WO2020235266A1 - Porous body, fuel cell equipped with same, and steam electrolysis device equipped with same - Google Patents

Porous body, fuel cell equipped with same, and steam electrolysis device equipped with same Download PDF

Info

Publication number
WO2020235266A1
WO2020235266A1 PCT/JP2020/016534 JP2020016534W WO2020235266A1 WO 2020235266 A1 WO2020235266 A1 WO 2020235266A1 JP 2020016534 W JP2020016534 W JP 2020016534W WO 2020235266 A1 WO2020235266 A1 WO 2020235266A1
Authority
WO
WIPO (PCT)
Prior art keywords
skeleton
porous body
current collector
main body
body according
Prior art date
Application number
PCT/JP2020/016534
Other languages
French (fr)
Japanese (ja)
Inventor
光靖 小川
昂真 沼田
陽平 野田
真嶋 正利
奥野 一樹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020235266A1 publication Critical patent/WO2020235266A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a porous body, a fuel cell containing the porous body, and a steam electrolyzer including the porous body.
  • porous materials such as metal porous materials have a high porosity and a large surface area, and therefore have been used in various applications such as battery electrodes, catalyst carriers, metal composite materials, and filters.
  • the porous body according to one aspect of the present disclosure is a porous body having a skeleton having a three-dimensional network structure.
  • the main body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.
  • the fuel cell according to one aspect of the present disclosure is a fuel cell including a current collector for an air electrode and a current collector for a hydrogen electrode, and is at least one of the current collector for an air electrode or the current collector for a hydrogen electrode. Includes the above-mentioned porous body.
  • the steam electrolyzer according to one aspect of the present disclosure is a steam electrolyzer including a current collector for an air electrode and a current collector for a hydrogen electrode, which is the current collector for the air electrode or the current collector for the hydrogen electrode. At least one contains the above-mentioned porous body.
  • FIG. 1 is a schematic partial cross-sectional view showing an outline of a partial cross section of a skeleton in a porous body according to one aspect of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 3A is an enlarged schematic view focusing on one of the cell portions in the porous body in order to explain the three-dimensional network structure of the porous body according to one aspect of the present disclosure.
  • FIG. 3B is a schematic view showing one aspect of the shape of the cell portion.
  • FIG. 4A is a schematic view showing another aspect of the shape of the cell portion.
  • FIG. 4B is a schematic view showing still another aspect of the shape of the cell portion.
  • FIG. 5 is a schematic view showing aspects of the two joined cell portions.
  • FIG. 1 is a schematic partial cross-sectional view showing an outline of a partial cross section of a skeleton in a porous body according to one aspect of the present disclosure.
  • FIG. 2 is a cross
  • FIG. 6 is a schematic view showing aspects of the four joined cell portions.
  • FIG. 7 is a schematic view showing one aspect of a three-dimensional network structure formed by joining a plurality of cell portions.
  • FIG. 8 is a schematic cross-sectional view of the fuel cell according to one aspect of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view showing a fuel cell cell according to one aspect of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view showing a steam electrolyzer according to one aspect of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view showing a cell for a steam electrolyzer according to one aspect of the present disclosure.
  • Patent Document 1 discloses a metal porous body having a skeleton containing a nickel-tin alloy as a main component as a metal porous body having properties of oxidation resistance and corrosion resistance. There is.
  • Patent Document 1 Although the metal porous body described in Patent Document 1 is excellent in high temperature durability, when the metal porous body is used as an electrode of a solid oxide fuel cell (SOFC), it is conductive due to long-term use at 700 ° C. or higher. It was required to further suppress the decrease. As described above, when a porous body such as a metal porous body is used as an electrode of SOFC, there is room for further improvement.
  • SOFC solid oxide fuel cell
  • This disclosure has been made in view of the above circumstances, and even when used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the operating voltage due to long-term use. It is an object of the present invention to provide a porous body in which a decrease in the voltage is suppressed, a fuel cell containing the same, and a steam electrolyzer including the same.
  • the porous body according to one aspect of the present disclosure is a porous body having a skeleton having a three-dimensional network structure.
  • the main body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements. Even when the porous body having such characteristics is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the decrease in operating voltage due to long-term use is suppressed. To.
  • the main body of the skeleton is When nickel is contained as a constituent element, cobalt is not contained and When cobalt is contained as a constituent element, it is preferable that nickel is not contained.
  • the main body of the skeleton preferably further contains oxygen as a constituent element.
  • This aspect means that the porous body is in an oxidized state, and even in such a state, the porous body can maintain high conductivity in a high temperature environment.
  • the oxygen is preferably contained in the main body of the skeleton in an amount of 0.1% by mass or more and 35% by mass or less. In this case, high conductivity can be maintained more effectively in a high temperature environment.
  • the main body of the skeleton is the general formula (1): A x Z 3-x O 4 (1) Contains the metal oxides indicated by In formula (1), A represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper, and Z represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper. As shown, x is preferably 1 or more and 2 or less. In this case, high electrolytic performance can be more effectively maintained in a high temperature environment without using expensive materials.
  • the metal oxide contains at least one selected from the group consisting of MnNi 2 O 4 , MnCo 2 O 4 , CuNi 2 O 4 and FeCo 2 O 4 . In this case, it has the effect of exhibiting particularly high electrolytic performance.
  • the main body of the skeleton preferably contains a spinel-type oxide. In this case as well, high conductivity can be maintained more effectively in a high temperature environment.
  • the main body of the skeleton preferably does not contain chromium as a constituent element.
  • the fuel cell using the porous body as an electrode can prevent performance deterioration due to chromium poisoning.
  • the basis weight of the skeleton is preferably 200 g / m 2 or more and 1000 g / m 2 or less. By doing so, both mechanical strength and good gas diffusibility can be achieved.
  • the skeleton preferably has an electrical resistivity of 2 ⁇ ⁇ cm 2 or less at 800 ° C. By doing so, high conductivity can be maintained more effectively.
  • the number of voids having a major axis of 1 ⁇ m or more appearing in an arbitrary 10 ⁇ m square region of the observation image is five. The following is preferable. Thereby, the strength can be sufficiently improved.
  • the skeleton is preferably hollow.
  • the porous body can be made lightweight, and the required amount of metal can be reduced.
  • the porous body preferably has a sheet-like appearance and a thickness of 0.2 mm or more and 2 mm or less. As a result, it is possible to form an air electrode and a hydrogen electrode having a thinner thickness than in the past, and thus the required amount of metal can be reduced.
  • the fuel cell according to one aspect of the present disclosure is a fuel cell including a current collector for an air electrode and a current collector for a hydrogen electrode, and is the current collector for the air electrode or the current collector for the hydrogen electrode. At least one of the above contains the porous body.
  • a fuel cell having such characteristics has low electrical resistance in the air electrode current collector or the hydrogen electrode current collector, and suppresses a decrease in operating voltage due to long-term use, so that power can be generated efficiently. can do.
  • the steam electrolyzer according to one aspect of the present disclosure is a steam electrolyzer including an air electrode current collector and a hydrogen electrode current collector, and is the air electrode current collector or the hydrogen electrode collector. At least one of the electric bodies contains the above-mentioned porous body. A steam electrolyzer having such characteristics has a reduced resistance during electrolysis, and thus can efficiently electrolyze steam.
  • the present embodiment hereinafter, also referred to as “the present embodiment”. However, this embodiment is not limited to this.
  • the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same.
  • the porous body according to the present embodiment is a porous body having a skeleton having a three-dimensional network structure.
  • the main body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements. Even when the porous body having such characteristics is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the decrease in operating voltage due to long-term use is suppressed.
  • the "porous material" in the present embodiment include a porous body made of a metal, a porous body made of an oxide of the metal, and a porous body containing a metal and an oxide of the metal.
  • the surface of the current collector for an air electrode used in a conventional fuel cell is coated with a chromium film in order to impart oxidation resistance (for example, Japanese Patent Application Laid-Open No. 2012-119126 (Patent Document). 2), International Publication No. 2009/131180 (Patent Document 3)).
  • chromium tends to evaporate and scatter on the current collector for the air electrode, degrading the performance of the fuel cell (chromium poisoning). Since the porous body according to the present embodiment can maintain high conductivity even when oxidized, it is not necessary to coat the chromium film. Therefore, the porous body according to the present embodiment is more suitable as a current collector for the air electrode of the fuel cell without fear of deterioration of the performance of the fuel cell due to chromium poisoning.
  • the appearance of the porous body can have various shapes such as a sheet shape, a rectangular parallelepiped shape, a spherical shape, and a columnar shape.
  • the porous body preferably has a sheet-like appearance and a thickness of 0.2 mm or more and 2 mm or less.
  • the thickness of the porous body is more preferably 0.5 mm or more and 1 mm or less. Since the thickness of the porous body is 2 mm or less, the porous body is thinner than the conventional one, and the required amount of metal can be reduced. Since the thickness of the porous body is 0.2 mm or more, the required strength can be provided. The thickness can be measured by, for example, a commercially available digital thickness gauge.
  • the porous body has a skeleton having a three-dimensional network structure as described above.
  • the body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.
  • the skeleton 12 has a three-dimensional network structure having pores 14.
  • the skeleton 12 includes a main body 11 (hereinafter, may be referred to as “skeleton main body 11”) containing at least two kinds of metal elements as a constituent element, and a hollow inner 13 surrounded by the skeleton main body 11. ..
  • the skeleton 12 forms a strut portion and a node portion, which will be described later.
  • the skeleton 12 is preferably hollow.
  • the skeleton 12 preferably has a triangular cross-sectional shape orthogonal to the longitudinal direction thereof.
  • the cross-sectional shape of the skeleton 12 should not be limited to this.
  • the cross-sectional shape of the skeleton 12 may be a polygon other than a triangle such as a quadrangle or a hexagon.
  • the cross-sectional shape of the skeleton 12 may be circular.
  • polygons such as triangles, quadrangles and hexagons, and shapes such as circles are not limited to geometric shapes.
  • "triangle" is a concept including a substantially triangular shape. The same applies to other shapes.
  • the skeleton 12 preferably has a hollow tubular shape inside 13 surrounded by the skeleton body 11, and has a triangular or other polygonal or circular cross section orthogonal to the longitudinal direction. Since the skeleton 12 has a tubular shape, the skeleton main body 11 has an inner wall forming an inner surface of the cylinder and an outer wall forming an outer surface of the cylinder. Since the inside 13 of the skeleton 12 surrounded by the skeleton body 11 is hollow, the porous body can be made very lightweight. However, the skeleton is not limited to being hollow and may be solid. In this case, the strength of the porous body can be improved.
  • the skeleton preferably has a basis weight of 200 g / m 2 or more and 1000 g / m 2 or less.
  • the basis weight is more preferably 250 g / m 2 or more and 900 g / m 2 or less.
  • the basis weight can be appropriately adjusted when a predetermined alloy plating is performed on the conductive resin molded product which has been subjected to the conductivity treatment for imparting conductivity.
  • the basis weight can be calculated by the following formula.
  • the basis weight of the skeleton can be grasped as the basis weight of the porous body.
  • Metsuke amount (g / m 2 ) M (g) / S (m 2 )
  • M Skeleton mass [g]
  • S Area of the main surface of the appearance in the skeleton [m 2 ]
  • the above-mentioned basis weight is converted into the mass per unit volume of the skeleton (apparent density of the skeleton) as follows. That is, the apparent density of the skeleton is preferably 0.14 g / cm 3 or more and 0.75 g / cm 3 or less, and more preferably 0.18 g / cm 3 or more and 0.65 g / cm 3 or less.
  • the "apparent density of the skeleton" is defined by the following equation.
  • the apparent density of the skeleton can be grasped as the apparent density of the porous body.
  • Apparent density of skeleton (g / cm 3 ) M (g) / V (cm 3 ) M: Skeleton mass [g]
  • V Volume of appearance shape in skeleton [cm 3 ]
  • the porosity of the skeleton is preferably 40% or more and 98% or less, more preferably 45% or more and 98% or less, and most preferably 50% or more and 98% or less.
  • the porosity of the skeleton is 40% or more, the porous body can be made very lightweight, and the surface area of the porous body can be increased.
  • the porosity of the skeleton is 98% or less, the porous body can be provided with sufficient strength.
  • the average pore diameter of the skeleton is preferably 350 ⁇ m or more and 3500 ⁇ m or less.
  • the average pore diameter of the skeleton is 350 ⁇ m or more, the strength of the porous body can be increased.
  • the average pore diameter of the skeleton is 3500 ⁇ m or less, the bendability (bending workability) of the porous body can be improved. From these viewpoints, the average pore diameter of the skeleton is more preferably 400 ⁇ m or more and 1000 ⁇ m or less, and most preferably 450 ⁇ m or more and 900 ⁇ m or less.
  • the porosity and average pore diameter of the skeleton and the porosity and average pore diameter of the porous body refer to the same thing.
  • the number of voids having a major axis of 1 ⁇ m or more appearing in an arbitrary 10 ⁇ m square region of the observation image is 5 or less. Is preferable.
  • the number of voids is more preferably 3 or less. Thereby, the strength of the porous body can be sufficiently improved.
  • the main body of the skeleton is different from the molded body formed by sintering fine powder because the number of voids is 5 or less. This is because a large number of the above-mentioned voids is observed in the molded product obtained by sintering the fine powder.
  • the lower limit of the number of voids observed is, for example, zero.
  • the "number of voids” means the average number of voids obtained by observing each of a plurality of (for example, 10) "10 ⁇ m square regions" in the cross section of the skeleton body.
  • the cross section of the skeleton can be observed by using an electron microscope. Specifically, it is preferable to obtain the above-mentioned "number of voids" by observing the cross section of the skeleton body in 10 visual fields.
  • the cross section of the skeleton body may be a cross section orthogonal to the longitudinal direction of the skeleton, or may be a cross section parallel to the longitudinal direction of the skeleton.
  • the voids can be distinguished from others by the color contrast (difference between light and dark).
  • the upper limit of the major axis of the void should not be limited, but is, for example, 10000 ⁇ m.
  • the average thickness of the skeleton body is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the "thickness of the skeleton body” means the shortest distance from the inner wall, which is the interface with the hollow inside the skeleton, to the outer wall outside the skeleton, and the average value thereof is defined as the "average thickness of the skeleton body". ..
  • the thickness of the skeleton body can be determined by observing the cross section of the skeleton with an electron microscope.
  • the average thickness of the skeleton body can be obtained by the following method. First, the sheet-shaped porous body is cut so that the cross section of the skeleton body appears. An observation image is obtained by selecting one cut cross section, magnifying it at a magnification of 3000 times, and observing it with an electron microscope. Next, the thickness of any one side of the polygon (for example, the triangle in FIG. 2) forming one skeleton appearing in this observation image is measured at the center of the one side, and this is measured as the skeleton. The thickness of the main body. Further, by performing such a measurement on 10 observation images (10 fields of view), the thickness of the skeleton body at 10 points can be obtained. Finally, by calculating these average values, the average thickness of the skeleton body can be obtained.
  • 10 observation images 10 fields of view
  • the skeleton is more preferable electrical resistivity at 800 ° C. it is preferably 2 [Omega ⁇ cm 2 or less, 0.01 Ohm ⁇ cm 2 or more 2 [Omega ⁇ cm 2 or less.
  • the electrical resistivity can be obtained, for example, as follows.
  • the porous body to be evaluated is maintained at 800 ° C. in an air atmosphere, and the electrical resistivity (unit: ⁇ ⁇ cm 2 ) is measured by the four-terminal method. When the appearance of the porous body is sheet-like, the measurement direction of the electrical resistivity is the thickness direction of the porous body.
  • the electrical resistivity of the skeleton can be grasped as the electrical resistivity of the porous body.
  • the porous body has a skeleton having a three-dimensional network structure.
  • the skeleton includes a strut portion and a node portion connecting the plurality of strut portions.
  • the "three-dimensional network structure” means a three-dimensional network structure.
  • the three-dimensional network structure is formed by the skeleton.
  • the three-dimensional network structure will be described in detail.
  • the three-dimensional network structure 30 has a cell portion 20 as a basic unit, and is formed by joining a plurality of cell portions 20.
  • the cell portion 20 includes a support column portion 1 and a node portion 2 that connects a plurality of support column portions 1.
  • the terms of the support column 1 and the node section 2 are explained separately for convenience, there is no clear boundary between them. That is, in the three-dimensional network structure 30, a plurality of column portions 1 and a plurality of node portions 2 are integrally formed to form a cell portion 20, and the cell portion 20 is used as a constituent unit.
  • the cell portion of FIG. 3A will be described as if it were a regular dodecahedron of FIG. 3B.
  • the support column portion 1 and the node portion 2 each form a frame portion 10 which is a planar polygonal structure due to the existence of a plurality of each.
  • the polygonal structure of the frame portion 10 is a regular pentagon, but it may be a polygon other than a regular pentagon such as a triangle, a quadrangle, or a hexagon.
  • a plane polygonal hole is formed by the plurality of support columns 1 and the plurality of node portions 2.
  • the hole diameter of the planar polygonal hole means the diameter of a circle circumscribing the planar polygonal hole defined by the frame portion 10.
  • the frame portion 10 forms a cell portion 20 which is a three-dimensional polyhedral structure by combining a plurality of the frame portions 10.
  • one support column portion 1 and one node portion 2 are shared by a plurality of frame portions 10.
  • the strut portion 1 preferably has a hollow tubular shape and has a triangular cross section, but is not limited to this.
  • the support column 1 may have a polygonal shape other than a triangle such as a quadrangle or a hexagon, or a circular shape.
  • the shape of the node portion 2 may be a shape of a sharp edge having vertices, a planar shape such that the vertices are chamfered, or a radius is given to the vertices. It may have a curved surface shape.
  • the polyhedron structure of the cell portion 20 is a dodecahedron in FIG. 3B, but may be another polyhedron such as a cube, an icosahedron (FIG. 4A), or a truncated icosahedron (FIG. 4B).
  • a three-dimensional space pore portion 14
  • the pore diameter of the three-dimensional space can be grasped as the diameter of a sphere circumscribing the three-dimensional space defined by the cell portion 20.
  • the pore diameter of the porous body in the present embodiment is calculated based on the above-mentioned calculation formula for convenience. That is, the pore diameter (pore diameter) of the three-dimensional space defined by the cell portion 20 refers to the same as the porosity and the average pore diameter of the skeleton.
  • the cell portion 20 forms a three-dimensional network structure 30 by combining a plurality of the cell portions 20 (FIGS. 5 to 7). At this time, the frame portion 10 is shared by the two cell portions 20. It can be grasped that the three-dimensional network structure 30 includes the frame portion 10 or the cell portion 20.
  • the porous body has a three-dimensional network structure that forms a planar polygonal hole (frame portion) and a three-dimensional space (cell portion). Therefore, it can be clearly distinguished from a two-dimensional network structure having only planar holes (for example, punching metal, mesh, etc.). Further, since the porous body has a plurality of support columns and a plurality of node portions integrally to form a three-dimensional network structure, it is like a non-woven fabric formed by entwining fibers, which are constituent units, with each other. It can be clearly distinguished from the structure. Since the porous body has such a three-dimensional network structure, it can have continuous ventilation holes.
  • the three-dimensional network structure is not limited to the above-mentioned structure.
  • the cell portion may be formed by a plurality of frame portions having different sizes and planar shapes.
  • the three-dimensional network structure may be formed by a plurality of cell portions having different sizes and three-dimensional shapes.
  • the three-dimensional network structure may partially include a frame portion in which a planar polygonal hole is not formed, or a cell portion in which a three-dimensional space is not formed (a cell portion whose inside is solid). ) May be included in a part.
  • the body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements as described above.
  • the main body of the skeleton does not exclude containing a third component other than the above-mentioned metal element as long as it does not affect the action and effect of the porous body of the present disclosure.
  • the main body of the skeleton is preferably composed of the above two kinds of metal elements as a metal component. Examples of the combination of the above two types of metal elements include nickel and manganese, nickel and iron, nickel and copper, manganese and cobalt, iron and cobalt, and iron and copper.
  • the main body of the skeleton preferably does not contain nickel when it contains nickel as a constituent element, and does not contain nickel when it contains cobalt as a constituent element.
  • the at least two metal elements are preferably the main components in the body of the skeleton.
  • the "main component" in the skeleton means the component having the largest mass ratio in the skeleton. More specifically, the "main component” refers to a component having a content ratio of more than 50% by mass in the skeleton. That is, it is preferable that the total content of at least the two metal elements in the skeleton exceeds 50% by mass.
  • the total content ratio of the above two metal elements in the main body of the skeleton is, for example, the state before using the porous body as the current collector for the air electrode or the current collector for the hydrogen electrode of SOFC, that is, the porous body is 700 ° C. or higher. In the state before being exposed to the high temperature of the above, it is preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 95% by mass or more.
  • the total content ratio of the at least two kinds of metal elements may be 100% by mass.
  • the proportion of spinel-type oxides consisting of at least one of the two metal elements and oxygen tends to increase. As a result, the porous body can maintain high conductivity even when used in a high temperature environment.
  • the body of the skeleton preferably further contains oxygen as a constituent element. Specifically, oxygen is more preferably contained in the main body of the skeleton in an amount of 0.1% by mass or more and 40% by mass or less. Oxygen in the body of the skeleton can be detected, for example, after using a porous body as a current collector for the air electrode or a current collector for the hydrogen electrode of an SOFC. That is, in the state after the porous body is exposed to a high temperature of 700 ° C. or higher, oxygen is preferably contained in the main body of the skeleton in an amount of 0.1% by mass or more and 40% by mass or less. Oxygen is more preferably 10 to 30% by mass, still more preferably 25 to 28% by mass in the main body of the skeleton. Oxygen in the main body of the skeleton may be detected immediately after the production of the porous body.
  • oxygen is contained as a constituent element in the main body of the skeleton in an amount of 0.1% by mass or more and 40% by mass or less, it is possible to know the thermal history that the porous body was exposed to a high temperature of 700 ° C. or more. Further, when the porous body is used as a current collector for an air electrode or a current collector for a hydrogen electrode of SOFC, it is exposed to a high temperature of 700 ° C. or higher, and at least one of the above two metal elements is contained in the main body of the skeleton. , And when a spinel-type oxide composed of oxygen is produced, the main body of the skeleton tends to contain oxygen in an amount of 0.1% by mass or more and 40% by mass or less as a constituent element.
  • the main body of the skeleton is the general formula (1): A x Z 3-x O 4 (1)
  • A represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper
  • Z represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper.
  • x is 1 or more and 2 or less. It is preferable to contain the metal oxide represented by.
  • the molar ratio of the metal element A to the total number of moles of the metal element A and the metal element Z is preferably 0.1 or more and 0.8 or less, and preferably 0.2 or more and 0.5 or less. More preferred.
  • a x Z 3-x O 4 (however, 1 ⁇ x ⁇ 2), typically, is generated by oxidation.
  • a spinel-type oxide represented by the chemical formula of AZ 2 O 4 or A 2 ZO 4 is produced in the skeleton.
  • Oxidation of the skeleton may produce spinel-type oxides represented by the chemical formula of AZ 2 O 4 (where A is the same element as Z).
  • the spinel-type oxide exhibits high conductivity, so that the porous body can maintain high conductivity even when the entire skeleton is oxidized by use in a high temperature environment.
  • the main body of the skeleton preferably contains a spinel-type oxide.
  • the porous body can more effectively maintain high conductivity even when it is oxidized.
  • the oxygen content in the main body of the skeleton is out of the above range, the porous body tends not to have the ability to more effectively maintain high conductivity when oxidized, as desired.
  • the above metal oxides include Nimn 2 O 4 , MnNi 2 O 4 , MnCo 2 O 4 , Comn 2 O 4 , CuFe 2 O 4 , CuNi 2 O 4 , NiFe 2 O 4 , FeCo 2 O 4 , Examples include FeNi 2 O 4 and CoFe 2 O 4 .
  • the metal oxide preferably contains at least one selected from the group consisting of MnNi 2 O 4 , MnCo 2 O 4 , CuNi 2 O 4 and FeCo 2 O 4 . These can maintain particularly high electrolytic performance.
  • the main body of the skeleton can further contain a third component as a constituent element as described above, as long as it does not affect the action and effect of the porous body of the present disclosure.
  • the body of the skeleton contains, for example, silicon, magnesium, carbon, tin, aluminum, sodium, tungsten, titanium, phosphorus, boron, silver, gold, molybdenum, nitrogen, sulfur, fluorine, chlorine, etc. as the third component. May be good.
  • the main body of the skeleton does not contain chromium as a constituent element.
  • the third component may be contained as an unavoidable impurity that is inevitably mixed in, for example, in the production method described later.
  • the main body of the skeleton may contain the above-mentioned oxygen as a third component in a state before using the porous body as a current collector for an air electrode or a current collector for a hydrogen electrode of SOFC.
  • the third component in the main body of the skeleton is preferably 5% by mass or less by itself, and preferably 10% by mass or less in total.
  • the main body of the skeleton may further contain at least one non-metal element selected from the group consisting of nitrogen, sulfur, fluorine, and chlorine as a constituent element, and the non-metal element may further contain.
  • the total content ratio may be 5 ppm or more and 10000 ppm or less with respect to the main body of the skeleton.
  • the total content of the non-metal element is 10 ppm or more and 8000 ppm or less with respect to the main body of the skeleton.
  • the main body of the skeleton may further contain phosphorus as a constituent element, and the content ratio thereof may be 5 ppm or more and 50,000 ppm or less with respect to the main body of the skeleton.
  • the phosphorus content is 10 ppm or more and 40,000 ppm or less.
  • the body of the skeleton may further contain at least two or more non-metal elements selected from the group consisting of nitrogen, sulfur, fluorine, chlorine, and phosphorus as constituent elements.
  • the total content of the non-metal elements may be 5 ppm or more and 50,000 ppm or less with respect to the main body of the skeleton.
  • the total content of the non-metal element is 10 ppm or more and 10000 ppm or less with respect to the main body of the skeleton.
  • the porous body When the porous body is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, it is exposed to a high temperature environment of 700 ° C. or higher as described above, but the main body of the skeleton is the non-metal described above. By containing an element as a constituent element, high strength (creep characteristics) can be maintained.
  • the EDX device for example, SEM part: product
  • SEM electron microscope
  • the mass%, mass ratio, and the like of oxygen and metal elements in the main body of the skeleton can be obtained based on the atomic concentration of each element detected by the EDX device. Further, regarding whether or not the main body of the skeleton has a spinel-type oxide composed of a metal element and oxygen, an X-ray diffraction (XRD) method is performed in which the cross section is irradiated with X-rays and the diffraction pattern is analyzed. It can be specified by using it.
  • XRD X-ray diffraction
  • an X-ray diffractometer for example, trade name (model number): "Empyrene", manufactured by Spectris Co., Ltd., analysis software: "integrated powder” X-ray analysis software PDXL ”, manufactured by Rigaku Co., Ltd.
  • the measurement conditions may be as follows, for example.
  • the fuel cell according to the present embodiment is a fuel cell including a current collector for an air electrode and a current collector for a hydrogen electrode. At least one of the current collector for the air electrode and the current collector for the hydrogen electrode contains the porous body.
  • the above-mentioned current collector for air electrode or current collector for hydrogen electrode is used as the current collector for air electrode or hydrogen electrode of a fuel cell as described above, the electric resistance is low and the electric resistance is long. Includes a porous body that suppresses a decrease in operating voltage due to use. Therefore, the above-mentioned current collector for air electrode or current collector for hydrogen electrode can be suitably used as at least one of the current collector for air electrode or current collector for hydrogen electrode of SOFC.
  • the porous body contains at least two kinds of metal elements, it is more preferable to use the porous body as a current collector for an air electrode.
  • FIG. 8 is a schematic cross-sectional view showing a fuel cell according to one aspect of the present disclosure.
  • the fuel cell 150 includes a current collector 110 for a hydrogen electrode, a current collector 120 for an air electrode, and a cell 100 for a fuel cell.
  • the fuel cell cell 100 is provided between the hydrogen electrode current collector 110 and the air electrode current collector 120.
  • the "current collector for hydrogen electrode” means a current collector on the side of supplying hydrogen in the fuel cell.
  • the “air electrode current collector” means a current collector on the side that supplies a gas containing oxygen (for example, air) in a fuel cell.
  • FIG. 9 is a schematic cross-sectional view showing a fuel cell cell according to one aspect of the present disclosure.
  • the fuel cell cell 100 includes an air electrode 102, a hydrogen electrode 108, an electrolyte layer 106 provided between the air electrode 102 and the hydrogen electrode 108, and the electrolyte layer 106 and the air electrode 102.
  • An intermediate layer 104 provided between them is provided to prevent a reaction.
  • the air electrode for example, an oxide of LaSrCo (LSC) is used.
  • LSC LaSrCo
  • the electrolyte layer for example, a Y-doped Zr oxide (YSZ) is used.
  • YSZ Y-doped Zr oxide
  • GDC Gd-doped Ce oxide
  • the hydrogen electrode include a mixture of YSN and NiO 2 , metallic Ni, and the like.
  • the fuel cell 150 further includes a first interconnector 112 having a fuel flow path 114 and a second interconnector 122 having an oxidant flow path 124.
  • the fuel flow path 114 is a flow path for supplying fuel (for example, hydrogen) to the hydrogen electrode 108.
  • the fuel flow path 114 is provided on the main surface of the first interconnector 112, which faces the current collector 110 for hydrogen poles.
  • the oxidant flow path 124 is a flow path for supplying an oxidant (for example, oxygen) to the air electrode 102.
  • the oxidant flow path 124 is provided on the main surface of the second interconnector 122 facing the air electrode current collector 120.
  • the steam electrolyzer according to the present embodiment is a steam electrolyzer including a current collector for an air electrode and a current collector for a hydrogen electrode, and has the same structure as the above fuel cell. Be prepared. At least one of the current collector for the air electrode and the current collector for the hydrogen electrode contains the porous body.
  • the current collector for the air electrode or the current collector for the hydrogen electrode includes a porous body having an appropriate strength as a current collector for the steam electrolyzer as described above. Therefore, the above-mentioned current collector for air electrode or current collector for hydrogen electrode is suitable as at least one of the current collector for air electrode or the current collector for hydrogen electrode of the steam electrolyzer.
  • the porous body contains at least two kinds of metal elements, it is more preferable to use the porous body as a current collector for an air electrode. As an example, the resistance is lowered and the electrolytic voltage is lowered. is there.
  • FIG. 10 is a schematic cross-sectional view showing a steam electrolyzer according to one aspect of the present disclosure.
  • the steam electrolyzer 250 includes a current collector 210 for a hydrogen electrode, a current collector 220 for an air electrode, and a cell 200 for a steam electrolyzer.
  • the steam electrolyzer cell 200 is provided between the hydrogen electrode current collector 210 and the air electrode current collector 220.
  • the "hydrogen electrode current collector” means a current collector on the side where hydrogen is generated in the steam electrolyzer.
  • the “air electrode current collector” means a current collector on the side that supplies a gas containing water vapor (for example, humidified air) in the water vapor electrolyzer.
  • the current collector for the air electrode can also be grasped as a current collector on the side where oxygen is generated in the steam electrolyzer. Further, in one aspect of the present embodiment, the gas containing water vapor may be supplied from the side of the current collector for the hydrogen electrode.
  • FIG. 11 is a schematic cross-sectional view showing a cell for a steam electrolyzer according to one aspect of the present disclosure.
  • the cell 200 for a steam electrolyzer has an air electrode 202, a hydrogen electrode 208, an electrolyte layer 206 provided between the air electrode 202 and the hydrogen electrode 208, and the electrolyte layer 206 and the air electrode 202.
  • An intermediate layer 204 provided between them is provided in order to prevent a reaction with the above.
  • the air electrode for example, an oxide of LaSrCo (LSC) is used.
  • LSC LaSrCo
  • the electrolyte layer for example, a Y-doped Zr oxide (YSZ) is used.
  • YSZ Y-doped Zr oxide
  • GDC Gd-doped Ce oxide
  • As the hydrogen electrode for example, a mixture of YSZ and NiO 2 is used.
  • the steam electrolyzer 250 further includes a first interconnector 212 having a hydrogen flow path 214 and a second interconnector 222 having a steam flow path 224.
  • the hydrogen flow path 214 is a flow path for recovering hydrogen from the hydrogen electrode 208.
  • the hydrogen flow path 214 is provided on the main surface of the first interconnector 212, which faces the current collector 210 for the hydrogen electrode.
  • the water vapor flow path 224 is a flow path for supplying water vapor (for example, humidified air) to the air electrode 202.
  • the water vapor flow path 224 is provided on the main surface of the second interconnector 222, which faces the current collector 220 for the air electrode.
  • the porous body according to the present embodiment can be produced by appropriately using a conventionally known method.
  • the method for producing the porous body include an electrolytic plating method, a dipping method, a sputtering method, a chemical vapor deposition method (CVD method), and an electroless plating method.
  • the method for producing the porous body is preferably, for example, an electrolytic plating method or a dipping method described later.
  • a manufacturing method using the electrolytic plating method First, a manufacturing method using the electrolytic plating method will be described. That is, a step of obtaining a conductive resin molded body by forming a conductive coating layer on a resin molded body having a three-dimensional network structure (first step), and at least two kinds of metals on the conductive resin molded body. A step of obtaining a porous body precursor by plating an alloy containing an element as a constituent element (second step) and a step of heat-treating the porous body precursor to remove resin components in a conductive resin molded product.
  • a porous body by a method for producing a porous body, which includes a step of incineration and removing the porous body to obtain a porous body (third step).
  • the manufacturing method may further include a step (fourth step) of oxidizing the porous body after the third step.
  • a sheet of a resin molded body having a three-dimensional network structure (hereinafter, also simply referred to as “resin molded body”) is prepared.
  • a polyurethane resin, a melamine resin, or the like can be used as the resin molded product.
  • a conductive treatment for imparting conductivity to the resin molded body a conductive coating layer is formed on the surface of the resin molded body. Examples of the conductive treatment include the following methods. (1) Forming a conductive coating layer on the surface of a resin molded product by means such as coating or dipping a conductive paint containing conductive particles such as carbon and conductive ceramic and a binder.
  • a porous precursor is obtained by plating an alloy containing at least two kinds of metal elements as constituent elements on the conductive resin molded product.
  • electroless plating can be applied to the above alloy plating method, it is preferable to use electrolytic plating (so-called electroplating) from the viewpoint of efficiency.
  • electrolytic plating in the electrolytic plating of the above alloy, a conductive resin molded body is used as a cathode.
  • a method for obtaining the porous precursor by electroplating the following two methods can be mentioned. (Method 1) Electroplating is performed on the conductive resin molded product using a plating bath containing at least two metal elements as constituent elements.
  • Method 2 First, electroplating is performed on the conductive resin molded body using a plating bath containing the first metal element (for example, nickel element) among the at least two kinds of metal elements. Next, the conductive resin molded body plated with the first metal element using a plating bath containing the second metal element (for example, copper element) among the at least two kinds of metal elements. Electroplating is performed on top. At this time, the electrolytic plating of the first metal element and the electrolytic plating of the second metal element may be alternately repeated. Then, a high temperature (for example, 1000 ° C.) heat diffusion treatment is performed in a hydrogen atmosphere.
  • a high temperature for example, 1000 ° C.
  • the plating bath used for electrolytic plating of the above alloy a known one can be used.
  • a watt bath, a chloride bath, a sulfamic acid bath and the like can be used.
  • An example of a plating bath for electrolytic plating of nickel, copper, and iron is shown below.
  • Salt (aqueous solution): copper pyrophosphate (90 g / L), potassium pyrophosphate (375 g / L) Ammonia water: 3 mL / L (specific gravity 0.9) Orthophosphoric acid: 80 g / L
  • a porous precursor in which a predetermined alloy is plated on the conductive resin molded body.
  • non-metal elements such as nitrogen, sulfur, fluorine, chlorine, and phosphorus
  • they can be contained in the porous precursor by adding various additives into the plating bath.
  • additives include, but are not limited to, sodium nitrate, sodium sulfate, sodium fluoride, sodium chloride, and sodium phosphate, as long as each non-metal element is contained.
  • the porous body precursor is heat-treated to incinerate the resin component in the conductive resin molded body, and the resin component is removed to obtain a porous body having a hollow skeleton.
  • the temperature and atmosphere of the heat treatment for removing the resin component may be, for example, 600 ° C. or higher, and may be an oxidizing atmosphere such as air.
  • the average pore diameter of the porous body obtained by the above method is substantially equal to the average pore diameter of the resin molded product. Therefore, the average pore diameter of the resin molded product used to obtain the porous body may be appropriately selected according to the application to which the porous body is applied. Since the porosity of the porous body is finally determined by the amount of metal to be plated (weight), the basis weight of the alloy to be plated should be appropriately selected according to the porosity required for the final product, the porous body. Just do it.
  • the porosity and average pore diameter of the resin molded product are defined in the same manner as the porosity and average pore diameter of the skeleton described above, and by replacing "skeleton" with "resin molded product” and applying the above formula. Can be obtained based on.
  • the porous body may be further subjected to an oxidation treatment to obtain an alloy constituting the porous body as a metal oxide.
  • the oxidation treatment is not particularly limited, and examples thereof include oxidation treatment (100 to 1500 ° C., 1 to 1000 minutes) of the porous body in an oxidizing atmosphere (oxygen concentration of 20 to 100%).
  • dipping method Specific examples of the manufacturing method using the dipping method are as follows. First, zirconia balls are added to a metal oxide powder containing at least two of the above metal elements as constituent elements, an alcohol (for example, 1-methoxy-2-propanol), and a binder (for example, hydroxypropyl cellulose), and painted. Mix using a shaker. Next, a base material having a three-dimensional network structure is dipped in a mixed solution containing the powder of the metal oxide, pulled up, and then dried in a constant temperature bath adjusted to 50 ° C. Then, the dried base material is fired at 1000 ° C. for 2 hours using an electric furnace, and then cooled to obtain a porous body.
  • an alcohol for example, 1-methoxy-2-propanol
  • a binder for example, hydroxypropyl cellulose
  • the porous body according to the present embodiment can be manufactured.
  • the porous body has a skeleton having a three-dimensional network structure, and the main body of the skeleton contains at least two kinds of metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements. Therefore, even when the porous body is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and a decrease in operating voltage due to long-term use is suppressed.
  • the porous body according to the present embodiment is also suitable as an electrode used for steam electrolysis in which a reaction opposite to the chemical reaction occurring in the fuel cell is occurring. That is, the porous body can have an appropriate strength as a current collector for an air electrode or a current collector for a hydrogen electrode of a steam electrolyzer.
  • (Appendix 1) A porous body having a skeleton having a three-dimensional network structure.
  • the main body of the skeleton is a porous body containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.
  • (Appendix 2) The porous body according to Appendix 1, wherein the main body of the skeleton further contains oxygen as a constituent element.
  • the main body of the skeleton has the general formula (1): A x Z 3-x O 4 (1)
  • A represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper
  • Z represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper.
  • the porous body according to Appendix 2 which contains the metal oxide represented by (x) of 1 or more and 2 or less.
  • the skeleton is the porous body according to any one of Appendix 1 to Appendix 3, which has a basis weight of 200 to 1000 g / m 2 .
  • Sample 6 The porous body of Sample 6 was produced by using an electrolytic plating method. First, a 1.5 mm thick polyurethane resin sheet was prepared as a resin molded body having a three-dimensional network structure (first step). When the porosity and the average porosity of the polyurethane resin sheet were calculated based on the above formula, the porosity was 96% and the average porosity was 450 ⁇ m.
  • a conductive coating material was prepared by dispersing 100 g of carbon black, which is an amorphous carbon having a particle size of 0.01 to 0.2 ⁇ m, in 0.5 L of a 10 mass% acrylic acid ester resin aqueous solution.
  • the conductive coating material was impregnated into the resin molded product, then squeezed with a roll and dried to form a conductive coating layer on the surface of the resin molded product. As a result, a conductive resin molded product was obtained.
  • Electroplating was performed using the conductive resin molded product as a cathode under the following bath composition and electrolytic conditions (second step). First, copper plating was performed, then nickel plating was performed, and then heat treatment was performed in a reducing atmosphere to attach 700 g / m 2 of a Cu—Ni alloy onto the conductive resin molded body, thereby obtaining a porous precursor.
  • ⁇ Bath composition> (For copper plating) Salt (aqueous solution): copper pyrophosphate (90 g / L), potassium pyrophosphate (375 g / L) Ammonia water: 3 mL / L (specific gravity 0.9) Orthophosphoric acid: 80 g / L (For nickel plating) Salt (aqueous solution): Nickel sulfamate (450 g / L) Boric acid: 30 g / L.
  • the porous precursor was heat-treated (650 ° C., air atmosphere) to incinerate the resin component in the conductive resin molded product, and the resin component was removed (third step). Then, the porous precursor (that is, the porous body) heat-treated at 1000 ° C. for 24 hours in a reducing atmosphere (100% hydrogen) is subjected to an oxidation treatment (800 ° C., 900 minutes) in an atmospheric atmosphere (fourth step). ), A porous body (Celmet) in which the main body of the skeleton is CuNi 2 O 4 was obtained. The skeleton was hollow.
  • the bath composition used in the electrolytic plating was an aqueous solution of nickel sulfamate (150 g / L) and iron sulfamate (300 g / L).
  • a porous body (Celmet) having a skeleton body of NiFe 2 O 4 was obtained.
  • the bath composition used in the electrolytic plating was an aqueous solution of iron sulfamate (150 g / L) and cobalt sulfamate (300 g / L).
  • the main body of the skeleton was FeCo 2 O 4 (Celmet).
  • the bath composition used in the electrolytic plating was an aqueous solution of cobalt sulfamate (150 g / L) and iron sulfamate (300 g / L).
  • a porous body (Celmet) having a skeleton body of CoFe 2 O 4 was obtained.
  • ⁇ Sample 10> A porous body in which the main body of the skeleton is MgMn 2 O 4 by the same method (dipping method) as ⁇ Sample 1 to Sample 5> except that the powder of MgMn 2 O 4 is used as the powder of the metal oxide as the raw material. Obtained (Celmet).
  • the bath composition used in electrolytic plating was an aqueous solution of nickel sulfamate (450 g / L). By making the same as Sample 6 except that the bath composition and the oxidation treatment were not performed, a porous body (Celmet) having a skeleton body of Ni was obtained.
  • Example 12 and Sample 13 As sample 12, stainless steel 430 mesh (linear 0.1 mm, 100 mesh) was used. Further, as sample 13, an iron-chromium alloy mesh (manufactured by Magnex, linear 0.1 mm, 70 mesh) was used.
  • the average pore diameter and porosity of the skeleton were determined according to the above calculation formula. As a result, it was consistent with the porosity and the average pore diameter of the resin molded product, the porosity was 96%, and the average pore diameter was 450 ⁇ m. Further, the porous bodies of Samples 1 to 11 had a thickness of 1.5 mm. In the porous bodies of Samples 1 to 11, the total basis weight of the metal oxide or metal was 600 g / m 2 .
  • the porous bodies of Samples 1 to 11 and the metal meshes of Samples 12 and 13 are continuously heat-treated at 800 ° C. in an air atmosphere, and before heat treatment using the four-terminal method (The electrical resistivity (unit: ⁇ ⁇ cm 2 ) at the time when the heat treatment was continued for a predetermined time (1000 hours) was measured.
  • the measurement direction of the electrical resistivity is the thickness direction of the porous body or the metal mesh. The results are shown in Table 1.
  • the porous bodies of Samples 1 to 9 containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements in the main body of the skeleton are collected for the air electrode.
  • the electrical resistivity at 800 ° C. was 0.44 to 1.78 ⁇ ⁇ cm 2
  • the operating voltage retention rate after 1000 hours was 90 to 98%.
  • the porous body of the metal oxide containing at least two kinds of metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements is a current collector for the air electrode of the fuel cell.
  • the electrical resistivity is more than 10 ⁇ ⁇ cm 2 and the operating voltage is maintained after 1000 hours. The rate was too low to measure.
  • the electrical resistivity is more than 10 ⁇ ⁇ cm 2 and the operating voltage retention rate after 1000 hours is too low. It was impossible to measure.
  • the electrical resistivity is 0.33 ⁇ ⁇ cm 2 , but the operating voltage retention rate after 1000 hours is reduced to 63%.
  • the electrical resistance is 0.80 ⁇ ⁇ cm 2 , but the operating voltage retention rate after 1000 hours drops to 72%.
  • the porous body of Samples 1 to 9 containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements in the main body of the skeleton is Sample 10. And, compared to the porous body of sample 11, even when used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the decrease in operating voltage due to long-term use is suppressed. It turned out to be a porous body. Further, since the porous bodies of Samples 1 to 9 do not contain chromium as a constituent element, they do not volatilize like chromium oxides and cause deterioration of fuel cell performance. From this point of view, it was found that the porous bodies of Samples 1 to 9 are suitable for the current collector for the air electrode or the current collector for the hydrogen electrode of the fuel cell.

Abstract

A porous body provided with a backbone having a three-dimensional net-like structure, wherein the main body of the backbone contains at least two types of metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.

Description

多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置Porous material, fuel cell containing it, and steam electrolyzer including it
 本開示は、多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置に関する。本出願は、2019年5月22日に出願した日本特許出願である特願2019-096108号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a porous body, a fuel cell containing the porous body, and a steam electrolyzer including the porous body. This application claims priority based on Japanese Patent Application No. 2019-096108, which is a Japanese patent application filed on May 22, 2019. All the contents of the Japanese patent application are incorporated herein by reference.
 従来から金属多孔体等の多孔体は、気孔率が高く、もって表面積が大きいことから、電池用電極、触媒担持体、金属複合材、フィルターなどの様々な用途に利用されている。 Conventionally, porous materials such as metal porous materials have a high porosity and a large surface area, and therefore have been used in various applications such as battery electrodes, catalyst carriers, metal composite materials, and filters.
特開2012-132083号公報Japanese Unexamined Patent Publication No. 2012-132803 特開2012-119126号公報Japanese Unexamined Patent Publication No. 2012-119126 国際公開第2009/131180号International Publication No. 2009/131180
 本開示の一態様に係る多孔体は、三次元網目状構造を有する骨格を備えた多孔体であって、
 上記骨格の本体は、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む。
The porous body according to one aspect of the present disclosure is a porous body having a skeleton having a three-dimensional network structure.
The main body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.
 本開示の一態様に係る燃料電池は、空気極用集電体および水素極用集電体を備える燃料電池であって、上記空気極用集電体または上記水素極用集電体の少なくとも一方は、上記多孔体を含む。 The fuel cell according to one aspect of the present disclosure is a fuel cell including a current collector for an air electrode and a current collector for a hydrogen electrode, and is at least one of the current collector for an air electrode or the current collector for a hydrogen electrode. Includes the above-mentioned porous body.
 本開示の一態様に係る水蒸気電解装置は、空気極用集電体および水素極用集電体を備える水蒸気電解装置であって、上記空気極用集電体または上記水素極用集電体の少なくとも一方は、上記多孔体を含む。 The steam electrolyzer according to one aspect of the present disclosure is a steam electrolyzer including a current collector for an air electrode and a current collector for a hydrogen electrode, which is the current collector for the air electrode or the current collector for the hydrogen electrode. At least one contains the above-mentioned porous body.
図1は、本開示の一態様に係る多孔体における骨格の部分断面の概略を示す概略部分断面図である。FIG. 1 is a schematic partial cross-sectional view showing an outline of a partial cross section of a skeleton in a porous body according to one aspect of the present disclosure. 図2は、図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 図3Aは、本開示の一態様に係る多孔体の三次元網目状構造を説明するため、多孔体におけるセル部の1つに着目した拡大模式図である。FIG. 3A is an enlarged schematic view focusing on one of the cell portions in the porous body in order to explain the three-dimensional network structure of the porous body according to one aspect of the present disclosure. 図3Bは、セル部の形状の一態様を示す模式図である。FIG. 3B is a schematic view showing one aspect of the shape of the cell portion. 図4Aは、セル部の形状の他の態様を示す模式図である。FIG. 4A is a schematic view showing another aspect of the shape of the cell portion. 図4Bは、セル部の形状のさらに他の態様を示す模式図である。FIG. 4B is a schematic view showing still another aspect of the shape of the cell portion. 図5は、接合した2つのセル部の態様を示す模式図である。FIG. 5 is a schematic view showing aspects of the two joined cell portions. 図6は、接合した4つのセル部の態様を示す模式図である。FIG. 6 is a schematic view showing aspects of the four joined cell portions. 図7は、複数のセル部が接合することによって形成された三次元網目状構造の一態様を示す模式図である。FIG. 7 is a schematic view showing one aspect of a three-dimensional network structure formed by joining a plurality of cell portions. 図8は、本開示の一態様に係る燃料電池の模式断面図である。FIG. 8 is a schematic cross-sectional view of the fuel cell according to one aspect of the present disclosure. 図9は、本開示の一態様に係る燃料電池用セルを示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing a fuel cell cell according to one aspect of the present disclosure. 図10は、本開示の一態様に係る水蒸気電解装置を示す模式断面図である。FIG. 10 is a schematic cross-sectional view showing a steam electrolyzer according to one aspect of the present disclosure. 図11は、本開示の一態様に係る水蒸気電解装置用セルを示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing a cell for a steam electrolyzer according to one aspect of the present disclosure.
[本開示が解決しようとする課題]
 たとえば特開2012-132083号公報(特許文献1)には、耐酸化性および耐食性の特性を備えた金属多孔体として、ニッケル-スズ合金を主成分とする骨格を有する金属多孔体が開示されている。
[Issues to be resolved by this disclosure]
For example, Japanese Patent Application Laid-Open No. 2012-132803 (Patent Document 1) discloses a metal porous body having a skeleton containing a nickel-tin alloy as a main component as a metal porous body having properties of oxidation resistance and corrosion resistance. There is.
 しかしながら、特許文献1に記載の金属多孔体は高温耐久性にすぐれるものの、固体酸化物型燃料電池(SOFC)の電極として金属多孔体を用いる場合、700℃以上での長期的使用による導電性低下をさらに抑制することが求められていた。このように金属多孔体等の多孔体は、SOFCの電極として用いる場合、更なる改善の余地がある。 However, although the metal porous body described in Patent Document 1 is excellent in high temperature durability, when the metal porous body is used as an electrode of a solid oxide fuel cell (SOFC), it is conductive due to long-term use at 700 ° C. or higher. It was required to further suppress the decrease. As described above, when a porous body such as a metal porous body is used as an electrode of SOFC, there is room for further improvement.
 本開示は、上記事情に鑑みてなされたものであり、燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制された多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置を提供することを目的とする。 This disclosure has been made in view of the above circumstances, and even when used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the operating voltage due to long-term use. It is an object of the present invention to provide a porous body in which a decrease in the voltage is suppressed, a fuel cell containing the same, and a steam electrolyzer including the same.
[本開示の効果]
 上記によれば、燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制された多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置を提供することができる。
[Effect of this disclosure]
According to the above, even when used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, a porous body having low electrical resistance and suppressed decrease in operating voltage due to long-term use. A fuel cell including the above, and a steam electrolyzer including the same can be provided.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 [1]本開示の一態様に係る多孔体は、三次元網目状構造を有する骨格を備えた多孔体であって、
 上記骨格の本体は、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む。このような特徴を有する多孔体は、燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制される。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
[1] The porous body according to one aspect of the present disclosure is a porous body having a skeleton having a three-dimensional network structure.
The main body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements. Even when the porous body having such characteristics is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the decrease in operating voltage due to long-term use is suppressed. To.
 [2]上記骨格の本体は、
 構成元素としてニッケルを含む場合、コバルトを含まず、
 構成元素としてコバルトを含む場合、ニッケルを含まないことが好ましい。
[2] The main body of the skeleton is
When nickel is contained as a constituent element, cobalt is not contained and
When cobalt is contained as a constituent element, it is preferable that nickel is not contained.
 [3]上記骨格の本体は、構成元素としてさらに酸素を含むことが好ましい。この態様は、多孔体が酸化された状態にあることを意味するが、このような状態においても多孔体は、高温環境下で高い導電性を維持することができる。 [3] The main body of the skeleton preferably further contains oxygen as a constituent element. This aspect means that the porous body is in an oxidized state, and even in such a state, the porous body can maintain high conductivity in a high temperature environment.
 [4]上記酸素は、上記骨格の本体において0.1質量%以上35質量%以下含まれることが好ましい。この場合、高温環境下で高い導電性をより効果的に維持することができる。 [4] The oxygen is preferably contained in the main body of the skeleton in an amount of 0.1% by mass or more and 35% by mass or less. In this case, high conductivity can be maintained more effectively in a high temperature environment.
 [5]上記骨格の本体は、一般式(1):
 A3-x  (1)
で示される金属酸化物を含み、
 式(1)中、Aはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、Zはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、xは1以上2以下であることが好ましい。この場合、高価な材料を使用せずに、高温環境下で高い電解性能をより効果的に維持することができる。
[5] The main body of the skeleton is the general formula (1):
A x Z 3-x O 4 (1)
Contains the metal oxides indicated by
In formula (1), A represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper, and Z represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper. As shown, x is preferably 1 or more and 2 or less. In this case, high electrolytic performance can be more effectively maintained in a high temperature environment without using expensive materials.
 [6]上記金属酸化物は、MnNi、MnCo、CuNi及びFeCoからなる群より選ばれる少なくとも一種を含む。この場合、特に高い電解性能を示すという効果を有する。 [6] The metal oxide contains at least one selected from the group consisting of MnNi 2 O 4 , MnCo 2 O 4 , CuNi 2 O 4 and FeCo 2 O 4 . In this case, it has the effect of exhibiting particularly high electrolytic performance.
 [7]上記骨格の本体は、スピネル型酸化物を含むことが好ましい。この場合も、高温環境下で高い導電性をより効果的に維持することができる。 [7] The main body of the skeleton preferably contains a spinel-type oxide. In this case as well, high conductivity can be maintained more effectively in a high temperature environment.
 [8]上記骨格の本体は、構成元素としてクロムを含まないことが好ましい。これにより、上記多孔体を電極として用いた燃料電池は、クロム被毒による性能低下を防止することができる。 [8] The main body of the skeleton preferably does not contain chromium as a constituent element. As a result, the fuel cell using the porous body as an electrode can prevent performance deterioration due to chromium poisoning.
 [9]上記骨格は、目付量が200g/m以上1000g/m以下であることが好ましい。このようにすることによって、機械的強度と、良好なガス拡散性を両立することができる。 [9] The basis weight of the skeleton is preferably 200 g / m 2 or more and 1000 g / m 2 or less. By doing so, both mechanical strength and good gas diffusibility can be achieved.
 [10]上記骨格は、800℃における電気抵抗率が2Ω・cm以下であることが好ましい。このようにすることによって、高い導電性をより効果的に維持することができる。 [10] The skeleton preferably has an electrical resistivity of 2 Ω · cm 2 or less at 800 ° C. By doing so, high conductivity can be maintained more effectively.
 [11]上記骨格の本体は、その断面を3000倍の倍率で観察することにより観察像を得た場合、上記観察像の任意の10μm四方の領域において現われる長径1μm以上の空隙の数が5個以下であることが好ましい。これにより、強度を十分に向上させることができる。 [11] When an observation image is obtained by observing the cross section of the main body of the skeleton at a magnification of 3000 times, the number of voids having a major axis of 1 μm or more appearing in an arbitrary 10 μm square region of the observation image is five. The following is preferable. Thereby, the strength can be sufficiently improved.
 [12]上記骨格は、中空であることが好ましい。これにより、多孔体を軽量とすることができ、かつ必要な金属量を低減することができる。 [12] The skeleton is preferably hollow. As a result, the porous body can be made lightweight, and the required amount of metal can be reduced.
 [13]上記多孔体は、シート状の外観を有し、厚みが0.2mm以上2mm以下であることが好ましい。これにより従来に比べ、厚みの薄い空気極および水素極を形成可能となり、もって必要な金属量を低減することができる。 [13] The porous body preferably has a sheet-like appearance and a thickness of 0.2 mm or more and 2 mm or less. As a result, it is possible to form an air electrode and a hydrogen electrode having a thinner thickness than in the past, and thus the required amount of metal can be reduced.
 [14]本開示の一態様に係る燃料電池は、空気極用集電体および水素極用集電体を備える燃料電池であって、上記空気極用集電体または上記水素極用集電体の少なくとも一方は、上記多孔体を含む。このような特徴を有する燃料電池は、上記空気極用集電体または上記水素極用集電体における電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制されるため、効率よく発電することができる。 [14] The fuel cell according to one aspect of the present disclosure is a fuel cell including a current collector for an air electrode and a current collector for a hydrogen electrode, and is the current collector for the air electrode or the current collector for the hydrogen electrode. At least one of the above contains the porous body. A fuel cell having such characteristics has low electrical resistance in the air electrode current collector or the hydrogen electrode current collector, and suppresses a decrease in operating voltage due to long-term use, so that power can be generated efficiently. can do.
 [15]本開示の一態様に係る水蒸気電解装置は、空気極用集電体および水素極用集電体を備える水蒸気電解装置であって、上記空気極用集電体または上記水素極用集電体の少なくとも一方は、上記多孔体を含む。このような特徴を有する水蒸気電解装置は、電解時の抵抗が下がり、もって効率よく水蒸気の電解を行うことができる。 [15] The steam electrolyzer according to one aspect of the present disclosure is a steam electrolyzer including an air electrode current collector and a hydrogen electrode current collector, and is the air electrode current collector or the hydrogen electrode collector. At least one of the electric bodies contains the above-mentioned porous body. A steam electrolyzer having such characteristics has a reduced resistance during electrolysis, and thus can efficiently electrolyze steam.
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下、「本実施形態」とも記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
[Details of Embodiments of the present disclosure]
Hereinafter, one embodiment of the present disclosure (hereinafter, also referred to as “the present embodiment”) will be described. However, this embodiment is not limited to this. In the present specification, the notation in the form of "A to B" means the upper and lower limits of the range (that is, A or more and B or less), and when the unit is not described in A and the unit is described only in B, A The unit of and the unit of B are the same.
 ≪多孔体≫
 本実施形態に係る多孔体は、三次元網目状構造を有する骨格を備えた多孔体である。上記骨格の本体は、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む。このような特徴を有する多孔体は、燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制される。ここで、本実施形態における「多孔体」としては、たとえば、金属からなる多孔体、当該金属の酸化物からなる多孔体、金属および当該金属の酸化物を含む多孔体が挙げられる。
≪Perforated body≫
The porous body according to the present embodiment is a porous body having a skeleton having a three-dimensional network structure. The main body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements. Even when the porous body having such characteristics is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the decrease in operating voltage due to long-term use is suppressed. To. Here, examples of the "porous material" in the present embodiment include a porous body made of a metal, a porous body made of an oxide of the metal, and a porous body containing a metal and an oxide of the metal.
 ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む合金及び当該合金の酸化物は、ともに高い導電性を有する。すなわち、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む合金は、酸化しても高い導電性を維持することができる。
 上述のような事情を考慮した結果、上記骨格の本体においてニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素が構成元素として含まれるとき、上記骨格を備える多孔体は、使用によって酸化が進行する燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制されることを本発明者らが初めて見いだした。
Alloys containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements and oxides of the alloys both have high conductivity. That is, an alloy containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements can maintain high conductivity even when oxidized.
As a result of considering the above circumstances, when the main body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements, the porous body having the skeleton is provided. Even when the body is used as a current collector for the air electrode or a current collector for the hydrogen electrode of a fuel cell whose oxidation progresses due to use, the electrical resistance is low and the decrease in operating voltage due to long-term use is suppressed. The present inventors have found this for the first time.
 また、従来の燃料電池に用いられている空気極用集電体は、耐酸化性を付与するためその表面をクロムの膜で被覆していた(例えば、特開2012-119126号公報(特許文献2)、国際公開第2009/131180号(特許文献3))。
 しかし、クロムは蒸発して空気極用集電体上で飛散して燃料電池の性能を低下させる傾向がある(クロム被毒)。本実施形態に係る上記多孔体は、酸化しても高い導電性を維持することができるため、クロムの膜を被覆する必要がない。そのため、本実施形態に係る上記多孔体は、クロム被毒による燃料電池の性能低下の心配が無く、より燃料電池の空気極用集電体として適している。
Further, the surface of the current collector for an air electrode used in a conventional fuel cell is coated with a chromium film in order to impart oxidation resistance (for example, Japanese Patent Application Laid-Open No. 2012-119126 (Patent Document). 2), International Publication No. 2009/131180 (Patent Document 3)).
However, chromium tends to evaporate and scatter on the current collector for the air electrode, degrading the performance of the fuel cell (chromium poisoning). Since the porous body according to the present embodiment can maintain high conductivity even when oxidized, it is not necessary to coat the chromium film. Therefore, the porous body according to the present embodiment is more suitable as a current collector for the air electrode of the fuel cell without fear of deterioration of the performance of the fuel cell due to chromium poisoning.
 上記多孔体は、その外観がシート状、直方体状、球状および円柱状などの各種の形状を有することができる。なかでも多孔体は、シート状の外観を有し、厚みが0.2mm以上2mm以下であることが好ましい。多孔体の厚みは、0.5mm以上1mm以下であることがより好ましい。多孔体の厚みが2mm以下であることより、従来に比べ厚みの薄い多孔体となっており必要な金属量を低減することができる。多孔体の厚みが0.2mm以上であることより必要な強度を備えることができる。上記厚みは、たとえば市販のデジタルシックネスゲージによって測定が可能である。 The appearance of the porous body can have various shapes such as a sheet shape, a rectangular parallelepiped shape, a spherical shape, and a columnar shape. Among them, the porous body preferably has a sheet-like appearance and a thickness of 0.2 mm or more and 2 mm or less. The thickness of the porous body is more preferably 0.5 mm or more and 1 mm or less. Since the thickness of the porous body is 2 mm or less, the porous body is thinner than the conventional one, and the required amount of metal can be reduced. Since the thickness of the porous body is 0.2 mm or more, the required strength can be provided. The thickness can be measured by, for example, a commercially available digital thickness gauge.
 <骨格>
 多孔体は、上述のとおり三次元網目状構造を有する骨格を備える。骨格の本体は、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む。
<Skeleton>
The porous body has a skeleton having a three-dimensional network structure as described above. The body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.
 骨格は、図1に示すように、気孔部14を有する三次元網目状構造を有する。ここで三次元網目状構造の詳細については、後述する。骨格12は、構成元素として上記少なくとも二種の金属元素を含む本体11(以下、「骨格本体11」と記載する場合がある。)、およびこの骨格本体11に囲まれた中空の内部13からなる。骨格12は、後述する支柱部およびノード部を形成している。このように骨格12は、中空であることが好ましい。 As shown in FIG. 1, the skeleton has a three-dimensional network structure having pores 14. Here, the details of the three-dimensional network structure will be described later. The skeleton 12 includes a main body 11 (hereinafter, may be referred to as “skeleton main body 11”) containing at least two kinds of metal elements as a constituent element, and a hollow inner 13 surrounded by the skeleton main body 11. .. The skeleton 12 forms a strut portion and a node portion, which will be described later. As described above, the skeleton 12 is preferably hollow.
 さらに骨格12は、図2に示すように、その長手方向に直交する断面の形状が三角形であることが好ましい。しかし骨格12の断面形状は、これに限定されるべきではない。骨格12の断面形状は、四角形、六角形などの三角形以外の多角形であってもよい。さらに、骨格12の断面形状が円形であってもよい。ここで、本実施形態において三角形、四角形及び六角形などの多角形、並びに円形等の形状は、幾何学的な形状に限られない。例えば、本実施形態において「三角形」は、略三角形を含む概念である。他の形状についても同様である。 Further, as shown in FIG. 2, the skeleton 12 preferably has a triangular cross-sectional shape orthogonal to the longitudinal direction thereof. However, the cross-sectional shape of the skeleton 12 should not be limited to this. The cross-sectional shape of the skeleton 12 may be a polygon other than a triangle such as a quadrangle or a hexagon. Further, the cross-sectional shape of the skeleton 12 may be circular. Here, in the present embodiment, polygons such as triangles, quadrangles and hexagons, and shapes such as circles are not limited to geometric shapes. For example, in the present embodiment, "triangle" is a concept including a substantially triangular shape. The same applies to other shapes.
 すなわち骨格12は、骨格本体11に囲まれた内部13が中空の筒形状を有し、長手方向に直交する断面が三角形またはその他の多角形、あるいは円形であることが好ましい。骨格12は、筒形状であるので骨格本体11において筒の内側面をなす内壁、および筒の外側面をなす外壁を有している。骨格12は、骨格本体11に囲まれた内部13が中空であることにより、多孔体を非常に軽量とすることができる。ただし骨格は、中空であることに限定されず、中実であってもよい。この場合、多孔体の強度を向上することができる。 That is, the skeleton 12 preferably has a hollow tubular shape inside 13 surrounded by the skeleton body 11, and has a triangular or other polygonal or circular cross section orthogonal to the longitudinal direction. Since the skeleton 12 has a tubular shape, the skeleton main body 11 has an inner wall forming an inner surface of the cylinder and an outer wall forming an outer surface of the cylinder. Since the inside 13 of the skeleton 12 surrounded by the skeleton body 11 is hollow, the porous body can be made very lightweight. However, the skeleton is not limited to being hollow and may be solid. In this case, the strength of the porous body can be improved.
 骨格は、目付量が200g/m以上1000g/m以下であることが好ましい。上記目付量は、250g/m以上900g/m以下であることがより好ましい。後述するように、上記目付量は、導電性を付与する導電化処理を施した導電性樹脂成形体上に所定の合金めっきを行なうときなどに、その量を適宜調整することができる。例えば、上記多孔体がシート状の外観を有している場合、上記目付量は次式で求めることができる。なお、本実施形態の一側面において、上記骨格の目付量は多孔体の目付量と把握することもできる。
目付量(g/m)=M(g)/S(m
M:骨格の質量[g]
S:骨格における外観の主面の面積[m
The skeleton preferably has a basis weight of 200 g / m 2 or more and 1000 g / m 2 or less. The basis weight is more preferably 250 g / m 2 or more and 900 g / m 2 or less. As will be described later, the basis weight can be appropriately adjusted when a predetermined alloy plating is performed on the conductive resin molded product which has been subjected to the conductivity treatment for imparting conductivity. For example, when the porous body has a sheet-like appearance, the basis weight can be calculated by the following formula. In one aspect of the present embodiment, the basis weight of the skeleton can be grasped as the basis weight of the porous body.
Metsuke amount (g / m 2 ) = M (g) / S (m 2 )
M: Skeleton mass [g]
S: Area of the main surface of the appearance in the skeleton [m 2 ]
 上述した目付量を、骨格の単位体積当たりの質量(骨格の見かけの密度)に換算すると次のとおりとなる。すなわち上記骨格の見かけの密度は、0.14g/cm以上0.75g/cm以下であることが好ましく、0.18g/cm以上0.65g/cm以下であることがより好ましい。ここで「骨格の見かけの密度」は、次式で定義される。なお、本実施形態の一側面において、上記骨格の見かけの密度は多孔体の見かけの密度と把握することもできる。
骨格の見かけの密度(g/cm)=M(g)/V(cm
M:骨格の質量[g]
V:骨格における外観の形状の体積[cm
The above-mentioned basis weight is converted into the mass per unit volume of the skeleton (apparent density of the skeleton) as follows. That is, the apparent density of the skeleton is preferably 0.14 g / cm 3 or more and 0.75 g / cm 3 or less, and more preferably 0.18 g / cm 3 or more and 0.65 g / cm 3 or less. Here, the "apparent density of the skeleton" is defined by the following equation. In one aspect of the present embodiment, the apparent density of the skeleton can be grasped as the apparent density of the porous body.
Apparent density of skeleton (g / cm 3 ) = M (g) / V (cm 3 )
M: Skeleton mass [g]
V: Volume of appearance shape in skeleton [cm 3 ]
 骨格は、その気孔率が40%以上98%以下であることが好ましく、45%以上98%以下であることがより好ましく、50%以上98%以下であることが最も好ましい。骨格の気孔率が40%以上であることにより、多孔体を非常に軽量なものとすることができ、かつ多孔体の表面積を大きくすることができる。骨格の気孔率が98%以下であることにより、多孔体に十分な強度を備えさせることができる。 The porosity of the skeleton is preferably 40% or more and 98% or less, more preferably 45% or more and 98% or less, and most preferably 50% or more and 98% or less. When the porosity of the skeleton is 40% or more, the porous body can be made very lightweight, and the surface area of the porous body can be increased. When the porosity of the skeleton is 98% or less, the porous body can be provided with sufficient strength.
 骨格の気孔率は、次式で定義される。
気孔率(%)=[1-{M/(V×d)}]×100
M:骨格の質量[g]
V:骨格における外観の形状の体積[cm
d:骨格を構成する金属又は金属酸化物の密度[g/cm
The porosity of the skeleton is defined by the following equation.
Porosity (%) = [1- {M / (V × d)}] × 100
M: Skeleton mass [g]
V: Volume of appearance shape in skeleton [cm 3 ]
d: Density of metal or metal oxide constituting the skeleton [g / cm 3 ]
 骨格は、その平均気孔径が350μm以上3500μm以下であることが好ましい。骨格の平均気孔径が350μm以上であることにより、多孔体の強度を高めることができる。骨格の平均気孔径が3500μm以下であることにより、多孔体の曲げ性(曲げ加工性)を高めることができる。これらの観点から、骨格の平均気孔径は400μm以上1000μm以下であることがより好ましく、450μm以上900μm以下であることが最も好ましい。 The average pore diameter of the skeleton is preferably 350 μm or more and 3500 μm or less. When the average pore diameter of the skeleton is 350 μm or more, the strength of the porous body can be increased. When the average pore diameter of the skeleton is 3500 μm or less, the bendability (bending workability) of the porous body can be improved. From these viewpoints, the average pore diameter of the skeleton is more preferably 400 μm or more and 1000 μm or less, and most preferably 450 μm or more and 900 μm or less.
 骨格の平均気孔径は、次の方法により求めることができる。すなわち、まず顕微鏡を用いて骨格の表面を3000倍の倍率で拡大した観察像を少なくとも10視野準備し、この10視野のそれぞれにおいて後述するセル部における任意の1インチ(25.4mm=25400μm)あたりの気孔の数を求める。さらに、この10視野における気孔の数を平均値(n)とした上で、これを次式に代入することより算出される数値を、骨格の平均気孔径とする。
平均気孔径(μm)=25400μm/n
The average pore size of the skeleton can be determined by the following method. That is, first, an observation image obtained by magnifying the surface of the skeleton at a magnification of 3000 times is prepared for at least 10 visual fields using a microscope, and in each of these 10 visual fields, per arbitrary 1 inch (25.4 mm = 25400 μm) in the cell portion described later. Find the number of pores in. Furthermore, in terms of the number of pores in the 10 fields was defined as the average value (n c), which the value calculated from substituted into the following equation, the average pore diameter of the skeleton.
Average pore diameter (μm) = 25400 μm / n c
 ここで、上記骨格の気孔率および平均気孔径と、多孔体の気孔率および平均気孔径とは、同じものを指す。 Here, the porosity and average pore diameter of the skeleton and the porosity and average pore diameter of the porous body refer to the same thing.
 骨格の本体は、その断面を3000倍の倍率で観察することにより観察像を得た場合、上記観察像の任意の10μm四方の領域において現われる長径1μm以上の空隙の数が5個以下であることが好ましい。この空隙の数は、3個以下であることがより好ましい。これにより多孔体の強度を十分に向上させることができる。さらに骨格の本体は、上記空隙の数が5個以下であることにより、微粉を焼結してなる成形体とは異なることが理解される。微粉を焼結してなる成形体では、上記空隙の数が多数観察されるからである。観察される空隙の数の下限は、たとえば0個である。ここで「空隙の数」とは、骨格本体の断面における複数(例えば、10か所)の「10μm四方の領域」をそれぞれ観察することにより求められる空隙の数平均を意味する。 When an observation image is obtained by observing the cross section of the main body of the skeleton at a magnification of 3000 times, the number of voids having a major axis of 1 μm or more appearing in an arbitrary 10 μm square region of the observation image is 5 or less. Is preferable. The number of voids is more preferably 3 or less. Thereby, the strength of the porous body can be sufficiently improved. Further, it is understood that the main body of the skeleton is different from the molded body formed by sintering fine powder because the number of voids is 5 or less. This is because a large number of the above-mentioned voids is observed in the molded product obtained by sintering the fine powder. The lower limit of the number of voids observed is, for example, zero. Here, the "number of voids" means the average number of voids obtained by observing each of a plurality of (for example, 10) "10 μm square regions" in the cross section of the skeleton body.
 骨格の断面の観察は、電子顕微鏡を用いることにより行うことができる。具体的には、10視野において骨格本体の断面の観察を行なうことにより、上述の「空隙の数」を求めることが好ましい。骨格本体の断面は、骨格の長手方向に直交する断面であってもよく、骨格の長手方向と平行な断面であってもよい。観察像において空隙は、色のコントラスト(明暗の差)によってその他と区別することができる。空隙の長径の上限は制限されるべきではないが、たとえば10000μmである。 The cross section of the skeleton can be observed by using an electron microscope. Specifically, it is preferable to obtain the above-mentioned "number of voids" by observing the cross section of the skeleton body in 10 visual fields. The cross section of the skeleton body may be a cross section orthogonal to the longitudinal direction of the skeleton, or may be a cross section parallel to the longitudinal direction of the skeleton. In the observed image, the voids can be distinguished from others by the color contrast (difference between light and dark). The upper limit of the major axis of the void should not be limited, but is, for example, 10000 μm.
 骨格本体は、その平均厚みが10μm以上50μm以下であることが好ましい。ここで「骨格本体の厚み」とは、上記骨格の内部の中空との界面である内壁から骨格の外側の外壁までの最短距離を意味し、その平均値を「骨格本体の平均厚み」とする。骨格本体の厚みは、骨格の断面を電子顕微鏡で観察することにより求めることができる。 The average thickness of the skeleton body is preferably 10 μm or more and 50 μm or less. Here, the "thickness of the skeleton body" means the shortest distance from the inner wall, which is the interface with the hollow inside the skeleton, to the outer wall outside the skeleton, and the average value thereof is defined as the "average thickness of the skeleton body". .. The thickness of the skeleton body can be determined by observing the cross section of the skeleton with an electron microscope.
 骨格本体の平均厚みは、具体的には以下の方法により求めることができる。まずシート状の多孔体を、骨格本体の断面が現れるように切断する。切断された断面を一つ選択し、これを3000倍の倍率で拡大して電子顕微鏡により観察することにより観察像を得る。次に、この観察像に現れた1個の骨格を形成する多角形(たとえば、図2の三角形)のうちの任意の1辺の厚みを、その1辺の中央部において測定し、これを骨格本体の厚みとする。さらに、このような測定を10枚(10視野)の観察像に対して行なうことにより、10点の骨格本体の厚みを得る。最後に、これらの平均値を算出することにより、骨格本体の平均厚みを求めることができる。 Specifically, the average thickness of the skeleton body can be obtained by the following method. First, the sheet-shaped porous body is cut so that the cross section of the skeleton body appears. An observation image is obtained by selecting one cut cross section, magnifying it at a magnification of 3000 times, and observing it with an electron microscope. Next, the thickness of any one side of the polygon (for example, the triangle in FIG. 2) forming one skeleton appearing in this observation image is measured at the center of the one side, and this is measured as the skeleton. The thickness of the main body. Further, by performing such a measurement on 10 observation images (10 fields of view), the thickness of the skeleton body at 10 points can be obtained. Finally, by calculating these average values, the average thickness of the skeleton body can be obtained.
 上記骨格は、800℃における電気抵抗率が2Ω・cm以下であることが好ましく、0.01Ω・cm以上2Ω・cm以下であることがより好ましい。上記電気抵抗率は、例えば以下のようにして求めることができる。評価対象である多孔体に対し、大気雰囲気下で800℃に保持し、電気抵抗率(単位は、Ω・cm2)を四端子法にて測定する。
上記多孔体の外観がシート状である場合、電気抵抗率の測定方向は、多孔体の厚み方向とする。なお、本実施形態の一側面において、上記骨格の電気抵抗率は多孔体の電気抵抗率と把握することもできる。
The skeleton is more preferable electrical resistivity at 800 ° C. it is preferably 2 [Omega · cm 2 or less, 0.01 Ohm · cm 2 or more 2 [Omega · cm 2 or less. The electrical resistivity can be obtained, for example, as follows. The porous body to be evaluated is maintained at 800 ° C. in an air atmosphere, and the electrical resistivity (unit: Ω · cm 2 ) is measured by the four-terminal method.
When the appearance of the porous body is sheet-like, the measurement direction of the electrical resistivity is the thickness direction of the porous body. In one aspect of the present embodiment, the electrical resistivity of the skeleton can be grasped as the electrical resistivity of the porous body.
 (三次元網目状構造)
 多孔体は、三次元網目状構造を有する骨格を備える。上記骨格は、支柱部と複数の上記支柱部を繋ぐノード部とを含む。本実施形態において「三次元網目状構造」とは、立体的な網目状の構造を意味する。三次元網目状構造は、骨格によって形成される。以下、三次元網目状構造について詳細に説明する。
(Three-dimensional network structure)
The porous body has a skeleton having a three-dimensional network structure. The skeleton includes a strut portion and a node portion connecting the plurality of strut portions. In the present embodiment, the "three-dimensional network structure" means a three-dimensional network structure. The three-dimensional network structure is formed by the skeleton. Hereinafter, the three-dimensional network structure will be described in detail.
 三次元網目状構造30は、図7に示すように、セル部20を基本の単位としており、複数のセル部20が接合することによって形成される。セル部20は、図3Aおよび図3Bに示すように、支柱部1と、複数の支柱部1を繋ぐノード部2とを備える。支柱部1とノード部2とは、便宜上その用語について分けて説明されるが、両者の間に明確な境界はない。すなわち三次元網目状構造30は、複数の支柱部1と複数のノード部2とが一体となってセル部20が形成され、このセル部20を構成単位として形成される。以下、理解を容易にするため、図3Aのセル部を図3Bの正十二面体に見立てて説明する。 As shown in FIG. 7, the three-dimensional network structure 30 has a cell portion 20 as a basic unit, and is formed by joining a plurality of cell portions 20. As shown in FIGS. 3A and 3B, the cell portion 20 includes a support column portion 1 and a node portion 2 that connects a plurality of support column portions 1. Although the terms of the support column 1 and the node section 2 are explained separately for convenience, there is no clear boundary between them. That is, in the three-dimensional network structure 30, a plurality of column portions 1 and a plurality of node portions 2 are integrally formed to form a cell portion 20, and the cell portion 20 is used as a constituent unit. Hereinafter, in order to facilitate understanding, the cell portion of FIG. 3A will be described as if it were a regular dodecahedron of FIG. 3B.
 まず支柱部1およびノード部2は、それぞれが複数存在することによって、平面状の多角形構造体であるフレーム部10を形成する。図3Bにおいて、フレーム部10の多角形構造体は正五角形であるが、三角形、四角形、六角形などの正五角形以外の多角形であってもよい。ここでフレーム部10の構造について、複数の支柱部1と複数のノード部2とによって平面多角形状の孔が形成されていると把握することもできる。本実施形態において、平面多角形状の孔の孔径は、フレーム部10によって画定する平面多角形状の孔に外接する円の直径を意味する。フレーム部10は、その複数が組み合わせられることによって、立体状の多面体構造体であるセル部20を形成する。このとき、1個の支柱部1および1個のノード部2は、複数のフレーム部10で共有される。 First, the support column portion 1 and the node portion 2 each form a frame portion 10 which is a planar polygonal structure due to the existence of a plurality of each. In FIG. 3B, the polygonal structure of the frame portion 10 is a regular pentagon, but it may be a polygon other than a regular pentagon such as a triangle, a quadrangle, or a hexagon. Here, with respect to the structure of the frame portion 10, it can be grasped that a plane polygonal hole is formed by the plurality of support columns 1 and the plurality of node portions 2. In the present embodiment, the hole diameter of the planar polygonal hole means the diameter of a circle circumscribing the planar polygonal hole defined by the frame portion 10. The frame portion 10 forms a cell portion 20 which is a three-dimensional polyhedral structure by combining a plurality of the frame portions 10. At this time, one support column portion 1 and one node portion 2 are shared by a plurality of frame portions 10.
 支柱部1は、上述した図2の模式図で示すように、中空の筒形状を有し、断面が三角形であることが好ましいが、これに限定されるべきではない。支柱部1は、断面形状が四角形、六角形などの三角形以外の多角形、あるいは円形であってもよい。ノード部2の形状は、頂点を有するようなシャープエッジの形状であってもよいし、当該頂点が面取りされているような平面状であってもよいし、当該頂点にアールが付与されたような曲面状であってもよい。 As shown in the schematic view of FIG. 2 described above, the strut portion 1 preferably has a hollow tubular shape and has a triangular cross section, but is not limited to this. The support column 1 may have a polygonal shape other than a triangle such as a quadrangle or a hexagon, or a circular shape. The shape of the node portion 2 may be a shape of a sharp edge having vertices, a planar shape such that the vertices are chamfered, or a radius is given to the vertices. It may have a curved surface shape.
 セル部20の多面体構造体は、図3Bにおいて十二面体であるが、立方体、二十面体(図4A)、切頂二十面体(図4B)などの他の多面体であってもよい。ここでセル部20の構造について、複数のフレーム部10のそれぞれによって画定する仮想平面Aによって囲まれた立体状の空間(気孔部14)が形成されていると把握することもできる。本実施形態において、上記立体状の空間の孔径(以下、「気孔径」とも記す。)は、セル部20によって画定する上記立体状の空間に外接する球の直径と把握することができる。ただし、本実施形態における多孔体の気孔径は、便宜的に上述した計算式に基づいて算出される。すなわちセル部20によって画定する立体状の空間の孔径(気孔径)は、上記骨格の気孔率および平均気孔径と同じものを指す。 The polyhedron structure of the cell portion 20 is a dodecahedron in FIG. 3B, but may be another polyhedron such as a cube, an icosahedron (FIG. 4A), or a truncated icosahedron (FIG. 4B). Here, with respect to the structure of the cell portion 20, it can be grasped that a three-dimensional space (pore portion 14) surrounded by a virtual plane A defined by each of the plurality of frame portions 10 is formed. In the present embodiment, the pore diameter of the three-dimensional space (hereinafter, also referred to as “pore diameter”) can be grasped as the diameter of a sphere circumscribing the three-dimensional space defined by the cell portion 20. However, the pore diameter of the porous body in the present embodiment is calculated based on the above-mentioned calculation formula for convenience. That is, the pore diameter (pore diameter) of the three-dimensional space defined by the cell portion 20 refers to the same as the porosity and the average pore diameter of the skeleton.
 セル部20は、これが複数組み合わせられることによって三次元網目状構造30を形成する(図5~図7)。このとき、フレーム部10は2つのセル部20で共有されている。三次元網目状構造30は、フレーム部10を備えると把握することもできるし、セル部20を備えると把握することもできる。 The cell portion 20 forms a three-dimensional network structure 30 by combining a plurality of the cell portions 20 (FIGS. 5 to 7). At this time, the frame portion 10 is shared by the two cell portions 20. It can be grasped that the three-dimensional network structure 30 includes the frame portion 10 or the cell portion 20.
 多孔体は、上述したように平面多角形状の孔(フレーム部)と立体状の空間(セル部)とを形成する三次元網目状構造を有している。このため平面状の孔のみを有する二次元網目状構造体(たとえばパンチングメタル、メッシュなど)と明確に区別することができる。さらに多孔体は、複数の支柱部と複数のノード部とが一体となって三次元網目状構造を形成しているため、構成単位である繊維同士が絡み合わされて形成された不織布などのような構造体と明確に区別することができる。多孔体は、このような三次元網目状構造を有することから、連通気孔を有することができる。 As described above, the porous body has a three-dimensional network structure that forms a planar polygonal hole (frame portion) and a three-dimensional space (cell portion). Therefore, it can be clearly distinguished from a two-dimensional network structure having only planar holes (for example, punching metal, mesh, etc.). Further, since the porous body has a plurality of support columns and a plurality of node portions integrally to form a three-dimensional network structure, it is like a non-woven fabric formed by entwining fibers, which are constituent units, with each other. It can be clearly distinguished from the structure. Since the porous body has such a three-dimensional network structure, it can have continuous ventilation holes.
 本実施形態において三次元網目状構造は、上述の構造に限定されない。たとえばセル部は、その大きさおよび平面的形状がそれぞれ異なる複数のフレーム部によって形成されていてもよい。さらに三次元網目状構造は、その大きさおよび立体的形状がそれぞれ異なる複数のセル部によって形成されていてもよい。三次元網目状構造は、平面多角形状の孔が形成されていないフレーム部を一部に含んでいてもよいし、立体状の空間が形成されていないセル部(内部が中実であるセル部)を一部に含んでいてもよい。 In the present embodiment, the three-dimensional network structure is not limited to the above-mentioned structure. For example, the cell portion may be formed by a plurality of frame portions having different sizes and planar shapes. Further, the three-dimensional network structure may be formed by a plurality of cell portions having different sizes and three-dimensional shapes. The three-dimensional network structure may partially include a frame portion in which a planar polygonal hole is not formed, or a cell portion in which a three-dimensional space is not formed (a cell portion whose inside is solid). ) May be included in a part.
 (骨格の本体を構成する金属元素)
 骨格の本体は、上述のとおりニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む。骨格の本体は、本開示の多孔体が有する作用効果に影響を与えない限り、上述の金属元素以外の第3の成分を含むことを除外するものではない。しかしながら骨格の本体は、金属成分としては上記二種の金属元素からなることが好ましい。上記二種の金属元素の組み合わせとしては、例えば、ニッケルとマンガン、ニッケルと鉄、ニッケルと銅、マンガンとコバルト、鉄とコバルト、及び鉄と銅が挙げられる。本実施形態の一側面において、上記骨格の本体は、構成元素としてニッケルを含む場合、コバルトを含まず、構成元素としてコバルトを含む場合、ニッケルを含まないことが好ましい。本実施形態の他の側面において、上記少なくとも二種の金属元素は、骨格の本体における主成分であることが好ましい。ここで骨格における「主成分」とは、骨格において占める質量割合が最も多い成分をいう。より具体的には、「主成分」とは、骨格における含有割合が50質量%を超える成分をいう。すなわち、上記少なくとも二種の金属元素は、骨格における含有割合の合計が50質量%を超えることが好ましい。
(Metal elements that make up the body of the skeleton)
The body of the skeleton contains at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements as described above. The main body of the skeleton does not exclude containing a third component other than the above-mentioned metal element as long as it does not affect the action and effect of the porous body of the present disclosure. However, the main body of the skeleton is preferably composed of the above two kinds of metal elements as a metal component. Examples of the combination of the above two types of metal elements include nickel and manganese, nickel and iron, nickel and copper, manganese and cobalt, iron and cobalt, and iron and copper. In one aspect of the present embodiment, the main body of the skeleton preferably does not contain nickel when it contains nickel as a constituent element, and does not contain nickel when it contains cobalt as a constituent element. In another aspect of this embodiment, the at least two metal elements are preferably the main components in the body of the skeleton. Here, the "main component" in the skeleton means the component having the largest mass ratio in the skeleton. More specifically, the "main component" refers to a component having a content ratio of more than 50% by mass in the skeleton. That is, it is preferable that the total content of at least the two metal elements in the skeleton exceeds 50% by mass.
 骨格の本体における上記少なくとも二種の金属元素の合計の含有割合は、たとえば多孔体をSOFCの空気極用集電体または水素極用集電体として用いる前の状態、すなわち多孔体を700℃以上の高温に曝す前の状態において、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが最も好ましい。上記少なくとも二種の金属元素の合計の含有割合は、100質量%であってもよい。 The total content ratio of the above two metal elements in the main body of the skeleton is, for example, the state before using the porous body as the current collector for the air electrode or the current collector for the hydrogen electrode of SOFC, that is, the porous body is 700 ° C. or higher. In the state before being exposed to the high temperature of the above, it is preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 95% by mass or more. The total content ratio of the at least two kinds of metal elements may be 100% by mass.
 上記少なくとも二種の金属元素は、その合計の含有割合が高いほど、多孔体をSOFCの空気極用集電体または水素極用集電体などに用いた場合、生成される酸化物が上記少なくとも二種の金属元素の少なくとも一方と酸素とからなるスピネル型酸化物となる割合が高まる傾向がある。これにより多孔体は、高温環境下で使用された場合にも高い導電性を維持することができる。 The higher the total content of the above two metal elements, the more the oxide produced when the porous body is used for the SOFC air electrode current collector or hydrogen electrode current collector is at least the above. The proportion of spinel-type oxides consisting of at least one of the two metal elements and oxygen tends to increase. As a result, the porous body can maintain high conductivity even when used in a high temperature environment.
 (酸素)
 骨格の本体は、構成元素としてさらに酸素を含むことが好ましい。具体的には、酸素は、上記骨格の本体において0.1質量%以上40質量%以下含まれることがより好ましい。骨格の本体中の酸素は、たとえば多孔体をSOFCの空気極用集電体または水素極用集電体として用いた後に検出され得る。すなわち多孔体を700℃以上の高温に曝した後の状態で、酸素は、上記骨格の本体において0.1質量%以上40質量%以下含まれることが好ましい。酸素は、上記骨格の本体において10~30質量%であることがより好ましく、25~28質量%であることがさらに好ましい。なお、骨格の本体中の酸素は、多孔体の製造直後に検出されてもよい。
(oxygen)
The body of the skeleton preferably further contains oxygen as a constituent element. Specifically, oxygen is more preferably contained in the main body of the skeleton in an amount of 0.1% by mass or more and 40% by mass or less. Oxygen in the body of the skeleton can be detected, for example, after using a porous body as a current collector for the air electrode or a current collector for the hydrogen electrode of an SOFC. That is, in the state after the porous body is exposed to a high temperature of 700 ° C. or higher, oxygen is preferably contained in the main body of the skeleton in an amount of 0.1% by mass or more and 40% by mass or less. Oxygen is more preferably 10 to 30% by mass, still more preferably 25 to 28% by mass in the main body of the skeleton. Oxygen in the main body of the skeleton may be detected immediately after the production of the porous body.
 上記骨格の本体において構成元素として酸素が0.1質量%以上40質量%以下含まれる場合、多孔体が700℃以上の高温に曝されたという熱履歴を伺い知ることができる。さらに、多孔体がSOFCの空気極用集電体または水素極用集電体などに用いられることにより700℃以上の高温に曝され、骨格の本体中に上記少なくとも二種の金属元素の少なくとも一方、ならびに酸素からなるスピネル型酸化物が生成された場合、上記骨格の本体には構成元素として酸素が0.1質量%以上40質量%以下含まれる傾向がある。 When oxygen is contained as a constituent element in the main body of the skeleton in an amount of 0.1% by mass or more and 40% by mass or less, it is possible to know the thermal history that the porous body was exposed to a high temperature of 700 ° C. or more. Further, when the porous body is used as a current collector for an air electrode or a current collector for a hydrogen electrode of SOFC, it is exposed to a high temperature of 700 ° C. or higher, and at least one of the above two metal elements is contained in the main body of the skeleton. , And when a spinel-type oxide composed of oxygen is produced, the main body of the skeleton tends to contain oxygen in an amount of 0.1% by mass or more and 40% by mass or less as a constituent element.
 (金属酸化物)
 本実施形態において、上記骨格の本体は一般式(1):
 A3-x  (1)
(式(1)中、Aはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、Zはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、xは1以上2以下である。)で示される金属酸化物を含むことが好ましい。
(Metal oxide)
In the present embodiment, the main body of the skeleton is the general formula (1):
A x Z 3-x O 4 (1)
(In the formula (1), A represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper, and Z represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper. , And x is 1 or more and 2 or less.) It is preferable to contain the metal oxide represented by.
 (金属元素Aおよび金属元素Zの合計モル数に対する金属元素Aのモル比)
 骨格の本体は、金属元素Aおよび金属元素Zの合計モル数に対する金属元素Aのモル比が0.1以上0.8以下であることが好ましく、0.2以上0.5以下であることがより好ましい。このような組成を有する骨格を備える多孔体をSOFCの電極などに用いた場合、上述のように、酸化によってA3-x(ただし、1≦x≦2)、典型的にはAZまたはAZOの化学式で示されるスピネル型酸化物が骨格中に生成される。骨格の酸化によりAZ(ただし、AはZと同一の元素)の化学式で示されるスピネル型酸化物が生成される場合もある。スピネル型酸化物は、高い導電性を示し、もって多孔体は、高温環境下での使用によって骨格の全体が酸化された場合にも高い導電性を維持することができる。
(Mole ratio of metal element A to the total number of moles of metal element A and metal element Z)
In the main body of the skeleton, the molar ratio of the metal element A to the total number of moles of the metal element A and the metal element Z is preferably 0.1 or more and 0.8 or less, and preferably 0.2 or more and 0.5 or less. More preferred. When a porous body having a skeleton having such a composition is used as an electrode of SOFC or the like, as described above, A x Z 3-x O 4 (however, 1 ≦ x ≦ 2), typically, is generated by oxidation. A spinel-type oxide represented by the chemical formula of AZ 2 O 4 or A 2 ZO 4 is produced in the skeleton. Oxidation of the skeleton may produce spinel-type oxides represented by the chemical formula of AZ 2 O 4 (where A is the same element as Z). The spinel-type oxide exhibits high conductivity, so that the porous body can maintain high conductivity even when the entire skeleton is oxidized by use in a high temperature environment.
 すなわち骨格の本体は、スピネル型酸化物を含むことが好ましい。これにより多孔体は、酸化された場合にも高い導電性をより効果的に維持することができる。上記骨格の本体において酸素の含有割合が上述の範囲を外れる場合、多孔体は、酸化された場合において高い導電性をより効果的に維持する性能が、所望のとおりに得られない傾向がある。 That is, the main body of the skeleton preferably contains a spinel-type oxide. As a result, the porous body can more effectively maintain high conductivity even when it is oxidized. When the oxygen content in the main body of the skeleton is out of the above range, the porous body tends not to have the ability to more effectively maintain high conductivity when oxidized, as desired.
 上記金属酸化物の具体例としては、NiMn、MnNi、MnCo、CoMn、CuFe、CuNi、NiFe、FeCo、FeNi及びCoFeが挙げられる。本実施形態において、上記金属酸化物は、MnNi、MnCo、CuNi及びFeCoからなる群より選ばれる少なくとも一種を含むことが好ましい。これらは特に高い電解性能を維持することが出来る。 Specific examples of the above metal oxides include Nimn 2 O 4 , MnNi 2 O 4 , MnCo 2 O 4 , Comn 2 O 4 , CuFe 2 O 4 , CuNi 2 O 4 , NiFe 2 O 4 , FeCo 2 O 4 , Examples include FeNi 2 O 4 and CoFe 2 O 4 . In the present embodiment, the metal oxide preferably contains at least one selected from the group consisting of MnNi 2 O 4 , MnCo 2 O 4 , CuNi 2 O 4 and FeCo 2 O 4 . These can maintain particularly high electrolytic performance.
 (第3の成分)
 骨格の本体は、本開示の多孔体が有する作用効果に影響を与えない限り、上述のように第3の成分を構成元素として更に含むことができる。骨格の本体は、第3の成分としてたとえばケイ素、マグネシウム、炭素、スズ、アルミニウム、ナトリウム、タングステン、チタン、リン、ホウ素、銀、金、モリブデン、窒素、硫黄、フッ素、塩素などが含まれていてもよい。本実施形態の一側面において、上記骨格の本体は、構成元素としてクロムを含まないことが好ましい。上記第3の成分は、たとえば後述する製造方法において混入が不可避となる不可避不純物として含まれる場合がある。たとえば不可避不純物の一例として、後述の導電化処理により形成される導電被覆層に含まれる元素などを挙げることができる。さらに骨格の本体は、第3の成分として上述の酸素が、多孔体をSOFCの空気極用集電体または水素極用集電体として用いる前の状態において含まれていてもよい。骨格の本体中において第3の成分は、これら単独で5質量%以下であることが好ましく、これらの合計で10質量%以下であることが好ましい。
(Third component)
The main body of the skeleton can further contain a third component as a constituent element as described above, as long as it does not affect the action and effect of the porous body of the present disclosure. The body of the skeleton contains, for example, silicon, magnesium, carbon, tin, aluminum, sodium, tungsten, titanium, phosphorus, boron, silver, gold, molybdenum, nitrogen, sulfur, fluorine, chlorine, etc. as the third component. May be good. In one aspect of this embodiment, it is preferable that the main body of the skeleton does not contain chromium as a constituent element. The third component may be contained as an unavoidable impurity that is inevitably mixed in, for example, in the production method described later. For example, as an example of unavoidable impurities, an element contained in the conductive coating layer formed by the conductive treatment described later can be mentioned. Further, the main body of the skeleton may contain the above-mentioned oxygen as a third component in a state before using the porous body as a current collector for an air electrode or a current collector for a hydrogen electrode of SOFC. The third component in the main body of the skeleton is preferably 5% by mass or less by itself, and preferably 10% by mass or less in total.
 本実施形態の一側面において、上記骨格の本体は、窒素、硫黄、フッ素、及び塩素からなる群より選ばれる少なくとも1つの非金属元素を構成元素としてさらに含んでいてもよく、上記非金属元素は、その含有割合の合計が上記骨格の本体に対して5ppm以上10000ppm以下であってもよい。好ましくは、上記非金属元素はその含有割合の合計が上記骨格の本体に対して10ppm以上8000ppm以下である。
 また、上記骨格の本体は、構成元素としてリンを更に含んでいてもよく、その含有割合は、上記骨格の本体に対して5ppm以上50000ppm以下であってもよい。好ましくは、上記リンはその含有割合が10ppm以上40000ppm以下である。
In one aspect of the present embodiment, the main body of the skeleton may further contain at least one non-metal element selected from the group consisting of nitrogen, sulfur, fluorine, and chlorine as a constituent element, and the non-metal element may further contain. , The total content ratio may be 5 ppm or more and 10000 ppm or less with respect to the main body of the skeleton. Preferably, the total content of the non-metal element is 10 ppm or more and 8000 ppm or less with respect to the main body of the skeleton.
Further, the main body of the skeleton may further contain phosphorus as a constituent element, and the content ratio thereof may be 5 ppm or more and 50,000 ppm or less with respect to the main body of the skeleton. Preferably, the phosphorus content is 10 ppm or more and 40,000 ppm or less.
 本実施形態の他の一側面において、上記骨格の本体は、窒素、硫黄、フッ素、塩素、及びリンからなる群より選ばれる少なくとも2つ以上の非金属元素を構成元素として更に含んでいてもよく、上記非金属元素は、その含有割合の合計が上記骨格の本体に対して5ppm以上50000ppm以下であってもよい。好ましくは、上記非金属元素は、その含有割合の合計が上記骨格の本体に対して10ppm以上10000ppm以下である。 In another aspect of the present embodiment, the body of the skeleton may further contain at least two or more non-metal elements selected from the group consisting of nitrogen, sulfur, fluorine, chlorine, and phosphorus as constituent elements. The total content of the non-metal elements may be 5 ppm or more and 50,000 ppm or less with respect to the main body of the skeleton. Preferably, the total content of the non-metal element is 10 ppm or more and 10000 ppm or less with respect to the main body of the skeleton.
 上記多孔体を燃料電池の空気極用集電体または水素極用集電体として用いた場合、上述のように700℃以上の高温環境に曝されるが、上記骨格の本体が上述の非金属元素を構成元素として含んでいることにより、高い強度(クリープ特性)を維持することができる。 When the porous body is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, it is exposed to a high temperature environment of 700 ° C. or higher as described above, but the main body of the skeleton is the non-metal described above. By containing an element as a constituent element, high strength (creep characteristics) can be maintained.
(各元素の含有割合の測定方法)
 骨格の本体における酸素の含有割合(質量%)については、切断された骨格の本体の断面の観察像(電子顕微鏡像)に対し、電子顕微鏡(SEM)に付帯のEDX装置(たとえばSEM部分:商品名「SUPRA35VP」、カールツァイスマイクロスコピー株式会社製、EDX部分:商品名「octane super」、アメテック株式会社製)を用いて分析することにより求めることができる。上記EDX装置により、骨格の本体における金属元素の含有割合を求めることも可能である。具体的には、上記EDX装置により検出された各元素の原子濃度に基づいて、骨格の本体における酸素および金属元素の質量%、質量比などをそれぞれ求めることができる。さらに、上記骨格の本体が金属元素および酸素からなるスピネル型酸化物を有するか否かについては、上記断面に対してX線を照射し、その回折パターンを解析するX線回折(XRD)法を用いることによって特定することができる。
(Measuring method of content ratio of each element)
Regarding the oxygen content ratio (mass%) in the main body of the skeleton, the EDX device (for example, SEM part: product) attached to the electron microscope (SEM) is compared with the observation image (electron microscope image) of the cross section of the main body of the cut skeleton. It can be obtained by analysis using the name "SUPRA35VP", manufactured by Carl Zeiss Microscopy Co., Ltd., EDX part: trade name "octane super", manufactured by Ametec Co., Ltd.). It is also possible to determine the content ratio of metal elements in the main body of the skeleton by the above EDX device. Specifically, the mass%, mass ratio, and the like of oxygen and metal elements in the main body of the skeleton can be obtained based on the atomic concentration of each element detected by the EDX device. Further, regarding whether or not the main body of the skeleton has a spinel-type oxide composed of a metal element and oxygen, an X-ray diffraction (XRD) method is performed in which the cross section is irradiated with X-rays and the diffraction pattern is analyzed. It can be specified by using it.
 上記骨格の本体がスピネル型酸化物を有するか否かを特定する測定装置については、たとえばX線回折装置(たとえば商品名(型番):「Empyrean」、スペクトリス株式会社製、解析ソフト:「統合粉末X線解析ソフトウェアPDXL」、株式会社リガク製)を用いることができる。測定条件は、たとえば次のとおりとすればよい。 Regarding the measuring device for identifying whether or not the main body of the skeleton has a spinel-type oxide, for example, an X-ray diffractometer (for example, trade name (model number): "Empyrene", manufactured by Spectris Co., Ltd., analysis software: "integrated powder" X-ray analysis software PDXL ”, manufactured by Rigaku Co., Ltd.) can be used. The measurement conditions may be as follows, for example.
 (測定条件)
 X線回折法: θ-2θ法
 測定系: 平行ビーム光学系ミラー
 スキャン範囲(2θ): 10~90°
 積算時間: 1秒/ステップ
 ステップ: 0.03°。
(Measurement condition)
X-ray diffraction method: θ-2θ method Measurement system: Parallel beam optical system Mirror scan range (2θ): 10 to 90 °
Accumulation time: 1 second / step Step: 0.03 °.
 ≪燃料電池≫
 本実施形態に係る燃料電池は、空気極用集電体および水素極用集電体を備える燃料電池である。上記空気極用集電体または上記水素極用集電体の少なくとも一方は、上記の多孔体を含む。上記空気極用集電体または水素極用集電体は、上述のように燃料電池の空気極用集電体または水素極用集電体として用いた場合、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制される多孔体を含む。そのため上記空気極用集電体または水素極用集電体は、SOFCの空気極用集電体または水素極用集電体の少なくとも一方として好適に用いることができる。上記燃料電池は、多孔体が上記少なくとも二種の金属元素を含むため、上記多孔体を空気極用集電体として用いることがより好適である。
≪Fuel cell≫
The fuel cell according to the present embodiment is a fuel cell including a current collector for an air electrode and a current collector for a hydrogen electrode. At least one of the current collector for the air electrode and the current collector for the hydrogen electrode contains the porous body. When the above-mentioned current collector for air electrode or current collector for hydrogen electrode is used as the current collector for air electrode or hydrogen electrode of a fuel cell as described above, the electric resistance is low and the electric resistance is long. Includes a porous body that suppresses a decrease in operating voltage due to use. Therefore, the above-mentioned current collector for air electrode or current collector for hydrogen electrode can be suitably used as at least one of the current collector for air electrode or current collector for hydrogen electrode of SOFC. In the fuel cell, since the porous body contains at least two kinds of metal elements, it is more preferable to use the porous body as a current collector for an air electrode.
 図8は、本開示の一態様に係る燃料電池を示す模式断面図である。燃料電池150は、水素極用集電体110と、空気極用集電体120と、燃料電池用セル100とを備える。上記燃料電池用セル100は、上記水素極用集電体110と、上記空気極用集電体120との間に設けられている。ここで「水素極用集電体」とは、燃料電池において水素を供給する側の集電体を意味する。「空気極用集電体」とは、燃料電池において酸素を含むガス(例えば、空気)を供給する側の集電体を意味する。 FIG. 8 is a schematic cross-sectional view showing a fuel cell according to one aspect of the present disclosure. The fuel cell 150 includes a current collector 110 for a hydrogen electrode, a current collector 120 for an air electrode, and a cell 100 for a fuel cell. The fuel cell cell 100 is provided between the hydrogen electrode current collector 110 and the air electrode current collector 120. Here, the "current collector for hydrogen electrode" means a current collector on the side of supplying hydrogen in the fuel cell. The “air electrode current collector” means a current collector on the side that supplies a gas containing oxygen (for example, air) in a fuel cell.
 図9は、本開示の一態様に係る燃料電池用セルを示す模式断面図である。上記燃料電池用セル100は、空気極102と、水素極108と、上記空気極102と上記水素極108との間に設けられている電解質層106と、上記電解質層106と空気極102との反応を防ぐため、それらの間に設けられる中間層104とを備える。空気極としては、例えば、LaSrCoの酸化物(LSC)が用いられる。電解質層としては、例えば、YがドープされたZrの酸化物(YSZ)が用いられる。中間層としては、例えば、GdがドープされたCeの酸化物(GDC)が用いられる。水素極としては、例えば、YSNとNiOとの混合体、金属Ni等が挙げられる。 FIG. 9 is a schematic cross-sectional view showing a fuel cell cell according to one aspect of the present disclosure. The fuel cell cell 100 includes an air electrode 102, a hydrogen electrode 108, an electrolyte layer 106 provided between the air electrode 102 and the hydrogen electrode 108, and the electrolyte layer 106 and the air electrode 102. An intermediate layer 104 provided between them is provided to prevent a reaction. As the air electrode, for example, an oxide of LaSrCo (LSC) is used. As the electrolyte layer, for example, a Y-doped Zr oxide (YSZ) is used. As the intermediate layer, for example, a Gd-doped Ce oxide (GDC) is used. Examples of the hydrogen electrode include a mixture of YSN and NiO 2 , metallic Ni, and the like.
 上記燃料電池150は、燃料流路114を有する第一インターコネクタ112と、酸化剤流路124を有する第二インターコネクタ122とを更に備える。燃料流路114は、水素極108に燃料(例えば、水素)を供給するための流路である。燃料流路114は、第一インターコネクタ112における主面であって水素極用集電体110と向かい合っている主面に設けられている。酸化剤流路124は、空気極102に酸化剤(例えば、酸素)を供給するための流路である。酸化剤流路124は、第二インターコネクタ122における主面であって空気極用集電体120と向かい合っている主面に設けられている。 The fuel cell 150 further includes a first interconnector 112 having a fuel flow path 114 and a second interconnector 122 having an oxidant flow path 124. The fuel flow path 114 is a flow path for supplying fuel (for example, hydrogen) to the hydrogen electrode 108. The fuel flow path 114 is provided on the main surface of the first interconnector 112, which faces the current collector 110 for hydrogen poles. The oxidant flow path 124 is a flow path for supplying an oxidant (for example, oxygen) to the air electrode 102. The oxidant flow path 124 is provided on the main surface of the second interconnector 122 facing the air electrode current collector 120.
 ≪水蒸気電解装置≫
 本実施形態に係る水蒸気電解装置(「水蒸気電気分解装置」ともいう。)は、空気極用集電体および水素極用集電体を備える水蒸気電解装置であり、上記燃料電池と同様の構造を備える。上記空気極用集電体または上記水素極用集電体の少なくとも一方は、上記の多孔体を含む。上記空気極用集電体または水素極用集電体は、上述のように水蒸気電解装置用の集電体として適度な強度を有する多孔体を含む。そのため上記空気極用集電体または水素極用集電体は、水蒸気電解装置の空気極用集電体または水素極用集電体の少なくとも一方として好適である。上記水蒸気電解装置は、多孔体が上記少なくとも二種の金属元素を含むため、上記多孔体を空気極用集電体として用いることがより好適であり、一例として抵抗が下がり電解電圧が下がる効果がある。
≪Steam electrolyzer≫
The steam electrolyzer according to the present embodiment (also referred to as "steam electrolyzer") is a steam electrolyzer including a current collector for an air electrode and a current collector for a hydrogen electrode, and has the same structure as the above fuel cell. Be prepared. At least one of the current collector for the air electrode and the current collector for the hydrogen electrode contains the porous body. The current collector for the air electrode or the current collector for the hydrogen electrode includes a porous body having an appropriate strength as a current collector for the steam electrolyzer as described above. Therefore, the above-mentioned current collector for air electrode or current collector for hydrogen electrode is suitable as at least one of the current collector for air electrode or the current collector for hydrogen electrode of the steam electrolyzer. In the steam electrolyzer, since the porous body contains at least two kinds of metal elements, it is more preferable to use the porous body as a current collector for an air electrode. As an example, the resistance is lowered and the electrolytic voltage is lowered. is there.
 図10は、本開示の一態様に係る水蒸気電解装置を示す模式断面図である。水蒸気電解装置250は、水素極用集電体210と、空気極用集電体220と、水蒸気電解装置用セル200とを備える。上記水蒸気電解装置用セル200は、上記水素極用集電体210と、上記空気極用集電体220との間に設けられている。ここで「水素極用集電体」とは、水蒸気電解装置において水素が発生する側の集電体を意味する。「空気極用集電体」とは、水蒸気電解装置において水蒸気を含むガス(例えば、加湿空気)を供給する側の集電体を意味する。上記空気極用集電体は、水蒸気電解装置において酸素が発生する側の集電体と把握することもできる。また、本実施形態の一側面において、上記水蒸気を含むガスは、水素極用集電体の側から供給されてもよい。 FIG. 10 is a schematic cross-sectional view showing a steam electrolyzer according to one aspect of the present disclosure. The steam electrolyzer 250 includes a current collector 210 for a hydrogen electrode, a current collector 220 for an air electrode, and a cell 200 for a steam electrolyzer. The steam electrolyzer cell 200 is provided between the hydrogen electrode current collector 210 and the air electrode current collector 220. Here, the "hydrogen electrode current collector" means a current collector on the side where hydrogen is generated in the steam electrolyzer. The “air electrode current collector” means a current collector on the side that supplies a gas containing water vapor (for example, humidified air) in the water vapor electrolyzer. The current collector for the air electrode can also be grasped as a current collector on the side where oxygen is generated in the steam electrolyzer. Further, in one aspect of the present embodiment, the gas containing water vapor may be supplied from the side of the current collector for the hydrogen electrode.
 図11は、本開示の一態様に係る水蒸気電解装置用セルを示す模式断面図である。上記水蒸気電解装置用セル200は、空気極202と、水素極208と、上記空気極202と上記水素極208との間に設けられている電解質層206と、上記電解質層206と上記空気極202との反応を防ぐため、それらの間に設けられる中間層204とを備える。空気極としては、例えば、LaSrCoの酸化物(LSC)が用いられる。電解質層としては、例えば、YがドープされたZrの酸化物(YSZ)が用いられる。中間層としては、例えば、GdがドープされたCeの酸化物(GDC)が用いられる。水素極としては、例えば、YSZとNiOとの混合体が用いられる。 FIG. 11 is a schematic cross-sectional view showing a cell for a steam electrolyzer according to one aspect of the present disclosure. The cell 200 for a steam electrolyzer has an air electrode 202, a hydrogen electrode 208, an electrolyte layer 206 provided between the air electrode 202 and the hydrogen electrode 208, and the electrolyte layer 206 and the air electrode 202. An intermediate layer 204 provided between them is provided in order to prevent a reaction with the above. As the air electrode, for example, an oxide of LaSrCo (LSC) is used. As the electrolyte layer, for example, a Y-doped Zr oxide (YSZ) is used. As the intermediate layer, for example, a Gd-doped Ce oxide (GDC) is used. As the hydrogen electrode, for example, a mixture of YSZ and NiO 2 is used.
 上記水蒸気電解装置250は、水素流路214を有する第一インターコネクタ212と、水蒸気流路224を有する第二インターコネクタ222とを更に備える。水素流路214は、水素極208からの水素を回収するための流路である。水素流路214は、第一インターコネクタ212における主面であって水素極用集電体210と向かい合っている主面に設けられている。水蒸気流路224は、空気極202に水蒸気(例えば、加湿空気)を供給するための流路である。水蒸気流路224は、第二インターコネクタ222における主面であって空気極用集電体220と向かい合っている主面に設けられている。 The steam electrolyzer 250 further includes a first interconnector 212 having a hydrogen flow path 214 and a second interconnector 222 having a steam flow path 224. The hydrogen flow path 214 is a flow path for recovering hydrogen from the hydrogen electrode 208. The hydrogen flow path 214 is provided on the main surface of the first interconnector 212, which faces the current collector 210 for the hydrogen electrode. The water vapor flow path 224 is a flow path for supplying water vapor (for example, humidified air) to the air electrode 202. The water vapor flow path 224 is provided on the main surface of the second interconnector 222, which faces the current collector 220 for the air electrode.
 ≪多孔体の製造方法≫
 本実施形態に係る多孔体は、従来公知の手法を適宜用いることにより製造することができる。上記多孔体の製造方法としては、例えば、電解めっき法、ディッピング法、スパッタリング法、化学気相蒸着法(CVD法)、無電解めっき法などが挙げられる。上記多孔体の製造方法は、例えば後述する電解めっき法またはディッピング法とすることが好ましい。
≪Manufacturing method of porous body≫
The porous body according to the present embodiment can be produced by appropriately using a conventionally known method. Examples of the method for producing the porous body include an electrolytic plating method, a dipping method, a sputtering method, a chemical vapor deposition method (CVD method), and an electroless plating method. The method for producing the porous body is preferably, for example, an electrolytic plating method or a dipping method described later.
 (電解めっき法)
 まず電解めっき法を用いた製造方法を説明する。すなわち、三次元網目状構造を有する樹脂成形体に導電被覆層を形成することにより導電性樹脂成形体を得る工程(第1工程)と、上記導電性樹脂成形体上に上記少なくとも二種の金属元素を構成元素として含む合金のめっきを行なうことにより多孔体前駆体を得る工程(第2工程)と、上記多孔体前駆体に対して熱処理を行なって、導電性樹脂成形体中の樹脂成分を焼却し、これを除去することにより多孔体を得る工程(第3工程)とを含む多孔体の製造方法により、多孔体を製造することが好ましい。
 上記製造方法は、第3工程の後に、上記多孔体に対して酸化処理を行う工程(第4工程)を更に含んでもよい。
(Electroplating method)
First, a manufacturing method using the electrolytic plating method will be described. That is, a step of obtaining a conductive resin molded body by forming a conductive coating layer on a resin molded body having a three-dimensional network structure (first step), and at least two kinds of metals on the conductive resin molded body. A step of obtaining a porous body precursor by plating an alloy containing an element as a constituent element (second step) and a step of heat-treating the porous body precursor to remove resin components in a conductive resin molded product. It is preferable to produce a porous body by a method for producing a porous body, which includes a step of incineration and removing the porous body to obtain a porous body (third step).
The manufacturing method may further include a step (fourth step) of oxidizing the porous body after the third step.
 <第1工程>
 まず、三次元網目状構造を有する樹脂成形体(以下、単に「樹脂成形体」とも記す。)のシートを準備する。樹脂成形体としてポリウレタン樹脂、メラミン樹脂などを用いることができる。さらに、樹脂成形体に導電性を付与する導電化処理として、樹脂成形体の表面に導電被覆層を形成する。この導電化処理としては、たとえば以下の方法を挙げることができる。
(1)カーボン、導電性セラミックなどの導電性粒子およびバインダーを含有した導電性塗料を塗布、浸漬などの手段により導電被覆層を樹脂成形体の表面に形成すること、
(2)無電解めっき法によってニッケルおよび銅などの導電性金属による層を樹脂成形体の表面に形成すること、
(3)蒸着法またはスパッタリング法によって導電性金属による層を樹脂成形体の表面に形成すること。
 これにより、導電性樹脂成形体を得ることができる。
<First step>
First, a sheet of a resin molded body having a three-dimensional network structure (hereinafter, also simply referred to as “resin molded body”) is prepared. A polyurethane resin, a melamine resin, or the like can be used as the resin molded product. Further, as a conductive treatment for imparting conductivity to the resin molded body, a conductive coating layer is formed on the surface of the resin molded body. Examples of the conductive treatment include the following methods.
(1) Forming a conductive coating layer on the surface of a resin molded product by means such as coating or dipping a conductive paint containing conductive particles such as carbon and conductive ceramic and a binder.
(2) Forming a layer of conductive metal such as nickel and copper on the surface of the resin molded product by electroless plating.
(3) Forming a layer made of conductive metal on the surface of a resin molded body by a vapor deposition method or a sputtering method.
As a result, a conductive resin molded product can be obtained.
 <第2工程>
 次に、上記導電性樹脂成形体上に上記少なくとも二種の金属元素を構成元素として含む合金のめっきを行なうことにより多孔体前駆体を得る。上記合金のめっきの方法は、無電解めっきを適用することもできるが、効率の観点から電解めっき(所謂、電気めっき)を用いることが好ましい。上記合金の電解めっきでは、導電性樹脂成形体をカソードとして用いる。ここで、電解めっきによって上記多孔体前駆体を得る方法は、以下の2つの方法が挙げられる。
(方法1)上記少なくとも二種の金属元素を構成元素として含むめっき浴を用いて、上記導電性樹脂成形体上に電解めっきを行う。
(方法2)まず、上記少なくとも二種の金属元素のうち、第一の金属元素(例えばニッケル元素)を含むめっき浴を用いて、上記導電性樹脂成形体上に電解めっきを行う。次に、上記少なくとも二種の金属元素のうち、第二の金属元素(例えば、銅元素)を含むめっき浴を用いて、上記第一の金属元素のめっきが施された上記導電性樹脂成形体上に電解めっきを行う。このとき、上記第一の金属元素の電解めっきと、上記第二の金属元素の電解めっきとを交互に繰り返して行ってもよい。その後、水素雰囲気で高温(例えば、1000℃)の熱拡散処理を行う。
<Second step>
Next, a porous precursor is obtained by plating an alloy containing at least two kinds of metal elements as constituent elements on the conductive resin molded product. Although electroless plating can be applied to the above alloy plating method, it is preferable to use electrolytic plating (so-called electroplating) from the viewpoint of efficiency. In the electrolytic plating of the above alloy, a conductive resin molded body is used as a cathode. Here, as a method for obtaining the porous precursor by electroplating, the following two methods can be mentioned.
(Method 1) Electroplating is performed on the conductive resin molded product using a plating bath containing at least two metal elements as constituent elements.
(Method 2) First, electroplating is performed on the conductive resin molded body using a plating bath containing the first metal element (for example, nickel element) among the at least two kinds of metal elements. Next, the conductive resin molded body plated with the first metal element using a plating bath containing the second metal element (for example, copper element) among the at least two kinds of metal elements. Electroplating is performed on top. At this time, the electrolytic plating of the first metal element and the electrolytic plating of the second metal element may be alternately repeated. Then, a high temperature (for example, 1000 ° C.) heat diffusion treatment is performed in a hydrogen atmosphere.
 上記合金の電解めっきに用いるめっき浴としては、公知のものを使用することができる。たとえばニッケルめっきであれば、ワット浴、塩化浴、スルファミン酸浴などを用いることができる。ニッケル、銅、鉄それぞれの電解めっきを行う際のめっき浴の例を以下に示す。 As the plating bath used for electrolytic plating of the above alloy, a known one can be used. For example, in the case of nickel plating, a watt bath, a chloride bath, a sulfamic acid bath and the like can be used. An example of a plating bath for electrolytic plating of nickel, copper, and iron is shown below.
 (浴組成)
 (ニッケルめっきの場合)
 塩(水溶液):スルファミン酸ニッケル(450g/L)
 ホウ酸: 30g/L
(Bath composition)
(For nickel plating)
Salt (aqueous solution): Nickel sulfamate (450 g / L)
Boric acid: 30 g / L
 (銅めっきの場合)
 塩(水溶液):ピロリン酸銅(90g/L)、ピロリン酸カリウム(375g/L)
 アンモニア水: 3mL/L(比重0.9)
 オルトリン酸: 80g/L
(For copper plating)
Salt (aqueous solution): copper pyrophosphate (90 g / L), potassium pyrophosphate (375 g / L)
Ammonia water: 3 mL / L (specific gravity 0.9)
Orthophosphoric acid: 80 g / L
 (鉄めっきの場合)
 塩(水溶液):FeCl・4HO (2M)、CaCl(1.6M)
 サッカリン:9mM
 ドデシル硫酸ナトリウム:0.3mM
 グルコン酸:10mM
(In the case of iron plating)
Salt (aq): FeCl 2 · 4H 2 O (2M), CaCl 2 (1.6M)
Saccharin: 9 mM
Sodium dodecyl sulfate: 0.3 mM
Gluconic acid: 10 mM
 (電解条件)
 温度: 40~60℃
 電流密度: 0.5~10A/dm
 アノード: 不溶性陽極または可溶性陽極
(Electrolysis conditions)
Temperature: 40-60 ° C
Current density: 0.5-10A / dm 2
Anode: Insoluble anode or soluble anode
 以上により、導電性樹脂成形体上に所定の合金がめっきされた多孔体前駆体を得ることができる。また、窒素、硫黄、フッ素、塩素、リンといった非金属元素を添加する場合は、めっき浴中に各種添加物を投入することで、多孔体前駆体中に含有させることができる。各種添加物の例として、硝酸ナトリウム、硫酸ナトリウム、フッ化ナトリウム、塩化ナトリウム、リン酸ナトリウムが挙げられるが、必ずしもこれらに限定されるものではなく、各非金属元素が含まれていればよい。 From the above, it is possible to obtain a porous precursor in which a predetermined alloy is plated on the conductive resin molded body. When non-metal elements such as nitrogen, sulfur, fluorine, chlorine, and phosphorus are added, they can be contained in the porous precursor by adding various additives into the plating bath. Examples of various additives include, but are not limited to, sodium nitrate, sodium sulfate, sodium fluoride, sodium chloride, and sodium phosphate, as long as each non-metal element is contained.
 <第3工程>
 続いて、上記多孔体前駆体に対して熱処理を行なって、導電性樹脂成形体中の樹脂成分を焼却し、これを除去することにより骨格が中空である多孔体を得る。これにより、三次元網目状構造を有する骨格を備えた多孔体を得ることができる。上記樹脂成分を除去するための熱処理の温度および雰囲気は、たとえば600℃以上とし、大気などの酸化性雰囲気とすればよい。
<Third step>
Subsequently, the porous body precursor is heat-treated to incinerate the resin component in the conductive resin molded body, and the resin component is removed to obtain a porous body having a hollow skeleton. Thereby, a porous body having a skeleton having a three-dimensional network structure can be obtained. The temperature and atmosphere of the heat treatment for removing the resin component may be, for example, 600 ° C. or higher, and may be an oxidizing atmosphere such as air.
 ここで上記の方法により得た多孔体の平均気孔径は、樹脂成形体の平均気孔径とほぼ等しくなる。このため多孔体を適用する用途に応じ、多孔体を得るために用いる樹脂成形体の平均気孔径を適宜選択すればよい。多孔体の気孔率は、最終的にはめっきされる金属量(目付量)で決定されるため、最終製品である多孔体において求められる気孔率に応じ、めっきする合金の目付量を適宜選択すればよい。樹脂成形体の気孔率および平均気孔径は、上述した骨格の気孔率および平均気孔径と同様に定義され、かつ「骨格」を「樹脂成形体」に読み替えて適用することにより、上述の計算式に基づいて求めることができる。 Here, the average pore diameter of the porous body obtained by the above method is substantially equal to the average pore diameter of the resin molded product. Therefore, the average pore diameter of the resin molded product used to obtain the porous body may be appropriately selected according to the application to which the porous body is applied. Since the porosity of the porous body is finally determined by the amount of metal to be plated (weight), the basis weight of the alloy to be plated should be appropriately selected according to the porosity required for the final product, the porous body. Just do it. The porosity and average pore diameter of the resin molded product are defined in the same manner as the porosity and average pore diameter of the skeleton described above, and by replacing "skeleton" with "resin molded product" and applying the above formula. Can be obtained based on.
 <第4工程>
 必要に応じて、更に上記多孔体に対して酸化処理を行なって、多孔体を構成する合金を金属酸化物としてもよい。上記酸化処理としては、特に制限されないが、例えば、上記多孔体を酸化雰囲気中(酸素濃度20~100%)で酸化処理(100~1500℃、1~1000分間)することが挙げられる。
<4th process>
If necessary, the porous body may be further subjected to an oxidation treatment to obtain an alloy constituting the porous body as a metal oxide. The oxidation treatment is not particularly limited, and examples thereof include oxidation treatment (100 to 1500 ° C., 1 to 1000 minutes) of the porous body in an oxidizing atmosphere (oxygen concentration of 20 to 100%).
 (ディッピング法)
 ディッピング法を用いた製造方法の具体例は以下の通りである。まず、上記少なくとも二種の金属元素を構成元素として含む金属酸化物の粉末、アルコール(例えば、1-メトキシ-2-プロパノール)、及びバインダ(例えば、ヒドロキシプロピルセルロース)に、ジルコニアボールを加え、ペイントシェーカーを用いて混合する。次に、当該金属酸化物の粉末を含む混合液に三次元網目状構造を有する基材をディップし、引き上げ後、50℃に調整した恒温槽中で乾燥させる。そして、乾燥後の当該基材を、電気炉を使用して1000℃で2時間焼成し、その後除冷して多孔体を得る。
(Dipping method)
Specific examples of the manufacturing method using the dipping method are as follows. First, zirconia balls are added to a metal oxide powder containing at least two of the above metal elements as constituent elements, an alcohol (for example, 1-methoxy-2-propanol), and a binder (for example, hydroxypropyl cellulose), and painted. Mix using a shaker. Next, a base material having a three-dimensional network structure is dipped in a mixed solution containing the powder of the metal oxide, pulled up, and then dried in a constant temperature bath adjusted to 50 ° C. Then, the dried base material is fired at 1000 ° C. for 2 hours using an electric furnace, and then cooled to obtain a porous body.
 以上の製造方法により、本実施形態に係る多孔体を製造することができる。上記多孔体は、三次元網目構造を有する骨格を備え、上記骨格の本体は、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む。もって多孔体は、燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制される。
 また、本実施形態に係る多孔体は、燃料電池において起きている化学反応とは逆の反応が起きている水蒸気電解に用いる電極としても好適である。すなわち上記多孔体は、水蒸気電解装置の空気極用集電体または水素極用集電体として適度な強度を有することができる。
By the above manufacturing method, the porous body according to the present embodiment can be manufactured. The porous body has a skeleton having a three-dimensional network structure, and the main body of the skeleton contains at least two kinds of metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements. Therefore, even when the porous body is used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and a decrease in operating voltage due to long-term use is suppressed.
Further, the porous body according to the present embodiment is also suitable as an electrode used for steam electrolysis in which a reaction opposite to the chemical reaction occurring in the fuel cell is occurring. That is, the porous body can have an appropriate strength as a current collector for an air electrode or a current collector for a hydrogen electrode of a steam electrolyzer.
 以上の説明は、以下に付記する特徴を含む。
(付記1)
 三次元網目状構造を有する骨格を備えた多孔体であって、
 前記骨格の本体は、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む、多孔体。
(付記2)
 前記骨格の本体は、構成元素としてさらに酸素を含む、付記1に記載の多孔体。
(付記3)
 前記骨格の本体は、一般式(1):
 A3-x  (1)
(式(1)中、Aはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、Zはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、xは1以上2以下である。)で示される金属酸化物を含む、付記2に記載の多孔体。
(付記4)
 前記骨格は、目付量が200~1000g/mである、付記1から付記3のいずれかに記載の多孔体。
The above description includes the features described below.
(Appendix 1)
A porous body having a skeleton having a three-dimensional network structure.
The main body of the skeleton is a porous body containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.
(Appendix 2)
The porous body according to Appendix 1, wherein the main body of the skeleton further contains oxygen as a constituent element.
(Appendix 3)
The main body of the skeleton has the general formula (1):
A x Z 3-x O 4 (1)
(In the formula (1), A represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper, and Z represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper. The porous body according to Appendix 2, which contains the metal oxide represented by (x) of 1 or more and 2 or less.
(Appendix 4)
The skeleton is the porous body according to any one of Appendix 1 to Appendix 3, which has a basis weight of 200 to 1000 g / m 2 .
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
 ≪多孔体の作製≫
 <試料1~試料5>
 試料1~試料5の多孔体は、上述したディッピング法を用いて製造した。ここで、下記表1に示されている金属酸化物の粉末をそれぞれ原料として用いた。
≪Preparation of porous body≫
<Sample 1 to Sample 5>
The porous bodies of Samples 1 to 5 were produced by using the dipping method described above. Here, the metal oxide powders shown in Table 1 below were used as raw materials.
 <試料6>
 試料6の多孔体は、電解めっき法を用いて製造した。まず、三次元網目状構造を有する樹脂成形体として1.5mm厚のポリウレタン樹脂製シートを準備した(第1工程)。このポリウレタン樹脂製シートの気孔率および平均気孔径を上述の計算式に基づいて求めたところ、上記気孔率は96%であり、上記平均気孔径は450μmであった。
<Sample 6>
The porous body of Sample 6 was produced by using an electrolytic plating method. First, a 1.5 mm thick polyurethane resin sheet was prepared as a resin molded body having a three-dimensional network structure (first step). When the porosity and the average porosity of the polyurethane resin sheet were calculated based on the above formula, the porosity was 96% and the average porosity was 450 μm.
 次に、粒径0.01~0.2μmの非晶性炭素であるカーボンブラック100gを0.5Lの10質量%アクリル酸エステル系樹脂水溶液に分散することにより、導電性塗料を作製した。この導電性塗料を上記樹脂成形体に含浸し、その後ロールで絞って乾燥させることにより、樹脂成形体の表面に導電被覆層を形成した。これにより導電性樹脂成形体を得た。 Next, a conductive coating material was prepared by dispersing 100 g of carbon black, which is an amorphous carbon having a particle size of 0.01 to 0.2 μm, in 0.5 L of a 10 mass% acrylic acid ester resin aqueous solution. The conductive coating material was impregnated into the resin molded product, then squeezed with a roll and dried to form a conductive coating layer on the surface of the resin molded product. As a result, a conductive resin molded product was obtained.
 上記導電性樹脂成形体をカソードとし、下記の浴組成および電解条件の下で電解めっきを行なった(第2工程)。まず銅めっきを行い、その後ニッケルめっきを行い、その後還元雰囲気で熱処理することにより、導電性樹脂成形体上にCu-Ni合金を700g/m付着させ、もって多孔体前駆体を得た。 Electroplating was performed using the conductive resin molded product as a cathode under the following bath composition and electrolytic conditions (second step). First, copper plating was performed, then nickel plating was performed, and then heat treatment was performed in a reducing atmosphere to attach 700 g / m 2 of a Cu—Ni alloy onto the conductive resin molded body, thereby obtaining a porous precursor.
 〈浴組成〉
 (銅めっきの場合)
 塩(水溶液):ピロリン酸銅(90g/L)、ピロリン酸カリウム(375g/L)
 アンモニア水: 3mL/L(比重0.9)
 オルトリン酸: 80g/L
 (ニッケルめっきの場合)
 塩(水溶液):スルファミン酸ニッケル(450g/L)
 ホウ酸: 30g/L。
<Bath composition>
(For copper plating)
Salt (aqueous solution): copper pyrophosphate (90 g / L), potassium pyrophosphate (375 g / L)
Ammonia water: 3 mL / L (specific gravity 0.9)
Orthophosphoric acid: 80 g / L
(For nickel plating)
Salt (aqueous solution): Nickel sulfamate (450 g / L)
Boric acid: 30 g / L.
 〈電解条件〉
 (各めっき共通)
 温度:   40~60℃
 電流密度: 0.5~10A/dm
 アノード: 可溶性陽極。
<Electrolysis conditions>
(Common to all plating)
Temperature: 40-60 ° C
Current density: 0.5-10A / dm 2
Anode: Soluble anode.
 上記多孔体前駆体に対して熱処理(650℃、大気雰囲気)を行なって、導電性樹脂成形体中の樹脂成分を焼却し、これを除去した(第3工程)。その後、還元雰囲気(水素100%)中で1000℃、24時間熱処理した上記多孔体前駆体(すなわち、多孔体)を大気雰囲気中で酸化処理(800℃、900分間)することで(第4工程)、骨格の本体がCuNiである多孔体(セルメット)を得た。上記骨格は中空であった。 The porous precursor was heat-treated (650 ° C., air atmosphere) to incinerate the resin component in the conductive resin molded product, and the resin component was removed (third step). Then, the porous precursor (that is, the porous body) heat-treated at 1000 ° C. for 24 hours in a reducing atmosphere (100% hydrogen) is subjected to an oxidation treatment (800 ° C., 900 minutes) in an atmospheric atmosphere (fourth step). ), A porous body (Celmet) in which the main body of the skeleton is CuNi 2 O 4 was obtained. The skeleton was hollow.
 <試料7>
 電解めっきにおいて用いる浴組成をスルファミン酸ニッケル(150g/L)及びスルファミン酸鉄(300g/L)の水溶液とした。上記浴組成以外は、試料6と同じとすることにより、骨格の本体がNiFeである多孔体(セルメット)を得た。
<Sample 7>
The bath composition used in the electrolytic plating was an aqueous solution of nickel sulfamate (150 g / L) and iron sulfamate (300 g / L). By making the same as Sample 6 except for the above bath composition, a porous body (Celmet) having a skeleton body of NiFe 2 O 4 was obtained.
 <試料8>
 電解めっきにおいて用いる浴組成をスルファミン酸鉄(150g/L)及びスルファミン酸コバルト(300g/L)の水溶液とした。上記浴組成以外は、試料6と同じとすることにより、骨格の本体がFeCoである(セルメット)を得た。
<Sample 8>
The bath composition used in the electrolytic plating was an aqueous solution of iron sulfamate (150 g / L) and cobalt sulfamate (300 g / L). By making the same as Sample 6 except for the above bath composition, the main body of the skeleton was FeCo 2 O 4 (Celmet).
 <試料9>
 電解めっきにおいて用いる浴組成をスルファミン酸コバルト(150g/L)及びスルファミン酸鉄(300g/L)の水溶液とした。上記浴組成以外は、試料6と同じとすることにより、骨格の本体がCoFeである多孔体(セルメット)を得た。
<Sample 9>
The bath composition used in the electrolytic plating was an aqueous solution of cobalt sulfamate (150 g / L) and iron sulfamate (300 g / L). By making the same as Sample 6 except for the above bath composition, a porous body (Celmet) having a skeleton body of CoFe 2 O 4 was obtained.
 <試料10>
 原料である金属酸化物の粉末としてMgMnの粉末を用いたこと以外は<試料1~試料5>と同様の方法(ディッピング法)によって、骨格の本体がMgMnである多孔体(セルメット)を得た。
<Sample 10>
A porous body in which the main body of the skeleton is MgMn 2 O 4 by the same method (dipping method) as <Sample 1 to Sample 5> except that the powder of MgMn 2 O 4 is used as the powder of the metal oxide as the raw material. Obtained (Celmet).
 <試料11>
 電解めっきにおいて用いる浴組成をスルファミン酸ニッケル(450g/L)の水溶液とした。上記浴組成及び上記酸化処理を行わなかったこと以外は、試料6と同じとすることにより、骨格の本体がNiである多孔体(セルメット)を得た。
<Sample 11>
The bath composition used in electrolytic plating was an aqueous solution of nickel sulfamate (450 g / L). By making the same as Sample 6 except that the bath composition and the oxidation treatment were not performed, a porous body (Celmet) having a skeleton body of Ni was obtained.
 <試料12及び試料13>
 試料12として、ステンレス430メッシュ(線形0.1mm、100メッシュ)を用いた。また、試料13として、鉄-クロム合金メッシュ(マグネクス社製、線形0.1mm、70メッシュ)を用いた。
<Sample 12 and Sample 13>
As sample 12, stainless steel 430 mesh (linear 0.1 mm, 100 mesh) was used. Further, as sample 13, an iron-chromium alloy mesh (manufactured by Magnex, linear 0.1 mm, 70 mesh) was used.
 以上の手順で、試料1~試料11の多孔体、並びに、試料12及び試料13の金属メッシュを得た。ここで、試料1~試料9は実施例に相当し、試料10~試料13は比較例に相当する。 By the above procedure, the porous bodies of Samples 1 to 11 and the metal meshes of Samples 12 and 13 were obtained. Here, Samples 1 to 9 correspond to Examples, and Samples 10 to 13 correspond to Comparative Examples.
 ≪多孔体の性能評価≫
 <多孔体の物性分析>
 上述の方法により得た試料1~試料11の多孔体に関し、これらの骨格の本体における構成元素の質量割合及びモル比を、それぞれ上記SEMに付帯のEDX装置(SEM部分:商品名「SUPRA35VP」、カールツァイスマイクロスコピー株式会社製、EDX部分:商品名「octane super」、アメテック株式会社製)を用いて調べた。具体的には、まず各試料の多孔体を切断した。次に切断された多孔体の骨格本体の断面を、上記EDX装置によって観察し、検出された各元素の原子濃度に基づいて当該構成元素の質量割合及び多孔体の組成を求めた。その結果、試料1~試料11の多孔体は、表1に示す組成を有していることが分かった。
≪Performance evaluation of porous body≫
<Analysis of physical properties of porous body>
With respect to the porous bodies of Samples 1 to 11 obtained by the above method, the mass ratios and molar ratios of the constituent elements in the main body of these skeletons are determined by the EDX device (SEM part: trade name "SUPRA35VP") attached to the SEM, respectively. Investigated using Carl Zeiss Microscopy Co., Ltd., EDX part: trade name "octane super", manufactured by Ametec Co., Ltd.). Specifically, first, the porous body of each sample was cut. Next, the cross section of the skeleton body of the cut porous body was observed by the above EDX device, and the mass ratio of the constituent elements and the composition of the porous body were determined based on the atomic concentration of each detected element. As a result, it was found that the porous bodies of Samples 1 to 11 had the compositions shown in Table 1.
 さらに試料1~試料11の多孔体に対し、上述した計算式に従って骨格の平均気孔径および気孔率を求めた。その結果、上記樹脂成形体の気孔率および平均気孔径と一致し、気孔率は96%であり、平均気孔径は450μmであった。さらに試料1~試料11の多孔体は、厚みが1.5mmであった。試料1~試料11の多孔体において、金属酸化物または金属の合計の目付量は、600g/mであった。 Further, for the porous bodies of Samples 1 to 11, the average pore diameter and porosity of the skeleton were determined according to the above calculation formula. As a result, it was consistent with the porosity and the average pore diameter of the resin molded product, the porosity was 96%, and the average pore diameter was 450 μm. Further, the porous bodies of Samples 1 to 11 had a thickness of 1.5 mm. In the porous bodies of Samples 1 to 11, the total basis weight of the metal oxide or metal was 600 g / m 2 .
 <発電評価>
 さらに試料1~試料11の多孔体、並びに、試料12及び試料13の金属メッシュを空気極用集電体として、エルコーゲン社製のYSZセル(図9)と共に燃料電池(図8)を作製し、以下の評価項目で発電評価を行った。
<Power generation evaluation>
Further, using the porous bodies of Samples 1 to 11 and the metal meshes of Samples 12 and 13 as current collectors for the air electrode, a fuel cell (FIG. 8) was produced together with a YSZ cell (FIG. 9) manufactured by Elkogen. Power generation was evaluated using the following evaluation items.
 (電気抵抗率の評価)
 高温環境下での導電性を評価するため、試料1~試料11の多孔体、並びに、試料12及び試料13の金属メッシュに対し、その電気抵抗率を次の方法を用いて測定した。
(Evaluation of electrical resistivity)
In order to evaluate the conductivity in a high temperature environment, the electrical resistivity of the porous bodies of Samples 1 to 11 and the metal meshes of Samples 12 and 13 was measured by the following method.
 具体的には、試料1~試料11の多孔体、並びに、試料12及び試料13の金属メッシュに対し、大気雰囲気下で800℃の熱処理を連続的に行ない、四端子法を用いて熱処理前(0時間)と、上記熱処理を所定時間(1000時間)にわたり継続した時点とにおける電気抵抗率(単位は、Ω・cm2)を測定した。電気抵抗率の測定方向は、多孔体又は
金属メッシュの厚み方向である。結果を、表1に示す。
Specifically, the porous bodies of Samples 1 to 11 and the metal meshes of Samples 12 and 13 are continuously heat-treated at 800 ° C. in an air atmosphere, and before heat treatment using the four-terminal method ( The electrical resistivity (unit: Ω · cm 2 ) at the time when the heat treatment was continued for a predetermined time (1000 hours) was measured. The measurement direction of the electrical resistivity is the thickness direction of the porous body or the metal mesh. The results are shown in Table 1.
(発電1000時間後の作動電圧維持率の評価)
 作製した燃料電池について、初期の作動電圧V1と1000時間後の作動電圧V2とを求めた。なお、それぞれの作動電圧V1、V2は、3回測定しその結果を平均することで求めた。求められたV1及びV2から下記の式により1000時間後の作動電圧維持率を求めた。その結果を下記の表1に示す。
 発電1000時間後の作動電圧維持率(%)=(V2/V1)×100
(Evaluation of operating voltage maintenance rate after 1000 hours of power generation)
For the produced fuel cell, the initial operating voltage V1 and the operating voltage V2 after 1000 hours were determined. The operating voltages V1 and V2 were measured three times and the results were averaged to obtain the respective operating voltages. From the obtained V1 and V2, the operating voltage retention rate after 1000 hours was obtained by the following formula. The results are shown in Table 1 below.
Operating voltage maintenance rate (%) = (V2 / V1) x 100 after 1000 hours of power generation
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1によれば、骨格の本体においてニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む試料1~試料9の多孔体を空気極用集電体として含む燃料電池では、800℃での電気抵抗率が0.44~1.78Ω・cmであり、かつ1000時間後の作動電圧維持率が90~98%であった。また、上記結果から、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む金属酸化物の多孔体は、燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制されることが分かった。
<Discussion>
According to Table 1, the porous bodies of Samples 1 to 9 containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements in the main body of the skeleton are collected for the air electrode. In the fuel cell included as an electric body, the electrical resistivity at 800 ° C. was 0.44 to 1.78 Ω · cm 2 , and the operating voltage retention rate after 1000 hours was 90 to 98%. Further, from the above results, the porous body of the metal oxide containing at least two kinds of metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements is a current collector for the air electrode of the fuel cell. Alternatively, it was found that even when used as a current collector for hydrogen poles, the electrical resistance is low and the decrease in operating voltage due to long-term use is suppressed.
 一方、骨格の本体においてMgMnを含む試料10の多孔体を空気極用集電体として含む燃料電池では、上記電気抵抗率が10Ω・cm超であり、1000時間後の作動電圧維持率は低すぎて測定不可能であった。骨格の本体においてNiを含む試料11の多孔体を空気極用集電体として含む燃料電池では、上記電気抵抗率が10Ω・cm超であり、1000時間後の作動電圧維持率は低すぎて測定不可能であった。また、試料12のステンレス430メッシュを空気極用集電体として含む燃料電池では、上記電気抵抗率が0.33Ω・cmであるものの、1000時間後の作動電圧維持率は63%にまで低下していた。試料13の鉄-クロム合金メッシュを空気極用集電体として含む燃料電池では、上記電気抵抗率が0.80Ω・cmであるものの、1000時間後の作動電圧維持率は72%にまで低下していた。 On the other hand, in the fuel cell in which the porous body of the sample 10 containing MgMn 2 O 4 is contained as the current collector for the air electrode in the main body of the skeleton, the electrical resistivity is more than 10Ω · cm 2 and the operating voltage is maintained after 1000 hours. The rate was too low to measure. In a fuel cell containing a porous body of sample 11 containing Ni in the main body of the skeleton as a current collector for the air electrode, the electrical resistivity is more than 10 Ω · cm 2 and the operating voltage retention rate after 1000 hours is too low. It was impossible to measure. Further, in the fuel cell containing the stainless steel 430 mesh of the sample 12 as the current collector for the air electrode, the electrical resistivity is 0.33 Ω · cm 2 , but the operating voltage retention rate after 1000 hours is reduced to 63%. Was. In the fuel cell containing the iron-chromium alloy mesh of sample 13 as a current collector for the air electrode, the electrical resistance is 0.80 Ω · cm 2 , but the operating voltage retention rate after 1000 hours drops to 72%. Was.
 以上の点を考慮すると、骨格の本体においてニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む試料1~試料9の多孔体は、試料10及び試料11の多孔体に比し、燃料電池の空気極用集電体または水素極用集電体として用いた場合でも、電気抵抗が低く、かつ長時間の使用による作動電圧の低下が抑制された多孔体であることが分かった。
 また、試料1~試料9の多孔体は、構成元素としてクロムを含まないため、クロム酸化物のように揮発して燃料電池の性能低下を引き起こすことがない。このような観点からも試料1~試料9の多孔体は、燃料電池の空気極用集電体または水素極用集電体に適していることが分かった。
Considering the above points, the porous body of Samples 1 to 9 containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements in the main body of the skeleton is Sample 10. And, compared to the porous body of sample 11, even when used as a current collector for an air electrode or a current collector for a hydrogen electrode of a fuel cell, the electric resistance is low and the decrease in operating voltage due to long-term use is suppressed. It turned out to be a porous body.
Further, since the porous bodies of Samples 1 to 9 do not contain chromium as a constituent element, they do not volatilize like chromium oxides and cause deterioration of fuel cell performance. From this point of view, it was found that the porous bodies of Samples 1 to 9 are suitable for the current collector for the air electrode or the current collector for the hydrogen electrode of the fuel cell.
 以上のように本発明の実施形態および実施例について説明を行なったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described as described above, it is planned from the beginning that the configurations of the above-described embodiments and examples are appropriately combined.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the embodiments and examples described above, and is intended to include meaning equivalent to the scope of claims and all modifications within the scope.
 1 支柱部、 2 ノード部、 10 フレーム部、 11 骨格本体、 12 骨格、 13 内部、 14 気孔部、 20 セル部、 30 三次元網目状構造、 100 燃料電池用セル、 102 空気極、 104 中間層、 106 電解質層、 108 水素極、 110 水素極用集電体、 112 第一インターコネクタ、 114 燃料流路、 120 空気極用集電体、 122 第二インターコネクタ、 124 酸化剤流路、 150 燃料電池、 200 水蒸気電解装置用セル、 202 空気極、 204 中間層、 206 電解質層、 208 水素極、 210 水素極用集電体、 212 第一インターコネクタ、 214 水素流路、 220 空気極用集電体、 222 第二インターコネクタ、 224 水蒸気流路、 250 水蒸気電解装置、 A 仮想平面 1 strut part, 2 node part, 10 frame part, 11 skeleton body, 12 skeleton, 13 inside, 14 pores, 20 cell part, 30 three-dimensional network structure, 100 fuel cell cell, 102 air electrode, 104 intermediate layer , 106 Electrolyte layer, 108 hydrogen electrode, 110 hydrogen electrode current collector, 112 first interconnector, 114 fuel flow path, 120 air electrode current collector, 122 second interconnector, 124 oxidant flow path, 150 fuel Battery, 200 cell for steam electrolyzer, 202 air electrode, 204 intermediate layer, 206 electrolyte layer, 208 hydrogen electrode, 210 hydrogen electrode current collector, 212 first interconnector, 214 hydrogen flow path, 220 air electrode current collector Body, 222 second interconnector, 224 steam flow path, 250 steam electrolyzer, A virtual plane

Claims (15)

  1.  三次元網目状構造を有する骨格を備えた多孔体であって、
     前記骨格の本体は、ニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される少なくとも二種の金属元素を構成元素として含む、多孔体。
    A porous body having a skeleton having a three-dimensional network structure.
    The main body of the skeleton is a porous body containing at least two metal elements selected from the group consisting of nickel, manganese, cobalt, iron and copper as constituent elements.
  2.  前記骨格の本体は、
     構成元素としてニッケルを含む場合、コバルトを含まず、
     構成元素としてコバルトを含む場合、ニッケルを含まない、請求項1に記載の多孔体。
    The body of the skeleton
    When nickel is contained as a constituent element, cobalt is not contained and
    The porous body according to claim 1, wherein when cobalt is contained as a constituent element, nickel is not contained.
  3.  前記骨格の本体は、構成元素としてさらに酸素を含む、請求項1または請求項2に記載の多孔体。 The porous body according to claim 1 or 2, wherein the main body of the skeleton further contains oxygen as a constituent element.
  4.  前記酸素は、前記骨格の本体において0.1質量%以上40質量%以下含まれる、請求項3に記載の多孔体。 The porous body according to claim 3, wherein the oxygen is contained in the main body of the skeleton in an amount of 0.1% by mass or more and 40% by mass or less.
  5.  前記骨格の本体は、一般式(1):
     A3-x  (1)
    で示される金属酸化物を含み、
     式(1)中、Aはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、Zはニッケル、マンガン、コバルト、鉄及び銅からなる群より選択される金属元素を示し、xは1以上2以下である、請求項3または請求項4に記載の多孔体。
    The main body of the skeleton has the general formula (1):
    A x Z 3-x O 4 (1)
    Contains the metal oxides indicated by
    In formula (1), A represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper, and Z represents a metal element selected from the group consisting of nickel, manganese, cobalt, iron and copper. The porous body according to claim 3 or 4, wherein x is 1 or more and 2 or less.
  6.  前記金属酸化物は、MnNi、MnCo、CuNi及びFeCoからなる群より選ばれる少なくとも一種を含む、請求項5に記載の多孔体。 The porous body according to claim 5, wherein the metal oxide contains at least one selected from the group consisting of MnNi 2 O 4 , MnCo 2 O 4 , CuNi 2 O 4 and FeCo 2 O 4 .
  7.  前記骨格の本体は、スピネル型酸化物を含む、請求項5又は請求項6に記載の多孔体。 The porous body according to claim 5 or 6, wherein the main body of the skeleton contains a spinel-type oxide.
  8.  前記骨格の本体は、構成元素としてクロムを含まない、請求項1から請求項7のいずれか一項に記載の多孔体。 The porous body according to any one of claims 1 to 7, wherein the main body of the skeleton does not contain chromium as a constituent element.
  9.  前記骨格は、目付量が200g/m以上1000g/m以下である、請求項1から請求項8のいずれか一項に記載の多孔体。 The porous body according to any one of claims 1 to 8, wherein the skeleton has a basis weight of 200 g / m 2 or more and 1000 g / m 2 or less.
  10.  前記骨格は、800℃における電気抵抗率が2Ω・cm以下である、請求項1から請求項9のいずれか一項に記載の多孔体。 The porous body according to any one of claims 1 to 9, wherein the skeleton has an electrical resistivity of 2 Ω · cm 2 or less at 800 ° C.
  11.  前記骨格の本体は、その断面を3000倍の倍率で観察することにより観察像を得た場合、前記観察像の任意の10μm四方の領域において現われる長径1μm以上の空隙の数が5個以下である、請求項1から請求項10のいずれか一項に記載の多孔体。 When an observation image is obtained by observing the cross section of the main body of the skeleton at a magnification of 3000 times, the number of voids having a major axis of 1 μm or more appearing in an arbitrary 10 μm square region of the observation image is 5 or less. , The porous body according to any one of claims 1 to 10.
  12.  前記骨格は、中空である、請求項1から請求項11のいずれか一項に記載の多孔体。 The porous body according to any one of claims 1 to 11, wherein the skeleton is hollow.
  13.  前記多孔体は、シート状の外観を有し、厚みが0.2mm以上2mm以下である、請求項1から請求項12のいずれか一項に記載の多孔体。 The porous body according to any one of claims 1 to 12, wherein the porous body has a sheet-like appearance and a thickness of 0.2 mm or more and 2 mm or less.
  14.  空気極用集電体および水素極用集電体を備える燃料電池であって、
     前記空気極用集電体または前記水素極用集電体の少なくとも一方は、請求項1から請求項13のいずれか一項に記載の多孔体を含む、燃料電池。
    A fuel cell including a current collector for an air electrode and a current collector for a hydrogen electrode.
    A fuel cell comprising the porous body according to any one of claims 1 to 13, at least one of the current collector for an air electrode and the current collector for a hydrogen electrode.
  15.  空気極用集電体および水素極用集電体を備える水蒸気電解装置であって、
     前記空気極用集電体または前記水素極用集電体の少なくとも一方は、請求項1から請求項13のいずれか一項に記載の多孔体を含む、水蒸気電解装置。
    A steam electrolyzer equipped with a current collector for an air electrode and a current collector for a hydrogen electrode.
    A steam electrolyzer comprising the porous body according to any one of claims 1 to 13, wherein at least one of the current collector for an air electrode and the current collector for a hydrogen electrode is included.
PCT/JP2020/016534 2019-05-22 2020-04-15 Porous body, fuel cell equipped with same, and steam electrolysis device equipped with same WO2020235266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019096108 2019-05-22
JP2019-096108 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235266A1 true WO2020235266A1 (en) 2020-11-26

Family

ID=73458600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016534 WO2020235266A1 (en) 2019-05-22 2020-04-15 Porous body, fuel cell equipped with same, and steam electrolysis device equipped with same

Country Status (1)

Country Link
WO (1) WO2020235266A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239321A (en) * 2012-05-15 2013-11-28 Sumitomo Electric Ind Ltd Solid electrolyte laminate, manufacturing method thereof, and fuel battery
WO2016132811A1 (en) * 2015-02-18 2016-08-25 住友電気工業株式会社 Method for producing nickel alloy porous body
JP2017507452A (en) * 2013-12-26 2017-03-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Air current collector for solid oxide fuel cell and solid oxide fuel cell including the same
WO2019244480A1 (en) * 2018-06-21 2019-12-26 住友電気工業株式会社 Porous body, current collector including same, and fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239321A (en) * 2012-05-15 2013-11-28 Sumitomo Electric Ind Ltd Solid electrolyte laminate, manufacturing method thereof, and fuel battery
JP2017507452A (en) * 2013-12-26 2017-03-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Air current collector for solid oxide fuel cell and solid oxide fuel cell including the same
WO2016132811A1 (en) * 2015-02-18 2016-08-25 住友電気工業株式会社 Method for producing nickel alloy porous body
WO2019244480A1 (en) * 2018-06-21 2019-12-26 住友電気工業株式会社 Porous body, current collector including same, and fuel cell

Similar Documents

Publication Publication Date Title
JP7230826B2 (en) POROUS BODY, CURRENT COLLECTOR AND FUEL CELL CONTAINING THE SAME
US11466343B2 (en) Metal porous body
WO2020235265A1 (en) Porous body, fuel cell including same, and water-vapor electrolysis apparatus including same
JP7021669B2 (en) Method for manufacturing metal porous body, solid oxide fuel cell and metal porous body
WO2020235266A1 (en) Porous body, fuel cell equipped with same, and steam electrolysis device equipped with same
JP7314940B2 (en) Porous body and fuel cell containing the same
WO2021131689A1 (en) Porous body and fuel cell including same
WO2020235267A1 (en) Porous body, fuel cell including same, and water-vapor electrolysis apparatus including same
JP7369785B2 (en) Surface coated metal porous body
WO2024070083A1 (en) Porous body, porous collector, and solid oxide fuel cell comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP