WO2016132554A1 - 光加工ヘッド、光加工装置およびその制御方法ならびに制御プログラム - Google Patents
光加工ヘッド、光加工装置およびその制御方法ならびに制御プログラム Download PDFInfo
- Publication number
- WO2016132554A1 WO2016132554A1 PCT/JP2015/054882 JP2015054882W WO2016132554A1 WO 2016132554 A1 WO2016132554 A1 WO 2016132554A1 JP 2015054882 W JP2015054882 W JP 2015054882W WO 2016132554 A1 WO2016132554 A1 WO 2016132554A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical element
- light
- processing head
- plano
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0665—Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0927—Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/40—Optical focusing aids
Definitions
- the present invention relates to an optical processing head, an optical processing apparatus, a control method thereof, and a control program.
- Patent Document 1 discloses a device that once collects and diverges a light beam inside the device and then collects the light again at a processing position.
- An object of the present invention is to provide a technique for solving the above-described problems.
- a first optical element that converts light emitted from the light source into first parallel light
- a second optical element disposed downstream of the first optical element and converting the first parallel light into first divergent light
- a third optical element that is disposed downstream of the second optical element and converts the first divergent light into second parallel light
- a fourth optical element that is disposed downstream of the third optical element and converts the second parallel light into convergent light that is condensed toward a processing surface.
- the optical processing head a light source, and an optical transmission unit that transmits light emitted from the light source to the optical processing head; It is provided with.
- a control method for controlling the optical machining head An input step of inputting a defocus value of the light on the processed surface; And a moving step of moving at least one of the second optical element and the third optical element along an optical axis according to the defocus value.
- An input step for inputting a defocus value of light on the processing surface A moving step of moving at least one of the second optical element and the third optical element along an optical axis according to a defocus value; Is executed by a computer.
- FIG. 1 is an extracted diagram of an optical system of the optical processing head 100. As shown in FIG. 1, the optical processing head 100 includes optical elements 101-104.
- the optical element 101 (first optical element) converts the emitted light 111 from the light source into parallel light 112 (first parallel light).
- the optical element 102 (second optical element) is disposed on the downstream side of the optical element 101, and converts the parallel light 112 into diverging light 113 (first diverging light).
- the optical element 103 (third optical element) is disposed on the downstream side of the optical element 102 and converts the divergent light 113 into parallel light 114 (second parallel light).
- the optical element 104 (fourth optical element) is arranged on the downstream side of the optical element 103, and converts the parallel light 114 into the convergent light 115 that is condensed toward the processing surface 120.
- optical processing performed using such an optical system examples include, but are not limited to, overlay welding and three-dimensional modeling.
- the relative arrangement of the optical elements 101 to 104 is not limited to the arrangement shown in FIG. 1, and can be arranged according to the type of optical element (combination of lenses, mirrors, etc.).
- the optical elements 101 to 104 may be lenses, diffractive elements, or mirrors, but are not limited thereto.
- the lens may be a plano-convex lens, a biconvex lens, an aspheric lens, or another lens.
- FIG. 2 is a diagram illustrating an internal configuration of the optical processing head 200.
- the optical processing head 200 includes a condensing optical system device 201, an observation device 202, and a nozzle 203.
- the light beam 205 guided from the light source (not shown) through the light transmission unit 210 to the optical processing head 200 from the incident end 212 passes through the optical processing head 200 and is emitted to the processing surface 260.
- the condensing optical system device 201 is also supplied with a processing material and a gas from a material supply device and a gas supply device (not shown) via a material supply unit 230 and a gas supply unit 240, and mixed with the processing gas.
- the material 250 is injected from the nozzle 203 to the processing surface 260.
- the observation device 202 is a device for observing the processing state by the condensing optical system device 201 from a viewpoint along the optical axis, and includes an imaging device 221 including an imaging element such as a CCD or a CMOS. Light from the processing surface 260 is guided to the imaging device 221 by a half-transparent mirror 222 provided inside the condensing optical system device 201.
- the machining accuracy can be improved by feedback-controlling the machining parameters according to the machining situation observed in this way.
- FIG. 3 is a diagram illustrating a lens configuration of the optical system 300 inside the optical processing head 200.
- the optical system 300 of the optical processing head 200 includes lenses 301 to 304 as optical elements.
- the lens has a smaller absorption loss and better energy efficiency than other types of optical elements. Further, by applying an antireflection film to the lens, the light reflection loss can be reduced to several percent or less, and the energy efficiency can be further improved. Furthermore, since the absorption loss is small, it is difficult to raise the temperature, and it is possible to prevent the thermal lens effect (deformation of the lens shape due to heat, the deterioration of lens characteristics due to the change of the refractive index) and the deterioration of the optical processing head 200 as a whole. .
- the plano-convex lens 301 is a spherical lens having a convex surface on the downstream side, and converts the emitted light 311 incident from the incident end 212 into parallel light 312.
- plano-concave lens 302 is a spherical lens having a concave surface on the downstream side, and is disposed on the downstream side of the plano-convex lens 301 to convert the parallel light 312 into the divergent light 313.
- the plano-concave lens 302 acts to cancel aberrations produced by the other three lenses. That is, the aberration of the entire optical system 300 can be reduced.
- plano-convex lens 303 is a spherical lens having a convex surface on the downstream side, and is disposed on the downstream side of the plano-concave lens 302, and converts the diverging light 313 into parallel light 314 having a diameter larger than that of the parallel light 312. Thereby, the density of light rays can be reduced, and the temperature rise caused by absorbing the parallel light 314 of the convex lens 303 and the convex lens 304 can be reduced.
- the plano-convex lens 304 is a spherical lens having a convex surface on the upstream side, is disposed on the downstream side of the plano-convex lens 303, and converts the parallel light 314 into convergent light 315 that is condensed toward the processing surface 260. That is, due to the presence of the plano-convex lens 303, the angle formed by the light beam direction of the light beam 314 and the optical axis becomes equal to or smaller than the divergence angle of the diverging light 313.
- the semi-transmissive mirror 222 is disposed at an inclination of, for example, 45 degrees with respect to the optical axis, and reflects the light of the visible light component reflected by the processing surface 260 toward the imaging device while transmitting the light from the light source. Surface treated. As a result, the processed surface can be observed without the light from the light source being interrupted in the middle.
- the plano-convex lens is a lens in which one of the two opposing surfaces is a flat surface and the other is a convex surface
- the plano-concave lens is a lens in which one of the two opposing surfaces is a flat surface and the other is a concave surface.
- the spherical lens is a lens whose convex surface or concave surface conforms to a single spherical surface.
- the plano-concave lens 302 is accommodated in the lens holder 401.
- the lens holder 401 includes a female holder 412 and a male holder 413, both of which are threaded and fixed with screws.
- the plano-concave lens 302 is fixed by pressure bonding, but the concave edge 322 of the plano-concave lens 302 only slightly contacts the male holder 413. That is, the interface thermal resistance of this contact portion is large.
- the plane 321 side of the plano-concave lens 302 is in surface contact with the inner plane 411 of the female holder 412, and the interface thermal resistance is smaller than that of the concave side.
- the plano-convex lens also has a flat surface that reduces the thermal resistance of the interface and increases the ability to dissipate the heat generated by the absorption of light, resulting in the thermal lens effect (deformation of the lens shape due to heat, lens characteristics due to refractive index changes). An increase in aberration due to deterioration of the image can be suppressed.
- the plane 321 and the inner plane 411 of the lens holder 401 are in surface contact, there is little positional deviation when the plano-concave lens 302 is incorporated into the lens holder 401. As a result, the positioning accuracy of the plano-concave lens 302 is increased, and the aberration at the focused spot is reduced.
- the focal length of the plano-convex lens 301 is f1
- the focal length of the plano-concave lens 302 is f2
- the focal length of the plano-convex lens 303 is f3
- the focal length of the plano-convex lens 304 is f4
- the magnification of the entire optical system 300 is m. To do.
- the focused spot diameter In order to perform high-definition processing, it is necessary to reduce the focused spot diameter. In order to reduce the diameter of the focused spot, it is necessary to reduce the aberration (variation at the focused point of the light beam) as much as possible.
- the minimum value of the focused spot diameter is called the best focus spot diameter.
- the best focus spot diameter is calculated by multiplying the diameter of the incident end 212 by the magnification m of the entire optical system 300. At the time of focusing, the smaller the aberration (variation at the light condensing point), the smaller the condensing spot, and high-definition processing becomes possible.
- the semi-transmission mirror 222 When the semi-transmission mirror 222 is provided in the optical system 300, the light beam is disturbed when passing through it, and the aberration increases. In order to minimize the disturbance of the light beam, the light beam passing through the semi-transmissive mirror 222 may be as close to parallel light as possible.
- the semi-transmissive mirror 222 is provided between the plano-convex lens 303 and the plano-convex lens 304. Therefore, the best focus spot diameter can be minimized by arranging the plano-concave lens 302 so that the light beam 314 passing through the semi-transmissive mirror 222 becomes parallel light during the best focus.
- a plano-concave lens 302 having a focal length equal to or less than that of the plano-convex lens 303 is selected, and the upstream virtual image focus of the plano-concave lens 302 matches the upstream focus of the plano-convex lens 303.
- the virtual image focal position of the plano-concave lens 302 (a position f2 away from the plano-concave lens 302 upstream) and the focal position when parallel light is incident on the plano-convex lens 303 from the downstream side (f3 upstream from the plano-convex lens 303). (Distant position) must match. Since the light beam travels from the upstream side to the downstream side, the focal position with respect to the plano-convex lens 303 described above is the virtual image focal position.
- the focal length f2 of the plano-concave lens 302 and the focal length f3 of the plano-convex lens 303 must satisfy the following conditions. f2 / f3 ⁇ 1 (1) That is, by selecting the plano-concave lens 302 and the plano-convex lens 303 so that f2 ⁇ f3, the position of the virtual image condensing point of the plano-concave lens 302 and the focal position of the plano-convex lens 303 can be matched. Thereby, it is not necessary to actually provide a condensing point in the apparatus, and energy loss can be suppressed. In addition, this configuration has an effect that the entire length of the optical system can be shortened because the virtual image condensing point is located on the upstream side of the plano-concave lens 302 and it is not necessary to create a real condensing point.
- the aberration needs to be minimized.
- Aberrations have several components, but spherical aberration is the main component. Therefore, a condition is considered in which the vertical component of spherical aberration (the component of spherical aberration in the optical axis direction) is minimized.
- the F value of the plano-convex lens 301 is f1 #
- the F value of the plano-concave lens 302 is f2 #
- the F value of the plano-convex lens 303 is f3 #
- the F value of the plano-convex lens 304 is f4 #
- this optical system 300 The spherical aberration ⁇ can be written as the following equation (2). Note that the second term in this equation is negative. This is a characteristic of a concave lens, and the presence of this term can reduce the overall value. If a convex lens is used instead of a concave lens, the second term becomes positive, and the overall aberration increases. That is, in this embodiment, the aberration can be minimized by using a concave lens as the second optical element.
- the plano-concave lens 302 is a spherical lens having a concave surface on the downstream side, is arranged on the downstream side of the plano-convex lens 301, and converts parallel light 312 into divergent light 313. Since the plano-concave lens 302 has a concave surface on the downstream side, the absolute value of the second term is maximized. That is, the effect of canceling other terms is the greatest. This has the effect of minimizing aberrations.
- Equation (6) The relationship of equation (6) is shown in FIG.
- the horizontal axis 501 is f1 / f4, and the vertical axis 502 is f3 / f4.
- the relationship between f1 / f4 and f3 / f4 when the enlargement magnification is 0.5 is indicated by a curve 503.
- a relationship between f1 / f4 and f3 / f4 when the magnification is 1 is indicated by a curve 504.
- a relationship between f1 / f4 and f3 / f4 when the enlargement magnification is 2 is indicated by a curve 505.
- the aberration can be minimized if it is below the plotted line (in the negative direction of the vertical axis).
- the optical system according to the present embodiment has an effect that it is easy to design a high-definition processing apparatus with a small magnification.
- the configurations described above are all for lenses having both a spherical surface and a flat surface.
- Such a plano-convex spherical lens or a plano-concave spherical lens is cheaper than an aspherical surface.
- all the lenses have a flat surface, there is an effect that aberration due to misalignment and aberration due to the thermal lens effect are hardly generated.
- the plano-concave lens 302 is provided so as to be movable along the optical axis.
- the plano-concave lens 302 can slide along the slide mechanism 607. That is, the slide mechanism 607 supports the plano-concave lens 302 so as to be slidable along the optical axis.
- the sliding of the plano-concave lens 302 may be performed manually or using a driving mechanism such as a motor.
- a control unit (not shown) may automatically control the position of the plano-concave lens 302 according to the defocus value.
- the plano-concave lens 302 is slid upstream to reduce the focused spot diameter. At this time, the smaller the aberration, the smaller the focused spot and the higher the resolution.
- the virtual image focal position of the plano-concave lens 302 (position away from f2 upstream from the concave lens) and the focal position when parallel light is incident on the plano-convex lens 303 from downstream (position away from f2 from the second convex lens).
- the plano-concave lens 302 is moved so that.
- the diameter of the condensing spot can be about 15 times that during focusing (for example, condensing at the time of focusing). (When the spot diameter is 0.2 mm, it becomes 3 mm). In 603, it can be seen that the light beam that was the parallel light 314 at the time of focusing becomes the divergent light 614. At this time, the outer diameter of the plano-convex lens 304 is increased so as not to remove the light beam. At the time of defocusing, the F # (F number) of the focused light 315 emitted from the plano-convex lens 304 falls within a range of about 4.5 or more.
- plano-concave lens 302 is moved here, the present invention is not limited to this, and the plano-convex lens 303 may be moved. That is, the distance on the optical axis between the plano-concave lens 302 and the plano-convex lens 303 may be changed.
- FIG. 7 is a flowchart for explaining the movement control of the concave lens 302 at the time of defocusing.
- the movement control is performed using a control device (not shown).
- step S701 when a focused spot diameter (this is set as a defocus value) is input to the control device, in step S702, whether or not the input focused spot diameter is larger than the current focused spot diameter, that is, de It is determined whether or not the focus value should be increased.
- the plano-concave lens 302 is moved downstream (S703).
- step S704 determines whether the input defocus value is smaller than the current value, that is, whether the defocus value should be decreased.
- the plano-concave lens 302 is moved upstream (S705). If the defocus value is not changed, the process ends.
- the optical processing head As described above, according to this embodiment, it is possible to provide an optical processing head with little energy loss by a simple optical configuration. In addition, the optical processing head can be downsized. Furthermore, defocus can be realized very easily.
- FIG. 8 is a view for explaining an optical system of the optical processing head 800 according to the present embodiment.
- the optical processing head 800 according to the present embodiment is different from the second embodiment in that the plano-convex lenses 301, 303, and 304 are replaced with parabolic mirrors 801, 803, and 804, and the overall layout is changed according to the optical path. It is different. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- the parabolic mirror 801 is a parabolic mirror having a focal point at the incident end 212, and converts the emitted light 811 incident from the incident end 212 into parallel light 812.
- plano-concave lens 802 is disposed on the downstream side of the parabolic mirror 801 and converts the parallel light 812 into the divergent light 813.
- the plano-concave lens 802 acts negatively on the aberration of the entire optical system of the optical processing head 800. That is, the aberration of the entire optical system can be reduced.
- the plano-concave lens 802 is slidable to a position corresponding to the defocus value along the optical axis (the arrow direction shown in the figure). That is, although not shown, the optical processing head 800 has a support portion that supports the plano-concave lens 802 so as to be slidable.
- the parabolic mirror 803 is disposed on the downstream side of the plano-concave lens 802 and converts the divergent light 813 into parallel light 814.
- the parabolic mirror 803 is a parabolic mirror having a focal point at the same position as the virtual image focal position of the plano-concave lens 802 disposed at a predetermined position. That is, the focal length of the parabolic mirror 803 is larger than the focal length of the plano-concave lens 802.
- the parabolic mirror 804 is a parabolic mirror having a focal point on the processing surface, and is disposed on the downstream side of the parabolic mirror 803, and converts the parallel light 814 into convergent light 815 that is collected on the processing surface 260 side.
- the above-described semi-transmissive mirror 222 between the parabolic mirror 803 and the parabolic mirror 804.
- the translucent mirror 222 is disposed at an inclination of, for example, 45 degrees with respect to the optical axis, and the light of the visible light component reflected by the processing surface 260 and reflected by the parabolic mirror 804 is transmitted while transmitting the light from the light source. What is necessary is just to reflect toward this imaging device. Thereby, it becomes possible to observe the processing surface 260.
- the optical processing head can be configured using the optical system including the parabolic mirrors 801, 803, and 804 and the plano-concave lens 802, as compared with the second embodiment. Since it is not necessary to arrange all the optical elements (parabolic mirrors) on the optical axis on a straight line, the degree of freedom in layout can be increased.
- the plano-concave lens 802 is used, but it is also possible to use a convex mirror having a virtual image focus instead.
- the optical processing apparatus 900 includes any of the optical processing heads 100, 200, and 800 described in the above-described embodiments, and melts a material with heat generated by the collected light, thereby obtaining a three-dimensional structure (or meat). This is a device for generating (welding).
- an optical processing apparatus 900 including the optical processing head 200 will be described.
- the optical processing device 900 includes a light source 901, an optical transmission unit 210, a refrigerant supply device 903, a refrigerant supply unit 904, a stage 905, a material supply device 906, a material supply unit 230, a gas supply device 908, and a gas.
- a supply unit 240 is provided.
- the light source 901 may be a laser, LED, halogen lamp, xenon lamp, incandescent bulb, or the like.
- the wavelength of the light beam is, for example, 1060 nm, but is not limited thereto.
- the light transmission unit 210 is an optical fiber having a core diameter of ⁇ 0.01 to 1 mm, for example, and guides light generated by the light source 901 to the optical processing head 200.
- the core diameter of the optical transmission unit 210 is the diameter of the incident end 212.
- the refrigerant supply device 903 stores, for example, water as a refrigerant, and supplies the refrigerant to the refrigerant supply unit 904 with a pump.
- the refrigerant supply unit 904 is a resin or metal hose having an inner diameter ⁇ 2-6. By supplying the coolant into the optical processing head 200, circulating it inside, and returning it to the coolant supply device 903, the temperature rise of the optical processing head 200 can be suppressed.
- the supply amount of the refrigerant is, for example, 1 to 10 L / min.
- the stage 905 is, for example, an X stage, an XY stage, or an XYZ stage, and can operate each axis (X, Y, Z).
- the material supply device 906 supplies material to the nozzle 203 via the material supply unit 230.
- the material is metal particles, resin particles, metal wires, resin wires.
- the material supply device 906 can also supply a carrier gas at the same time.
- the material supply unit 230 is, for example, a resin or metal hose, and guides the powder flow in which the material is mixed into the carrier gas to the nozzle 203. However, when the material is a wire, no carrier gas is required.
- the nozzle 203 injects material toward the processing surface 260.
- the gas supply device 908 supplies purge gas to the optical processing head 200 via the gas supply unit 240.
- the purge gas is, for example, nitrogen, argon, or helium. However, the purge gas is not limited to this, and may be another gas as long as it is an inert gas.
- the purge gas supplied to the optical processing head 200 is ejected from the nozzle 203 along the light beam described above.
- the optical processing apparatus 900 includes an attitude control mechanism and a position control mechanism that control the attitude and position of the optical processing head 200.
- the modeled object 910 is created on the stage 905.
- the emitted light 315 emitted from the optical processing head 200 is collected on the processed surface 260 on the model 910.
- the processing surface 260 is heated and condensed by light collection. This molten part is called a molten pool.
- the material 250 is injected from the nozzle 203 into the molten pool of the processing surface 260. Then, the material 250 melts into the molten pool. Thereafter, the molten pool is cooled and solidified, so that material is deposited on the processed surface 260 and three-dimensional modeling is realized.
- the purge gas is injected from the nozzle 203 to the processing surface 260. Therefore, the surrounding environment of the molten pool is purged with the purge gas. By selecting an inert gas that does not contain oxygen as the purge gas, oxidation of the processed surface 260 can be prevented.
- the optical processing head 200 is cooled by the refrigerant supplied from the refrigerant supply device 903 via the refrigerant supply unit 904, and temperature rise during processing is suppressed.
- the optical processing head 200 is scanned along the processing surface 260, so that a desired modeling can be performed while depositing materials. That is, overlay welding or three-dimensional modeling can be created by this apparatus.
- the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where a control program that realizes the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Lenses (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
光源からの射出光を第1平行光に変換する第1光学素子と、
前記第1光学素子の下流側に配置され、前記第1平行光を第1発散光に変換する第2光学素子と、
前記第2光学素子の下流側に配置され、前記第1発散光を第2平行光に変換する第3光学素子と、
前記第3光学素子の下流側に配置され、前記第2平行光を、加工面に向けて集光する収束光に変換する第4光学素子と、を備えたことを特徴とする。
前記光加工ヘッドと、光源と、前記光源から射出された光を前記光加工ヘッドに伝送する光伝送部と、
を備えたことを特徴とする。
上記光加工ヘッドを制御する制御方法であって、
前記加工面での前記光のデフォーカス値を入力する入力ステップと、
前記デフォーカス値に応じて、前記第2光学素子および前記第3光学素子の少なくともいずれか一方を光軸に沿って移動する移動ステップと、を含むことを特徴とする。
加工面での光のデフォーカス値を入力させる入力ステップと、
デフォーカス値に応じて、前記第2光学素子および前記第3光学素子の少なくともいずれか一方を光軸に沿って移動させる移動ステップと、
をコンピュータに実行させることを特徴とする。
本発明の第1実施形態としての光加工ヘッド(Optical Processing Head)100について、図1を用いて説明する。図1は、光加工ヘッド100の光学系(Optical System)を抽出した図であり、図1に示すとおり、光加工ヘッド100は、光学素子(Optical Element)101~104を備えている。
本発明の第2実施形態としての光加工ヘッド200について、図2を用いて説明する。図2は、光加工ヘッド200の内部構成を示すための図であり、図2に示すとおり、光加工ヘッド200は、集光光学系装置201と観察装置202とノズル203とを含む。
図3は、光加工ヘッド200内部の光学系300のレンズ構成を表わす図である。光加工ヘッド200の光学系300は、光学素子としてレンズ301~304を備えている。レンズは、他の種類の光学素子に比べて吸収ロスが小さく、エネルギー効率がよい。また、レンズに反射防止膜を塗布することにより、光の反射ロスを数%以下に低減でき、さらにエネルギー効率を向上させることもできる。さらに、吸収ロスが少ないことにより、昇温しにくく、昇温による熱レンズ効果(熱によるレンズ形状の変形、屈折率変化によるレンズ特性の劣化)および光加工ヘッド200全体の劣化を防ぐことができる。
平凸レンズ301の焦点距離をf1とし、平凹レンズ302の焦点距離をf2とし、平凸レンズ303の焦点距離をf3とし、平凸レンズ304の焦点距離をf4とし、光学系300全体の拡大倍率をmとする。
f2/f3≦1・・・(1)
つまり、f2≦f3となるように、平凹レンズ302および平凸レンズ303を選択することにより、平凹レンズ302の虚像集光点の位置と平凸レンズ303の焦点位置とを一致させることができる。これにより、実際に装置内に集光点を設ける必要がなくエネルギーロスを抑えることができる。また、本構成は、虚像集光点が平凹レンズ302の上流側に位置し、リアルな集光点を作る必要がないため、光学系の全長を短くできるという効果もある。
この式の第2項が負の値になっていることに注意されたい。これは、凹レンズの特性であり、この項があることにより、全体の値を小さくできる。もし、凹レンズの代わりに凸レンズを用いると、第2項が正になるため、全体の収差が大きくなる。つまり、本実施形態では、2つめの光学素子として凹レンズを用いたことによって収差を最小にすることができる。
これより、収差が最小のとき、つまりδが0のとき、次の関係を導くことができる。
この式(4)と式(1)より、下記の関係を導くことができる。
この式(5)は変形すると、以下のようになる。
以上より、式(6)を満たせば収差は最小にすることが可能となる。
図6に示すように、平凹レンズ302は、光軸に沿って移動可能に設けられている。例えば平凹レンズ302は、スライド機構607に沿ってスライド可能である。すなわち、スライド機構607は、平凹レンズ302を光軸に沿ってスライド可能に支持している。平凹レンズ302のスライドは、手動で行なってもよいし、モータなどの駆動機構を用いて行なってもよい。デフォーカス値に応じて不図示の制御部が平凹レンズ302の位置を自動制御してもよい。
次に本発明の第3実施形態に係る光学加工ヘッド800について、図8を用いて説明する。図8は、本実施形態に係る光学加工ヘッド800の光学系を説明するための図である。本実施形態に係る光学加工ヘッド800は、上記第2実施形態と比べると、平凸レンズ301、303、304を放物線ミラー801、803、804に置き換え、その光路に応じて全体のレイアウトを変更した点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
本発明の第4実施形態としての光加工装置(Optical Machining apparatus)900について、図9を用いて説明する。光加工装置900は、上述の実施形態で説明した光加工ヘッド100、200、800のいずれかを含み、集光した光が生み出す熱で材料を溶融することにより三次元的な造形物(あるいは肉盛溶接)を生成する装置である。ここでは一例として、光加工ヘッド200を備えた光加工装置900について説明する。
光加工装置900は、光加工ヘッド200以外に、光源901、光伝送部210、冷媒供給装置903、冷媒供給部904、ステージ905、材料供給装置906、材料供給部230、ガス供給装置908およびガス供給部240を備えている。
次に、光加工装置900の動作について説明する。造形物910は、ステージ905の上で作成される。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の技術思想内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
Claims (12)
- 光源からの射出光を第1平行光に変換する第1光学素子と、
前記第1光学素子の下流側に配置され、前記第1平行光を第1発散光に変換する第2光学素子と、
前記第2光学素子の下流側に配置され、前記第1発散光を第2平行光に変換する第3光学素子と、
前記第3光学素子の下流側に配置され、前記第2平行光を、加工面に向けて集光する収束光に変換する第4光学素子と、
を備えた光加工ヘッド。 - 前記第2光学素子および前記第3光学素子の少なくともいずれか一方を光軸に沿って移動可能に設けた請求項1に記載の光加工ヘッド。
- 前記第1光学素子、前記第3光学素子および前記第4光学素子は平凸レンズであり、
前記第2光学素子は平凹レンズである請求項1乃至4のいずれか1項に記載の光加工ヘッド。 - 前記第2光学素子は、下流側に凹面を有する平凹レンズである請求項5に記載の光加工ヘッド。
- 前記第2光学素子の焦点距離を前記第3光学素子の焦点距離以下としたことを特徴とする請求項5乃至8のいずれか1項に記載の光加工ヘッド。
- 前記第1平行光を入射した前記第2光学素子の虚像焦点と前記第2平行光を入射した前記第3光学素子の焦点とが一致するように、前記第2光学素子および前記第3光学素子を配置した請求項1乃至7のいずれか1項に記載の光加工ヘッド。
- 請求項1乃至8のいずれか1項に記載の光加工ヘッドと、
光源と、
前記光源から射出された光を前記光加工ヘッドに伝送する光伝送部と、
を備えた光加工装置。 - 請求項1に記載の光加工ヘッドを制御する制御方法であって、
前記加工面での前記光のデフォーカス値を入力する入力ステップと、
前記デフォーカス値に応じて、前記第2光学素子および前記第3光学素子の少なくともいずれか一方を光軸に沿って移動する移動ステップと、
を含む光加工ヘッドの制御方法。 - 前記移動ステップは、入力した前記デフォーカス値が現状の集光スポット径より大きい場合に、前記第2光学素子を上流側に移動させる請求項10に記載の光加工装置の制御方法。
- 請求項1に記載の光加工ヘッドを制御する制御プログラムであって、
前記加工面での前記光のデフォーカス値を入力させる入力ステップと、
前記デフォーカス値に応じて、前記第2光学素子および前記第3光学素子の少なくともいずれか一方を光軸に沿って移動させる移動ステップと、
をコンピュータに実行させる光加工装置の制御プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054882 WO2016132554A1 (ja) | 2015-02-20 | 2015-02-20 | 光加工ヘッド、光加工装置およびその制御方法ならびに制御プログラム |
US14/888,582 US10532427B2 (en) | 2015-02-20 | 2015-02-20 | Optical processing head, optical machining apparatus, and control method and control program of optical processing head |
JP2016510538A JP6134862B2 (ja) | 2015-02-20 | 2015-02-20 | 光加工ヘッド、光加工装置およびその制御方法ならびに制御プログラム |
EP15785040.5A EP3081978B1 (en) | 2015-02-20 | 2015-02-20 | Optical processing head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054882 WO2016132554A1 (ja) | 2015-02-20 | 2015-02-20 | 光加工ヘッド、光加工装置およびその制御方法ならびに制御プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132554A1 true WO2016132554A1 (ja) | 2016-08-25 |
Family
ID=56689215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054882 WO2016132554A1 (ja) | 2015-02-20 | 2015-02-20 | 光加工ヘッド、光加工装置およびその制御方法ならびに制御プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10532427B2 (ja) |
EP (1) | EP3081978B1 (ja) |
JP (1) | JP6134862B2 (ja) |
WO (1) | WO2016132554A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220283416A1 (en) * | 2021-03-04 | 2022-09-08 | Ii-Vi Delaware, Inc. | Dynamic Focus For Laser Processing Head |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413492A (ja) * | 1990-05-02 | 1992-01-17 | Komatsu Ltd | レーザ加工装置 |
JP2001100145A (ja) * | 1999-09-29 | 2001-04-13 | Sunx Ltd | レーザマーカ |
JP2003088984A (ja) * | 2001-09-14 | 2003-03-25 | Kawasaki Heavy Ind Ltd | 薄板のレーザ溶接用出力ヘッド |
US20060245084A1 (en) | 2004-09-30 | 2006-11-02 | Reiner Brustle | Focusing a laser beam |
JP2011000600A (ja) * | 2009-06-17 | 2011-01-06 | Disco Abrasive Syst Ltd | 集光レンズ及びレーザー加工装置 |
US20120111310A1 (en) * | 2010-04-30 | 2012-05-10 | Qmc Co., Ltd. | Target object processing method and target object processing apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2489941C (en) * | 2003-12-18 | 2012-08-14 | Comau S.P.A. | A method and device for laser welding |
TWI348408B (en) * | 2004-04-28 | 2011-09-11 | Olympus Corp | Laser processing device |
KR100867950B1 (ko) * | 2007-04-25 | 2008-11-11 | 삼성전기주식회사 | 조명 광학 장치 |
JP2012148316A (ja) * | 2011-01-19 | 2012-08-09 | Keyence Corp | レーザー加工装置 |
-
2015
- 2015-02-20 JP JP2016510538A patent/JP6134862B2/ja active Active
- 2015-02-20 US US14/888,582 patent/US10532427B2/en active Active
- 2015-02-20 WO PCT/JP2015/054882 patent/WO2016132554A1/ja active Application Filing
- 2015-02-20 EP EP15785040.5A patent/EP3081978B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413492A (ja) * | 1990-05-02 | 1992-01-17 | Komatsu Ltd | レーザ加工装置 |
JP2001100145A (ja) * | 1999-09-29 | 2001-04-13 | Sunx Ltd | レーザマーカ |
JP2003088984A (ja) * | 2001-09-14 | 2003-03-25 | Kawasaki Heavy Ind Ltd | 薄板のレーザ溶接用出力ヘッド |
US20060245084A1 (en) | 2004-09-30 | 2006-11-02 | Reiner Brustle | Focusing a laser beam |
JP2011000600A (ja) * | 2009-06-17 | 2011-01-06 | Disco Abrasive Syst Ltd | 集光レンズ及びレーザー加工装置 |
US20120111310A1 (en) * | 2010-04-30 | 2012-05-10 | Qmc Co., Ltd. | Target object processing method and target object processing apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of EP3081978A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP6134862B2 (ja) | 2017-05-24 |
JPWO2016132554A1 (ja) | 2017-04-27 |
EP3081978A4 (en) | 2017-01-18 |
EP3081978A1 (en) | 2016-10-19 |
US10532427B2 (en) | 2020-01-14 |
EP3081978B1 (en) | 2019-09-11 |
US20160368087A1 (en) | 2016-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5931141B2 (ja) | ファイバコアを切り替え可能なレーザ加工装置 | |
US11103958B2 (en) | Imaging optic for material machining by means of laser radiation and laser machining head having same | |
JP6644377B2 (ja) | レーザ加工用システム、並びにレーザ焦点のサイズ及び位置を調整する方法 | |
JP6253410B2 (ja) | 光合焦用レンズが単一のレーザビームマシニング装置及びレーザマシニング方法、レーザマシニング装置、レーザマシニング装置の使用方法 | |
JP7163291B2 (ja) | アディティブレーザー加工用のシステム及び方法 | |
JP6134861B2 (ja) | 光加工ヘッド、光加工装置および光加工方法 | |
JP6091652B2 (ja) | 光加工ヘッド、光加工装置、その制御方法及び制御プログラム | |
KR101707874B1 (ko) | 촬상 광학계 | |
KR20210016411A (ko) | 접근하기 어려운 공작물의 레이저 가공장치 | |
US11325299B2 (en) | Additive manufacturing via optical aperture division multiplexing | |
JP2013242565A5 (ja) | ||
JP6134862B2 (ja) | 光加工ヘッド、光加工装置およびその制御方法ならびに制御プログラム | |
JP6184606B1 (ja) | 光加工ヘッドおよび光加工装置 | |
US20220283416A1 (en) | Dynamic Focus For Laser Processing Head | |
JP2005316071A (ja) | レーザ加工装置 | |
Wang et al. | Design of optical systems with both near-field and far-field system requirements | |
KR20080099582A (ko) | 장거리용 적외선 레이저 조사기의 빔 크기 가변형 렌즈시스템 | |
JP7186937B1 (ja) | レーザ加工ヘッド、レーザ加工装置および金属製製造物の製造方法 | |
CN100582858C (zh) | 变焦Nd-YAG激光扫描f-theta镜系统 | |
Ryba et al. | Unique beam delivery and processing tools for high power solid state laser processing | |
CN113820845A (zh) | 可变倍压缩输出准直光束的医用冷光源输出耦合系统 | |
CN117687177A (zh) | 透射式柱面光学系统 | |
JPH11281891A (ja) | 無限遠系対物レンズ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14888582 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015785040 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015785040 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016510538 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15785040 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |