WO2016132746A1 - THIN-FILM SUBSTRATE, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR, DEPOSITION APPARATUS, DEPOSITION METHOD AND GaN TEMPLATE - Google Patents

THIN-FILM SUBSTRATE, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR, DEPOSITION APPARATUS, DEPOSITION METHOD AND GaN TEMPLATE Download PDF

Info

Publication number
WO2016132746A1
WO2016132746A1 PCT/JP2016/000895 JP2016000895W WO2016132746A1 WO 2016132746 A1 WO2016132746 A1 WO 2016132746A1 JP 2016000895 W JP2016000895 W JP 2016000895W WO 2016132746 A1 WO2016132746 A1 WO 2016132746A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
buffer layer
cubic
plate surface
Prior art date
Application number
PCT/JP2016/000895
Other languages
French (fr)
Japanese (ja)
Inventor
天野 浩
本田 善央
正 光成
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017500529A priority Critical patent/JP6736005B2/en
Publication of WO2016132746A1 publication Critical patent/WO2016132746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Definitions

  • the technical field of this specification relates to a thin film substrate, a semiconductor device, a manufacturing method, a film forming device, a film forming method, and a GaN template for forming a buffer layer having a crystal structure different from that of the substrate on the substrate.
  • a III-group nitride semiconductor represented by GaN has a high breakdown field strength and a high melting point. Therefore, group III nitride semiconductors are expected as materials for semiconductor devices for high output, high frequency, and high temperature, replacing GaAs semiconductors. Therefore, a HEMT device using a III-group nitride semiconductor has been researched and developed. In addition, Group III group nitride semiconductors are also applied to light emitting devices.
  • III group III nitride semiconductor has a hexagonal crystal structure represented by wurtzite type. For this reason, a hexagonal crystal substrate is generally used as the growth substrate.
  • An example of such a hexagonal substrate is a sapphire substrate.
  • a Si (111) substrate may be used as a growth substrate.
  • the Si (111) substrate has a structure close to a hexagonal crystal.
  • the Si substrate a large-diameter substrate can be manufactured with high quality at low cost. Therefore, it is industrially significant to grow a III-group nitride semiconductor on a Si substrate.
  • the Si (001) substrate is a cubic substrate.
  • Si atoms are arranged in a square shape. It is not easy to grow a hexagonal III-V nitride semiconductor on such a cubic Si (001) substrate. Needless to say, the crystal structures of the cubic and hexagonal crystals are greatly different.
  • Si (001) substrates are generally less expensive than Si (111) substrates. Further, Si (001) substrates having a larger diameter than Si (111) substrates are industrially produced. Therefore, it is industrially meaningful to establish a technique for growing a group III group nitride semiconductor on a Si (001) substrate.
  • the technology of this specification has been made to solve the problems of the conventional technology described above.
  • the problem is to provide a thin film substrate and a semiconductor device for forming a hexagonal buffer layer on a cubic substrate, a manufacturing method thereof, a film forming device and a film forming method, and a GaN template.
  • the thin film substrate in the first aspect includes a substrate and a buffer layer on the substrate.
  • the substrate is a cubic substrate.
  • the buffer layer is hexagonal.
  • the c-axis of the buffer layer faces the first direction at a rate of 50% or more.
  • the first direction is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate.
  • This thin film substrate is obtained by forming a hexagonal thin film on a cubic substrate typified by a large-diameter Si (001) substrate. 50% or more of the c-axis of the buffer layer faces a specific direction over the entire plate surface of the substrate. In other words, at any position on the substrate, 50% or more of the c-axis of the buffer layer faces the specific direction. Therefore, a single crystal of a Group III nitride semiconductor can be epitaxially grown on the buffer layer.
  • the cubic substrate is a Si (001) substrate.
  • the first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction.
  • the thin film substrate in the fourth aspect has an intermediate layer on the buffer layer.
  • the intermediate layer is hexagonal.
  • the intermediate layer has a superlattice layer.
  • the semiconductor device includes a substrate, a buffer layer on the substrate, and a group III group nitride semiconductor layer on the buffer layer.
  • the substrate is a cubic substrate.
  • the buffer layer is hexagonal.
  • the c-axis of the buffer layer faces the first direction at a rate of 50% or more.
  • the first direction is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate.
  • the c-axis of the group III group nitride semiconductor layer is inclined within a range of 0 ° to 5 ° with respect to the first direction in both the direction perpendicular to the plate surface of the substrate and the in-plane direction.
  • the cubic substrate is a Si (001) substrate.
  • the first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction.
  • the semiconductor device includes an intermediate layer between the buffer layer and the group III group nitride semiconductor layer.
  • the intermediate layer is hexagonal.
  • the intermediate layer has a superlattice layer.
  • the GaN template in the eleventh aspect has a substrate, a buffer layer on the substrate, and a group III nitride semiconductor layer on the buffer layer.
  • the substrate is a cubic substrate.
  • the buffer layer is hexagonal.
  • the c-axis of the buffer layer faces the first direction at a rate of 50% or more.
  • the first direction is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate.
  • the c-axis of the group III nitride semiconductor layer is inclined within a range of 0 ° to 5 ° with respect to the first direction in both the direction perpendicular to the plate surface of the substrate and the in-plane direction.
  • the cubic substrate may be a Si (001) substrate.
  • the first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction.
  • the thin film substrate manufacturing method includes a step of disposing a cubic substrate inside a chamber and an inclination within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the cubic substrate. And a step of forming a hexagonal buffer layer on the cubic substrate by sputtering while maintaining a relative positional relationship between the cubic substrate and the target. .
  • a method for manufacturing a semiconductor device comprising: arranging a cubic substrate inside a chamber; and tilting the cubic substrate within a range of 10 ° to 60 ° with respect to a direction perpendicular to a plate surface of the cubic substrate.
  • a step of disposing a target at a predetermined position, a step of forming a hexagonal buffer layer on the cubic substrate by sputtering while maintaining a relative positional relationship between the cubic substrate and the target, and a buffer layer And a step of growing a group III nitride semiconductor layer on the substrate.
  • the film forming method in the fourteenth aspect is a method of forming a thin film on a substrate.
  • a cubic substrate is placed inside a chamber, and a target is placed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the cubic substrate.
  • a hexagonal buffer layer is formed on the cubic substrate by sputtering.
  • the cubic substrate may be a Si (001) substrate.
  • the first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction.
  • a film forming apparatus in a fifteenth aspect, includes a substrate support portion for supporting a substrate, a chamber for accommodating the substrate support portion, and a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate. And a target arrangement portion arranged at a position inclined so as to be relatively variable.
  • a thin film substrate and a semiconductor device for forming a hexagonal buffer layer on a cubic substrate, a manufacturing method thereof, a film forming apparatus, a film forming method, and a GaN template are provided.
  • FIG. 4 is an enlarged view of FIG. 3. It is a figure which shows the positional relationship of a board
  • FIG. 1 is a diagram showing a schematic configuration of a film forming apparatus 1000 according to this embodiment.
  • the film forming apparatus 1000 is an apparatus for forming a thin film on the substrate 110 by sputtering.
  • the film forming apparatus 1000 includes a chamber 1100, a susceptor 1200, a heater 1300, a target placement unit 1400, a target 1500, a voltage application unit 1600, and a gas supply unit (not shown).
  • the chamber 1100 is for accommodating the substrate 110 on which sputtering is performed.
  • the chamber 1100 accommodates therein a susceptor 1200, a heater 1300, a target placement unit 1400, and a target 1500.
  • the susceptor 1200 is a substrate support unit for supporting the substrate 110.
  • the heater 1300 is for heating the substrate 110 supported by the susceptor 1200.
  • the target placement unit 1400 is for placing the target 1500.
  • the target 1500 is a raw material for forming a thin film on the substrate 110 by sputtering.
  • the voltage application unit 1600 is for applying a voltage to the target 1500.
  • the chamber 1100 is grounded.
  • the voltage application unit 1600 uses a DC power supply.
  • the voltage application unit 1600 may use an AC power source or a pulse DC power source.
  • the angle formed between the direction perpendicular to the plate surface of the substrate 110 and the direction in which the target 1500 is disposed when viewed from the substrate 110 is an angle ⁇ .
  • the angle ⁇ is an angle formed by the center of the surface of the substrate 110 and the center of the surface of the target 1500.
  • the angle ⁇ is in the range of 10 ° to 60 °. That is, the target placement unit 1400 is placed at a position that is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110.
  • the target 1500 is disposed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110.
  • the angle ⁇ is in the range of 15 ° to 55 °. More preferably, the angle ⁇ is in the range of 20 ° to 50 °. More preferably, the angle ⁇ is in the range of 25 ° to 45 °.
  • the surface of the target 1500 is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110.
  • the target placement unit 1400 is placed at a position and orientation in which the surface of the target 1500 is tilted within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110.
  • the film forming apparatus 1000 is a directional sputtering apparatus.
  • FIG. 2 is a diagram showing a substrate 110 used for film formation.
  • the substrate 110 is a Si (001) substrate.
  • the substrate 110 is a cubic substrate.
  • the substrate 110 has an orientation flat as shown in FIG. Further, in FIG. 2, a [ ⁇ 110] direction and a [110] direction are drawn.
  • an off substrate having an off angle of 15 ° or less in the [110] direction or a direction equivalent to the [110] direction may be applied.
  • the substrate 110 is placed on the susceptor 1200 inside the chamber 1100.
  • the target 1500 is positioned in the [110] direction of the substrate 110 or the direction equivalent to the [110] direction.
  • 1500 is arranged.
  • the target 1500 is disposed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110.
  • the material of the target 1500 is Al.
  • about 2 to 100 sccm of N 2 gas is supplied.
  • the target 1500 is located within 30 ° in the in-plane rotation direction of the substrate 110 from the [110] direction of the substrate 110 or a direction equivalent to the [110] direction.
  • the voltage application unit 1600 applies a voltage to the target 1500. Thereby, the raw material jumps out of the target 1500. Then, the protruding raw material is scattered in a direction inclined from a direction perpendicular to the plate surface of the substrate 110. That is, when viewed from the substrate 110, the raw material is ejected from a direction inclined by an angle ⁇ from the [110] direction in a direction perpendicular to the plate surface of the substrate 110. At this time, the susceptor 1200 is not rotating. That is, the substrate 110 is not rotated with respect to the chamber 1100. Then, the protruding raw material is deposited on the substrate 110. Thereby, the buffer layer 120 is formed on the substrate 110. That is, a hexagonal AlN layer is formed on a Si (001) substrate which is a cubic substrate.
  • FIG. 3 is a diagram showing a thin film substrate 100 formed by the film forming apparatus 1000.
  • the thin film substrate 100 is a deposition target substrate on which a thin film is formed.
  • the thin film substrate 100 includes a substrate 110 and a buffer layer 120.
  • the buffer layer 120 is an AlN layer formed by sputtering.
  • the substrate 110 is a cubic substrate.
  • the buffer layer 120 is a hexagonal layer.
  • the thin film substrate 100 includes the cubic substrate 110 and the hexagonal buffer layer 120.
  • FIG. 4 is an enlarged view of FIG.
  • the c-axis of the buffer layer faces the first direction J1 over the plate surface of the substrate 110.
  • the first direction J1 is inclined by an angle ⁇ 1 with respect to the direction perpendicular to the plate surface of the substrate 110.
  • the growth direction of the buffer layer 120 is inclined by an angle ⁇ 1 with respect to the direction perpendicular to the plate surface of the substrate 110.
  • the inclination angle ⁇ ⁇ b> 1 of the growth direction of the buffer layer 120 is close to the arrangement angle ⁇ of the target 1500.
  • the angle ⁇ 1 is in the range of 10 ° to 60 °. Preferably, the angle ⁇ 1 is in the range of 15 ° to 55 °. More preferably, the angle ⁇ 1 is in the range of 20 ° to 50 °. More preferably, the angle ⁇ 1 is in the range of 25 ° to 45 °.
  • FIG. 5 is a diagram showing the positional relationship between the substrate 110 and the target 1500 in this embodiment in a polar coordinate space.
  • a direction perpendicular to the plate surface of the substrate 110 is a normal direction Z A.
  • the tilt angle from the normal direction Z A in the first direction J1 is defined as a declination angle ⁇ A
  • the in-plane rotation direction of the substrate 110 in the first direction J1 is defined as a declination angle ⁇ A.
  • a direction perpendicular to the surface of the target 1500 is defined as a normal direction Z B.
  • the target particles reach the substrate 110 from the direction of the normal direction Z B of the target 1500 or a direction close to that direction.
  • the reached target particles are crystallized so as to be thermodynamically stable. Therefore, the incident direction of the target particles is close to the growth direction of the buffer layer 120. Therefore, the first direction J1 which is the c-axis direction of the buffer layer 120 is close to the normal direction Z B of the target 1500.
  • the substrate 110 is a cubic substrate. Therefore, atoms are arranged at the lattice apexes on the plate surface of the substrate 110.
  • the buffer layer 120 is hexagonal.
  • the inclined surface of the buffer layer 120 matches the plate surface of the substrate 110.
  • a (10-13) plane of the buffer layer 120 described later is an inclined surface of the buffer layer 120.
  • atoms are arranged at the positions of the vertices of a rectangular lattice. Therefore, the atoms located at the square lattice-like vertices of the substrate 110 and the atoms located at the rectangular lattice-like vertices of the buffer layer 120 are combined. Therefore, the hexagonal buffer layer 120 can be grown on the cubic substrate 110.
  • target particles are transported toward the substrate 110 from a specific direction with respect to the substrate 110. That is, when viewed from the plate surface of the substrate 110, the raw material particles are always transported from a substantially constant direction.
  • the c-axis of the GaN layer at the first location on the substrate 110 is in the first direction J1.
  • the c-axis of the GaN layer at the second location on the substrate 110 also faces the first direction J1.
  • most of the c-axis of the AlN layer and the GaN layer to be formed are oriented in the first direction J1 over the plate surface of the substrate 110.
  • the c-axis is inclined at a specific angle ⁇ 1 (see FIG. 4) with respect to the direction perpendicular to the plate surface of the substrate 110. Further, the c-axis is directed in a specific direction within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate 110 or a direction equivalent to the [110] direction.
  • the c-axis of the GaN layer at the third location of the substrate 110 faces the second direction J2.
  • the c-axis of the GaN layer at the fourth position of the substrate 110 faces the third direction J3.
  • the second direction J2 and the third direction J3 are different directions.
  • the c-axis is directed in different directions depending on the location of the substrate 110.
  • the buffer layer 120 has a first region and a second region rotated by 30 ° in the in-plane rotation direction from the first region. That is, two regions having different crystal orientations are mixed. Therefore, a single crystal cannot be obtained. Even if an off-substrate is used, a crystal with good crystallinity cannot be obtained.
  • the thin film substrate 100 of this embodiment includes a substrate 110 and a buffer layer 120.
  • the c-axis of the buffer layer 120 faces the first direction J1 over the plate surface of the substrate 110. That is, the c-axis of the buffer layer 120 faces the first direction J1 at a rate of 95% or more.
  • the substrate 110 is not arranged in a direction equivalent to the [110] direction, the proportion of the c-axis facing the first direction J1 decreases. Even in such a case, the c-axis of the buffer layer 120 faces the first direction J1 at a rate of at least 50% or more.
  • the c-axis of the buffer layer 120 faces the first direction J1 at a rate of 50% to 100%.
  • the III-group nitride semiconductor layer can be grown with That is, the dominant direction of the c-axis in the buffer layer 120 determines the inclination of the c-axis of the III-group nitride semiconductor layer that is subsequently grown. In the group III nitride semiconductor layer grown in this way, 95% or more of the c-axis is directed in the first direction J1. That is, almost a single crystal is obtained.
  • the ratio of the c-axis facing the first direction J1 in the c-axis of the buffer layer 120 is a ratio of 50% or more and 100% or less. Preferably, it is a ratio of 65% or more and 100% or less. More preferably, the ratio is 80% or more and 100% or less. More preferably, the ratio is 90% or more and 100% or less.
  • the cubic substrate 110 in the present embodiment is a Si (001) substrate.
  • other cubic substrates can be used.
  • an MgO substrate, a TiO 2 substrate, and a SrTiO 3 substrate can be mentioned.
  • a cubic substrate such as a SiC substrate or a GaAs substrate can also be used.
  • a (110) substrate may be used.
  • the buffer layer 120 of this embodiment is an AlN layer.
  • Other buffer layers may also be used. Examples of the buffer layer include a BN layer, a ZnO layer, and a ZnS layer.
  • the manufacturing method of the thin film substrate 100 may include a first step in which the susceptor 1200 is not rotated and a second step in which the susceptor 1200 is rotated. That is, in the initial stage of film formation of the buffer layer 120, a part of the buffer layer 120 is formed with a film thickness of about 10 nm or more without rotating the susceptor 1200. At this stage, the orientation direction of the c-axis of the buffer layer 120 is determined. Thereafter, the remaining part of the buffer layer 120 is formed while the susceptor 1200 is rotated. At this stage, since the c-axis alignment direction has already been determined, the remainder of the buffer layer 120 grows according to the determined c-axis alignment direction. By using two steps in this way, the in-plane uniformity of the buffer layer 120 is improved.
  • Target Arrangement Unit The target arrangement unit 1400 of this embodiment is fixed to the chamber 1100. However, the target placement unit 1400 can change the tilt angle so that the surface of the target 1500 is relatively variable within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110. It may be.
  • the angle formed by the direction perpendicular to the plate surface of the substrate 110 and the direction in which the target 1500 is disposed as viewed from the substrate 110 is inclined by an angle ⁇ . is doing. Therefore, the hexagonal buffer layer 120 can be grown on the cubic substrate 110. Therefore, for example, a group III nitride semiconductor can be grown on a large-diameter Si (001) substrate.
  • the thin film substrate 100 of the present embodiment includes a cubic substrate 110 and a hexagonal buffer layer 120 grown on the substrate 110. Therefore, a III-group nitride semiconductor can be grown on an inexpensive and large-diameter Si (001) substrate.
  • FIG. 7 is a diagram illustrating a schematic configuration of the HEMT 200 according to the second embodiment.
  • the HEMT 200 is a semiconductor element having a group III nitride semiconductor.
  • the HEMT 200 includes a substrate 110, a buffer layer 120, a base layer 230, a channel layer 240, a barrier layer 250, a source electrode S1, a drain electrode D1, and a gate electrode G1.
  • the substrate 110 is a cubic substrate. Specifically, it is a Si (001) substrate.
  • the buffer layer 120 is a hexagonal AlN layer. As described above, the hexagonal buffer layer 120 is formed on the cubic substrate 110.
  • the underlayer 230 is a GaN layer.
  • the channel layer 240 is a GaN layer.
  • the barrier layer 250 is an AlGaN layer. These are examples, and the base layer 230, the channel layer 240, and the barrier layer 250 may be other types of semiconductor layers.
  • FIG. 8 is a conceptual diagram illustrating the substrate 110, the buffer layer 120, and the base layer 230 extracted from the HEMT 200.
  • the first angle ⁇ ⁇ b> 1 is an angle formed by the direction perpendicular to the plate surface of the substrate 110 and the c-axis of the buffer layer 120.
  • the second angle ⁇ ⁇ b> 2 is an angle formed by the direction perpendicular to the plate surface of the substrate 110 and the c-axis of the base layer 230.
  • the angle ⁇ 2 is in the range of 10 ° to 60 °. Preferably, the angle ⁇ 2 is in the range of 15 ° to 55 °. More preferably, the angle ⁇ 2 is in the range of 20 ° to 50 °. More preferably, the angle ⁇ 2 is in the range of 25 ° to 45 °.
  • the direction of the c-axis of the base layer 230 is substantially the same as the direction of the c-axis of the buffer layer 120. That is, GaN grows on the buffer layer 120 whose c-axis is inclined, inheriting the crystallinity of the buffer layer 120.
  • the second angle ⁇ 2 is substantially equal to the first angle ⁇ 1.
  • the second angle ⁇ 2 is inclined by 0 ° or more and 5 ° or less with respect to the first angle ⁇ 1 in both the direction perpendicular to the plate surface of the substrate 110 and the in-plane direction.
  • the c-axis of the base layer 230 is tilted within a range of 0 ° to 5 ° with respect to both the direction perpendicular to the plate surface of the substrate 110 and the in-plane direction with respect to the c-axis direction of the buffer layer 120. is doing. Preferably, it is in the range of 0 ° to 3 °. More preferably, it is in the range of 0 ° to 1 °.
  • the c-axis of the buffer layer 120 is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate 110 or a direction equivalent to the [110] direction.
  • the surface of the foundation layer 230 that is a GaN layer is a nonpolar surface. Therefore, spontaneous polarization and piezo polarization are suppressed. Therefore, a normally-off type HEMT is easily obtained. Further, when applied to a light emitting element, wavelength shift due to polarization in the light emitting layer is suppressed. Further, separation of electron and hole wave functions due to electric field distortion is suppressed. Therefore, it is possible to suppress a decrease in luminous efficiency.
  • FIG. 9 is a graph showing the polarization in the thin film when InGaN having an In composition ratio of 20% is grown on GaN.
  • FIG. 10 is a graph showing polarization in a thin film when AlGaN having an Al composition ratio of 20% is grown on GaN.
  • the degree of polarization when the c-axis is inclined is smaller than the degree of polarization when the c-axis is not inclined. Even if the In composition ratio or Al composition ratio changes, this tendency does not change so much. Therefore, in the semiconductor device using the nonpolar plane with the c-axis inclined in this embodiment, polarization is suppressed.
  • the buffer layer 120 is formed on the substrate 110 using the film forming apparatus 1000 of the first embodiment. Thereafter, the deposited substrate 110 is taken out of the deposition apparatus 1000.
  • a group III nitride semiconductor single crystal is epitaxially grown on the buffer layer 120 using an MOCVD apparatus or the like. That is, the base layer 230 is grown on the buffer layer 120. Next, the channel layer 240 is grown on the base layer 230. Then, a barrier layer 250 is grown on the channel layer 240.
  • the source electrode S1, the drain electrode D1, and the gate electrode G1 are formed on the barrier layer 250. Then, the substrate 110 is cut out into chips. Thereby, the HEMT 200 shown in FIG. 7 is manufactured.
  • MIS HEMT The technique of the present embodiment can be applied not only to the HEMT 200 of the present embodiment but also to a MIS type HEMT or a MOS type HEMT.
  • GaN Template The technique of this embodiment can also be applied to a GaN template.
  • the structure of the GaN template in that case is the same as that shown in FIG.
  • the HEMT 200 of this embodiment includes a cubic substrate 110 and a hexagonal buffer layer 120 grown on the substrate 110. Therefore, a group III nitride semiconductor can be grown on an inexpensive and large-diameter Si (001) substrate.
  • FIG. 11 is a diagram showing a schematic configuration of a light emitting element 300 of the third embodiment.
  • the light emitting element 300 is a semiconductor element having a group III nitride semiconductor.
  • the light emitting element 300 includes a substrate 110, a buffer layer 120, an n-type contact layer 330, a light emitting layer 340, a p-type cladding layer 350, a p-type contact layer 360, an n-electrode N1, a p-electrode P1, Have
  • the substrate 110 is a cubic substrate. Specifically, it is a Si (001) substrate.
  • the buffer layer 120 is a hexagonal AlN layer. As described above, the hexagonal buffer layer 120 is formed on the cubic substrate 110.
  • the n-type contact layer 330 is a layer in contact with the n electrode N1.
  • the n-type contact layer 330 has n-type GaN.
  • the light emitting layer 340 is a layer that emits light by recombination of electrons and holes.
  • the p-type cladding layer 350 is a layer for confining electrons.
  • the p-type cladding layer 350 is a layer having a superlattice structure.
  • the p-type contact layer 360 is a layer in contact with the p-electrode P1.
  • the p-type contact layer 360 has p-type GaN.
  • Buffer Layer and GaN Layer The relationship between the buffer layer 120 and the n-type contact layer 330 in the third embodiment is the same as the relationship between the buffer layer 120 and the base layer 230 in the second embodiment. That is, the relationship shown in FIG.
  • the buffer layer 120 is formed on the substrate 110 using the film forming apparatus 1000 of the first embodiment. Thereafter, the deposited substrate 110 is taken out of the deposition apparatus 1000.
  • a group III nitride semiconductor single crystal is epitaxially grown on the buffer layer 120 using an MOCVD apparatus or the like. That is, the n-type contact layer 330 is grown on the buffer layer 120. Next, the light emitting layer 340 is grown on the n-type contact layer 330. Then, a p-type cladding layer 350 is grown on the light emitting layer 340. Then, a p-type contact layer 360 is grown on the p-type cladding layer 350.
  • Electrode forming step Then, a recess reaching from the p-type contact layer 360 to the n-type contact layer 330 is provided. Then, an n-electrode N1 is formed on the n-type contact layer 330 exposed in the recess. A p-electrode P1 is formed on the p-type contact layer 360. Further, the substrate 110 is cut out into chips. Thereby, the light emitting element 300 shown in FIG. 11 is manufactured.
  • Modified example 4-1 Semiconductor Laser Element
  • the semiconductor element according to the third embodiment shown in FIG. However, the technique of the present embodiment can be similarly applied to the semiconductor laser element.
  • the present technology can also be applied to a light receiving element.
  • the light receiving element uses the light emitting layer of the light emitting element 300 as a light absorbing layer. Examples of the light receiving element include a solar cell.
  • the HEMT 200 of this embodiment includes a cubic substrate 110 and a hexagonal buffer layer 120 grown on the substrate 110. Therefore, a group III nitride semiconductor can be grown on an inexpensive and large-diameter Si (001) substrate.
  • FIG. 12 is a view showing the structure of the thin film substrate 400 of the fourth embodiment.
  • the thin film substrate 400 includes a substrate 110, a buffer layer 120, and an intermediate layer IL.
  • the buffer layer 120 is an AlN layer formed by sputtering.
  • the substrate 110 is a cubic substrate.
  • the buffer layer 120 is a hexagonal layer.
  • the intermediate layer IL is a hexagonal layer.
  • the thin film substrate 100 includes the cubic substrate 110, the hexagonal buffer layer 120, and the hexagonal intermediate layer IL.
  • the buffer layer 120 of the fourth embodiment is the same as the buffer layer 120 of the first embodiment.
  • the intermediate layer IL of the fourth embodiment is a layer formed by the MOCVD method.
  • the intermediate layer IL is a layer for reducing lattice defects while inheriting the crystallinity of the buffer layer 120.
  • the film thickness of the intermediate layer IL is, for example, in the range of 10 nm to 100 nm.
  • the film thickness of the intermediate layer IL may be other than the above.
  • the following three types of intermediate layers can be mentioned, for example.
  • the first intermediate layer is a high temperature AlN layer.
  • the growth temperature of the high-temperature AlN layer is 950 ° C. or higher and 1100 ° C. or lower.
  • the second intermediate layer is a layer in which a low temperature AlN layer and a high temperature AlN layer are stacked. At that time, a low temperature AlN layer is formed on the buffer layer 120, and a high temperature AlN layer is formed on the low temperature AlN layer.
  • the growth temperature of the low-temperature AlN layer is 650 ° C. or higher and 800 ° C. or lower.
  • the third intermediate layer is a layer in which a high-temperature AlN layer and an AlN / GaN superlattice layer are stacked. At that time, a high-temperature AlN layer is formed on the buffer layer 120, and an AlN / GaN superlattice layer is formed on the high-temperature AlN layer.
  • the growth temperature of the AlN / GaN superlattice layer is 950 ° C. or higher and 1100 ° C. or lower.
  • the intermediate layer IL can reduce lattice defects.
  • the intermediate layer IL improves the crystallinity of the hexagonal semiconductor layer.
  • FIG. 13 is a diagram illustrating a structure of a HEMT 500 according to a modification of the fourth embodiment.
  • the HEMT 500 is a semiconductor element having a group III nitride semiconductor.
  • the HEMT 500 includes a substrate 110, a buffer layer 120, an intermediate layer IL, a base layer 230, a channel layer 240, a barrier layer 250, a source electrode S1, a drain electrode D1, and a gate electrode G1. ing.
  • the intermediate layer IL is located between the buffer layer 120 and the semiconductor layer.
  • Each layer of the HEMT 500 is the same as each layer of the HEMT 200 of the second embodiment except for the intermediate layer IL.
  • the intermediate layer IL may be any one from the first intermediate layer to the third intermediate layer of the present embodiment.
  • FIG. 14 is a diagram showing a structure of a light emitting element 600 according to a modification of the fourth embodiment.
  • the light emitting element 600 is a semiconductor element having a group III nitride semiconductor.
  • the light-emitting element 600 includes a substrate 110, a buffer layer 120, an intermediate layer IL, an n-type contact layer 330, a light-emitting layer 340, a p-type cladding layer 350, a p-type contact layer 360, an n-electrode N1, p electrode P1.
  • the intermediate layer IL is located between the buffer layer 120 and the semiconductor layer.
  • Each layer of the light emitting element 600 is the same as each layer of the light emitting element 300 of the third embodiment except for the intermediate layer IL.
  • the intermediate layer IL may be any one from the first intermediate layer to the third intermediate layer of the present embodiment.
  • the intermediate layer IL is formed by the MOCVD method.
  • other film forming methods may be used to form the intermediate layer IL.
  • HVPE method and MBE method are mentioned.
  • Experiment 1 1. Formation of GaN layer 1-1. Film Formation Conditions Using the film formation apparatus 1000, an AlN layer was formed on a Si (001) substrate. The Si (001) substrate was placed on the susceptor 1200 so that when the target was projected onto the Si (001) substrate, the target was placed in the [110] direction of the Si (001) substrate or a direction equivalent to the [110] direction. . The angle formed by the direction perpendicular to the plate surface of the Si (001) substrate and the direction in which the target is located was 36 °. The target was arranged at a position within 30 ° in the in-plane rotation direction of the Si (001) substrate from the [110] direction of the Si (001) substrate or an equivalent direction thereof.
  • the susceptor 1200 was not rotated. Therefore, the target particles are transported from the direction in which the target is located with respect to the arranged Si (001) substrate. That is, the target particles reach the Si (001) substrate from a direction close to [111].
  • an AlN layer was formed on the Si (001) substrate.
  • the substrate temperature was 450 ° C.
  • the target was Al.
  • 50 sccm of N 2 gas was supplied into the chamber 1100.
  • a voltage was applied to the target at DC 300W.
  • the internal pressure was 0.23 Pa.
  • the film formation time was 30 minutes. Thereby, an AlN layer of 80 nm was formed on the Al layer.
  • FIG. 15 is a scanning electron micrograph (SEM photograph) showing the surface of the GaN layer deposited on the Si (001) substrate. As shown in FIG. 15, anisotropy is recognized in the growth direction of the GaN layer.
  • FIG. 16 is a scanning electron micrograph (SEM photograph) showing a cross section of the GaN layer formed on the Si (001) substrate. As shown in FIG. 16, the c-axis of the GaN layer is inclined by a certain angle with respect to the plate surface of the Si (001) substrate. The angle formed by this was about 32 °.
  • FIG. 17 is an enlarged view of FIG. As shown in FIG. 17, the c-axis of the AlN layer is inclined in the sputtering direction. Further, the c-axis of the GaN layer is also inclined in the sputtering direction. The AlN layer and the GaN layer are grown in substantially the same direction. The deviation between the direction in which the AlN layer grows and the direction in which the GaN layer grows was 2 ° or less.
  • FIG. 18 is a scanning electron micrograph (SEM photograph) showing the surface of the GaN layer when the susceptor 1200 is rotated at 20 rpm. At this time, GaN layers were sparsely grown on the Si (001) substrate.
  • FIG. 19 is a graph showing the result (2 ⁇ / ⁇ ) of X-ray diffraction at an arbitrary location. As shown in FIG. 19, a peak of GaN (10-13) and a peak of Si (004) were observed. This indicates that the GaN layer formed on the Si (001) substrate has grown in the direction of the (10-13) plane.
  • FIG. 20 shows the (10-13) plane of the GaN layer.
  • FIG. 23 is a scanning electron micrograph (SEM photograph) showing a cross section of a GaN layer formed on a Si (001) substrate.
  • the first GaN layer was grown on the first AlN layer.
  • the film thickness of the first GaN layer is 1 ⁇ m.
  • a second AlN layer was grown on the first GaN layer.
  • the film thickness of the second AlN layer is about 10 nm.
  • a second GaN layer was grown on the second AlN layer.
  • the film thickness of the second GaN layer is 1 ⁇ m.
  • the surface of the second GaN layer is flat. Therefore, it is easy to form various element structures on the flat GaN layer.
  • FIG. 24 is a transmission electron micrograph (cross-sectional TEM photograph) showing a boundary surface between an AlN layer and a GaN layer formed on a Si (001) substrate.
  • the c-axis of the AlN layer does not face the first direction J1.
  • the c-axis of the AlN layer faces the first direction J1.
  • the c-axis of the AlN layer faces the first direction J1 at a rate of 50% or more.
  • the c-axis of the GaN layer faces the first direction J1 over the imaging region in FIG.
  • the information in the first direction J1 which is the dominant direction among the c-axis directions of the AlN layer as the underlying layer, is inherited.
  • the GaN layer above the AlN layer information on the c-axis direction that is not dominant in the AlN layer is hardly carried over. Therefore, if the c-axis of the AlN layer faces the first direction J1 at a rate of 50% or more, the c-axis faces the first direction J1 substantially uniformly over the plate surface of the Si (001) substrate.
  • a GaN layer is obtained. That is, it became clear that a unidirectionally oriented GaN layer was obtained.
  • a (10-13) plane GaN layer could be grown.
  • the semiconductor layer can be grown on a crystal plane corresponding to the angle ⁇ . That is, AlN particles that have reached the substrate from a specific direction grow with the c-axis inclined in a direction close to that direction. At that time, it is considered that the semiconductor layer grows while making the thermodynamically stable surface flat.
  • Experiment 2 1. Sputtering angle 1-1. Film-forming conditions The film-forming conditions are almost the same as in Experiment 1. Therefore, conditions different from those in Experiment 1 will be described.
  • the internal pressure was 0.02 Pa.
  • the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was 36 ° and 20 °.
  • FIG. 25 is a photomicrograph showing the surface of the GaN layer when the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target is 36 °. As shown in FIG. 25, the (10-13) plane of the GaN layer was observed.
  • FIG. 25A is a photograph showing a case where the growth time is 1 minute.
  • FIG. 25B shows a case where the growth time is 5 minutes.
  • FIG. 25C shows a case where the growth time is 10 minutes.
  • the c-axis of the GaN layer was inclined by 32 ° with respect to the direction perpendicular to the plate surface of the substrate.
  • FIG. 26 is a photomicrograph showing the surface of the GaN layer when the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target is 20 °. As shown in FIG. 26, the (10-15) plane of the GaN layer was observed.
  • FIG. 26A is a photograph showing a case where the growth time is 1 minute.
  • FIG. 26B shows a case where the growth time is 5 minutes.
  • FIG. 26C shows a case where the growth time is 10 minutes.
  • the c-axis of the GaN layer was inclined 20 ° with respect to the direction perpendicular to the plate surface of the substrate.
  • GaN layers growing in different plane directions were obtained. That is, the growth direction of the GaN layer can be controlled to some extent by changing the irradiation direction and arrangement of the target.
  • FIG. 27 is a diagram showing the structure of the sample of Experiment 3. Samples A, B, and C were used as samples. Samples A, B, and C respectively have the first intermediate layer, the second intermediate layer, and the third intermediate layer of the fourth embodiment.
  • Sample A is obtained by laminating a Si (001) substrate, an AlN layer, an intermediate layer IL, and a GaN layer in this order.
  • the intermediate layer IL is a high-temperature AlN layer having a thickness of 20 nm.
  • the thickness of the AlN layer is 45 nm.
  • the film thickness of the GaN layer is 4 ⁇ m.
  • the GaN layer is obtained by growing the (10-13) plane.
  • the AlN layer was formed by sputtering. At that time, the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was set to 36 °.
  • the intermediate layer IL and the GaN layer were formed by a normal MOCVD method.
  • Sample B is obtained by laminating a Si (001) substrate, an AlN layer, an intermediate layer IL, and a GaN layer in this order.
  • the intermediate layer IL is obtained by stacking a high-temperature AlN layer having a thickness of 20 nm on a low-temperature AlN layer having a thickness of 10 nm.
  • the thickness of the AlN layer is 45 nm.
  • the film thickness of the GaN layer is 4 ⁇ m.
  • the GaN layer is obtained by growing the (10-13) plane.
  • the AlN layer was formed by sputtering. At that time, the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was set to 36 °.
  • the intermediate layer IL and the GaN layer were formed by a normal MOCVD method.
  • Sample C is obtained by laminating a Si (001) substrate, an AlN layer, an intermediate layer IL, and a GaN layer in this order.
  • the intermediate layer IL is obtained by stacking 25 pairs of AlN / GaN superlattice layers on a high-temperature AlN layer having a thickness of 20 nm.
  • the thickness of the AlN layer is 45 nm.
  • the film thickness of the GaN layer is 4 ⁇ m.
  • the GaN layer is obtained by growing the (10-13) plane.
  • the AlN layer was formed by sputtering. At that time, the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was set to 36 °.
  • the intermediate layer IL and the GaN layer were formed by a normal MOCVD method.
  • X-ray diffraction was measured for (10-13) GaN.
  • the full width at half maximum FWHM of the X-ray of GaN having the intermediate layer IL was smaller than the full width at half maximum FWHM of the X-ray of GaN having no intermediate layer IL. Further, the full width at half maximum FWHM of the X-ray of GaN having the superlattice layer as the intermediate layer IL was about half of the full width at half maximum FWHM of the GaN X-ray having no intermediate layer IL.
  • the provision of the intermediate layer IL improves the crystallinity of the GaN layer grown thereon. If a superlattice layer is used as the intermediate layer IL, the crystallinity of the GaN layer is further improved.
  • SYMBOLS 100 Thin film substrate 110 ... Substrate 120 ... Buffer layer 200 ... HEMT G1 ... Gate electrode S1 ... Source electrode D1 ... Drain electrode 300 ... Light emitting element 330 ... n-type contact layer 340 ... Light emitting layer 350 ... p-type cladding layer 360 ... p-type contact layer N1 ... n electrode P1 ... p electrode IL ... intermediate layer DESCRIPTION OF SYMBOLS 1000 ... Film-forming apparatus 1100 ... Chamber 1200 ... Susceptor 1300 ... Heater 1400 ... Target arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

The purpose of the present invention is to provide a thin-film substrate in which a hexagonal crystal buffer layer is formed on a cubic crystal substrate, a semiconductor device, a manufacturing method therefor, a deposition apparatus, a deposition method and a GaN template. This deposition method is a method that deposits a hexagonal crystal thin-film on a cubic crystal substrate. A substrate (110) is a cubic crystal Si (001) substrate. The substrate (110) is disposed on a susceptor (1200) in a chamber (1100). A target (1500) is disposed at a position that is inclined within a range of 10° to 60° with respect to a direction perpendicular to the plate surface of the substrate (110). A hexagonal crystal buffer layer (120) is deposited on the cubic crystal substrate (110) by sputtering without rotating the substrate (110) with respect to the chamber (1100).

Description

薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレートThin film substrate, semiconductor device, manufacturing method thereof, film forming apparatus, film forming method, and GaN template
 本明細書の技術分野は、基板にその基板と結晶構造の異なるバッファ層を形成する薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレートに関する。 The technical field of this specification relates to a thin film substrate, a semiconductor device, a manufacturing method, a film forming device, a film forming method, and a GaN template for forming a buffer layer having a crystal structure different from that of the substrate on the substrate.
 GaNに代表されるIII 族窒化物半導体では、絶縁破壊電界の強度が高く、かつ融点が高い。そのため、III 族窒化物半導体は、GaAs系半導体に代わる、高出力、高周波、高温用の半導体デバイスの材料として期待されている。そのため、III 族窒化物半導体を用いるHEMT素子などが研究開発されている。また、III 族窒化物半導体は、発光素子にも応用されている。 A III-group nitride semiconductor represented by GaN has a high breakdown field strength and a high melting point. Therefore, group III nitride semiconductors are expected as materials for semiconductor devices for high output, high frequency, and high temperature, replacing GaAs semiconductors. Therefore, a HEMT device using a III-group nitride semiconductor has been researched and developed. In addition, Group III group nitride semiconductors are also applied to light emitting devices.
 III 族窒化物半導体は、ウルツ鉱型に代表される六方晶の結晶構造を有する。そのため、成長基板として、六方晶基板が一般的に用いられる。このような六方晶基板として、例えば、サファイア基板が挙げられる。また、特許文献1のように、成長基板として、Si(111)基板が用いられることもある。ここでSi(111)基板は、六方晶に近い構造を有している。Si基板については、大口径基板を安価に高品質で製造することができる。そのため、Si基板の上にIII 族窒化物半導体を成長させることは工業的に意義がある。 III group III nitride semiconductor has a hexagonal crystal structure represented by wurtzite type. For this reason, a hexagonal crystal substrate is generally used as the growth substrate. An example of such a hexagonal substrate is a sapphire substrate. Further, as in Patent Document 1, a Si (111) substrate may be used as a growth substrate. Here, the Si (111) substrate has a structure close to a hexagonal crystal. As for the Si substrate, a large-diameter substrate can be manufactured with high quality at low cost. Therefore, it is industrially significant to grow a III-group nitride semiconductor on a Si substrate.
特開2010-62482号公報JP 2010-62482 A
 一方、Si(001)基板は、立方晶基板である。Si(001)基板の表面では、Si原子が正方形に配列されている。このような立方晶のSi(001)基板の上に、六方晶のIII 族窒化物半導体を成長させることは決して容易ではない。いうまでもなく、立方晶と六方晶とでは、結晶構造が大きく異なっているからである。 On the other hand, the Si (001) substrate is a cubic substrate. On the surface of the Si (001) substrate, Si atoms are arranged in a square shape. It is not easy to grow a hexagonal III-V nitride semiconductor on such a cubic Si (001) substrate. Needless to say, the crystal structures of the cubic and hexagonal crystals are greatly different.
 しかし、Si(001)基板は、Si(111)基板よりも一般的に安価である。また、Si(111)基板よりも大口径のSi(001)基板が工業的に生産されている。そのため、Si(001)基板の上にIII 族窒化物半導体を成長させる技術を確立することは工業的に有意義である。 However, Si (001) substrates are generally less expensive than Si (111) substrates. Further, Si (001) substrates having a larger diameter than Si (111) substrates are industrially produced. Therefore, it is industrially meaningful to establish a technique for growing a group III group nitride semiconductor on a Si (001) substrate.
 本明細書の技術は、前述した従来の技術が有する問題点を解決するためになされたものである。その課題とは、立方晶基板に六方晶のバッファ層を形成する薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレートを提供することである。 The technology of this specification has been made to solve the problems of the conventional technology described above. The problem is to provide a thin film substrate and a semiconductor device for forming a hexagonal buffer layer on a cubic substrate, a manufacturing method thereof, a film forming device and a film forming method, and a GaN template.
 第1の態様における薄膜基板は、基板と、基板の上のバッファ層と、を有する。基板は、立方晶基板である。バッファ層は、六方晶である。バッファ層のc軸は、50%以上の割合で第1の方向を向いている。第1の方向は、基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜している。 The thin film substrate in the first aspect includes a substrate and a buffer layer on the substrate. The substrate is a cubic substrate. The buffer layer is hexagonal. The c-axis of the buffer layer faces the first direction at a rate of 50% or more. The first direction is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate.
 この薄膜基板は、大口径のSi(001)基板に代表される立方晶基板の上に六方晶の薄膜を成膜したものである。バッファ層のc軸の50%以上は、基板の板面の全面にわたって特定の方向を向いている。つまり、基板上のどの位置であっても、バッファ層のc軸の50%以上は、その特定の方向を向いている。そのため、このバッファ層の上にIII 族窒化物半導体の単結晶をエピタキシャル成長させることができる。 This thin film substrate is obtained by forming a hexagonal thin film on a cubic substrate typified by a large-diameter Si (001) substrate. 50% or more of the c-axis of the buffer layer faces a specific direction over the entire plate surface of the substrate. In other words, at any position on the substrate, 50% or more of the c-axis of the buffer layer faces the specific direction. Therefore, a single crystal of a Group III nitride semiconductor can be epitaxially grown on the buffer layer.
 第2の態様における薄膜基板においては、立方晶基板は、Si(001)基板である。第1の方向は、基板の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲内にある。 In the thin film substrate in the second aspect, the cubic substrate is a Si (001) substrate. The first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction.
 第3の態様における薄膜基板においては、バッファ層は、AlGaInN層(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)である。 In the thin film substrate according to the third aspect, the buffer layer is an Al x Ga y In z N layer (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1).
 第4の態様における薄膜基板は、バッファ層の上の中間層を有する。中間層は、六方晶である。 The thin film substrate in the fourth aspect has an intermediate layer on the buffer layer. The intermediate layer is hexagonal.
 第5の態様における薄膜基板においては、中間層は、超格子層を有する。 In the thin film substrate according to the fifth aspect, the intermediate layer has a superlattice layer.
 第6の態様における半導体装置は、基板と、基板の上のバッファ層と、バッファ層の上のIII 族窒化物半導体層と、を有する。基板は、立方晶基板である。バッファ層は、六方晶である。バッファ層のc軸は、50%以上の割合で第1の方向を向いている。第1の方向は、基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜している。III 族窒化物半導体層のc軸は、基板の板面に垂直な方向および面内方向の両方について、第1の方向に対して0°以上5°以下の範囲内で傾斜している。 The semiconductor device according to the sixth aspect includes a substrate, a buffer layer on the substrate, and a group III group nitride semiconductor layer on the buffer layer. The substrate is a cubic substrate. The buffer layer is hexagonal. The c-axis of the buffer layer faces the first direction at a rate of 50% or more. The first direction is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate. The c-axis of the group III group nitride semiconductor layer is inclined within a range of 0 ° to 5 ° with respect to the first direction in both the direction perpendicular to the plate surface of the substrate and the in-plane direction.
 第7の態様における半導体装置においては、立方晶基板は、Si(001)基板である。第1の方向は、基板の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲内にある。 In the semiconductor device according to the seventh aspect, the cubic substrate is a Si (001) substrate. The first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction.
 第8の態様における半導体装置においては、バッファ層は、AlGaInN層(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)である。 In the semiconductor device according to the eighth aspect, the buffer layer is an Al X Ga Y In Z N layer (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1).
 第9の態様における半導体装置は、バッファ層とIII 族窒化物半導体層との間に中間層を有する。中間層は、六方晶である。 The semiconductor device according to the ninth aspect includes an intermediate layer between the buffer layer and the group III group nitride semiconductor layer. The intermediate layer is hexagonal.
 第10の態様における半導体装置においては、中間層は、超格子層を有する。 In the semiconductor device according to the tenth aspect, the intermediate layer has a superlattice layer.
 第11の態様におけるGaNテンプレートは、基板と、基板の上のバッファ層と、バッファ層の上のIII 族窒化物半導体層と、を有する。基板は、立方晶基板である。バッファ層は、六方晶である。バッファ層のc軸は、50%以上の割合で第1の方向を向いている。第1の方向は、基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜している。III 族窒化物半導体層のc軸は、基板の板面に垂直な方向および面内方向の両方について、第1の方向に対して0°以上5°以下の範囲内で傾斜している。また、立方晶基板は、Si(001)基板であってもよい。この場合、第1の方向は、基板の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲内にある。また、バッファ層は、AlGaInN層(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)であってもよい。 The GaN template in the eleventh aspect has a substrate, a buffer layer on the substrate, and a group III nitride semiconductor layer on the buffer layer. The substrate is a cubic substrate. The buffer layer is hexagonal. The c-axis of the buffer layer faces the first direction at a rate of 50% or more. The first direction is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate. The c-axis of the group III nitride semiconductor layer is inclined within a range of 0 ° to 5 ° with respect to the first direction in both the direction perpendicular to the plate surface of the substrate and the in-plane direction. Further, the cubic substrate may be a Si (001) substrate. In this case, the first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction. Further, the buffer layer may be an Al X Ga Y In Z N layer (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1).
 第12の態様における薄膜基板の製造方法は、立方晶基板をチャンバーの内部に配置する工程と、立方晶基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜させた位置にターゲットを配置する工程と、立方晶基板とターゲットとの間の相対的位置関係を保持した状態で、スパッタリングにより立方晶基板の上に六方晶のバッファ層を形成する工程と、を有する。 The thin film substrate manufacturing method according to the twelfth aspect includes a step of disposing a cubic substrate inside a chamber and an inclination within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the cubic substrate. And a step of forming a hexagonal buffer layer on the cubic substrate by sputtering while maintaining a relative positional relationship between the cubic substrate and the target. .
 第13の態様における半導体装置の製造方法は、立方晶基板をチャンバーの内部に配置する工程と、立方晶基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜させた位置にターゲットを配置する工程と、立方晶基板とターゲットとの間の相対的位置関係を保持した状態で、スパッタリングにより立方晶基板の上に六方晶のバッファ層を形成する工程と、バッファ層の上にIII 族窒化物半導体層を成長させる工程と、を有する。 According to a thirteenth aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: arranging a cubic substrate inside a chamber; and tilting the cubic substrate within a range of 10 ° to 60 ° with respect to a direction perpendicular to a plate surface of the cubic substrate. A step of disposing a target at a predetermined position, a step of forming a hexagonal buffer layer on the cubic substrate by sputtering while maintaining a relative positional relationship between the cubic substrate and the target, and a buffer layer And a step of growing a group III nitride semiconductor layer on the substrate.
 第14の態様における成膜方法は、基板の上に薄膜を成膜する方法である。この方法では、立方晶基板をチャンバーの内部に配置し、立方晶基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜させた位置にターゲットを配置し、立方晶基板とターゲットとの間の相対的位置関係を保持した状態で、スパッタリングにより立方晶基板の上に六方晶のバッファ層を形成する。第8の態様から第10の態様において、立方晶基板は、Si(001)基板であってもよい。この場合、第1の方向は、基板の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲内にある。また、バッファ層は、AlGaInN層(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)であってもよい。 The film forming method in the fourteenth aspect is a method of forming a thin film on a substrate. In this method, a cubic substrate is placed inside a chamber, and a target is placed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the cubic substrate. While maintaining the relative positional relationship between the substrate and the target, a hexagonal buffer layer is formed on the cubic substrate by sputtering. In the eighth aspect to the tenth aspect, the cubic substrate may be a Si (001) substrate. In this case, the first direction is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction. Further, the buffer layer may be an Al X Ga Y In Z N layer (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1).
 第15の態様における成膜装置は、基板を支持するための基板支持部と、基板支持部を収容するチャンバーと、基板の板面に垂直な方向に対して10°以上60°以下の範囲内で相対的に可変となるように傾斜させた位置に配置されたターゲット配置部と、を有する。 In a fifteenth aspect, a film forming apparatus includes a substrate support portion for supporting a substrate, a chamber for accommodating the substrate support portion, and a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate. And a target arrangement portion arranged at a position inclined so as to be relatively variable.
 本明細書では、立方晶基板に六方晶のバッファ層を形成する薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレートが提供されている。 In this specification, a thin film substrate and a semiconductor device for forming a hexagonal buffer layer on a cubic substrate, a manufacturing method thereof, a film forming apparatus, a film forming method, and a GaN template are provided.
第1の実施形態における成膜装置の構造を示す概略構成図である。It is a schematic block diagram which shows the structure of the film-forming apparatus in 1st Embodiment. 第1の実施形態におけるSi(001)基板の面方位を示す図である。It is a figure which shows the surface orientation of the Si (001) board | substrate in 1st Embodiment. 第1の実施形態における薄膜基板の構成を示す図である。It is a figure which shows the structure of the thin film substrate in 1st Embodiment. 図3の拡大図である。FIG. 4 is an enlarged view of FIG. 3. 基板とターゲットとの位置関係を極座標空間で示す図である。It is a figure which shows the positional relationship of a board | substrate and a target in polar coordinate space. Si(001)基板の上にMOCVD法でGaN層を成膜する場合を示す図である。It is a figure which shows the case where a GaN layer is formed into a film by MOCVD method on Si (001) board | substrate. 第2の実施形態におけるHEMT素子の構造を示す概略構成図である。It is a schematic block diagram which shows the structure of the HEMT element in 2nd Embodiment. 第1の実施形態の成膜装置でSi(001)基板の上にGaN層を成膜した場合のGaN層の成長方向を示す図である。It is a figure which shows the growth direction of a GaN layer at the time of forming a GaN layer on a Si (001) board | substrate with the film-forming apparatus of 1st Embodiment. GaN層の上にInGaN層を形成した場合の分極を示すグラフである。It is a graph which shows the polarization at the time of forming an InGaN layer on a GaN layer. GaN層の上にAlGaN層を形成した場合の分極を示すグラフである。It is a graph which shows the polarization at the time of forming an AlGaN layer on a GaN layer. 第3の実施形態における半導体発光素子の構造を示す概略構成図である。It is a schematic block diagram which shows the structure of the semiconductor light-emitting device in 3rd Embodiment. 第4の実施形態の薄膜基板の構造を示す図である。It is a figure which shows the structure of the thin film substrate of 4th Embodiment. 第4の実施形態の変形例におけるHEMTの構造を示す図である。It is a figure which shows the structure of HEMT in the modification of 4th Embodiment. 第4の実施形態の変形例における発光素子の構造を示す図である。It is a figure which shows the structure of the light emitting element in the modification of 4th Embodiment. Si(001)基板の上にGaN層を成長させた場合のGaN層の表面を示すSEM写真である。It is a SEM photograph which shows the surface of a GaN layer at the time of growing a GaN layer on Si (001) substrate. Si(001)基板の上にGaN層を成長させた場合のGaN層の断面を示すSEM写真である。It is a SEM photograph which shows the cross section of a GaN layer at the time of growing a GaN layer on Si (001) board | substrate. Si(001)基板の上にGaN層を成長させた場合のGaN層の拡大断面を示すSEM写真である。It is a SEM photograph which shows the expanded cross section of a GaN layer at the time of growing a GaN layer on Si (001) board | substrate. Si(001)基板の上に基板を回転させながらGaN層を成長させた場合のGaN層の表面を示すSEM写真である。It is a SEM photograph which shows the surface of a GaN layer at the time of growing a GaN layer, rotating a board | substrate on a Si (001) board | substrate. Si(001)基板の上に成長させたGaN層についてのX線回折における2θ/ωスキャンの結果を示すグラフである。It is a graph which shows the result of the 2 (theta) / (omega) scan in the X-ray diffraction about the GaN layer grown on the Si (001) board | substrate. GaN層の(10-13)面を示す図である。It is a figure which shows the (10-13) plane of a GaN layer. Si(001)基板の上に成長させたGaN層についてのX線回折におけるφスキャンの結果を示すグラフ(その1)である。It is a graph (the 1) which shows the result of (phi) scan in the X-ray diffraction about the GaN layer grown on the Si (001) board | substrate. Si(001)基板の上に成長させたGaN層についてのX線回折におけるφスキャンの結果を示すグラフ(その2)である。It is a graph (the 2) which shows the result of the (phi) scan in the X-ray diffraction about the GaN layer grown on the Si (001) board | substrate. Si(001)基板の上に平坦なGaN層を成長させた場合を示すSEM写真である。It is a SEM photograph which shows the case where a flat GaN layer is grown on a Si (001) substrate. Si(001)基板の上に成膜したAlN層およびGaN層の境界面を示す断面TEM写真である。It is a cross-sectional TEM photograph which shows the boundary surface of the AlN layer and GaN layer which were formed into a film on Si (001) board | substrate. 基板の板面に垂直な方向とターゲットの表面に垂直な方向との間のなす角を36°とした場合におけるGaN層の表面を示す顕微鏡写真である。It is a microscope picture which shows the surface of a GaN layer in case the angle made between the direction perpendicular | vertical to the plate surface of a board | substrate and the direction perpendicular | vertical to the surface of a target is 36 degrees. 基板の板面に垂直な方向とターゲットの表面に垂直な方向との間のなす角を20°とした場合におけるGaN層の表面を示す顕微鏡写真である。It is a microscope picture which shows the surface of a GaN layer in case the angle made between the direction perpendicular | vertical to the board surface of a board | substrate and the direction perpendicular | vertical to the surface of a target is 20 degrees. 実験3のサンプルの構造を示す図である。It is a figure which shows the structure of the sample of Experiment 3.
 以下、具体的な実施形態について、薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレートを例に挙げて図を参照しつつ説明する。なお、図面中の各層の厚みの比率は、実際の比率を反映したものではない。 Hereinafter, specific embodiments will be described with reference to the drawings, taking a thin film substrate, a semiconductor device, a manufacturing method thereof, a film forming apparatus, a film forming method, and a GaN template as examples. In addition, the ratio of the thickness of each layer in the drawing does not reflect the actual ratio.
(第1の実施形態)
 第1の実施形態について説明する。
(First embodiment)
A first embodiment will be described.
1.成膜装置
1-1.成膜装置の構成
 図1は、本実施形態の成膜装置1000の概略構成を示す図である。成膜装置1000は、スパッタリングにより基板110の上に薄膜を成膜するための装置である。成膜装置1000は、チャンバー1100と、サセプター1200と、ヒーター1300と、ターゲット配置部1400と、ターゲット1500と、電圧印加部1600と、ガス供給部(図示せず)と、を有する。
1. Film forming apparatus 1-1. Configuration of Film Forming Apparatus FIG. 1 is a diagram showing a schematic configuration of a film forming apparatus 1000 according to this embodiment. The film forming apparatus 1000 is an apparatus for forming a thin film on the substrate 110 by sputtering. The film forming apparatus 1000 includes a chamber 1100, a susceptor 1200, a heater 1300, a target placement unit 1400, a target 1500, a voltage application unit 1600, and a gas supply unit (not shown).
 チャンバー1100は、スパッタリングを実施する基板110を収容するためのものである。また、チャンバー1100は、サセプター1200と、ヒーター1300と、ターゲット配置部1400と、ターゲット1500と、を内部に収容している。サセプター1200は、基板110を支持するための基板支持部である。ヒーター1300は、サセプター1200に支持される基板110を加熱するためのものである。ターゲット配置部1400は、ターゲット1500を配置するためのものである。ターゲット1500は、スパッタリングにより基板110に薄膜を成膜するための原材料である。 The chamber 1100 is for accommodating the substrate 110 on which sputtering is performed. The chamber 1100 accommodates therein a susceptor 1200, a heater 1300, a target placement unit 1400, and a target 1500. The susceptor 1200 is a substrate support unit for supporting the substrate 110. The heater 1300 is for heating the substrate 110 supported by the susceptor 1200. The target placement unit 1400 is for placing the target 1500. The target 1500 is a raw material for forming a thin film on the substrate 110 by sputtering.
 電圧印加部1600は、ターゲット1500に電圧を印加するためのものである。ここで、チャンバー1100は、接地されている。電圧印加部1600は、直流電源を用いるものである。しかし、電圧印加部1600は、交流電源あるいはパルスDC電源を用いるものであってもよい。 The voltage application unit 1600 is for applying a voltage to the target 1500. Here, the chamber 1100 is grounded. The voltage application unit 1600 uses a DC power supply. However, the voltage application unit 1600 may use an AC power source or a pulse DC power source.
1-2.ターゲットの配置
 基板110の板面に垂直な方向と、基板110からみてターゲット1500の配置されている方向とのなす角の角度は、角度θである。ここで、角度θは、基板110の表面の中心と、ターゲット1500の表面の中心と、がなす角の角度である。角度θは、10°以上60°以下の範囲内である。つまり、ターゲット配置部1400は、基板110の板面に垂直な方向に対して、10°以上60°以下の範囲内で傾斜させた位置に配置されている。もちろん、ターゲット1500は、基板110の板面に垂直な方向に対して、10°以上60°以下の範囲内で傾斜させた位置に配置されている。好ましくは、角度θは、15°以上55°以下の範囲内である。より好ましくは、角度θは、20°以上50°以下の範囲内である。さらに好ましくは、角度θは、25°以上45°以下の範囲内である。
1-2. Target Arrangement The angle formed between the direction perpendicular to the plate surface of the substrate 110 and the direction in which the target 1500 is disposed when viewed from the substrate 110 is an angle θ. Here, the angle θ is an angle formed by the center of the surface of the substrate 110 and the center of the surface of the target 1500. The angle θ is in the range of 10 ° to 60 °. That is, the target placement unit 1400 is placed at a position that is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110. Of course, the target 1500 is disposed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110. Preferably, the angle θ is in the range of 15 ° to 55 °. More preferably, the angle θ is in the range of 20 ° to 50 °. More preferably, the angle θ is in the range of 25 ° to 45 °.
 ターゲット1500の表面は、基板110の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜している。また、ターゲット配置部1400は、ターゲット1500の表面が、基板110の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜する位置および向きで配置されている。 The surface of the target 1500 is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110. In addition, the target placement unit 1400 is placed at a position and orientation in which the surface of the target 1500 is tilted within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110.
 したがって、この成膜装置1000を用いると、特定の角度θの方向からターゲット粒子が基板110に向かって輸送される。また、基板110については回転させない。このように、成膜装置1000は、指向性スパッタリング装置である。 Therefore, when this film forming apparatus 1000 is used, the target particles are transported toward the substrate 110 from the direction of the specific angle θ. Further, the substrate 110 is not rotated. Thus, the film forming apparatus 1000 is a directional sputtering apparatus.
2.成膜装置における成膜方法
2-1.用いる基板
 図2は、成膜に用いる基板110を示す図である。基板110は、Si(001)基板である。ここで、基板110は、立方晶基板である。基板110は、図2に示すようにオリエンテーションフラットを有する。また、図2には、[-110]方向と、[110]方向と、が描かれている。なお、基板110として、[110]方向または[110]方向と等価な方向に15°以内のオフ角をつけたオフ基板を適用してもよい。
2. 2. Film forming method in film forming apparatus 2-1. 2. Substrate used FIG. 2 is a diagram showing a substrate 110 used for film formation. The substrate 110 is a Si (001) substrate. Here, the substrate 110 is a cubic substrate. The substrate 110 has an orientation flat as shown in FIG. Further, in FIG. 2, a [−110] direction and a [110] direction are drawn. As the substrate 110, an off substrate having an off angle of 15 ° or less in the [110] direction or a direction equivalent to the [110] direction may be applied.
2-2.成膜方法
 まず、チャンバー1100の内部のサセプター1200に基板110を配置する。この際、図1に示すように、ターゲット1500を基板110の板面に射影した場合に、ターゲット1500が基板110の[110]方向もしくは[110]方向に等価な方向に位置するように、ターゲット1500を配置する。このとき、ターゲット1500は、基板110の板面に垂直な方向に対して、10°以上60°以下の範囲内で傾斜させた位置に配置されている。ここで、ターゲット1500の材質は、Alである。また、Nガスを10~100sccm程度供給する。なお、ターゲット1500は、基板110の[110]方向または[110]方向と等価な方向から基板110の面内回転方向で30°以内に位置する。
2-2. Film Forming Method First, the substrate 110 is placed on the susceptor 1200 inside the chamber 1100. At this time, as shown in FIG. 1, when the target 1500 is projected onto the plate surface of the substrate 110, the target 1500 is positioned in the [110] direction of the substrate 110 or the direction equivalent to the [110] direction. 1500 is arranged. At this time, the target 1500 is disposed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110. Here, the material of the target 1500 is Al. Further, about 2 to 100 sccm of N 2 gas is supplied. The target 1500 is located within 30 ° in the in-plane rotation direction of the substrate 110 from the [110] direction of the substrate 110 or a direction equivalent to the [110] direction.
 次に、電圧印加部1600がターゲット1500に電圧を印加する。これにより、ターゲット1500から原材料が飛び出す。そして、飛び出した原材料は、基板110の板面に垂直な方向から傾斜する向きに飛散する。つまり、基板110からみると、[110]方向から基板110の板面に垂直な方向に角度θ程度だけ傾斜した方向から、原材料が飛び出してくる。このとき、サセプター1200は、回転していない。つまり、基板110をチャンバー1100に対して回転させない。そして、飛び出した原材料は、基板110に堆積する。これにより、基板110にバッファ層120が成膜される。つまり、立方晶基板であるSi(001)基板の上に六方晶のAlN層が成膜される。 Next, the voltage application unit 1600 applies a voltage to the target 1500. Thereby, the raw material jumps out of the target 1500. Then, the protruding raw material is scattered in a direction inclined from a direction perpendicular to the plate surface of the substrate 110. That is, when viewed from the substrate 110, the raw material is ejected from a direction inclined by an angle θ from the [110] direction in a direction perpendicular to the plate surface of the substrate 110. At this time, the susceptor 1200 is not rotating. That is, the substrate 110 is not rotated with respect to the chamber 1100. Then, the protruding raw material is deposited on the substrate 110. Thereby, the buffer layer 120 is formed on the substrate 110. That is, a hexagonal AlN layer is formed on a Si (001) substrate which is a cubic substrate.
3.成膜された薄膜基板
 図3は、成膜装置1000により成膜された薄膜基板100を示す図である。薄膜基板100とは、薄膜を成膜された被成膜基板である。薄膜基板100は、基板110と、バッファ層120と、を有している。バッファ層120は、スパッタリングにより成膜されたAlN層である。ここで、基板110は、立方晶基板である。一方、バッファ層120は、六方晶の層である。このように、薄膜基板100は、立方晶の基板110と、六方晶のバッファ層120と、を有している。
3. FIG. 3 is a diagram showing a thin film substrate 100 formed by the film forming apparatus 1000. The thin film substrate 100 is a deposition target substrate on which a thin film is formed. The thin film substrate 100 includes a substrate 110 and a buffer layer 120. The buffer layer 120 is an AlN layer formed by sputtering. Here, the substrate 110 is a cubic substrate. On the other hand, the buffer layer 120 is a hexagonal layer. As described above, the thin film substrate 100 includes the cubic substrate 110 and the hexagonal buffer layer 120.
 図4は、図3を拡大した図である。図4に示すように、バッファ層のc軸は、基板110の板面にわたって第1の方向J1を向いている。そして、第1の方向J1は、基板110の板面に垂直な方向に対して角度θ1だけ傾斜している。バッファ層120の成長方向は、基板110の板面に垂直な方向に対して角度θ1だけ傾斜している。ここで、バッファ層120の成長方向の傾きの角度θ1は、ターゲット1500の配置角度θと近い。 FIG. 4 is an enlarged view of FIG. As shown in FIG. 4, the c-axis of the buffer layer faces the first direction J1 over the plate surface of the substrate 110. The first direction J1 is inclined by an angle θ1 with respect to the direction perpendicular to the plate surface of the substrate 110. The growth direction of the buffer layer 120 is inclined by an angle θ1 with respect to the direction perpendicular to the plate surface of the substrate 110. Here, the inclination angle θ <b> 1 of the growth direction of the buffer layer 120 is close to the arrangement angle θ of the target 1500.
 角度θ1は、10°以上60°以下の範囲内である。好ましくは、角度θ1は、15°以上55°以下の範囲内である。より好ましくは、角度θ1は、20°以上50°以下の範囲内である。さらに好ましくは、角度θ1は、25°以上45°以下の範囲内である。 The angle θ1 is in the range of 10 ° to 60 °. Preferably, the angle θ1 is in the range of 15 ° to 55 °. More preferably, the angle θ1 is in the range of 20 ° to 50 °. More preferably, the angle θ1 is in the range of 25 ° to 45 °.
4.結晶構造と結晶成長
 図5は、本実施形態における基板110とターゲット1500との間の位置関係を極座標空間で示す図である。基板110の板面に垂直な方向は、法線方向Zである。第1の方向J1における法線方向Zからの傾斜角を偏角θ、第1の方向J1における基板110の面内回転方向を偏角φ、と定義する。また、ターゲット1500の表面に垂直な方向を法線方向Zと定義する。
4). Crystal Structure and Crystal Growth FIG. 5 is a diagram showing the positional relationship between the substrate 110 and the target 1500 in this embodiment in a polar coordinate space. A direction perpendicular to the plate surface of the substrate 110 is a normal direction Z A. The tilt angle from the normal direction Z A in the first direction J1 is defined as a declination angle θ A , and the in-plane rotation direction of the substrate 110 in the first direction J1 is defined as a declination angle φ A. A direction perpendicular to the surface of the target 1500 is defined as a normal direction Z B.
 本実施形態では、ターゲット粒子は、ターゲット1500の法線方向Zの向きもしくはその方向に近い向きから基板110に到達する。そして、到達したターゲット粒子は、熱力学的に安定となるように結晶化する。そのため、ターゲット粒子の入射方向は、バッファ層120の成長方向と近い。そのため、バッファ層120のc軸の方向である第1の方向J1は、ターゲット1500の法線方向Zに近い。 In the present embodiment, the target particles reach the substrate 110 from the direction of the normal direction Z B of the target 1500 or a direction close to that direction. The reached target particles are crystallized so as to be thermodynamically stable. Therefore, the incident direction of the target particles is close to the growth direction of the buffer layer 120. Therefore, the first direction J1 which is the c-axis direction of the buffer layer 120 is close to the normal direction Z B of the target 1500.
 ここで、基板110は、立方晶基板である。そのため、基板110の板面には、原子が格子状の頂点に配置されている。これに対して、バッファ層120は、六方晶である。ただし、バッファ層120の傾斜面が、基板110の板面と適合する。例えば、後述するバッファ層120の(10-13)面は、バッファ層120の傾斜面である。そして、バッファ層120の(10-13)面では、原子が長方形の格子状の頂点の位置に配置されている。したがって、基板110の正方形の格子状の頂点に位置する原子と、バッファ層120の長方形の格子状の頂点に位置する原子とが、結合する。よって、立方晶の基板110の上に六方晶のバッファ層120を成長させることができるのである。 Here, the substrate 110 is a cubic substrate. Therefore, atoms are arranged at the lattice apexes on the plate surface of the substrate 110. In contrast, the buffer layer 120 is hexagonal. However, the inclined surface of the buffer layer 120 matches the plate surface of the substrate 110. For example, a (10-13) plane of the buffer layer 120 described later is an inclined surface of the buffer layer 120. On the (10-13) plane of the buffer layer 120, atoms are arranged at the positions of the vertices of a rectangular lattice. Therefore, the atoms located at the square lattice-like vertices of the substrate 110 and the atoms located at the rectangular lattice-like vertices of the buffer layer 120 are combined. Therefore, the hexagonal buffer layer 120 can be grown on the cubic substrate 110.
5.従来の成膜方法との比較
5-1.本実施形態の成膜方法
 本実施形態では、基板110に対して、特定の方向からターゲット粒子を基板110に向けて輸送する。つまり、基板110の板面からみると、常にほぼ一定の方向から原料粒子が輸送される。その結果、図4に示すように、成膜された基板110の上では、基板110の上の第1の箇所におけるGaN層のc軸は、第1の方向J1を向いている。また、基板110の上の第2の箇所におけるGaN層のc軸も、第1の方向J1を向いている。このように、成膜されるAlN層およびGaN層のc軸のほとんどは、基板110の板面にわたって第1の方向J1を向いている。つまり、c軸は、基板110の板面に垂直な方向に対して、ある特定の角度θ1(図4参照)で傾いているのである。また、c軸は、基板110の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲の特定の方向を向いている。
5. Comparison with conventional film formation method 5-1. In the present embodiment, target particles are transported toward the substrate 110 from a specific direction with respect to the substrate 110. That is, when viewed from the plate surface of the substrate 110, the raw material particles are always transported from a substantially constant direction. As a result, as shown in FIG. 4, on the deposited substrate 110, the c-axis of the GaN layer at the first location on the substrate 110 is in the first direction J1. In addition, the c-axis of the GaN layer at the second location on the substrate 110 also faces the first direction J1. As described above, most of the c-axis of the AlN layer and the GaN layer to be formed are oriented in the first direction J1 over the plate surface of the substrate 110. That is, the c-axis is inclined at a specific angle θ1 (see FIG. 4) with respect to the direction perpendicular to the plate surface of the substrate 110. Further, the c-axis is directed in a specific direction within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate 110 or a direction equivalent to the [110] direction.
5-2.従来の成膜方法
 従来のMOCVD法を用いて、立方晶の基板の上に六方晶のバッファ層を成膜しようと試みたと仮定する。その場合には、種々の方向から原料粒子が輸送される。その結果、ある箇所では、例えば、[110]方向にc軸が傾く。別の箇所では、例えば、[-110]方向にc軸が傾く。また、[1-10]方向もしくは[-1-10]方向にc軸が傾く場合がある。このように、基板上の位置によってc軸の傾く向きが異なっている。
5-2. Conventional Film Formation Method Assume that an attempt is made to form a hexagonal buffer layer on a cubic substrate using a conventional MOCVD method. In that case, the raw material particles are transported from various directions. As a result, at a certain point, for example, the c-axis is inclined in the [110] direction. In another place, for example, the c-axis is inclined in the [−110] direction. In addition, the c-axis may be inclined in the [1-10] direction or the [-1-10] direction. Thus, the direction in which the c-axis is inclined differs depending on the position on the substrate.
 図6に示すように、低温成膜された基板110上のGaNでは、基板110の第3の箇所におけるGaN層のc軸は、第2の方向J2を向いている。また、基板110の第4の箇所におけるGaN層のc軸は、第3の方向J3を向いている。もちろん、第2の方向J2と第3の方向J3とは異なる方向である。このように、基板110の場所によって、c軸は別々の方向を向いている。 As shown in FIG. 6, in the GaN on the substrate 110 formed at a low temperature, the c-axis of the GaN layer at the third location of the substrate 110 faces the second direction J2. In addition, the c-axis of the GaN layer at the fourth position of the substrate 110 faces the third direction J3. Of course, the second direction J2 and the third direction J3 are different directions. As described above, the c-axis is directed in different directions depending on the location of the substrate 110.
 高温で成膜した場合にはc軸は傾かない。しかし、バッファ層120は、第1の領域と、第1の領域から面内回転方向に30°回転した第2の領域と、を有することとなる。つまり、結晶方位の異なる2つの領域が混在することとなる。したがって、単結晶は得られない。また、オフ基板を用いたとしても、結晶性の良い結晶は得られない。 When the film is formed at high temperature, the c-axis does not tilt. However, the buffer layer 120 has a first region and a second region rotated by 30 ° in the in-plane rotation direction from the first region. That is, two regions having different crystal orientations are mixed. Therefore, a single crystal cannot be obtained. Even if an off-substrate is used, a crystal with good crystallinity cannot be obtained.
 なお、何らかの理由により、特定の方向が支配的になる可能性がないわけではない。しかし、基板110の板面にわたって一様にc軸が傾斜するGaN層を成長させることは、非常に困難である。つまり、再現性が悪い。 Note that for some reason, a particular direction is not without possibility. However, it is very difficult to grow a GaN layer in which the c-axis is uniformly inclined over the plate surface of the substrate 110. That is, the reproducibility is poor.
6.変形例
6-1.c軸の傾き
 本実施形態の薄膜基板100は、基板110と、バッファ層120と、を有する。バッファ層120のc軸は、基板110の板面にわたって第1の方向J1を向いている。つまり、バッファ層120のc軸は、95%以上の割合で第1の方向J1を向いている。しかし、基板110を[110]方向に等価な方向に配置しなかった場合には、第1の方向J1を向いているc軸の割合は低下する。その場合であっても、バッファ層120のc軸は、少なくとも50%以上の割合で第1の方向J1を向いている。このように、バッファ層120のc軸は、50%以上100%以下の割合で第1の方向J1を向いている。
6). Modification 6-1. Inclination of c-axis The thin film substrate 100 of this embodiment includes a substrate 110 and a buffer layer 120. The c-axis of the buffer layer 120 faces the first direction J1 over the plate surface of the substrate 110. That is, the c-axis of the buffer layer 120 faces the first direction J1 at a rate of 95% or more. However, if the substrate 110 is not arranged in a direction equivalent to the [110] direction, the proportion of the c-axis facing the first direction J1 decreases. Even in such a case, the c-axis of the buffer layer 120 faces the first direction J1 at a rate of at least 50% or more. As described above, the c-axis of the buffer layer 120 faces the first direction J1 at a rate of 50% to 100%.
 このように、バッファ層120のc軸が、50%以上の割合で第1の方向J1を向いていれば、III 族窒化物半導体層のc軸のほとんどが第1の方向J1を向いた状態でIII 族窒化物半導体層を成長させることができる。つまり、バッファ層120におけるc軸の支配的な向きが、その後に成長させるIII 族窒化物半導体層のc軸の傾きを決定づけるのである。このように成長させたIII 族窒化物半導体層では、c軸の95%以上は、第1の方向J1を向いている。つまり、ほとんど単結晶が得られる。もちろん、バッファ層120のc軸のうち第1の方向J1を向いている割合が多いほど、その上に成長させるIII 族窒化物半導体層の結晶性はよい。 Thus, if the c-axis of the buffer layer 120 is oriented in the first direction J1 at a rate of 50% or more, most of the c-axis of the III-group nitride semiconductor layer is oriented in the first direction J1. The III-group nitride semiconductor layer can be grown with That is, the dominant direction of the c-axis in the buffer layer 120 determines the inclination of the c-axis of the III-group nitride semiconductor layer that is subsequently grown. In the group III nitride semiconductor layer grown in this way, 95% or more of the c-axis is directed in the first direction J1. That is, almost a single crystal is obtained. Of course, the higher the ratio of the c-axis of the buffer layer 120 facing the first direction J1, the better the crystallinity of the III-group nitride semiconductor layer grown thereon.
 よって、バッファ層120のc軸のうち第1の方向J1を向いているc軸の割合は、50%以上100%以下の割合である。好ましくは、65%以上100%以下の割合である。より好ましくは、80%以上100%以下の割合である。さらに好ましくは、90%以上100%以下の割合である。 Therefore, the ratio of the c-axis facing the first direction J1 in the c-axis of the buffer layer 120 is a ratio of 50% or more and 100% or less. Preferably, it is a ratio of 65% or more and 100% or less. More preferably, the ratio is 80% or more and 100% or less. More preferably, the ratio is 90% or more and 100% or less.
6-2.基板の種類
 本実施形態における立方晶の基板110は、Si(001)基板である。しかし、その他の立方晶基板を用いることもできる。例えば、MgO基板と、TiO基板と、SrTiO基板と、が挙げられる。また、SiC基板、GaAs基板、等の立方晶基板を用いることもできる。また、(001)基板以外に、(110)基板を用いてもよい。
6-2. Types of Substrate The cubic substrate 110 in the present embodiment is a Si (001) substrate. However, other cubic substrates can be used. For example, an MgO substrate, a TiO 2 substrate, and a SrTiO 3 substrate can be mentioned. A cubic substrate such as a SiC substrate or a GaAs substrate can also be used. In addition to the (001) substrate, a (110) substrate may be used.
6-3.バッファ層の種類
 本実施形態のバッファ層120は、AlN層である。しかし、AlGaInN層(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)を用いてもよい。また、その他のバッファ層を用いてもよい。バッファ層として、例えば、BN層と、ZnO層と、ZnS層と、が挙げられる。
6-3. Type of buffer layer The buffer layer 120 of this embodiment is an AlN layer. However, an Al X Ga Y In Z N layer (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) may be used. Other buffer layers may also be used. Examples of the buffer layer include a BN layer, a ZnO layer, and a ZnS layer.
6-4.サセプターの回転(その1)
 本実施形態では、サセプター1200を回転させない。しかし、基板110およびターゲット1500の位置関係を保持した状態で、サセプター1200およびターゲット1500の両方を回転させてもよい。
6-4. Rotation of susceptor (part 1)
In this embodiment, the susceptor 1200 is not rotated. However, both the susceptor 1200 and the target 1500 may be rotated while the positional relationship between the substrate 110 and the target 1500 is maintained.
6-5.サセプターの回転(その2)
 本実施形態の薄膜基板100の製造方法は、サセプター1200を回転させない第1の工程と、サセプター1200を回転させる第2の工程と、を有していてもよい。つまり、バッファ層120の成膜初期段階では、サセプター1200を回転させずに約10nm以上の膜厚でバッファ層120の一部を成膜する。この段階では、バッファ層120のc軸の配向方向が決定されている。そして、この後、サセプター1200を回転させながらバッファ層120の残部を成膜する。この段階では、既にc軸の配向方向が決定されているので、その決定されたc軸の配向方向に従ってバッファ層120の残部は成長する。このように2段階にすることにより、バッファ層120の基板面内均一性が向上する。
6-5. Rotation of susceptor (part 2)
The manufacturing method of the thin film substrate 100 according to the present embodiment may include a first step in which the susceptor 1200 is not rotated and a second step in which the susceptor 1200 is rotated. That is, in the initial stage of film formation of the buffer layer 120, a part of the buffer layer 120 is formed with a film thickness of about 10 nm or more without rotating the susceptor 1200. At this stage, the orientation direction of the c-axis of the buffer layer 120 is determined. Thereafter, the remaining part of the buffer layer 120 is formed while the susceptor 1200 is rotated. At this stage, since the c-axis alignment direction has already been determined, the remainder of the buffer layer 120 grows according to the determined c-axis alignment direction. By using two steps in this way, the in-plane uniformity of the buffer layer 120 is improved.
6-6.ターゲット配置部
 本実施形態のターゲット配置部1400は、チャンバー1100に固定されている。しかし、ターゲット配置部1400は、ターゲット1500の表面が、基板110の板面に垂直な方向に対して10°以上60°以下の範囲内で相対的に可変となるように傾斜角を変更できるようになっていてもよい。
6-6. Target Arrangement Unit The target arrangement unit 1400 of this embodiment is fixed to the chamber 1100. However, the target placement unit 1400 can change the tilt angle so that the surface of the target 1500 is relatively variable within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate 110. It may be.
6-7.組み合わせ
 上記の変形例を自由に組み合わせてもよい。
6-7. Combination The above modification examples may be freely combined.
7.本実施形態のまとめ
 本実施形態の成膜装置1000では、基板110の板面に垂直な方向と、基板110からみてターゲット1500の配置されている方向とのなす角の角度が、角度θだけ傾斜している。そのため、立方晶である基板110の上に六方晶のバッファ層120を成長させることができる。したがって、例えば、大口径のSi(001)基板の上にIII 族窒化物半導体を成長させることができる。
7). Summary of this embodiment In the film forming apparatus 1000 of this embodiment, the angle formed by the direction perpendicular to the plate surface of the substrate 110 and the direction in which the target 1500 is disposed as viewed from the substrate 110 is inclined by an angle θ. is doing. Therefore, the hexagonal buffer layer 120 can be grown on the cubic substrate 110. Therefore, for example, a group III nitride semiconductor can be grown on a large-diameter Si (001) substrate.
 本実施形態の薄膜基板100は、立方晶の基板110と、その基板110の上に成長させた六方晶のバッファ層120と、を有している。そのため、安価で大口径のSi(001)基板の上にIII 族窒化物半導体を成長させることができる。 The thin film substrate 100 of the present embodiment includes a cubic substrate 110 and a hexagonal buffer layer 120 grown on the substrate 110. Therefore, a III-group nitride semiconductor can be grown on an inexpensive and large-diameter Si (001) substrate.
(第2の実施形態)
 第2の実施形態について説明する。
(Second Embodiment)
A second embodiment will be described.
1.HEMT
 図7は、第2の実施形態のHEMT200の概略構成を示す図である。HEMT200は、III 族窒化物半導体を有する半導体素子である。HEMT200は、基板110と、バッファ層120と、下地層230と、チャネル層240と、バリア層250と、ソース電極S1と、ドレイン電極D1と、ゲート電極G1と、を有している。
1. HEMT
FIG. 7 is a diagram illustrating a schematic configuration of the HEMT 200 according to the second embodiment. The HEMT 200 is a semiconductor element having a group III nitride semiconductor. The HEMT 200 includes a substrate 110, a buffer layer 120, a base layer 230, a channel layer 240, a barrier layer 250, a source electrode S1, a drain electrode D1, and a gate electrode G1.
 基板110は、立方晶基板である。具体的には、Si(001)基板である。バッファ層120は、六方晶のAlN層である。このように、立方晶の基板110の上に六方晶のバッファ層120が形成されている。また、下地層230は、GaN層である。チャネル層240は、GaN層である。バリア層250は、AlGaN層である。これらは例示であり、下地層230と、チャネル層240と、バリア層250とは、これ以外の種類の半導体層であってもよい。 The substrate 110 is a cubic substrate. Specifically, it is a Si (001) substrate. The buffer layer 120 is a hexagonal AlN layer. As described above, the hexagonal buffer layer 120 is formed on the cubic substrate 110. The underlayer 230 is a GaN layer. The channel layer 240 is a GaN layer. The barrier layer 250 is an AlGaN layer. These are examples, and the base layer 230, the channel layer 240, and the barrier layer 250 may be other types of semiconductor layers.
2.バッファ層およびGaN層
 図8は、HEMT200から基板110とバッファ層120と下地層230とを抜き出して描いた概念図である。ここで、第1の角度θ1は、基板110の板面に垂直な方向と、バッファ層120のc軸と、がなす角の角度である。第2の角度θ2は、基板110の板面に垂直な方向と、下地層230のc軸と、がなす角の角度である。
2. Buffer Layer and GaN Layer FIG. 8 is a conceptual diagram illustrating the substrate 110, the buffer layer 120, and the base layer 230 extracted from the HEMT 200. Here, the first angle θ <b> 1 is an angle formed by the direction perpendicular to the plate surface of the substrate 110 and the c-axis of the buffer layer 120. The second angle θ <b> 2 is an angle formed by the direction perpendicular to the plate surface of the substrate 110 and the c-axis of the base layer 230.
 角度θ2は、10°以上60°以下の範囲内である。好ましくは、角度θ2は、15°以上55°以下の範囲内である。より好ましくは、角度θ2は、20°以上50°以下の範囲内である。さらに好ましくは、角度θ2は、25°以上45°以下の範囲内である。 The angle θ2 is in the range of 10 ° to 60 °. Preferably, the angle θ2 is in the range of 15 ° to 55 °. More preferably, the angle θ2 is in the range of 20 ° to 50 °. More preferably, the angle θ2 is in the range of 25 ° to 45 °.
 図8に示すように、下地層230のc軸の向きは、バッファ層120のc軸の向きとほぼ同じ向きである。つまり、c軸が傾斜しているバッファ層120の上には、そのバッファ層120の結晶性を受け継いで、GaNが成長する。ここで、第2の角度θ2は、第1の角度θ1にほぼ等しい。第2の角度θ2は、基板110の板面に垂直な方向および面内方向の両方について、第1の角度θ1に対して0°以上5°以下だけ傾斜している。つまり、下地層230のc軸は、バッファ層120のc軸の方向に対して、基板110の板面に垂直な方向および面内方向の両方について、0°以上5°以下の範囲内で傾斜している。好ましくは、0°以上3°以下の範囲内である。より好ましくは、0°以上1°以下の範囲内である。 As shown in FIG. 8, the direction of the c-axis of the base layer 230 is substantially the same as the direction of the c-axis of the buffer layer 120. That is, GaN grows on the buffer layer 120 whose c-axis is inclined, inheriting the crystallinity of the buffer layer 120. Here, the second angle θ2 is substantially equal to the first angle θ1. The second angle θ2 is inclined by 0 ° or more and 5 ° or less with respect to the first angle θ1 in both the direction perpendicular to the plate surface of the substrate 110 and the in-plane direction. That is, the c-axis of the base layer 230 is tilted within a range of 0 ° to 5 ° with respect to both the direction perpendicular to the plate surface of the substrate 110 and the in-plane direction with respect to the c-axis direction of the buffer layer 120. is doing. Preferably, it is in the range of 0 ° to 3 °. More preferably, it is in the range of 0 ° to 1 °.
3.本実施形態の効果
 バッファ層120のc軸は、基板110の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲内にある。この場合、GaN層である下地層230の表面は非極性面となる。そのため、自発分極とピエゾ分極が抑制される。したがって、ノーマリオフタイプのHEMTが得られやすい。また、発光素子に適用する場合には、発光層内の分極による波長シフトが抑制される。また、電界の歪みによる電子および正孔の波動関数の分離が抑制される。したがって、発光効率の低下を抑制することができる。
3. Effect of this Embodiment The c-axis of the buffer layer 120 is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction of the plate surface of the substrate 110 or a direction equivalent to the [110] direction. In this case, the surface of the foundation layer 230 that is a GaN layer is a nonpolar surface. Therefore, spontaneous polarization and piezo polarization are suppressed. Therefore, a normally-off type HEMT is easily obtained. Further, when applied to a light emitting element, wavelength shift due to polarization in the light emitting layer is suppressed. Further, separation of electron and hole wave functions due to electric field distortion is suppressed. Therefore, it is possible to suppress a decrease in luminous efficiency.
 図9は、In組成比が20%のInGaNをGaN上に成長させた場合の薄膜中の分極を示すグラフである。図10は、Al組成比が20%のAlGaNをGaN上に成長させた場合の薄膜中の分極を示すグラフである。図9および図10に示すように、c軸を傾斜させた場合の分極の度合いは、c軸を傾斜させない場合の分極の度合いよりも小さい。In組成比やAl組成比が変化しても、この傾向はそれほど変わらない。したがって、本実施形態のc軸が傾斜した非極性面を用いる半導体装置では、分極が抑制される。 FIG. 9 is a graph showing the polarization in the thin film when InGaN having an In composition ratio of 20% is grown on GaN. FIG. 10 is a graph showing polarization in a thin film when AlGaN having an Al composition ratio of 20% is grown on GaN. As shown in FIGS. 9 and 10, the degree of polarization when the c-axis is inclined is smaller than the degree of polarization when the c-axis is not inclined. Even if the In composition ratio or Al composition ratio changes, this tendency does not change so much. Therefore, in the semiconductor device using the nonpolar plane with the c-axis inclined in this embodiment, polarization is suppressed.
4.HEMTの製造方法
4-1.バッファ層形成工程
 第1の実施形態の成膜装置1000を用いて、基板110の上にバッファ層120を形成する。その後、成膜した基板110を成膜装置1000から取り出す。
4). 4. Manufacturing method of HEMT 4-1. Buffer Layer Forming Step The buffer layer 120 is formed on the substrate 110 using the film forming apparatus 1000 of the first embodiment. Thereafter, the deposited substrate 110 is taken out of the deposition apparatus 1000.
4-2.半導体層形成工程
 その後、MOCVD装置等を用いて、バッファ層120の上にIII 族窒化物半導体の単結晶をエピタキシャル成長させる。つまり、バッファ層120の上に下地層230を成長させる。次に、下地層230の上にチャネル層240を成長させる。そして、チャネル層240の上にバリア層250を成長させる。
4-2. Semiconductor Layer Formation Step Thereafter, a group III nitride semiconductor single crystal is epitaxially grown on the buffer layer 120 using an MOCVD apparatus or the like. That is, the base layer 230 is grown on the buffer layer 120. Next, the channel layer 240 is grown on the base layer 230. Then, a barrier layer 250 is grown on the channel layer 240.
4-3.電極形成工程
 そして、バリア層250の上に、ソース電極S1と、ドレイン電極D1と、ゲート電極G1と、を形成する。そして、基板110を切り出してチップ化する。これにより、図7に示すHEMT200が製造される。
4-3. Electrode Forming Step Then, the source electrode S1, the drain electrode D1, and the gate electrode G1 are formed on the barrier layer 250. Then, the substrate 110 is cut out into chips. Thereby, the HEMT 200 shown in FIG. 7 is manufactured.
5.変形例
5-1.MIS型HEMT
 本実施形態のHEMT200に限らず、MIS型HEMTもしくはMOS型HEMTにも本実施形態の技術を適用することができる。
5. Modified example 5-1. MIS HEMT
The technique of the present embodiment can be applied not only to the HEMT 200 of the present embodiment but also to a MIS type HEMT or a MOS type HEMT.
5-2.縦型素子
 また、その他の縦型の半導体素子についても、本実施形態の技術を適用することができる。
5-2. Vertical Element The technology of the present embodiment can also be applied to other vertical semiconductor elements.
5-3.GaNテンプレート
 また、本実施形態の技術は、GaNテンプレートにも適用することができる。その場合のGaNテンプレートの構造は、図8に示すものと同様である。
5-3. GaN Template The technique of this embodiment can also be applied to a GaN template. The structure of the GaN template in that case is the same as that shown in FIG.
5-4.組み合わせ
 上記の変形例を第1の実施形態およびその変形例と自由に組み合わせてもよい。
5-4. Combination The above modification may be freely combined with the first embodiment and its modification.
6.本実施形態のまとめ
 本実施形態のHEMT200は、立方晶の基板110と、その基板110の上に成長させた六方晶のバッファ層120と、を有している。そのため、安価で大口径のSi(001)基板の上にIII 族窒化物半導体を成長させることができる。
6). Summary of this Embodiment The HEMT 200 of this embodiment includes a cubic substrate 110 and a hexagonal buffer layer 120 grown on the substrate 110. Therefore, a group III nitride semiconductor can be grown on an inexpensive and large-diameter Si (001) substrate.
(第3の実施形態)
 第3の実施形態について説明する。
(Third embodiment)
A third embodiment will be described.
1.半導体発光素子
 図11は、第3の実施形態の発光素子300の概略構成を示す図である。発光素子300は、III 族窒化物半導体を有する半導体素子である。発光素子300は、基板110と、バッファ層120と、n型コンタクト層330と、発光層340と、p型クラッド層350と、p型コンタクト層360と、n電極N1と、p電極P1と、を有する。
1. Semiconductor Light Emitting Element FIG. 11 is a diagram showing a schematic configuration of a light emitting element 300 of the third embodiment. The light emitting element 300 is a semiconductor element having a group III nitride semiconductor. The light emitting element 300 includes a substrate 110, a buffer layer 120, an n-type contact layer 330, a light emitting layer 340, a p-type cladding layer 350, a p-type contact layer 360, an n-electrode N1, a p-electrode P1, Have
 基板110は、立方晶基板である。具体的には、Si(001)基板である。バッファ層120は、六方晶のAlN層である。このように、立方晶の基板110の上に六方晶のバッファ層120が形成されている。 The substrate 110 is a cubic substrate. Specifically, it is a Si (001) substrate. The buffer layer 120 is a hexagonal AlN layer. As described above, the hexagonal buffer layer 120 is formed on the cubic substrate 110.
 n型コンタクト層330は、n電極N1と接触する層である。n型コンタクト層330は、n型GaNを有している。発光層340は、電子と正孔とが再結合して発光する層である。p型クラッド層350は、電子を閉じ込めておくための層である。p型クラッド層350は、超格子構造を備える層である。p型コンタクト層360は、p電極P1と接触する層である。p型コンタクト層360は、p型GaNを有している。これらは、例示であり、これ以外の半導体層を有していてもよい。 The n-type contact layer 330 is a layer in contact with the n electrode N1. The n-type contact layer 330 has n-type GaN. The light emitting layer 340 is a layer that emits light by recombination of electrons and holes. The p-type cladding layer 350 is a layer for confining electrons. The p-type cladding layer 350 is a layer having a superlattice structure. The p-type contact layer 360 is a layer in contact with the p-electrode P1. The p-type contact layer 360 has p-type GaN. These are merely examples, and other semiconductor layers may be included.
2.バッファ層およびGaN層
 第3の実施形態におけるバッファ層120とn型コンタクト層330との関係は、第2の実施形態のバッファ層120と下地層230との関係と同様である。つまり、図8に示す関係が、発光素子300においても成り立つ。
2. Buffer Layer and GaN Layer The relationship between the buffer layer 120 and the n-type contact layer 330 in the third embodiment is the same as the relationship between the buffer layer 120 and the base layer 230 in the second embodiment. That is, the relationship shown in FIG.
3.半導体発光素子の製造方法
3-1.バッファ層形成工程
 第1の実施形態の成膜装置1000を用いて、基板110の上にバッファ層120を形成する。その後、成膜した基板110を成膜装置1000から取り出す。
3. Manufacturing method of semiconductor light emitting device 3-1. Buffer Layer Forming Step The buffer layer 120 is formed on the substrate 110 using the film forming apparatus 1000 of the first embodiment. Thereafter, the deposited substrate 110 is taken out of the deposition apparatus 1000.
3-2.半導体層形成工程
 その後、MOCVD装置等を用いて、バッファ層120の上にIII 族窒化物半導体の単結晶をエピタキシャル成長させる。つまり、バッファ層120の上にn型コンタクト層330を成長させる。次に、n型コンタクト層330の上に発光層340を成長させる。そして、発光層340の上にp型クラッド層350を成長させる。そして、p型クラッド層350の上にp型コンタクト層360を成長させる。
3-2. Semiconductor Layer Formation Step Thereafter, a group III nitride semiconductor single crystal is epitaxially grown on the buffer layer 120 using an MOCVD apparatus or the like. That is, the n-type contact layer 330 is grown on the buffer layer 120. Next, the light emitting layer 340 is grown on the n-type contact layer 330. Then, a p-type cladding layer 350 is grown on the light emitting layer 340. Then, a p-type contact layer 360 is grown on the p-type cladding layer 350.
3-3.電極形成工程
 そして、p型コンタクト層360からn型コンタクト層330まで達する凹部を設ける。そして、その凹部に露出しているn型コンタクト層330の上にn電極N1を形成する。また、p型コンタクト層360の上にp電極P1を形成する。また、基板110を切り出してチップ化する。これにより、図11に示す発光素子300が製造される。
3-3. Electrode forming step Then, a recess reaching from the p-type contact layer 360 to the n-type contact layer 330 is provided. Then, an n-electrode N1 is formed on the n-type contact layer 330 exposed in the recess. A p-electrode P1 is formed on the p-type contact layer 360. Further, the substrate 110 is cut out into chips. Thereby, the light emitting element 300 shown in FIG. 11 is manufactured.
4.変形例
4-1.半導体レーザー素子
 図11に示す第3の実施形態の半導体素子は、発光素子300である。しかし、半導体レーザー素子に対しても、同様に、本実施形態の技術を適用することができる。
4). Modified example 4-1. Semiconductor Laser Element The semiconductor element according to the third embodiment shown in FIG. However, the technique of the present embodiment can be similarly applied to the semiconductor laser element.
4-2.受光素子
 また、本技術は、受光素子にも適用することができる。受光素子は、発光素子300の発光層を光吸収層として用いる。受光素子として、例えば、太陽電池が挙げられる。
4-2. Light Receiving Element The present technology can also be applied to a light receiving element. The light receiving element uses the light emitting layer of the light emitting element 300 as a light absorbing layer. Examples of the light receiving element include a solar cell.
4-3.組み合わせ
 上記の変形例を第1の実施形態およびその変形例と自由に組み合わせてもよい。
4-3. Combination The above modification may be freely combined with the first embodiment and its modification.
5.本実施形態のまとめ
 本実施形態のHEMT200は、立方晶の基板110と、その基板110の上に成長させた六方晶のバッファ層120と、を有している。そのため、安価で大口径のSi(001)基板の上にIII 族窒化物半導体を成長させることができる。
5. Summary of this Embodiment The HEMT 200 of this embodiment includes a cubic substrate 110 and a hexagonal buffer layer 120 grown on the substrate 110. Therefore, a group III nitride semiconductor can be grown on an inexpensive and large-diameter Si (001) substrate.
(第4の実施形態)
 第4の実施形態について説明する。
(Fourth embodiment)
A fourth embodiment will be described.
1.薄膜基板
 図12は、第4の実施形態の薄膜基板400の構造を示す図である。薄膜基板400は、基板110と、バッファ層120と、中間層ILと、を有している。バッファ層120は、スパッタリングにより成膜されたAlN層である。ここで、基板110は、立方晶基板である。一方、バッファ層120は、六方晶の層である。また、中間層ILは、六方晶の層である。このように、薄膜基板100は、立方晶の基板110と、六方晶のバッファ層120と、六方晶の中間層ILと、を有している。第4の実施形態のバッファ層120は、第1の実施形態のバッファ層120と同様である。
1. Thin Film Substrate FIG. 12 is a view showing the structure of the thin film substrate 400 of the fourth embodiment. The thin film substrate 400 includes a substrate 110, a buffer layer 120, and an intermediate layer IL. The buffer layer 120 is an AlN layer formed by sputtering. Here, the substrate 110 is a cubic substrate. On the other hand, the buffer layer 120 is a hexagonal layer. The intermediate layer IL is a hexagonal layer. As described above, the thin film substrate 100 includes the cubic substrate 110, the hexagonal buffer layer 120, and the hexagonal intermediate layer IL. The buffer layer 120 of the fourth embodiment is the same as the buffer layer 120 of the first embodiment.
2.中間層
 ここで、中間層ILについて説明する。第4の実施形態の中間層ILは、MOCVD法により成膜された層である。中間層ILは、バッファ層120の結晶性を受け継ぎつつ、格子欠陥を低減させるための層である。中間層ILの膜厚は、例えば、10nm以上100nm以下の範囲内である。中間層ILの膜厚は上記以外であってもよい。そして、中間層ILとして、例えば、次の3種類の中間層を挙げることができる。
2. Intermediate Layer Here, the intermediate layer IL will be described. The intermediate layer IL of the fourth embodiment is a layer formed by the MOCVD method. The intermediate layer IL is a layer for reducing lattice defects while inheriting the crystallinity of the buffer layer 120. The film thickness of the intermediate layer IL is, for example, in the range of 10 nm to 100 nm. The film thickness of the intermediate layer IL may be other than the above. And as intermediate layer IL, the following three types of intermediate layers can be mentioned, for example.
2-1.第1の中間層
 第1の中間層は、高温AlN層である。高温AlN層の成長温度は、950℃以上1100℃以下である。
2-1. First intermediate layer The first intermediate layer is a high temperature AlN layer. The growth temperature of the high-temperature AlN layer is 950 ° C. or higher and 1100 ° C. or lower.
2-2.第2の中間層
 第2の中間層は、低温AlN層と高温AlN層とを積層した層である。その際に、バッファ層120の上に低温AlN層を形成し、低温AlN層の上に高温AlN層を形成する。低温AlN層の成長温度は、650℃以上800℃以下である。
2-2. Second Intermediate Layer The second intermediate layer is a layer in which a low temperature AlN layer and a high temperature AlN layer are stacked. At that time, a low temperature AlN layer is formed on the buffer layer 120, and a high temperature AlN layer is formed on the low temperature AlN layer. The growth temperature of the low-temperature AlN layer is 650 ° C. or higher and 800 ° C. or lower.
2-3.第3の中間層
 第3の中間層は、高温AlN層とAlN/GaN超格子層とを積層した層である。その際に、バッファ層120の上に高温AlN層を形成し、高温AlN層の上にAlN/GaN超格子層を形成する。AlN/GaN超格子層の成長温度は、950℃以上1100℃以下である。
2-3. Third Intermediate Layer The third intermediate layer is a layer in which a high-temperature AlN layer and an AlN / GaN superlattice layer are stacked. At that time, a high-temperature AlN layer is formed on the buffer layer 120, and an AlN / GaN superlattice layer is formed on the high-temperature AlN layer. The growth temperature of the AlN / GaN superlattice layer is 950 ° C. or higher and 1100 ° C. or lower.
3.本実施形態の効果
 中間層ILは、格子欠陥を低減させることができる。そして、中間層ILより上層に六方晶の半導体層を成長させる場合に、中間層ILは、その六方晶の半導体層の結晶性を向上させる。
3. Effects of this Embodiment The intermediate layer IL can reduce lattice defects. When a hexagonal semiconductor layer is grown above the intermediate layer IL, the intermediate layer IL improves the crystallinity of the hexagonal semiconductor layer.
4.変形例
4-1.HEMT
 図13は、第4の実施形態の変形例におけるHEMT500の構造を示す図である。HEMT500は、III 族窒化物半導体を有する半導体素子である。HEMT500は、基板110と、バッファ層120と、中間層ILと、下地層230と、チャネル層240と、バリア層250と、ソース電極S1と、ドレイン電極D1と、ゲート電極G1と、を有している。中間層ILは、バッファ層120と半導体層との間に位置している。
4). Modified example 4-1. HEMT
FIG. 13 is a diagram illustrating a structure of a HEMT 500 according to a modification of the fourth embodiment. The HEMT 500 is a semiconductor element having a group III nitride semiconductor. The HEMT 500 includes a substrate 110, a buffer layer 120, an intermediate layer IL, a base layer 230, a channel layer 240, a barrier layer 250, a source electrode S1, a drain electrode D1, and a gate electrode G1. ing. The intermediate layer IL is located between the buffer layer 120 and the semiconductor layer.
 HEMT500の各層は、中間層ILを除いて第2の実施形態のHEMT200の各層と同じである。中間層ILは、本実施形態の第1の中間層から第3の中間層までのいずれかであればよい。 Each layer of the HEMT 500 is the same as each layer of the HEMT 200 of the second embodiment except for the intermediate layer IL. The intermediate layer IL may be any one from the first intermediate layer to the third intermediate layer of the present embodiment.
4-2.半導体発光素子
 図14は、第4の実施形態の変形例における発光素子600の構造を示す図である。発光素子600は、III 族窒化物半導体を有する半導体素子である。発光素子600は、基板110と、バッファ層120と、中間層ILと、n型コンタクト層330と、発光層340と、p型クラッド層350と、p型コンタクト層360と、n電極N1と、p電極P1と、を有する。中間層ILは、バッファ層120と半導体層との間に位置している。
4-2. Semiconductor Light Emitting Element FIG. 14 is a diagram showing a structure of a light emitting element 600 according to a modification of the fourth embodiment. The light emitting element 600 is a semiconductor element having a group III nitride semiconductor. The light-emitting element 600 includes a substrate 110, a buffer layer 120, an intermediate layer IL, an n-type contact layer 330, a light-emitting layer 340, a p-type cladding layer 350, a p-type contact layer 360, an n-electrode N1, p electrode P1. The intermediate layer IL is located between the buffer layer 120 and the semiconductor layer.
 発光素子600の各層は、中間層ILを除いて第3の実施形態の発光素子300の各層と同じである。中間層ILは、本実施形態の第1の中間層から第3の中間層までのいずれかであればよい。 Each layer of the light emitting element 600 is the same as each layer of the light emitting element 300 of the third embodiment except for the intermediate layer IL. The intermediate layer IL may be any one from the first intermediate layer to the third intermediate layer of the present embodiment.
4-3.中間層の成膜方法
 本実施形態では、中間層ILをMOCVD法により成膜する。しかし、中間層ILを成膜するためにその他の成膜方法を用いてもよい。例えば、HVPE法、MBE法が挙げられる。
4-3. In the present embodiment, the intermediate layer IL is formed by the MOCVD method. However, other film forming methods may be used to form the intermediate layer IL. For example, HVPE method and MBE method are mentioned.
A.実験1
1.GaN層の成膜
1-1.成膜条件
 成膜装置1000を用いて、Si(001)基板にAlN層を成膜した。ターゲットをSi(001)基板に射影すると、Si(001)基板の[110]方向または[110]方向と等価な方向にターゲットが配置されるように、Si(001)基板をサセプター1200に配置した。Si(001)基板の板面に垂直な方向と、ターゲットの位置する方向と、のなす角の角度は、36°であった。なお、ターゲットは、Si(001)基板の[110]方向もしくはその等価な方向からSi(001)基板の面内回転方向で30°以内の位置に配置した。
A. Experiment 1
1. 1. Formation of GaN layer 1-1. Film Formation Conditions Using the film formation apparatus 1000, an AlN layer was formed on a Si (001) substrate. The Si (001) substrate was placed on the susceptor 1200 so that when the target was projected onto the Si (001) substrate, the target was placed in the [110] direction of the Si (001) substrate or a direction equivalent to the [110] direction. . The angle formed by the direction perpendicular to the plate surface of the Si (001) substrate and the direction in which the target is located was 36 °. The target was arranged at a position within 30 ° in the in-plane rotation direction of the Si (001) substrate from the [110] direction of the Si (001) substrate or an equivalent direction thereof.
 また、サセプター1200については、回転させなかった。そのため、配置したSi(001)基板に対して、ターゲットの位置する方向から、ターゲット粒子が輸送されることとなる。つまり、ターゲット粒子は、[111]に近い方向からSi(001)基板に到達することとなる。 Also, the susceptor 1200 was not rotated. Therefore, the target particles are transported from the direction in which the target is located with respect to the arranged Si (001) substrate. That is, the target particles reach the Si (001) substrate from a direction close to [111].
 そして、Si(001)基板の上にAlN層を成膜した。基板温度は、450℃であった。ターゲットは、Alであった。そして、50sccmのNガスをチャンバー1100の内部に供給した。ここで、DC300Wでターゲットに電圧を印加した。内圧は、0.23Paであった。成膜時間は、30分であった。これにより、Al層の上に80nmのAlN層を成膜した。 Then, an AlN layer was formed on the Si (001) substrate. The substrate temperature was 450 ° C. The target was Al. Then, 50 sccm of N 2 gas was supplied into the chamber 1100. Here, a voltage was applied to the target at DC 300W. The internal pressure was 0.23 Pa. The film formation time was 30 minutes. Thereby, an AlN layer of 80 nm was formed on the Al layer.
 次に、MOCVD装置を用いて、AlN層の上にGaN層を成長させた。 Next, a GaN layer was grown on the AlN layer using an MOCVD apparatus.
1-2.成膜結果
 図15は、Si(001)基板に成膜したGaN層の表面を示す走査型電子顕微鏡写真(SEM写真)である。図15に示すように、GaN層の成長方向に異方性が認められる。
1-2. Deposition Result FIG. 15 is a scanning electron micrograph (SEM photograph) showing the surface of the GaN layer deposited on the Si (001) substrate. As shown in FIG. 15, anisotropy is recognized in the growth direction of the GaN layer.
 図16は、Si(001)基板に成膜したGaN層の断面を示す走査型電子顕微鏡写真(SEM写真)である。図16に示すように、GaN層のc軸は、Si(001)基板の板面に対して一定の角度だけ傾斜している。このなす角の角度は、約32°であった。 FIG. 16 is a scanning electron micrograph (SEM photograph) showing a cross section of the GaN layer formed on the Si (001) substrate. As shown in FIG. 16, the c-axis of the GaN layer is inclined by a certain angle with respect to the plate surface of the Si (001) substrate. The angle formed by this was about 32 °.
 図17は、図16を拡大した拡大図である。図17に示すように、AlN層のc軸は、スパッタリングの方向に傾斜している。また、GaN層のc軸も、スパッタリングの方向に傾斜している。そして、AlN層とGaN層とは、ほぼ同じ方向に成長している。AlN層が成長する方向と、GaN層が成長する方向と、の間の方向のずれは、2°以下であった。 FIG. 17 is an enlarged view of FIG. As shown in FIG. 17, the c-axis of the AlN layer is inclined in the sputtering direction. Further, the c-axis of the GaN layer is also inclined in the sputtering direction. The AlN layer and the GaN layer are grown in substantially the same direction. The deviation between the direction in which the AlN layer grows and the direction in which the GaN layer grows was 2 ° or less.
 図18は、サセプター1200を20rpmで回転させたときのGaN層の表面を示す走査型電子顕微鏡写真(SEM写真)である。このときには、Si(001)基板にまばらにGaN層が成長した。 FIG. 18 is a scanning electron micrograph (SEM photograph) showing the surface of the GaN layer when the susceptor 1200 is rotated at 20 rpm. At this time, GaN layers were sparsely grown on the Si (001) substrate.
2.GaN層の配向
2-1.X線回折
 図19は、任意の箇所でのX線回折の結果(2θ/ω)を示すグラフである。図19に示すように、GaN(10-13)のピークと、Si(004)のピークと、が観測された。これは、Si(001)基板の上に成膜したGaN層が、(10-13)面の方向に成長したことを示している。
2. Orientation of GaN layer 2-1. X-Ray Diffraction FIG. 19 is a graph showing the result (2θ / ω) of X-ray diffraction at an arbitrary location. As shown in FIG. 19, a peak of GaN (10-13) and a peak of Si (004) were observed. This indicates that the GaN layer formed on the Si (001) substrate has grown in the direction of the (10-13) plane.
 また、図19では、GaN(10-13)のピークと、Si(004)のピークと、を除くピークが観測されていない。これは、GaN層が、Si(001)基板の全表面にわたって一様な膜を成膜されたものであることを示している。 Further, in FIG. 19, no peaks other than the peak of GaN (10-13) and the peak of Si (004) are observed. This indicates that the GaN layer is formed by forming a uniform film over the entire surface of the Si (001) substrate.
 図20は、GaN層の(10-13)面を示す図である。 FIG. 20 shows the (10-13) plane of the GaN layer.
 図21は、X線回折の結果(φスキャン)を示すグラフである。図21に示すように、X=31.6°のときに、GaN(0002)のピークがφ=180°の位置に観測された。 FIG. 21 is a graph showing the result of X-ray diffraction (φ scan). As shown in FIG. 21, when X = 31.6 °, a peak of GaN (0002) was observed at a position of φ = 180 °.
 図22は、X線回折の結果(φスキャン)を示すグラフである。図22に示すように、X=54.6°のときに、Si{111}のピークがφ=90°、180°、270°の位置に観測された。 FIG. 22 is a graph showing the result of X-ray diffraction (φ scan). As shown in FIG. 22, when X = 54.6 °, a peak of Si {111} was observed at positions of φ = 90 °, 180 °, and 270 °.
 このように、GaN(0001)面から31.6°だけ傾斜しているGaN(10-13)面が、成長したことが確認された。 Thus, it was confirmed that the GaN (10-13) plane inclined by 31.6 ° from the GaN (0001) plane grew.
2-2.平坦性
 図23は、Si(001)基板に成膜したGaN層の断面を示す走査型電子顕微鏡写真(SEM写真)である。図23では、第1のAlN層の上に第1のGaN層を成長させた。第1のGaN層の膜厚は1μmである。そして、第1のGaN層の上に第2のAlN層を成長させた。第2のAlN層の膜厚は10nm程度である。そして、第2のAlN層の上に第2のGaN層を成長させた。第2のGaN層の膜厚は1μmである。
2-2. Flatness FIG. 23 is a scanning electron micrograph (SEM photograph) showing a cross section of a GaN layer formed on a Si (001) substrate. In FIG. 23, the first GaN layer was grown on the first AlN layer. The film thickness of the first GaN layer is 1 μm. Then, a second AlN layer was grown on the first GaN layer. The film thickness of the second AlN layer is about 10 nm. Then, a second GaN layer was grown on the second AlN layer. The film thickness of the second GaN layer is 1 μm.
 図23に示すように、第2のGaN層の表面は、平坦である。したがって、この平坦なGaN層の上に種々の素子構造を形成することは容易である。 As shown in FIG. 23, the surface of the second GaN layer is flat. Therefore, it is easy to form various element structures on the flat GaN layer.
2-3.第1の方向を向いているc軸の割合
 図24は、Si(001)基板の上に成膜したAlN層およびGaN層の境界面を示す透過型電子顕微鏡写真(断面TEM写真)である。図24中の破線で囲んだ領域では、AlN層のc軸が第1の方向J1を向いていない。破線で囲まれていない領域では、AlN層のc軸が第1の方向J1を向いている。このように図24中では、AlN層のc軸は、50%以上の割合で第1の方向J1を向いている。
2-3. Ratio of c-axis facing first direction FIG. 24 is a transmission electron micrograph (cross-sectional TEM photograph) showing a boundary surface between an AlN layer and a GaN layer formed on a Si (001) substrate. In the region surrounded by the broken line in FIG. 24, the c-axis of the AlN layer does not face the first direction J1. In the region not surrounded by the broken line, the c-axis of the AlN layer faces the first direction J1. As described above, in FIG. 24, the c-axis of the AlN layer faces the first direction J1 at a rate of 50% or more.
 一方、AlN層の上のGaN層では、図24中の撮像領域にわたってGaN層のc軸は第1の方向J1を向いている。AlN層の上のGaN層では、下地層であるAlN層のc軸の方向のうち、支配的な方向である第1の方向J1の情報を引き継いでいる。そして、AlN層の上のGaN層では、AlN層で支配的でないc軸の方向の情報はほとんど引き継がれない。したがって、AlN層のc軸が、50%以上の割合で第1の方向J1を向いていれば、Si(001)基板の板面にわたってほぼ一様にc軸が第1の方向J1を向いているGaN層が得られる。つまり、単一配向のGaN層が得られることが明らかとなった。 On the other hand, in the GaN layer on the AlN layer, the c-axis of the GaN layer faces the first direction J1 over the imaging region in FIG. In the GaN layer above the AlN layer, the information in the first direction J1, which is the dominant direction among the c-axis directions of the AlN layer as the underlying layer, is inherited. In the GaN layer above the AlN layer, information on the c-axis direction that is not dominant in the AlN layer is hardly carried over. Therefore, if the c-axis of the AlN layer faces the first direction J1 at a rate of 50% or more, the c-axis faces the first direction J1 substantially uniformly over the plate surface of the Si (001) substrate. A GaN layer is obtained. That is, it became clear that a unidirectionally oriented GaN layer was obtained.
3.考察
 これは、AlN層のc軸が第1の方向J1を向いている場合において、Si(001)基板の法線方向の結晶面が熱力学的に安定であるため、GaN層の初期核が優先的に形成されたためであると考えられる。図24中において、第1の方向J1を向いているときの基板の法線方向の結晶面は、それ以外の方向を向いているときに発現する結晶面よりも熱力学的に安定であると考えられる。つまり、(1)AlN層のc軸の支配的な方向およびその割合と、(2)AlN層におけるc軸の方向を受け継いだとした場合の結晶面の熱力学的安定性と、がその上のGaN層の結晶を決定づけると考えられる。
3. Consideration This is because when the c-axis of the AlN layer is in the first direction J1, the crystal plane in the normal direction of the Si (001) substrate is thermodynamically stable, so that the initial nucleus of the GaN layer is This is probably because it was formed with priority. In FIG. 24, the crystal plane in the normal direction of the substrate when facing the first direction J1 is more thermodynamically stable than the crystal plane appearing when facing the other direction. Conceivable. That is, (1) the dominant direction and ratio of the c-axis of the AlN layer, and (2) the thermodynamic stability of the crystal plane when the c-axis direction in the AlN layer is inherited. This is considered to determine the crystal of the GaN layer.
 本実験では、(10-13)面のGaN層を成長させることができた。しかし、ターゲットを配置する角度θを変えれば、その角度θに応じた結晶面で半導体層を成長させることができると考えられる。つまり、ある特定の方向から基板に到達したAlN粒子は、その方向に近い向きにc軸を傾斜させた状態で成長する。その際に、熱力学的に安定な面を平坦面としつつ半導体層は成長すると考えられる。 In this experiment, a (10-13) plane GaN layer could be grown. However, it is considered that if the angle θ at which the target is disposed is changed, the semiconductor layer can be grown on a crystal plane corresponding to the angle θ. That is, AlN particles that have reached the substrate from a specific direction grow with the c-axis inclined in a direction close to that direction. At that time, it is considered that the semiconductor layer grows while making the thermodynamically stable surface flat.
B.実験2
1.スパッタリングの角度
1-1.成膜条件
 成膜条件は、実験1とほぼ同じである。そのため、実験1と異なる条件について説明する。内圧は、0.02Paであった。基板の板面に垂直な方向と、ターゲットの表面に垂直な方向と、の間のなす角を36°と、20°と、の2通りを実施した。
B. Experiment 2
1. Sputtering angle 1-1. Film-forming conditions The film-forming conditions are almost the same as in Experiment 1. Therefore, conditions different from those in Experiment 1 will be described. The internal pressure was 0.02 Pa. The angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was 36 ° and 20 °.
1-2.実験結果
 図25は、基板の板面に垂直な方向とターゲットの表面に垂直な方向との間のなす角を36°とした場合におけるGaN層の表面を示す顕微鏡写真である。図25に示すように、GaN層の(10-13)面が観測された。図25(a)は、成長時間が1分の場合を示す写真である。図25(b)は、成長時間が5分の場合を示す図である。図25(c)は、成長時間が10分の場合を示す図である。
1-2. Experimental Results FIG. 25 is a photomicrograph showing the surface of the GaN layer when the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target is 36 °. As shown in FIG. 25, the (10-13) plane of the GaN layer was observed. FIG. 25A is a photograph showing a case where the growth time is 1 minute. FIG. 25B shows a case where the growth time is 5 minutes. FIG. 25C shows a case where the growth time is 10 minutes.
 図25(c)に示すように、GaN層のc軸は、基板の板面に垂直な方向に対して32°傾斜していた。 As shown in FIG. 25 (c), the c-axis of the GaN layer was inclined by 32 ° with respect to the direction perpendicular to the plate surface of the substrate.
 図26は、基板の板面に垂直な方向とターゲットの表面に垂直な方向との間のなす角を20°とした場合におけるGaN層の表面を示す顕微鏡写真である。図26に示すように、GaN層の(10-15)面が観測された。図26(a)は、成長時間が1分の場合を示す写真である。図26(b)は、成長時間が5分の場合を示す図である。図26(c)は、成長時間が10分の場合を示す図である。 FIG. 26 is a photomicrograph showing the surface of the GaN layer when the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target is 20 °. As shown in FIG. 26, the (10-15) plane of the GaN layer was observed. FIG. 26A is a photograph showing a case where the growth time is 1 minute. FIG. 26B shows a case where the growth time is 5 minutes. FIG. 26C shows a case where the growth time is 10 minutes.
 図26(c)に示すように、GaN層のc軸は、基板の板面に垂直な方向に対して20°傾斜していた。 As shown in FIG. 26 (c), the c-axis of the GaN layer was inclined 20 ° with respect to the direction perpendicular to the plate surface of the substrate.
 このように、基板の板面に垂直な方向と、ターゲットの表面に垂直な方向と、の間のなす角を異なる値に設定することにより、異なる面方向に成長するGaN層が得られた。つまり、ターゲットの照射方向および配置を変えることにより、GaN層の成長方向をある程度制御することができる。 Thus, by setting the angles formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target to different values, GaN layers growing in different plane directions were obtained. That is, the growth direction of the GaN layer can be controlled to some extent by changing the irradiation direction and arrangement of the target.
C.実験3
1.中間層
1-1.サンプルの製作
 図27は、実験3のサンプルの構造を示す図である。サンプルとしてサンプルA、B、Cを用いた。サンプルA、B、Cは、それぞれ、第4の実施形態の第1の中間層、第2の中間層、第3の中間層を有する。
C. Experiment 3
1. Intermediate layer 1-1. Production of Sample FIG. 27 is a diagram showing the structure of the sample of Experiment 3. Samples A, B, and C were used as samples. Samples A, B, and C respectively have the first intermediate layer, the second intermediate layer, and the third intermediate layer of the fourth embodiment.
 サンプルAは、Si(001)基板と、AlN層と、中間層ILと、GaN層と、をこの順序で積層したものである。中間層ILは、膜厚20nmの高温AlN層である。AlN層の膜厚は45nmである。GaN層の膜厚は4μmである。GaN層は、(10-13)面を成長させたものである。AlN層は、スパッタリングにより成膜した。その際に、基板の板面に垂直な方向と、ターゲットの表面に垂直な方向と、の間のなす角を36°とした。中間層ILおよびGaN層は、通常のMOCVD法により成膜した。 Sample A is obtained by laminating a Si (001) substrate, an AlN layer, an intermediate layer IL, and a GaN layer in this order. The intermediate layer IL is a high-temperature AlN layer having a thickness of 20 nm. The thickness of the AlN layer is 45 nm. The film thickness of the GaN layer is 4 μm. The GaN layer is obtained by growing the (10-13) plane. The AlN layer was formed by sputtering. At that time, the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was set to 36 °. The intermediate layer IL and the GaN layer were formed by a normal MOCVD method.
 サンプルBは、Si(001)基板と、AlN層と、中間層ILと、GaN層と、をこの順序で積層したものである。中間層ILは、膜厚10nmの低温AlN層の上に膜厚20nmの高温AlN層を積層したものである。AlN層の膜厚は45nmである。GaN層の膜厚は4μmである。GaN層は、(10-13)面を成長させたものである。AlN層は、スパッタリングにより成膜した。その際に、基板の板面に垂直な方向と、ターゲットの表面に垂直な方向と、の間のなす角を36°とした。中間層ILおよびGaN層は、通常のMOCVD法により成膜した。 Sample B is obtained by laminating a Si (001) substrate, an AlN layer, an intermediate layer IL, and a GaN layer in this order. The intermediate layer IL is obtained by stacking a high-temperature AlN layer having a thickness of 20 nm on a low-temperature AlN layer having a thickness of 10 nm. The thickness of the AlN layer is 45 nm. The film thickness of the GaN layer is 4 μm. The GaN layer is obtained by growing the (10-13) plane. The AlN layer was formed by sputtering. At that time, the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was set to 36 °. The intermediate layer IL and the GaN layer were formed by a normal MOCVD method.
 サンプルCは、Si(001)基板と、AlN層と、中間層ILと、GaN層と、をこの順序で積層したものである。中間層ILは、膜厚20nmの高温AlN層の上に25ペアのAlN/GaN超格子層を積層したものである。AlN層の膜厚は45nmである。GaN層の膜厚は4μmである。GaN層は、(10-13)面を成長させたものである。AlN層は、スパッタリングにより成膜した。その際に、基板の板面に垂直な方向と、ターゲットの表面に垂直な方向と、の間のなす角を36°とした。中間層ILおよびGaN層は、通常のMOCVD法により成膜した。 Sample C is obtained by laminating a Si (001) substrate, an AlN layer, an intermediate layer IL, and a GaN layer in this order. The intermediate layer IL is obtained by stacking 25 pairs of AlN / GaN superlattice layers on a high-temperature AlN layer having a thickness of 20 nm. The thickness of the AlN layer is 45 nm. The film thickness of the GaN layer is 4 μm. The GaN layer is obtained by growing the (10-13) plane. The AlN layer was formed by sputtering. At that time, the angle formed between the direction perpendicular to the plate surface of the substrate and the direction perpendicular to the surface of the target was set to 36 °. The intermediate layer IL and the GaN layer were formed by a normal MOCVD method.
1-2.X線回折
 (10-13)GaNについてX線回折を測定した。中間層ILを有するGaNのX線の半値全幅FWHMは、中間層ILを有さないGaNのX線の半値全幅FWHMよりも小さかった。また、中間層ILとして超格子層を有するGaNのX線の半値全幅FWHMは、中間層ILを有さないGaNのX線の半値全幅FWHMの半分程度であった。
1-2. X-ray diffraction X-ray diffraction was measured for (10-13) GaN. The full width at half maximum FWHM of the X-ray of GaN having the intermediate layer IL was smaller than the full width at half maximum FWHM of the X-ray of GaN having no intermediate layer IL. Further, the full width at half maximum FWHM of the X-ray of GaN having the superlattice layer as the intermediate layer IL was about half of the full width at half maximum FWHM of the GaN X-ray having no intermediate layer IL.
 したがって、中間層ILを設けることにより、その上に成長させるGaN層の結晶性が向上する。そして、中間層ILとして超格子層を用いると、GaN層の結晶性はより向上する。 Therefore, the provision of the intermediate layer IL improves the crystallinity of the GaN layer grown thereon. If a superlattice layer is used as the intermediate layer IL, the crystallinity of the GaN layer is further improved.
100…薄膜基板
110…基板
120…バッファ層
200…HEMT
G1…ゲート電極
S1…ソース電極
D1…ドレイン電極
300…発光素子
330…n型コンタクト層
340…発光層
350…p型クラッド層
360…p型コンタクト層
N1…n電極
P1…p電極
IL…中間層
1000…成膜装置
1100…チャンバー
1200…サセプター
1300…ヒーター
1400…ターゲット配置部
1500…ターゲット
1600…電圧印加部
DESCRIPTION OF SYMBOLS 100 ... Thin film substrate 110 ... Substrate 120 ... Buffer layer 200 ... HEMT
G1 ... Gate electrode S1 ... Source electrode D1 ... Drain electrode 300 ... Light emitting element 330 ... n-type contact layer 340 ... Light emitting layer 350 ... p-type cladding layer 360 ... p-type contact layer N1 ... n electrode P1 ... p electrode IL ... intermediate layer DESCRIPTION OF SYMBOLS 1000 ... Film-forming apparatus 1100 ... Chamber 1200 ... Susceptor 1300 ... Heater 1400 ... Target arrangement | positioning part 1500 ... Target 1600 ... Voltage application part

Claims (15)

  1. 基板と、
    前記基板の上のバッファ層と、
    を有する薄膜基板において、
     前記基板は、立方晶基板であり、
     前記バッファ層は、六方晶であり、
     前記バッファ層のc軸は、50%以上の割合で第1の方向を向いており、
     前記第1の方向は、
      前記基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜していること
    を特徴とする薄膜基板。
    A substrate,
    A buffer layer on the substrate;
    In a thin film substrate having
    The substrate is a cubic substrate;
    The buffer layer is hexagonal;
    The c-axis of the buffer layer faces the first direction at a rate of 50% or more,
    The first direction is:
    A thin film substrate, which is inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate.
  2. 請求項1に記載の薄膜基板において、
     前記立方晶基板は、
      Si(001)基板であり、
     前記第1の方向は、
      前記基板の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲内にあること
    を特徴とする薄膜基板。
    The thin film substrate according to claim 1,
    The cubic substrate is
    Si (001) substrate,
    The first direction is:
    A thin-film substrate having an in-plane rotation direction of 30 ° or less with respect to the [110] direction of the plate surface of the substrate or a direction equivalent to the [110] direction.
  3. 請求項1または請求項2に記載の薄膜基板において、
     前記バッファ層は、
      AlGaInN層(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)であること
    を特徴とする薄膜基板。
    The thin film substrate according to claim 1 or 2,
    The buffer layer is
    A thin film substrate comprising an Al X Ga Y In Z N layer (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1).
  4. 請求項1から請求項3までのいずれか1項に記載の薄膜基板において、
     前記バッファ層の上の中間層を有し、
     前記中間層は、六方晶であること
    を特徴とする薄膜基板。
    In the thin film substrate according to any one of claims 1 to 3,
    Having an intermediate layer above the buffer layer;
    The intermediate layer is a hexagonal crystal substrate.
  5. 請求項4に記載の薄膜基板において、
     前記中間層は、超格子層を有すること
    を特徴とする薄膜基板。
    The thin film substrate according to claim 4,
    The intermediate layer includes a superlattice layer.
  6. 基板と、
    前記基板の上のバッファ層と、
    前記バッファ層の上のIII 族窒化物半導体層と、
    を有する半導体装置において、
     前記基板は、立方晶基板であり、
     前記バッファ層は、六方晶であり、
     前記バッファ層のc軸は、50%以上の割合で第1の方向を向いており、
     前記第1の方向は、
      前記基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜しており、
     前記III 族窒化物半導体層のc軸は、
      前記基板の板面に垂直な方向および面内方向の両方について、前記第1の方向に対して0°以上5°以下の範囲内で傾斜していること
    を特徴とする半導体装置。
    A substrate,
    A buffer layer on the substrate;
    A group III nitride semiconductor layer on the buffer layer;
    In a semiconductor device having
    The substrate is a cubic substrate;
    The buffer layer is hexagonal;
    The c-axis of the buffer layer faces the first direction at a rate of 50% or more,
    The first direction is:
    Inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate,
    The c-axis of the group III nitride semiconductor layer is
    The semiconductor device, wherein both the direction perpendicular to the plate surface of the substrate and the in-plane direction are inclined within a range of 0 ° to 5 ° with respect to the first direction.
  7. 請求項6に記載の半導体装置において、
     前記立方晶基板は、
      Si(001)基板であり、
     前記第1の方向は、
      前記基板の板面の[110]方向または[110]方向と等価な方向に対して面内回転方向で30°以下の範囲内にあること
    を特徴とする半導体装置。
    The semiconductor device according to claim 6.
    The cubic substrate is
    Si (001) substrate,
    The first direction is:
    A semiconductor device characterized in that it is within a range of 30 ° or less in the in-plane rotation direction with respect to the [110] direction or the direction equivalent to the [110] direction of the plate surface of the substrate.
  8. 請求項6または請求項7に記載の半導体装置において、
     前記バッファ層は、
      AlGaInN層(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)であること
    を特徴とする半導体装置。
    The semiconductor device according to claim 6 or 7,
    The buffer layer is
    A semiconductor device characterized by being an Al X Ga Y In Z N layer (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1).
  9. 請求項6から請求項8までのいずれか1項に記載の半導体装置において、
     前記バッファ層と前記III 族窒化物半導体層との間に中間層を有し、
     前記中間層は、六方晶であること
    を特徴とする半導体装置。
    The semiconductor device according to any one of claims 6 to 8,
    Having an intermediate layer between the buffer layer and the group III nitride semiconductor layer;
    The semiconductor device, wherein the intermediate layer is a hexagonal crystal.
  10. 請求項9に記載の半導体装置において、
     前記中間層は、超格子層を有すること
    を特徴とする半導体装置。
    The semiconductor device according to claim 9.
    The semiconductor device, wherein the intermediate layer has a superlattice layer.
  11. 基板と、
    前記基板の上のバッファ層と、
    前記バッファ層の上のIII 族窒化物半導体層と、
    を有するGaNテンプレートにおいて、
     前記基板は、立方晶基板であり、
     前記バッファ層は、六方晶であり、
     前記バッファ層のc軸は、50%以上の割合で第1の方向を向いており、
     前記第1の方向は、
      前記基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜しており、
     前記III 族窒化物半導体層のc軸は、
      前記基板の板面に垂直な方向および面内方向の両方について、前記第1の方向に対して0°以上5°以下の範囲内で傾斜していること
    を特徴とするGaNテンプレート。
    A substrate,
    A buffer layer on the substrate;
    A group III nitride semiconductor layer on the buffer layer;
    In a GaN template having
    The substrate is a cubic substrate;
    The buffer layer is hexagonal;
    The c-axis of the buffer layer faces the first direction at a rate of 50% or more,
    The first direction is:
    Inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate,
    The c-axis of the group III nitride semiconductor layer is
    A GaN template, wherein both the direction perpendicular to the plate surface of the substrate and the in-plane direction are inclined with respect to the first direction within a range of 0 ° to 5 °.
  12. 薄膜基板の製造方法において、
     立方晶基板をチャンバーの内部に配置し、
     前記立方晶基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜させた位置にターゲットを配置し、
     前記立方晶基板と前記ターゲットとの間の相対的位置関係を保持した状態で、スパッタリングにより前記立方晶基板の上に六方晶のバッファ層を形成すること
    を特徴とする薄膜基板の製造方法。
    In the method of manufacturing a thin film substrate,
    Place the cubic substrate inside the chamber,
    A target is disposed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the cubic substrate,
    A method of manufacturing a thin film substrate, comprising forming a hexagonal buffer layer on the cubic substrate by sputtering while maintaining a relative positional relationship between the cubic substrate and the target.
  13. 半導体装置の製造方法において、
     立方晶基板をチャンバーの内部に配置し、
     前記立方晶基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜させた位置にターゲットを配置し、
     前記立方晶基板と前記ターゲットとの間の相対的位置関係を保持した状態で、スパッタリングにより前記立方晶基板の上に六方晶のバッファ層を形成し、
     前記バッファ層の上にIII 族窒化物半導体層を成長させること
    を特徴とする半導体装置の製造方法。
    In a method for manufacturing a semiconductor device,
    Place the cubic substrate inside the chamber,
    A target is disposed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the cubic substrate,
    In a state where the relative positional relationship between the cubic substrate and the target is maintained, a hexagonal buffer layer is formed on the cubic substrate by sputtering,
    A method of manufacturing a semiconductor device, comprising growing a group III nitride semiconductor layer on the buffer layer.
  14. 基板の上に薄膜を成膜する成膜方法において、
     立方晶基板をチャンバーの内部に配置し、
     前記立方晶基板の板面に垂直な方向に対して10°以上60°以下の範囲内で傾斜させた位置にターゲットを配置し、
     前記立方晶基板と前記ターゲットとの間の相対的位置関係を保持した状態で、スパッタリングにより前記立方晶基板の上に六方晶のバッファ層を形成すること
    を特徴とする成膜方法。
    In a film forming method for forming a thin film on a substrate,
    Place the cubic substrate inside the chamber,
    A target is disposed at a position inclined within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the cubic substrate,
    A film forming method, wherein a hexagonal buffer layer is formed on a cubic substrate by sputtering while maintaining a relative positional relationship between the cubic substrate and the target.
  15. 基板を支持するための基板支持部と、
    前記基板支持部を収容するチャンバーと、
    前記基板の板面に垂直な方向に対して10°以上60°以下の範囲内で相対的に可変となるように傾斜させた位置に配置されたターゲット配置部と、
    を有すること
    を特徴とする成膜装置。
    A substrate support for supporting the substrate;
    A chamber for housing the substrate support;
    A target placement portion disposed at a position inclined so as to be relatively variable within a range of 10 ° to 60 ° with respect to a direction perpendicular to the plate surface of the substrate;
    A film forming apparatus comprising:
PCT/JP2016/000895 2015-02-20 2016-02-19 THIN-FILM SUBSTRATE, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR, DEPOSITION APPARATUS, DEPOSITION METHOD AND GaN TEMPLATE WO2016132746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017500529A JP6736005B2 (en) 2015-02-20 2016-02-19 Thin film substrate, semiconductor device, and GaN template

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015031708 2015-02-20
JP2015-031708 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016132746A1 true WO2016132746A1 (en) 2016-08-25

Family

ID=56688930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000895 WO2016132746A1 (en) 2015-02-20 2016-02-19 THIN-FILM SUBSTRATE, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR, DEPOSITION APPARATUS, DEPOSITION METHOD AND GaN TEMPLATE

Country Status (2)

Country Link
JP (1) JP6736005B2 (en)
WO (1) WO2016132746A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123763A1 (en) * 2017-12-19 2019-06-27 株式会社Sumco Method for producing group iii nitride semiconductor substrate
WO2019225112A1 (en) * 2018-05-23 2019-11-28 株式会社Sumco Group iii nitride semiconductor substrate and method of producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246646A (en) * 2000-12-15 2002-08-30 Nobuhiko Sawaki Semiconductor device and its manufacturing method, and method for manufacturing semiconductor substrate
JP2007287771A (en) * 2006-04-13 2007-11-01 Fujifilm Corp Heteroepitaxial film substrate and device
JP2008305977A (en) * 2007-06-07 2008-12-18 Univ Nagoya Nitride semiconductor structure and its manufacturing method
WO2012107214A1 (en) * 2011-02-10 2012-08-16 Otto-Von Guericke-Universität Magdeburg Technologie-Transfer-Zentrum Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon
WO2013145404A1 (en) * 2012-03-28 2013-10-03 株式会社豊田中央研究所 Laminated substate of silicon single crystal and group iii nitride single crystal with off angle
WO2013154485A1 (en) * 2012-04-13 2013-10-17 Sun Yanting A method for manufacturing a semiconductor method device based on epitaxial growth.
WO2014054284A1 (en) * 2012-10-05 2014-04-10 パナソニック株式会社 Nitride semiconductor structure, laminate structure, and nitride semiconductor light-emitting element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246646A (en) * 2000-12-15 2002-08-30 Nobuhiko Sawaki Semiconductor device and its manufacturing method, and method for manufacturing semiconductor substrate
JP2007287771A (en) * 2006-04-13 2007-11-01 Fujifilm Corp Heteroepitaxial film substrate and device
JP2008305977A (en) * 2007-06-07 2008-12-18 Univ Nagoya Nitride semiconductor structure and its manufacturing method
WO2012107214A1 (en) * 2011-02-10 2012-08-16 Otto-Von Guericke-Universität Magdeburg Technologie-Transfer-Zentrum Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon
WO2013145404A1 (en) * 2012-03-28 2013-10-03 株式会社豊田中央研究所 Laminated substate of silicon single crystal and group iii nitride single crystal with off angle
WO2013154485A1 (en) * 2012-04-13 2013-10-17 Sun Yanting A method for manufacturing a semiconductor method device based on epitaxial growth.
WO2014054284A1 (en) * 2012-10-05 2014-04-10 パナソニック株式会社 Nitride semiconductor structure, laminate structure, and nitride semiconductor light-emitting element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102374879B1 (en) * 2017-12-19 2022-03-15 가부시키가이샤 사무코 Method for manufacturing a group III nitride semiconductor substrate
KR20200069377A (en) * 2017-12-19 2020-06-16 가부시키가이샤 사무코 Method for manufacturing a group III nitride semiconductor substrate
CN111527587A (en) * 2017-12-19 2020-08-11 胜高股份有限公司 Method for producing group III nitride semiconductor substrate
JPWO2019123763A1 (en) * 2017-12-19 2020-12-17 株式会社Sumco Method for manufacturing group III nitride semiconductor substrate
WO2019123763A1 (en) * 2017-12-19 2019-06-27 株式会社Sumco Method for producing group iii nitride semiconductor substrate
CN111527587B (en) * 2017-12-19 2023-11-21 胜高股份有限公司 Method for producing group III nitride semiconductor substrate
WO2019225112A1 (en) * 2018-05-23 2019-11-28 株式会社Sumco Group iii nitride semiconductor substrate and method of producing same
KR20210003229A (en) * 2018-05-23 2021-01-11 가부시키가이샤 사무코 Group III nitride semiconductor substrate and manufacturing method thereof
CN112470260A (en) * 2018-05-23 2021-03-09 胜高股份有限公司 Group III nitride semiconductor substrate and method for producing same
JPWO2019225112A1 (en) * 2018-05-23 2021-05-27 株式会社Sumco Group III nitride semiconductor substrate and its manufacturing method
US20210210340A1 (en) * 2018-05-23 2021-07-08 Sumco Corporation Group iii nitride semiconductor substrate and manufacturing method thereof
KR102513206B1 (en) * 2018-05-23 2023-03-23 가부시키가이샤 사무코 Manufacturing method of group III nitride semiconductor substrate
CN112470260B (en) * 2018-05-23 2024-05-14 胜高股份有限公司 Group III nitride semiconductor substrate and method for manufacturing same

Also Published As

Publication number Publication date
JP6736005B2 (en) 2020-08-05
JPWO2016132746A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP4740903B2 (en) Nitride single crystal growth method on silicon substrate, nitride semiconductor light emitting device using the same, and manufacturing method thereof
JP5456783B2 (en) Epitaxial substrate for semiconductor element, method for manufacturing epitaxial substrate for semiconductor element, and semiconductor element
US7811902B2 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
JP2008034834A6 (en) Nitride single crystal growth method on silicon substrate, nitride semiconductor light emitting device using the same, and manufacturing method thereof
US20070210304A1 (en) Nitride semiconductor single crystal film
KR100674829B1 (en) Nitride based semiconductor device and method for manufacturing the same
TWI404122B (en) Method for enhancing growth of semi-polar (a1,in,ga,b)n via metalorganic chemical vapor deposition
WO2010023846A1 (en) Semiconductor substrate and method for manufacturing the same
CN104518062B (en) The method for manufacturing light emitting semiconductor device
WO2013061572A1 (en) Film formation method, vacuum treatment device, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and illumination device
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
Jinno et al. Characterization and optimization of sputtered AlN buffer layer on r-plane sapphire substrate to improve the crystalline quality of nonpolar a-plane GaN
JP6143145B2 (en) Method for producing β-Ga2O3 single crystal layer, sapphire substrate with β-Ga2O3 single crystal layer, β-Ga2O3 free-standing single crystal and method for producing the same
WO2016132746A1 (en) THIN-FILM SUBSTRATE, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR, DEPOSITION APPARATUS, DEPOSITION METHOD AND GaN TEMPLATE
JP7013070B2 (en) III-N material grown on an ErAIN buffer on a silicon substrate
JP2009143778A (en) Method for growing aluminum nitride crystal, aluminum nitride substrate and semiconductor device
JP2004296701A (en) Epitaxial substrate, semiconductor device and method for growing crystal for nitride-based semiconductor
JP2023096845A (en) Template for producing nitride semiconductor film and method for manufacturing the same
JP6527667B2 (en) Method of manufacturing nitride semiconductor substrate
JP2004335635A (en) Nitride semiconductor thin film device employing slightly-tilted substrate, and manufacturing method thereof
KR20050058954A (en) A method of manfacturing gan epitaxial layer using zno buffer layer
JP6306331B2 (en) Method of growing nitride semiconductor layer and method of manufacturing nitride semiconductor device
TW201337050A (en) A novel non-polar plane of wurtzite structure material
JP2011140428A (en) Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate
JP2009208989A (en) Compound semiconductor substrate and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752135

Country of ref document: EP

Kind code of ref document: A1