JP2004335635A - Nitride semiconductor thin film device employing slightly-tilted substrate, and manufacturing method thereof - Google Patents
Nitride semiconductor thin film device employing slightly-tilted substrate, and manufacturing method thereof Download PDFInfo
- Publication number
- JP2004335635A JP2004335635A JP2003127842A JP2003127842A JP2004335635A JP 2004335635 A JP2004335635 A JP 2004335635A JP 2003127842 A JP2003127842 A JP 2003127842A JP 2003127842 A JP2003127842 A JP 2003127842A JP 2004335635 A JP2004335635 A JP 2004335635A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- nitride semiconductor
- angle
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Recrystallisation Techniques (AREA)
- Led Devices (AREA)
- Junction Field-Effect Transistors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、微傾斜基板を使用した窒化物半導体素子及びその製造方法、これらの応用に関する。
【0002】
【従来の技術】
現在、サファイヤ基板を用い、その上に窒化物半導体薄膜及びそれをベースにしたデバイスの作製するのが主流である。しかし、窒化物半導体とサファイヤ基板の格子常数の差は大きく、約16%である。そのため、窒化物半導体の結晶成長が難しく、デバイス応用の要求に満足する高品質な結晶が得られない。特に、他のIII−V族半導体(例えば、GaAsやInP材料系)の結晶成長によく使われている分子線ビームエピタキシー(MBE)法により成長された窒化物半導体薄膜がデバイス応用に満たす品質になっていない。
【0003】
図9は通常のジャストサファイヤ(0001)基板にMBE法により薄膜を成長させた薄膜表面のAFM写真(5×5μm)を示す。図9(a)はジャストサファイヤ(0001)基板の上にAlN(窒化アルミニウム)薄膜を成長させた場合の表面、図9(b)は更にその上にGaN(窒化ガリウム)薄膜を成長させた場合の表面である。AlN薄膜の表面が不規則的なステップが存在し、スパイラル的な成長を示している(図9(a))のが分かる。更にその上に成長させたGaN薄膜表面は多数のグレン(grain,小丘)が存在するが、ステップは観察されない(図9(b))。
【0004】
このように、薄膜中に転位密度が高く(約1010/cm2)、凹凸な表面に多数のグレンが存在する。それらの欠点がデバイスヘテロ構造の作製に大きな支障を生ずることは明らかである。例えば、AlGaN/GaNヘテロ構造やInGaN/(Al,Ga)N量子井戸構造を作製の時に界面の凹凸が作製された構造の特性に大きな悪影響を与える。また、多数のグレン構造等における高密度の転位が電子のトラップ中心になり、デバイスキャリアの高移動度の実現を阻害する。
【0005】
【発明が解決しようとする課題】
上記のような、従来の結晶成長技術が窒化物半導体及びそのヘテロ構造の作製に際し非常に不利な面があるが、これは従来の基板扱いに大きな問題があり、MBE成長方法だけでは克服できない課題である。この課題を解決するために、基板の選択により成長された窒化物半導体の超平坦な表面実現及び転位密度の低減方法が求められる。MBE法による超平坦な窒化物半導体膜表面を実現するため、新たな技術及びアイデアを導入しなければならない。
【0006】
【課題を解決するための手段】
上記課題を解決するために、単原子層線状ステップを形成するオフ角傾斜基板を用い、分子線エピタキシー法により複数の窒化半導体膜を原子スケールで平坦な膜を作製した窒化物半導体素子及びその製法を提供する。
さらに、窒化物半導体素子は光デバイス又は電子デバイス素子及びその製造方法に適用できる。
【0007】
【発明の実施の形態】
(実施例1)
図1は本発明の製造方法により作製された超平坦表面を有する窒化物半導体(断面)の概略図を示す。図中、1は微傾斜基板、2はAlN薄膜(バッファ層或はエピ層)、3はGaN薄膜を、αは微傾斜基板のオフ角を表す。微傾斜基板1の表面は(0001)を使用する。微傾斜基板材はサファイヤ(Al2O3)である。
【0008】
実験例ではサファイヤ(0001)基板で、基板傾斜のオフ角度が0.25°〜2°の微傾斜基板の上に、RF−MBE法(プラズマ源と蒸発源を用いたMBE法)より薄膜成長させその表面平坦性を観察した。
【0009】
膜成長方法として、先ず、MBEチャンバー中で窒素プラズマによるサファイヤ基板の窒化を行う。その時に基板温度が250℃で、窒化時間が2時間以内とする。プラズマのパワーが350ワットで、窒素流量が3ccmとする。窒化終了後、基板温度を700℃まで上げ、Nプラズマと共にAlフラックスを基板に供給して、基板上にバッファ層としてAlN(窒化アルミニウム)薄膜を作製、次いで、Nプラズマと共にGaフラックスを基板に供給して、そのAlN薄膜上にGaN(窒化ガリウム)薄膜を成長させる。AlN薄膜とGaN薄膜の成長速度がそれぞれ約0.4μm/hrと0.6μm/hrである。
【0010】
成長温度を700℃に設定し、窒化されている微傾斜サファイヤ基板上に1時間AlNエピタキシャル層を成長させると、その厚みは約400 nmになる。AlN薄膜は成長の初期から終了まで二次元的な成長を示し、実時間観察によると、RHEEDパターンがずっとストリークパターン(streak pattern)を示すことから分かる。成長されたAlN薄膜の表面はAFM(原子間力顕微鏡)により評価される。
【0011】
図2〜図4は、上記成長方法により得られたAlN薄膜表面のAFM写真を示す。図2(a)はオフ角度0.25°基板、(b)オフ角度0.3°基板、図3はオフ角度0.5°基板、図4(a)はオフ角度1.0°基板、図4(b)はオフ角度2.0°基板の上に成長したAlN薄膜表面である。
【0012】
オフ角0.25°,0.3°微傾斜サファイヤ基板の場合には(図2(a),(b))、均一な線状なステップが観察されるが、一部にスパイラル状ステップが観測される。これらのステップの高さが単原子層である。オフ角度0.5°の微傾斜基板では線状ステップの木目が細かく線状のものが観測されるが、スパイラル状のステップが殆ど観測されない(図3)。オフ角度が1°,2°の微傾斜基板の場合には(図3(a),(b))単原子層と多原子層のステップが混在し、マクロステップ(巨大ステップ)表面になっている。
【0013】
次に、成長温度を700℃にセットし、上記成長したAlN薄膜の上に1時間GaNエピタキシャル層を成長させると、その厚みは約600 nmになる。GaN薄膜が成長の初期から終了まで二次元的な成長を示し、実時間観察によると、RHEEDパターンはずっとストリークパターンを示すことから分かる。成長されたGaN薄膜の表面はAFMにより評価される。
【0014】
図5〜図6は、上記成長方法により得られたAlN薄膜表面のAFM写真を示す。図5(a)はオフ角度0.25°基板、図5(b)はオフ角度0.3°基板、図5(c)はオフ角度0.5度基板、図6(a)はオフ角度1.0°基板、図6(b)はオフ角度2.0°基板の上に成長したAlN薄膜表面である。
【0015】
オフ角度0.25°,0.3°の微傾斜基板の場合には、ステップの高さが単原子層の均一な線状ステップが、所々スパイラル状ステップが観察される(図5(a),(b))。オフ角度0.5°の微傾斜基板の場合には、線状ステップの木目が細かく線状のものが観測されるが、スパイラル状のステップが観測されない(図5(c))。オフ角度が1°,2°の微傾斜基板の場合には単原子層と多原子層のステップが混在し、マクロステップ表面になる(図6(a),(b))。
【0016】
以上の結果により、AlN薄膜及びGaN薄膜の表面に単原子層高さの均一な線状ステップを得るには微傾斜角度が0.5°以下であることが必要条件であり、マクロステップ表面になるには微傾斜角度が0.5°より大きいことであることが必要条件になる。
【0017】
実施例1ではAlN薄膜の上にGaN薄膜を成長させたが、GaN薄膜を直接傾斜基板の上に成長させても良いのは勿論である。また、実施例1では微傾斜基板にシリコンカーバイド、ZnO、シリコンを使用し、窒化半導体薄膜材料としInが含まれる窒化半導体(例えばInGaN,InAlN)を使用しても良い。
また、この場合に上記の半導体薄膜素子はMBE成長法以外に他のエピタキシー、例えばMOCVD(Metalorganic chemical vapor deposit)法を使用しても良い。
【0018】
半導体薄膜の表面を利用して、以下のような半導体構造が作製できる。
(実施例2)
よく配列したAlN薄膜のステップエッジにS−K(Stranski−Krastanov)成長モードを利用してGaNの量子ドットが作製できるので、それによりステップエッジに沿った1次元的に配列した量子ドットが作製できる(図7参照)。
【0019】
(実施例3)
表面に単原子層ステップがあるGaNエピタキシャル層を利用し、その表面の上に(In,Ga,Al)N/(Al,Ga)N量子井戸を作製し、高性能な光デバイス(発光ダイオード、レーザダイオード等)が作製できる。
【0020】
(実施例4)
表面に単原子層ステップがあるGaNエピタキシャル層を利用し、その表面の上にGaN/(Al,Ga)N量子井戸を作製し、サブインターバンド間遷移を利用した通信用デバイスが作製できる。
【0021】
(実施例5)
表面に単原子層ステップがあるGaNエピタキシャル層を利用し、その表面の上に(Al, Ga)N/GaNヘテロ構造を作製し、高い二次元電子ガス移動度が期待できる。それにより、高周波、高出力電子デバイスが作製できる。
【0022】
(実施例6)
図8は傾斜基板で線状なマクロステップを有するAlN膜上にGaN/(Al,Ga)N超格子を作製し、マクロステップのエッジに沿ったGaN量子細線の形成ができる。それによって量子閉じ込め効果を有する量子細線を利用する窒化物半導体デバイス素子の応用が期待できる。
【0023】
【発明の効果】
非常に単純な基板微傾斜角度の制御で、応用目的に合った表面ホモロジーを得ることが簡単にできる。
【図面の簡単な説明】
【図1】本発明の方法によって作製された半導体構造の概略図である。
【図2】傾斜基板上に成長したAlN薄膜表面のAFM写真(その1)である。
【図3】傾斜基板上に成長したAlN薄膜表面のAFM写真(その2)である。
【図4】傾斜基板上に成長したAlN薄膜表面のAFM写真(その3)である。
【図5】図2のAlN薄膜上に成長したGaN薄膜表面のAFM写真(その1)である。
【図6】図3,図4のAlN薄膜上に成長したGaN薄膜表面のAFM写真(その2)である。
【図7】ステップエッジに沿って作製された一次元的配列量子ドットを示す。
【図8】マクロステップに沿って作製されたGaN量子細線を示す。
【図9】Just基板上に成長したAlN薄膜表面、及びAIN膜上に成長したGaN薄膜表面のAFM写真である。
【符号の説明】
1 微傾斜基板
2 窒化半導体膜(バッファ層)
3 窒化半導体膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nitride semiconductor device using a vicinal substrate, a method for manufacturing the same, and applications thereof.
[0002]
[Prior art]
At present, the mainstream is to use a sapphire substrate and form thereon a nitride semiconductor thin film and a device based thereon. However, the difference between the lattice constants of the nitride semiconductor and the sapphire substrate is large, about 16%. Therefore, crystal growth of a nitride semiconductor is difficult, and a high-quality crystal satisfying the requirements of device application cannot be obtained. In particular, a nitride semiconductor thin film grown by molecular beam epitaxy (MBE), which is often used for crystal growth of other III-V semiconductors (for example, GaAs or InP materials), has a quality suitable for device application. is not.
[0003]
FIG. 9 shows an AFM photograph (5 × 5 μm) of a thin film surface obtained by growing a thin film on a normal Just Sapphire (0001) substrate by MBE. FIG. 9A shows the surface when an AlN (aluminum nitride) thin film is grown on a just sapphire (0001) substrate, and FIG. 9B shows the case where a GaN (gallium nitride) thin film is further grown thereon. Surface. It can be seen that there are irregular steps on the surface of the AlN thin film, indicating a spiral growth (FIG. 9A). Further, the surface of the GaN thin film grown thereon has many grains, but no steps are observed (FIG. 9B).
[0004]
As described above, the dislocation density is high (about 10 10 / cm 2 ) in the thin film, and many grains exist on the uneven surface. Obviously, these drawbacks cause a great hindrance to the fabrication of device heterostructures. For example, when fabricating an AlGaN / GaN heterostructure or an InGaN / (Al, Ga) N quantum well structure, the unevenness of the interface has a significant adverse effect on the characteristics of the fabricated structure. In addition, high-density dislocations in a large number of Glen structures and the like become the centers of electron traps and hinder realization of high mobility of device carriers.
[0005]
[Problems to be solved by the invention]
As described above, the conventional crystal growth technique has a very disadvantageous aspect in producing a nitride semiconductor and a heterostructure thereof, but this has a serious problem in handling a conventional substrate and cannot be overcome only by the MBE growth method. It is. In order to solve this problem, there is a need for a method for realizing an ultra-flat surface of a nitride semiconductor grown by selecting a substrate and reducing the dislocation density. In order to realize an ultra-flat nitride semiconductor film surface by the MBE method, new technologies and ideas must be introduced.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a nitride semiconductor device in which a plurality of nitride semiconductor films are formed into a flat film on an atomic scale by a molecular beam epitaxy method using an off-angle inclined substrate forming a monoatomic layer linear step, and Provide a recipe.
Further, the nitride semiconductor device can be applied to an optical device or an electronic device device and a method of manufacturing the same.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
FIG. 1 is a schematic view of a nitride semiconductor (cross section) having an ultra-flat surface manufactured by the manufacturing method of the present invention. In the figure, 1 is a vicinal substrate, 2 is an AlN thin film (buffer layer or epilayer), 3 is a GaN thin film, and α is the off angle of the vicinal substrate. The surface of the
[0008]
In the experimental example, a thin film is grown on a sapphire (0001) substrate with a tilt angle of 0.25 ° to 2 ° by a RF-MBE method (an MBE method using a plasma source and an evaporation source) on a slightly tilted substrate. The surface flatness was observed.
[0009]
As a film growth method, first, a sapphire substrate is nitrided by nitrogen plasma in an MBE chamber. At that time, the substrate temperature is 250 ° C. and the nitriding time is within 2 hours. The plasma power is 350 watts and the nitrogen flow rate is 3 ccm. After nitriding, the substrate temperature is raised to 700 ° C., and Al flux is supplied to the substrate together with N plasma to form an AlN (aluminum nitride) thin film as a buffer layer on the substrate, and then Ga flux is supplied to the substrate together with N plasma. Then, a GaN (gallium nitride) thin film is grown on the AlN thin film. The growth rates of the AlN thin film and the GaN thin film are about 0.4 μm / hr and 0.6 μm / hr, respectively.
[0010]
When the growth temperature is set to 700 ° C. and the AlN epitaxial layer is grown for 1 hour on the nitrided vicinal sapphire substrate, the thickness becomes about 400 nm. The AlN thin film shows two-dimensional growth from the beginning to the end of growth, and it can be seen from real-time observation that the RHEED pattern shows a streak pattern all the time. The surface of the grown AlN thin film is evaluated by AFM (atomic force microscope).
[0011]
2 to 4 show AFM photographs of the surface of the AlN thin film obtained by the above growth method. 2 (a) is an off-angle 0.25 ° substrate, (b) is an off-angle 0.3 ° substrate, FIG. 3 is an off-angle 0.5 ° substrate, FIG. 4 (a) is an off-angle 1.0 ° substrate, FIG. 4B shows the surface of the AlN thin film grown on the substrate having an off angle of 2.0 °.
[0012]
In the case of the sapphire substrate having a slightly inclined off angle of 0.25 ° or 0.3 ° (FIGS. 2A and 2B), uniform linear steps are observed, but spiral steps are partially formed. Observed. The height of these steps is a monoatomic layer. In the case of the slightly inclined substrate having an off angle of 0.5 °, a fine grain of a linear step is observed, but almost no spiral step is observed (FIG. 3). In the case of a vicinal substrate having an off angle of 1 ° or 2 ° (FIGS. 3 (a) and 3 (b)), monoatomic layer and polyatomic layer steps are mixed to form a macrostep (giant step) surface. I have.
[0013]
Next, when the growth temperature is set to 700 ° C. and a GaN epitaxial layer is grown on the grown AlN thin film for 1 hour, the thickness becomes about 600 nm. The GaN thin film shows two-dimensional growth from the beginning to the end of growth, and it can be seen from the real-time observation that the RHEED pattern shows a streak pattern all the time. The surface of the grown GaN thin film is evaluated by AFM.
[0014]
5 and 6 show AFM photographs of the surface of the AlN thin film obtained by the above-mentioned growth method. 5A shows an off-angle substrate of 0.25 °, FIG. 5B shows an off-angle substrate of 0.3 °, FIG. 5C shows an off-angle substrate of 0.5 °, and FIG. FIG. 6B shows the surface of an AlN thin film grown on a 1.0 ° substrate and a 2.0 ° off-angle substrate.
[0015]
In the case of the vicinal substrate having the off angles of 0.25 ° and 0.3 °, uniform linear steps having a step height of a monoatomic layer and spiral steps are sometimes observed (FIG. 5A). , (B)). In the case of a slightly inclined substrate having an off angle of 0.5 °, a fine grain of a linear step is observed, but a spiral step is not observed (FIG. 5C). In the case of a vicinal substrate having an off angle of 1 ° or 2 °, a step of a monoatomic layer and a step of a polyatomic layer coexist to form a macrostep surface (FIGS. 6A and 6B).
[0016]
From the above results, in order to obtain a linear step with a monoatomic layer height on the surface of the AlN thin film and the GaN thin film, it is a necessary condition that the fine inclination angle is 0.5 ° or less. In order to achieve this, it is necessary that the slight inclination angle be larger than 0.5 °.
[0017]
In the first embodiment, the GaN thin film is grown on the AlN thin film. However, it goes without saying that the GaN thin film may be grown directly on the inclined substrate. In the first embodiment, silicon carbide, ZnO, or silicon may be used for the vicinal substrate, and a nitride semiconductor containing In (for example, InGaN or InAlN) may be used as a nitride semiconductor thin film material.
In this case, the semiconductor thin film element may use other epitaxy other than the MBE growth method, for example, a MOCVD (Metalorganic chemical vapor deposition) method.
[0018]
The following semiconductor structure can be manufactured using the surface of the semiconductor thin film.
(Example 2)
Since GaN (Quantum dots) can be produced using the SK (Transki-Krastanov) growth mode at the step edges of well-arranged AlN thin films, quantum dots arranged one-dimensionally along the step edges can be produced. (See FIG. 7).
[0019]
(Example 3)
Utilizing a GaN epitaxial layer having a monoatomic layer step on the surface, (In, Ga, Al) N / (Al, Ga) N quantum wells are formed on the surface, and a high-performance optical device (light emitting diode, Laser diode).
[0020]
(Example 4)
A GaN epitaxial layer having a monoatomic layer step on the surface is used, a GaN / (Al, Ga) N quantum well is formed on the surface, and a communication device using a transition between subinterbands can be manufactured.
[0021]
(Example 5)
By using a GaN epitaxial layer having a monoatomic layer step on the surface and forming an (Al, Ga) N / GaN heterostructure on the surface, high two-dimensional electron gas mobility can be expected. Thereby, a high-frequency, high-output electronic device can be manufactured.
[0022]
(Example 6)
FIG. 8 shows that a GaN / (Al, Ga) N superlattice is formed on an AlN film having linear macrosteps on an inclined substrate, and GaN quantum wires can be formed along the edges of the macrosteps. Thus, application of a nitride semiconductor device using a quantum wire having a quantum confinement effect can be expected.
[0023]
【The invention's effect】
With very simple control of the substrate tilt angle, it is easy to obtain a surface homology suitable for the purpose of application.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a semiconductor structure produced by the method of the present invention.
FIG. 2 is an AFM photograph (No. 1) of the surface of an AlN thin film grown on an inclined substrate.
FIG. 3 is an AFM photograph (No. 2) of the surface of an AlN thin film grown on an inclined substrate.
FIG. 4 is an AFM photograph (No. 3) of the surface of an AlN thin film grown on an inclined substrate.
FIG. 5 is an AFM photograph (No. 1) of a GaN thin film surface grown on the AlN thin film of FIG. 2;
FIG. 6 is an AFM photograph (No. 2) of a GaN thin film surface grown on the AlN thin film of FIGS. 3 and 4;
FIG. 7 shows a one-dimensional array of quantum dots made along a step edge.
FIG. 8 shows a GaN quantum wire produced along a macrostep.
FIG. 9 is an AFM photograph of the surface of an AlN thin film grown on a Just substrate and the surface of a GaN thin film grown on an AIN film.
[Explanation of symbols]
1
3 Nitride semiconductor film
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003127842A JP2004335635A (en) | 2003-05-06 | 2003-05-06 | Nitride semiconductor thin film device employing slightly-tilted substrate, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003127842A JP2004335635A (en) | 2003-05-06 | 2003-05-06 | Nitride semiconductor thin film device employing slightly-tilted substrate, and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004335635A true JP2004335635A (en) | 2004-11-25 |
Family
ID=33504207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003127842A Pending JP2004335635A (en) | 2003-05-06 | 2003-05-06 | Nitride semiconductor thin film device employing slightly-tilted substrate, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004335635A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1724378A2 (en) | 2005-05-12 | 2006-11-22 | Ngk Insulators, Ltd. | Epitaxial substrate, semiconductor element, manufacturing method for epitaxial substrate and method for unevenly distributing dislocations in group III nitride crystal |
WO2009145370A1 (en) * | 2008-05-29 | 2009-12-03 | Industry-University Cooperation Foundation Hanyang University | Method for epitaxial growth |
KR101123352B1 (en) * | 2010-02-24 | 2012-03-23 | 한국해양대학교 산학협력단 | A method of growing non-polar nitrides thin films on off-angle Si substrate |
WO2016051935A1 (en) * | 2014-10-03 | 2016-04-07 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element and method for manufacturing same |
WO2017013729A1 (en) * | 2015-07-21 | 2017-01-26 | 創光科学株式会社 | Nitride semiconductor ultraviolet light-emitting element |
JP2019004178A (en) * | 2018-09-20 | 2019-01-10 | Dowaエレクトロニクス株式会社 | Group iii nitride semiconductor light-emitting element |
WO2020050159A1 (en) | 2018-09-03 | 2020-03-12 | 国立大学法人大阪大学 | Nitride semiconductor device and substrate thereof, method of forming rare earth element-added nitride layer, and red light emitting device and method of manufacturing same |
-
2003
- 2003-05-06 JP JP2003127842A patent/JP2004335635A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1724378A2 (en) | 2005-05-12 | 2006-11-22 | Ngk Insulators, Ltd. | Epitaxial substrate, semiconductor element, manufacturing method for epitaxial substrate and method for unevenly distributing dislocations in group III nitride crystal |
JP2006319107A (en) * | 2005-05-12 | 2006-11-24 | Ngk Insulators Ltd | Epitaxial substrate, manufacturing method thereof, semiconductor element, and method for dislocating and mal-distributing in group iii nitride crystal |
WO2009145370A1 (en) * | 2008-05-29 | 2009-12-03 | Industry-University Cooperation Foundation Hanyang University | Method for epitaxial growth |
KR101123352B1 (en) * | 2010-02-24 | 2012-03-23 | 한국해양대학교 산학협력단 | A method of growing non-polar nitrides thin films on off-angle Si substrate |
WO2016051935A1 (en) * | 2014-10-03 | 2016-04-07 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element and method for manufacturing same |
US10332975B2 (en) | 2014-10-03 | 2019-06-25 | Ngk Insulators, Ltd. | Epitaxial substrate for semiconductor device and method for manufacturing same |
JPWO2016051935A1 (en) * | 2014-10-03 | 2017-04-27 | 日本碍子株式会社 | Epitaxial substrate for semiconductor device and method of manufacturing the same |
JPWO2017013729A1 (en) * | 2015-07-21 | 2017-10-12 | 創光科学株式会社 | Nitride semiconductor ultraviolet light emitting device |
JP6194138B2 (en) * | 2015-07-21 | 2017-09-06 | 創光科学株式会社 | Nitride semiconductor ultraviolet light emitting device |
CN107636847A (en) * | 2015-07-21 | 2018-01-26 | 创光科学株式会社 | Nitride-based semiconductor ultraviolet ray emitting element |
EP3293774A4 (en) * | 2015-07-21 | 2018-08-08 | Soko Kagaku Co., Ltd. | Nitride semiconductor ultraviolet light-emitting element |
US10297715B2 (en) | 2015-07-21 | 2019-05-21 | Soko Kagaku Co., Ltd. | Nitride semiconductor ultraviolet light-emitting element |
WO2017013729A1 (en) * | 2015-07-21 | 2017-01-26 | 創光科学株式会社 | Nitride semiconductor ultraviolet light-emitting element |
CN107636847B (en) * | 2015-07-21 | 2020-07-28 | 创光科学株式会社 | Nitride semiconductor ultraviolet light emitting device |
TWI703741B (en) * | 2015-07-21 | 2020-09-01 | 日商創光科學股份有限公司 | Nitride semiconductor ultraviolet light emitting element and manufacturing method of nitride semiconductor ultraviolet light emitting element |
WO2020050159A1 (en) | 2018-09-03 | 2020-03-12 | 国立大学法人大阪大学 | Nitride semiconductor device and substrate thereof, method of forming rare earth element-added nitride layer, and red light emitting device and method of manufacturing same |
KR20210044255A (en) | 2018-09-03 | 2021-04-22 | 오사카 유니버시티 | A nitride semiconductor device and its substrate, a method for forming a nitride layer containing a rare earth element, and a red light emitting device and a method for manufacturing the same |
US12074254B2 (en) | 2018-09-03 | 2024-08-27 | Osaka University | Nitride semiconductor device and substrate thereof, method for forming rare earth element-added nitride layer, and red-light emitting device and method for manufacturing the same |
JP2019004178A (en) * | 2018-09-20 | 2019-01-10 | Dowaエレクトロニクス株式会社 | Group iii nitride semiconductor light-emitting element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5010908B2 (en) | Method for selective masking of III-N layer, method for manufacturing freestanding III-N layer or device, and product obtained by the method | |
JP4371202B2 (en) | Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device | |
JP4529846B2 (en) | III-V nitride semiconductor substrate and method for manufacturing the same | |
JP5638198B2 (en) | Laser diode orientation on miscut substrates | |
JP4581490B2 (en) | III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method | |
JP3821232B2 (en) | Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate | |
JP2017011278A (en) | NON-POLAR (Al, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE | |
JP4818464B2 (en) | Microstructure manufacturing method | |
JP2009132613A (en) | Group iii-v nitride semiconductor substrate and its manufacturing method, group iii-v nitride semiconductor device, and lot of group iii-v nitride semiconductor substrate | |
JP2004524250A (en) | Gallium nitride materials and methods | |
JP5253740B2 (en) | Method for producing group III nitride semiconductor fine columnar crystal and group III nitride structure | |
WO2002023604A1 (en) | Semiconductor base material and method of manufacturing the material | |
JP6966063B2 (en) | Crystal substrate, ultraviolet light emitting device and their manufacturing method | |
JP4883931B2 (en) | Manufacturing method of semiconductor laminated substrate | |
JP2007112633A (en) | Nitride semiconductor wafer and nitride semiconductor element | |
JPH11233391A (en) | Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device | |
EP2221854B1 (en) | Iii nitride structure and method for manufacturing iii nitride structure | |
KR100841269B1 (en) | Group ¥² nitride semiconductor multilayer structure | |
JP2005340747A (en) | Iii-v group nitride series semiconductor substrate and manufacturing method of the same, iii-v group nitride series semiconductor device, iii-v group nitride series semiconductor substrate lot | |
JP2009143778A (en) | Method for growing aluminum nitride crystal, aluminum nitride substrate and semiconductor device | |
JP2004335635A (en) | Nitride semiconductor thin film device employing slightly-tilted substrate, and manufacturing method thereof | |
JP3934320B2 (en) | GaN-based semiconductor device and manufacturing method thereof | |
JP7350477B2 (en) | Method for manufacturing semiconductor growth substrate, semiconductor element, semiconductor light emitting device, and semiconductor growth substrate | |
JP5814131B2 (en) | Structure and manufacturing method of semiconductor substrate | |
TWI255052B (en) | Method to produce a number of semiconductor-bodies and electronic semiconductor-bodies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081002 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081202 |