WO2016129247A1 - Rectifier, rectifier motor and method for manufacturing rectifier - Google Patents

Rectifier, rectifier motor and method for manufacturing rectifier Download PDF

Info

Publication number
WO2016129247A1
WO2016129247A1 PCT/JP2016/000541 JP2016000541W WO2016129247A1 WO 2016129247 A1 WO2016129247 A1 WO 2016129247A1 JP 2016000541 W JP2016000541 W JP 2016000541W WO 2016129247 A1 WO2016129247 A1 WO 2016129247A1
Authority
WO
WIPO (PCT)
Prior art keywords
commutator
conductive material
resin
layer
conductive
Prior art date
Application number
PCT/JP2016/000541
Other languages
French (fr)
Japanese (ja)
Inventor
豪 坂田
雄一郎 定永
和雄 遠矢
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016129247A1 publication Critical patent/WO2016129247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation

Definitions

  • the present invention relates to a commutator motor used for an electric device attached to a household vacuum cleaner or a vehicle.
  • Commutator motors are used in household vacuum cleaners and electrical equipment attached to vehicles. In recent years, in these devices, a commutator motor is required to be small and have high durability.
  • a driving current is supplied to a rotor having a commutator through a brush.
  • a commutator motor including a commutator is also simply referred to as a motor.
  • the commutator is composed of a plurality of commutator pieces.
  • the commutator is molded with an electrically insulating resin.
  • the motor has a contact portion where the brush and the commutator piece are in mechanical contact.
  • the brush and the commutator piece are also electrically connected at the contact portion.
  • the motor rectifies the drive current supplied to the rotor using a brush and a commutator piece.
  • a spark discharge is generated between the brush and the commutator piece at the contact portion that is in mechanical contact. Therefore, when the drive current is rectified, the ambient temperature is high near the contact portion that is in mechanical contact.
  • FIG. 7 is an enlarged view of a main part of a conventional commutator.
  • the commutator piece 42a and the electrically insulating resin 43 that molds the commutator 41 are made of different materials, they have different thermal expansion coefficients.
  • the commutator piece 42a may partially swell and unevenness may occur on the outer peripheral surface of the commutator piece 42a.
  • the spark discharge generated between the commutator piece 42a and the brush may be further increased.
  • the spark discharge generated between the commutator piece 42a and the brush grows into a ring fire.
  • the brushes may wear abnormally.
  • the commutator piece 42a may be damaged.
  • Patent Document 1 discloses a motor using a commutator formed of a functionally gradient material.
  • FIG. 8A is a partial cross-sectional view showing an outline of a conventional motor.
  • FIG. 8B is a cross-sectional view of a conventional commutator.
  • the commutator 41 includes a plurality of commutator pieces 42a.
  • the commutator 41 In the commutator 41, no boundary surface is generated between the commutator piece 42 a and the electrically insulating resin that molds the commutator 41. Therefore, the commutator 41 shown in Patent Document 1 can disperse thermal stress even when the ambient temperature near the contact portion that is in mechanical contact increases. Therefore, even when a centrifugal force acts on the commutator 41 when the rotor 51 rotates at a high speed, the commutator piece 42a is unlikely to be peeled off or cracked.
  • the commutator targeted by the present invention is formed in a cylindrical shape along the axis and has a conductive layer, a resin layer, and an intermediate layer.
  • the conductive layer is located on the outer peripheral side in the direction orthogonal to the axis.
  • the conductive layer includes a conductive material and an abrasive.
  • a plurality of commutator pieces are formed from the outer peripheral surface toward the opposite side of the axis.
  • the resin layer is located on the inner peripheral side in the direction orthogonal to the axis.
  • the resin layer includes an electrically insulating resin material.
  • the intermediate layer is located between the conductive layer and the resin layer in the direction orthogonal to the axis.
  • the intermediate layer includes a mixture of a conductive material and an electrically insulating resin material.
  • the content of the conductive material decreases and the content of the resin material increases from the conductive layer toward the resin layer.
  • FIG. 1A is a cross-sectional view showing an outline of a motor according to Embodiment 1 of the present invention.
  • FIG. 1B is a cross-sectional view showing an outline of the commutator according to Embodiment 1 of the present invention.
  • FIG. 1C is a front view of the commutator according to Embodiment 1 of the present invention.
  • FIG. 2A is an enlarged view of a main part for explaining a use state of the commutator in Embodiment 1 of the present invention.
  • FIG. 2B is an enlarged view of a main part for explaining another usage state of the commutator in Embodiment 1 of the present invention.
  • FIG. 3 is a conceptual diagram for explaining the composition change of the commutator in the first embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating another composition change of the commutator in the first embodiment of the present invention.
  • FIG. 5A is a characteristic diagram showing the driving time and brush length of a motor using a commutator compared with the present invention.
  • FIG. 5B is a characteristic diagram showing a drive time and a brush length of the motor using the commutator in Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart showing a commutator manufacturing method according to Embodiment 2 of the present invention.
  • FIG. 7 is an enlarged view of a main part of a conventional commutator.
  • FIG. 8A is a partial cross-sectional view showing an outline of a conventional motor.
  • FIG. 8B is a cross-sectional view of a conventional commutator.
  • the commutator according to the embodiment of the present invention can always maintain a good state when the brush and the commutator are in a conductive state by the configuration described later. Therefore, the commutator in the embodiment of the present invention can be expected to further extend the life of the brush.
  • the conventional commutator had the following points to be improved.
  • the brush 47 and the commutator 41 are in contact with each other on a sliding contact surface 47a where the brush 47 and the commutator 41 slide.
  • the brush 47 and the commutator 41 slide against each other, the brush 47 is worn. If the brush 47 is worn, brush powder is generated in the vicinity of the sliding contact surface 47a.
  • poor conduction occurs between the brush 47 and the commutator piece 42a formed on the commutator 41.
  • spark discharge occurs on the sliding contact surface 47a.
  • the commutator which is an embodiment of the present invention to be described later further extends the life of the brush while maintaining a good conduction state between the brush and the commutator.
  • FIG. 1A is a cross-sectional view showing an outline of a motor according to Embodiment 1 of the present invention.
  • FIG. 1B is a cross-sectional view showing an outline of the commutator according to Embodiment 1 of the present invention.
  • FIG. 1C is a front view of the commutator according to Embodiment 1 of the present invention.
  • FIG. 2A and FIG. 2B are enlarged views of main parts for explaining the use state of the commutator in the first embodiment of the present invention.
  • 3 and 4 are conceptual diagrams for explaining the composition change of the commutator in Embodiment 1 of the present invention.
  • FIG. 5A is a characteristic diagram showing the drive time and brush length of a motor using a commutator compared with the present invention.
  • FIG. 5B is a characteristic diagram showing a drive time and a brush length of the motor using the commutator in Embodiment 1 of the present invention.
  • commutator 1 in Embodiment 1 of the present invention is used inside motor 30.
  • the motor 30 is exemplified by a DC motor.
  • the motor 30 includes a rotor 31 and a stator 32.
  • the rotor 31 includes the commutator 1, the shaft 11, and the rotor core 14.
  • the commutator 1 will be described in detail later.
  • the shaft 11 has a central axis 11 a located on the axis 1 a of the commutator 1.
  • the commutator 1 is attached to the shaft 11.
  • the rotor core 14 is attached to the shaft 11.
  • the stator 32 is positioned facing the rotor 31.
  • the motor 30 having this configuration can enjoy the effects exhibited by the commutators 1 and 101 described later.
  • commutator 1 in Embodiment 1 of the present invention is formed in a cylindrical shape along axis 1a, and has conductive layer 2, resin layer 4, and intermediate layer 3. .
  • the conductive layer 2 is located on the outer peripheral side in the direction orthogonal to the axis 1a.
  • the conductive layer 2 includes a conductive material and an abrasive 18.
  • a plurality of commutator pieces 2a are formed from the outer peripheral surface 1b toward the opposite side of the shaft center 1a.
  • the resin layer 4 is located on the inner peripheral side in the direction orthogonal to the axis 1a.
  • the resin layer 4 includes an electrically insulating resin material.
  • the intermediate layer 3 is located between the conductive layer 2 and the resin layer 4 in a direction orthogonal to the axis 1a.
  • the intermediate layer 3 includes a mixture of a conductive material and an electrically insulating resin material.
  • the content of the conductive material decreases from the conductive layer 2 toward the resin layer 4, and the content of the resin material increases.
  • the commutator piece 2 a includes the abrasive 18.
  • the abrasive 18 polishes the oxide film 20 generated on the surface of the commutator piece 2a. Therefore, the oxide film 20 does not increase in thickness. Therefore, poor conduction between the brush 17 and the commutator piece 2a is reduced.
  • the commutator 1 according to the first embodiment can suppress the wear of the brush 17, the life of the brush 17 can be extended.
  • the abrasive 18 can be easily separated from the commutator piece 2a. Therefore, the abrasive 18 is less likely to remain on the sliding contact surface 17a.
  • the abrasive when a material that combines with copper is used as the abrasive, the abrasive remains on the sliding surface side of the commutator piece. In this case, conduction failure may occur between the brush and the commutator piece.
  • the abrasive 18 can be prevented from remaining on the sliding contact surface 17a side of the commutator piece 2a. Therefore, a good conduction state is maintained between the brush 17 and the commutator piece 2a. Therefore, the occurrence of spark discharge is reduced between the brush 17 and the commutator piece 2a. As a result, the commutator 1 can further extend the life of the brush 17.
  • the conductive material is copper.
  • the commutator 1 can be formed of copper powder.
  • the conductive material is silver.
  • Other conductive metals can be used as the conductive material.
  • the intermediate layer 3 is a functionally graded material containing a mixture of a conductive material and a resin material.
  • the intermediate layer 3 is formed of a plurality of first intermediate layers 3a and second intermediate layers 3b in a direction orthogonal to the axis 1a.
  • the first intermediate layer 3a and the second intermediate layer 3b which are a plurality of layers, have different mixing ratios of the conductive material and the resin material.
  • the abrasive 18 is harder than copper. Specifically, the abrasive 18 is a ceramic material. Alternatively, the abrasive 18 is tungsten.
  • the abrasive 18 can be added to the sliding contact surface 17a side of the inclined commutator piece 2a. Therefore, the outer peripheral surface 2b of the commutator piece 2a is polished by the abrasive 18 harder than copper forming the commutator 1 on the outer peripheral surface 2b. That is, the non-conductive layer generated on the outer peripheral surface 2b of the commutator piece 2a is polished.
  • the abrasive 18 is a spherical particle.
  • the shape of the particles includes not only a true sphere but also a substantially spherical shape having a substantially elliptical cross-sectional shape.
  • the particles of the abrasive 18 are also located on the outer peripheral surface 2b side of the inclined commutator piece 2a. If the brush 17 is in sliding contact with the commutator piece 2a, the outer peripheral surface 2b of the commutator piece 2a is worn by friction. When the outer peripheral surface 2b of the commutator piece 2a is worn, particles of the abrasive 18 are taken out from the copper molecules constituting the commutator piece 2a.
  • the particles of the abrasive 18 are taken out from the commutator piece 2a, the particles are taken out more smoothly.
  • the particles of the abrasive 18 taken out are substantially spherical. Therefore, the abrasive 18 rolls between the brush 17 and the outer peripheral surface 2b of the commutator piece 2a.
  • the particles of the abrasive 18 contribute to the polishing of the outer peripheral surface 2b of the commutator piece 2a.
  • the field magnet 13 is attached to the motor 30 along the inner peripheral surface 12a of the frame 12 formed in a cylindrical shape.
  • the rotor 31 is located on the inner peripheral side of the field magnet 13.
  • the rotor 31 has a shaft 11, an armature 10, and a commutator 1.
  • the armature 10 includes a rotor core 14, an insulator 15, and a winding 16.
  • the rotor core 14 is configured by laminating steel plates.
  • the rotor core 14 can be formed in another configuration as long as the same effect as that of the stacked steel plates can be obtained.
  • a winding 16 is wound around the rotor core 14 via an insulator 15.
  • the insulator 15 electrically insulates the rotor core 14 and the winding 16 from each other.
  • the insulator 15 can be formed of resin.
  • the armature 10 and the commutator 1 are attached to the shaft 11.
  • the shaft 11 is rotatable about the central axis 11a as a rotation center.
  • the commutator 1 is formed with a plurality of commutator pieces 2a.
  • commutator 1 is a plurality of commutator pieces (2a) and contacts a pair of brushes 17.
  • the pair of brushes 17 are in contact with the plurality of commutator pieces (2a) from a direction orthogonal to the central axis 11a.
  • the direction orthogonal to the central axis 11a is also referred to as a radial direction.
  • the surface on which each of the plurality of commutator pieces (2a) and each of the pair of brushes 17 slide is also referred to as a sliding contact surface 17a.
  • Each of the pair of brushes 17 can be realized by using a carbon material.
  • a drive current is supplied to each of the plurality of commutator pieces (2a) from each of the pair of brushes 17 via the sliding contact surface 17a.
  • the direction in which the drive current flows is switched depending on the positional relationship when the commutator piece (2a) and the brush 17 are in contact with each other. Since the direction in which the drive current flows is switched, the armature 10 rotates. Switching the direction in which the drive current flows is also referred to as commutation.
  • the commutator 1 is cylindrical.
  • the commutator 1 includes a conductive layer 2 positioned on the outer peripheral side, a resin layer 4 positioned on the inner peripheral side, and an intermediate layer positioned between the conductive layer 2 and the resin layer 4 3.
  • the conductive layer 2 is formed of a conductive material. Copper or copper alloy can be used as the conductive material. In the first embodiment, the conductive layer 2 is formed of copper powder (19). In the conductive layer 2, a commutator piece 2a is formed toward the opposite side of the axis 1a.
  • Resin layer 4 is formed of a resin material having electrical insulation.
  • a thermosetting resin such as an epoxy resin or a phenol resin can be used.
  • the intermediate layer 3 has a composition in which a conductive material and a resin material are mixed.
  • the intermediate layer 3 includes a first intermediate layer 3a and a second intermediate layer 3b.
  • the first intermediate layer 3a and the second intermediate layer 3b have different compositions.
  • the commutator 1 is disposed between the adjacent pair of commutator pieces 2a among the plurality of commutator pieces 2a on the surface orthogonal to the axis 1a from the outer peripheral surface 1b toward the axis 1a.
  • the slit 7 including the concave slit 7 has a depth reaching the resin layer 4. The slit 7 electrically separates a pair of adjacent commutator pieces 2a.
  • the right side shows the outer peripheral side of the commutator 1 and the left side shows the inner peripheral side of the commutator 1 in the figure.
  • the ratio of the main composition continuously changes from the conductive material 2c to the resin material 4a from the outer peripheral side to the inner peripheral side. More specifically, the main composition of the commutator 1 changes from the conductive material 2c to the resin material 4a through a mixed state of the conductive material 2c and the resin material 4a. This change gradually changes as the conductive material 2c and the resin material 4a enter and mix as shown in the enlarged view in the figure.
  • the intermediate layer 3 which is a mixture of the conductive material 2c and the resin material 4a functions as a functionally gradient material.
  • the composition of the commutator 1 continuously changes without forming a boundary surface between the materials. Therefore, in the commutator 1, when a clear boundary surface is formed, a micro void or the like that is considered to be generated on the boundary surface does not occur.
  • the commutator 1 made of a plurality of materials can disperse the thermal stress as if it were an integrated body made of a single material. Therefore, when the rotor (31) rotates at a high speed, even if centrifugal force acts on the commutator 1, the commutator piece 2a or the like does not peel or crack. Further, the commutator 1 can prevent unevenness as described above. Therefore, the commutator 1 has improved reliability.
  • the commutator 1 can be formed using a discharge plasma sintering method, for example, as shown in a second embodiment described later.
  • composition change of the commutator in the first embodiment is also possible in the following form.
  • the commutator 101 has a region made of a single material. Specifically, commutator 101 includes a region 2d made of conductive material 2c and a region 4b made of resin material 4a from the outer peripheral side to the inner peripheral side of commutator 101.
  • regions 2d and 4b are intended to be actively composed of a single material. These regions 2d and 4b do not exclude the mixing of other unintended materials.
  • the commutator 101 can obtain a desired capacitance or the like according to the required specifications.
  • the commutator (1) includes an abrasive 18 in the commutator piece 2a formed outside the conductive layer (2).
  • a ceramic material is used for the abrasive 18.
  • the abrasive 18 removes the oxide film 20 generated on the surface of the commutator piece 2a, that is, the sliding contact surface 17a. Therefore, the oxide film 20 removed by the abrasive 18 cannot be thickened.
  • the surface of the commutator piece 2a is polished with the oxide film 20 that caused the conduction failure between the commutator piece 2a and the brush 17. Therefore, the conduction state between the commutator piece 2a and the brush 17 is maintained in a good state.
  • the commutator 1 according to the first embodiment can extend the life of the brush 17.
  • the abrasive 18 is not bonded to the copper powder 19. Therefore, the abrasive 18 is easily separated from the commutator piece 2 a made of the copper powder 19. In other words, it is possible to suppress the abrasive 18 from remaining only on the sliding contact surface 17a where the commutator piece 2a and the brush 17 slide independently.
  • the brush length is gradually shortened in proportion to the driving time. That is, the brush 17 advances at a substantially constant speed in proportion to the driving time.
  • the brush 17 in the first embodiment has a long life.
  • spark discharge tends to be large between the brush and the commutator piece. If a large spark discharge occurs, the brush will be damaged. In addition, when a large spark discharge occurs, the thickness of the oxide film generated on the surface of the commutator piece increases. Therefore, when the thickness of the oxide film generated on the surface of the commutator piece is increased, poor conduction is likely to occur between the brush and the commutator piece.
  • the brush according to the first embodiment is used for a motor having a large inductance, the oxide film can be polished, so that a conduction failure occurring between the brush and the commutator piece can be suppressed. Therefore, the brush in the first embodiment can be expected to have a remarkable effect, particularly with a motor having a large inductance.
  • the abrasive 18 can be a ceramic material and a compound of tungsten in addition to the ceramic material and tungsten.
  • the abrasive 18 other materials having characteristics similar to those of a ceramic material and tungsten can be used.
  • FIG. 6 is a flowchart showing a commutator manufacturing method according to Embodiment 2 of the present invention.
  • the commutator manufacturing method according to the second embodiment of the present invention includes the following steps.
  • a conductive material and a resin material are prepared (step 1).
  • the conductive material and the resin material are filled, respectively.
  • the conductive material and the resin material are mixed and filled (step 2).
  • the step of energizing performs pulse-shaped energization while applying pressure to the filled conductive material, the mixed and filled conductive material and resin material, and the filled resin material (step 3).
  • a discharge plasma sintering method can be used for the commutator manufacturing method shown in the second embodiment.
  • the commutator manufactured by the manufacturing method shown in the second embodiment becomes a functionally graded material in which the content ratios of the conductive material and the resin material sequentially change.
  • the composition of the commutator manufactured by the manufacturing method shown in the second embodiment changes continuously without forming a boundary surface between the materials. Therefore, in this commutator, when a clear boundary surface is formed, a microscopic void that is considered to be generated on the boundary surface does not occur.
  • the commutator of the present invention can be used for a commutator motor used in an electric device attached to a household vacuum cleaner or a vehicle.
  • a remarkable effect can be obtained.

Abstract

This rectifier (1) is formed into a cylindrical shape along a shaft center (1a), and comprises a conductive layer (2), a resin layer (4) and an intermediate layer (3). The conductive layer (2) contains a conductive material and a polishing material (18). The conductive layer (2) is provided with a plurality of rectifier pieces (2a) that extend from the outer circumferential surface (1b) toward the direction opposite to the shaft center (1a). The resin layer (4) contains an electrically insulating resin material. The intermediate layer (3) contains a conductive material and an electrically insulating resin material in combination. In the intermediate layer (3), the content ratio of the conductive material decreases from the conductive layer (2) side toward the resin layer (4) side, while the content ratio of the resin layer increases in that direction.

Description

整流子、整流子モータ、および、整流子の製造方法Commutator, commutator motor, and commutator manufacturing method
 本発明は、家庭用の掃除機や車両等に取り付けられる電気機器に用いられる、整流子モータに関する。 The present invention relates to a commutator motor used for an electric device attached to a household vacuum cleaner or a vehicle.
 整流子モータは、家庭用の掃除機や、車両等に取り付けられる電気機器に使用される。近年、これらの機器において、整流子モータには、小型であること、および、高い耐久性を備えていることが求められる。 Commutator motors are used in household vacuum cleaners and electrical equipment attached to vehicles. In recent years, in these devices, a commutator motor is required to be small and have high durability.
 整流子を備える整流子モータでは、ブラシを介して、整流子を有するロータに駆動電流が供給される。以下の説明において、整流子を備える整流子モータは、単に、モータともいう。 In a commutator motor including a commutator, a driving current is supplied to a rotor having a commutator through a brush. In the following description, a commutator motor including a commutator is also simply referred to as a motor.
 整流子は、複数の整流子片で構成される。また、整流子は、電気絶縁性の樹脂でモールドされる。 The commutator is composed of a plurality of commutator pieces. The commutator is molded with an electrically insulating resin.
 モータには、ブラシと整流子片とが機械的に接する接触部が存在する。また、ブラシと整流子片とは、接触部で電気的にも接続される。 The motor has a contact portion where the brush and the commutator piece are in mechanical contact. The brush and the commutator piece are also electrically connected at the contact portion.
 モータは、ブラシと整流子片とを用いて、ロータに供給される駆動電流を整流する。駆動電流を整流する際、機械的に接する接触部では、ブラシと整流子片との間で、火花放電が発生する。よって、駆動電流を整流する際、機械的に接する接触部付近は、雰囲気温度が高くなる。 The motor rectifies the drive current supplied to the rotor using a brush and a commutator piece. When the drive current is rectified, a spark discharge is generated between the brush and the commutator piece at the contact portion that is in mechanical contact. Therefore, when the drive current is rectified, the ambient temperature is high near the contact portion that is in mechanical contact.
 図7は、従来の整流子の要部拡大図である。 FIG. 7 is an enlarged view of a main part of a conventional commutator.
 図7に示すように、整流子片42aと、整流子41をモールドする電気絶縁性の樹脂43とは、材質が異なるため、熱膨張係数が異なる。 As shown in FIG. 7, since the commutator piece 42a and the electrically insulating resin 43 that molds the commutator 41 are made of different materials, they have different thermal expansion coefficients.
 よって、機械的に接する接触部付近の雰囲気温度が高くなれば、整流子片42aと電気絶縁性の樹脂43との間に位置する境界面44には、熱応力による熱歪が集中する。 Therefore, if the ambient temperature in the vicinity of the contact portion that is in mechanical contact increases, thermal strain due to thermal stress concentrates on the boundary surface 44 located between the commutator piece 42a and the electrically insulating resin 43.
 また、ロータが高速で回転する場合、整流子41には、遠心力が作用する。この遠心力は、熱歪が集中した境界面44にも及ぶ。遠心力が作用した境界面44は、整流子片42aから剥がれて、外周側に膨らむ。よって、整流子片42aが部分的に膨らみ、整流子片42aの外周面には、凹凸が生じることがある。外周面に凹凸が生じると、整流子片42aとブラシとの間で生じる火花放電は、さらに大きくなることがある。やがて、整流子片42aとブラシとの間で生じる火花放電は、リングファイヤへと成長する。リングファイヤが生じると、ブラシには、異常な摩耗が生じることがある。あるいは、整流子片42aには、破損が生じることがある。 Also, when the rotor rotates at high speed, centrifugal force acts on the commutator 41. This centrifugal force reaches the boundary surface 44 where thermal strain is concentrated. The boundary surface 44 on which the centrifugal force is applied peels from the commutator piece 42a and swells to the outer peripheral side. Therefore, the commutator piece 42a may partially swell and unevenness may occur on the outer peripheral surface of the commutator piece 42a. When irregularities are generated on the outer peripheral surface, the spark discharge generated between the commutator piece 42a and the brush may be further increased. Eventually, the spark discharge generated between the commutator piece 42a and the brush grows into a ring fire. When ring fire occurs, the brushes may wear abnormally. Alternatively, the commutator piece 42a may be damaged.
 この結果、モータは、停止に至る。 As a result, the motor stops.
 上述した不具合に対応するため、特許文献1には、傾斜機能材料で形成された整流子を用いたモータが示される。 In order to cope with the above-described problems, Patent Document 1 discloses a motor using a commutator formed of a functionally gradient material.
 図8Aは、従来のモータの概要を示す一部断面図である。図8Bは、従来の整流子の断面図である。 FIG. 8A is a partial cross-sectional view showing an outline of a conventional motor. FIG. 8B is a cross-sectional view of a conventional commutator.
 図8A、図8Bに示すように、特許文献1に示された整流子41には、傾斜機能材料が用いられる。整流子41は、複数の整流子片42aを含む。 8A and 8B, a functionally gradient material is used for the commutator 41 shown in Patent Document 1. The commutator 41 includes a plurality of commutator pieces 42a.
 整流子41内において、整流子片42aと、整流子41をモールドする電気絶縁性の樹脂との間では、境界面が生じない。よって、特許文献1に示された整流子41は、機械的に接する接触部付近の雰囲気温度が上昇しても、熱応力を分散できる。したがって、ロータ51が高速で回転する際、整流子41に遠心力が作用しても、整流子片42aには、剥離や亀裂が生じ難い。 In the commutator 41, no boundary surface is generated between the commutator piece 42 a and the electrically insulating resin that molds the commutator 41. Therefore, the commutator 41 shown in Patent Document 1 can disperse thermal stress even when the ambient temperature near the contact portion that is in mechanical contact increases. Therefore, even when a centrifugal force acts on the commutator 41 when the rotor 51 rotates at a high speed, the commutator piece 42a is unlikely to be peeled off or cracked.
特開平4-109847号公報Japanese Patent Laid-Open No. 4-109847
 本発明が対象とする整流子は、軸心に沿って筒状に形成されて、導電層と、樹脂層と、中間層と、を有する。 The commutator targeted by the present invention is formed in a cylindrical shape along the axis and has a conductive layer, a resin layer, and an intermediate layer.
 導電層は、軸心と直交する方向において、外周側に位置する。導電層は、導電材料と、研磨材と、を含む。導電層は、複数の整流子片が外周表面から軸心の反対側に向かって形成される。 The conductive layer is located on the outer peripheral side in the direction orthogonal to the axis. The conductive layer includes a conductive material and an abrasive. In the conductive layer, a plurality of commutator pieces are formed from the outer peripheral surface toward the opposite side of the axis.
 樹脂層は、軸心と直交する方向において、内周側に位置する。樹脂層は、電気絶縁性の樹脂材料を含む。 The resin layer is located on the inner peripheral side in the direction orthogonal to the axis. The resin layer includes an electrically insulating resin material.
 中間層は、軸心と直交する方向において、導電層と樹脂層との間に位置する。中間層は、導電材料と電気絶縁性の樹脂材料とを混合して含む。中間層では、導電層から樹脂層に向かって、導電材料の含有率が減少するとともに、樹脂材料の含有率が増加する。 The intermediate layer is located between the conductive layer and the resin layer in the direction orthogonal to the axis. The intermediate layer includes a mixture of a conductive material and an electrically insulating resin material. In the intermediate layer, the content of the conductive material decreases and the content of the resin material increases from the conductive layer toward the resin layer.
図1Aは、本発明の実施の形態1におけるモータの概要を示す断面図である。FIG. 1A is a cross-sectional view showing an outline of a motor according to Embodiment 1 of the present invention. 図1Bは、本発明の実施の形態1における整流子の概要を示す断面図である。FIG. 1B is a cross-sectional view showing an outline of the commutator according to Embodiment 1 of the present invention. 図1Cは、本発明の実施の形態1における整流子の正面図である。FIG. 1C is a front view of the commutator according to Embodiment 1 of the present invention. 図2Aは、本発明の実施の形態1における整流子の使用状態を説明する要部拡大図である。FIG. 2A is an enlarged view of a main part for explaining a use state of the commutator in Embodiment 1 of the present invention. 図2Bは、本発明の実施の形態1における整流子の他の使用状態を説明する要部拡大図である。FIG. 2B is an enlarged view of a main part for explaining another usage state of the commutator in Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における整流子の組成変化を説明する概念図である。FIG. 3 is a conceptual diagram for explaining the composition change of the commutator in the first embodiment of the present invention. 図4は、本発明の実施の形態1における整流子の他の組成変化を説明する概念図である。FIG. 4 is a conceptual diagram illustrating another composition change of the commutator in the first embodiment of the present invention. 図5Aは、本発明と比較する整流子を用いたモータの駆動時間とブラシ長を示す特性図である。FIG. 5A is a characteristic diagram showing the driving time and brush length of a motor using a commutator compared with the present invention. 図5Bは、本発明の実施の形態1における整流子を用いたモータの駆動時間とブラシ長を示す特性図である。FIG. 5B is a characteristic diagram showing a drive time and a brush length of the motor using the commutator in Embodiment 1 of the present invention. 図6は、本発明の実施の形態2における整流子の製造方法を示すフローチャートである。FIG. 6 is a flowchart showing a commutator manufacturing method according to Embodiment 2 of the present invention. 図7は、従来の整流子の要部拡大図である。FIG. 7 is an enlarged view of a main part of a conventional commutator. 図8Aは、従来のモータの概要を示す一部断面図である。FIG. 8A is a partial cross-sectional view showing an outline of a conventional motor. 図8Bは、従来の整流子の断面図である。FIG. 8B is a cross-sectional view of a conventional commutator.
 本発明の実施の形態における整流子は、後述する構成により、ブラシと整流子とが導通している状態を、常に、良好な状態に保つことができる。よって、本発明の実施の形態における整流子は、更なる、ブラシの長寿命化が期待できる。 The commutator according to the embodiment of the present invention can always maintain a good state when the brush and the commutator are in a conductive state by the configuration described later. Therefore, the commutator in the embodiment of the present invention can be expected to further extend the life of the brush.
 つまり、従来の整流子には、つぎの改善すべき点があった。 In other words, the conventional commutator had the following points to be improved.
 すなわち、図8Aに示す、従来のモータ40において、ブラシ47と整流子41とは、ブラシ47と整流子41とが摺れ合う、摺接面47aで接する。ブラシ47と整流子41とが摺れ合うと、ブラシ47は磨耗する。ブラシ47が摩耗すれば、摺接面47aの近傍には、ブラシ粉が生じる。摺接面47aにブラシ粉が付着すると、ブラシ47と、整流子41に形成された整流子片42aとの間では、導通不良が生じる。ブラシ47と整流子片42aとの間で導通不良が生じると、摺接面47aには、火花放電が生じる。摺接面47aに火花放電が生じると、整流子片42aには、絶縁物である酸化膜が生じる。整流子片42aに酸化膜が生じると、整流子片42aとブラシ47との間では、さらに、導通不良が進む。よって、モータ40は、ブラシ47の長寿命化が妨げられる。 That is, in the conventional motor 40 shown in FIG. 8A, the brush 47 and the commutator 41 are in contact with each other on a sliding contact surface 47a where the brush 47 and the commutator 41 slide. When the brush 47 and the commutator 41 slide against each other, the brush 47 is worn. If the brush 47 is worn, brush powder is generated in the vicinity of the sliding contact surface 47a. When brush powder adheres to the sliding contact surface 47a, poor conduction occurs between the brush 47 and the commutator piece 42a formed on the commutator 41. When poor conduction occurs between the brush 47 and the commutator piece 42a, spark discharge occurs on the sliding contact surface 47a. When spark discharge occurs on the sliding contact surface 47a, an oxide film that is an insulator is formed on the commutator piece 42a. When an oxide film is generated on the commutator piece 42 a, the conduction failure further proceeds between the commutator piece 42 a and the brush 47. Therefore, the motor 40 is prevented from extending the life of the brush 47.
 つまり、従来のモータにおいて、所定の駆動時間が経過したブラシは、急激に、磨耗が進む。よって、従来のモータでは、所定の駆動時間が経過したブラシは、ブラシの長さが加速度的に短くなる。 That is, in a conventional motor, the brush that has been subjected to a predetermined driving time is rapidly worn. Therefore, with a conventional motor, the brush length of a brush that has passed a predetermined driving time is accelerated.
 そこで、後述する本発明の実施の形態である整流子は、ブラシと整流子との導通状態を、良好に維持しながら、更なる、ブラシの長寿命化を図る。 Therefore, the commutator which is an embodiment of the present invention to be described later further extends the life of the brush while maintaining a good conduction state between the brush and the commutator.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具現化した一例であって、本発明の技術的範囲を制限するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
 (実施の形態1)
 図1Aは、本発明の実施の形態1におけるモータの概要を示す断面図である。図1Bは、本発明の実施の形態1における整流子の概要を示す断面図である。図1Cは、本発明の実施の形態1における整流子の正面図である。
(Embodiment 1)
FIG. 1A is a cross-sectional view showing an outline of a motor according to Embodiment 1 of the present invention. FIG. 1B is a cross-sectional view showing an outline of the commutator according to Embodiment 1 of the present invention. FIG. 1C is a front view of the commutator according to Embodiment 1 of the present invention.
 また、図2A、図2Bは、本発明の実施の形態1における整流子の使用状態を説明する要部拡大図である。 FIG. 2A and FIG. 2B are enlarged views of main parts for explaining the use state of the commutator in the first embodiment of the present invention.
 また、図3、図4は、本発明の実施の形態1における整流子の組成変化を説明する概念図である。 3 and 4 are conceptual diagrams for explaining the composition change of the commutator in Embodiment 1 of the present invention.
 また、図5Aは、本発明と比較する整流子を用いたモータの駆動時間とブラシ長を示す特性図である。図5Bは、本発明の実施の形態1における整流子を用いたモータの駆動時間とブラシ長を示す特性図である。 FIG. 5A is a characteristic diagram showing the drive time and brush length of a motor using a commutator compared with the present invention. FIG. 5B is a characteristic diagram showing a drive time and a brush length of the motor using the commutator in Embodiment 1 of the present invention.
 図1Aに示すように、本発明の実施の形態1における整流子1は、モータ30の内部に用いられる。以下の説明において、モータ30は、直流電動機を例示する。 As shown in FIG. 1A, commutator 1 in Embodiment 1 of the present invention is used inside motor 30. In the following description, the motor 30 is exemplified by a DC motor.
 モータ30は、ロータ31と、ステータ32と、を備える。 The motor 30 includes a rotor 31 and a stator 32.
 ロータ31は、整流子1と、シャフト11と、ロータコア14と、を有する。整流子1については、後ほど詳細に説明する。シャフト11は、中心軸11aが整流子1の軸心1a上に位置する。シャフト11は、整流子1が取り付けられる。ロータコア14は、シャフト11に取り付けられる。 The rotor 31 includes the commutator 1, the shaft 11, and the rotor core 14. The commutator 1 will be described in detail later. The shaft 11 has a central axis 11 a located on the axis 1 a of the commutator 1. The commutator 1 is attached to the shaft 11. The rotor core 14 is attached to the shaft 11.
 ステータ32は、ロータ31と対向して位置する。 The stator 32 is positioned facing the rotor 31.
 本構成のモータ30は、後述する整流子1、101が発揮する効果を享受できる。 The motor 30 having this configuration can enjoy the effects exhibited by the commutators 1 and 101 described later.
 図1Bに示すように、本発明の実施の形態1における整流子1は、軸心1aに沿って筒状に形成されて、導電層2と、樹脂層4と、中間層3と、を有する。 As shown in FIG. 1B, commutator 1 in Embodiment 1 of the present invention is formed in a cylindrical shape along axis 1a, and has conductive layer 2, resin layer 4, and intermediate layer 3. .
 導電層2は、軸心1aと直交する方向において、外周側に位置する。導電層2は、導電材料と、研磨材18と、を含む。導電層2は、複数の整流子片2aが外周表面1bから軸心1aの反対側に向かって形成される。 The conductive layer 2 is located on the outer peripheral side in the direction orthogonal to the axis 1a. The conductive layer 2 includes a conductive material and an abrasive 18. In the conductive layer 2, a plurality of commutator pieces 2a are formed from the outer peripheral surface 1b toward the opposite side of the shaft center 1a.
 樹脂層4は、軸心1aと直交する方向において、内周側に位置する。樹脂層4は、電気絶縁性の樹脂材料を含む。 The resin layer 4 is located on the inner peripheral side in the direction orthogonal to the axis 1a. The resin layer 4 includes an electrically insulating resin material.
 中間層3は、軸心1aと直交する方向において、導電層2と樹脂層4との間に位置する。中間層3は、導電材料と電気絶縁性の樹脂材料とを混合して含む。中間層3では、導電層2から樹脂層4に向かって、導電材料の含有率が減少するとともに、樹脂材料の含有率が増加する。 The intermediate layer 3 is located between the conductive layer 2 and the resin layer 4 in a direction orthogonal to the axis 1a. The intermediate layer 3 includes a mixture of a conductive material and an electrically insulating resin material. In the intermediate layer 3, the content of the conductive material decreases from the conductive layer 2 toward the resin layer 4, and the content of the resin material increases.
 本構成によれば、図2A、図2Bに示すように、整流子片2aには、研磨材18が含まれる。研磨材18は、整流子片2aの表面に生じる酸化膜20を研磨する。よって、酸化膜20は、厚みが増すことがない。したがって、ブラシ17と整流子片2aとの導通不良が低減される。 According to this configuration, as shown in FIGS. 2A and 2B, the commutator piece 2 a includes the abrasive 18. The abrasive 18 polishes the oxide film 20 generated on the surface of the commutator piece 2a. Therefore, the oxide film 20 does not increase in thickness. Therefore, poor conduction between the brush 17 and the commutator piece 2a is reduced.
 この結果、ブラシ17と整流子片2aとの導通不良によって生じていた、火花放電の発生が抑制される。 As a result, the occurrence of spark discharge, which has occurred due to poor conduction between the brush 17 and the commutator piece 2a, is suppressed.
 よって、本実施の形態1における整流子1は、ブラシ17の磨耗を抑制できるため、ブラシ17の長寿命化を図ることができる。 Therefore, since the commutator 1 according to the first embodiment can suppress the wear of the brush 17, the life of the brush 17 can be extended.
 ところで、研磨材18として、銅と結合をしない材料を用いれば、研磨材18は、整流子片2aから離れ易くなる。よって、研磨材18は、摺接面17aに残留することが少なくなる。 By the way, if a material that does not bond to copper is used as the abrasive 18, the abrasive 18 can be easily separated from the commutator piece 2a. Therefore, the abrasive 18 is less likely to remain on the sliding contact surface 17a.
 つまり、研磨材として、銅と結合する材料を用いた場合、研磨材が整流子片の摺接面側に残留する。この場合、ブラシと整流子片との間には、導通不良が生じることがある。 That is, when a material that combines with copper is used as the abrasive, the abrasive remains on the sliding surface side of the commutator piece. In this case, conduction failure may occur between the brush and the commutator piece.
 そこで、研磨材18として、銅と結合をしない材料を用いれば、研磨材18が整流子片2aの摺接面17a側に残留することを防止できる。よって、ブラシ17と整流子片2aとの間は、良好な導通状態が維持される。したがって、ブラシ17と整流子片2aとの間では、火花放電の発生が低減される。この結果、整流子1は、更に、ブラシ17の長寿命化を図ることができる。 Therefore, if a material that is not bonded to copper is used as the abrasive 18, the abrasive 18 can be prevented from remaining on the sliding contact surface 17a side of the commutator piece 2a. Therefore, a good conduction state is maintained between the brush 17 and the commutator piece 2a. Therefore, the occurrence of spark discharge is reduced between the brush 17 and the commutator piece 2a. As a result, the commutator 1 can further extend the life of the brush 17.
 特に、顕著な作用効果を奏する構成は、以下のとおりである。 In particular, the configuration that exhibits remarkable effects is as follows.
 すなわち、図1Bに示すように、整流子1において、導電材料は、銅である。具体的には、整流子1は、銅粉体で形成できる。あるいは、導電材料は、銀である。導電材料は、他の導電性金属が利用できる。 That is, as shown in FIG. 1B, in the commutator 1, the conductive material is copper. Specifically, the commutator 1 can be formed of copper powder. Alternatively, the conductive material is silver. Other conductive metals can be used as the conductive material.
 また、中間層3は、導電材料と樹脂材料とを混合して含む傾斜機能材料である。 The intermediate layer 3 is a functionally graded material containing a mixture of a conductive material and a resin material.
 また、中間層3は、軸心1aと直交する方向において、複数の層である、第1の中間層3aと第2の中間層3bで形成される。 The intermediate layer 3 is formed of a plurality of first intermediate layers 3a and second intermediate layers 3b in a direction orthogonal to the axis 1a.
 特に、複数の層である、第1の中間層3aと第2の中間層3bは、導電材料と樹脂材料との混合比率が互いに異なる。 Particularly, the first intermediate layer 3a and the second intermediate layer 3b, which are a plurality of layers, have different mixing ratios of the conductive material and the resin material.
 また、研磨材18は、銅より硬度が高い。具体的には、研磨材18は、セラミック材である。あるいは、研磨材18は、タングステンである。 Also, the abrasive 18 is harder than copper. Specifically, the abrasive 18 is a ceramic material. Alternatively, the abrasive 18 is tungsten.
 本構成とすれば、図2A、図2Bに示すように、研磨材18は、傾斜した整流子片2aの摺接面17a側に添加できる。よって、整流子片2aの外周表面2bは、整流子1を形成する銅よりも硬い研磨材18により、整流子片2aの外周表面2bが研磨される。つまり、整流子片2aの外周表面2bに生じた非導通層は、研磨される。 2A and 2B, the abrasive 18 can be added to the sliding contact surface 17a side of the inclined commutator piece 2a. Therefore, the outer peripheral surface 2b of the commutator piece 2a is polished by the abrasive 18 harder than copper forming the commutator 1 on the outer peripheral surface 2b. That is, the non-conductive layer generated on the outer peripheral surface 2b of the commutator piece 2a is polished.
 また、研磨材18は、球状の粒子である。なお、粒子の形状とは、真の球だけでなく、断面形状が略楕円である、略球状の形状も含む。 Moreover, the abrasive 18 is a spherical particle. The shape of the particles includes not only a true sphere but also a substantially spherical shape having a substantially elliptical cross-sectional shape.
 研磨材18の粒子は、傾斜した整流子片2aの外周表面2b側にも位置する。ブラシ17が整流子片2aと摺れ合って接すれば、摩擦により、整流子片2aの外周表面2bは磨耗する。整流子片2aの外周表面2bの磨耗が進めば、研磨材18の粒子は、整流子片2aを構成する銅分子から取り出される。 The particles of the abrasive 18 are also located on the outer peripheral surface 2b side of the inclined commutator piece 2a. If the brush 17 is in sliding contact with the commutator piece 2a, the outer peripheral surface 2b of the commutator piece 2a is worn by friction. When the outer peripheral surface 2b of the commutator piece 2a is worn, particles of the abrasive 18 are taken out from the copper molecules constituting the commutator piece 2a.
 上記構成とすれば、研磨材18の粒子が整流子片2aから取り出される際、より円滑に、粒子が取り出される。図2Aに示すように、取り出された研磨材18の粒子は略球状である。よって、研磨材18は、ブラシ17と整流子片2aの外周表面2bとの間を転がる。研磨材18の粒子は、整流子片2aの外周表面2bの研磨に寄与する。 With the above configuration, when the particles of the abrasive 18 are taken out from the commutator piece 2a, the particles are taken out more smoothly. As shown in FIG. 2A, the particles of the abrasive 18 taken out are substantially spherical. Therefore, the abrasive 18 rolls between the brush 17 and the outer peripheral surface 2b of the commutator piece 2a. The particles of the abrasive 18 contribute to the polishing of the outer peripheral surface 2b of the commutator piece 2a.
 さらに、図面を用いて、詳細に説明する。 Furthermore, it explains in detail using a drawing.
 図1Aに示すように、モータ30は、円筒状に形成されたフレーム12の内周面12aに沿って、界磁石13が取り付けられる。モータ30は、界磁石13の内周側に、ロータ31が位置する。 As shown in FIG. 1A, the field magnet 13 is attached to the motor 30 along the inner peripheral surface 12a of the frame 12 formed in a cylindrical shape. In the motor 30, the rotor 31 is located on the inner peripheral side of the field magnet 13.
 ロータ31は、シャフト11と、電機子10と、整流子1と、を有する。 The rotor 31 has a shaft 11, an armature 10, and a commutator 1.
 電機子10は、ロータコア14と、インシュレータ15と、巻線16と、を有する。本実施の形態1において、ロータコア14は、鋼板を積層して構成される。ロータコア14は、積層された鋼板と同様の作用効果を得ることができれば、他の構成で形成できる。ロータコア14には、インシュレータ15を介して、巻線16が巻き回される。インシュレータ15は、ロータコア14と巻線16とを電気的に絶縁する。インシュレータ15は、樹脂で形成できる。 The armature 10 includes a rotor core 14, an insulator 15, and a winding 16. In the first embodiment, the rotor core 14 is configured by laminating steel plates. The rotor core 14 can be formed in another configuration as long as the same effect as that of the stacked steel plates can be obtained. A winding 16 is wound around the rotor core 14 via an insulator 15. The insulator 15 electrically insulates the rotor core 14 and the winding 16 from each other. The insulator 15 can be formed of resin.
 シャフト11には、電機子10と、整流子1と、が取り付けられる。シャフト11は、中心軸11aを回転中心として、回転自在である。 The armature 10 and the commutator 1 are attached to the shaft 11. The shaft 11 is rotatable about the central axis 11a as a rotation center.
 図1Bに示すように、整流子1には、複数の整流子片2aが形成される。図1Aに示すように、本実施の形態1において、整流子1は、複数の整流子片(2a)で、一対のブラシ17と接する。一対のブラシ17は、中心軸11aと直交する方向から複数の整流子片(2a)と接する。中心軸11aと直交する方向は、ラジアル方向ともいう。複数の整流子片(2a)のそれぞれと、一対のブラシ17のそれぞれとが摺れ合う面を摺接面17aともいう。一対のブラシ17のそれぞれは、カーボン材料を用いれば実現できる。 As shown in FIG. 1B, the commutator 1 is formed with a plurality of commutator pieces 2a. As shown in FIG. 1A, in the first embodiment, commutator 1 is a plurality of commutator pieces (2a) and contacts a pair of brushes 17. The pair of brushes 17 are in contact with the plurality of commutator pieces (2a) from a direction orthogonal to the central axis 11a. The direction orthogonal to the central axis 11a is also referred to as a radial direction. The surface on which each of the plurality of commutator pieces (2a) and each of the pair of brushes 17 slide is also referred to as a sliding contact surface 17a. Each of the pair of brushes 17 can be realized by using a carbon material.
 複数の整流子片(2a)のそれぞれには、摺接面17aを介して、一対のブラシ17のそれぞれから駆動電流が供給される。整流子片(2a)とブラシ17とが接する際の位置関係により、駆動電流が流れる向きが切り替わる。駆動電流が流れる向きが切り替わるため、電機子10が回転する。駆動電流が流れる向きが切り替わることは、転流ともいう。 A drive current is supplied to each of the plurality of commutator pieces (2a) from each of the pair of brushes 17 via the sliding contact surface 17a. The direction in which the drive current flows is switched depending on the positional relationship when the commutator piece (2a) and the brush 17 are in contact with each other. Since the direction in which the drive current flows is switched, the armature 10 rotates. Switching the direction in which the drive current flows is also referred to as commutation.
 次に、図1B、図1Cに示すように、本実施の形態1における整流子1は、円筒状である。軸心1aと交差する方向において、整流子1は、外周側に位置する導電層2と、内周側に位置する樹脂層4と、導電層2と樹脂層4との間に位置する中間層3と、を有する。 Next, as shown in FIG. 1B and FIG. 1C, the commutator 1 according to the first embodiment is cylindrical. In the direction crossing the axis 1a, the commutator 1 includes a conductive layer 2 positioned on the outer peripheral side, a resin layer 4 positioned on the inner peripheral side, and an intermediate layer positioned between the conductive layer 2 and the resin layer 4 3.
 導電層2は、導電材料で形成される。導電材料には、銅や銅合金などが使用できる。本実施の形態1において、導電層2は、銅粉体(19)で形成される。導電層2には、軸心1aの反対側に向かって整流子片2aが形成される。 The conductive layer 2 is formed of a conductive material. Copper or copper alloy can be used as the conductive material. In the first embodiment, the conductive layer 2 is formed of copper powder (19). In the conductive layer 2, a commutator piece 2a is formed toward the opposite side of the axis 1a.
 樹脂層4は、電気絶縁性を有する樹脂材料で形成される。樹脂材料には、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂が使用できる。 Resin layer 4 is formed of a resin material having electrical insulation. As the resin material, a thermosetting resin such as an epoxy resin or a phenol resin can be used.
 中間層3は、導電材料と樹脂材料とが混合された組成である。中間層3は、第1の中間層3aと、第2の中間層3bと、を含む。第1の中間層3aと第2の中間層3bとは、組成が異なる。 The intermediate layer 3 has a composition in which a conductive material and a resin material are mixed. The intermediate layer 3 includes a first intermediate layer 3a and a second intermediate layer 3b. The first intermediate layer 3a and the second intermediate layer 3b have different compositions.
 また、整流子1は、複数の整流子片2aのうち隣接する一組の整流子片2a間のそれぞれに、軸心1aと直交する面上において、外周表面1bから軸心1a方向に向かって凹となるスリット7を含む、スリット7は、樹脂層4に達する深さである。スリット7は、隣接する一組の整流子片2aを電気的に分離する。 Further, the commutator 1 is disposed between the adjacent pair of commutator pieces 2a among the plurality of commutator pieces 2a on the surface orthogonal to the axis 1a from the outer peripheral surface 1b toward the axis 1a. The slit 7 including the concave slit 7 has a depth reaching the resin layer 4. The slit 7 electrically separates a pair of adjacent commutator pieces 2a.
 図3において、図中、右側が整流子1の外周側、左側が整流子1の内周側を示す。図3に示すように、整流子1は、外周側から内周側に掛けて、主たる組成物の割合が導電材料2cから樹脂材料4aへと、連続的に変化する。より具体的には、整流子1の主たる組成は、導電材料2cから導電材料2cと樹脂材料4aとの混合状態を経て、樹脂材料4aへ変化する。この変化は、図中拡大して示したように、導電材料2cと樹脂材料4aとが、入り混じりながら、徐々に変化する。 3, the right side shows the outer peripheral side of the commutator 1 and the left side shows the inner peripheral side of the commutator 1 in the figure. As shown in FIG. 3, in the commutator 1, the ratio of the main composition continuously changes from the conductive material 2c to the resin material 4a from the outer peripheral side to the inner peripheral side. More specifically, the main composition of the commutator 1 changes from the conductive material 2c to the resin material 4a through a mixed state of the conductive material 2c and the resin material 4a. This change gradually changes as the conductive material 2c and the resin material 4a enter and mix as shown in the enlarged view in the figure.
 つまり、導電材料2cと樹脂材料4aとの混合物である中間層3は、傾斜機能材料として機能する。 That is, the intermediate layer 3 which is a mixture of the conductive material 2c and the resin material 4a functions as a functionally gradient material.
 したがって、整流子1は、各材料間で境界面を形成することなく、その組成が連続して変化する。よって、整流子1では、明確な境界面を形成した場合において、境界面に生じると考えられる、ミクロな空隙などが生じない。 Therefore, the composition of the commutator 1 continuously changes without forming a boundary surface between the materials. Therefore, in the commutator 1, when a clear boundary surface is formed, a micro void or the like that is considered to be generated on the boundary surface does not occur.
 本構成とすれば、複数の材料から成る整流子1は、あたかも一つの材料で構成された一体物のように、熱応力を分散できる。よって、ロータ(31)が高速で回転する際、整流子1に遠心力が作用しても、整流子片2aなどに剥離や亀裂が生じることはない。また、整流子1は、上述したように凹凸の発生を防止できる。したがって、整流子1は、信頼性が向上する。 With this configuration, the commutator 1 made of a plurality of materials can disperse the thermal stress as if it were an integrated body made of a single material. Therefore, when the rotor (31) rotates at a high speed, even if centrifugal force acts on the commutator 1, the commutator piece 2a or the like does not peel or crack. Further, the commutator 1 can prevent unevenness as described above. Therefore, the commutator 1 has improved reliability.
 整流子1は、例えば、後述する実施の形態2に示すように、放電プラズマ焼結法を用いて作成できる。 The commutator 1 can be formed using a discharge plasma sintering method, for example, as shown in a second embodiment described later.
 なお、本実施の形態1における整流子の組成変化は、つぎの形態でも可能である。 It should be noted that the composition change of the commutator in the first embodiment is also possible in the following form.
 すなわち、図4に示すように、整流子101は、単独の材料からなる領域が存在する。具体的には、整流子101の外周側から内周側に向かって、整流子101は、導電材料2cからなる領域2dと、樹脂材料4aからなる領域4bと、を含む。 That is, as shown in FIG. 4, the commutator 101 has a region made of a single material. Specifically, commutator 101 includes a region 2d made of conductive material 2c and a region 4b made of resin material 4a from the outer peripheral side to the inner peripheral side of commutator 101.
 これらの領域2d、4bは、積極的に単独の材料で構成することを意図している。なお、これらの領域2d、4bは、意図しない他の材料が混在することを排除するものではない。 These regions 2d and 4b are intended to be actively composed of a single material. These regions 2d and 4b do not exclude the mixing of other unintended materials.
 本構成とすれば、整流子101は、求められる仕様に応じて、所望の静電容量などを得ることができる。 With this configuration, the commutator 101 can obtain a desired capacitance or the like according to the required specifications.
 つぎに、上述した実施の形態1について、特徴的な作用効果を以下に説明する。 Next, characteristic actions and effects of the first embodiment will be described below.
 図2Aに示すように、整流子(1)は、導電層(2)の外側に形成された整流子片2aに、研磨材18が含まれる。例えば、研磨材18には、セラミック材が使用される。研磨材18は、整流子片2aの表面、すなわち、摺接面17aに生じた酸化膜20を削除する。よって、研磨材18に削除された酸化膜20は、厚みを厚くすることができない。 As shown in FIG. 2A, the commutator (1) includes an abrasive 18 in the commutator piece 2a formed outside the conductive layer (2). For example, a ceramic material is used for the abrasive 18. The abrasive 18 removes the oxide film 20 generated on the surface of the commutator piece 2a, that is, the sliding contact surface 17a. Therefore, the oxide film 20 removed by the abrasive 18 cannot be thickened.
 つまり、図2Bに示すように、整流子片2aの表面は、整流子片2aとブラシ17との導通不良の原因となっていた酸化膜20が研磨される。したがって、整流子片2aとブラシ17との導通状態は、良好な状態が維持される。 That is, as shown in FIG. 2B, the surface of the commutator piece 2a is polished with the oxide film 20 that caused the conduction failure between the commutator piece 2a and the brush 17. Therefore, the conduction state between the commutator piece 2a and the brush 17 is maintained in a good state.
 この結果、整流子片2aとブラシ17とが摺れ合って接する、摺接面17aにて生じていた火花放電は、発生が抑制される。よって、本実施の形態1における整流子1は、ブラシ17の長寿命化を図ることができる。 As a result, the occurrence of the spark discharge generated on the sliding contact surface 17a where the commutator piece 2a and the brush 17 are in sliding contact with each other is suppressed. Therefore, the commutator 1 according to the first embodiment can extend the life of the brush 17.
 また、研磨材18は、銅粉体19と結合されていない。よって、研磨材18は、銅粉体19からなる整流子片2aから離れ易い。換言すれば、研磨材18は、研磨材18のみが独立して、整流子片2aとブラシ17とが摺れ合う摺接面17aに残ることが抑制される。 Further, the abrasive 18 is not bonded to the copper powder 19. Therefore, the abrasive 18 is easily separated from the commutator piece 2 a made of the copper powder 19. In other words, it is possible to suppress the abrasive 18 from remaining only on the sliding contact surface 17a where the commutator piece 2a and the brush 17 slide independently.
 よって、研磨材18が独立して摺接面17aに残留することを抑制できるため、整流子片2aとブラシ17との間では、導通不良が低減される。整流子片2aとブラシ17との間で導通不良が低減されると、整流子片2aとブラシ17との間では、火花放電の発生が低減できる。この結果、ブラシ17は、さらに、長寿命化が図られる。 Therefore, it is possible to suppress the abrasive 18 from remaining on the sliding contact surface 17a independently, so that poor conduction between the commutator piece 2a and the brush 17 is reduced. When the conduction failure is reduced between the commutator piece 2 a and the brush 17, the occurrence of spark discharge can be reduced between the commutator piece 2 a and the brush 17. As a result, the life of the brush 17 is further extended.
 ここで、本実施の形態1におけるブラシ17と比較例のブラシについて、駆動時間とブラシ長との関係を説明する。 Here, the relationship between the drive time and the brush length will be described for the brush 17 in the first embodiment and the brush of the comparative example.
 図5Aに示すように、比較例である、従来のブラシを用いた場合、ブラシ長は、所定の駆動時間T1に達すると、急激に磨耗が進む。つまり、従来のブラシは、所定の駆動時間T1を境として、2つの磨耗速度を有する。 As shown in FIG. 5A, when a conventional brush, which is a comparative example, is used, when the brush length reaches a predetermined driving time T1, the wear proceeds rapidly. That is, the conventional brush has two wear speeds with a predetermined drive time T1 as a boundary.
 図5Bに示すように、本実施の形態1におけるブラシ17を用いた場合、ブラシ長は、駆動時間に比例して、徐々に短くなる。つまり、ブラシ17は、駆動時間に比例して、磨耗がほぼ一定の速度で進む。 As shown in FIG. 5B, when the brush 17 according to the first embodiment is used, the brush length is gradually shortened in proportion to the driving time. That is, the brush 17 advances at a substantially constant speed in proportion to the driving time.
 つまり、図5A、図5Bの対比から明らかなように、本実施の形態1におけるブラシ17は、長寿命化が図られる。 That is, as is clear from the comparison between FIG. 5A and FIG. 5B, the brush 17 in the first embodiment has a long life.
 ところで、一般的に、インダクタンスが大きいモータでは、ブラシと整流子片との間で、火花放電が大きくなり易い。大きな火花放電が生じると、ブラシは損傷する。また、大きな火花放電が生じると、整流子片の表面に生じる酸化膜の厚みは厚くなる。よって、整流子片の表面に生じる酸化膜の厚みが厚くなると、ブラシと整流子片との間で、導通不良が生じ易くなる。 Incidentally, in general, in a motor having a large inductance, spark discharge tends to be large between the brush and the commutator piece. If a large spark discharge occurs, the brush will be damaged. In addition, when a large spark discharge occurs, the thickness of the oxide film generated on the surface of the commutator piece increases. Therefore, when the thickness of the oxide film generated on the surface of the commutator piece is increased, poor conduction is likely to occur between the brush and the commutator piece.
 そこで、本実施の形態1におけるブラシを、インダクタンスが大きいモータに用いれば、酸化膜を研磨できるため、ブラシと整流子片との間で生じる導通不良を抑制できる。よって、本実施の形態1におけるブラシは、特に、インダクタンスが大きいモータで、顕著な効果が期待できる。 Therefore, if the brush according to the first embodiment is used for a motor having a large inductance, the oxide film can be polished, so that a conduction failure occurring between the brush and the commutator piece can be suppressed. Therefore, the brush in the first embodiment can be expected to have a remarkable effect, particularly with a motor having a large inductance.
 なお、上述した実施の形態1の各構成要素は、以下の形態とすることができる。 In addition, each component of Embodiment 1 mentioned above can be set as the following forms.
 すなわち、研磨材18は、セラミック材やタングステン以外に、セラミック材とタングステンの化合物などが利用できる。研磨材18は、セラミック材やタングステンと同様の特性を有する、他の材料が利用できる。 That is, the abrasive 18 can be a ceramic material and a compound of tungsten in addition to the ceramic material and tungsten. As the abrasive 18, other materials having characteristics similar to those of a ceramic material and tungsten can be used.
 (実施の形態2)
 図6は、本発明の実施の形態2における整流子の製造方法を示すフローチャートである。
(Embodiment 2)
FIG. 6 is a flowchart showing a commutator manufacturing method according to Embodiment 2 of the present invention.
 なお、本実施の形態1における整流子と同様の構成については、同じ符号を付して、説明を援用する。 In addition, about the structure similar to the commutator in this Embodiment 1, the same code | symbol is attached | subjected and description is used.
 図6に示すように、本発明の実施の形態2における整流子の製造方法は、つぎのステップを備える。 As shown in FIG. 6, the commutator manufacturing method according to the second embodiment of the present invention includes the following steps.
 すなわち、準備するステップは、導電材料と、樹脂材料と、を準備する(ステップ1)。 That is, in the preparing step, a conductive material and a resin material are prepared (step 1).
 充填するステップは、導電材料と、樹脂材料と、をそれぞれ充填する。充填するステップは、導電材料と樹脂材料、を混合して充填する(ステップ2)。 In the filling step, the conductive material and the resin material are filled, respectively. In the filling step, the conductive material and the resin material are mixed and filled (step 2).
 通電を行うステップは、充填された導電材料と、混合して充填された導電材料と樹脂材料と、充填された樹脂材料と、に対して、圧力を加えながら、パルス状の通電を行う(ステップ3)。 The step of energizing performs pulse-shaped energization while applying pressure to the filled conductive material, the mixed and filled conductive material and resin material, and the filled resin material (step 3).
 以上のステップを経て、実施の形態1で説明した整流子1、101が製造される。 Through the above steps, commutators 1 and 101 described in the first embodiment are manufactured.
 本実施の形態2で示した整流子の製造方法によれば、省電力、かつ、短時間で、傾斜機能材料の製造を行うことができる。よって、本実施の形態2で示した製造方法は、生産効率の向上と製造コストの低減を図ることができる。 According to the method of manufacturing a commutator shown in the second embodiment, functionally graded material can be manufactured in a short time with power saving. Thus, the manufacturing method described in Embodiment 2 can improve production efficiency and reduce manufacturing costs.
 なお、本実施の形態2で示した整流子の製造方法には、放電プラズマ焼結方法が利用できる。本実施の形態2で示した製造方法で製造された整流子は、順次、導電材料と、樹脂材料との含有率が変化する、傾斜機能材料となる。 It should be noted that a discharge plasma sintering method can be used for the commutator manufacturing method shown in the second embodiment. The commutator manufactured by the manufacturing method shown in the second embodiment becomes a functionally graded material in which the content ratios of the conductive material and the resin material sequentially change.
 よって、本実施の形態2で示した製造方法で製造された整流子は、各材料間で境界面を形成することなく、その組成が連続して変化する。したがって、この整流子では、明確な境界面を形成した場合において、境界面に生じると考えられる、ミクロな空隙などが生じない。 Therefore, the composition of the commutator manufactured by the manufacturing method shown in the second embodiment changes continuously without forming a boundary surface between the materials. Therefore, in this commutator, when a clear boundary surface is formed, a microscopic void that is considered to be generated on the boundary surface does not occur.
 また、放電プラズマ焼結方法を利用した場合、導電性が低い研磨材と、導電性が高い金属と、を一体化して製造できる。 Further, when the discharge plasma sintering method is used, it is possible to manufacture an abrasive having low conductivity and a metal having high conductivity in an integrated manner.
 本発明の整流子は、家庭用の掃除機や車両等に取り付けられる電気機器に用いられる整流子モータに利用できる。特に、本発明の整流子は、大電流が流れ、高速で回転する用途に用いられる整流子モータに適用すれば、顕著な効果を得ることができる。 The commutator of the present invention can be used for a commutator motor used in an electric device attached to a household vacuum cleaner or a vehicle. In particular, when the commutator of the present invention is applied to a commutator motor that is used for applications in which a large current flows and rotates at high speed, a remarkable effect can be obtained.
 1,41,101 整流子
 1a 軸心
 1b,2b 外周表面
 2 導電層
 2a,42a 整流子片
 2c 導電材料
 2d,4b 領域
 3 中間層
 3a 第1の中間層(層)
 3b 第2の中間層(層)
 4 樹脂層
 4a 樹脂材料
 7 スリット
 10 電機子
 11 シャフト
 11a 中心軸
 12 フレーム
 12a 内周面
 13 界磁石
 14 ロータコア
 15 インシュレータ
 16 巻線
 17,47 ブラシ
 17a,47a 摺接面
 18 研磨材
 19 銅粉体
 20 酸化膜
 30,40 モータ(整流子モータ)
 43 樹脂
 44 境界面
 31,51 ロータ
 32 ステータ
1, 41, 101 Commutator 1a Axes 1b, 2b Outer peripheral surface 2 Conductive layer 2a, 42a Commutator piece 2c Conductive material 2d, 4b Region 3 Intermediate layer 3a First intermediate layer (layer)
3b Second intermediate layer (layer)
DESCRIPTION OF SYMBOLS 4 Resin layer 4a Resin material 7 Slit 10 Armature 11 Shaft 11a Center axis 12 Frame 12a Inner peripheral surface 13 Field magnet 14 Rotor core 15 Insulator 16 Winding 17, 47 Brush 17a, 47a Sliding surface 18 Polishing material 19 Copper powder 20 Oxide film 30, 40 Motor (commutator motor)
43 Resin 44 Interface 31, 51 Rotor 32 Stator

Claims (12)

  1. 軸心に沿って筒状に形成され、前記軸心と直交する方向において、
       外周側に位置して導電材料を含むとともに、研磨材を含む、複数の整流子片が外周表面から前記軸心の反対側に向かって形成される導電層と、
       内周側に位置して、電気絶縁性の樹脂材料を含む樹脂層と、
       前記導電層と前記樹脂層との間に位置して、前記導電材料と前記樹脂材料とを混合して含み、前記導電層から前記樹脂層に向かって、前記導電材料の含有率が減少するとともに前記樹脂材料の含有率が増加する、中間層と、
    を有する整流子。
    Formed in a cylindrical shape along the axis, in a direction perpendicular to the axis,
    A conductive layer that is located on the outer peripheral side and includes a conductive material, and includes a polishing material, and a plurality of commutator pieces are formed from the outer peripheral surface toward the opposite side of the axis, and
    Located on the inner periphery side, a resin layer containing an electrically insulating resin material,
    The conductive material and the resin material are mixed and included between the conductive layer and the resin layer, and the content of the conductive material decreases from the conductive layer toward the resin layer. An intermediate layer in which the content of the resin material increases;
    Commutator with
  2. 前記導電材料は、銅である、請求項1に記載の整流子。 The commutator according to claim 1, wherein the conductive material is copper.
  3. 前記導電材料は、銀である、請求項1に記載の整流子。 The commutator according to claim 1, wherein the conductive material is silver.
  4. 前記中間層は、前記導電材料と前記樹脂材料とを混合して含む傾斜機能材料である、請求項1に記載の整流子。 The commutator according to claim 1, wherein the intermediate layer is a functionally gradient material including a mixture of the conductive material and the resin material.
  5. 前記中間層は、前記軸心と直交する方向において、複数の層で形成される、請求項1または4のいずれか一項に記載の整流子。 The commutator according to claim 1, wherein the intermediate layer is formed of a plurality of layers in a direction perpendicular to the axis.
  6. 前記複数の層は、前記導電材料と前記樹脂材料との混合比率が互いに異なる、請求項5に記載の整流子。 The commutator according to claim 5, wherein the plurality of layers have different mixing ratios of the conductive material and the resin material.
  7. 前記研磨材は、銅より硬度が高い、請求項1または2のいずれか一項に記載の整流子。 The commutator according to claim 1, wherein the abrasive has higher hardness than copper.
  8. 前記研磨材は、セラミック材である請求項7に記載の整流子。 The commutator according to claim 7, wherein the abrasive is a ceramic material.
  9. 前記研磨材は、タングステンである請求項7に記載の整流子。 The commutator according to claim 7, wherein the abrasive is tungsten.
  10. 前記研磨材は、球状の粒子であることを特徴とする請求項1に記載の整流子。 The commutator according to claim 1, wherein the abrasive is a spherical particle.
  11.       請求項1から4のいずれか一項に記載の整流子と、
          前記軸心上に、その中心軸が位置して、前記整流子が取り付けられるシャフトと、
          前記シャフトに取り付けられるロータコアと、
       を有するロータと、
       前記ロータと対向して位置するステータと、
    を備える整流子モータ。
    The commutator according to any one of claims 1 to 4,
    A shaft on which the commutator is mounted, the central axis of which is located on the axis;
    A rotor core attached to the shaft;
    A rotor having
    A stator positioned opposite the rotor;
    A commutator motor comprising:
  12.    前記導電材料と、前記樹脂材料と、を準備するステップと、
       前記導電材料と、前記樹脂材料と、をそれぞれ充填するとともに、前記導電材料と前記樹脂材料、を混合して充填するステップと、
       充填された前記導電材料と、充填された前記樹脂材料と、混合して充填された前記導電材料と前記樹脂材料と、に対して、圧力を加えながら、パルス状の通電を行うステップと、
    を備える、請求項1から4のいずれか一項に記載の整流子を製造する整流子の製造方法。
    Preparing the conductive material and the resin material;
    Filling each of the conductive material and the resin material, and mixing and filling the conductive material and the resin material;
    Conducting the pulsed energization while applying pressure to the filled conductive material, the filled resin material, and the mixed and filled conductive material and the resin material;
    A method of manufacturing a commutator that manufactures the commutator according to any one of claims 1 to 4.
PCT/JP2016/000541 2015-02-13 2016-02-03 Rectifier, rectifier motor and method for manufacturing rectifier WO2016129247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-025968 2015-02-13
JP2015025968 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129247A1 true WO2016129247A1 (en) 2016-08-18

Family

ID=56614515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000541 WO2016129247A1 (en) 2015-02-13 2016-02-03 Rectifier, rectifier motor and method for manufacturing rectifier

Country Status (1)

Country Link
WO (1) WO2016129247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216524A (en) * 2018-06-12 2019-12-19 株式会社ミツバ Commutator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253628A (en) * 1999-02-25 2000-09-14 Astec:Kk Assembled rectifier assembling jig
JP2001186724A (en) * 1999-12-27 2001-07-06 Nanshin Seiki Seisakusho:Kk Commutator for rotary electric machine
JP2007082367A (en) * 2005-09-16 2007-03-29 Mabuchi Motor Co Ltd Rectifying device for small motor
JP2012086529A (en) * 2010-10-22 2012-05-10 Kyushu Institute Of Technology Functionally gradient composite material and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253628A (en) * 1999-02-25 2000-09-14 Astec:Kk Assembled rectifier assembling jig
JP2001186724A (en) * 1999-12-27 2001-07-06 Nanshin Seiki Seisakusho:Kk Commutator for rotary electric machine
JP2007082367A (en) * 2005-09-16 2007-03-29 Mabuchi Motor Co Ltd Rectifying device for small motor
JP2012086529A (en) * 2010-10-22 2012-05-10 Kyushu Institute Of Technology Functionally gradient composite material and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216524A (en) * 2018-06-12 2019-12-19 株式会社ミツバ Commutator

Similar Documents

Publication Publication Date Title
JP2016015887A (en) Electro-mechanic rotor bar and method for manufacturing the same
JP2007049891A (en) Method of manufacturing stator and motor
WO2007055164A1 (en) Carbon brush of motor and method for producing the same
JP5015137B2 (en) Method for manufacturing mold commutator
WO2016129247A1 (en) Rectifier, rectifier motor and method for manufacturing rectifier
RU2392722C2 (en) Electric motor and electric tool equipped with this motor
JP5533930B2 (en) Rotating electric machine
US10418769B2 (en) Commutator, electric motor, and method for manufacturing commutator
WO2014024569A1 (en) Contact member and electric motor
JP6660521B2 (en) Commutator motor element, commutator motor, electric blower, vacuum cleaner
US10505328B2 (en) Sliding member, rotary device, and method for manufacturing sliding member
JP2018074701A (en) Commutator electric motor element, commutator electric motor, electric blower, and cleaner
JP2005143228A (en) Rectifying structure of dynamo-electric machine, and armature structure of dynamo-electric machine
JP2009148034A (en) Brush for dynamo-electric machine, and dynamo-electric machine
US11901783B2 (en) Method for producing a winding overhang assembly for an electrical rotating machine
JP5136841B2 (en) Brush for rotating electrical machine and rotating electrical machine
JP6473890B2 (en) Commutator and commutator motor provided with the commutator
JP2018082507A (en) Commutator motor element, commutator motor, electric blower, cleaner, and manufacturing method for commutator motor element
JP5103889B2 (en) Commutator
JP2018074764A (en) Commutator electric motor element, commutator electric motor, electric blower, and cleaner
CN107147250B (en) Commutator motor, electric blower, and dust collector
JP2017118648A (en) Electric motor for cleaner
KR101668182B1 (en) Method for assembling rotator of motor
KR200312408Y1 (en) molding shaft structure for amature himself
JPH04109847A (en) Commutator for motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16748894

Country of ref document: EP

Kind code of ref document: A1