WO2016129637A1 - 核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法 - Google Patents

核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法 Download PDF

Info

Publication number
WO2016129637A1
WO2016129637A1 PCT/JP2016/053977 JP2016053977W WO2016129637A1 WO 2016129637 A1 WO2016129637 A1 WO 2016129637A1 JP 2016053977 W JP2016053977 W JP 2016053977W WO 2016129637 A1 WO2016129637 A1 WO 2016129637A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
synthase
isoprene
nucleic acid
cyclic
Prior art date
Application number
PCT/JP2016/053977
Other languages
English (en)
French (fr)
Inventor
古谷 昌弘
一史 川端
典秀 西山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680004150.7A priority Critical patent/CN108064285A/zh
Priority to US15/549,739 priority patent/US20180023098A1/en
Priority to CA2974343A priority patent/CA2974343A1/en
Priority to JP2016574834A priority patent/JPWO2016129637A1/ja
Priority to EP16749280.0A priority patent/EP3257941A4/en
Publication of WO2016129637A1 publication Critical patent/WO2016129637A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/002Preparation of hydrocarbons or halogenated hydrocarbons cyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03027Isoprene synthase (4.2.3.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03052(4S)-Beta-phellandrene synthase (geranyl-diphosphate-cyclizing) (4.2.3.52)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y502/00Cis-trans-isomerases (5.2)
    • C12Y502/01Cis-trans-Isomerases (5.2.1)
    • C12Y502/01008Peptidylprolyl isomerase (5.2.1.8), i.e. cyclophilin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a nucleic acid, a fusion protein, a recombinant cell, and a method for producing isoprene or a cyclic terpene, and more specifically, encodes a fusion protein of an isoprene synthase or a cyclic terpene synthase and an FKBP family protein.
  • the present invention relates to a nucleic acid, a fusion protein, a recombinant cell having the nucleic acid and the like, and a method for producing isoprene or a cyclic terpene using the recombinant cell.
  • Isoprene is a monomer raw material for synthetic polyisoprene, and is an especially important material in the tire industry.
  • development and commercialization of technology for converting from the production process of basic chemical products that depend on petroleum to the production process from renewable resources such as plant resources has been steadily progressing.
  • Isoprene synthase (isoprene synthase; EC 4.2.3.27) has the effect of converting dimethylallyl diphosphate (DMAPP), which is an isomer of isopentenyl diphosphate (IPP), to isoprene.
  • DMAPP dimethylallyl diphosphate
  • IPP isopentenyl diphosphate
  • Isoprene production methods using recombinant cells are known.
  • isoprene is produced using a recombinant cell into which a nucleic acid (gene) encoding isoprene synthase has been introduced.
  • the recombinant cells are cultured using methanol or synthesis gas as a carbon source, and isoprene is obtained from the culture.
  • production technology using recombinant E. coli using sugar as a raw material is also known (for example, Patent Documents 3 and 4).
  • the terpene is a generic name for compounds having 10 or more carbon atoms in which two or more molecules of isopentenyl diphosphate (IPP), which is an isoprene unit (C5), are linked by the action of prenyl transferase.
  • IPP isopentenyl diphosphate
  • Terpenes are classified into monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20) triterpenes (C30), tetraterpenes (C40), etc., depending on the number of isoprene units.
  • cyclic monoterpenes, cyclic sesquiterpenes, and cyclic diterpenes are often useful as perfume raw materials, cosmetic raw materials, pharmaceutical intermediates, adhesive raw materials, and high-functional resin raw materials.
  • Cyclic terpenes are synthesized by cyclization of linear terpenes by the action of cyclic terpene synthase.
  • a cyclic monoterpene is synthesized by binding two molecules of IPP to produce, for example, geranyl diphosphate (GPP), and then taking a cyclic structure by the action of a cyclic monoterpene synthase.
  • GPP geranyl diphosphate
  • Cyclic sesquiterpenes are synthesized by cyclization of the precursor farnesyl diphosphate (C15: FPP) by the action of cyclic sesquiterpene synthase.
  • Cyclic diterpenes are synthesized by cyclization of the precursor geranylgeranyl diphosphate (C20: GGPP) by the action of cyclic diterpene synthase.
  • a method for producing a cyclic terpene using a recombinant cell for example, a method for producing ⁇ -ferrandrene, which is a kind of cyclic monoterpene, is known (Patent Document 5).
  • geranyl diphosphate (GPP) or neryl diphosphate (NPP) is converted to ⁇ -ferrandrene using a recombinant cell into which a nucleic acid encoding ⁇ -ferrandrene synthase has been introduced, -Ferrandren is produced.
  • GPP geranyl diphosphate
  • NPP neryl diphosphate
  • ⁇ -Ferlandolene is a natural monomer useful for polymerization because it has a ⁇ -ferrandolene conjugated diene structure.
  • this invention aims at providing the technique which improves the stability of isoprene synthase and cyclic terpene synthase in a recombinant cell, and improves the productivity of isoprene and cyclic terpene by a recombinant cell. .
  • the present inventors have succeeded in improving the stability of isoprene synthase and cyclic terpene synthase in recombinant cells by using an FKBP family protein which is a kind of molecular chaperone. And by using the said recombinant cell, it succeeded in improving the productivity of isoprene and a cyclic terpene, and completed this invention.
  • One aspect of the present invention is a nucleic acid encoding a fusion protein in which a first protein selected from the group consisting of isoprene synthase and cyclic terpene synthase and an FKBP family protein are linked.
  • the nucleic acid of this aspect encodes a fusion protein (chimeric protein) in which a first protein selected from the group consisting of isoprene synthase and cyclic terpene synthase and an FKBP family protein are linked.
  • a fusion protein chimeric protein
  • isoprene synthase or cyclic terpene synthase is stabilized by the action of adjacent FKBP family proteins in the same molecule, so that isoprene synthase activity and cyclic terpene synthase activity are more stably exhibited. Is done.
  • the fusion protein when expressed in a recombinant into which the nucleic acid of this aspect has been introduced, the fusion protein can be decomposed by a host protease as compared with a single isoprene synthase or cyclic terpene synthase. Insolubilization hardly occurs.
  • the first protein is isoprene synthase.
  • the nucleic acid of this aspect encodes a fusion protein in which isoprene synthase and FKBP family protein are linked.
  • isoprene synthase is stabilized by the action of adjacent FKBP family proteins in the same molecule, so that isoprene synthase activity is more stably exhibited. Therefore, for example, when the fusion protein is expressed in a recombinant into which the nucleic acid of this aspect is introduced, the fusion protein is less likely to be decomposed or insolubilized by the host protease as compared to a single isoprene synthase.
  • the isoprene synthase is any of the following (a-1) to (a-3).
  • A-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 2
  • A-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 and having the activity of isoprene synthase
  • A-3) A protein having an amino acid sequence showing 90% or more homology with the amino acid sequence represented by SEQ ID NO: 2 and having the activity of isoprene synthase.
  • the first protein is a cyclic monoterpene synthase.
  • the cyclic monoterpene synthase is ferrandrene synthase.
  • the cyclic monoterpene synthase is any of the following (b-1) to (b-3).
  • (B-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 4,
  • (B-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4 and having the activity of ⁇ -ferrandrene synthase
  • (B-3) A protein having an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 4 and having the activity of ⁇ -ferrandrene synthase.
  • the first protein is a cyclic sesquiterpene synthase.
  • the cyclic sesquiterpene synthase is any of the following (c-1) to (c-3).
  • (C-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 6,
  • (C-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 6, and having activity of trichodiene synthase
  • (C-3) a protein having an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 6 and having tricodiene synthase activity.
  • the first protein is a cyclic diterpene synthase.
  • the first protein is derived from a prokaryotic organism.
  • the FKBP family protein is derived from a prokaryotic organism.
  • the FKBP family protein is derived from archaea.
  • the FKBP family protein has a molecular weight of 20,000 or less.
  • the FKBP family protein is any one of the following (d-1) to (d-3).
  • D-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 8,
  • D-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 8, and having activity as an FKBP family protein;
  • D-3) A protein comprising an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 8, and having activity as an FKBP family protein.
  • the FKBP family protein belongs to a trigger factor.
  • the FKBP family protein is linked to the N-terminal side of the first protein.
  • the fusion protein further has a secretory signal sequence.
  • One aspect of the present invention is a fusion protein encoded by the above nucleic acid.
  • One aspect of the present invention is a recombinant cell that is a bacterium and has the above-described nucleic acid and expresses the fusion protein.
  • the recombinant cell of this aspect is a recombinant cell that is a bacterium and expresses the fusion protein. According to the recombinant cell of this aspect, since the isoprene synthase activity or cyclic terpene synthase activity is exhibited by the fusion protein, a more stabilized isoprene synthase activity or cyclic terpene synthase activity can be obtained. .
  • One aspect of the present invention is a recombinant cell which is a bacterium, which encodes a first nucleic acid encoding a first protein selected from the group consisting of isoprene synthase and cyclic terpene synthase, and an FKBP family protein. And is a recombinant cell that expresses the isoprene synthase or cyclic terpene synthase and the FKBP family protein.
  • the recombinant cell of this aspect is a recombinant cell which is a bacterium and has a first nucleic acid encoding an isoprene synthase or a cyclic terpene synthase and a second nucleic acid encoding an FKBP family protein. According to the recombinant cell of this aspect, since the isoprene synthase or cyclic terpene synthase is stabilized by the coexisting FKBP family protein, more stabilized isoprene synthase activity or cyclic terpene synthase activity is obtained. It is done.
  • the first protein is isoprene synthase and expresses the isoprene synthase and the FKBP family protein.
  • the recombinant cell of this aspect has a first nucleic acid encoding an isoprene synthase and a second nucleic acid encoding an FKBP family protein. According to the recombinant cell of this aspect, since the isoprene synthase is stabilized by the coexisting FKBP family protein, a more stabilized isoprene synthase activity can be obtained.
  • the first protein is a cyclic monoterpene synthase.
  • the cyclic monoterpene synthase is ferrandrene synthase.
  • the first protein is a cyclic sesquiterpene synthase.
  • the first protein is a cyclic diterpene synthase.
  • the recombinant cell has the ability to assimilate the C1 compound.
  • the recombinant cell has the ability to assimilate methanol or methane.
  • the recombinant cell has the ability to assimilate carbon monoxide or carbon dioxide.
  • the recombinant cell is an anaerobic bacterium.
  • the recombinant cells are Clostridium bacteria or Moorella bacteria.
  • One aspect of the present invention is the production of isoprene or cyclic terpene, wherein the recombinant cell is contacted with a gas containing carbon dioxide and hydrogen, and the recombinant cell produces isoprene or cyclic terpene from carbon dioxide. Is the method.
  • This aspect relates to a production method of isoprene or cyclic terpene.
  • the recombinant cell is contacted with a gas containing carbon dioxide and hydrogen, and the recombinant cell is supplied with isoprene or cyclic terpene from carbon dioxide. Let it be produced.
  • isoprene synthase or cyclic terpene synthase expressed in the recombinant cell is stabilized by the FKBP family protein, so that isoprene or cyclic terpene can be produced with high efficiency.
  • the gas contains carbon monoxide, carbon dioxide, and hydrogen, and the recombinant cell is allowed to produce isoprene or a cyclic terpene from carbon monoxide and carbon dioxide.
  • This aspect also relates to a method for producing isoprene or cyclic terpene, wherein a gas containing carbon monoxide, carbon dioxide, and hydrogen is brought into contact with the recombinant cell, and the carbon monoxide and carbon dioxide are brought into contact with the recombinant cell.
  • Isoprene or cyclic terpenes are produced from carbon.
  • isoprene synthase or cyclic terpene synthase expressed in recombinant cells is stabilized by FKBP family proteins, so isoprene or cyclic terpene can be produced with high efficiency.
  • the isoprene or cyclic terpene released outside the recombinant cell is recovered.
  • the isoprene or cyclic terpene is recovered by a solid phase adsorption method.
  • the isoprene or cyclic terpene is recovered by a solvent absorption method.
  • the production amount can be remarkably improved.
  • the nucleic acid (gene) of the present invention encodes a fusion protein (chimeric protein) in which isoprene synthase or cyclic terpene synthase and FKBP family protein are linked.
  • the nucleic acid of the present invention is a fusion gene (chimeric gene) in which a gene encoding isoprene synthase or cyclic terpene synthase and a gene encoding FKBP family protein are linked.
  • the FKBP family proteins are FK506 binding proteins (FKBPs), and include peptidyl-prolyl cis-trans isomerase (hereinafter referred to as PPIase) activity and molecular chaperone activity. And have.
  • FKBP type PPIase The structure and classification of the FKBP family protein (FKBP type PPIase) are described in, for example, International Publication No. 2004/001041, International Publication No. 2005/063964, and the like.
  • FKBP family protein may be simply abbreviated as FKBP.
  • PPIase activity refers to the activity of catalyzing the cis-trans isomerization reaction of the N-terminal peptide bond of a proline residue in a protein.
  • the molecular chaperone activity refers to an activity of refolding a denatured protein into the original normal form or an activity of suppressing irreversible aggregation of the denatured protein.
  • the FKBP family protein has an action of promoting the folding speed of a polypeptide based on PPIase activity, and has an insolubilization suppressing action due to interaction with a hydrophobic peptide region based on molecular chaperone activity. Hydrophobic peptide sequence interactions with FKBP family proteins also allow nascent polypeptides to escape protease degradation.
  • the origin of the FKBP family protein used in the present invention is not particularly limited.
  • those derived from prokaryotes and those derived from archaea (archaea) can be used.
  • FKBP family proteins have a molecular weight of 20,000 or less, specifically a short type of about 16,000 to 18,000, and a long type of molecular weight of about 26,000 to 33,000, depending on the molecular weight. Broadly divided into types. In the present invention, either a short type or a long type may be used, but it is preferable to use a short type that has higher molecular chaperone activity. That is, in the present invention, it is preferable to use an FKBP family protein having a molecular weight of 20,000 or less.
  • trigger factor type Huang, Protein Sci. 9, 1254-, 2000
  • FkpA type Arie, Mol. Microbiol. 39, 199-, 2001
  • FKBP52 type Bose, Science 274, 1715-, 1996.
  • Any type may be used in the present invention, for example, a trigger factor type FKBP family protein can be used.
  • Trigger factor type FKBP family proteins are found in almost all bacterial genomes.
  • FKBP family proteins derived from archaea include those derived from Methanococcus thermolithotrophicus, Thermococcus sp. KS-1, and Methanococcus jannaschii (Maruyama, Front. Biosci. 5, 821-, 2000).
  • the long-type FKBP family proteins derived from archaea include Pyrococcus horikoshii origin, Aeropyrum pernix origin, Sulfolobus solfataricus origin, Methanococcus jannaschii origin, Archaeoglobus fulgidus origin, Methanobacterium autotrophicum origin, Thermoplasma acidophilum origin, Halobacterium cutirubrum, etc. Maruyama, Front. Biosci. 5, 821-, 2000).
  • SEQ ID NO: 7 shows the base sequence of the nucleic acid (DNA) encoding the Thermococcus sp. KS-1 derived short type FKBP family protein (TcFKBP18), and SEQ ID NO: 8 shows only the amino acid sequence.
  • the FKBP family protein used in the present invention may be a naturally-occurring and isolated FKBP family protein or a modified form thereof. For example, it may be a partial fragment or an amino acid substitution mutant of an existing FKBP family protein and a protein having activity as an FKBP family protein.
  • the activity as a FKBP family protein includes PPIase activity and molecular chaperone activity.
  • PPIase activity refers to the activity of catalyzing the cis-trans isomerization reaction of the N-terminal peptide bond of a proline residue in a protein.
  • PPIase activity can be evaluated by, for example, the chymotrypsin coupling method (J. Bacteriol. 1998, 180 (2): 388-394).
  • the molecular chaperone activity refers to an activity of refolding a denatured protein to the original normal form or an activity of suppressing irreversible aggregation of the denatured protein.
  • an evaluation method of molecular chaperone activity for example, rhodanese, citrate synthase, malate dehydrogenase, glucose-6-phosphate dehydrogenase and the like are used as model enzymes (Kawada, Bioscience and Industry, 56, 593- , 1998), and after denaturing these with a protein denaturant such as 6M guanidine hydrochloride, the regeneration rate of the denatured protein that starts when the denaturant is diluted with a buffer containing the subject substance to be assayed, and the aggregation of the denatured protein is suppressed.
  • a protein denaturant such as 6M guanidine hydrochloride
  • the rate can evaluate the molecular chaperone activity of the test object.
  • a method for evaluating the regeneration rate of the denatured protein for example, in the case of Rhodanese, the method of Horobitz et al. (Horowitz, Methods Mol. Biol., 40, 361-, 1995) can be mentioned, and the aggregation suppression of the denatured protein is evaluated. Examples of the method include Taguchi et al.'S method (Taguchi, J. Biol. Chem., 269, 8529-, 1994).
  • FKBP family proteins used in the present invention include at least the following proteins (d-1) to (d-3).
  • D-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 8,
  • D-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 8, and having activity as an FKBP family protein;
  • D-3) A protein comprising an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 8, and having activity as an FKBP family protein.
  • the homology of the amino acid sequence in (d-3) is more preferably 92% or more, further preferably 95% or more, and particularly preferably 98% or more.
  • the homology of amino acid sequences can be calculated using, for example, a commercially available multiple alignment program such as CulustalW.
  • IspS isoprene synthase
  • the isoprene synthase used in the present invention is not particularly limited.
  • those derived from eukaryotes such as plants can be used.
  • plant-derived isoprene synthases those derived from populus (Populus nigra), Mucuna, and Kudzu are common, but others are derived from the genus Salix, Robinia, Wisteria, Triticum, Morus, etc. All are applicable to the present invention.
  • SEQ ID NO: 1 shows the amino acid sequence corresponding to the base sequence of nucleic acid (DNA) encoding poplar-derived isoprene synthase (GenBank Accession No .: AM410988.1), and SEQ ID NO: 2 shows only the amino acid sequence.
  • isoprene synthase derived from other than plants include those derived from prokaryotes.
  • Bacillus subtilis-derived isoprene synthase (Sivy TL. Et al., Biochem. Biophys. Res. Commu. 2002, 294 (1), 71-5) can be mentioned.
  • the isoprene synthase used in the present invention may also be modified in addition to the isoprene synthase found and isolated in nature. For example, it may be a partial fragment or amino acid substitution mutant of an existing isoprene synthase and a protein having the activity of isoprene synthase.
  • the isoprene synthase used in the present invention includes at least the following proteins (a-1) to (a-3).
  • A-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 2
  • A-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 and having the activity of isoprene synthase
  • A-3) A protein having an amino acid sequence showing 90% or more homology with the amino acid sequence represented by SEQ ID NO: 2 and having the activity of isoprene synthase.
  • the homology of the amino acid sequence in (a-3) is more preferably 92% or more, still more preferably 95% or more, and particularly preferably 98% or more.
  • the cyclic terpene synthase is an enzyme that generates a cyclic terpene using a linear terpene as a substrate.
  • the cyclic terpene synthase include cyclic monoterpene synthase, cyclic sesquiterpene synthase, cyclic diterpene synthase, and the like.
  • the cyclic monoterpene synthase has an action of cyclizing geranyl diphosphate (GPP) to convert it into a cyclic monoterpene.
  • GPP geranyl diphosphate
  • ⁇ -ferrandolene synthase which is a kind of ferrandolene synthase, has an activity of converting geranyl diphosphate (GPP) or neryl diphosphate (NPP) into ⁇ -ferrandolene (Patent Document 5).
  • ⁇ -ferrandrene synthase and nucleic acid encoding it include those derived from tomato (Solanum lycopersicum) (GenBank Accession No .: FJ797957; Schilmiller, A. L., et al., Proc Natl Acad Sci U S A., 2009, 106, 10865-70.), Derived from Lavandula (Lavandula angustifolia) (GenBank Accession No .: HQ404305; Demissie, Z. A., et al., Planta, 2011 ,. 233, 685- 96), and the like.
  • SEQ ID NO: 3 shows the amino acid sequence corresponding to the nucleotide sequence of the nucleic acid (DNA) encoding the lavender-derived ⁇ -ferrandrene synthase
  • SEQ ID NO: 4 shows only the amino acid sequence.
  • the DNA having the base sequence represented by SEQ ID NO: 3 is an example of a nucleic acid encoding ⁇ -ferrandrene synthase (cyclic monoterpene synthase).
  • the cyclic sesquiterpene synthase has an action of cyclizing farnesyl diphosphate (FPP) to convert it into a cyclic sesquiterpene.
  • FPP farnesyl diphosphate
  • An example of a cyclic sesquiterpene synthase is trichodiene synthase.
  • SEQ ID NO: 5 shows the amino acid sequence corresponding to the base sequence of the nucleic acid (DNA) encoding Tricodiene synthase derived from Fusarium poae
  • SEQ ID NO: 6 shows only the amino acid sequence.
  • the DNA having the base sequence represented by SEQ ID NO: 5 is an example of a nucleic acid encoding a trichodiene synthase (cyclic sesquiterpene synthase).
  • the cyclic diterpene synthase has an action of cyclizing geranylgeranyl diphosphate (GGPP) to convert it into a cyclic diterpene.
  • GGPP geranylgeranyl diphosphate
  • the cyclic terpene synthase used in the present invention may also be a modified form of these other than the cyclic terpene synthase found and isolated in nature.
  • it may be a partial fragment of an existing cyclic terpene enzyme or an amino acid substitution mutant and a protein having the activity of a cyclic terpene synthase.
  • the cyclic monoterpene synthase used in the present invention includes at least one of the following proteins (b-1) to (b-3).
  • B-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 4,
  • B-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 4 and having the activity of ⁇ -ferrandrene synthase
  • B-3) A protein having an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 4 and having the activity of ⁇ -ferrandrene synthase.
  • the homology of the amino acid sequence in (b-3) is more preferably 92% or more, still more preferably 95% or more, and particularly preferably 98% or more.
  • the cyclic sesquiterpene synthase used in the present invention includes at least one of the following proteins (c-1) to (c-3).
  • (C-1) a protein comprising the amino acid sequence represented by SEQ ID NO: 6,
  • (C-2) a protein comprising an amino acid sequence in which 1 to 20 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 6, and having activity of trichodiene synthase
  • C-3) a protein having an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 6 and having tricodiene synthase activity.
  • the homology of the amino acid sequence in (c-3) is more preferably 92% or more, further preferably 95% or more, and particularly preferably 98% or more.
  • the FKBP family protein may be linked to the N-terminal side of the first protein, or the FKBP family protein may be linked to the C-terminal side of the first protein.
  • the first protein and the FKBP family protein may be directly linked or may be linked via a peptide linker or the like.
  • peptide linker for example, a peptide linker composed of about 10 to 50 structurally flexible amino acid sequences, for example, a peptide linker composed of an amino acid sequence repeating structure consisting of 4 glycines and 1 serine is used. Is possible.
  • the fusion protein may further have a secretion signal.
  • secretory signal By giving a secretory signal, secretory expression is possible when expressed in a host cell.
  • the present invention includes a fusion protein encoded by the nucleic acid, that is, a fusion protein in which a first protein (isoprene synthase or cyclic terpene synthase) and an FKBP family protein are linked.
  • the present invention includes a recombinant cell that is a bacterium, has a nucleic acid encoding the fusion protein, and expresses the fusion protein.
  • the present invention is also a recombinant cell which is a bacterium, and has a first nucleic acid encoding a first protein (isoprene synthase or cyclic terpene synthase) and a second nucleic acid encoding an FKBP family protein, And a recombinant cell expressing the isoprene synthase or cyclic terpene synthase and the FKBP family protein.
  • the present invention provides a recombinant cell which is a bacterium, comprising a first nucleic acid encoding an isoprene synthase and a second nucleic acid encoding an FKBP family protein, and comprising the isoprene synthase and the FKBP family protein.
  • a recombinant cell which is a bacterium, comprising a first nucleic acid encoding an isoprene synthase and a second nucleic acid encoding an FKBP family protein, and comprising the isoprene synthase and the FKBP family protein.
  • isoprene synthase or cyclic terpene synthase is stabilized by the presence of adjacent or coexisting FKBP family proteins.
  • the recombinant cell of the present invention can be obtained, for example, by introducing the nucleic acid into a host cell that is a bacterium.
  • prokaryotes such as bacteria have the ability to synthesize isopentenyl diphosphate (IPP) by the non-mevalonate pathway (MEP pathway).
  • IPP isopentenyl diphosphate
  • MEP pathway non-mevalonate pathway
  • isopentenyl diphosphate isomerase is present in all living organisms. Therefore, the recombinant cell of the present invention can convert DMAPP converted from IPP into isoprene. That is, the recombinant cell of the present invention can produce isoprene.
  • the recombinant cell of the present invention can convert geranyl diphosphate (GPP), farnesyl diphosphate (FPP), geranylgeranyl diphosphate (GGPP), etc., which uses IPP as a precursor, into a cyclic terpene. . That is, the recombinant cell of the present invention can produce a cyclic terpene.
  • GPP geranyl diphosphate
  • FPP
  • the host cell is not particularly limited as long as it is a bacterium.
  • bacteria generally used as hosts for expressing foreign genes such as Escherichia coli and Bacillus subtilis, can also be applied in the present invention.
  • bacteria having the ability to assimilate C1 compounds can be used as host cells.
  • bacteria having the ability to assimilate carbon monoxide, carbon dioxide, methane, methanol, methylamine, formic acid, formamide, and the like can be used as host cells.
  • a recombinant cell having the ability to assimilate C1 compounds such as carbon monoxide, carbon dioxide, methane, methanol, methylamine, formic acid, and formamide can be obtained.
  • bacteria having the ability to assimilate carbon monoxide or carbon dioxide can be used as host cells.
  • a recombinant cell having the ability to assimilate carbon monoxide or carbon dioxide can be obtained.
  • the host cell is specifically an anaerobic prokaryotic cell, and in particular, an anaerobic prokaryotic cell having a function of synthesizing acetyl CoA from methyltetrahydrofolate, carbon monoxide, and CoA.
  • anaerobic prokaryotic cells further having carbon monoxide dehydrogenase (EC 1.2.99.2) are preferred.
  • anaerobic prokaryotic cells that grow mainly by carbon monoxide metabolism, that is, by the function of carbon monoxide dehydrogenase to generate carbon dioxide and protons from carbon monoxide and water are preferred.
  • Examples of such anaerobic prokaryotic cells include anaerobic prokaryotic cells having an acetyl-CoA pathway (Wood-Ljungdahl pathway) and a methanol pathway (Methanol pathway) shown in FIG.
  • anaerobic prokaryotic cells include Clostridium ljungdahlii, Clostridium autoethanogenumn, Clostridium carboxidivorans, Clostridium ragsdalei (Kopke M. et al., Appl. Environ. Microbiol. 2011, 77 (15), 4675467-5ther) (Same as Clostridium thermoaceticum) (Pierce EG. Et al., Environ. Microbiol. 2008, ⁇ 10, 2550-2573), etc., and Clostridium genus bacteria or Moorella genus bacteria.
  • Clostridium bacteria have established host-vector systems and culture methods, and are suitable as host cells in the recombinant cells of the present invention.
  • the above five Clostridium bacteria or Moorella bacteria are known as representative examples of syngas assimilating microorganisms.
  • prokaryotic cells such as Carboxydocella sporoducens sp.ovNov., Rhodopseudomonas gelatinosa, Eubacterium limosum, Butyribacterium methylotrophicum, etc. can be used as host cells.
  • a methanol-utilizing bacterium that is a kind of methylotroph can be used as a host cell. Thereby, a recombinant cell having the ability to assimilate methanol can be obtained.
  • a methylotroph is a generic name for C1-compound-assimilating microorganisms that use carbon compounds that do not have C—C bonds in their molecules, such as methane, methanol, methylamine, dimethylamine, and trimethylamine, as the only carbon source and energy source.
  • Microorganisms called methanotroph, methane oxidizing bacteria, methanol-assimilating bacteria, methanol-assimilating yeast, methanol-assimilating microorganisms, etc. all belong to methylotrophs.
  • Mesanotrophs can convert methane to methanol by the action of methane monooxidase and catabolize methanol with the same metabolism as methyl trough.
  • Methylotroph uses the reaction of converting formaldehyde to organic matter having a C—C bond after converting methanol to formaldehyde as the central metabolism.
  • the carbon assimilation metabolic pathway via formaldehyde the serine pathway, ribulose monophosphate pathway (RuMP pathway), and xylulose monophosphate pathway (XuMP pathway) shown in FIG. 2 are known.
  • Methanol-assimilating bacteria that can be used in the present invention possess a serine cycle or a RuMP pathway.
  • Methylotroph has a function of converting methanol and / or formic acid into formaldehyde and a formaldehyde fixing ability.
  • Examples of the methanol-assimilating bacteria include Methylacidphilum, Methylosinus, Methylocystis, Methylobacterium, Methylocella, Methylococcus, Methylomonas, Methylobacter, Methylobacillus, Methylophilus, Methylovotenera, Methylovorus, Methylomicrobium, Methylophaga, Methylophilaceae, Methyloversatilis, Mycobacterium, Arthrobacter, Bacillus, Beggiatoa, Burkholderia, Granulibacter, Hyphomicrobium, Pseudomonas, Achromobactor, Paracoccus, Renothrix, R And methylotrophs belonging to the genus Silicibacter, Thiomicrospira, Verrucomicrobia, and the like.
  • a method for introducing a gene into a host cell may be appropriately selected depending on the type of the host cell and the like.
  • a method for introducing a target gene with a self-replicating plasmid (vector) or a genome introduction method can be employed. is there.
  • a self-replicating plasmid capable of being introduced into a host cell and expressing an integrated nucleic acid
  • a vector capable of being introduced into a host cell and expressing an integrated nucleic acid
  • a vector that can replicate autonomously in a host cell or can be integrated into a chromosome and contains a promoter at a position where the inserted nucleic acid (DNA) can be transcribed can be used.
  • DNA nucleic acid
  • each nucleic acid when a plurality of types of nucleic acids are introduced into a host cell using a vector, each nucleic acid may be incorporated into one vector or may be incorporated into separate vectors. Furthermore, when incorporating multiple types of nucleic acids into one vector, each nucleic acid may be expressed under a common promoter or may be expressed under separate promoters.
  • an embodiment (co-expression) in which a nucleic acid encoding an FKBP family protein and a nucleic acid encoding an isoprene synthase or a cyclic terpene synthase are introduced.
  • Examples of self-replicating vectors that can be used when the host is Escherichia coli include commercially available pET (Novagen), pBAD (Life Technologies), and pGEM (Promega).
  • pAYC32 Choistoserdov AY., Et al., Plasmid 1986, 16, 161-167
  • pRP301 Lismid 1986, 16, 161-167
  • pBBR1 pBHR1
  • pCM80 Marx CJ.
  • genome introduction methods include homologous recombination, transposon method (Martinerz-Garcia E. et al., BMC Microbiol. 11:38), integrase method (Miyazaki, R. et al., Appl. Environ. Microbiol. 2014). , 79 (14), 4440-4447), Cre / loxP method (Bertram, ramR. Et al., J. Mol. Microbiol. Biotechnol. 2009, 17 (3), 136-145), Flp / FRT method (Al -Hinai, MA. Et al., Appl. Environ. Microbiol. 2012, 78 (22), 8112-8121).
  • nucleic acids may be introduced into the recombinant cells.
  • a nucleic acid encoding an enzyme (group) that acts in a mevalonate pathway (MVA pathway) or a non-mevalonate pathway (MEP pathway), which is a synthesis pathway of isopentenyl diphosphate (IPP) can be introduced.
  • MVA pathway mevalonate pathway
  • MEP pathway non-mevalonate pathway
  • IPP isopentenyl diphosphate
  • the method for culturing the recombinant cell of the present invention is not particularly limited, and it can be cultured using a medium in which the recombinant cell can grow.
  • a medium in which the recombinant cell can grow For example, when the host is a heterotrophic microorganism such as Escherichia coli or Bacillus subtilis, a carbon source such as glucose or saccharose can be used.
  • a methanol-assimilating bacterium it is preferable to use a medium containing 0.1 to 5.0% (v / v) methanol.
  • the host is a syngas-utilizing bacterium, the following composition can be used as the carbon source and energy source.
  • a saccharide carbon source such as glucose or saccharose may be added and cultured as necessary.
  • any culture method such as batch type, fed-batch type or continuous type can be applied.
  • fed-batch or continuous culture it is possible to further increase the cell density by semipermeable membrane circulation of the culture solution.
  • the present invention includes a method for producing isoprene or a cyclic terpene, wherein the above recombinant cell is contacted with a gas containing carbon dioxide and hydrogen, and the recombinant cell is produced from carbon dioxide to produce isoprene or a cyclic terpene. Furthermore, the present invention provides an isoprene or a ring in which a gas containing carbon monoxide, carbon dioxide and hydrogen is brought into contact with the recombinant cell, and the recombinant cell produces isoprene or a cyclic terpene from carbon monoxide and carbon dioxide. Includes production methods of formula terpenes.
  • the above gas is contacted with a recombinant cell having an anaerobic prokaryotic cell having a function of synthesizing acetyl CoA from methyl tetrahydrofolate, carbon monoxide, and CoA as described above, and isoprene or ring Formula terpenes can be produced.
  • recombinant cells can be cultured using the gas as a carbon source, and isoprene or cyclic terpenes can be isolated from the culture.
  • it is possible to produce isoprene or cyclic terpenes by bringing the above-mentioned gas into contact with a recombinant cell regardless of the presence or absence of cell growth.
  • the gas can be continuously supplied to the immobilized recombinant cells to continuously produce isoprene or cyclic terpenes.
  • Isoprene or cyclic terpenes produced by recombinant cells can be recovered from the extracellular gas phase, for example.
  • the recovery method for example, a solid phase adsorption method or a solvent absorption method can be employed.
  • the recombinant cells of the present invention are cultured not for the purpose of producing isoprene or cyclic terpenes but exclusively for the purpose of increasing the number of cells or for obtaining the fusion protein itself, the above gas is used as a carbon source. There is no need.
  • the recombinant cells may be cultured using other carbon sources such as saccharides and glycerin as described above.
  • Example 1 E. coli BL21 strain (Lon -, OmpT -) expression and isoprene production of FKBP-IspS fusion protein in
  • An artificially synthesized gene represented by SEQ ID NO: 9 was prepared.
  • This artificially synthesized gene includes a gene encoding a fusion protein of Thermococcus-derived FKBP and populus (Populus nigra) -derived isoprene synthase (IspS), and isopentenyl diphosphate isomerase (IDI) derived from actinomycetes. Contains the encoding gene.
  • the FKBP-IspS fusion protein is designed to be provided with a tag sequence consisting of 6 histidines at the C-terminus.
  • This artificially synthesized gene was introduced into NdeI and BamHI cleavage sites of the pET-3a vector to construct an expression vector pTFKIS.
  • pTFKIS was introduced into E. coli strain BL21 (Lon ⁇ , OmpT ⁇ ) to obtain a recombinant.
  • This recombinant was cultured at 30 ° C. in 2 ⁇ YT medium containing ampicillin at a concentration of 100 ⁇ g / mL.
  • 5 mL of the culture solution was transferred into TORAST HS 20 ml vial (Shimadzu Corporation) sealed with a septum cap, 0.1 mMmIPTG was added, and the culture was further continued at 30 ° C for 20 hours.
  • headspace sampling measurement was performed with GCMS QP2010 ultra (Shimadzu Corporation).
  • the GC column used was ZB-624 (phenomenex: film thickness 1.40 ⁇ m / length 30.0 m / inner diameter 0.25 mm).
  • the amount of isoprene produced per dry cell weight (g) was calculated.
  • the cells were collected after completion of the culture, and the cell disruption solution obtained by ultrasonication was separated into a supernatant (soluble fraction) and a precipitate fraction by centrifugation. Both of these fractions were subjected to electrophoresis, and the expression of the FKBP-IspS fusion protein was confirmed by Western blotting using an anti-6 histag antibody (GE Healthcare). The expression level was evaluated by evaluating the color development intensity by antibody staining in 6 levels of 0-5.
  • Example 1 An experiment similar to that of Example 1 was performed using IspS alone instead of the FKBP-IspS fusion protein.
  • An artificially synthesized gene (DNA) represented by SEQ ID NO: 10 was prepared.
  • This artificially synthesized gene contains a gene encoding Poplar-derived IspS and a gene encoding Actinomyces-derived isopentenyl diphosphate isomerase (IDI), but does not include the FKBP gene. It is also designed so that a tag sequence consisting of 6 histidines is provided at the C-terminal of IspS.
  • This artificially synthesized gene was introduced into the NdeI and BamHI cleavage sites of the pET-3a vector to construct an expression vector pTIS.
  • pTFKIS was introduced into E. coli strain BL21 (Lon ⁇ , OmpT ⁇ ) to obtain a recombinant.
  • the recombinants were cultured in the same manner as in Example 1. Further, headspace sampling measurement was performed in the same manner as in Example 1. Furthermore, the expression of IspS was confirmed by Western blotting.
  • an artificially synthesized gene represented by SEQ ID NO: 11 was prepared.
  • this artificially synthesized gene includes a gene encoding a fusion protein of Thermococcus-derived FKBP and poplar-derived IspS, and a gene encoding actinomycete-derived IDI, and further derived from C. ljungdahlii These genes are designed to be induced by the pta (Phosphotransacetylase) promoter. Further, the FKBP-IspS fusion protein is designed to be provided with a tag sequence consisting of 6 histidines at the C-terminus.
  • This artificially synthesized gene was introduced into the TspMI and BspEI cleavage sites of the pSKCL vector (FIG. 3, SEQ ID NO: 13) to construct an expression vector pSCLFKIS.
  • pSCLFKIS was introduced into C. ljungdahlii (DSM13528) strain to obtain a recombinant.
  • Example 2 An experiment similar to that of Example 2 was performed using IspS alone instead of the FKBP-IspS fusion protein.
  • An artificially synthesized gene (DNA) represented by SEQ ID NO: 12 was prepared.
  • This artificially synthesized gene includes a gene encoding IspS derived from Populus nigra and a gene encoding isopentenyl diphosphate isomerase (IDI) derived from actinomycetes, but does not include the FKBP gene. It is also designed to induce the expression of these genes by the pta promoter from C. ljungdahlii.
  • the FKBP-IspS fusion protein is designed to be provided with a tag sequence consisting of 6 histidines at the C-terminus.
  • This artificially synthesized gene was introduced into the TspMI and BspEI cleavage sites of the pSKCL vector (FIG. 3) to construct an expression vector pSCLIS.
  • pSCLIS was introduced into C. ljungdahlii (DSM13528) strain to obtain a recombinant.
  • the recombinant was cultured in the same manner as in Example 2. Further, the head space sampling measurement was performed in the same manner as in Example 2. Furthermore, the expression of IspS was confirmed by Western blotting.
  • Example 2 The results are shown in Table 2. That is, the amount of isoprene produced in the C. ljungdahlii recombinant into which the gene encoding the fusion protein of FKBP and IspS was introduced (Example 2) was 2963 ⁇ g / g dry cells, and the non-fusion IspS gene was introduced. The amount of isoprene produced by the recombinant C. ljungdahlii recombinant (Comparative Example 2) (0.50 ⁇ g / g dry cells) was significantly higher.
  • M. extorquens possesses an enzyme that synthesizes geranyl diphosphate (GPP), which is a substrate for ⁇ -ferrandrene synthase, from isopentenyl diphosphate (IPP). Therefore, it was considered that ⁇ -ferrandolene synthesis from methanol would be possible by introducing the ⁇ -ferrandrene synthase gene into this strain and expressing the gene.
  • GPP geranyl diphosphate
  • IPP isopentenyl diphosphate
  • An artificially synthesized gene (DNA) represented by SEQ ID NO: 14 was prepared.
  • This artificially synthesized gene contains a gene encoding a fusion protein of Thermococcus-derived FKBP and lavender-derived ⁇ -ferrandrene synthase (bPHS), and gene expression is induced by the pta promoter used in Example 2. Is designed to be.
  • This artificially synthesized gene was introduced into the BamHI / KpnI site of pCM80 (Marx CJ. Et al., Microbiology 2001, 147, 2065-2075), which is a broad host range vector of SEQ ID NO: 15 to prepare pC80FkPHS.
  • the expression vector pCM80FkPHS was introduced into M. extorquens by electroporation to obtain a ME-FkPHS strain.
  • the ME-FkPHS strain was synthesized with methanol as the sole carbon source (18 g of H 3 PO 4 , 14.28 g of K 2 SO 4 , 3.9 g of KOH, 0.9 g of CaSO 4 .2H 2 O, MgSO 4 per liter).
  • M. extorquens into which pCM80 was introduced did not produce ⁇ -ferrandolene at all, but the ME-FkPHS strain produced 7.3 mg / g dry cells of ⁇ -ferrandolene.
  • Example 3 The same experiment as in Example 3 was performed using bPHS alone instead of the FKBP-bPHS fusion protein.
  • An artificially synthesized gene represented by SEQ ID NO: 16 was prepared.
  • This artificially synthesized gene includes a gene encoding only lavender-derived ⁇ -ferrandrene synthase (bPHS), and is designed so that the expression of the gene is induced by the pta promoter used in Example 3. Yes.
  • This artificially synthesized gene was introduced into the BamHI / KpnI site of pCM80 used in Example 3 to prepare pC80PHS.
  • the expression vector pCM80PHS was introduced into M. extorquens by electroporation to obtain a ME-PHS strain. This recombinant was cultured in the same manner as in Example 3.
  • the production amount of ⁇ -ferrandrene by the ME-PHS strain was 0.4 mg / g dry cells. From the above results, the production amount of ⁇ -ferrandrene could be remarkably increased by fusing FKBP and bPHS in the methylotroph.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 イソプレン合成酵素及び環式テルペン合成酵素からなる群より選択された第一タンパク質とFKBPファミリータンパク質とが連結された融合タンパク質をコードする核酸が提供される。当該核酸にコードされた融合タンパク質が提供される。当該核酸を有し、かつ前記融合タンパク質を発現する組換え細胞が提供される。前記第一タンパク質をコードする第一核酸とFKBPファミリータンパク質をコードする第二核酸とを有し、かつ前記第一タンパク質と前記FKBPファミリータンパク質とを発現する組換え細胞が提供される。宿主細胞として、合成ガス資化性細菌やメタノール資化性細菌を用いることができる。

Description

核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法
 本発明は、核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法に関し、さらに詳細には、イソプレン合成酵素又は環式テルペン合成酵素とFKBPファミリータンパク質との融合タンパク質をコードする核酸、当該融合タンパク質、当該核酸等を有する組換え細胞、並びに、当該組換え細胞を用いたイソプレン又は環式テルペンの生産方法に関する。
 イソプレンは合成ポリイソプレンのモノマー原料であり、特にタイヤ業界において重要な素材である。近年、石油に依存した基幹化学品の生産プロセスから、植物資源等の再生可能資源からの生産プロセスへの転換技術の開発と実用化が、着実に進んでいる。
 イソプレン合成酵素(イソプレンシンターゼ、isoprene synthase;EC 4.2.3.27)は、イソペンテニル二リン酸(IPP)の異性体であるジメチルアリル二リン酸(DMAPP)をイソプレンに変換する作用を有する。
 組換え細胞(組換え体)を用いたイソプレンの生産方法が知られている。例えば、特許文献1,2に記載の発明では、イソプレン合成酵素をコードする核酸(遺伝子)が導入された組換え細胞を用いてイソプレンを生産する。詳細には、当該組換え細胞をメタノールや合成ガスを炭素源として培養し、該培養物からイソプレンを取得する。また、糖を原料とした組換え大腸菌による生産技術も知られている(例えば、特許文献3,4)。
 テルペンとは、イソプレン単位(C5)であるイソペンテニル二リン酸(IPP)がプレニルトランスフェラーゼの作用によって2分子以上連結した、炭素数が10個以上の化合物の総称である。テルペンは、イソプレン単位の数に応じて、モノテルペン(C10)、セスキテルペン(C15)、ジテルペン(C20)トリテルペン(C30)、テトラテルペン(C40)等に分類される。中でも環式モノテルペン、環式セスキテルペン、環式ジテルペンは、香水原料、化粧品原料、医薬品中間体、接着剤原料、高機能性樹脂原料として有用なものが多い。
 直鎖構造テルペンを基質として環式テルペンを生成させる酵素を、環式テルペン合成酵素と呼ぶ。環式テルペンは、環式テルペン合成酵素の作用によって直鎖構造テルペンが環状化することにより、合成される。例えば、環式モノテルペンは、IPPが二分子結合して例えばゲラニル二リン酸(GPP)が生成し、その後、環式モノテルペン合成酵素の作用で環状構造をとることにより、合成される。環式セスキテルペンは、前駆体であるファルネシル二リン酸(C15:FPP)が環式セスキテルペン合成酵素の作用で環状化することにより、合成される。環式ジテルペンは、前駆体であるゲラニルゲラニル二リン酸(C20:GGPP)が環式ジテルペン合成酵素の作用で環状化することにより、合成される。
 組換え細胞(組換え体)を用いた環式テルペンの生産方法としては、例えば、環式モノテルペンの一種であるβ-フェランドレンの生産方法が知られている(特許文献5)。この方法では、β-フェランドレン合成酵素をコードする核酸が導入された組換え細胞を用いて、ゲラニル二リン酸(GPP)又はネリル二リン酸(NPP)をβ-フェランドレンに変換し、β-フェランドレンを生産している。β-フェランドレンは、β-フェランドレン共役ジエン構造を有するため、高分子化に有用な天然モノマーである。
国際公開第2014/065271号 国際公開第2014/104202号 国際公開第2009/076676号 国際公開第2009/132220号 特開2014-76042号公報
 現在使用可能なイソプレン合成酵素と環式テルペン合成酵素のほとんどは、植物由来のものである。そのため、特に細菌宿主内で発現させた場合、細胞質内では立体構造形成がうまくいかず、宿主プロテアーゼによる分解、もしくは不溶化が起こることが問題となっている(特許文献3,4)。そのため、イソプレンや環式テルペンの生産性を向上させるために、組換え細胞内におけるイソプレン合成酵素や環式テルペン合成酵素の安定性を向上させるための方策が望まれている。
 そこで本発明は、組換え細胞内におけるイソプレン合成酵素や環式テルペン合成酵素の安定性を向上させ、組換え細胞によるイソプレンや環式テルペンの生産性を向上させる技術を提供することを目的とする。
 本発明者らは、分子シャペロンの一種であるFKBPファミリータンパク質を利用することにより、組換え細胞内におけるイソプレン合成酵素や環式テルペン合成酵素の安定性を向上させることに成功した。そして、当該組換え細胞を用いることにより、イソプレンや環式テルペンの生産性を向上させることに成功し、本発明を完成した。
 本発明の1つの様相は、イソプレン合成酵素及び環式テルペン合成酵素からなる群より選択された第一タンパク質とFKBPファミリータンパク質とが連結された融合タンパク質をコードする核酸である。
 本様相の核酸は、イソプレン合成酵素及び環式テルペン合成酵素からなる群より選択された第一タンパク質とFKBPファミリータンパク質とが連結された融合タンパク質(キメラタンパク質)をコードするものである。当該融合タンパク質では、同一分子内で隣接するFKBPファミリータンパク質の作用によりイソプレン合成酵素又は環式テルペン合成酵素が安定化されるので、イソプレン合成酵素活性や環式テルペン合成酵素活性がより安定的に発揮される。そのため、例えば、本様相の核酸を導入した組換え体で当該融合タンパク質を発現させた場合に、当該融合タンパク質は単独のイソプレン合成酵素や環式テルペン合成酵素と比較して、宿主プロテアーゼによる分解や不溶化が生じにくい。
 好ましくは、前記第一タンパク質が、イソプレン合成酵素である。
 本様相の核酸は、イソプレン合成酵素とFKBPファミリータンパク質とが連結された融合タンパク質をコードするものである。当該融合タンパク質では、同一分子内で隣接するFKBPファミリータンパク質の作用によりイソプレン合成酵素が安定化されるので、イソプレン合成酵素活性がより安定的に発揮される。そのため、例えば、本様相の核酸を導入した組換え体で当該融合タンパク質を発現させた場合に、当該融合タンパク質は単独のイソプレン合成酵素と比較して、宿主プロテアーゼによる分解や不溶化が生じにくい。
 好ましくは、前記イソプレン合成酵素が、下記(a-1)~(a-3)のいずれかである。
(a-1)配列番号2で表されるアミノ酸配列からなるタンパク質、
(a-2)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(a-3)配列番号2で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
 好ましくは、前記第一タンパク質が、環式モノテルペン合成酵素である。
 好ましくは、前記環式モノテルペン合成酵素が、フェランドレン合成酵素である。
 好ましくは、前記環式モノテルペン合成酵素が、下記(b-1)~(b-3)のいずれかである。
(b-1)配列番号4で表されるアミノ酸配列からなるタンパク質、
(b-2)配列番号4で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつβ-フェランドレン合成酵素の活性を有するタンパク質、
(b-3)配列番号4で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつβ-フェランドレン合成酵素の活性を有するタンパク質。
 好ましくは、前記第一タンパク質が、環式セスキテルペン合成酵素である。
 好ましくは、前記環式セスキテルペン合成酵素が、下記(c-1)~(c-3)のいずれかである。
(c-1)配列番号6で表されるアミノ酸配列からなるタンパク質、
(c-2)配列番号6で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつトリコジエン合成酵素の活性を有するタンパク質、
(c-3)配列番号6で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつトリコジエン合成酵素の活性を有するタンパク質。
 好ましくは、前記第一タンパク質が、環式ジテルペン合成酵素である。
 好ましくは、前記第一タンパク質が、原核生物由来のものである。
 好ましくは、前記FKBPファミリータンパク質が、原核生物由来のものである。
 好ましくは、前記FKBPファミリータンパク質が、アーキア由来のものである。
 好ましくは、前記FKBPファミリータンパク質の分子量が2万以下である。
 好ましくは、前記FKBPファミリータンパク質が、下記(d-1)~(d-3)のいずれかである。
(d-1)配列番号8で表されるアミノ酸配列からなるタンパク質、
(d-2)配列番号8で表されるアミノ酸配列において1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつFKBPファミリータンパク質としての活性を有するタンパク質、
(d-3)配列番号8で表されるアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつFKBPファミリータンパク質としての活性を有するタンパク質。
 好ましくは、前記FKBPファミリータンパク質が、トリガーファクターに属するものである。
 好ましくは、前記FKBPファミリータンパク質が前記第一タンパク質のN末端側に連結されている。
 好ましくは、前記融合タンパク質が、さらに分泌シグナル配列を有する。
 本発明の1つの様相は、上記の核酸にコードされた融合タンパク質である。
 本発明の1つの様相は、細菌である組換え細胞であって、上記の核酸を有し、かつ前記融合タンパク質を発現する組換え細胞である。
 本様相の組換え細胞は、細菌である組換え細胞であって、かつ前記融合タンパク質を発現するものである。本様相の組換え細胞によれば、前記融合タンパク質によってイソプレン合成酵素活性又は環式テルペン合成酵素活性が発揮されるので、より安定化されたイソプレン合成酵素活性又は環式テルペン合成酵素活性が得られる。
 本発明の1つの様相は、細菌である組換え細胞であって、イソプレン合成酵素及び環式テルペン合成酵素からなる群より選択された第一タンパク質をコードする第一核酸と、FKBPファミリータンパク質をコードする第二核酸とを有し、かつ前記イソプレン合成酵素又は環式テルペン合成酵素と前記FKBPファミリータンパク質とを発現する組換え細胞である。
 本様相の組換え細胞は、細菌である組換え細胞であって、イソプレン合成酵素又は環式テルペン合成酵素をコードする第一核酸とFKBPファミリータンパク質をコードする第二核酸とを有している。本様相の組換え細胞によれば、共存するFKBPファミリータンパク質によってイソプレン合成酵素又は環式テルペン合成酵素が安定化されるので、より安定化されたイソプレン合成酵素活性又は環式テルペン合成酵素活性が得られる。
 好ましくは、前記第一タンパク質がイソプレン合成酵素であり、前記イソプレン合成酵素と前記FKBPファミリータンパク質を発現する。
 本様相の組換え細胞は、イソプレン合成酵素をコードする第一核酸とFKBPファミリータンパク質をコードする第二核酸とを有している。本様相の組換え細胞によれば、共存するFKBPファミリータンパク質によってイソプレン合成酵素が安定化されるので、より安定化されたイソプレン合成酵素活性が得られる。
 好ましくは、前記第一タンパク質が、環式モノテルペン合成酵素である。
 好ましくは、前記環式モノテルペン合成酵素が、フェランドレン合成酵素である。
 好ましくは、前記第一タンパク質が、環式セスキテルペン合成酵素である。
 好ましくは、前記第一タンパク質が、環式ジテルペン合成酵素である。
 好ましくは、前記組換え細胞がC1化合物を資化する能力を有する。
 好ましくは、前記組換え細胞がメタノール又はメタンを資化する能力を有する。
 好ましくは、前記組換え細胞が一酸化炭素又は二酸化炭素を資化する能力を有する。
 好ましくは、前記組換え細胞が嫌気性細菌である。
 好ましくは、前記組換え細胞がClostridium属細菌又はMoorella属細菌である。
 本発明の1つの様相は、上記の組換え細胞に、二酸化炭素と水素とを含むガスを接触させ、当該組換え細胞に二酸化炭素からイソプレン又は環式テルペンを生産させるイソプレン又は環式テルペンの生産方法である。
 本様相はイソプレン又は環式テルペンの生産方法に係るものであり、上記の組換え細胞に、二酸化炭素と水素とを含むガスを接触させ、当該組換え細胞に二酸化炭素からイソプレン又は環式テルペンを生産させる。本様相によれば、組換え細胞内で発現するイソプレン合成酵素又は環式テルペン合成酵素がFKBPファミリータンパク質によって安定化されるので、高効率でイソプレン又は環式テルペンを生産することができる。
 好ましくは、前記ガスが、一酸化炭素と二酸化炭素と水素とを含むものであり、前記組換え細胞に一酸化炭素及び二酸化炭素からイソプレン又は環式テルペンを生産させる。
 本様相もイソプレン又は環式テルペンの生産方法に係るものであり、上記の組換え細胞に、一酸化炭素と二酸化炭素と水素とを含むガスを接触させ、当該組換え細胞に一酸化炭素及び二酸化炭素からイソプレン又は環式テルペンを生産させる。本様相によっても、組換え細胞内で発現するイソプレン合成酵素又は環式テルペン合成酵素がFKBPファミリータンパク質によって安定化されるので、高効率でイソプレン又は環式テルペンを生産することができる。
 好ましくは、前記組換え細胞の細胞外に放出されたイソプレン又は環式テルペンを回収する。
 好ましくは、固相吸着法により前記イソプレン又は環式テルペンを回収する。
 好ましくは、溶媒吸収法により前記イソプレン又は環式テルペンを回収する。
 本発明によれば、組換え細胞によるイソプレン又は環式テルペンの生産において、生産量を顕著に向上させることができる。
アセチルCoA経路とメタノール経路を表す説明図である。 ホルムアルデヒドを介した炭素同化代謝経路を表す説明図である。 pSKCLベクターの構成を表す説明図である。
 本発明の核酸(遺伝子)は、イソプレン合成酵素又は環式テルペン合成酵素とFKBPファミリータンパク質とが連結された融合タンパク質(キメラタンパク質)をコードするものである。換言すれば、本発明の核酸は、イソプレン合成酵素又は環式テルペン合成酵素をコードする遺伝子とFKBPファミリータンパク質をコードする遺伝子とが連結された融合遺伝子(キメラ遺伝子)である。
 FKBPファミリータンパク質は、FK506結合タンパク質(FK506 binding protein;FKBP)のことであり、ペプチジル-プロリル・シス-トランス・イソメラーゼ(Peptidyl-prolyl cis-trans isomerase)(以下、PPIaseと称する)活性と分子シャペロン活性とを有する。FKBPファミリータンパク質(FKBP型PPIase)の構造や分類については、例えば、国際公開第2004/001041号、国際公開第2005/063964号、等に記載されている。
 以下、FKBPファミリータンパク質を単にFKBPと略記することがある。
 PPIase活性とは、タンパク質中のプロリン残基のN末端側ペプチド結合のシス-トランス異性化反応を触媒する活性を指す。分子シャペロン活性とは、変性したタンパク質を元の正常型にリフォールディングさせる活性、又は、変性したタンパク質の不可逆的な凝集を抑制する活性を指す。
 FKBPファミリータンパク質は、PPIase活性に基づくポリペプチドの折り畳み速度を促進する作用を有するとともに、分子シャペロン活性に基づく疎水的ペプチド領域との相互作用による不溶化抑制作用を有する。FKBPファミリータンパク質との疎水的ペプチド配列の相互作用によって、新生ポリぺプチドはプロテアーゼによる分解から逃れることも可能となる。
 本発明で用いるFKBPファミリータンパク質の由来としては特に限定はないが、例えば原核生物由来のものや、アーキア(古細菌)由来のものを用いることができる。
 一般にFKBPファミリータンパク質は、その分子量の違いにより、分子量が2万以下、具体的には1.6万~1.8万程度のショートタイプと、分子量が2.6万~3.3万程度のロングタイプとに大別される。本発明ではショートタイプとロングタイプのいずれを用いてもよいが、分子シャペロン活性がより高いとされるショートタイプを用いることが好ましい。すなわち本発明では、分子量が2万以下のFKBPファミリータンパク質を用いることが好ましい。
 また、主にアーキア以外の由来のFKBPファミリータンパク質の分類として、トリガーファクタータイプ(Huang, Protein Sci. 9, 1254-, 2000)、FkpAタイプ(Arie, Mol. Microbiol. 39, 199-, 2001年)、FKBP52タイプ(Bose, Science 274, 1715-, 1996)等がある。本発明ではいずれのタイプを用いてもよく、例えばトリガーファクタータイプのFKBPファミリータンパク質を用いることができる。トリガーファクタータイプのFKBPファミリータンパク質は、ほとんど全てのバクテリアのゲノム上で見つかっている。
 アーキア由来のFKBPファミリータンパク質について詳しく研究されている(国際公開第2004/001041号、国際公開第2005/063964号等)。アーキア由来のショートタイプFKBPファミリータンパク質としては、Methanococcus thermolithotrophicus由来、Thermococcus sp. KS-1由来、Methanococcus jannaschii由来、等のものが挙げられる(Maruyama, Front.Biosci. 5, 821-, 2000)。
 アーキア由来のロングタイプFKBPファミリータンパク質としては、Pyrococcus horikoshii由来、Aeropyrum pernix由来、Sulfolobus solfataricus由来、Methanococcus jannaschii由来、Archaeoglobus fulgidus由来、Methanobacterium autotrophicum由来、Thermoplasma acidophilum由来、Halobacterium cutirubrum由来、等のものが挙げられる(Maruyama, Front.Biosci. 5, 821-, 2000)。
 一例として、配列番号7にThermococcus sp. KS-1由来ショートタイプFKBPファミリータンパク質(TcFKBP18)をコードする核酸(DNA)の塩基配列と対応のアミノ酸配列、配列番号8にアミノ酸配列のみを示す。
 本発明で用いるFKBPファミリータンパク質は、天然で見いだされ且つ単離されたFKBPファミリータンパク質の他、これらの改変体であってもよい。例えば、既存のFKBPファミリータンパク質の部分断片やアミノ酸置換変異体であって且つFKBPファミリータンパク質としての活性を有するタンパク質であってもよい。FKBPファミリータンパク質としての活性とは、PPIase活性と分子シャペロン活性である。
 前記したように、PPIase活性とは、タンパク質中のプロリン残基のN末端側ペプチド結合のシス-トランス異性化反応を触媒する活性を指す。PPIase活性の評価は、例えば、キモトリプシンカップリング法(J. Bacteriol. 1998, 180(2):388-394)により行なうことができる。
 前記したように、分子シャペロン活性とは、変性したタンパク質を元の正常型にリフォールディングさせる活性、又は、変性したタンパク質の不可逆的な凝集を抑制する活性を指す。分子シャペロン活性の評価方法としては、例えば、ロダネーゼ、クエン酸合成酵素、リンゴ酸脱水素酵素、グルコース-6-リン酸脱水素酵素等をモデル酵素とし(河田,バイオサイエンスとインダストリー,56,593-,1998年)、これらを6M塩酸グアニジン等のタンパク質変性剤で変性処理後、検定対象物質を含む緩衝液で変性剤を希釈した際に開始する変性タンパク質の再生率や、変性タンパク質の凝集の抑制率をもって、検定対象物の分子シャペロン活性を評価することができる。なお、変性タンパク質の再生率を評価する方法としては、例えばロダネーゼの場合、ホロビッチらの方法(Horowitz, Methods Mol. Biol., 40, 361-, 1995)が挙げられ、変性タンパク質の凝集抑制を評価する方法としては田口らの方法(Taguchi, J. Biol. Chem., 269, 8529-, 1994)等が挙げられる。
 例えば、本発明で用いるFKBPファミリータンパク質には、少なくとも、下記(d-1)~(d-3)のタンパク質が含まれる。
(d-1)配列番号8で表されるアミノ酸配列からなるタンパク質、
(d-2)配列番号8で表されるアミノ酸配列において1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつFKBPファミリータンパク質としての活性を有するタンパク質、
(d-3)配列番号8で表されるアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつFKBPファミリータンパク質としての活性を有するタンパク質。
 なお(d-3)におけるアミノ酸配列の相同性については、より好ましくは92%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。
 アミノ酸配列の相同性については、例えば、CulustalW等の市販の多重整列プログラムを用いて計算することができる。
 次に、イソプレン合成酵素について説明する。
 前記したように、イソプレン合成酵素(EC 4.2.3.27)は、イソペンテニル二リン酸(IPP)の異性体であるジメチルアリル二リン酸(DMAPP)をイソプレンに変換する作用を有する。なお、IPPとDMAPPとの間の構造変換は、イソペンテニル二リン酸イソメラーゼが触媒する。イソペンテニル二リン酸イソメラーゼは全ての生物に存在する。
 以下、イソプレン合成酵素をIspSと略記することがある。
 本発明で用いるイソプレン合成酵素としては特に限定はなく、例えば、植物等の真核生物由来のものを用いることができる。植物由来のイソプレン合成酵素としては、ポプラ(Populus nigra)、ムクナ、クズ由来のものが一般的であるが、その他、Salix属、Robinia属、Wisteria属、Triticum属、Morus属、などの由来のものがあり、全て本発明に適用可能である。
 配列番号1にポプラ由来イソプレン合成酵素(GenBank Accession No.: AM410988.1)をコードする核酸(DNA)の塩基配列と対応のアミノ酸配列、配列番号2にアミノ酸配列のみを示す。
 植物以外の由来のイソプレン合成酵素としては、原核生物由来のものが挙げられる。例えば、Bacillus subtilis由来のイソプレン合成酵素(Sivy TL. et al., Biochem. Biophys. Res. Commu. 2002, 294(1), 71-5)が挙げられる。
 本発明で用いるイソプレン合成酵素についても、天然で見いだされ且つ単離されたイソプレン合成酵素の他、これらの改変体であってもよい。例えば、既存のイソプレン合成酵素の部分断片やアミノ酸置換変異体であって且つイソプレン合成酵素の活性を有するタンパク質であってもよい。
 例えば、本発明で用いるイソプレン合成酵素には、少なくとも、下記(a-1)~(a-3)のタンパク質が含まれる。
(a-1)配列番号2で表されるアミノ酸配列からなるタンパク質、
(a-2)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(a-3)配列番号2で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
 なお(a-3)におけるアミノ酸配列の相同性については、より好ましくは92%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。
 次に、環式テルペン合成酵素について説明する。
 前記したように、環式テルペン合成酵素は、直鎖構造テルペンを基質として環式テルペンを生成させる酵素である。環式テルペン合成酵素の例としては、環式モノテルペン合成酵素、環式セスキテルペン合成酵素、環式ジテルペン合成酵素、等が挙げられる。
 環式モノテルペン合成酵素は、ゲラニル二リン酸(GPP)を環状化して環式モノテルペンに変換する作用を有する。
 環式モノテルペン合成酵素の具体例として、フェランドレン合成酵素が挙げられる。例えば、フェランドレン合成酵素の一種であるβ-フェランドレン合成酵素は、ゲラニル二リン酸(GPP)又はネリル二リン酸(NPP)をβ-フェランドレンに変換する活性を有する(特許文献5)。
 β-フェランドレン合成酵素及びそれをコードする核酸の具体例としては、トマト(Solanum lycopersicum)由来のもの(GenBank Accession No.: FJ797957; Schilmiller, A. L., et al., Proc Natl Acad Sci U S A., 2009, 106, 10865-70.)、ラベンダー(Lavandula angustifolia)由来のもの(GenBank Accession No.: HQ404305; Demissie, Z. A., et al., Planta, 2011,. 233, 685-96)、等が挙げられる。
 配列番号3に上記ラベンダー由来のβ-フェランドレン合成酵素をコードする核酸(DNA)の塩基配列と対応のアミノ酸配列、配列番号4にアミノ酸配列のみを示す。配列番号3で表される塩基配列を有するDNAは、β-フェランドレン合成酵素(環式モノテルペン合成酵素)をコードする核酸の一例となる。
 環式セスキテルペン合成酵素は、ファルネシル二リン酸(FPP)を環状化して環式セスキテルペンに変換する作用を有する。環式セスキテルペン合成酵素の例として、トリコジエン合成酵素(Trichodiene synthase)が挙げられる。
 配列番号5にFusarium poae由来のトリコジエン合成酵素をコードする核酸(DNA)の塩基配列と対応のアミノ酸配列、配列番号6にアミノ酸配列のみを示す。配列番号5で表される塩基配列を有するDNAは、トリコジエン合成酵素(環式セスキテルペン合成酵素)をコードする核酸の一例となる。
 環式ジテルペン合成酵素は、ゲラニルゲラニル二リン酸(GGPP)を環状化して環式ジテルペンに変換する作用を有する。
 本発明で用いる環式テルペン合成酵素についても、天然で見いだされ且つ単離された環式テルペン合成酵素の他、これらの改変体であってもよい。例えば、既存の環式テルペン酵素の部分断片やアミノ酸置換変異体であって且つ環式テルペン合成酵素の活性を有するタンパク質であってもよい。
 例えば、本発明で用いる環式モノテルペン合成酵素には、少なくとも、下記(b-1)~(b-3)のいずれかのタンパク質が含まれる。
(b-1)配列番号4で表されるアミノ酸配列からなるタンパク質、
(b-2)配列番号4で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつβ-フェランドレン合成酵素の活性を有するタンパク質、
(b-3)配列番号4で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつβ-フェランドレン合成酵素の活性を有するタンパク質。
 なお(b-3)におけるアミノ酸配列の相同性については、より好ましくは92%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。
 例えば、本発明で用いる環式セスキテルペン合成酵素には、少なくとも、下記(c-1)~(c-3)のいずれかのタンパク質が含まれる。
(c-1)配列番号6で表されるアミノ酸配列からなるタンパク質、
(c-2)配列番号6で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつトリコジエン合成酵素の活性を有するタンパク質、
(c-3)配列番号6で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつトリコジエン合成酵素の活性を有するタンパク質。
 なお(c-3)におけるアミノ酸配列の相同性については、より好ましくは92%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。
 本発明の核酸がコードする融合タンパク質において、第一タンパク質(イソプレン合成酵素又は環式テルペン合成酵素)とFKBPファミリータンパク質との連結方向について特に限定はない。すなわち、第一タンパク質のN末端側にFKBPファミリータンパク質が連結されていてもよいし、第一タンパク質のC末端側にFKBPファミリータンパク質が連結されていてもよい。また、第一タンパク質とFKBPファミリータンパク質とは、直接連結されていてもよいし、ペプチドリンカー等を介して連結されていてもよい。ペプチドリンカーとしては、例えば、10~50個程度の構造的にフレキシブルなアミノ酸配列で構成されているペプチドリンカー、例えば、グリシン4個及びセリン1個からなるアミノ酸配列の繰り返し構造からなるペプチドリンカーが使用可能である。
 前記融合タンパク質は、さらに分泌シグナルを有するものでもよい。分泌シグナルを付与することにより、宿主細胞内で発現させた場合に、分泌発現が可能となる。
 本発明は、上記核酸にコードされた融合タンパク質、すなわち、第一タンパク質(イソプレン合成酵素又は環式テルペン合成酵素)とFKBPファミリータンパク質とが連結された融合タンパク質を包含する。
 本発明は、細菌である組換え細胞であって、上記融合タンパク質をコードする核酸を有し、かつ当該融合タンパク質を発現する組換え細胞を包含する。
 また本発明は、細菌である組換え細胞であって、第一タンパク質(イソプレン合成酵素又は環式テルペン合成酵素)をコードする第一核酸とFKBPファミリータンパク質をコードする第二核酸とを有し、かつ前記イソプレン合成酵素又は環式テルペン合成酵素と前記FKBPファミリータンパク質とを発現する組換え細胞を包含する。
 さらに本発明は、細菌である組換え細胞であって、イソプレン合成酵素をコードする第一核酸とFKBPファミリータンパク質をコードする第二核酸とを有し、かつ前記イソプレン合成酵素と前記FKBPファミリータンパク質を発現する組換え細胞を包含する。
 いずれの組換え細胞においても、隣接または共存するFKBPファミリータンパク質の存在によって、イソプレン合成酵素又は環式テルペン合成酵素が安定化される。
 本発明の組換え細胞は、例えば、細菌である宿主細胞に上記核酸を導入することにより得ることができる。
 一般に、細菌等の原核生物は非メバロン酸経路(MEP経路)によるイソペンテニル二リン酸(IPP)の合成能を有している。また前記したように、イソペンテニル二リン酸イソメラーゼは全ての生物に存在する。したがって本発明の組換え細胞は、IPPから変換されたDMAPPを、イソプレンに変換することができる。すなわち本発明の組換え細胞は、イソプレンを生産することができる。
 さらに本発明の組換え細胞は、IPPを前駆体とするゲラニル二リン酸(GPP)、ファルネシル二リン酸(FPP)、ゲラニルゲラニル二リン酸(GGPP)等を、環式テルペンに変換することができる。すなわち、本発明の組換え細胞は、環式テルペンを生産することができる。
 前記宿主細胞としては、細菌であれば特に限定はない。例えば、大腸菌や枯草菌のような、外来遺伝子を発現させるための宿主として一般的に用いられている細菌が、本発明でも適用できる。
 1つの実施形態として、C1化合物を資化する能力を有する細菌を、宿主細胞として用いることができる。例えば、一酸化炭素、二酸化炭素、メタン、メタノール、メチルアミン、ギ酸、ホルムアミド等を資化する能力を有する細菌を、宿主細胞として用いることができる。これにより、一酸化炭素、二酸化炭素、メタン、メタノール、メチルアミン、ギ酸、ホルムアミド等のC1化合物を資化する能力を有する組換え細胞を得ることができる。
 1つの実施形態として、一酸化炭素又は二酸化炭素を資化する能力を有する細菌を宿主細胞に用いることができる。これにより、一酸化炭素又は二酸化炭素を資化する能力を有する組換え細胞を得ることができる。前記宿主細胞は具体的には嫌気性原核細胞であり、特に、メチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能を有する嫌気性原核細胞である。また、一酸化炭素脱水素酵素(Carbon monoxide dehydrogenase;EC 1.2.99.2)をさらに有する嫌気性原核細胞が好ましい。詳細には、主に一酸化炭素代謝、すなわち一酸化炭素脱水素酵素の働きにより、一酸化炭素と水から二酸化炭素とプロトンを発生する機能によって生育する嫌気性原核細胞が好ましい。このような嫌気性原核細胞の例としては、図1に示すアセチルCoA経路(Wood-Ljungdahl pathway)とメタノール経路(Methanol pathway)を有する嫌気性原核細胞が挙げられる。
 このような嫌気性原核細胞を宿主細胞として用いることにより、一酸化炭素や二酸化炭素のようなガスを炭素源として、組換え細胞にイソプレンや環式テルペンを生産させることが可能となる。
 当該嫌気性原核細胞の具体例としては、Clostridium ljungdahlii、Clostridium autoethanogenumn、Clostridium carboxidivorans、Clostridium ragsdalei(Kopke M. et al., Appl. Environ. Microbiol. 2011, 77(15), 5467-5475)、Moorella thermoacetica(Clostridium thermoaceticumと同じ) (Pierce EG. Et al., Environ. Microbiol. 2008, 10, 2550-2573)、等のClostridium属細菌又はMoorella属細菌が挙げられる。特に、Clostridium属細菌は、宿主-ベクター系や培養方法が確立しており、本発明の組換え細胞における宿主細胞として好適である。なお、上記5種のClostridium属細菌又はMoorella属細菌は、合成ガス資化性微生物の代表例として知られている。
 その他、Carboxydocella sporoducens sp. Nov.、Rhodopseudomonas gelatinosa、Eubacterium limosum,Butyribacterium methylotrophicum、等の原核細胞を宿主細胞として用いることができる。
 なお、組換え細胞によって合成ガスからイソプレンを生産させる技術の基本構成については、上記特許文献1に記載されている。
 1つの実施形態として、メチロトローフの一種であるメタノール資化性細菌を宿主細胞に用いることができる。これにより、メタノールを資化する能力を有する組換え細胞を得ることができる。
 メチロトローフとは、分子内にC-C結合を有さない炭素化合物、例えばメタン、メタノール、メチルアミン、ジメチルアミン、トリメチルアミン等を唯一の炭素源、エネルギー源として利用するC1化合物資化性微生物の総称名である。メサノトローフ(Methanotroph)、メタン酸化細菌、メタノール資化性細菌、メタノール資化性酵母、メタノール資化性微生物等と呼ばれる微生物は、全てメチロトローフに属するものである。メサノトローフは、メタンをメタンモノオキシダーゼの作用によってメタノールに変換し、メチルトローフと同一代謝でメタノールを異化することができる。
 メチロトローフは、メタノールをホルムアルデヒドに変換後、ホルムアルデヒドをC-C結合を有する有機物に変換する反応を中心代謝とする。ホルムアルデヒドを介した炭素同化代謝経路として、図2に示すセリン経路、リブロースモノリン酸経路(RuMP経路)、及びキシルロースモノリン酸経路(XuMP経路)が知られている。本発明で用いることができるメタノール資化性細菌は、セリン回路又はRuMP経路を保有している。
 メチロトローフは、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能と、ホルムアルデヒド固定化能を備えている。
 当該メタノール資化性細菌の例としては、Methylacidphilum属、Methylosinus属、Methylocystis属、Methylobacterium属、Methylocella属、Methylococcus属、Methylomonas属、Methylobacter属、Methylobacillus属、Methylophilus属、Methylotenera属、Methylovorus属、Methylomicrobium属、Methylophaga属、Methylophilaceae属、Methyloversatilis属、Mycobacterium属、Arthrobacter属、Bacillus属、Beggiatoa属、Burkholderia属、Granulibacter属、Hyphomicrobium属、Pseudomonas属、Achromobactor属、Paracoccus属、Crenothrix属、Clonothrix属、Rhodobacter属、Rhodocyclaceae属、Silicibacter属、Thiomicrospira属、Verrucomicrobia属、などに属するメチロトローフが挙げられる。
 なお、メチロトローフ以外の細菌であっても、メチロトローフの特徴である「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能」と「ホルムアルデヒド固定化能」を付与することにより、メタノール資化性細菌と同様に扱うことができる。
 メチロトローフである組換え細胞によってメタノールやメタンからイソプレンを生産させる技術の基本構成については、上記特許文献2に記載されている。
 宿主細胞(細菌)に遺伝子を導入する方法については、宿主細胞の種類等によって適宜選択すればよく、例えば、自己複製プラスミド(ベクター)で目的遺伝子を導入する方法や、ゲノム導入法が採用可能である。
 例えば、宿主細胞に導入可能でかつ組み込まれた核酸を発現可能な自己複製プラスミド(ベクター)を用いることができる。当該ベクターとしては、宿主細胞において自立複製可能ないしは染色体中への組み込みが可能で、挿入された上記核酸(DNA)を転写できる位置にプロモーターを含有しているものを用いることができる。例えば、当該ベクターを用いて、プロモーター、リボソーム結合配列、上記核酸(DNA)、および転写終結配列からなる一連の構成を宿主細胞内で構築することが好ましい。
 また、ベクターを用いて複数種の核酸を宿主細胞に導入する場合には、各核酸を1つのベクターに組み込んでもよいし、別々のベクターに組み込んでもよい。さらに、1つのベクターに複数種の核酸を組み込む場合には、各核酸を共通のプロモーターの下で発現させてもよいし、別々のプロモーターの下で発現させてもよい。複数種の核酸を導入する例としては、FKBPファミリータンパク質をコードする核酸と、イソプレン合成酵素又は環式テルペン合成酵素をコードする核酸とを導入する実施形態(共発現)が挙げられる。
 宿主が大腸菌である場合に使用可能な自己複製ベクターとしては、市販のpET(Novagen社)、pBAD(Life technologies社)、pGEM(Promega社)等が挙げられる。宿主がメタノール資化性細菌の場合には、pAYC32(Chistoserdov AY., et al., Plasmid 1986, 16, 161-167)、pRP301(Lane M., et al., Arch. Microbiol. 1986, 144(1), 29-34)、pBBR1、pBHR1(Antoine R. et al., Molecular Microbiology 1992, 6, 1785-1799)、pCM80(Marx CJ. et al., Microbiology 2001, 147, 2065-2075)、等のベクターが挙げられる。宿主がClostridium属細菌である場合には、pJIR(Brandshaw M., et al., Plasmid 40 (3), 233-237)、pIMP1(Mermelstein LD et al., Bio/technology 1992, 10, 190-195)、pMTL(Ng, YK. Et al., PLoS One 2013, 8 (2), e56051)、pMVTcatMCS47(Berzin, V. et al., Appl. Biochem. Biotechnol. 2012, 167, 338-347)等のベクターが挙げられる。これらの自己複製ベクターは、電気穿孔法、接合法、化学的処理法等によって宿主細胞内へ導入することができる。
 一方、ゲノム導入法は、相同組換え、トランスポゾン法(Martinerz-Garcia E. et al., BMC Microbiol. 11:38)、インテグラーゼ法(Miyazaki, R. et al., Appl. Environ. Microbiol. 2014, 79 (14), 4440-4447)、Cre/loxP法(Bertram, R. et al., J. Mol. Microbiol. Biotechnol. 2009, 17 (3), 136-145)、Flp/FRT法(Al-Hinai, MA. et al., Appl. Environ. Microbiol. 2012, 78 (22), 8112-8121)等の手法を使って行うことができる。
 イソプレンや環式テルペンの生産能を向上させる観点から、組換え細胞には他の核酸が導入されてもよい。例えば、イソペンテニル二リン酸(IPP)の合成経路であるメバロン酸経路経路(MVA経路)や非メバロン酸経路(MEP経路)で作用する酵素(群)をコードする核酸を導入することができる。これにより、DMAPPの供給源であるIPPの合成能が強化され、結果的にイソプレンや環式テルペンの合成能が強化される。
 本発明の組換え細胞を培養する方法としては特に限定はなく、組換え細胞が増殖可能な培地を用いて培養することができる。例えば宿主が大腸菌や枯草菌のような従属栄養微生物の場合は、グルコース、サッカロース等の炭素源が使用可能である。宿主がメタノール資化性細菌の場合は、メタノールを0.1~5.0%(v/v)含有する培地を用いることが好ましい。宿主が合成ガス資化性菌の場合は、炭素源、エネルギー源として以下の組成のものが利用可能である。
・CO
・CO/H2
・CO2/H2
・CO/CO2/H2
・CO/HCOOH
・CO2/HCOOH
・CO/CH3OH
・CO2/CH3OH
・CO/H2/HCOOH
・CO2/H2/HCOOH
・CO/H2/CH3OH
・CO2/H2/CH3OH
・CO/CO2/H2/HCOOH
・CO/CO2/H2/CH3OH
・CH3OH/H2
・HCOOH/H2
 また、宿主がメタノール資化性菌や合成ガス資化性菌であっても、グルコースやサッカロース等の糖質炭素源を必要に応じて添加して培養しても良い。また、バッチ式、流加式、連続式等いかなる培養方法も適用可能である。また流加式、連続式培養では、さらに培養液の半透膜循環によって細胞密度を高めて培養することが可能となる。
 本発明は、上記の組換え細胞に二酸化炭素と水素とを含むガスを接触させ、当該組換え細胞に二酸化炭素からイソプレン又は環式テルペンを生産させるイソプレン又は環式テルペンの生産方法を包含する。さらに本発明は、上記の組換え細胞に一酸化炭素と二酸化炭素と水素とを含むガスを接触させ、当該組換え細胞に一酸化炭素及び二酸化炭素からイソプレン又は環式テルペンを生産させるイソプレン又は環式テルペンの生産方法を包含する。
 例えば、上記したメチルテトラヒドロ葉酸、一酸化炭素、及びCoAからアセチルCoAを合成する機能を有する嫌気性原核細胞を宿主細胞とした組換え細胞に、上記ガスを接触させて、上記ガスからイソプレン又は環式テルペンを生産することができる。
 1つの例としては、上記ガスを炭素源として用いて組換え細胞を培養し、該培養物からイソプレン又は環式テルペンを単離することができる。
 その他、細胞増殖の有無にかかわらず、組換え細胞に上記ガスを接触させることにより、イソプレン又は環式テルペンを生産させることができる。例えば、固定化した組換え細胞に上記ガスを連続的に供給し、イソプレン又は環式テルペンを連続的に生産させることができる。
 組換え細胞により生産されたイソプレン又は環式テルペンは、例えば細胞外の気相から回収することができる。回収方法としては、例えば、固相吸着法や溶媒吸収法を採用することができる。
 なお、本発明の組換え細胞について、イソプレンや環式テルペンの生産を目的とせず、専ら細胞を増やす目的や、融合タンパク質自体を取得する目的で培養する場合には、上記ガスを炭素源として用いる必要はない。例えば、上記したような糖類やグリセリンといった他の炭素源を用いて、組換え細胞を培養すればよい。
 以下、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
〔実施例1〕
 大腸菌BL21株(Lon-, OmpT-)におけるFKBP-IspS融合タンパク質の発現とイソプレン生産
 配列番号9で表される人工合成遺伝子(DNA)を作製した。この人工合成遺伝子は、Thermococcus由来FKBPとポプラ(Populus nigra)由来イソプレン合成酵素(IspS)との融合タンパク質をコードする遺伝子、並びに、放線菌由来イソペンテニル二リン酸イソメラーゼ(Isopentenyl diphosphate isomerase;IDI)をコードする遺伝子を含んでいる。またFKBP-IspS融合タンパク質のC末端に6個のヒスチジンから成るタグ配列が設けられるよう設計されている。この人工合成遺伝子をpET-3aベクターのNdeI及びBamHI切断部位へ導入し、発現ベクターpTFKISを構築した。pTFKISを大腸菌BL21株(Lon-, OmpT-)へ導入し、組換え体を取得した。
 この組換え体を、アンピシリンを100μg/mL濃度で含有する2×YT培地にて30℃で培養した。培養開始から16時間後に、5mLの培養液をセプタムキャップで密閉されたTORAST HS 20ml vial(島津製作所社)中に移し、0.1mM IPTGを添加し、さらに培養を30℃で20時間継続した。培養終了後、GCMS QP2010 ultra(島津製作所社)によるヘッドスペースサンプリング測定を行った。GCカラムは、ZB-624(phenomenex社:膜厚 1.40μm / 長さ30.0m / 内径 0.25mm)を用いた。乾燥菌体重量(g)あたりのイソプレン生成量を算出した。培養は計3回行い、平均値を採用した(N=3)。
 一方、培養終了後菌体を回収し、超音波によって得た菌体破砕液を遠心分離によって上清(可溶性画分)と沈殿画分に分離した。これら両画分を電気泳動に供し、抗6ヒスタグ抗体(GEヘルスケア社)によるウエスタンブロッティングによって、FKBP-IspS融合タンパク質の発現を確認した。発現量の評価は、抗体染色による発色強度を0-5の6段階で評価することにより行った。
 対照として、pET3aベクターのみが導入された大腸菌BL21株(Lon-, OmpT-)についても同様の実験を行った。
〔比較例1〕
 FKBP-IspS融合タンパク質に代えて、IspSを単独で用い、実施例1と同様の実験を行った。
 配列番号10で表される人工合成遺伝子(DNA)を作製した。この人工合成遺伝子は、ポプラ由来IspSをコードする遺伝子、並びに、放線菌由来イソペンテニル二リン酸イソメラーゼ(IDI)をコードする遺伝子を含んでいるが、FKBP遺伝子を含んでいない。またIspSのC末端に6個のヒスチジンから成るタグ配列が設けられるよう設計されている。この人工合成遺伝子をpET-3aベクターのNdeI及びBamHI切断部位へ導入し、発現ベクターpTISを構築した。pTFKISを大腸菌BL21株(Lon-, OmpT-)へ導入し、組換え体を取得した。
 実施例1と同様にして、組換え体の培養を行った。さらに、実施例1と同様にして、ヘッドスペースサンプリング測定を行った。さらに、ウエスタンブロッティングによってIspSの発現を確認した。
 結果を表1に示す。すなわち、FKBPとIspSとの融合タンパク質をコードする遺伝子が導入された大腸菌組換え体(実施例1)のイソプレン生成量は54.5mg/g乾燥菌体であり、非融合体のIspS遺伝子が導入された大腸菌組換え体(比較例1)のイソプレン生産量(7.4mg/g乾燥菌体)より顕著に高かった。
 またIspSの発現(ウエスタンブロッティング発色強度)について、実施例1の組換え体では可溶性画分において十分な量のIspSが認められ、沈殿画分に検出されたIspSは僅かであった。このことから、IspSは、FKBPとの融合により可溶性画分での正常な立体構造を保持した活性型IspSの発現量が増加し、これによりイソプレンの生産量が増加したと考えられた。一方、比較例1の組換え体ではIspSが主に沈殿画分に検出され、可溶性画分には少ししか検出されなかった。
 以上より、FKBPとIspSとの融合タンパク質をコードする遺伝子が導入された大腸菌組換え体を用いることによって、イソプレンの生産量を顕著に向上させることができた。
Figure JPOXMLDOC01-appb-T000001
〔実施例2〕
 合成ガス資化性菌Clostridium ljungdahliiにおけるFKBP-IspS融合タンパク質の発現とイソプレン生産
 配列番号11で表される人工合成遺伝子(DNA)を作製した。この人工合成遺伝子は、実施例1と同様に、Thermococcus由来FKBPとポプラ由来IspSとの融合タンパク質をコードする遺伝子、並びに、放線菌由来IDIをコードする遺伝子を含んでおり、さらに、C. ljungdahlii由来のpta(Phosphotransacetylase)プロモーターによってこれらの遺伝子の発現が誘導されるよう設計されている。また、FKBP-IspS融合タンパク質のC末端に6個のヒスチジンから成るタグ配列が設けられるよう設計されている。この人工合成遺伝子を、pSKCLベクター(図3、配列番号13)のTspMI及びBspEI切断部位へ導入し、発現ベクターpSCLFKISを構築した。pSCLFKISをC. ljungdahlii (DSM13528)株へ導入し、組換え体を取得した。
 この組換え体を、セプタムキャップで密閉されたTORAST HS 20ml vial(島津製作所社)中で、クロラムフェニコールを30μg/mL濃度で含有するPETC 1754培地(ATCC: American Type Culture Collection)5mLにて37℃で培養した。培養液のOD600値が1.0を超えた時点で、実施例1と同様の方法にて気相中のイソプレン量を測定した。培養は計3回行い、平均値を採用した(N=3)。
 また、培養終了後に菌体を回収し、フレンチプレスによって得た菌体破砕液を遠心分離によって上清(可溶性画分)と沈殿画分に分離した。両画分について、実施例1と同様の方法でウエスタンブロッティングによるIspSの発現を確認した。
 対照として、pSKCLベクターのみが導入されたC. ljungdahliiについても同様の実験を行った。
〔比較例2〕
 FKBP-IspS融合タンパク質に代えて、IspSを単独で用い、実施例2と同様の実験を行った。
 配列番号12で表される人工合成遺伝子(DNA)を作製した。この人工合成遺伝子は、Populus nigra由来IspSをコードする遺伝子、並びに、放線菌由来イソペンテニル二リン酸イソメラーゼ(IDI)をコードする遺伝子を含んでいるが、FKBP遺伝子を含んでいない。また、C. ljungdahlii由来のptaプロモーターによってこれらの遺伝子の発現が誘導されるよう設計されている。また、FKBP-IspS融合タンパク質のC末端に6個のヒスチジンから成るタグ配列が設けられるよう設計されている。この人工合成遺伝子を、pSKCLベクター(図3)のTspMI及びBspEI切断部位へ導入し、発現ベクターpSCLISを構築した。pSCLISをC. ljungdahlii (DSM13528)株へ導入し、組換え体を取得した。
 実施例2と同様にして、組換え体の培養を行った。さらに、実施例2と同様にして、ヘッドスペースサンプリング測定を行った。さらに、ウエスタンブロッティングによってIspSの発現を確認した。
 結果を表2に示す。すなわち、FKBPとIspSとの融合タンパク質をコードする遺伝子が導入されたC. ljungdahlii組換え体(実施例2)のイソプレン生成量は2963μg/g乾燥菌体であり、非融合体のIspS遺伝子が導入されたC. ljungdahlii組換え体(比較例2)のイソプレン生成量(0.50μg/g乾燥菌体)より顕著に高かった。
 またIspSの発現(ウエスタンブロッティング発色強度)について、実施例2の組換え体では可溶性画分において十分な量のIspSが認められ、沈殿画分に検出されたIspSは僅かであった。これに対し、比較例2の組換え体ではIspSがほとんど検出されず、沈殿画分に僅かに認められたのみであった。これは、C. ljungdahliiでは非融合のIspSが正常な立体構造をとれず、プロテアーゼにより殆ど分解されてしまうためと考えられた。
 以上より、FKBPとIspSとの融合タンパク質をコードする遺伝子が導入されたC. ljungdahlii組換え体を用いることによって、イソプレンの生産量を顕著に向上させることができた。
Figure JPOXMLDOC01-appb-T000002
〔実施例3〕
 メチロトローフMethylobacterium extorquensにおけるFKBP-β-フェランドレン融合タンパク質の発現とβ-フェランドレン生産
 本実施例では、環式モノテルペンの一種であるβ-フェランドレンを生産するMethylobacterium extorquensの組換え体を作製した。なお、M. extorquensは、イソペンテニル二リン酸(IPP)からβ-フェランドレン合成酵素の基質となるゲラニル二リン酸(GPP)を合成する酵素を保有している。そのため、本菌株にβ-フェランドレン合成酵素遺伝子を導入し、当該遺伝子が発現することで、メタノールからのβ-フェランドレン合成が可能になると考えられた。
 配列番号14で表される人工合成遺伝子(DNA)を作製した。この人工合成遺伝子は、Thermococcus由来FKBPとラベンダー由来のβ-フェランドレン合成酵素(bPHS)との融合タンパク質をコードする遺伝子を含んでおり、実施例2で使用されたptaプロモーターによって遺伝子の発現が誘導されように設計されている。この人工合成遺伝子を、配列番号15の広宿主域ベクターであるpCM80(Marx CJ. et al., Microbiology 2001, 147, 2065-2075)のBamHI/KpnIサイトへ導入し、pC80FkPHSを作製した。発現ベクターpCM80FkPHSをエレクトロポレーションによってM. extorquensへ導入し、ME-FkPHS株を得た。
 ME-FkPHS株を、メタノールを唯一の炭素源とする合成培地(1LあたりH3PO4 18g、K2SO4 14.28g、KOH 3.9g、CaSO4・2H2O 0.9g、MgSO4・7H2O 11.7g、CuSO4・5H2O 8.4mg、KI 1.1mg、MnSO42O 4.2mg、NaMoO4・2H2O 0.3mg、H3BO3 0.03mg、CoCl2・6H2O 0.7mg、ZnSO4・7H2O 28mg、FeSO4・7H2O 91mg、ビオチン 0.28mg、メタノール5mL、及びテトラサイクリン10mgを含む。)20mLにて、好気的に30℃で培養した。培養液のOD600が1.0-1.2の時点で、菌体を回収した。回収された菌体の一部をセプタムキャップで密閉されたTORAST HS 20ml vial(島津製作所社)中で、テトラサイクリンを20μg/mL濃度で含有する上記合成培地5mLにて30℃で培養した。培養液のOD600値が1.0を超えた時点で、実施例1と同様の方法にて気相中のβ-フェランドレン量を測定した。培養は計3回行い、平均値を採用した(N=3)。
 対照として、pCM80ベクターのみが導入されたM. extorquensについても同様の実験を行った。
 その結果、pCM80が導入されたM. extorquensは、β-フェランドレンを全く生産していなかったが、ME-FkPHS株は7.3mg/g乾燥菌体のβ-フェランドレンを生産していた。
〔比較例3〕
 FKBP-bPHS融合タンパク質に代えて、bPHSを単独で用い、実施例3と同様の実験を行った。
 配列番号16で表される人工合成遺伝子を作製した。この人工合成遺伝子は、ラベンダー由来のβ-フェランドレン合成酵素(bPHS)のみをコードする遺伝子を含んでおり、実施例3で使用されたptaプロモーターによって遺伝子の発現が誘導されるように設計されている。この人工合成遺伝子を、実施例3で使用したpCM80のBamHI/KpnIサイトへ導入し、pC80PHSを作製した。発現ベクターpCM80PHSをエレクトロポレーションによってM. extorquensへ導入し、ME-PHS株を得た。実施例3と同様にして本組換え体の培養を行った。
 その結果、ME-PHS株によるβ-フェランドレンの生産量は0.4mg/g乾燥菌体であった。以上の結果より、メチロトローフにおいてもFKBPとbPHSを融合させることによって、β-フェランドレンの生産量を顕著に上昇させることができた。

Claims (35)

  1.  イソプレン合成酵素及び環式テルペン合成酵素からなる群より選択された第一タンパク質とFKBPファミリータンパク質とが連結された融合タンパク質をコードする核酸。
  2.  前記第一タンパク質が、イソプレン合成酵素である請求項1に記載の核酸。
  3.  前記イソプレン合成酵素が、下記(a-1)~(a-3)のいずれかである請求項2に記載の核酸。
    (a-1)配列番号2で表されるアミノ酸配列からなるタンパク質、
    (a-2)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
    (a-3)配列番号2で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
  4.  前記第一タンパク質が、環式モノテルペン合成酵素である請求項1に記載の核酸。
  5.  前記環式モノテルペン合成酵素が、フェランドレン合成酵素である請求項4に記載の核酸。
  6.  前記環式モノテルペン合成酵素が、下記(b-1)~(b-3)のいずれかである請求項4に記載の核酸。
    (b-1)配列番号4で表されるアミノ酸配列からなるタンパク質、
    (b-2)配列番号4で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつβ-フェランドレン合成酵素の活性を有するタンパク質、
    (b-3)配列番号4で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつβ-フェランドレン合成酵素の活性を有するタンパク質。
  7.  前記第一タンパク質が、環式セスキテルペン合成酵素である請求項1に記載の核酸。
  8.  前記環式セスキテルペン合成酵素が、下記(c-1)~(c-3)のいずれかである請求項7に記載の核酸。
    (c-1)配列番号6で表されるアミノ酸配列からなるタンパク質、
    (c-2)配列番号6で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつトリコジエン合成酵素の活性を有するタンパク質、
    (c-3)配列番号6で表されるアミノ酸配列と90%以上の相同性を示すアミノ酸配列を有し、かつトリコジエン合成酵素の活性を有するタンパク質。
  9.  前記第一タンパク質が、環式ジテルペン合成酵素である請求項1に記載の核酸。
  10.  前記第一タンパク質が、原核生物由来のものである請求項1~9のいずれかに記載の核酸。
  11.  前記FKBPファミリータンパク質が、原核生物由来のものである請求項1~10のいずれかに記載の核酸。
  12.  前記FKBPファミリータンパク質が、アーキア由来のものである請求項1~10のいずれかに記載の核酸。
  13.  前記FKBPファミリータンパク質の分子量が2万以下である請求項1~12のいずれかに記載の核酸。
  14.  前記FKBPファミリータンパク質が、下記(d-1)~(d-3)のいずれかである請求項1~10のいずれかに記載の核酸。
    (d-1)配列番号8で表されるアミノ酸配列からなるタンパク質、
    (d-2)配列番号8で表されるアミノ酸配列において1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつFKBPファミリータンパク質としての活性を有するタンパク質、
    (d-3)配列番号8で表されるアミノ酸配列と相同性が90%以上のアミノ酸配列からなり、かつFKBPファミリータンパク質としての活性を有するタンパク質。
  15.  前記FKBPファミリータンパク質が、トリガーファクターに属するものである請求項1~10に記載の核酸。
  16.  前記FKBPファミリータンパク質が前記第一タンパク質のN末端側に連結されている請求項1~15のいずれかに記載の核酸。
  17.  前記融合タンパク質が、さらに分泌シグナル配列を有する請求項1~16のいずれかに記載の核酸。
  18.  請求項1~17のいずれかに記載の核酸にコードされた融合タンパク質。
  19.  細菌である組換え細胞であって、請求項1~17のいずれかに記載の核酸を有し、かつ前記融合タンパク質を発現する組換え細胞。
  20.  細菌である組換え細胞であって、イソプレン合成酵素及び環式テルペン合成酵素からなる群より選択された第一タンパク質をコードする第一核酸と、FKBPファミリータンパク質をコードする第二核酸とを有し、かつ前記イソプレン合成酵素又は環式テルペン合成酵素と前記FKBPファミリータンパク質とを発現する組換え細胞。
  21.  前記第一タンパク質がイソプレン合成酵素であり、前記イソプレン合成酵素と前記FKBPファミリータンパク質を発現する請求項20に記載の組換え細胞。
  22.  前記第一タンパク質が、環式モノテルペン合成酵素である請求項20に記載の組換え細胞。
  23.  前記環式モノテルペン合成酵素が、フェランドレン合成酵素である請求項22に記載の組換え細胞。
  24.  前記第一タンパク質が、環式セスキテルペン合成酵素である請求項20に記載の組換え細胞。
  25.  前記第一タンパク質が、環式ジテルペン合成酵素である請求項20に記載の組換え細胞。
  26.  C1化合物を資化する能力を有する請求項19~25のいずれかに記載の組換え細胞。
  27.  メタノール又はメタンを資化する能力を有する請求項26に記載の組換え細胞。
  28.  一酸化炭素又は二酸化炭素を資化する能力を有する請求項26に記載の組換え細胞。
  29.  嫌気性細菌である請求項28に記載の組換え細胞。
  30.  Clostridium属細菌又はMoorella属細菌である請求項29に記載の組換え細胞。
  31.  請求項26~30のいずれかに記載の組換え細胞に、二酸化炭素と水素とを含むガスを接触させ、当該組換え細胞に二酸化炭素からイソプレン又は環式テルペンを生産させるイソプレン又は環式テルペンの生産方法。
  32.  前記ガスが、一酸化炭素と二酸化炭素と水素とを含むものであり、前記組換え細胞に一酸化炭素及び二酸化炭素からイソプレン又は環式テルペンを生産させる請求項31に記載のイソプレン又は環式テルペンの生産方法。
  33.  前記組換え細胞の細胞外に放出されたイソプレン又は環式テルペンを回収する請求項31又は32に記載のイソプレン又は環式テルペンの生産方法。
  34.  固相吸着法により前記イソプレン又は環式テルペンを回収する請求項33に記載のイソプレン又は環式テルペンの生産方法。
  35.  溶媒吸収法により前記イソプレン又は環式テルペンを回収する請求項33に記載のイソプレン又は環式テルペンの生産方法。
PCT/JP2016/053977 2015-02-13 2016-02-10 核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法 WO2016129637A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680004150.7A CN108064285A (zh) 2015-02-13 2016-02-10 核酸、融合蛋白质、重组细胞、以及异戊二烯或环式萜烯的生产方法
US15/549,739 US20180023098A1 (en) 2015-02-13 2016-02-10 Nucleic acid, fusion protein, recombined cell, and isoprene or cyclic terpene production method
CA2974343A CA2974343A1 (en) 2015-02-13 2016-02-10 Nucleic acid, fusion protein, recombined cell, and isoprene or cyclic terpene production method
JP2016574834A JPWO2016129637A1 (ja) 2015-02-13 2016-02-10 核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法
EP16749280.0A EP3257941A4 (en) 2015-02-13 2016-02-10 Nucleic acid, fusion protein, recombined cell, and isoprene or cyclic terpene production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015026156 2015-02-13
JP2015-026156 2015-02-13
JP2015-218114 2015-11-06
JP2015218114 2015-11-06

Publications (1)

Publication Number Publication Date
WO2016129637A1 true WO2016129637A1 (ja) 2016-08-18

Family

ID=56615278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053977 WO2016129637A1 (ja) 2015-02-13 2016-02-10 核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法

Country Status (6)

Country Link
US (1) US20180023098A1 (ja)
EP (1) EP3257941A4 (ja)
JP (1) JPWO2016129637A1 (ja)
CN (1) CN108064285A (ja)
CA (1) CA2974343A1 (ja)
WO (1) WO2016129637A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10118956B2 (en) 2014-12-01 2018-11-06 Pfenex Inc. Fusion partners for peptide production
CN109837266B (zh) * 2019-01-24 2021-12-31 天津大学 一种小萼苔倍半萜合成酶MTc及其基因序列

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013067A (ja) * 2003-06-25 2005-01-20 Sekisui Chem Co Ltd 融合タンパク質及びその用途
WO2005063964A1 (ja) * 2003-12-25 2005-07-14 Sekisui Chemical Co., Ltd. FKBP型PPIase、発現ベクター、形質転換体、融合タンパク質、融合タンパク質の製造方法、目的タンパク質の製造方法、FKBP型PPIaseの精製方法、及び融合タンパク質の精製方法
JP2006166845A (ja) * 2004-12-17 2006-06-29 Sekisui Chem Co Ltd FKBP型PPIase遺伝子及びFKBP型PPIaseの製造方法、単離されたFKBP型PPIase及びその遺伝子、発現ベクター、形質転換体、融合タンパク質及びその製造方法、目的タンパク質の製造方法、目的タンパク質の再生方法、並びに、目的タンパク質の安定化方法
WO2013166320A1 (en) * 2012-05-02 2013-11-07 Danisco Us Inc. Legume isoprene synthase for production of isoprene
WO2013179722A1 (ja) * 2012-05-30 2013-12-05 株式会社ブリヂストン イソプレンシンターゼおよびそれをコードするポリヌクレオチド、ならびにイソプレンモノマーの製造方法
JP2014076042A (ja) * 2012-09-21 2014-05-01 Sekisui Chem Co Ltd 組換え細胞、並びに、β−フェランドレンの生産方法
JP2014158489A (ja) * 2008-04-23 2014-09-04 Danisco Us Inc 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体
JP2015181428A (ja) * 2014-03-25 2015-10-22 積水化学工業株式会社 組換え細胞、並びに、環式モノテルペンの生産方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2372031T3 (es) * 2001-06-22 2012-01-13 F. Hoffmann-La Roche Ag Complejo soluble que contiene una glicoproteína de superficie retroviral y fkpa o slyd.
CA2636075C (en) * 2006-01-03 2011-11-08 F. Hoffmann-La Roche Ag Chimaeric fusion protein with superior chaperone and folding activities
WO2012088462A1 (en) * 2010-12-22 2012-06-28 Danisco Us Inc. Compositions and methods for improved isoprene production using two types of ispg enzymes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013067A (ja) * 2003-06-25 2005-01-20 Sekisui Chem Co Ltd 融合タンパク質及びその用途
WO2005063964A1 (ja) * 2003-12-25 2005-07-14 Sekisui Chemical Co., Ltd. FKBP型PPIase、発現ベクター、形質転換体、融合タンパク質、融合タンパク質の製造方法、目的タンパク質の製造方法、FKBP型PPIaseの精製方法、及び融合タンパク質の精製方法
JP2006166845A (ja) * 2004-12-17 2006-06-29 Sekisui Chem Co Ltd FKBP型PPIase遺伝子及びFKBP型PPIaseの製造方法、単離されたFKBP型PPIase及びその遺伝子、発現ベクター、形質転換体、融合タンパク質及びその製造方法、目的タンパク質の製造方法、目的タンパク質の再生方法、並びに、目的タンパク質の安定化方法
JP2014158489A (ja) * 2008-04-23 2014-09-04 Danisco Us Inc 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体
WO2013166320A1 (en) * 2012-05-02 2013-11-07 Danisco Us Inc. Legume isoprene synthase for production of isoprene
WO2013179722A1 (ja) * 2012-05-30 2013-12-05 株式会社ブリヂストン イソプレンシンターゼおよびそれをコードするポリヌクレオチド、ならびにイソプレンモノマーの製造方法
JP2014076042A (ja) * 2012-09-21 2014-05-01 Sekisui Chem Co Ltd 組換え細胞、並びに、β−フェランドレンの生産方法
JP2015181428A (ja) * 2014-03-25 2015-10-22 積水化学工業株式会社 組換え細胞、並びに、環式モノテルペンの生産方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IDENO, A. ET AL.: "Expression of foreign proteins in Escherichia coli by fusing with an archaeal FK506 binding protein", APPL. MICROBIOL. BIOTECHNOL., vol. 64, 2004, pages 99 - 105, XP002980658, ISSN: 0175-7598 *
See also references of EP3257941A4 *

Also Published As

Publication number Publication date
JPWO2016129637A1 (ja) 2017-11-24
EP3257941A1 (en) 2017-12-20
US20180023098A1 (en) 2018-01-25
CN108064285A (zh) 2018-05-22
CA2974343A1 (en) 2016-08-18
EP3257941A4 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
Xue et al. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis
US9816111B2 (en) Propylene synthesis using engineered enzymes
Chaves et al. Engineering isoprene synthase expression and activity in cyanobacteria
KR101883511B1 (ko) 3-히드록시알카노산의 조합된 효소적 전환에 의한 알켄의 제조
JP6440497B2 (ja) ブタジエンの酵素的製造のための方法
Diner et al. Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene
Müh et al. PHA synthase from Chromatium vinosum: cysteine 149 is involved in covalent catalysis
US20140234926A1 (en) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas
Luo et al. Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4, 6-dicarboxylic acid from glucose
Ramos-Vera et al. Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota
AU2011317682A1 (en) Production of alkenes by combined enzymatic conversion of 3-hydroxyalkanoic acids
US20160017374A1 (en) Compositions and methods for biological production of isoprene
AU2009265373A1 (en) Production of alkenes by enzymatic decarboxylation of 3-hydroxyalkanoic acids
JP2015516173A (ja) イソプレン生産用微生物およびプロセス
WO2014193473A1 (en) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas
Gao et al. High-yield production of D-1, 2, 4-butanetriol from lignocellulose-derived xylose by using a synthetic enzyme cascade in a cell-free system
WO2016129637A1 (ja) 核酸、融合タンパク質、組換え細胞、並びに、イソプレン又は環式テルペンの生産方法
WO2019006255A1 (en) METHODS, MATERIALS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS AND DERIVATIVES
US10941454B2 (en) Vinylisomerase-dehydratases, alkenol dehydratases, linalool dehydratases and crotyl alcohol dehydratases and methods for making and using them
JPWO2018155272A1 (ja) 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法
JP2017534268A (ja) 有用産物の生産のための改変微生物および方法
JP2016059313A (ja) 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法
Hölscher et al. Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium
JP6325862B2 (ja) 組換え細胞、並びに、環式モノテルペンの生産方法
KR101630740B1 (ko) 돌연변이 3-히드록시부티레이트 탈수소효소

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574834

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2974343

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15549739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016749280

Country of ref document: EP