjust the amount of metal so that the increase in electrical resistance due to deformation and creep during pressurization is within a practically acceptable range. .
  • the amount of metal is preferably about 200 g / m 2 or more and 1200 g / m 2 or less, more preferably about 300 g / m 2 or more and about 1100 g / m 2 or less, 400 g / m 2 or more and 1000 g / m 2 or less. More preferably, it is about 2 or less.
  • a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
  • the SOEC method [3] is a method of electrolyzing water using a solid oxide electrolyte membrane, and the configuration differs depending on whether the electrolyte membrane is a proton conducting membrane or an oxygen ion conducting membrane.
  • the oxygen ion conductive membrane hydrogen is generated on the cathode side for supplying water vapor, so that the hydrogen purity is lowered. Therefore, it is preferable to use a proton conductive membrane from the viewpoint of hydrogen production.
  • hydrogen ions generated by water electrolysis are moved to the cathode side through the solid oxide electrolyte membrane. In this method, only hydrogen is extracted on the cathode side.
  • the operating temperature is about 600 ° C to 800 ° C.
  • a solid oxide fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration.
  • the electrode must be conductive and have a porous body that can withstand a high-temperature oxidizing atmosphere, particularly on the anode side. Since the porous metal body according to the embodiment of the present invention has high porosity, good electrical conductivity, and high oxidation resistance and heat resistance, it can be suitably used for a solid oxide fuel cell. It can also be suitably used for SOEC water electrolysis. It is preferable to use a Ni alloy to which a metal having high oxidation resistance such as Cr is added for the electrode on the side that becomes an oxidizing atmosphere.
  • the porous metal body preferably has a pore diameter of 100 ⁇ m or more and 700 ⁇ m or less when viewed from above. Since the pore diameter when the metal porous body is viewed from above is 100 ⁇ m or more, water vapor or generated hydrogen is clogged in the pores of the metal porous body, and the contact area between the water vapor and the solid oxide electrolyte membrane is reduced. This can be suppressed. Moreover, when the metal porous body is viewed from above, the pore diameter is 700 ⁇ m or less, so that it is possible to prevent the pressure loss from becoming too low and water vapor to pass through before sufficiently reacting. From the same viewpoint, the pore diameter when the metal porous body is viewed from above is more preferably 150 ⁇ m or more and 650 ⁇ m or less, and further preferably 200 ⁇ m or more and 600 ⁇ m or less.
  • the thickness of the metal porous body and the amount of metal may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water vapor increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. In addition, in the SOEC method, since the electrical connection between the solid oxide electrolyte membrane and the electrode is a pressure bonding, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practically acceptable range. .
  • the amount of metal is preferably about 200 g / m 2 or more and 1200 g / m 2 or less, more preferably about 300 g / m 2 or more and about 1100 g / m 2 or less, 400 g / m 2 or more and 1000 g / m 2 or less. More preferably, it is about 2 or less.
  • a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
  • Appendix 1 By electrolyzing water using a metal porous body having a three-dimensional network structure composed of a skeleton and having an outer shape as a plate having a pair of main surfaces and an end surface connecting the pair of main surfaces as an electrode
  • a method for producing hydrogen that generates hydrogen comprising:
  • the skeleton of the porous metal body includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer, The method for producing hydrogen, wherein the oxide layer is not formed on portions of the surface of the main metal layer that form a pair of main surfaces of the metal porous body.
  • the skeleton is The method for producing hydrogen according to appendix 1, comprising a conductive layer formed on a surface of the oxide layer.
  • Appendix 3 The method for producing hydrogen according to appendix 2, wherein the conductive layer includes carbon powder and a binder.
  • Appendix 4 The method for producing hydrogen according to supplementary note 2 or supplementary note 3, wherein the conductive layer contains silver.
  • Appendix 5 The method for producing hydrogen according to any one of appendix 1 to appendix 4, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel.
  • Appendix 6) The method for producing hydrogen according to any one of appendices 1 to 5, wherein the oxide layer is nickel oxide.
  • the metal porous body is disposed on both sides of the solid oxide electrolyte membrane, the solid polymer electrolyte membrane and the metal porous body are brought into contact with each other, and each metal porous body acts as an anode and a cathode.
  • the method for producing hydrogen according to any one of appendix 1 to appendix 6, wherein hydrogen is generated by electrolyzing water to generate hydrogen on the cathode side.
  • (Appendix 10) An apparatus for producing hydrogen capable of generating hydrogen by electrolyzing water, A porous metal body having a three-dimensional network structure composed of a skeleton and having an outer shape having a pair of main surfaces and an end surface connecting the pair of main surfaces as an electrode;
  • the skeleton of the porous metal body includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer, An apparatus for producing hydrogen, wherein the oxide layer is not formed on portions of the surface of the main metal layer that form a pair of main surfaces of the porous metal body.
  • the skeleton is The hydrogen production apparatus according to appendix 10, comprising a conductive layer formed on a surface of the oxide layer.
  • (Appendix 12) The hydrogen production apparatus according to appendix 11, wherein the conductive layer includes carbon powder and a binder.
  • (Appendix 13) The hydrogen production apparatus according to appendix 11 or appendix 12, wherein the conductive layer contains silver.
  • (Appendix 14) The hydrogen production apparatus according to any one of appendix 10 to appendix 13, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel.
  • (Appendix 15) The hydrogen production apparatus according to any one of appendix 10 to appendix 14, wherein the oxide layer is nickel oxide.
  • (Appendix 16) The hydrogen production apparatus according to any one of appendix 11 to appendix 15, wherein the water is a strong alkaline aqueous solution.
  • Appendix 17 Having an anode and a cathode on both sides of the solid polymer electrolyte membrane; The anode and the cathode are in contact with the solid polymer electrolyte membrane; A hydrogen production apparatus capable of generating hydrogen on the cathode side by electrolyzing water supplied to the anode side, The hydrogen production apparatus according to any one of appendix 10 to appendix 15, wherein the metal porous body is used for at least one of the anode and the cathode.
  • Appendix 18 Having an anode and a cathode on both sides of the solid oxide electrolyte membrane; The anode and the cathode are in contact with the solid polymer electrolyte membrane; A hydrogen production apparatus capable of generating hydrogen on the cathode side by electrolyzing water vapor supplied to the anode side, The hydrogen production apparatus according to any one of appendix 10 to appendix 15, wherein the metal porous body is used for at least one of the anode and the cathode.
  • Example 1 -Fabrication of porous metal- ⁇ Preparation process> (Conductive layer formation process)
  • a resin molded body having a three-dimensional network structure a urethane resin foam sheet having a porosity of 90%, an average pore diameter of 450 ⁇ m, and a thickness of 1.3 mm was used.
  • a slurry was prepared by dispersing 1000 g of graphite powder having an average particle size of 0.5 ⁇ m and 130 g of chromium powder having an average particle size of 5 ⁇ m in 5 L of an acrylic-styrene copolymer emulsion of 10% by mass.
  • the urethane resin foam was immersed in this slurry. Then, the urethane resin foam was pulled up, excess slurry was removed between the rolls, and dried to make the surface of the skeleton conductive.
  • the amount of chromium applied after drying was set to 70 g / m 2 .
  • the electroconductive urethane resin foam was subjected to electrolytic nickel plating by a known sulfamic acid bath method.
  • Electrolytic nickel plating was performed with a known composition, that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 .
  • the basis weight of nickel was set to 600 g / m 2 .
  • the resin structure was heated in the atmosphere at 800 ° C. for 15 minutes to incinerate and remove the resin and graphite powder added to the resin molded body and the slurry. After that, heat treatment is performed at 1000 ° C. for 25 minutes in a hydrogen atmosphere to reduce the metal that has been partially oxidized by heating in the air, and alloying and annealing to form a main metal layer whose skeleton is made of a nickel chromium alloy. A porous body was obtained. The uniformity of the alloy was confirmed by X-ray analysis and electron microscope. Thereafter, the porous body including the main metal layer made of a nickel chromium alloy was adjusted to a thickness of 0.50 mm with a roller press.
  • the porous body including the main metal layer made of a nickel-chromium alloy had a porosity of 84.6%, a basis weight of 670 g / m 2 , a ratio of nickel to chromium of 90% by weight of nickel, and 10% by weight of chromium.
  • a pair of main surfaces of a porous body having an oxide layer formed on the surface of the main metal layer is polished by sandpaper to form an oxide formed on a portion of the main metal layer that forms the pair of main surfaces. The layer was removed.
  • a slurry was prepared by dispersing 450 g of graphite powder having an average particle diameter of 1.0 ⁇ m in 2.5 L of an 8% by mass aqueous polypropylene emulsion.
  • the porous body obtained above was immersed in this slurry, and the slurry was applied to the surface of the skeleton.
  • the binding property of resin was improved by heat-processing for 30 minutes at 135 degreeC.
  • a porous metal body 1 in which a conductive layer having corrosion resistance and conductivity was formed on the surface of the oxide layer was obtained.
  • the porous metal body 1 was used as a gas diffusion layer / gas supply / discharge path of a polymer electrolyte fuel cell (single cell).
  • a commercially available MEA was used, and the metal porous body 1 was cut into 5 ⁇ 5 cm to form the single cell shown in FIG.
  • the MEA was sandwiched between two carbon papers, and the outside was sandwiched between two metal porous bodies 1 to form a single cell.
  • a gasket and a concave graphite plate were used, and the four corners were fastened and fixed with bolts and nuts.
  • the separator graphite plate is practically a laminated battery, its thickness is about 1 to 2 mm.
  • the example is a single cell and has a thickness of 10 mm to make it strong enough to withstand tightening. .
  • This cell was designated as battery A.
  • Example 2 -Fabrication of porous metal- ⁇ Preparation process> (Conductive layer formation process)
  • a resin molded body having a three-dimensional network structure a urethane resin foam sheet having a porosity of 90%, an average pore diameter of 450 ⁇ m, and a thickness of 1.3 mm was used.
  • a slurry was prepared by dispersing 900 g of graphite powder having an average particle diameter of 0.5 ⁇ m in 1 L of a 10% by mass acrylic ester aqueous emulsion.
  • the urethane resin foam was immersed in this slurry. Then, the urethane resin foam was pulled up, excess slurry was removed between the rolls, and dried to make the surface of the skeleton conductive.
  • the amount of graphite applied after drying was set to 20 g / m 2 .
  • the urethane resin foam imparted with conductivity was subjected to electrolytic nickel plating by a known sulfamic acid bath method.
  • Electrolytic nickel plating was performed with a known composition, that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 .
  • the basis weight of nickel was set to 600 g / m 2 .
  • tin plating was performed using a known sulfuric acid bath.
  • the sulfuric acid bath was composed of stannous sulfate 55 g / L, sulfuric acid 100 g / L, cresol sulfonic acid 100 g / L, gelatin 2 g / L, and ⁇ -naphthol 1 g / L.
  • the cathode current density is 2 A / dm 2
  • the anode current density is 1 A / dm 2 or less
  • the temperature is 20 ° C.
  • the stirring (cathode oscillation) is 2 m / min. Formation was performed.
  • the basis weight of tin was set to 150 g / m 2 .
  • the resin structure was heated in the atmosphere at 800 ° C. for 15 minutes to incinerate and remove the resin (binder) and graphite powder added to the resin molded body and the slurry. After that, heat treatment is performed at 1000 ° C. for 50 minutes in a hydrogen atmosphere to reduce the metal that has been partially oxidized by heating in the atmosphere, and by alloying and annealing by thermal diffusion, the skeleton is made of a nickel-tin alloy. A porous body provided with a metal layer was obtained. The uniformity of the alloy was confirmed by X-ray analysis and electron microscope. Thereafter, the thickness of the porous body including the main metal layer made of a nickel-tin alloy was adjusted to 0.50 mm with a roller press.
  • the porous body including the main metal layer made of a nickel-tin alloy had a porosity of 82.4%, a basis weight of 750 g / m 2 , and a nickel-tin ratio of 80 mass% nickel and 20 mass% tin.
  • ⁇ Acid treatment process> The porous body provided with the main metal layer made of the nickel tin alloy obtained above was immersed in a 0.5N nitric acid aqueous solution at room temperature, immediately pulled up, and left at room temperature for 1 hour.
  • ⁇ Heat treatment process> A porous body having a main metal layer made of a nickel-tin alloy after being immersed in the above nitric acid aqueous solution is heated in an air atmosphere at 500 ° C. for 1 hour to decompose and oxidize nickel nitrate forming the surface of the main metal layer I let you. Thus, it was confirmed by oxygen mapping by SEM-EDX of the cross section that more oxide layers were formed than the porous metal body of Example 1.
  • the oxide layer in the portion constituting the pair of main surfaces of the porous body was removed, and a conductive layer having corrosion resistance and conductivity was formed on the surface of the oxide layer. This is designated as metal porous body 2.
  • FIG. 2 A single cell was constructed using a general-purpose separator (graphite plate) with grooves formed as a gas diffusion layer. That is, the same MEA and carbon paper as the battery A were used for both the anode and the cathode. The grooves were 1 mm in both depth and width, and the width between the grooves was 1 mm. The apparent porosity of the gas diffusion layer is approximately 50%. This cell was designated as battery C.
  • Example 3 After forming the oxide layer by the method of Example 1, a metal porous body 4 was produced in the same manner as in Example 1 except that polishing and conductive layer application were not performed. Using this metal porous body 4, a single cell of a fuel cell similar to that of Example 1 was produced. This cell was designated as battery D.
  • the amount of Ni elution of the metal porous bodies 1 and 2 produced in Examples 1 and 2 was 5 ppm or less, and excellent corrosion resistance was exhibited with respect to 34 ppm of the metal porous body 3 produced in Comparative Example 1.
  • Batteries A and B using the porous metal bodies 1 and 2 produced in Examples 1 and 2 are higher in voltage even in a high current region than the battery C using the general-purpose separator of Comparative Example 2, and have excellent power generation characteristics. showed that.
  • the battery D using the metal porous body 4 of Comparative Example 3 that was not polished had remarkably poor power generation characteristics. This is presumably because polishing was not performed and thus the electric resistance was high and sufficient current collecting performance could not be exhibited.
  • M Membrane / electrode assembly (MEA) 1-1 Ion exchange membrane 2-1 Gas diffusion electrode (activated carbon layer containing platinum catalyst) 2-2 Gas diffusion electrode (activated carbon layer containing platinum catalyst) 3-1 Current collector 3-2 Current collector 4-1 Separator 4-1-1 Gas diffusion layer 4-2 Separator 4-2-1 Gas diffusion layer

Abstract

A metal porous body having a three-dimensional mesh structure comprising a skeleton, and having a flat-plate-shaped external form having a pair of main surfaces and end surfaces linking the pair of main surfaces, wherein the skeleton has a main metal layer comprising nickel or a nickel alloy and an oxide layer formed on the surface of the main metal layer, and the oxide layer is not formed on the portion of the surface of the main metal layer that constitutes a part of the pair of main surfaces of the metal porous body.

Description

金属多孔体、燃料電池、及び金属多孔体の製造方法Porous metal body, fuel cell, and method for producing porous metal body
  本発明は金属多孔体、燃料電池、及び金属多孔体の製造方法に関する。
本出願は、2015年9月10日出願の日本出願第2015-178157号、2016年1月28日出願の日本出願第2016-014148号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a metal porous body, a fuel cell, and a method for producing a metal porous body.
This application claims priority based on Japanese application No. 2015-178157 filed on Sep. 10, 2015, and Japanese application No. 2016-014148 filed on Jan. 28, 2016, and is described in the aforementioned Japanese application. All the descriptions are incorporated.
  イオン交換膜を電解質とした固体高分子型燃料電池(Polymer  Electrolyte  Fuel  Cell:PEFC)がコジェネレーション用に実用化され、これを動力源とする自動車の実用化が始まっている。
  固体高分子型燃料電池の基本的な構造は、アノード、膜、カソードからなる。膜がイオン交換膜であり、スルフォン基を持つフッ素系交換膜が主として採用されている。この膜の特性の向上により、固体高分子型燃料電池の実用化が促進されている。
A polymer polymer fuel cell (PEFC) using an ion exchange membrane as an electrolyte has been put into practical use for cogeneration, and a vehicle using this as a power source has begun to be put into practical use.
The basic structure of a polymer electrolyte fuel cell includes an anode, a membrane, and a cathode. The membrane is an ion exchange membrane, and a fluorine-based exchange membrane having a sulfone group is mainly employed. Due to the improvement of the characteristics of the membrane, the practical use of the polymer electrolyte fuel cell is promoted.
  固体高分子型燃料電池は、アノード、カソードの各電極の背面にガス拡散層及びセパレーターが配されて単電池となり、これを積層構造として使用される(例えば、特許文献1等)。作動温度は、性能、生成水の蒸発による系からの除去、寿命などを考慮して、70℃~110℃程度の範囲が採用されている。作動温度を高くすれば、放電特性は向上する。コジェネレーション用では、高温の排熱が得られるなどの利点があるが、寿命は低温の場合よりも短くなる。 A solid polymer fuel cell is a unit cell in which a gas diffusion layer and a separator are arranged on the back of each electrode of an anode and a cathode, and this is used as a laminated structure (for example, Patent Document 1). The operating temperature is in the range of about 70 ° C. to 110 ° C. in consideration of performance, removal from the system due to evaporation of generated water, lifespan, and the like. Increasing the operating temperature improves the discharge characteristics. For cogeneration, there is an advantage that high-temperature exhaust heat can be obtained, but the lifetime is shorter than that at low temperatures.
  なお、ガス拡散層としては、一般にカーボン繊維を不織布状に加工したカーボンペーパーが用いられており、集電体としても機能させている。また、同じくガス拡散層として、セパレーターとして用いられる炭素板に溝を設けて、ガスの供給及び排出を容易にしている。このように、ガス拡散層としてカーボンペーパーと溝を併用するのが一般的である。
なお、カーボンペーパーは膜電極複合体(Membrane  Electrode  Assembly:MEA)がセパレーターの溝に食い込むのを抑制する働きもしている。
As the gas diffusion layer, carbon paper obtained by processing carbon fibers into a nonwoven fabric is generally used, and the gas diffusion layer also functions as a current collector. Also, as a gas diffusion layer, a groove is provided in a carbon plate used as a separator to facilitate gas supply and discharge. Thus, it is common to use carbon paper and a groove together as a gas diffusion layer.
Note that the carbon paper also functions to suppress the membrane electrode assembly (MEA) from biting into the grooves of the separator.
特開2011-129265号公報JP 2011-129265 A
  本発明の一態様に係る金属多孔体は、骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体であって、前記骨格は、ニッケル又はニッケル合金からなる主金属層と、前記主金属層の表面に形成される酸化物層と、を備え、前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない、金属多孔体、である。 The porous metal body according to one aspect of the present invention is a porous metal body having a three-dimensional network structure composed of a skeleton and having an outer shape that is a flat plate shape having a pair of main surfaces and end faces connecting the pair of main surfaces. The skeleton includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer. Of the surface of the main metal layer, the porous metal body A porous metal body in which the oxide layer is not formed in a portion forming a pair of main surfaces.
図1は、本発明の実施形態に係る燃料電池のセルの構成の一例の概略を表す図である。FIG. 1 is a diagram illustrating an outline of an example of a configuration of a cell of a fuel cell according to an embodiment of the present invention. 図2は、実施例において作製した金属多孔体1~3の耐食性の評価結果を表すグラフである。FIG. 2 is a graph showing the evaluation results of the corrosion resistance of the porous metal bodies 1 to 3 produced in the examples. 図3は、実施例において作製した電池A~Dの発電特性の評価結果を表すグラフである。FIG. 3 is a graph showing the evaluation results of the power generation characteristics of the batteries A to D produced in the examples.
[本開示が解決しようとする課題] [Problems to be solved by the present disclosure]
  固体高分子型燃料のセパレーターとして用いる炭素板に形成される溝の気孔率は、炭素にどの程度設けるかに依存するが、実用的には50%程度である。すなわち、炭素板の一方の面の面積のほぼ1/2程度に溝が設けられている。また、溝の形状は長方形であり、その幅は500μm程度である。 溝 The porosity of the groove formed in the carbon plate used as the separator for the solid polymer fuel depends on how much the carbon plate is provided, but is practically about 50%. That is, the groove is provided in about ½ of the area of one surface of the carbon plate. Further, the shape of the groove is a rectangle, and the width thereof is about 500 μm.
  MEAに低い圧力で均一にガスを供給するためには、溝の幅を大きく、深くするほど好ましく、さらに単位面積当たり溝の占める比率を大きくするほど好ましい。ところが、セパレーターに設ける溝を多くするほどセパレーターの導電性が低下してしまい、これにより電池特性が低下してしまう。電池特性へのセパレーターの導電性の影響は大きいため、電池特性の面からは、溝の比率は小さく、浅くするほど好ましいということになる。 In order to supply gas uniformly to the MEA at a low pressure, the width of the groove is preferably increased and deepened, and the ratio of the groove per unit area is preferably increased. However, the greater the number of grooves provided in the separator, the lower the conductivity of the separator, thereby reducing the battery characteristics. Since the influence of the conductivity of the separator on the battery characteristics is large, from the viewpoint of battery characteristics, the ratio of the grooves is small, and it is preferable that the groove is shallow.
  また、溝の幅を小さく、数多く設けるほどMEAへガスが均一に供給される。しかしながら、溝の幅が小さくなるほど、単電池を一体化する際に加える加圧によってMEAが溝にくい込み易くなり、MEAの変形や、溝としての機能の低下を招いてしまう。この弊害は電池が大型化し、電池が多くなるほど顕著になる。つまり電極が大きく、セル数が増し、必要な負荷が大きくなる程大きくなる。 Moreover, the smaller the groove width and the greater the number of grooves, the more uniformly the gas is supplied to the MEA. However, as the groove width decreases, the MEA is less likely to be grooved by the pressure applied when the cells are integrated, and the MEA is deformed and the function as the groove is reduced. This adverse effect becomes more prominent as the size of the battery increases and the number of batteries increases. In other words, the larger the electrode, the greater the number of cells, and the greater the required load, the greater.
  上記のように、ガス供給の点ではセパレーターに形成する溝の比率を増すことが好ましいが、電気的な特性からは溝の比率を下げる方がよい。また、溝の精度が要求され、溝を形成する工程の複雑化に伴いセパレーターが高価になってしまう。また、溝は一方向で形成されているので、たとえば水が詰まるとガスの移動が阻害されてしまう。 As mentioned above, it is preferable to increase the ratio of the grooves formed in the separator in terms of gas supply, but it is better to reduce the ratio of the grooves in terms of electrical characteristics. Moreover, the precision of a groove | channel is requested | required and a separator will become expensive with the complexity of the process of forming a groove | channel. Further, since the groove is formed in one direction, for example, when water is clogged, the movement of gas is hindered.
  そこで本発明者等は、ガス拡散層として三次元網目状構造を有する金属多孔体を用いることを検討した。その結果、三次元網目状構造を有する金属多孔体は気孔率が非常に高く圧力損失を少なくすることができた。
  しかしながら、従来のニッケルからなる金属多孔体は炭素材料に比べて耐食性に劣るため、この点で改良の余地があった。ニッケルからなる金属多孔体の耐食性を向上させたものとして、ニッケルをスズやクロムと合金化した金属多孔体が既に提案されている。これらのニッケルスズ合金多孔体やニッケルクロム合金多孔体はニッケルからなる金属多孔体に比べて耐食性に優れるものの、炭素材料と同程度の耐食性は達成されていない。
Therefore, the present inventors examined using a metal porous body having a three-dimensional network structure as a gas diffusion layer. As a result, the porous metal body having a three-dimensional network structure has a very high porosity and can reduce pressure loss.
However, the conventional metal porous body made of nickel is inferior in corrosion resistance as compared with the carbon material, so there is room for improvement in this respect. As a metal porous body made of nickel having improved corrosion resistance, a metal porous body in which nickel is alloyed with tin or chromium has already been proposed. Although these nickel-tin alloy porous bodies and nickel-chromium alloy porous bodies are excellent in corrosion resistance as compared with metal porous bodies made of nickel, they do not achieve the same corrosion resistance as that of carbon materials.
  ガス拡散層として用いる金属多孔体の耐食性は、常に放電を行うものではなく、ある期間放電を中止し、再び放電を行うような間欠放電を行う燃料電池に用いる場合に特に問題となる。その理由は以下の通りである。
  固体高分子型燃料電池は、通常の放電では、水蒸気を含む水素がアノードに供給されて水素イオンとなる。この水素イオンがイオン交換膜を通ってカソード側に移動し、電気化学反応によって水を生成し、系外に出て行く。ところが、水素、空気の供給を止めて放電を中止すると、ガス拡散層に残っている生成水が逆流してイオン交換膜に触れることが起きる。このとき、ガス拡散層が金属材料であって、生成水中に極微量でも金属が溶出していると、イオン交換膜に悪影響を与え、膜の水保持性が低下して放電特性が低下してしまう。したがって、このような休止が多い燃料電池のガス拡散層ほど、より厳しい耐食性が必要になる。
The corrosion resistance of the metal porous body used as the gas diffusion layer does not always discharge, but is particularly problematic when used for a fuel cell that performs intermittent discharge such that discharge is stopped for a certain period and then discharged again. The reason is as follows.
In a solid polymer fuel cell, in a normal discharge, hydrogen containing water vapor is supplied to an anode to become hydrogen ions. This hydrogen ion moves to the cathode side through the ion exchange membrane, generates water by an electrochemical reaction, and goes out of the system. However, when the supply of hydrogen and air is stopped and the discharge is stopped, the generated water remaining in the gas diffusion layer flows backward and touches the ion exchange membrane. At this time, if the gas diffusion layer is a metal material and even a very small amount of metal is eluted in the generated water, it will adversely affect the ion exchange membrane, reducing the water retention of the membrane and reducing the discharge characteristics. End up. Therefore, the more severe the corrosion resistance is required for the gas diffusion layer of such a fuel cell with many pauses.
  そこで、本発明は上記問題点に鑑みて、耐食性に優れ、燃料電池のガス拡散層として利用可能な金属多孔体を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a porous metal body that is excellent in corrosion resistance and can be used as a gas diffusion layer of a fuel cell.
本開示の効果Effects of this disclosure
  上記発明によれば、耐食性に優れ、燃料電池のガス拡散層として利用可能な金属多孔体を提供することが可能となる。 に よ According to the above invention, it is possible to provide a porous metal body that is excellent in corrosion resistance and can be used as a gas diffusion layer of a fuel cell.
[発明の実施形態の説明]
  最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る金属多孔体は、
  骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体であって、
  前記骨格は、
  ニッケル又はニッケル合金からなる主金属層と、
  前記主金属層の表面に形成される酸化物層と、
  を備え、
  前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層が形成されていない、金属多孔体、
である。
  上記(1)に記載の発明によれば、耐食性に優れ、燃料電池のガス拡散層として利用可能な金属多孔体を提供することが可能となる。
  本発明の実施形態に係る金属多孔体において、「金属多孔体の一対の主面」とは、金属多孔体の外形形状における一対の主面のことをいい、当該主面には骨格の断面部分が位置している。
[Description of Embodiment of the Invention]
First, embodiments of the present invention will be listed and described.
(1) The metal porous body according to one aspect of the present invention is:
A porous metal body having a three-dimensional network structure composed of a skeleton, and having an outer shape of a flat plate having a pair of main surfaces and an end surface connecting the pair of main surfaces,
The skeleton is
A main metal layer made of nickel or a nickel alloy;
An oxide layer formed on the surface of the main metal layer;
With
Of the surface of the main metal layer, the oxide layer is not formed on the portion forming the pair of main surfaces of the metal porous body, the metal porous body,
It is.
According to the invention described in (1) above, it is possible to provide a porous metal body that has excellent corrosion resistance and can be used as a gas diffusion layer of a fuel cell.
In the metal porous body according to the embodiment of the present invention, “a pair of main surfaces of the metal porous body” refers to a pair of main surfaces in the outer shape of the metal porous body, and the main surface includes a cross-sectional portion of the skeleton. Is located.
(2)本発明の実施形態に係る金属多孔体は、前記骨格は、前記酸化物層の表面に形成される導電層を備える上記(1)に記載の金属多孔体、である。
  上記(2)に記載の発明によれば、骨格の表面が導電性の金属多孔体を提供することができる。
(2) The porous metal body according to the embodiment of the present invention is the porous metal body according to (1), wherein the skeleton includes a conductive layer formed on a surface of the oxide layer.
According to the invention described in (2) above, a porous metal body having a conductive skeleton surface can be provided.
(3)本発明の実施形態に係る金属多孔体は、前記導電層が炭素粉末及び結着剤を含む上記(2)に記載の金属多孔体、である。
  上記(3)に記載の発明によれば、耐食性に優れ、かつ、密着性に優れた導電層を骨格の表面に有する金属多孔体を提供することができる。
(3) The porous metal body according to the embodiment of the present invention is the porous metal body according to (2), wherein the conductive layer includes carbon powder and a binder.
According to the invention described in (3) above, it is possible to provide a porous metal body having a conductive layer having excellent corrosion resistance and adhesion on the surface of the skeleton.
(4)本発明の実施形態に係る金属多孔体は、前記導電層が銀を含む上記(2)又は上記(3)に記載の金属多孔体、である。
  上記(4)に記載の発明によれば、導電性により優れた導電層を骨格の表面に有する金属多孔体を提供することができる。
(4) The porous metal body according to the embodiment of the present invention is the porous metal body according to (2) or (3), wherein the conductive layer contains silver.
According to the invention as described in said (4), the porous metal body which has the electroconductive layer excellent in electroconductivity on the surface of frame | skeleton can be provided.
(5)本発明の実施形態に係る金属多孔体は、前記ニッケル合金が、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルと、を含む、上記(1)から上記(4)のいずれか一項に記載の金属多孔体、である。
(6)本発明の実施形態に係る金属多孔体は、前記酸化物層が酸化ニッケルである上記(1)から上記(5)のいずれか一項に記載の金属多孔体、である。
  上記(5)又は上記(6)に記載の発明によれば、より耐食性に優れた骨格を有する金属多孔体を提供することができる。
(5) In the metal porous body according to the embodiment of the present invention, any one of (1) to (4) above, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel. The metal porous body according to one item.
(6) The porous metal body according to the embodiment of the present invention is the porous metal body according to any one of (1) to (5) above, wherein the oxide layer is nickel oxide.
According to the invention as described in said (5) or said (6), the metal porous body which has the frame | skeleton which was more excellent in corrosion resistance can be provided.
(7)本発明の実施形態に係る燃料電池は、上記(1)から上記(6)のいずれか一項に記載の金属多孔体をガス拡散層に用いた燃料電池、である。
  上記(7)に記載の発明によれば、高出力で、体積当たりの発電量に優れた燃料電池を提供することができる。
(7) A fuel cell according to an embodiment of the present invention is a fuel cell using the porous metal body according to any one of (1) to (6) above as a gas diffusion layer.
According to the invention described in (7) above, it is possible to provide a fuel cell having high output and excellent power generation per volume.
(8)本発明の実施形態に係る金属多孔体の製造方法は、
  上記(1)に記載の金属多孔体の製造方法であって、
  骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状であり、前記骨格がニッケル又はニッケル合金からなる主金属層を備える多孔体を用意する用意工程と、
  前記多孔体を酸化雰囲気中で加熱することにより、前記主金属層の表面に酸化物層を形成する熱処理工程と、
  前記主金属層の表面のうち、前記一対の主面を成す部分に形成された酸化物層を除去する除去工程と、
  を有する金属多孔体の製造方法、である。
  上記(8)に記載の発明によれば、耐食性に優れ、燃料電池のガス拡散層として利用可能な金属多孔体の製造方法を提供することができる。
(8) A method for producing a porous metal body according to an embodiment of the present invention includes:
A method for producing a porous metal body according to (1) above,
A porous structure having a three-dimensional network structure composed of a skeleton, the outer shape being a flat plate shape having a pair of main surfaces and end faces connecting the pair of main surfaces, and the skeleton including a main metal layer made of nickel or a nickel alloy A preparation process for preparing the body;
A heat treatment step of forming an oxide layer on the surface of the main metal layer by heating the porous body in an oxidizing atmosphere;
A removing step of removing an oxide layer formed on a portion of the surface of the main metal layer that forms the pair of main surfaces;
It is a manufacturing method of the metal porous body which has this.
According to the invention as described in said (8), the manufacturing method of the porous metal body which is excellent in corrosion resistance and can be utilized as a gas diffusion layer of a fuel cell can be provided.
(9)本発明の実施形態に係る金属多孔体の製造方法は、
  前記用意工程の後であって前記熱処理工程の前に、
  前記多孔体を酸性溶液に浸漬し、乾燥させる酸処理工程を有する上記(8)に記載の金属多孔体の製造方法、である。
(10)本発明の実施形態に係る金属多孔体の製造方法は、
  前記酸性溶液が、硝酸、硫酸、塩酸又は酢酸である上記(9)に記載の金属多孔体の製造方法、である。
  上記(9)又は上記(10)に記載の発明によれば、骨格の表面に厚い酸化物層を有する金属多孔体の製造方法を提供することができる。
(9) A method for producing a porous metal body according to an embodiment of the present invention includes:
After the preparation step and before the heat treatment step,
It is a manufacturing method of the metal porous body as described in said (8) which has the acid treatment process which immerses the said porous body in an acidic solution, and dries.
(10) A method for producing a porous metal body according to an embodiment of the present invention includes:
The method for producing a porous metal body according to (9), wherein the acidic solution is nitric acid, sulfuric acid, hydrochloric acid, or acetic acid.
According to the invention as described in said (9) or said (10), the manufacturing method of the metal porous body which has a thick oxide layer on the surface of frame | skeleton can be provided.
(11)本発明の実施形態に係る金属多孔体の製造方法は、
  前記熱処理工程の後に、
  前記酸化物層の表面に導電層を形成する導電層形成工程を有する上記(8)から上記(10)のいずれか一項に記載の金属多孔体の製造方法、である。
  上記(11)に記載の発明によれば、上記(2)に記載の金属多孔体の製造する方法を提供することができる。なお、上記(11)に記載の発明において、導電層形成工程は熱処理工程の後であればいつ行なってもよく、除去工程の前に行なってもよいし、除去工程の後に行なってもよい。
(11) A method for producing a porous metal body according to an embodiment of the present invention includes:
After the heat treatment step,
The method for producing a porous metal body according to any one of (8) to (10), further including a conductive layer forming step of forming a conductive layer on a surface of the oxide layer.
According to the invention described in (11) above, it is possible to provide a method for producing the porous metal body described in (2) above. In the invention described in (11) above, the conductive layer formation step may be performed any time after the heat treatment step, may be performed before the removal step, or may be performed after the removal step.
[本発明の実施形態の詳細]
  本発明の実施形態に係る金属多孔体等の具体例を以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of the porous metal body according to the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to the claim are included.
<金属多孔体>
  本発明の実施形態に係る金属多孔体は、外形形状が一対の主面及び当該一対の主面を繋ぐ端面を有する平板状であり、骨格は三次元網目状構造をなしている。そして、骨格は、ニッケル又はニッケル合金からなる主金属層と、当該主金属層の表面に形成されている酸化物層と、を備えている。但し、主金属層の表面のうち、金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない。
  上記のように、主金属層は、金属多孔体の骨格のうちニッケル又はニッケル合金からなる部分である。また、金属多孔体の主面においては、骨格の断面が露出している。
<Metal porous body>
The porous metal body according to the embodiment of the present invention is a flat plate having an outer shape having a pair of main surfaces and end surfaces connecting the pair of main surfaces, and the skeleton has a three-dimensional network structure. The skeleton includes a main metal layer made of nickel or a nickel alloy and an oxide layer formed on the surface of the main metal layer. However, the said oxide layer is not formed in the part which comprises a pair of main surface of a metal porous body among the surfaces of a main metal layer.
As described above, the main metal layer is a portion made of nickel or a nickel alloy in the skeleton of the metal porous body. Moreover, the cross section of the skeleton is exposed on the main surface of the metal porous body.
  本発明の実施形態に係る金属多孔体においては、金属多孔体の骨格をなす主金属層の表面には、当該主金属層を構成する元素の酸化物層が形成されている。すなわち、主金属層の表面には、ニッケル、ニッケル合金、又はニッケル合金を形成している金属の酸化物層が形成されている。
  主金属層の表面に酸化物層が形成されていることにより、本発明の実施形態に係る金属多孔体は、硫酸等に対する耐食性がニッケルよりも優れたものとなっている。例えば金属多孔体の主金属層の表面に酸化物層として酸化ニッケルが形成されていると、酸化ニッケルはニッケルよりも優れた耐食性を有すため、金属多孔体の耐食性も向上する。
  一方、本発明の実施形態に係る金属多孔体の一対の主面、すなわち骨格の断面部分には、前記酸化物層が形成されていない。これにより、金属多孔体の一対の主面を他の導電性材料と接触させることで導通させることができる。
In the porous metal body according to the embodiment of the present invention, an oxide layer of an element constituting the main metal layer is formed on the surface of the main metal layer constituting the skeleton of the metal porous body. In other words, nickel, a nickel alloy, or a metal oxide layer forming a nickel alloy is formed on the surface of the main metal layer.
Since the oxide layer is formed on the surface of the main metal layer, the metal porous body according to the embodiment of the present invention is superior in corrosion resistance to sulfuric acid or the like than nickel. For example, when nickel oxide is formed as an oxide layer on the surface of the main metal layer of the metal porous body, the nickel oxide has better corrosion resistance than nickel, so the corrosion resistance of the metal porous body is also improved.
On the other hand, the said oxide layer is not formed in a pair of main surface of the metal porous body which concerns on embodiment of this invention, ie, the cross-sectional part of frame | skeleton. Thereby, it can be made conductive by making a pair of main surface of a metal porous body contact other conductive materials.
  本発明の実施形態に係る金属多孔体は、従来のニッケル又はニッケル合金からなる金属多孔体に比べて硫酸等に対する耐食性がより優れているため、燃料電池に対してもガス拡散層として好ましく用いることができる。また、金属多孔体は気孔率が高く、更に、三次元網目状構造を有しているため、ガス拡散層として用いた場合に、ガスの圧力損失を少なくし、かつ、ガスの拡散性を向上させることができる。これにより、燃料電池のMEAでの発電性能を向上させることができる。 Since the porous metal body according to the embodiment of the present invention has better corrosion resistance against sulfuric acid or the like than a conventional porous metal body made of nickel or a nickel alloy, it is preferably used as a gas diffusion layer for a fuel cell. Can do. In addition, porous metal has a high porosity and a three-dimensional network structure, so when used as a gas diffusion layer, gas pressure loss is reduced and gas diffusibility is improved. Can be made. Thereby, the power generation performance in MEA of a fuel cell can be improved.
  本発明の実施形態に係る金属多孔体は、前記酸化物層の上に導電層が形成されていることが好ましい。これにより、金属多孔体の骨格の表面を導電性にすることができる。
  導電層を構成する材料は、導電性を有し、金属多孔体の酸化物層の表面に膜状に形成されるものである限り、特に限定されるものではないが、導電性粉末と結着剤を含むものであることが好ましい。これにより、金属多孔体の酸化物層の表面に密着するフィルム状の導電層が形成される。
In the metal porous body according to the embodiment of the present invention, a conductive layer is preferably formed on the oxide layer. Thereby, the surface of the skeleton of the metal porous body can be made conductive.
The material constituting the conductive layer is not particularly limited as long as it has conductivity and is formed into a film shape on the surface of the oxide layer of the porous metal body. It is preferable that it contains an agent. Thereby, a film-like conductive layer that adheres to the surface of the oxide layer of the metal porous body is formed.
  導電性粉末としては、例えば、炭素粉末を好ましく用いることができる。炭素粉末は軽量であり、また入手が容易なため好ましい。炭素粉末としては、例えば、カーボンブラック、活性炭、黒鉛などを、単独もしくは混合して用いることができる。また、導電性粉末としては炭素粉末の他にも、金、銀、パラジウム、銅、アルミニウムなどの粉末を用いることができる。これらの中では、耐食性と導電性の点において銀粉末を好ましく用いることができる。 As the conductive powder, for example, carbon powder can be preferably used. Carbon powder is preferable because it is lightweight and easily available. As the carbon powder, for example, carbon black, activated carbon, graphite or the like can be used alone or in combination. In addition to carbon powder, conductive powder such as gold, silver, palladium, copper, and aluminum can be used. Among these, silver powder can be preferably used in terms of corrosion resistance and conductivity.
  結着剤としては、樹脂を好ましく用いることができる。特に、フィルム形成能(膜形成能)に優れ、耐熱性を有する樹脂を好ましく用いることができる。固体高分子型燃料電池の作動温度である70℃~110℃程度の熱に耐えるものであることが好ましい。
  具体的には、ポリエチレンやポリプロピレンなどのポリオレフィンをはじめ、ポリアクリル酸エステル、ポリ酢酸ビニル、ビニルアルコール-ポリスチレン共重合体、エチレン-アクリル酸メチルエステル共重合体、ポリメタアクリル酸エステル、ホルマール化ポリビニルアルコールなどを用いることができる。これらは、単独で用いても良いし、混合して用いても構わない。さらにポリウレタン、シリコーン樹脂、ポリイミドなどや、フッ素樹脂も前記樹脂として好ましく用いることができる。
As the binder, a resin can be preferably used. In particular, a resin having excellent film forming ability (film forming ability) and heat resistance can be preferably used. It is preferable to withstand heat of about 70 ° C. to 110 ° C., which is the operating temperature of the polymer electrolyte fuel cell.
Specifically, polyolefins such as polyethylene and polypropylene, polyacrylic acid ester, polyvinyl acetate, vinyl alcohol-polystyrene copolymer, ethylene-acrylic acid methyl ester copolymer, polymethacrylic acid ester, formalized polyvinyl Alcohol or the like can be used. These may be used alone or in combination. Furthermore, polyurethane, silicone resin, polyimide, and fluorine resin can also be preferably used as the resin.
  金属多孔体を構成するニッケル合金は特に限定されるものではなく、例えば、スズ、クロム、アルミニウム、チタン、銅、コバルト、タングステン、鉄、マンガン、銀、金、リン、又は及びホウ素等のうちの少なくとも一つと、ニッケルとの合金が挙げられる。ニッケルと合金を形成することでニッケルよりも硫酸等に対する耐食性に優れた合金となる金属との合金であることが好ましい。
  耐食性や製造コストの面からは、ニッケル合金は、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルとを含む合金が好ましい。ニッケル合金においては、ニッケル以外に含まれる金属成分は、一種のみであってもよいし、複数種であってもよい。
ニッケル以外の金属成分が一種のみの場合には、ニッケル合金は、ニッケルクロム、ニッケルスズ、ニッケルタングステンであることが好ましい。
  なお、本発明の実施形態に係る金属多孔体には、ニッケル及びニッケル合金の他にもニッケルと合金を形成しない成分が意図的あるいは不可避的に含まれていても構わない。
The nickel alloy constituting the metal porous body is not particularly limited, and examples thereof include tin, chromium, aluminum, titanium, copper, cobalt, tungsten, iron, manganese, silver, gold, phosphorus, and boron. An alloy of at least one and nickel can be mentioned. It is preferably an alloy with a metal that forms an alloy with nickel and is superior in corrosion resistance to sulfuric acid or the like than nickel.
From the viewpoint of corrosion resistance and manufacturing cost, the nickel alloy is preferably an alloy containing nickel and at least one of chromium, tin, and tungsten. In the nickel alloy, the metal component contained other than nickel may be only one kind or plural kinds.
When there is only one kind of metal component other than nickel, the nickel alloy is preferably nickel chromium, nickel tin, or nickel tungsten.
In addition, the metal porous body which concerns on embodiment of this invention may contain the component which does not form an alloy with nickel intentionally or unavoidable besides nickel and a nickel alloy.
  また、金属多孔体の外形形状における厚さ、すなわち、一方の主面ともう一方の主面とを繋ぐ端面の高さは、0.10mm以上、1.20mm以下であることが好ましい。金属多孔体の外形形状における厚さが0.10mm以上、1.20mm以下であることにより、燃料電池のガス拡散層として用いた場合に、燃料電池の小型化に寄与することができる。また、金属多孔体はガスの圧力損失が少なく、ガスの拡散性にも優れているため、燃料電池を高出力化することもできる。金属多孔体の外形形状における厚さが0.10mm以上であることにより、金属多孔体の機械的強度を保ち、十分なガスの拡散能力を有するため、燃料電池のガス拡散層として好ましく用いることができる。また、金属多孔体の外形形状における厚さが1.20mm以下であることにより、燃料電池の小型化に寄与することができる。これらの観点から、金属多孔体の外形形状における厚さは、0.20mm以上、1.0mm以下であることが好ましく、0.30mm以上、0.80mm以下であることがより好ましい。 In addition, the thickness of the outer shape of the porous metal body, that is, the height of the end face connecting one main surface and the other main surface is preferably 0.10 mm or more and 1.20 mm or less. When the thickness of the outer shape of the metal porous body is 0.10 mm or more and 1.20 mm or less, it can contribute to miniaturization of the fuel cell when used as a gas diffusion layer of the fuel cell. In addition, since the porous metal body has little gas pressure loss and excellent gas diffusibility, the output of the fuel cell can be increased. When the thickness of the outer shape of the metal porous body is 0.10 mm or more, the mechanical strength of the metal porous body is maintained and the gas has a sufficient gas diffusion capacity. Therefore, it is preferably used as a gas diffusion layer of a fuel cell. it can. Moreover, when the thickness of the outer shape of the metal porous body is 1.20 mm or less, it is possible to contribute to miniaturization of the fuel cell. From these viewpoints, the thickness of the outer shape of the metal porous body is preferably 0.20 mm or more and 1.0 mm or less, and more preferably 0.30 mm or more and 0.80 mm or less.
  本発明の実施形態に係る金属多孔体は気孔率が51%以上、90%以下であることが好ましい。気孔率が51%以上であると、金属多孔体を燃料電池のガス拡散層として用いた場合に、ガスの圧力損失をより少なくすることができる。また、気孔率が90%以下であると、金属多孔体を燃料電池のガス拡散層として用いた場合に、ガスの拡散性をより高くすることができる。これは、金属多孔体が三次元網目状構造を有しているため、気孔率が小さくなるとガスが金属多孔体の骨格に当たって拡散する率が高くなるからである。さらに、金属多孔体の気孔率が85%以下であると、導電性にも優れるようになる。これらの観点から、本発明の実施形態に係る金属多孔体は、気孔率が55%以上、88%以下であることがより好ましく、60%以上、85%以下であることが更に好ましい。 金属 The porous metal body according to the embodiment of the present invention preferably has a porosity of 51% or more and 90% or less. When the porosity is 51% or more, gas pressure loss can be further reduced when the metal porous body is used as a gas diffusion layer of a fuel cell. Further, when the porosity is 90% or less, gas diffusibility can be further enhanced when the metal porous body is used as a gas diffusion layer of a fuel cell. This is because, since the metal porous body has a three-dimensional network structure, when the porosity decreases, the rate at which the gas hits the skeleton of the metal porous body increases. Furthermore, when the porosity of the metal porous body is 85% or less, the conductivity becomes excellent. From these viewpoints, the porosity of the metal porous body according to the embodiment of the present invention is more preferably 55% or more and 88% or less, and further preferably 60% or more and 85% or less.
  本発明の実施形態に係る金属多孔体において、ニッケルの目付量は200g/m2以上、1200g/m2以下程度であることが好ましい。また、金属多孔体が他の金属成分を含む場合には、金属成分の総量の目付量が200g/m2以上、1200g/m2以下程度であることが好ましい。
  金属の目付量の合計が200g/m2以上であることにより、金属多孔体の強度と導電性を充分に高くすることができる。また、金属の目付量の合計を1200g/m2以下とすることで、製造コストの上昇や重量の増加を抑制することができる。これらの観点から、本発明の実施形態に係る金属多孔体は、目付量が300g/m2以上、1100g/m2以下であることがより好ましく、400g/m2以上、1000g/m2以下であることが更に好ましい。
In the porous metal body according to the embodiment of the present invention, the basis weight of nickel is preferably about 200 g / m 2 or more and 1200 g / m 2 or less. When the metal porous body contains other metal components, the basis weight of the total amount of the metal components is preferably about 200 g / m 2 or more and 1200 g / m 2 or less.
When the total amount of metal is 200 g / m 2 or more, the strength and conductivity of the metal porous body can be sufficiently increased. Moreover, the raise of a manufacturing cost and the increase in a weight can be suppressed because the sum total of the metal amount of metal shall be 1200 g / m < 2 > or less. From these viewpoints, the metal porous body according to the embodiment of the present invention preferably has a basis weight of 300 g / m 2 or more and 1100 g / m 2 or less, more preferably 400 g / m 2 or more and 1000 g / m 2 or less. More preferably it is.
  金属多孔体の上から見た孔径は、100μm以上、700μm以下であることが好ましい。孔径が100μm以上であることにより、燃料ガスの圧損を低く抑えて高出力な燃料電池を得ることができる。また、孔径が700μm以下であることにより、燃料ガスの拡散をスムーズに行うことができ、燃料使用効率を向上させることができる。これらの観点から、金属多孔体の孔径は、150μm以上、650μm以下であることがより好ましく、200μm以上、600μm以下であることが更に好ましい。ここで、上から見たとは、平面状の金属多孔体の厚み方向から平面的に見た場合をいう。
  なお、平均孔径は金属多孔体のセル数の逆数から求めた値である。セル数は、金属多孔体の主面に長さ1インチの線を引いたときに、線と交差する最表面のセルの数を数えた数値であり、単位は個/インチである。但し、1インチは2.54センチメートルとする。
The pore diameter viewed from above the metal porous body is preferably 100 μm or more and 700 μm or less. When the hole diameter is 100 μm or more, a high-power fuel cell can be obtained while suppressing the pressure loss of the fuel gas. Further, when the hole diameter is 700 μm or less, the fuel gas can be diffused smoothly, and the fuel use efficiency can be improved. From these viewpoints, the pore diameter of the metal porous body is more preferably 150 μm or more and 650 μm or less, and further preferably 200 μm or more and 600 μm or less. Here, “viewed from above” refers to the case of viewing from the thickness direction of the planar metal porous body.
The average pore diameter is a value obtained from the reciprocal of the number of cells of the metal porous body. The number of cells is a numerical value obtained by counting the number of cells on the outermost surface intersecting the line when a line having a length of 1 inch is drawn on the main surface of the metal porous body, and the unit is cell / inch. However, 1 inch shall be 2.54 cm.
<燃料電池>
  本発明の実施形態に係る燃料電池は、前記本発明の実施形態に係る金属多孔体をガス拡散層として用いた燃料電池である。燃料電池の種類は特に限定されるものではなく、固体高分子型燃料電池であってもよいし、固体酸化物型燃料電池であってもよい。
  以下では、固体高分子型燃料電池を例に説明する。
<Fuel cell>
The fuel cell according to the embodiment of the present invention is a fuel cell using the porous metal body according to the embodiment of the present invention as a gas diffusion layer. The type of the fuel cell is not particularly limited, and may be a solid polymer fuel cell or a solid oxide fuel cell.
Hereinafter, a solid polymer fuel cell will be described as an example.
  固体高分子型燃料電池におけるイオン交換膜等は従来のものを利用することができる。
例えば、イオン交換膜と触媒層とを接合した膜・電極接合体などは、市販されているものをそのまま利用することができる。アノード、カソードの白金触媒はいずれも約0.5mg/cm2が担持されたガス拡散電極、イオン交換膜としてNafion(登録商標)  112を用いて一体化されている。
Conventional ion exchange membranes and the like in the polymer electrolyte fuel cell can be used.
For example, as a membrane / electrode assembly obtained by bonding an ion exchange membrane and a catalyst layer, a commercially available one can be used as it is. Both the anode and cathode platinum catalysts are integrated using a gas diffusion electrode carrying about 0.5 mg / cm 2 and Nafion (registered trademark) 112 as an ion exchange membrane.
  図1は、固体高分子型燃料電池の単セルの断面概略図である。
  図1においては、膜・電極接合体(MEA)Mは、イオン交換膜1-1の両面にガス拡散電極つまり白金触媒を含む活性炭層(2-1、2-2)を有している。それぞれアノードとしての水素極とカソードとしての空気極である。また、集電体(3-1、3-2)は、両極の集電体とガス拡散層を兼ねており、例えば、市販の撥水性処理したカーボンペーパーを用いることができる。カーボンペーパーとしては例えば、多孔度は約50%、フッ素樹脂約15%が添加されていて撥水性を有しているものを用いることができる。
FIG. 1 is a schematic cross-sectional view of a single cell of a polymer electrolyte fuel cell.
In FIG. 1, a membrane-electrode assembly (MEA) M has activated carbon layers (2-1, 2-2) containing gas diffusion electrodes, that is, platinum catalysts, on both surfaces of an ion exchange membrane 1-1. A hydrogen electrode as an anode and an air electrode as a cathode, respectively. The current collector (3-1, 3-2) also serves as a bipolar current collector and a gas diffusion layer. For example, commercially available carbon paper treated with water repellency can be used. As the carbon paper, for example, a paper having water repellency to which a porosity of about 50% and a fluororesin of about 15% are added can be used.
  セパレータ(4-1、4-2)は、例えば、市販の黒鉛板を用いることができる。ガス拡散層(4-1-1、4-2-1)は、本発明の実施形態に係る金属多孔体であり、ガス供給・排出路も兼ねている。本発明の実施形態に係る金属多孔体は、従来の金属多孔体に比べて厚さが非常に薄いため、燃料電池を小型化することができる。
  なお、図1は単セルであるが、実用化されている燃料電池では、セパレーターを介して所望の電圧に対応できるようにセルが積層されて構成されている。通常各セルは直列結合なのでセパレーターの一方面がカソードであれば、他の面には隣のセルのアノードがくるように組み立てられ、周辺をボルト、ナットなどで加圧一体化している。
As the separator (4-1, 4-2), for example, a commercially available graphite plate can be used. The gas diffusion layer (4-1-1, 4-2-1) is a porous metal body according to the embodiment of the present invention, and also serves as a gas supply / discharge path. Since the porous metal body according to the embodiment of the present invention is very thin compared to the conventional porous metal body, the fuel cell can be downsized.
Although FIG. 1 shows a single cell, a fuel cell that has been put to practical use is configured by stacking cells so that a desired voltage can be handled via a separator. Normally, since each cell is connected in series, if one side of the separator is a cathode, it is assembled so that the anode of the next cell comes to the other side, and the periphery is pressurized and integrated with bolts, nuts and the like.
<金属多孔体の製造方法>
  本発明実施形態に係る金属多孔体は種々の方法によって製造することができ、その製造方法としては、例えば、前記(8)~(11)に記載の方法等が挙げられる。
  以下に、金属多孔体の製造方法の各工程を詳細に説明する。
<Method for producing porous metal body>
The metal porous body according to the embodiment of the present invention can be produced by various methods. Examples of the production method include the methods described in the above (8) to (11).
Below, each process of the manufacturing method of a metal porous body is demonstrated in detail.
-用意工程-
  この工程は、出発材料となるニッケル又はニッケル合金からなる主金属層を備える多孔体を用意する工程である。当該多孔体は、外形形状が一対の主面及び当該主面を繋ぐ端面を有する平板状であり、骨格が三次元網目状構造を有し、ニッケル又はニッケル合金からなる主金属層を備えるものであればよい。
  ニッケル又はニッケル合金からなる主金属層をそなえる多孔体を製造する方法は特に限定されるものではないが、以下のようなめっき法によって製造することが好ましい。すなわち、三次元網目状構造を有する樹脂成形体の骨格の表面を導電化処理し、続いて、ニッケル又はニッケル合金をめっきしてから、基材である樹脂成形体を除去することにより、ニッケル又はニッケル合金からなる主金属層を備える多孔体を製造することができる。
-Preparation process-
This step is a step of preparing a porous body including a main metal layer made of nickel or a nickel alloy as a starting material. The porous body is a flat plate having an outer shape having a pair of main surfaces and end surfaces connecting the main surfaces, the skeleton has a three-dimensional network structure, and includes a main metal layer made of nickel or a nickel alloy. I just need it.
A method for producing a porous body having a main metal layer made of nickel or a nickel alloy is not particularly limited, but is preferably produced by the following plating method. That is, the surface of the skeleton of a resin molded body having a three-dimensional network structure is subjected to a conductive treatment, and subsequently plated with nickel or a nickel alloy, and then the resin molded body as a base material is removed, A porous body having a main metal layer made of a nickel alloy can be produced.
(三次元網目状構造を有する樹脂成形体)
  基材として用いる三次元網目状構造を有する平板状の樹脂成形体としては、多孔性のものであればよく公知又は市販のものを使用できる。例えば、樹脂製の発泡体、不織布、フェルト、織布などを用いることができる。また、必要に応じてこれらを組み合わせて用いることもできる。素材としては特に限定されるものではないが、金属をめっきした後焼却処理により除去できるものが好ましい。また、樹脂成形体の取扱い上、特にシート状のものにおいては剛性が高いと折れるので柔軟性のある素材であることが好ましい。
(Resin molding having a three-dimensional network structure)
As the flat resin molded body having a three-dimensional network structure used as the substrate, any known or commercially available one may be used as long as it is porous. For example, a resin foam, nonwoven fabric, felt, woven fabric, or the like can be used. Moreover, these can also be used in combination as needed. Although it does not specifically limit as a raw material, The thing which can be removed by incineration after plating a metal is preferable. In addition, in handling the resin molded body, a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.
  前記樹脂成形体としては樹脂発泡体を用いることが好ましい。樹脂発泡体としては発泡ウレタン、発泡スチレン、発泡メラミン樹脂等が挙げられるが、これらの中でも、特に気孔率が大きい観点から、発泡ウレタンが好ましい。 樹脂 It is preferable to use a resin foam as the resin molding. Examples of the resin foam include foamed urethane, foamed styrene, and foamed melamine resin. Among these, foamed urethane is preferable from the viewpoint of particularly high porosity.
  樹脂成形体の気孔率は限定的でなく、通常60%以上、97%以下程度、好ましくは80%以上、96%以下程度である。樹脂成形体の厚さは限定的でなく、得られる金属多孔体の用途に応じて適宜決定されるが、通常600μm以上、5000μm以下程度、好ましくは800μm以上、2000μm以下程度とすればよい。なお、樹脂成形体は気孔率が非常に大きいものであるため、厚さが500μm以下であると、平板状の形状を保つことができない。
  以下では、三次元網目状構造を有する樹脂成形体として発泡状樹脂を用いた場合を例にとって説明する。
The porosity of the resin molded body is not limited, and is usually about 60% to 97%, preferably about 80% to 96%. The thickness of the resin molded body is not limited, and is appropriately determined according to the use of the obtained porous metal body. Usually, it is about 600 μm or more and 5000 μm or less, preferably about 800 μm or more and 2000 μm or less. In addition, since the resin molded body has a very high porosity, a flat plate shape cannot be maintained when the thickness is 500 μm or less.
Below, the case where a foamed resin is used as a resin molded body having a three-dimensional network structure will be described as an example.
(樹脂成形体の骨格表面の導電化処理)
  樹脂成形体の骨格表面の導電化処理は、樹脂成形体の骨格の表面に導電性を有する層を設けることができる方法である限り、特に限定されるものではない。導電性を有する層(導電被覆層)を構成する材料としては、例えば、ニッケル、スズ、クロム、銅、鉄、タングステン、チタン、ステンレススチール等の金属の他、カーボン粉末等の炭素粉末が挙げられる。
  導電化処理の具体例としては、例えばニッケル、スズ、クロムなどの金属粉末や黒鉛粉末にバインダを加えて得られる導電性塗料の塗布、無電解めっき処理、スパッタリングや蒸着・イオンプレーティングなどの気相処理等が好ましく挙げられる。
(Conductive treatment on the surface of the resin molded body)
The conductive treatment of the skeleton surface of the resin molded body is not particularly limited as long as it is a method capable of providing a conductive layer on the surface of the skeleton of the resin molded body. Examples of the material constituting the conductive layer (conductive coating layer) include metals such as nickel, tin, chromium, copper, iron, tungsten, titanium, and stainless steel, and carbon powder such as carbon powder. .
Specific examples of the conductive treatment include metal powders such as nickel, tin, and chromium, and conductive paints obtained by adding a binder to graphite powder, electroless plating treatment, sputtering, vapor deposition, ion plating, and the like. Preferred examples include phase treatment.
  ニッケルを用いた無電解めっき処理は、例えば、還元剤として次亜リン酸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に発泡状樹脂を浸漬することによって行うことができる。必要に応じて、めっき浴浸漬前に、樹脂成形体を微量のパラジウムイオンを含む活性化液(カニゼン社製の洗浄液)等に浸漬してもよい。 The electroless plating treatment using nickel can be performed by immersing the foamed resin in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. If necessary, the resin molded body may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.
  ニッケル又はクロムを用いたスパッタリング処理としては、例えば、まず、基板ホルダーに樹脂成形体を取り付けた後、不活性ガスを導入しながらホルダーとターゲット(ニッケル又はクロム)との間に直流電圧を印加する。これによりイオン化した不活性ガスをニッケル又はクロムに衝突させて、吹き飛ばしたニッケル粒子又はクロム粒子を樹脂成形体表面に堆積すればよい。 As a sputtering process using nickel or chromium, for example, first, a resin molded body is attached to a substrate holder, and then a DC voltage is applied between the holder and a target (nickel or chromium) while introducing an inert gas. . The ionized inert gas thus collides with nickel or chromium, and the blown-off nickel particles or chromium particles may be deposited on the surface of the resin molded body.
  カーボン粉末や金属粉末等の導電性塗料を塗布する場合には、前記樹脂成形体の骨格の表面に導電性を有する粉末(例えば、ステンレススチール等の金属材料の粉末、結晶質のグラファイト、非晶質のカーボンブラック等のカーボンの粉末)とバインダとの混合物を塗着する方法等が挙げられる。また、このときに、炭素粉末と併せて、クロム粉末や、スズ粉末、タングステン粉末を用いてもよい。これにより、ニッケルクロムや、ニッケルスズ、ニッケルタングステンからなる多孔体を製造することができる。 When a conductive paint such as carbon powder or metal powder is applied, powder having conductivity on the surface of the skeleton of the resin molded body (for example, powder of metal material such as stainless steel, crystalline graphite, amorphous For example, a method of applying a mixture of carbon powder such as carbon black) and a binder. At this time, chromium powder, tin powder, or tungsten powder may be used in combination with the carbon powder. Thereby, the porous body which consists of nickel chromium, nickel tin, and nickel tungsten can be manufactured.
  炭素粉末としては、カーボンブラック、活性炭、黒鉛などを用いることができ、特に材料に限定はない。導電性を均一にすることを目的にする場合にはカーボンブラックを採用し、導電被覆層の強度を考慮する際には黒鉛の微粉末を用いればよい。また、活性炭も含めて混合することは好ましい。スラリーを作製する際に一般的に用いられる増粘剤、例えばカルボキシメチルセルロース(CMC)などを添加しても良い。このスラリーを、厚さを調整して板状あるいは帯状に裁断しておいた樹脂成形体の骨格に塗着し、乾燥させることで、樹脂成形体の骨格の表面を導電化することができる。 As the carbon powder, carbon black, activated carbon, graphite or the like can be used, and the material is not particularly limited. Carbon black may be used for the purpose of making the conductivity uniform, and fine graphite powder may be used for considering the strength of the conductive coating layer. Moreover, it is preferable to mix including activated carbon. You may add the thickener generally used, for example, carboxymethylcellulose (CMC) etc., when producing a slurry. The surface of the skeleton of the resin molded body can be made conductive by applying this slurry to the skeleton of the resin molded body that has been cut into a plate shape or a strip shape by adjusting the thickness.
(ニッケルめっき層の形成)
  ニッケルめっき層の形成は無電解ニッケルめっき及び電解ニッケルめっきのどちらを利用しても構わないが、電解ニッケルめっきの方が、効率が良いため好ましい。電解ニッケルめっき処理は、常法に従って行えばよい。電解ニッケルめっき処理に用いるめっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。
  前記の無電解めっきやスパッタリングにより表面に導電被覆層が形成された樹脂成形体をめっき浴に浸し、樹脂成形体を陰極に、ニッケル対極板を陽極に接続して直流或いはパルス断続電流を通電させることにより、導電被覆層上にニッケルめっき層を形成することができる。
(Formation of nickel plating layer)
The nickel plating layer may be formed using either electroless nickel plating or electrolytic nickel plating, but electrolytic nickel plating is preferable because of its higher efficiency. What is necessary is just to perform an electrolytic nickel plating process in accordance with a conventional method. As the plating bath used for the electrolytic nickel plating treatment, a known or commercially available bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like.
The resin molded body having a conductive coating layer formed on the surface thereof by electroless plating or sputtering is immersed in a plating bath, and the resin molded body is connected to the cathode and the nickel counter electrode is connected to the anode to allow direct current or pulse intermittent current to flow. Thus, a nickel plating layer can be formed on the conductive coating layer.
  電解ニッケルめっき層の目付量は、多孔体の最終的な金属組成として、ニッケルの含有率が50質量%以上となるように調整すればよい。
  なお、ニッケルからなる主金属層を備える多孔体においては、ニッケルの目付量が200g/m2以上、1200g/m2以下程度であることが好ましい。また、他の金属成分を含み、ニッケル合金からなる主金属層を供える多孔体の場合には、金属総量の目付量が200g/m2以上、1200g/m2以下程度であることが好ましい。ニッケル又はニッケル合金の目付量は、300g/m2以上、1100g/m2以下であることがより好ましく、400g/m2以上、1000g/m2以下であることが更に好ましい。
What is necessary is just to adjust the basis weight of an electrolytic nickel plating layer so that the content rate of nickel may be 50 mass% or more as a final metal composition of a porous body.
In addition, in a porous body provided with the main metal layer which consists of nickel, it is preferable that the amount of nickel is about 200 g / m < 2 > or more and about 1200 g / m < 2 > or less. Further, in the case of a porous body including a main metal layer made of a nickel alloy containing other metal components, the basis weight of the total metal amount is preferably about 200 g / m 2 or more and 1200 g / m 2 or less. The basis weight of nickel or nickel alloy is more preferably 300 g / m 2 or more and 1100 g / m 2 or less, and further preferably 400 g / m 2 or more and 1000 g / m 2 or less.
  また、ニッケルクロムや、ニッケルスズからなる主金属層を備える多孔体を製造する場合には、ニッケルめっき層の上に更にクロムめっき層やスズめっき層を形成し、その後に熱処理を行うことのよって合金化してもよい。
((クロムめっき層の形成))
  ニッケルめっき層の上にクロムめっき層を形成する場合には、例えば、次のようにして行うことができる。すなわち、公知のクロムめっき方法に従って行えばよく、めっき浴としては公知又は市販のものを使用することができる。例えば、6価クロム浴、3価クロム浴を用いることができる。めっき対象となる多孔体を前記クロムめっき浴に浸して陰極に接続し、対極としてクロム板を陽極に接続して直流あるいはパルス断続電流を通電させることによりクロムめっき層を形成することができる。
In the case of manufacturing a porous body having a main metal layer made of nickel chromium or nickel tin, a chromium plating layer or a tin plating layer is further formed on the nickel plating layer, followed by heat treatment. It may be alloyed.
((Chrome plating layer formation))
When forming a chromium plating layer on a nickel plating layer, it can carry out as follows, for example. That is, it may be carried out according to a known chrome plating method, and a known or commercially available plating bath can be used. For example, a hexavalent chromium bath or a trivalent chromium bath can be used. A chrome plating layer can be formed by immersing a porous body to be plated in the chrome plating bath and connecting it to the cathode, connecting a chrome plate to the anode as a counter electrode, and applying a direct current or pulse intermittent current.
((スズめっき層の形成))
  ニッケルめっき層の上にスズめっき層を形成する工程は、例えば、次のようにして行うことができる。すなわち、硫酸浴として、硫酸第一スズ55g/L、硫酸100g/L、クレゾールスルホン酸100g/L、ゼラチン2g/L、βナフトール1g/Lの組成のめっき浴を用意する。そして、当該めっき浴中で、陰極電流密度を2A/dm2、陽極電流密度を1A/dm2以下とし、温度を20℃、攪拌(陰極揺動)を2m/分とすることで、スズめっき層の形成を行うことができる。
  スズめっきの密着性を向上させるため、直前にストライクニッケルめっきを行って、多孔体の表面酸化膜を除去し、乾燥させずに濡れたままスズめっき浴に投入することが望ましい。これによりスズめっき層の密着性を高めることができる。
  ストライクニッケルめっきの条件は、例えば次のようにすることができる。すなわち、ウッドストライクニッケル浴として、塩化ニッケル 240g/L、塩酸(比重1.18程度のもの) 125ml/Lの組成のものを用意し、温度を室温にして、陽極にニッケルまたはカーボンを用いることで行うことができる。
  以上のめっき手順をまとめると、エースクリーンによる脱脂(陰極電解脱脂5A/dm2×1分)、湯洗、水洗、酸活性(塩酸浸漬1分)、ウッドストライクニッケルめっき処理(5~10A/dm2×1分)、洗浄して乾燥させずにスズめっきへ処理、水洗・乾燥、となる。
((Formation of tin plating layer))
The process of forming a tin plating layer on a nickel plating layer can be performed as follows, for example. That is, as a sulfuric acid bath, a plating bath having a composition of stannous sulfate 55 g / L, sulfuric acid 100 g / L, cresol sulfonic acid 100 g / L, gelatin 2 g / L, and β-naphthol 1 g / L is prepared. In the plating bath, tin plating is performed by setting the cathode current density to 2 A / dm 2 , the anode current density to 1 A / dm 2 or less, the temperature to 20 ° C., and the stirring (cathode oscillation) to 2 m / min. A layer can be formed.
In order to improve the adhesion of tin plating, it is desirable to perform strike nickel plating immediately before to remove the surface oxide film of the porous body and put it into the tin plating bath without being dried. Thereby, the adhesiveness of a tin plating layer can be improved.
The conditions for strike nickel plating can be as follows, for example. That is, by preparing a wood strike nickel bath having a composition of nickel chloride 240 g / L, hydrochloric acid (having a specific gravity of about 1.18) 125 ml / L, setting the temperature to room temperature, and using nickel or carbon for the anode It can be carried out.
The above plating procedure is summarized as follows: degreasing with an A-screen (cathodic electrolytic degreasing 5 A / dm 2 × 1 minute), hot water washing, water washing, acid activity (hydrochloric acid immersion 1 minute), wood strike nickel plating treatment (5 to 10 A / dm) 2 × 1 min), processed to tin plating, washed and dried without washing and drying.
(めっき時のめっき液の循環)
  三次元網目状構造を有する樹脂成形体のような基材へのめっきは、一般的に内部へ均一にめっきすることが難しい。内部への未着を防いだり、内部と外部のめっき付着量の差を低減したりするために、めっき液を循環させることが好ましい。循環の方法としては、ポンプを使用したり、めっき槽内部にファンを設置したりするなどの方法がある。また、これらの方法を用いて樹脂成形体にめっき液を吹き付けたり、吸引口に樹脂成形体を隣接させたりすると、樹脂成形体の内部にめっき液の流れができやすくなって効果的である。
(Plating solution circulation during plating)
In general, it is difficult to uniformly plate a substrate such as a resin molded body having a three-dimensional network structure. It is preferable to circulate the plating solution in order to prevent non-attachment to the inside or to reduce the difference in the amount of plating adhesion between the inside and the outside. As a circulation method, there are methods such as using a pump and installing a fan inside the plating tank. Also, if a plating solution is sprayed onto the resin molded body using these methods, or if the resin molded body is placed adjacent to the suction port, the plating solution can easily flow inside the resin molded body, which is effective.
(樹脂成形体の除去)
  表面にニッケルめっき層あるいはニッケル合金めっき層が形成された樹脂構造体から、基材として用いた樹脂成形体を除去することでニッケル又はニッケル合金からなる主金属層を備える多孔体を得ることができる。樹脂成形体が除去されることにより、ニッケルめっき層又はニッケル合金めっき層は、多孔体の骨格の主金属層となる。
  樹脂成形体を除去する方法は限定的でなく、薬品による処理や、焼却による燃焼除去の方法が挙げられる。焼却による場合には、例えば、600℃程度以上の大気等の酸化性雰囲気下で加熱すればよい。
  得られた多孔体を、必要に応じて還元性雰囲気下で加熱処理して金属を還元することにより、ニッケルあるいはニッケル合金からなる主金属層を備える多孔体が得られる。
(Removal of molded resin)
A porous body having a main metal layer made of nickel or a nickel alloy can be obtained by removing a resin molded body used as a substrate from a resin structure having a nickel plating layer or a nickel alloy plating layer formed on the surface. . By removing the resin molding, the nickel plating layer or the nickel alloy plating layer becomes the main metal layer of the skeleton of the porous body.
The method for removing the resin molding is not limited, and examples thereof include chemical treatment and combustion removal by incineration. In the case of incineration, for example, the heating may be performed in an oxidizing atmosphere such as air of about 600 ° C. or higher.
The obtained porous body is heat-treated in a reducing atmosphere as necessary to reduce the metal, thereby obtaining a porous body having a main metal layer made of nickel or a nickel alloy.
-熱処理工程-
  この工程は、上記で用意したニッケル又はニッケル合金からなる主金属層を備える多孔体を酸化雰囲気中で熱処理する工程である。この工程により、主金属層を構成する元素の酸化物層が主金属層の表面に形成される。
  酸化雰囲気は特に限定されるものではなく、骨格を構成しているニッケル又はニッケル合金が酸化する雰囲気であればよい。例えば、大気雰囲気下や、酸素を10%以上含んでいる雰囲気下等で行えばよい。
-Heat treatment process-
This step is a step of heat-treating the porous body including the main metal layer made of nickel or nickel alloy prepared above in an oxidizing atmosphere. By this step, an oxide layer of an element constituting the main metal layer is formed on the surface of the main metal layer.
The oxidizing atmosphere is not particularly limited as long as it is an atmosphere in which nickel or nickel alloy constituting the skeleton is oxidized. For example, it may be performed in an air atmosphere or an atmosphere containing 10% or more of oxygen.
  また、熱処理温度は300℃以上、1000℃以下程度で行うことが好ましい。300℃以上であることによりニッケル又はニッケル合金の酸化を促進することができる。また、1000℃以下であることにより、過剰な酸化や骨格の変形を抑制することができる。
これらの観点から、熱処理温度は300℃以上、900℃以下とすることがより好ましく、350℃以上、850℃以下であることが更に好ましい。
Moreover, it is preferable to perform the heat processing temperature at about 300 degreeC or more and 1000 degrees C or less. By being 300 degreeC or more, the oxidation of nickel or a nickel alloy can be accelerated | stimulated. Moreover, excessive oxidation and deformation | transformation of frame | skeleton can be suppressed because it is 1000 degrees C or less.
From these viewpoints, the heat treatment temperature is more preferably 300 ° C. or more and 900 ° C. or less, and further preferably 350 ° C. or more and 850 ° C. or less.
  熱処理工程において、熱処理時間は、ニッケル又はニッケル合金を酸化させることが可能な時間であればよい。例えば、均熱時間が15分以上、2時間以下程度で行えばよい。
15分以上であることにより、ニッケル又はニッケル合金を充分に酸化させることができる。また、2時間以下であることによって、ニッケル又はニッケル合金が酸化されすぎて脆化することを抑制できる。これらの観点から熱処理時間は、20分以上、1.5時間以下であることがより好ましく、30分以上、1時間以下であることが更に好ましい。
In the heat treatment step, the heat treatment time may be a time during which nickel or a nickel alloy can be oxidized. For example, the soaking time may be about 15 minutes or more and about 2 hours or less.
By being 15 minutes or more, nickel or a nickel alloy can be sufficiently oxidized. Moreover, by being 2 hours or less, it can suppress that nickel or nickel alloy is oxidized too much and becomes embrittled. From these viewpoints, the heat treatment time is more preferably 20 minutes or longer and 1.5 hours or shorter, and further preferably 30 minutes or longer and 1 hour or shorter.
-除去工程-
  この工程は、上記熱処理によって主金属層の表面に形成された酸化物層のうち、多孔体の一対の主面を成す部分に形成された酸化物層を除去する工程である。金属多孔体の主面を成す部分に酸化物層が形成されていないことにより、金属多孔体の主面を他の導電性材料と接触させることで導通させることが可能になる。
  ニッケル又はニッケル合金からなる主金属層を備える多孔体の主面に形成された酸化物層を除去する方法は特に限定されるものではなく、主金属層を構成しているニッケル又はニッケル合金が露出するようにできる方法であればよい。
  例えば、サンドペーパーや研磨剤を用いて研磨する方法や、薬液によりエッチングする方法、還元剤を用いる方法などを好ましく利用することができる。
-Removal process-
This step is a step of removing the oxide layer formed on the portion forming the pair of main surfaces of the porous body from the oxide layer formed on the surface of the main metal layer by the heat treatment. Since the oxide layer is not formed on the portion constituting the main surface of the metal porous body, it is possible to conduct by bringing the main surface of the metal porous body into contact with another conductive material.
The method for removing the oxide layer formed on the main surface of the porous body including the main metal layer made of nickel or nickel alloy is not particularly limited, and the nickel or nickel alloy constituting the main metal layer is exposed. Any method can be used.
For example, a method of polishing using sandpaper or an abrasive, a method of etching with a chemical solution, a method of using a reducing agent, and the like can be preferably used.
  以上の製造方法により、本発明の実施形態に係る金属多孔体を製造することができる。
また、酸化物層の厚さをより厚くして更に耐食性を高めることも可能であり、その場合には、以下の方法により金属多孔体を製造することが好ましい。
The metal porous body which concerns on embodiment of this invention can be manufactured with the above manufacturing method.
In addition, it is possible to further increase the corrosion resistance by increasing the thickness of the oxide layer. In this case, it is preferable to produce a porous metal body by the following method.
-酸処理工程-
  ニッケル又はニッケル合金からなる主金属層を備える多孔体を酸性溶液に浸漬して乾燥させ、その後に前記熱処理工程を行うことが好ましい。これにより、多孔体の表面が酸化・粗面化されることにより酸化が進行しやすくなり、主金属層の表面に形成される酸化物層の厚さをより厚くすることができる。
  酸性溶液としては、例えば、硝酸、硫酸、塩酸、酢酸などを用いることができる。これらの酸性溶液の水溶液を用いることが好ましい。例えば、稀硝酸を用いると、多孔体の表面が硝酸ニッケルとなり、これを250℃以上で加熱することにより酸化ニッケルが形成される。このため、単にニッケルを加熱するよりも多くの酸化物層を形成することができる。
  金属多孔体の骨格の主金属層の表面に厚い酸化物層が形成されることにより、金属多孔体の耐食性が高まる。酸化物層が形成された金属多孔体は、酸化物層を有しない金属多孔体と比較して、生成水中での優れた耐食性を示す。したがって、酸化物層が形成された金属多孔体は、生成水中での耐食性が必要な部材に用いることができ、例えば、長期の使用により停止の回数が多くなる燃料電池用のガス拡散層として好ましく用いることができる。
-Acid treatment process-
It is preferable that a porous body including a main metal layer made of nickel or a nickel alloy is dipped in an acidic solution and dried, and then the heat treatment step is performed. As a result, the surface of the porous body is oxidized and roughened, whereby the oxidation easily proceeds, and the thickness of the oxide layer formed on the surface of the main metal layer can be increased.
As the acidic solution, for example, nitric acid, sulfuric acid, hydrochloric acid, acetic acid and the like can be used. It is preferable to use an aqueous solution of these acidic solutions. For example, when dilute nitric acid is used, the surface of the porous body becomes nickel nitrate, which is heated at 250 ° C. or higher to form nickel oxide. For this reason, more oxide layers can be formed than simply heating nickel.
By forming a thick oxide layer on the surface of the main metal layer of the skeleton of the porous metal body, the corrosion resistance of the porous metal body is enhanced. The metal porous body in which the oxide layer is formed exhibits excellent corrosion resistance in the generated water as compared with the metal porous body not having the oxide layer. Therefore, the metal porous body on which the oxide layer is formed can be used for a member that requires corrosion resistance in the generated water. For example, it is preferable as a gas diffusion layer for a fuel cell in which the number of stops increases due to long-term use. Can be used.
-導電層形成工程-
  酸化物層が形成された金属多孔体の酸化物層の表面に、更に導電層を形成することが好ましい。これにより金属多孔体の骨格の表面を導電性にすることができる。導電層は導電性を有する層で有る限り、特に限定されるものではないが、金属多孔体を燃料電池のガス拡散層として利用することを考慮すると、耐食性に優れたものであることが好ましい。
  なお、導電層形成工程は熱処理工程後であればいつ行なってもよく、除去工程の前に行なってもよいし、除去工程の後に行なってもよい。
-Conductive layer formation process-
It is preferable to further form a conductive layer on the surface of the oxide layer of the porous metal body on which the oxide layer is formed. Thereby, the surface of the skeleton of the metal porous body can be made conductive. The conductive layer is not particularly limited as long as it is a conductive layer. However, considering that the metal porous body is used as a gas diffusion layer of a fuel cell, the conductive layer is preferably excellent in corrosion resistance.
Note that the conductive layer formation step may be performed any time after the heat treatment step, may be performed before the removal step, or may be performed after the removal step.
  導電層の形成は、導電性粉末と結着剤と含むスラリーを金属多孔体の酸化物層の表面に塗布して乾燥させることにより行うことができる。導電性粉末としては、例えば、炭素粉末を用いることができる。炭素粉末は軽量であり、また入手が容易なため好ましい。炭素粉末としては、例えば、カーボンブラック、活性炭、黒鉛などを、単独もしくは混合して用いることができる。また、導電性粉末としては、炭素粉末の他にも、金、銀、パラジウム、銅、アルミニウムなどの粉末を用いることができる。これらの中では、耐食性と導電性の点において銀粉末を好ましく用いることができる。 The conductive layer can be formed by applying a slurry containing conductive powder and a binder to the surface of the oxide layer of the metal porous body and drying it. For example, carbon powder can be used as the conductive powder. Carbon powder is preferable because it is lightweight and easily available. As the carbon powder, for example, carbon black, activated carbon, graphite or the like can be used alone or in combination. Further, as the conductive powder, powders such as gold, silver, palladium, copper, and aluminum can be used in addition to the carbon powder. Among these, silver powder can be preferably used in terms of corrosion resistance and conductivity.
  結着剤としては、樹脂を好ましく用いることができる。特に、フィルム形成能(膜形成能)に優れ、耐熱性を有する樹脂を好ましく用いることができる。固体高分子型燃料電池の作動温度である70℃~110℃程度の熱に耐えるものであることが好ましい。
  具体的には、ポリエチレンやポリプロピレンなどのポリオレフィンをはじめ、ポリアクリル酸エステル、ポリ酢酸ビニル、ビニルアルコール-ポリスチレン共重合体、エチレン-アクリル酸メチルエステル共重合体、ポリメタアクリル酸エステル、ホルマール化ポリビニルアルコールなどを用いることができる。これらは、単独で用いても良いし、混合して用いても構わない。さらにポリウレタン、シリコーン樹脂、ポリイミドなどや、フッ素樹脂も前記樹脂として好ましく用いることができる。
As the binder, a resin can be preferably used. In particular, a resin having excellent film forming ability (film forming ability) and heat resistance can be preferably used. It is preferable to withstand heat of about 70 ° C. to 110 ° C., which is the operating temperature of the polymer electrolyte fuel cell.
Specifically, polyolefins such as polyethylene and polypropylene, polyacrylic acid ester, polyvinyl acetate, vinyl alcohol-polystyrene copolymer, ethylene-acrylic acid methyl ester copolymer, polymethacrylic acid ester, formalized polyvinyl Alcohol or the like can be used. These may be used alone or in combination. Furthermore, polyurethane, silicone resin, polyimide, and fluorine resin can also be preferably used as the resin.
  以上のようにして得られる金属多孔体は、更に、圧延して外形形状の厚さを0.10mm以上、1.20mm以下に調厚する工程を有することが好ましい。
-調厚工程-
  この工程は、金属多孔体を圧延して、外形形状の厚さが0.10mm以上、1.20mm以下となるように調厚する工程である。圧延は、例えば、ローラープレス機や平板プレス等によって行うことができる。金属多孔体を調厚することにより、金属多孔体の外形形状の厚さを均一にし、かつ、表面の凹凸のバラツキをなくすことができる。また、金属多孔体を圧延することにより気孔率を小さくすることができる。金属多孔体の外形形状の厚さが、0.20mm以上、1.0mm以下となるように圧延することがより好ましく、0.30mm以上、0.80mm以下となるように圧延することが更に好ましい。
  なお、金属多孔体を燃料電池のガス拡散層として用いる場合には、燃料電池に組み込まれた際のガス拡散層の厚さよりもわずかに厚い厚さの金属多孔体を製造し、燃料電池への組み込み時の圧力により金属多孔体を変形させて厚さが0.10mm以上、1.20mm以下となるようにしてもよい。このとき、金属多孔体を予めわずかに圧延しておいて、燃料電池に組み込まれた際のガス拡散層の厚さよりもわずかに厚い厚さの金属多孔体としておいてもよい。これにより燃料電池のMEAとガス拡散層(金属多孔体)との密着性をより高めることができる。
The porous metal body obtained as described above preferably further includes a step of rolling to adjust the thickness of the outer shape to 0.10 mm or more and 1.20 mm or less.
-Thickening process-
This step is a step of rolling the metal porous body and adjusting the thickness so that the thickness of the outer shape becomes 0.10 mm or more and 1.20 mm or less. Rolling can be performed by, for example, a roller press or a flat plate press. By adjusting the thickness of the metal porous body, it is possible to make the thickness of the outer shape of the metal porous body uniform and eliminate the unevenness of the surface unevenness. Moreover, the porosity can be reduced by rolling the metal porous body. It is more preferable to roll so that the thickness of the outer shape of the metal porous body is 0.20 mm or more and 1.0 mm or less, and it is more preferable to roll so that the thickness is 0.30 mm or more and 0.80 mm or less. .
When the metal porous body is used as the gas diffusion layer of the fuel cell, a metal porous body having a thickness slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell is manufactured, The metal porous body may be deformed by the pressure at the time of incorporation so that the thickness becomes 0.10 mm or more and 1.20 mm or less. At this time, the porous metal body may be slightly rolled in advance to form a porous metal body having a thickness slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell. Thereby, the adhesion between the MEA of the fuel cell and the gas diffusion layer (metal porous body) can be further enhanced.
<水素の製造方法、及び水素の製造装置>
  本発明の実施形態に係る金属多孔体は、燃料電池用途以外に、水電解による水素製造用途にも好適に使用できる。水素の製造方式には、大きく分けて[1]アルカリ水電解方式、[2]PEM方式、及び[3]SOEC方式があり、いずれの方式にも金属多孔体を用いることができる。
<Hydrogen production method and hydrogen production apparatus>
The metal porous body which concerns on embodiment of this invention can be used conveniently also for the hydrogen production use by water electrolysis besides a fuel cell use. Hydrogen production methods are broadly classified into [1] alkaline water electrolysis method, [2] PEM method, and [3] SOEC method, and any of these methods can use a porous metal body.
  前記[1]のアルカリ水電解方式では、強アルカリ水溶液に陽極と陰極を浸漬し、電圧を印加することで水を電気分解する方式である。金属多孔体を電極として使用することで水と電極の接触面積が大きくなり、水の電気分解の効率を高めることができる。
  アルカリ水電解方式による水素の製造方法においては、金属多孔体は上から見た場合の孔径が100μm以上、5000μm以下であることが好ましい。金属多孔体を上から見た場合の孔径が100μm以上であることにより、発生した水素・酸素の気泡が金属多孔体の気孔部に詰まって水と電極との接触面積が小さくなることを抑制することができる。
また、金属多孔体を上から見た場合の孔径が5000μm以下であることにより電極の表面積が十分に大きくなり、水の電気分解の効率を高めることができる。同様の観点から、金属多孔体を上から見た場合の孔径は400μm以上、4000μm以下であることがより好ましい。
  金属多孔体の厚さや金属量は、電極面積が大きくなるとたわみなどの原因となるため、設備の規模によって適宜選択すればよい。気泡の抜けと表面積の確保を両立するために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
  なお、アルカリ水電解方式において本発明の実施形態に係る金属多孔体を電極として用いる場合には、酸化物層の表面に導電層を有する金属多孔体を用いればよい。
The alkaline water electrolysis method [1] is a method in which water is electrolyzed by immersing an anode and a cathode in a strong alkaline aqueous solution and applying a voltage. By using a metal porous body as an electrode, the contact area between water and the electrode is increased, and the efficiency of water electrolysis can be increased.
In the method for producing hydrogen by the alkaline water electrolysis method, the metal porous body preferably has a pore diameter of 100 μm or more and 5000 μm or less when viewed from above. When the pore size when the metal porous body is viewed from above is 100 μm or more, the generated hydrogen / oxygen bubbles are prevented from clogging the pores of the metal porous body and reducing the contact area between water and the electrode. be able to.
In addition, when the porous metal body is viewed from above, the pore diameter is 5000 μm or less, the surface area of the electrode is sufficiently increased, and the efficiency of water electrolysis can be increased. From the same viewpoint, the pore size when the metal porous body is viewed from above is more preferably 400 μm or more and 4000 μm or less.
The thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment because it causes a deflection or the like when the electrode area increases. A plurality of porous metal bodies having different pore diameters can be used in combination in order to achieve both the elimination of bubbles and the securing of the surface area.
In addition, when using the metal porous body which concerns on embodiment of this invention as an electrode in an alkaline water electrolysis system, what is necessary is just to use the metal porous body which has a conductive layer on the surface of an oxide layer.
  前記[2]のPEM方式は、固体高分子電解質膜を用いて水を電気分解する方法である。固体高分子電解質膜の両面に陽極と陰極を配置し、陽極側に水を流しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体高分子電解質膜を通して陰極側へ移動させ、陰極側で水素として取り出す方式である。動作温度は100℃程度である。水素と酸素で発電して水を排出する固体高分子型燃料電池と、同様の構成で全く逆の動作をさせるものである。陽極側と陰極側は完全に分離されているため、純度の高い水素を取り出せる利点がある。陽極・陰極共に電極を透過させて水・水素ガスを通す必要があるため、電極には導電性の多孔体が必要である。 (2) The PEM method of [2] is a method of electrolyzing water using a solid polymer electrolyte membrane. By placing an anode and a cathode on both sides of the solid polymer electrolyte membrane and applying a voltage while flowing water to the anode side, hydrogen ions generated by water electrolysis move to the cathode side through the solid polymer electrolyte membrane And is taken out as hydrogen on the cathode side. The operating temperature is about 100 ° C. The polymer electrolyte fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since the anode side and the cathode side are completely separated, there is an advantage that high purity hydrogen can be taken out. Since both the anode and the cathode must pass through the electrode and allow water and hydrogen gas to pass through, the electrode needs a conductive porous body.
  本発明の実施形態に係る金属多孔体は高い気孔率と良好な電気伝導性を備えているため、固体高分子型燃料電池に好適に使用できるのと同じように、PEM方式の水電解にも好適に使用できる。PEM方式による水素の製造方法においては、金属多孔体は上から見た場合の孔径が100μm以上、700μm以下であることが好ましい。金属多孔体を上から見た場合の孔径が100μm以上であることにより、発生した水素・酸素の気泡が金属多孔体の気孔部に詰まって水と固体高分子電解質膜との接触面積が小さくなってしまうことを抑制することができる。また、金属多孔体を上から見た場合の孔径が700μm以下であることにより十分な保水性を確保することができ、反応する前に水が通り抜けてしまうことを抑制して、効率よく水の電気分解を行なうことができる。同様の観点から、金属多孔体を上から見た場合の孔径は、150μm以上、650μm以下であることがより好ましく、200μm以上、600μm以下であることが更に好ましい。 Since the porous metal body according to the embodiment of the present invention has high porosity and good electrical conductivity, it can be used for PEM water electrolysis as well as it can be suitably used for polymer electrolyte fuel cells. It can be used suitably. In the method for producing hydrogen by the PEM method, the metal porous body preferably has a pore diameter of 100 μm or more and 700 μm or less when viewed from above. When the porous metal body is viewed from above, the pore diameter is 100 μm or more, and the generated hydrogen / oxygen bubbles are clogged in the pores of the porous metal body, reducing the contact area between water and the solid polymer electrolyte membrane. Can be suppressed. Further, when the porous metal body is viewed from above, the pore diameter is 700 μm or less, so that sufficient water retention can be ensured, and water is prevented from passing through before reacting. Electrolysis can be performed. From the same viewpoint, the pore diameter when the metal porous body is viewed from above is more preferably 150 μm or more and 650 μm or less, and further preferably 200 μm or more and 600 μm or less.
  金属多孔体の厚さや金属量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水を通過させるための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属量を調整することが好ましい。また、PEM方式では固体高分子電解質膜と電極の導通は圧着になるため、加圧時の変形・クリープによる電気抵抗増加が、実用上問題ない範囲になるように金属量を調節する必要がある。金属量としては200g/m以上、1200g/m以下程度であることが好ましく、300g/m2以上、1100g/m2以下程度であることがより好ましく、400g/m2以上、1000g/m2以下程度であることが更に好ましい。他、気孔率の確保と電気的接続の両立のために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。 The thickness and the amount of metal of the porous metal body may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for allowing water to pass increases, so the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Also, in the PEM method, the electrical connection between the solid polymer electrolyte membrane and the electrode is a pressure bonding, so it is necessary to adjust the amount of metal so that the increase in electrical resistance due to deformation and creep during pressurization is within a practically acceptable range. . The amount of metal is preferably about 200 g / m 2 or more and 1200 g / m 2 or less, more preferably about 300 g / m 2 or more and about 1100 g / m 2 or less, 400 g / m 2 or more and 1000 g / m 2 or less. More preferably, it is about 2 or less. In addition, a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
  前記[3]のSOEC方式は、固体酸化物電解質膜を用いて水を電気分解する方法で、電解質膜がプロトン伝導膜か酸素イオン伝導膜かによって構成が異なる。酸素イオン伝導膜では、水蒸気を供給する陰極側で水素が発生するため、水素純度が下がる。そのため、水素製造の観点からはプロトン伝導膜を用いることが好ましい。
  プロトン伝導膜の両側に陽極と陰極を配置し、陽極側に水蒸気を導入しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体酸化物電解質膜を通して陰極側へ移動させ、陰極側で水素のみを取り出す方式である。動作温度は600℃~800℃程度である。水素と酸素で発電して水を排出する固体酸化物型燃料電池と、同様の構成で全く逆の動作をさせるものである。
The SOEC method [3] is a method of electrolyzing water using a solid oxide electrolyte membrane, and the configuration differs depending on whether the electrolyte membrane is a proton conducting membrane or an oxygen ion conducting membrane. In the oxygen ion conductive membrane, hydrogen is generated on the cathode side for supplying water vapor, so that the hydrogen purity is lowered. Therefore, it is preferable to use a proton conductive membrane from the viewpoint of hydrogen production.
By placing an anode and a cathode on both sides of the proton conducting membrane and applying a voltage while introducing water vapor to the anode side, hydrogen ions generated by water electrolysis are moved to the cathode side through the solid oxide electrolyte membrane. In this method, only hydrogen is extracted on the cathode side. The operating temperature is about 600 ° C to 800 ° C. A solid oxide fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration.
  陽極・陰極共に電極を透過させて水蒸気・水素ガスを通す必要があるため、電極には導電性かつ、特に陽極側で高温の酸化雰囲気に耐える多孔体が必要である。本発明の実施形態に係る金属多孔体は高い気孔率と良好な電気伝導性と高い耐酸化性・耐熱性を備えているため、固体酸化物型燃料電池に好適に使用できるのと同じように、SOEC方式の水電解にも好適に使用できる。酸化性雰囲気となる側の電極には、Crなどの高い耐酸化性を有する金属を添加したNi合金の使用が好ましい。 た め Since both the anode and the cathode need to permeate the electrode and allow water vapor and hydrogen gas to pass therethrough, the electrode must be conductive and have a porous body that can withstand a high-temperature oxidizing atmosphere, particularly on the anode side. Since the porous metal body according to the embodiment of the present invention has high porosity, good electrical conductivity, and high oxidation resistance and heat resistance, it can be suitably used for a solid oxide fuel cell. It can also be suitably used for SOEC water electrolysis. It is preferable to use a Ni alloy to which a metal having high oxidation resistance such as Cr is added for the electrode on the side that becomes an oxidizing atmosphere.
  SOEC方式による水素の製造方法においては、金属多孔体は上から見た場合の孔径が100μm以上、700μm以下であることが好ましい。金属多孔体を上から見た場合の孔径が100μm以上であることにより、水蒸気や発生した水素が金属多孔体の気孔部に詰まって水蒸気と固体酸化物電解質膜との接触面積が小さくなってしまうことを抑制することができる。また、金属多孔体を上から見た場合孔径が700μm以下であることにより、圧損が低くなりすぎて水蒸気が十分に反応する前に通り抜けてしまうことを抑制することができる。同様の観点から、金属多孔体を上から見た場合の孔径は、150μm以上、650μm以下であることがより好ましく、200μm以上、600μm以下であることが更に好ましい。 In the method for producing hydrogen by the SOEC method, the porous metal body preferably has a pore diameter of 100 μm or more and 700 μm or less when viewed from above. Since the pore diameter when the metal porous body is viewed from above is 100 μm or more, water vapor or generated hydrogen is clogged in the pores of the metal porous body, and the contact area between the water vapor and the solid oxide electrolyte membrane is reduced. This can be suppressed. Moreover, when the metal porous body is viewed from above, the pore diameter is 700 μm or less, so that it is possible to prevent the pressure loss from becoming too low and water vapor to pass through before sufficiently reacting. From the same viewpoint, the pore diameter when the metal porous body is viewed from above is more preferably 150 μm or more and 650 μm or less, and further preferably 200 μm or more and 600 μm or less.
  金属多孔体の厚さや金属量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水蒸気を投入するための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属量を調整することが好ましい。また、SOEC方式では固体酸化物電解質膜と電極の導通は圧着になるため、加圧時の変形・クリープによる電気抵抗増加が、実用上問題ない範囲になるように金属量を調節する必要がある。金属量としては200g/m以上、1200g/m以下程度であることが好ましく、300g/m2以上、1100g/m2以下程度であることがより好ましく、400g/m2以上、1000g/m2以下程度であることが更に好ましい。他、気孔率の確保と電気的接続の両立のために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。 The thickness of the metal porous body and the amount of metal may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water vapor increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. In addition, in the SOEC method, since the electrical connection between the solid oxide electrolyte membrane and the electrode is a pressure bonding, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practically acceptable range. . The amount of metal is preferably about 200 g / m 2 or more and 1200 g / m 2 or less, more preferably about 300 g / m 2 or more and about 1100 g / m 2 or less, 400 g / m 2 or more and 1000 g / m 2 or less. More preferably, it is about 2 or less. In addition, a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
<付記>
  以上の説明は、以下に付記する特徴を含む。
(付記1)
  骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体を電極として用いて、水を電気分解することによって水素を発生させる水素の製造方法であって、
  前記金属多孔体の骨格は、ニッケル又はニッケル合金からなる主金属層と、前記主金属層の表面に形成される酸化物層と、を備え、
  前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない、水素の製造方法。
(付記2)
  前記骨格は、
  前記酸化物層の表面に形成される導電層を備える、付記1に記載の水素の製造方法。
(付記3)
  前記導電層が炭素粉末及び結着剤を含む付記2に記載の水素の製造方法。
(付記4)
  前記導電層が銀を含む付記2又は付記3に記載の水素の製造方法。
(付記5)
  前記ニッケル合金が、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルと、を含む、付記1から付記4のいずれか一項に記載の水素の製造方法。
(付記6)
  前記酸化物層が酸化ニッケルである付記1から付記5のいずれか一項に記載の水素の製造方法。
(付記7)
  前記水が強アルカリ水溶液である付記2から付記6のいずれか一項に記載の水素の製造方法。
(付記8)
  固体高分子電解質膜の両側に前記金属多孔体を配置して前記固体高分子電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水を供給して電気分解することによって、前記陰極側に水素を発生させる、付記1から付記6のいずれか一項に記載の水素の製造方法。
(付記9)
  固体酸化物電解質膜の両側に前記金属多孔体を配置して前記固体高分子電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水蒸気を供給して水を電気分解することによって、前記陰極側に水素を発生させる、付記1から付記6のいずれか一項に記載の水素の製造方法。
(付記10)
  水を電気分解することによって水素を発生させることが可能な水素の製造装置であって、
  骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体を電極として備え、
  前記金属多孔体の骨格は、ニッケル又はニッケル合金からなる主金属層と、前記主金属層の表面に形成される酸化物層と、を備え、
  前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない、水素の製造装置。
(付記11)
  前記骨格は、
  前記酸化物層の表面に形成される導電層を備える、付記10に記載の水素の製造装置。
(付記12)
  前記導電層が炭素粉末及び結着剤を含む付記11に記載の水素の製造装置。
(付記13)
  前記導電層が銀を含む付記11又は付記12に記載の水素の製造装置。
(付記14)
  前記ニッケル合金が、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルと、を含む、付記10から付記13のいずれか一項に記載の水素の製造装置。
(付記15)
  前記酸化物層が酸化ニッケルである付記10から付記14のいずれか一項に記載の水素の製造装置。
(付記16)
  前記水が強アルカリ水溶液である付記11から付記15のいずれか一項に記載の水素の製造装置。
(付記17)
  固体高分子電解質膜の両側に陽極及び陰極を有し、
  前記陽極及び前記陰極は前記固体高分子電解質膜と接触しており、
  前記陽極側に供給された水を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
  前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記10から付記15のいずれか一項に記載の水素の製造装置。
(付記18)
  固体酸化物電解質膜の両側に陽極及び陰極を有し、
  前記陽極及び前記陰極は前記固体高分子電解質膜と接触しており、
  前記陽極側に供給された水蒸気を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
  前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記10から付記15のいずれか一項に記載の水素の製造装置。
<Appendix>
The above description includes the following features.
(Appendix 1)
By electrolyzing water using a metal porous body having a three-dimensional network structure composed of a skeleton and having an outer shape as a plate having a pair of main surfaces and an end surface connecting the pair of main surfaces as an electrode A method for producing hydrogen that generates hydrogen, comprising:
The skeleton of the porous metal body includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer,
The method for producing hydrogen, wherein the oxide layer is not formed on portions of the surface of the main metal layer that form a pair of main surfaces of the metal porous body.
(Appendix 2)
The skeleton is
The method for producing hydrogen according to appendix 1, comprising a conductive layer formed on a surface of the oxide layer.
(Appendix 3)
The method for producing hydrogen according to appendix 2, wherein the conductive layer includes carbon powder and a binder.
(Appendix 4)
The method for producing hydrogen according to supplementary note 2 or supplementary note 3, wherein the conductive layer contains silver.
(Appendix 5)
The method for producing hydrogen according to any one of appendix 1 to appendix 4, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel.
(Appendix 6)
The method for producing hydrogen according to any one of appendices 1 to 5, wherein the oxide layer is nickel oxide.
(Appendix 7)
The method for producing hydrogen according to any one of appendix 2 to appendix 6, wherein the water is a strong alkaline aqueous solution.
(Appendix 8)
The metal porous body is disposed on both sides of the solid polymer electrolyte membrane, the solid polymer electrolyte membrane and the metal porous body are brought into contact with each other, and each metal porous body acts as an anode and a cathode. The method for producing hydrogen according to any one of appendix 1 to appendix 6, wherein hydrogen is generated on the cathode side by supplying and electrolyzing.
(Appendix 9)
The metal porous body is disposed on both sides of the solid oxide electrolyte membrane, the solid polymer electrolyte membrane and the metal porous body are brought into contact with each other, and each metal porous body acts as an anode and a cathode. The method for producing hydrogen according to any one of appendix 1 to appendix 6, wherein hydrogen is generated by electrolyzing water to generate hydrogen on the cathode side.
(Appendix 10)
An apparatus for producing hydrogen capable of generating hydrogen by electrolyzing water,
A porous metal body having a three-dimensional network structure composed of a skeleton and having an outer shape having a pair of main surfaces and an end surface connecting the pair of main surfaces as an electrode;
The skeleton of the porous metal body includes a main metal layer made of nickel or a nickel alloy, and an oxide layer formed on the surface of the main metal layer,
An apparatus for producing hydrogen, wherein the oxide layer is not formed on portions of the surface of the main metal layer that form a pair of main surfaces of the porous metal body.
(Appendix 11)
The skeleton is
The hydrogen production apparatus according to appendix 10, comprising a conductive layer formed on a surface of the oxide layer.
(Appendix 12)
The hydrogen production apparatus according to appendix 11, wherein the conductive layer includes carbon powder and a binder.
(Appendix 13)
The hydrogen production apparatus according to appendix 11 or appendix 12, wherein the conductive layer contains silver.
(Appendix 14)
The hydrogen production apparatus according to any one of appendix 10 to appendix 13, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel.
(Appendix 15)
The hydrogen production apparatus according to any one of appendix 10 to appendix 14, wherein the oxide layer is nickel oxide.
(Appendix 16)
The hydrogen production apparatus according to any one of appendix 11 to appendix 15, wherein the water is a strong alkaline aqueous solution.
(Appendix 17)
Having an anode and a cathode on both sides of the solid polymer electrolyte membrane;
The anode and the cathode are in contact with the solid polymer electrolyte membrane;
A hydrogen production apparatus capable of generating hydrogen on the cathode side by electrolyzing water supplied to the anode side,
The hydrogen production apparatus according to any one of appendix 10 to appendix 15, wherein the metal porous body is used for at least one of the anode and the cathode.
(Appendix 18)
Having an anode and a cathode on both sides of the solid oxide electrolyte membrane;
The anode and the cathode are in contact with the solid polymer electrolyte membrane;
A hydrogen production apparatus capable of generating hydrogen on the cathode side by electrolyzing water vapor supplied to the anode side,
The hydrogen production apparatus according to any one of appendix 10 to appendix 15, wherein the metal porous body is used for at least one of the anode and the cathode.
  以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の金属多孔体等はこれらに限定されるものではない。本発明の範囲は請求の範囲の範囲によって示され、請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 Hereinafter, the present invention will be described in more detail based on examples. However, these examples are illustrative, and the metal porous body of the present invention is not limited thereto. The scope of the present invention is defined by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.
[実施例1]
-金属多孔体の作製-
<用意工程>
(導電層形成工程)
  三次元網目状構造を有する樹脂成形体として、気孔率90%、平均孔径450μm、厚さ1.3mmのウレタン樹脂発泡体のシートを用いた。平均粒径0.5μmの黒鉛粉末1000gと平均粒径5μmのクロム粉末130gを、10質量%のアクリル-スチレン共重合体エマルジョン5Lに分散させてスラリーを作製した。このスラリーにウレタン樹脂発泡体を浸漬した。そして、ウレタン樹脂発泡体を引き上げ、ロール間を通して余分なスラリーを除去し、乾燥させて骨格の表面を導電化した。乾燥後のクロムの塗着量が70g/m2となるようにした。
[Example 1]
-Fabrication of porous metal-
<Preparation process>
(Conductive layer formation process)
As a resin molded body having a three-dimensional network structure, a urethane resin foam sheet having a porosity of 90%, an average pore diameter of 450 μm, and a thickness of 1.3 mm was used. A slurry was prepared by dispersing 1000 g of graphite powder having an average particle size of 0.5 μm and 130 g of chromium powder having an average particle size of 5 μm in 5 L of an acrylic-styrene copolymer emulsion of 10% by mass. The urethane resin foam was immersed in this slurry. Then, the urethane resin foam was pulled up, excess slurry was removed between the rolls, and dried to make the surface of the skeleton conductive. The amount of chromium applied after drying was set to 70 g / m 2 .
(めっき層形成工程)
  導電性を付与したウレタン樹脂発泡体を、公知のスルファミン酸浴法で電解ニッケルめっきを施した。公知の組成、つまりスルファミン酸ニッケル430g/L、塩化ニッケル7g/L、ホウ酸32g/Lを主とする浴で、電流密度を250mA/cmとして電解ニッケルめっきを行った。これにより、樹脂成形体の骨格の表面にニッケルめっき層からなる主金属層が形成された樹脂構造体を得た。ニッケルの目付量は600g/m2となるようにした。
(Plating layer forming process)
The electroconductive urethane resin foam was subjected to electrolytic nickel plating by a known sulfamic acid bath method. Electrolytic nickel plating was performed with a known composition, that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 . Thereby, the resin structure in which the main metal layer which consists of a nickel plating layer was formed in the surface of the frame of a resin fabrication object was obtained. The basis weight of nickel was set to 600 g / m 2 .
(樹脂成形体の除去)
  前記樹脂構造体を、大気中800℃で15分間加熱することで、樹脂成形体とスラリーに添加していた樹脂や黒鉛粉末などを焼却除去した。その後、水素雰囲気中で1000℃、25分間熱処理を行ない、大気中の加熱で一部酸化していた金属を還元するとともに合金化と焼鈍を行なうことで骨格がニッケルクロム合金からなる主金属層を備える多孔体を得た。合金の均一性はX線解析や電子顕微鏡により確認した。
  その後、ニッケルクロム合金からなる主金属層を備える多孔体をローラープレス機で、厚さを0.50mmに調厚した。ニッケルクロム合金からなる主金属層を備える多孔体は、気孔率が84.6%、目付量が670g/m2、ニッケルとクロムの比率はニッケル90質量%、クロム10質量%であった。
(Removal of molded resin)
The resin structure was heated in the atmosphere at 800 ° C. for 15 minutes to incinerate and remove the resin and graphite powder added to the resin molded body and the slurry. After that, heat treatment is performed at 1000 ° C. for 25 minutes in a hydrogen atmosphere to reduce the metal that has been partially oxidized by heating in the air, and alloying and annealing to form a main metal layer whose skeleton is made of a nickel chromium alloy. A porous body was obtained. The uniformity of the alloy was confirmed by X-ray analysis and electron microscope.
Thereafter, the porous body including the main metal layer made of a nickel chromium alloy was adjusted to a thickness of 0.50 mm with a roller press. The porous body including the main metal layer made of a nickel-chromium alloy had a porosity of 84.6%, a basis weight of 670 g / m 2 , a ratio of nickel to chromium of 90% by weight of nickel, and 10% by weight of chromium.
<熱処理工程>
  上記で得たニッケルクロム合金からなる主金属層を備えた多孔体を空気雰囲気中500℃で1時間加熱して、骨格を酸化させた。これにより、主金属層の表面に均一な酸化物層が形成されたことを骨格の断面のSEM-EDXによる元素マッピングによって確認した。
<Heat treatment process>
The porous body provided with the main metal layer made of the nickel-chromium alloy obtained above was heated in an air atmosphere at 500 ° C. for 1 hour to oxidize the skeleton. This confirmed that a uniform oxide layer was formed on the surface of the main metal layer by elemental mapping of the cross section of the skeleton by SEM-EDX.
<除去工程>
  主金属層の表面に酸化物層が形成された多孔体の一対の主面をサンドペーパーによって研磨することで、主金属層の表面のうち、一対の主面を成す部分に形成された酸化物層を除去した。
<Removal process>
A pair of main surfaces of a porous body having an oxide layer formed on the surface of the main metal layer is polished by sandpaper to form an oxide formed on a portion of the main metal layer that forms the pair of main surfaces. The layer was removed.
<導電層形成工程>
  8質量%の水性ポリプロピレンエマルジョン 2.5Lに、平均粒径1.0μmの黒鉛粉末450gを分散してスラリーを作製した。このスラリーに上記で得た多孔体を浸漬してスラリーを骨格の表面に塗着させた。そして、135℃で30分間熱処理をすることで、樹脂の結着性を高めた。これにより、耐食性かつ導電性を有する導電層が酸化物層の表面に形成された金属多孔体1を得た。
<Conductive layer formation process>
A slurry was prepared by dispersing 450 g of graphite powder having an average particle diameter of 1.0 μm in 2.5 L of an 8% by mass aqueous polypropylene emulsion. The porous body obtained above was immersed in this slurry, and the slurry was applied to the surface of the skeleton. And the binding property of resin was improved by heat-processing for 30 minutes at 135 degreeC. As a result, a porous metal body 1 in which a conductive layer having corrosion resistance and conductivity was formed on the surface of the oxide layer was obtained.
-燃料電池の作製-
  上記の金属多孔体1を、固体高分子型燃料電池(単セル)のガス拡散層兼ガス供給・排出路として用いた。
  金属多孔体1を用いて単セルを組み立てるために市販のMEAを用い、金属多孔体1を5×5cmに裁断して、図1に示した単セルを構成した。MEAを2枚のカーボンペーパーで挟み、更にその外側を2枚の金属多孔体1で挟んで単セルを構成した。空気極と水素極がリークしないよう、ガスケットと凹型に加工した黒鉛板を用い、4角をボルトとナットにより締め付け固定した。これにより、各構成材料の接触性の向上とともに水素、空気のセルからの漏れを防止した。なお、セパレーターの黒鉛板は、実用的には積層電池にするのでその厚さは1~2mm程度であるが、実施例は単セルであり、締め付けに耐える強度にするために厚さ10mmとした。このセルを電池Aとした。
-Fabrication of fuel cell-
The porous metal body 1 was used as a gas diffusion layer / gas supply / discharge path of a polymer electrolyte fuel cell (single cell).
In order to assemble a single cell using the metal porous body 1, a commercially available MEA was used, and the metal porous body 1 was cut into 5 × 5 cm to form the single cell shown in FIG. The MEA was sandwiched between two carbon papers, and the outside was sandwiched between two metal porous bodies 1 to form a single cell. In order not to leak the air electrode and the hydrogen electrode, a gasket and a concave graphite plate were used, and the four corners were fastened and fixed with bolts and nuts. This prevented the leakage of hydrogen and air from the cell as well as improving the contact of each constituent material. Since the separator graphite plate is practically a laminated battery, its thickness is about 1 to 2 mm. However, the example is a single cell and has a thickness of 10 mm to make it strong enough to withstand tightening. . This cell was designated as battery A.
[実施例2]
-金属多孔体の作製-
<用意工程>
(導電層形成工程)
  三次元網目状構造を有する樹脂成形体として、気孔率90%、平均孔径450μm、厚さ1.3mmのウレタン樹脂発泡体のシートを用いた。平均粒径0.5μmの黒鉛粉末900gを、10質量%のアクリル酸エステル系水性エマルジョン1Lに分散させてスラリーを作製した。このスラリーにウレタン樹脂発泡体を浸漬した。そして、ウレタン樹脂発泡体を引き上げ、ロール間を通して余分なスラリーを除去し、乾燥させて骨格の表面を導電化した。乾燥後の黒鉛の塗着量が20g/m2となるようにした。
[Example 2]
-Fabrication of porous metal-
<Preparation process>
(Conductive layer formation process)
As a resin molded body having a three-dimensional network structure, a urethane resin foam sheet having a porosity of 90%, an average pore diameter of 450 μm, and a thickness of 1.3 mm was used. A slurry was prepared by dispersing 900 g of graphite powder having an average particle diameter of 0.5 μm in 1 L of a 10% by mass acrylic ester aqueous emulsion. The urethane resin foam was immersed in this slurry. Then, the urethane resin foam was pulled up, excess slurry was removed between the rolls, and dried to make the surface of the skeleton conductive. The amount of graphite applied after drying was set to 20 g / m 2 .
(めっき層形成工程)
  導電性を付与したウレタン樹脂発泡体に、公知のスルファミン酸浴法で電解ニッケルめっきを施した。公知の組成、つまりスルファミン酸ニッケル430g/L、塩化ニッケル7g/L、ホウ酸32g/Lを主とする浴で、電流密度を250mA/cmとして電解ニッケルめっきを行った。これにより、樹脂成形体の骨格の表面にニッケルめっき層が形成された樹脂構造体を得た。ニッケルの目付量は600g/m2となるようにした。
  続いて、公知の硫酸浴を用いてスズめっきを施した。硫酸浴の組成は、硫酸第一スズ55g/L、硫酸100g/L、クレゾールスルホン酸100g/L、ゼラチン2g/L、βナフトール1g/Lの組成とした。当該硫酸浴中で、陰極電流密度を2A/dm2、陽極電流密度を1A/dm2以下とし、温度を20℃、攪拌(陰極揺動)を2m/分とすることで、スズめっき層の形成を行った。スズの目付量は150g/m2となるようにした。
  これにより、黒鉛粉末を含む導電被覆層の上にニッケルめっき層、スズめっき層からなる主金属層が形成された樹脂構造体が得られた。
(Plating layer forming process)
The urethane resin foam imparted with conductivity was subjected to electrolytic nickel plating by a known sulfamic acid bath method. Electrolytic nickel plating was performed with a known composition, that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 . Thereby, the resin structure in which the nickel plating layer was formed on the surface of the skeleton of the resin molding was obtained. The basis weight of nickel was set to 600 g / m 2 .
Subsequently, tin plating was performed using a known sulfuric acid bath. The sulfuric acid bath was composed of stannous sulfate 55 g / L, sulfuric acid 100 g / L, cresol sulfonic acid 100 g / L, gelatin 2 g / L, and β-naphthol 1 g / L. In the sulfuric acid bath, the cathode current density is 2 A / dm 2 , the anode current density is 1 A / dm 2 or less, the temperature is 20 ° C., and the stirring (cathode oscillation) is 2 m / min. Formation was performed. The basis weight of tin was set to 150 g / m 2 .
Thereby, the resin structure in which the main metal layer which consists of a nickel plating layer and a tin plating layer was formed on the conductive coating layer containing graphite powder was obtained.
(樹脂成形体の除去)
  前記樹脂構造体を、大気中800℃で15分間加熱することで、樹脂成形体とスラリーに添加していた樹脂(結着剤)や黒鉛粉末などを焼却除去した。その後、水素雰囲気中で1000℃で50分間熱処理を行ない、大気中の加熱で一部酸化していた金属を還元するとともに熱拡散による合金化と焼鈍を行なうことで骨格がニッケルスズ合金からなる主金属層を備える多孔体を得た。合金の均一性はX線解析や電子顕微鏡により確認した。
  その後、ニッケルスズ合金からなる主金属層を備える多孔体をローラープレス機で、厚さを0.50mmに調厚した。ニッケルスズ合金からなる主金属層を備える多孔体は、気孔率が82.4%、目付量が750g/m2、ニッケルとスズの比率はニッケル80質量%、スズ20質量%であった。
(Removal of molded resin)
The resin structure was heated in the atmosphere at 800 ° C. for 15 minutes to incinerate and remove the resin (binder) and graphite powder added to the resin molded body and the slurry. After that, heat treatment is performed at 1000 ° C. for 50 minutes in a hydrogen atmosphere to reduce the metal that has been partially oxidized by heating in the atmosphere, and by alloying and annealing by thermal diffusion, the skeleton is made of a nickel-tin alloy. A porous body provided with a metal layer was obtained. The uniformity of the alloy was confirmed by X-ray analysis and electron microscope.
Thereafter, the thickness of the porous body including the main metal layer made of a nickel-tin alloy was adjusted to 0.50 mm with a roller press. The porous body including the main metal layer made of a nickel-tin alloy had a porosity of 82.4%, a basis weight of 750 g / m 2 , and a nickel-tin ratio of 80 mass% nickel and 20 mass% tin.
<酸処理工程>
  上記で得たニッケルスズ合金からなる主金属層を備えた多孔体を、室温で、0.5Nの硝酸水溶液に浸漬し、直ちに引き上げて室温で1時間放置した。
<熱処理工程>
  上記の硝酸水溶液に浸漬した後のニッケルスズ合金からなる主金属層を備える多孔体を空気雰囲気中500℃で1時間加熱して、主金属層の表面を形成している硝酸ニッケルを分解後酸化させた。これにより、実施例1の金属多孔体よりも多く酸化物層が形成されたことを断面のSEM-EDXによる酸素マッピングによって確認した。
<Acid treatment process>
The porous body provided with the main metal layer made of the nickel tin alloy obtained above was immersed in a 0.5N nitric acid aqueous solution at room temperature, immediately pulled up, and left at room temperature for 1 hour.
<Heat treatment process>
A porous body having a main metal layer made of a nickel-tin alloy after being immersed in the above nitric acid aqueous solution is heated in an air atmosphere at 500 ° C. for 1 hour to decompose and oxidize nickel nitrate forming the surface of the main metal layer I let you. Thus, it was confirmed by oxygen mapping by SEM-EDX of the cross section that more oxide layers were formed than the porous metal body of Example 1.
  その後は、実施例1と同様にして、多孔体の一対の主面を構成する部分の酸化物層を除去し、酸化物層の表面に耐食性かつ導電性を有する導電層を形成した。これを金属多孔体2とする。 After that, in the same manner as in Example 1, the oxide layer in the portion constituting the pair of main surfaces of the porous body was removed, and a conductive layer having corrosion resistance and conductivity was formed on the surface of the oxide layer. This is designated as metal porous body 2.
-燃料電池の作製-
  上記の金属多孔体2を、用いた以外は実施例1と同様にして燃料電池の単セルを作製した。この単セルを電池Bとした。
-Fabrication of fuel cell-
A single cell of a fuel cell was produced in the same manner as in Example 1 except that the metal porous body 2 was used. This single cell was designated as battery B.
[比較例1]
  実施例2と同様の方法でニッケルめっきを700g/m2とし、スズめっきや酸処理、酸化物層の付与を行わずにニッケルのみからなる多孔体を得た。
  その後、ニッケルからなる多孔体をローラープレス機で、厚さを0.50mmに調厚して金属多孔体3を得た。ニッケルからなる金属多孔体3は、気孔率が84.3%であった。
[Comparative Example 1]
The nickel plating in the same manner as in Example 2 and 700 g / m 2, tin plating or acid treatment to obtain a porous body consisting only of nickel without application of oxide layers.
Thereafter, the porous body made of nickel was adjusted to a thickness of 0.50 mm with a roller press to obtain a porous metal body 3. The porous metal body 3 made of nickel had a porosity of 84.3%.
[比較例2]
  汎用のセパレーター(黒鉛板)に溝を形成したものをガス拡散層として用いて単セルを構成した。つまり、電池Aと同様のMEA、カーボンペーパーをアノード、カソードともに用いた。溝は深さ、幅ともに1mm、とし、溝間の幅を1mmとした。ガス拡散層の見かけの気孔率は、ほぼ50%になる。このセルを電池Cとした。
[Comparative Example 2]
A single cell was constructed using a general-purpose separator (graphite plate) with grooves formed as a gas diffusion layer. That is, the same MEA and carbon paper as the battery A were used for both the anode and the cathode. The grooves were 1 mm in both depth and width, and the width between the grooves was 1 mm. The apparent porosity of the gas diffusion layer is approximately 50%. This cell was designated as battery C.
[比較例3]
  実施例1の方法で酸化物層を形成した後、研磨や導電層付与を行わなかった以外は実施例1と同様にして金属多孔体4を作製した。この金属多孔体4を用いて実施例1と同様の燃料電池の単セルを作製した。このセルを電池Dとした。
[Comparative Example 3]
After forming the oxide layer by the method of Example 1, a metal porous body 4 was produced in the same manner as in Example 1 except that polishing and conductive layer application were not performed. Using this metal porous body 4, a single cell of a fuel cell similar to that of Example 1 was produced. This cell was designated as battery D.
[耐食性の評価]
  硫酸によりpH=3に調整した10%硫酸ナトリウム水溶液に、前記金属多孔体1~3を浸し、0.8Vの電位を1時間かけたときのNi溶出量を調べることにより各金属多孔体の耐食性を評価した。Niの溶出量は、試験に用いた液のICP分析で求めた。結果を図2に示す。
[Evaluation of corrosion resistance]
Corrosion resistance of each metal porous body is determined by immersing the metal porous bodies 1 to 3 in a 10% aqueous solution of sodium sulfate adjusted to pH = 3 with sulfuric acid and examining the amount of Ni eluted when a potential of 0.8 V is applied for 1 hour. Evaluated. The elution amount of Ni was determined by ICP analysis of the liquid used in the test. The results are shown in FIG.
  実施例1、2で作製した金属多孔体1、2のNi溶出量は5ppm以下であり、比較例1で作製した金属多孔体3の34ppmに対して優れた耐食性を示した。 The amount of Ni elution of the metal porous bodies 1 and 2 produced in Examples 1 and 2 was 5 ppm or less, and excellent corrosion resistance was exhibited with respect to 34 ppm of the metal porous body 3 produced in Comparative Example 1.
[発電特性の評価]
  電池A~Dについて、各電池のアノードに水素を、カソードに空気を供給して、発電特性を調べた。
  なお、各ガスの供給は負荷に応じて調整する装置を用いた。電極の周囲温度は25℃、作動温度として80℃を採用した。結果を図3に示す。図3においては、縦軸が電圧(V)を表し、横軸が電流密度(mA/cm2)を表している。
[Evaluation of power generation characteristics]
For batteries A to D, hydrogen was supplied to the anode of each battery and air was supplied to the cathode, and the power generation characteristics were examined.
In addition, the apparatus which adjusts supply of each gas according to load was used. The ambient temperature of the electrode was 25 ° C., and the operating temperature was 80 ° C. The results are shown in FIG. In FIG. 3, the vertical axis represents voltage (V) and the horizontal axis represents current density (mA / cm 2 ).
  実施例1、2で作製した金属多孔体1、2を用いた電池A、Bは、比較例2の汎用セパレーターを用いた電池Cに比べ、電流の高い領域でも電圧が高く、優れた発電特性を示した。一方、研磨を行わなかった比較例3の金属多孔体4を用いた電池Dは発電特性が著しく悪かった。これは、研磨を行わなかったために電気抵抗が高く、十分な集電性能を発揮できなかったためと考えられる。 Batteries A and B using the porous metal bodies 1 and 2 produced in Examples 1 and 2 are higher in voltage even in a high current region than the battery C using the general-purpose separator of Comparative Example 2, and have excellent power generation characteristics. showed that. On the other hand, the battery D using the metal porous body 4 of Comparative Example 3 that was not polished had remarkably poor power generation characteristics. This is presumably because polishing was not performed and thus the electric resistance was high and sufficient current collecting performance could not be exhibited.
  M              膜・電極接合体(MEA)
  1-1          イオン交換膜
  2-1          ガス拡散電極(白金触媒を含む活性炭層)
  2-2          ガス拡散電極(白金触媒を含む活性炭層)
  3-1          集電体
  3-2          集電体
  4-1          セパレーター
  4-1-1      ガス拡散層
  4-2          セパレーター
  4-2-1      ガス拡散層
M Membrane / electrode assembly (MEA)
1-1 Ion exchange membrane 2-1 Gas diffusion electrode (activated carbon layer containing platinum catalyst)
2-2 Gas diffusion electrode (activated carbon layer containing platinum catalyst)
3-1 Current collector 3-2 Current collector 4-1 Separator 4-1-1 Gas diffusion layer 4-2 Separator 4-2-1 Gas diffusion layer

Claims (11)

  1.   骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状である金属多孔体であって、
      前記骨格は、
      ニッケル又はニッケル合金からなる主金属層と、
      前記主金属層の表面に形成される酸化物層と、
      を備え、
      前記主金属層の表面のうち、前記金属多孔体の一対の主面を成す部分には前記酸化物層は形成されていない、金属多孔体。
    A porous metal body having a three-dimensional network structure composed of a skeleton, and having an outer shape of a flat plate having a pair of main surfaces and an end surface connecting the pair of main surfaces,
    The skeleton is
    A main metal layer made of nickel or a nickel alloy;
    An oxide layer formed on the surface of the main metal layer;
    With
    A porous metal body in which the oxide layer is not formed on a portion of the surface of the main metal layer that forms a pair of main surfaces of the porous metal body.
  2.   前記骨格は、
      前記酸化物層の表面に形成される導電層を備える、請求項1に記載の金属多孔体。
    The skeleton is
    The porous metal body according to claim 1, comprising a conductive layer formed on a surface of the oxide layer.
  3.   前記導電層が炭素粉末及び結着剤を含む請求項2に記載の金属多孔体。 The metal porous body according to claim 2, wherein the conductive layer contains carbon powder and a binder.
  4.   前記導電層が銀を含む請求項2又は請求項3に記載の金属多孔体。 The metal porous body according to claim 2 or 3, wherein the conductive layer contains silver.
  5.   前記ニッケル合金が、クロム、スズ及びタングステンのうちの少なくとも一つと、ニッケルと、を含む、請求項1から請求項4のいずれか一項に記載の金属多孔体。 The metal porous body according to any one of claims 1 to 4, wherein the nickel alloy includes at least one of chromium, tin, and tungsten and nickel.
  6.   前記酸化物層が酸化ニッケルである請求項1から請求項5のいずれか一項に記載の金属多孔体。 The metal porous body according to any one of claims 1 to 5, wherein the oxide layer is nickel oxide.
  7.   請求項1から請求項6のいずれか一項に記載の金属多孔体をガス拡散層に用いた燃料電池。 A fuel cell using the porous metal body according to any one of claims 1 to 6 as a gas diffusion layer.
  8.   請求項1に記載の金属多孔体の製造方法であって、
      骨格からなる三次元網目状構造を有し、外形形状が一対の主面および前記一対の主面を繋ぐ端面を有する平板状であり、前記骨格がニッケル又はニッケル合金からなる主金属層を備える多孔体を用意する用意工程と、
      前記多孔体を酸化雰囲気中で加熱することにより、前記主金属層の表面に酸化物層を形成する熱処理工程と、
      前記主金属層の表面のうち、前記一対の主面を成す部分に形成された酸化物層を除去する除去工程と、
      を有する金属多孔体の製造方法。
    It is a manufacturing method of the metal porous body according to claim 1,
    A porous structure having a three-dimensional network structure composed of a skeleton, the outer shape being a flat plate shape having a pair of main surfaces and end faces connecting the pair of main surfaces, and the skeleton including a main metal layer made of nickel or a nickel alloy A preparation process for preparing the body;
    A heat treatment step of forming an oxide layer on the surface of the main metal layer by heating the porous body in an oxidizing atmosphere;
    A removing step of removing an oxide layer formed on a portion of the surface of the main metal layer that forms the pair of main surfaces;
    The manufacturing method of the metal porous body which has this.
  9.   前記用意工程の後であって前記熱処理工程の前に、
      前記多孔体を酸性溶液に浸漬し、乾燥させる酸処理工程を有する請求項8に記載の金属多孔体の製造方法。
    After the preparation step and before the heat treatment step,
    The method for producing a porous metal body according to claim 8, further comprising an acid treatment step of immersing the porous body in an acidic solution and drying the porous body.
  10.   前記酸性溶液が、硝酸、硫酸、塩酸又は酢酸である請求項9に記載の金属多孔体の製造方法。 The method for producing a porous metal body according to claim 9, wherein the acidic solution is nitric acid, sulfuric acid, hydrochloric acid or acetic acid.
  11.   前記熱処理工程の後に、
      前記酸化物層の表面に導電層を形成する導電層形成工程を有する請求項8から請求項10のいずれか一項に記載の金属多孔体の製造方法。
    After the heat treatment step,
    The manufacturing method of the metal porous body as described in any one of Claims 8-10 which has a conductive layer formation process which forms a conductive layer in the surface of the said oxide layer.
PCT/JP2016/075290 2015-09-10 2016-08-30 Metal porous body, fuel cell, and method for manufacturing metal porous body WO2017043365A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16844226.7A EP3349282A4 (en) 2015-09-10 2016-08-30 Metal porous body, fuel cell, and method for manufacturing metal porous body
US15/758,457 US20180261853A1 (en) 2015-09-10 2016-08-30 Porous metal body, fuel battery, and method for producing porous metal body
CN201680052666.9A CN108140845A (en) 2015-09-10 2016-08-30 Metal porous body, fuel cell and the method for manufacturing metal porous body
KR1020187002722A KR20180050645A (en) 2015-09-10 2016-08-30 Porous metal body, fuel battery, and method for producing porous metal body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015178157 2015-09-10
JP2015-178157 2015-09-10
JP2016014148A JP6701601B2 (en) 2015-09-10 2016-01-28 Metal porous body, fuel cell, and method for producing metal porous body
JP2016-014148 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017043365A1 true WO2017043365A1 (en) 2017-03-16

Family

ID=58239642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075290 WO2017043365A1 (en) 2015-09-10 2016-08-30 Metal porous body, fuel cell, and method for manufacturing metal porous body

Country Status (1)

Country Link
WO (1) WO2017043365A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106879A1 (en) * 2017-11-29 2019-06-06 住友電気工業株式会社 Metallic porous body, fuel cell, and method for producing metallic porous body
WO2019167433A1 (en) * 2018-02-27 2019-09-06 住友電気工業株式会社 Metallic porous body and method for manufacturing same, and fuel cell
US20220190410A1 (en) * 2020-12-16 2022-06-16 Airbus Operations Gmbh Structural composite laminate structure for an aircraft part, aircraft part manufactured with such a laminate and aircraft

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105942A (en) * 1973-02-16 1974-10-07
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
JP2003282068A (en) * 2002-03-25 2003-10-03 Sumitomo Electric Ind Ltd Metal porous body and solid high polymer type fuel cell using the same
JP2004300451A (en) * 2003-03-28 2004-10-28 Mitsui Chemicals Inc Gas diffusion electrode, its production method, and electrolysis method
JP2006164947A (en) * 2004-11-15 2006-06-22 Seiko Instruments Inc Polymer electrolyte type fuel cell
JP2006173067A (en) * 2004-12-20 2006-06-29 Seiko Instruments Inc Fuel cell
JP2011241457A (en) * 2010-05-20 2011-12-01 Sumitomo Electric Ind Ltd Highly corrosion-resistant metal porous body
WO2013061841A1 (en) * 2011-10-27 2013-05-02 住友電気工業株式会社 Porous current collector, method for manufacturing same, and fuel cell that uses porous current collector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105942A (en) * 1973-02-16 1974-10-07
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
JP2003282068A (en) * 2002-03-25 2003-10-03 Sumitomo Electric Ind Ltd Metal porous body and solid high polymer type fuel cell using the same
JP2004300451A (en) * 2003-03-28 2004-10-28 Mitsui Chemicals Inc Gas diffusion electrode, its production method, and electrolysis method
JP2006164947A (en) * 2004-11-15 2006-06-22 Seiko Instruments Inc Polymer electrolyte type fuel cell
JP2006173067A (en) * 2004-12-20 2006-06-29 Seiko Instruments Inc Fuel cell
JP2011241457A (en) * 2010-05-20 2011-12-01 Sumitomo Electric Ind Ltd Highly corrosion-resistant metal porous body
WO2013061841A1 (en) * 2011-10-27 2013-05-02 住友電気工業株式会社 Porous current collector, method for manufacturing same, and fuel cell that uses porous current collector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349282A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106879A1 (en) * 2017-11-29 2019-06-06 住友電気工業株式会社 Metallic porous body, fuel cell, and method for producing metallic porous body
JPWO2019106879A1 (en) * 2017-11-29 2020-10-01 住友電気工業株式会社 Method for manufacturing metal porous body, fuel cell and metal porous body
JP7076693B2 (en) 2017-11-29 2022-05-30 住友電気工業株式会社 Method for manufacturing metal porous body, fuel cell and metal porous body
WO2019167433A1 (en) * 2018-02-27 2019-09-06 住友電気工業株式会社 Metallic porous body and method for manufacturing same, and fuel cell
CN111771003A (en) * 2018-02-27 2020-10-13 住友电气工业株式会社 Porous metal body, method for producing porous metal body, and fuel cell
JPWO2019167433A1 (en) * 2018-02-27 2021-03-11 住友電気工業株式会社 Metal porous material and its manufacturing method, and fuel cell
JP7124860B2 (en) 2018-02-27 2022-08-24 住友電気工業株式会社 Metal porous body, manufacturing method thereof, and fuel cell
US20220190410A1 (en) * 2020-12-16 2022-06-16 Airbus Operations Gmbh Structural composite laminate structure for an aircraft part, aircraft part manufactured with such a laminate and aircraft

Similar Documents

Publication Publication Date Title
JP6701601B2 (en) Metal porous body, fuel cell, and method for producing metal porous body
US20200251750A1 (en) Method for producing porous metal body
JP5691107B2 (en) Metal porous body having high corrosion resistance and method for producing the same
JP2017033917A (en) Metal porous body, fuel cell, and manufacturing method of metal porous body
JP6300315B2 (en) Fuel cell current collector and fuel cell
KR102380034B1 (en) Porous metal body, fuel battery, and method for producing porous metal body
JP6614131B2 (en) Porous current collector, fuel cell, and method for producing porous current collector
WO2017022542A1 (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
WO2003079477A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JP2010027262A (en) Fuel cell separator and fuel cell
EP3016189A1 (en) Porous metal body, method for manufacturing porous metal body, and fuel cell
WO2017043365A1 (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
KR20200029439A (en) Metal porous body, solid oxide fuel cell, and method for manufacturing metal porous body
US20180030607A1 (en) Method for producing nickel alloy porous body
JPWO2020049851A1 (en) Method for manufacturing metal porous body, fuel cell and metal porous body
JP5466269B2 (en) Fuel cell separator and fuel cell
TW201727980A (en) Stainless steel sheet for fuel cell separators and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002722

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758457

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016844226

Country of ref document: EP