WO2016129016A1 - Method for inhibiting foaming of molten slag, and method for manufacturing slag product - Google Patents

Method for inhibiting foaming of molten slag, and method for manufacturing slag product Download PDF

Info

Publication number
WO2016129016A1
WO2016129016A1 PCT/JP2015/001874 JP2015001874W WO2016129016A1 WO 2016129016 A1 WO2016129016 A1 WO 2016129016A1 JP 2015001874 W JP2015001874 W JP 2015001874W WO 2016129016 A1 WO2016129016 A1 WO 2016129016A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
hot metal
refining
furnace
converter
Prior art date
Application number
PCT/JP2015/001874
Other languages
French (fr)
Japanese (ja)
Inventor
田中 高太郎
孝彦 前田
渡辺 圭児
隆司 高岡
俊朗 石毛
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112015009830-4A priority Critical patent/BR112015009830B1/en
Priority to CN201580075672.1A priority patent/CN107208169B/en
Priority to KR1020177021562A priority patent/KR101997377B1/en
Publication of WO2016129016A1 publication Critical patent/WO2016129016A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter

Definitions

  • the present invention uses a single converter-type refining furnace, and in the refining of hot metal, in which two acid feeding refining processes are continuously performed with an intermediate intermediate refining process in between.
  • the present invention relates to a method for calming the formation of dredged molten slag.
  • this invention relates to the manufacturing method of the slag product which utilized the forming sedation method of the molten slag in the intermediate
  • Patent Document 1 discloses that after the dephosphorization process, the converter is tilted while leaving the hot metal in the converter, and only the slag is discharged. Thereafter, the decarburization refining is performed in the same converter, and the decarburization refining is performed. A method is disclosed in which the later slag is reused for the subsequent dephosphorization of hot metal.
  • Patent Document 2 discloses a hot metal pretreatment (dephosphorization) method in which a single converter-type refining furnace is used to continuously perform desiliconization treatment and dephosphorization treatment of hot metal with an intermediate waste removal step in between. Is disclosed.
  • the use of a CaO-based medium solvent in the subsequent treatment is performed by discharging slag in the middle compared with a refining method in which acid refining is continued without performing intermediate waste in the middle.
  • the amount can be reduced.
  • after performing the first-stage acid refining not only the slag but also the molten iron is once discharged from the furnace and transferred to the same furnace or another furnace, and then the second-stage acid refining is performed.
  • the comparison has the following advantages.
  • (I) The time required for hot metal tapping and recharging can be shortened to increase the operating rate of the furnace.
  • Heat transfer loss can be reduced because there is little transfer of hot metal.
  • the amount of CaO-based solvent used can be reduced by leaving the slag of the second-stage acid refining in the furnace and reusing it for the first-stage acid refining of the next hot metal. .
  • IV By reducing the discharge of slag from the second-stage acid refining slag, which has a high basicity, and increasing the discharge of slag from the first-stage acid refining, which has a relatively low basicity, The use of slag can be promoted by improving the hydration expansion characteristics.
  • slag forming is a phenomenon in which molten slag contains bubbles and apparently expands in volume.
  • the forming of molten slag is not always easy to control to the intended level, and if the forming becomes excessive, it will overflow from the hot metal container (steaming pan) placed on the bogie under the furnace. Since the situation may hinder the operation, it was necessary to limit the discharge rate of the slag while checking the freeboard of the hot metal container, leading to the extension of the work time of intermediate waste.
  • the capacity of the hot metal container is not necessarily sufficient for the volume of the formed slag, and the slag is discharged after the forming of the hot metal container is settled. Inevitably, it was a problem in carrying out efficient intermediate evacuation.
  • Patent Document 2 discloses that dephosphorization slag, which requires a relatively high basicity and requires aging treatment, is suppressed, and dephosphorization slag can be obtained with good volume stability even if aging treatment is omitted.
  • slag is used by converting to slag, the unit volume mass is 1.5 kg / L or more because the slag product produced from the formed slag has a smaller unit volume mass. It is not suitable for applications such as roadbed materials that require it, and the applications are limited.
  • Patent Document 1 discloses that during the intermediate waste, the pulp cake is 35% by mass to 65% by mass in dry weight, the steelmaking slag is 20% by mass to 50% by mass, and the oil content is 3% by mass to 10% by mass.
  • a lump forming soothing material containing water of 15% by mass or less and having a specific gravity of 1.5 g / cm 3 or more and 2.5 g / cm 3 or less is introduced into the slag pan, A method is disclosed in which slag is discharged into a drain pan while calming the forming.
  • this method there is a possibility that foreign matters derived from the forming sedative material are mixed in the slag, which is not necessarily a preferable method in terms of quality control of the slag product.
  • Patent Document 3 after the slag after desiliconization / dephosphorization treatment of hot metal or slag after decarburization treatment is discharged to a waste pan, forming is performed by spraying mist-like water on the slag surface.
  • a method of suppression is disclosed. In this method, it is said that the forming is subdued by the action of degassing and solidifying the surface of the slag surface, but with low basicity hot metal pretreatment slag such as desiliconized slag, due to the action by cooling from the surface, etc. It takes a long time to calm down the forming of the entire slag in the slag pan. In addition, when watering while discharging slag into the sewage pan, a sufficient sedation effect was not obtained, so it was not effective in reducing the work time for intermediate sewage.
  • Patent Document 4 when hot metal is received in a kneading car together with a cast floor desiliconizing agent, water having a high flow rate of 20 m / s or more is sprayed on the desiliconizing slag forming in the kneading car.
  • a method for suppressing forming is disclosed.
  • the iron oxide is melted by winding the iron oxide constituting the desiliconizing agent or the slag containing this iron oxide into the hot metal by the falling flow of the hot metal.
  • the desiliconization reaction proceeds by reacting with the silicon inside.
  • the hot metal temperature at this time is as high as about 1500 ° C., and this temperature is a condition in which the decarburization reaction due to the reaction between iron oxide and carbon in the hot metal proceeds predominately.
  • CO gas is generated at a high production rate from the produced iron oxide or iron oxide-containing slag.
  • the CO gas generated from the hot metal easily accumulates at the interface between the hot metal and the slag because of the interfacial tension, and relatively coarse bubbles are formed at the interface between the hot metal and the slag.
  • the slag is formed when the bubble generation speed is high or the rising speed is low.
  • a slag layer is formed by tearing the slag layer with high-speed water to remove (escape) the CO gas, and the CO gas accumulated at the interface between the hot metal and the slag is removed to form the slag. It is going to suppress. At this time, the high flow rate of water reaches the hot metal surface, reacts with the hot metal and causes a small steam explosion, and the slag layer is broken by the force of the explosion.
  • the slag forming in the hot metal container of the intermediate waste is fundamentally different from the slag forming situation assumed by the method of Patent Document 4, and therefore the method of Patent Document 4 cannot be applied. That is, a large amount of minute bubbles are dispersed and staying in the highly viscous slag, like the slag forming in the hot metal container in the intermediate waste of the acid refining using the converter type refining furnace In this case, in order to promote the destruction and detachment of the bubbles, it is not effective to partially cut the slag layer with water having a high flow rate as in the method of Patent Document 4 to partially make a gas escape passage.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and in a converter-type refining furnace, two acid feed refining processes are performed continuously with an intermediate intermediate discharge process in between.
  • refining in order to enable intermediate waste to be carried out in a short time, the formation of molten slag discharged from the converter-type refining furnace to the hot metal container in the intermediate waste process can be effectively calmed down. It is in providing the forming sedation method of molten slag.
  • another object of the present invention is to use the forming sedation method in an intermediate evacuation process between the desiliconization process and the dephosphorization process. It is providing the manufacturing method of the slag product which can be manufactured stably.
  • the present inventors have repeated experiments and studies on a method for calming slag forming in a hot metal container in which molten slag has been discharged in intermediate waste.
  • the present inventors injected a water jet having a predetermined momentum into the molten slag accommodated in the hot metal storage container during or after the intermediate waste, and the water droplets were formed by giving a flow to the molten slag.
  • the water droplets entrained and dispersed in the molten slag evaporates and expands to break bubbles in the forming slag, resulting in effective slag forming. I found out that I was sedated.
  • a primary acid refining process (A) in which a single converter-type refining furnace (x) is used to oxidize and refine hot metal discharged from a blast furnace to perform a pretreatment, and the primary acid refining process (A ),
  • the molten slag generated in the primary acid refining step (A) is left in the converter refining furnace (x) while the molten slag is left in the converter refining furnace (x) from the converter refining furnace (x).
  • (B) an intermediate slagging process (B), and a secondary acid refining process (B) for dephosphorizing and / or decarburizing the molten iron remaining in the converter-type smelting furnace (x) ( C) and the refining of hot metal performed in this order, in the intermediate waste process (B), the method of calming the formation of molten slag in the hot metal storage container (y), the intermediate waste During and / or after evacuation in the step (B), a water jet is supplied to the molten slag contained in the hot metal container (y).
  • a molten slag forming sedation method wherein the molten slag forming is sedated by jetting such that the momentum of the water jet per hour is 50 kg ⁇ m / s 2 or more.
  • the desiliconized slag produced in the primary acid refining step (a) while the hot metal remains in the converter type refining furnace (x) is transferred from the converter type refining furnace (x) to the hot metal container (y).
  • the hot metal process that has passed through the refining process (c) is performed in this order from the hot water discharge process (d) in which the hot metal is discharged from the converter-type refining furnace (x), and desiliconization that has been discharged in the intermediate exhaust process (b).
  • a method for producing a slag product comprising discharging the desiliconized slag, solidifying the desiliconized slag, and processing the slag product.
  • the two acid feeding refining processes are continuously performed with the intermediate waste process interposed between them while holding the hot metal in the converter type refining furnace. Therefore, the formation of molten slag discharged from the converter-type smelting furnace into the molten iron storage container in the intermediate smelting process can be effectively subdued, so that the target amount of molten slag can be quickly discharged out of the furnace.
  • the intermediate excretion can be completed in a short time.
  • the operating rate of the converter-type refining furnace can be increased and the productivity can be improved, so that the ratio of the charge for the hot metal pretreatment can be increased, and the amount of CaO-based solvent used in the entire refining process Can be reduced.
  • group solvent solvent in a secondary acid refining process can be reduced. Therefore, it can also contribute to reduction of energy consumption required for the production of the CaO-based medium solvent.
  • the above-described slag forming sedation method is used in an intermediate evacuation process between the desiliconization process and the dephosphorization process, so that the intermediate evacuated desiliconization is performed.
  • a high-quality slag product having a large unit volume mass can be stably produced from the slag. For this reason, the use of the slag product by desiliconization slag can be expanded.
  • FIG. 1 shows an embodiment of equipment for injecting a water jet into a slag in a hot metal container y in the intermediate waste process of the present invention and its usage, and a converter type refining furnace for waste It is a front view shown in the state where x was tilted.
  • FIG. 6 is a plan view showing the converter type refining furnace x tilted for waste in the embodiment of FIG. 5. It is explanatory drawing which shows the converter type refining furnace x used by this invention method.
  • the molten slag forming and calming method uses a single converter type refining furnace x, a primary acid refining process (A) in which the hot metal discharged from the blast furnace is subjected to oxidation refining and pretreated, and this primary acid refining process.
  • Molten slag generated in the primary acid refining step (A) is discharged from the converter type refining furnace x to the hot metal containing container y while the hot metal after the refining step (A) remains in the converter type refining furnace x.
  • the intermediate waste process (B) and the secondary acid refining process (C) of dephosphorizing and / or decarburizing the hot metal remaining in the converter-type refining furnace x are performed in this order.
  • a water jet is applied to the molten slag contained in the hot metal container y, and the momentum of the water jet per unit time is 50 kg ⁇ m. / S2 Forming of slag is calmed down by spraying to become 2 or more Is.
  • the hot metal refining process which is the premise of the present invention can take various forms, for example, the following forms.
  • (I) Form in which primary acid refining step (A) is desiliconization treatment and secondary acid refining step (C) is dephosphorization treatment (ii) primary acid refining step (A) is desiliconization treatment, secondary Form in which the acid feeding refining process (C) is dephosphorization / decarburization treatment (iii)
  • the primary acid sending refining process (A) is desiliconization / dephosphorization treatment, and the secondary acid sending refining process (C) is decarburization treatment Form
  • FIG. 1 shows the refining forms of (i) above in the order of processes, where the desiliconization treatment (desiliconization blowing) is the primary acid refining step (A), and the dephosphorization treatment (dephosphorus P blowing) is the secondary. This corresponds to the acid refining step (C).
  • a cold iron source 3 such as iron scrap is first charged in a converter-type refining furnace x, and then hot metal 1 is charged from a charging pot 4 that has transported the blast furnace hot metal, and then primary.
  • a desiliconization process (deSi blowing) is performed as the acid refining step (A).
  • This desiliconization process is performed by supplying an oxygen source into the furnace and, if necessary, supplying a combustion heat source such as a CaO-based solvent or a silicon source.
  • a combustion heat source such as a CaO-based solvent or a silicon source.
  • the slag 2 (desiliconization slag) generated by the desiliconization process is discharged into the hot metal container y (removal pan) as an intermediate waste removal process (B).
  • the amount of slag discharged at the time of intermediate waste is half the amount of slag 2 in the converter type refining furnace x in order to effectively reduce the amount of CaO-based solvent used in the next acid refining process (C). It is desirable to set it to about or more. Therefore, in order to efficiently discharge slag without discharging hot metal from the furnace port, intermediate slag is performed with the surface level of the slag layer increased by forming the slag, but details such as the implementation conditions Will be described later.
  • a dephosphorization process (de-P blowing) is performed as a secondary acid refining process (C).
  • This dephosphorization process is performed by supplying a CaO-based medium solvent and an oxygen source, and details such as implementation conditions will be described later.
  • the hot metal 1 is discharged and sent to the next step (decarburization treatment).
  • the slag 9 (dephosphorization slag) generated by the dephosphorization process may be left as it is and used for the desiliconization process of the next charge.
  • Reference numeral 5 denotes a slag flow discharged from the converter-type refining furnace x to the hot metal container y
  • reference numeral 6 denotes the hot metal container y.
  • a slag bath in a forming state numeral 7 is a water jet nozzle
  • numeral 8 is a water jet formed by jetting water from the water jet nozzle.
  • a water jet 8 is injected from the water injection nozzle 7 disposed above the hot metal container y into the slag (forming slag bath 6) in the hot metal container y.
  • Two (two) or more of these water jets 8 may be jetted from a plurality of water jet nozzles 7 or from different jet ports of the single water jet nozzle 7.
  • the water droplets dispersed in the slag evaporate and expand to break up a large amount of microbubbles present in the slag in the forming state, and the gas contained in the slag bath 6 in the forming state (mainly CO gas) ) Is released to the outside of the slag bath 6 in the forming state, and it is considered that the slag forming is calmed down.
  • the gas contained in the slag bath 6 in the forming state mainly CO gas
  • FIG. 3 is a photograph of the situation in which a water jet is jetted from the jet nozzle onto the slag in the hot metal container (steaming pan) after drainage, taken obliquely from above, and the water jet flows along the arrow, You can see how water is caught in the forming slag bath. At the location where the water jet collides with the slag bath surface, slag flow is induced and the surface is renewed, so a hot hot spot is formed, and the surface temperature of the surrounding slag bath surface decreases due to radiation cooling. This is a very different aspect.
  • the momentum per unit time of the water jet 8 injected to the molten slag in the hot metal container y is set to 50 kg ⁇ m / s 2 or more.
  • the momentum per unit time is the total amount, but there is one place when there are a plurality of high temperature portions (hot spots) on the surface of the slag bath where the water jet collides.
  • the amount of exercise is a vector amount, and the total amount means the absolute value of the amount of exercise added in vector.
  • a sufficient amount of momentum of the water jet 8 is injected into the molten slag in the forming state so that the slag is flowed so that the water droplets are entrained in the slag, and the water droplets dispersed in the slag in the forming state evaporate and Although it expands the minute bubbles existing in the formed slag by expanding, if the momentum per unit time of the water jet 8 is small, the molten slag is more cooled and more sufficient for the slag. Since it cannot give a flow, it becomes difficult to properly entrain water droplets in the slag, and the forming suppression effect of the molten slag cannot be sufficiently obtained.
  • the vertical component of the momentum per unit time of the water jet 8 is set to 40 kg ⁇ m / s 2 or more. More preferably, the jet 8 is jetted.
  • the upper limit of the momentum per unit time of the water jet 8 is not particularly limited. However, since the amount of molten slag scattered tends to increase as the momentum increases, the upper limit is preferably about 200 kg ⁇ m / s 2 .
  • the water jet 8 is injected during and / or after the discharge, but if the volume of the slag in the forming state discharged by the intermediate discharge is larger than the capacity of the hot metal container y, the water jet 8 is discharged. It is preferable to reduce the working time of intermediate waste by injecting it into the soot to calm down the slag forming.
  • the water jet 8 is injected from the converter-type refining furnace x without overflowing the slag from the hot metal container y while referring to the surface level of the slag bath in the hot metal container y during the intermediate waste. What is necessary is just to implement suitably so that it can discharge efficiently.
  • the water jet 8 may be injected after the discharge to make the slag dense.
  • the position of the slag surface for injecting the water jet 8 is usually sufficient to calm the forming if there is only one central portion of the slag surface in the hot metal container y, but the hot metal container y is large and the slag bath
  • the position of the slag surface for injecting the water jet is moved so as to move the hot spot, or the injection positions are provided so as to provide a plurality of hot spots.
  • the forming can be calmed down in a shorter time, which is effective.
  • the flow rate of water may be adjusted so as to increase the flow rate so as to allow the working time, and the flow rate of water may be decreased so as to allow the slag scattering, which is about 100 to 300 L / min. It is desirable to adjust the flow rate of water within the range.
  • the jetting time of the water jet 8 may be adjusted so as to be appropriately shortened within a range in which the sedation effect is sufficiently obtained by visually confirming the sedation state of forming after jetting.
  • the flow velocity (m / s) at the outlet of the water injection nozzle may be multiplied by the mass flow rate (kg / s).
  • the inner diameter of the nozzle (equivalent diameter calculated by dividing the cross-sectional area by four times the circumference if the section is not circular) is It is desirable that it is 5 mm or more.
  • FIG. 4 shows a case where water jets 8 having different momentum per unit time are injected into intermediate waste with respect to the slag 2 (molten slag) in the hot metal container y in the equipment shown in FIGS.
  • the silicon concentration of the hot metal charged in the converter type refining furnace x and the time required from the start of discharge to the end of discharge during intermediate discharge in the desiliconization process ( This shows the relationship with the intermediate elimination time.
  • the jet of the water jet 8 starts when the surface level of the slag bath in the hot metal container y becomes about half of the height in the hot metal container y, and includes the slag including when the exhaust gas is suspended.
  • the bath was continuously carried out so that the surface level of the bath was at a level appropriate for receiving the discharged slag. Regardless of whether water jet is injected or not, if the surface level of the slag bath in the hot metal container y rises and there is concern about slag overflow, adjust the tilt angle of the converter-type refining furnace x to adjust the slag. Decrease the discharge speed or stop the discharge. For this reason, in the conventional intermediate waste which does not inject a water jet, the frequency which requires a long time to discharge
  • the momentum per unit time of the water jet 8 is 78 kg ⁇ m / s 2 .
  • the charge with a longer intermediate evacuation time is reduced compared to the case of 26 kg ⁇ m / s 2 , it turns out that it is effective by suppressing slag forming, and the water jet is not injected. Compared to the average value, it is possible to shorten the intermediate elimination time by about 3 minutes.
  • FIGS. 5 and 6 show an embodiment of equipment for injecting a water jet to the slag in the hot metal container y (a waste pan) in the intermediate waste, and the use state thereof.
  • FIG. A front view showing a state in which the converter type refining furnace x (converter) is tilted for dredging
  • FIG. 6 is also a plan view.
  • a water injection nozzle 7 is installed on the side of the converter-type refining furnace x (converter) and above the hot metal container y (slagging pan) stopped at the rejecting position.
  • a water jet 8 having a predetermined momentum is jetted from the water jet nozzle 7 to the molten slag in the hot metal container y, and the molten slag is flowed to form water droplets.
  • Water is supplied to the water injection nozzle 7 from a water supply pipe 11, and the water supply mechanism including the water supply pipe 11 is protected by the heat shield wall 10 from heat at the time of discharge.
  • the water injection nozzle 7 is desirably provided with a mechanism capable of adjusting the injection direction in the horizontal direction and the vertical direction so that the arrival position of the water jet can be adjusted. .
  • the primary acid refining process (A) is desiliconization
  • the secondary acid refining process (C) is dephosphorization / decarburization.
  • the refining form (ii) is carried out when the silicon content of the hot metal is particularly high, when a large amount of scrap is melted by adding silicon as a combustion heat source, or when the desulfurization reaction proceeds simultaneously with the desiliconization process.
  • the refining form of (iii), in which the primary acid refining process (A) is desiliconization / dephosphorization, and the secondary acid refining process (C) is decarburization, is the same as the refining form of (i).
  • the basicity of the slag is adjusted to be higher than in the refining form of (i).
  • the refined form (i) in that the slag is formed so that it can be easily discharged by intermediate waste, and the basicity of the slag is 1.2, which is relatively low as the dephosphorization treatment of hot metal.
  • the refining mode (iv) in which the primary acid refining process (A) is dephosphorization and the secondary acid refining process (C) is decarburization is intended for hot metal previously desiliconized.
  • the primary acid refining process (A) is dephosphorization
  • the secondary acid refining process (C) is decarburization
  • This slag product manufacturing method uses a single converter-type refining furnace x, a primary acid refining process (a) in which the molten iron discharged from the blast furnace is desiliconized, and this primary acid refining process (a).
  • the water jet is applied to the desiliconized slag contained in the hot metal container y during and / or after the waste in the intermediate waste process (b). , Slag forming is subdued by jetting so that the momentum of the water jet per unit time is 50 kg ⁇ m / s 2 or more, and then desiliconized slag is discharged from the hot metal container y and solidified. It is.
  • FIG. 1 also shows an example of a refining mode (in order of steps) in the method for producing a slag product according to the present invention, in which the desiliconization treatment (deSi blowing) is the primary acid refining step (a), and the dephosphorization treatment
  • the form in which (de-P blowing) is the secondary acid refining step (c) corresponds to the above example.
  • the contents of each step shown in FIG. 1 are as described above. Details of the conditions for performing each step will be described later.
  • an acid-feeding refining step (a) for performing desiliconization treatment and an acid-feeding refining step (c) for carrying out dephosphorization treatment are performed in the middle.
  • desiliconized slag forming state
  • the hot metal container y during and / or after the hot metal removal in the intermediate waste step (b)
  • water droplets are entrained in the formed slag, and the slag foaming is subdued.
  • the desiliconized slag is discharged from the storage container y and solidified. Then, this desiliconized slag is processed (usually pulverized and classified) to obtain a slag product.
  • the implementation status, the effect of shortening the fluent time by water jet injection, the equipment used for water jet injection, etc. are based on FIG. As explained.
  • the slag forming is calmed by spraying the water jet as described above to the desiliconized slag discharged in the intermediate waste process between the desiliconization process and the dephosphorization process.
  • the slag after cooling and solidification becomes dense, and a high-quality slag product with a large unit volume mass is obtained.
  • a water jet is applied to the desiliconized slag in the hot metal container y in the intermediate waste disposal step (b).
  • water jet is injected so that the bulk specific gravity of the desiliconized slag is 0.7 kg / L or more to calm down the forming of the slag, and then the desiliconized slag in the hot metal container y is slag yarded. It is preferable that the product is discharged and allowed to cool and solidify.
  • the unit volume mass of a slag product can be stably made into 1.5 kg / L or more.
  • the total amount of water jet of the water jet injected into the desiliconized slag is 30 to 150 L / desiliconized slag-t (tons). If the amount of jet water is small, defoaming may be insufficient and the unit volume mass of the slag product may be small. Further, even if the amount of jet water is increased, the effect is saturated, and when the amount of jet water is further increased, solidification partially progresses during jetting, and conversely, the porosity in the solidified slag may increase.
  • the desiliconized slag cooled and solidified after being discharged in the intermediate waste process (b) is usually pulverized and classified into a slag product.
  • the desiliconized slag after cooling and solidification is used in the method of the present invention. Since the slag is densified, a slag product satisfying a unit volume mass of 1.5 kg / L or more required for upper layer roadbed materials can be easily obtained. Slag products obtained without jetting water jets are porous (and therefore have low strength), and because of their small unit volume mass, products of upper-layer roadbed materials as defined in Japanese Industrial Standards JIS A 5015: 2013 Does not meet standards.
  • the slag particles are porous and low in strength, there is a possibility that other characteristics such as supporting force may be adversely affected, and such desiliconized slag is not suitable for roadbed materials.
  • the slag product obtained by jetting a water jet according to the method of the present invention is densified and has a large unit volume mass and satisfies the above product standards.
  • dephosphorization slag generally has a higher basicity than desiliconization slag, its use in civil engineering materials is often restricted due to characteristics such as hydration expansion. Therefore, in order to reduce the amount of dephosphorization slag as much as possible and convert dephosphorization slag to desiliconization slag with less application restrictions, the pre-charge dephosphorization process was completed and the hot metal in the furnace was discharged. After that, it is preferable not to discharge the dephosphorization slag in the furnace, but to charge new hot metal while leaving the pre-charge dephosphorization slag in the furnace and repeat the refining process of the present invention.
  • the slag in the converter-type smelting furnace x is discharged after the hot water discharge process (d) in which the hot metal that has undergone the secondary acid refining process (c) for dephosphorizing the hot metal is discharged from the converter-type smelting furnace x.
  • the first charge acid refining step (a), the intermediate discharge step (b), the second acid refining step (c) and the tapping step (d) are performed in this order by charging the molten iron of the next charge. To do.
  • the amount of CaO-based solvent used during the desiliconization process can be reduced.
  • the converter type refining is set to 0.8 to 1.5, and “after the hot water step (d), the converter type refining
  • the slag product obtained by the method of repeating the refining process of the present invention by charging the molten iron of the next charge without discharging the slag in the furnace x is not only dense and large in unit volume mass but also low in volume. It has the characteristic that it is alkali and has a small amount of expansion, and can be said to be particularly suitable for roadbed material applications.
  • FIG. 7 shows an example (schematic cross section) of the converter type refining furnace x used in the present invention.
  • This converter-type refining furnace x is a converter capable of blowing an upper bottom, and includes an up-and-down raising and lowering acid lance 12 (upper blowing lance), and a bottom blowing for gas bottom blowing at the bottom of the furnace body.
  • a nozzle 13 bottom blowing tuyere
  • a hot water outlet 14 is provided on the side of the furnace body upper side.
  • oxygen gas industrial pure oxygen gas
  • oxygen-containing gas oxygen-enriched air, air, mixed gas of oxygen gas and inert gas, etc.
  • a bottom blowing gas for stirring inert gas such as argon gas and nitrogen gas, gas containing oxygen, etc.
  • a medium solvent or the like may be blown using the bottom blowing gas as a carrier gas.
  • the desiliconization treatment performed as the primary acid refining step (A) or the primary acid refining step (a) is performed by supplying a gaseous oxygen source as an oxygen source to the hot metal in the converter type refining furnace x, Further, a solid oxygen source such as iron oxide is supplied as necessary. Silicon contained in the hot metal reacts with oxygen in the oxygen source (Si + 2O ⁇ SiO 2 ), and desiliconization proceeds. The hot metal temperature rises due to the oxidation heat of silicon by this desiliconization reaction, and the melting of the cold iron source in the hot metal is promoted.
  • the gaseous oxygen source is supplied through the acid lance 12 and, if necessary, a solid oxygen source such as iron oxide and a medium solvent for adjusting the basicity of the generated slag (CaO-based solvent, MgO-based solvent) Etc.) and a combustion heat source such as a silicon source. Further, by blowing the stirring gas from the bottom blowing nozzle 13 into the hot metal, the hot metal stirring is strengthened and the melting of the cold iron source is promoted.
  • a method for supplying solids such as a solid oxygen source and a medium solvent granular and lump-shaped ones are usually charged from a hopper on the furnace, and powdery ones are fed through an acid feed lance 12 and a bottom blowing nozzle 13.
  • the slag is formed in the converter-type refining furnace x.
  • the iron oxide in the slag and the slag are entrained as droplets. It is necessary to increase the generation rate of CO gas generated by the reaction with carbon contained in the molten iron. For this reason, it is effective to increase the iron oxide concentration in the slag, and forming can be promoted by methods such as increasing the acid feed rate, adding a solid oxygen source, increasing the lance height, and reducing the bottom blowing gas flow rate. It is.
  • the converter-type refining furnace x is tilted to the side opposite to the side where the outlet 14 is provided, and the slag in the furnace is caused to flow out of the furnace mouth. Then, the molten metal is discharged into a hot metal container y (a waste pan) waiting in the downward direction.
  • This intermediate evacuation is performed with the slag formed, but usually a part of the slag remains in the furnace.
  • the water jet is jetted onto the slag in the hot metal container y as described above.
  • the dephosphorization treatment performed as the secondary acid refining process (C) or as the secondary acid refining process (c) is performed on the hot metal left in the converter refining furnace x after the intermediate waste process. It is performed by supplying a CaO-based medium solvent and an oxygen source.
  • the oxygen source supplied by the dephosphorization treatment is mainly composed of a gaseous oxygen source from the acid delivery lance 12 as in the desiliconization treatment, but a solid oxygen source such as iron oxide may be used in combination. .
  • Phosphorus in the hot metal is oxidized to oxygen in the supplied oxygen source to become phosphor oxide (P 2 O 5 ), and this phosphor oxide is produced by the incubation of the CaO-based solvent and functions as a dephosphorizing refining agent. It is taken in as a stable compound of 3CaO ⁇ P 2 O 5 and the hot metal dephosphorization reaction proceeds.
  • dephosphorization slag containing a phosphorus oxide is generated.
  • the converter type refining furnace x is tilted to the side where the tap hole 14 is installed, and the hot metal in the converter type refining furnace x is discharged from the tap port 14 (hot water process). After the hot water discharge process, the dephosphorization slag in the furnace may not be discharged, and hot metal may be charged into the converter-type refining furnace x to start the next charge desiliconization process.
  • a cold iron source (iron scrap) was charged in advance, and blast furnace hot metal was charged from the charging pot into the furnace, followed by desiliconization treatment.
  • oxygen gas was supplied from the acid feed lance and stirring gas was blown into the hot metal from the bottom blowing nozzle.
  • a solid oxygen source (iron oxide), a medium solvent (CaO-based medium solvent, etc.), and a silicon source (ferrosilicon) were charged as necessary.
  • the basicity of the slag is adjusted in the range of 0.8 to 1.3, and the acid feed rate and lance height are adjusted in order to improve the slag evacuation performance in the intermediate evacuation process.
  • the slag was formed under operating conditions such that the iron oxide content in the slag after desiliconization was 10 to 30% by mass.
  • the converter-type smelting furnace was tilted to the side opposite to the side provided with the tapping port, the slag in the furnace was allowed to flow out of the furnace port, and discharged to the hot metal storage container waiting below.
  • the water jet was injected with respect to the slag (forming slag bath) in a hot metal storage container on the conditions shown in Table 1. This water jet is jetted so as to be jetted toward the center of the slag bath surface in the hot metal container using one or two jet nozzles provided at the tip of one water supply pipe. The direction was adjusted.
  • the center position of the water jet was about 0.7 m away at the surface level of the slag bath, but the hot spot on the surface of the slag bath became one place so as to merge. .
  • the hot metal container was transported to the slag yard, and the desiliconized slag was discharged from the hot metal container to the slag yard and allowed to cool and solidify.
  • the solidified desiliconized slag was roughly crushed with a heavy machine, further cooled, and then pulverized and classified to obtain a slag product for an upper roadbed material that passed through all sieves having an aperture of 26.5 mm.
  • Table 1 shows the intermediate evacuation time in the intermediate evacuation process and the average value of the unit volume mass of the obtained slag product together with the injection conditions of the water jet in the intermediate evacuation process.
  • the Si concentration in the hot metal before desiliconization was stable in the range of 0.25 to 0.45 mass%, and the average discharge of slag at the intermediate waste was about 10 t / charge. It was.
  • Table 1 in the example of the present invention, intermediate waste was completed in a short time, and a high-quality slag product having a large unit volume mass was obtained from the desiliconized slag that was intermediately discharged.
  • Hot water outlet x Converter type refining furnace y Hot metal container 1 Hot metal 2 Slag (desiliconized slag) 3 Cold Iron Source 4 Charging Pan 5 Slag Flow 6 Forming Slag Bath 7 Water Injection Nozzle 8 Water Jet 9 Slag (Dephosphorization Slag) DESCRIPTION OF SYMBOLS 10 Heat insulation wall 11 Water supply pipe 12 Acid feed lance 13 Bottom blowing nozzle 14 Hot water outlet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided is a method whereby it is possible to effectively alleviate foaming of molten slag removed from a converter-type refining furnace to a molten slag storage container in an intermediate slag removal step so that the intermediate slag removal step can be performed in a short time in refining of molten iron in which two oxygen feeding refining steps and an intermediate slag removal step interposed therebetween are performed continuously using a single converter-type refining furnace. During and/or after slag removal in the intermediate slag removal step, a water jet stream 8 having a momentum per unit time of 50 kg∙m/s2 or greater is jetted to slag stored in the molten slag storage container and a flow is imparted to the slag so that water droplets are drawn into the foaming slag, and foaming of the slag is thereby alleviated. The water droplets drawn into and dispersed in the slag evaporate/expand and thereby break the slag foam, and vapor contained in a foamed slag bath 6 is released to the outside of the foamed slag bath 6, and foaming of the slag is thereby alleviated.

Description

溶融スラグのフォーミング鎮静方法及びスラグ製品の製造方法Method for calming molten slag and method for producing slag product
 本発明は、1つの転炉型精錬炉を用い、2つの送酸精錬工程を途中の中間排滓工程を挟んで連続して行う溶銑の精錬において、中間排滓工程で溶滓収容容器に排滓された溶融スラグのフォーミングを鎮静する方法に関する。また、本発明は、その溶融スラグのフォーミング鎮静方法を、脱珪処理と脱燐処理との間の中間排滓工程で利用したスラグ製品の製造方法に関する。 The present invention uses a single converter-type refining furnace, and in the refining of hot metal, in which two acid feeding refining processes are continuously performed with an intermediate intermediate refining process in between. The present invention relates to a method for calming the formation of dredged molten slag. Moreover, this invention relates to the manufacturing method of the slag product which utilized the forming sedation method of the molten slag in the intermediate | middle waste process between a desiliconization process and a dephosphorization process.
 近年、転炉型精錬炉を用いて溶銑を脱燐或いは脱炭する送酸精錬を行う際に、1つの転炉型精錬炉内に溶銑を保持したまま、途中に中間排滓工程を挟んで送酸精錬を2段階に連続して行う方法が実用化されている。例えば、特許文献1には、脱燐処理後に溶銑を転炉内に残したまま転炉を傾転させてスラグのみを排出し、その後に同一転炉で脱炭精錬を実施し、脱炭精錬後のスラグを次の溶銑の脱燐処理に再利用する方法が開示されている。また、特許文献2には、1つの転炉型精錬炉を用いて、溶銑の脱珪処理と脱燐処理を途中の排滓工程を挟んで連続して行う溶銑の予備処理(脱燐)方法が開示されている。 In recent years, when carrying out acid refining in which a hot metal is dephosphorized or decarburized using a converter type refining furnace, the intermediate waste process is sandwiched in the middle while holding the hot metal in one converter type refining furnace. A method of carrying out acid refining continuously in two stages has been put into practical use. For example, Patent Document 1 discloses that after the dephosphorization process, the converter is tilted while leaving the hot metal in the converter, and only the slag is discharged. Thereafter, the decarburization refining is performed in the same converter, and the decarburization refining is performed. A method is disclosed in which the later slag is reused for the subsequent dephosphorization of hot metal. Patent Document 2 discloses a hot metal pretreatment (dephosphorization) method in which a single converter-type refining furnace is used to continuously perform desiliconization treatment and dephosphorization treatment of hot metal with an intermediate waste removal step in between. Is disclosed.
 これらの方法では、途中の中間排滓を行わないで、送酸精錬を継続して行う精錬方法と比較して、途中でスラグを排出することにより、その後の処理でのCaO系媒溶剤の使用量を削減できる利点がある。
 また、1段階目の送酸精錬を実施した後、スラグだけでなく溶銑も一旦炉から排出して、同一炉又は別の炉に移し替えてから2段階目の送酸精錬を実施する方法と比較すると、次の利点がある。
(I)溶銑の出湯や再装入に要する時間を短縮して炉の稼動率を高めることができる。
(II)溶銑の移し替えが少ないため放熱ロスを少なくできる。
(III)2段階目の送酸精錬のスラグを炉内に残して、次の溶銑の1段階目の送酸精錬に再利用することにより、CaO系媒溶剤の使用量を削減することができる。
(IV)高塩基度である2段階目の送酸精錬のスラグの排出を低減させて、比較的低塩基度である1段階目の送酸精錬のスラグの排出を増加させることで、スラグの水和膨張特性を改善してスラグの利用促進を図ることができる。
In these methods, the use of a CaO-based medium solvent in the subsequent treatment is performed by discharging slag in the middle compared with a refining method in which acid refining is continued without performing intermediate waste in the middle. There is an advantage that the amount can be reduced.
In addition, after performing the first-stage acid refining, not only the slag but also the molten iron is once discharged from the furnace and transferred to the same furnace or another furnace, and then the second-stage acid refining is performed. The comparison has the following advantages.
(I) The time required for hot metal tapping and recharging can be shortened to increase the operating rate of the furnace.
(II) Heat transfer loss can be reduced because there is little transfer of hot metal.
(III) The amount of CaO-based solvent used can be reduced by leaving the slag of the second-stage acid refining in the furnace and reusing it for the first-stage acid refining of the next hot metal. .
(IV) By reducing the discharge of slag from the second-stage acid refining slag, which has a high basicity, and increasing the discharge of slag from the first-stage acid refining, which has a relatively low basicity, The use of slag can be promoted by improving the hydration expansion characteristics.
 これらの利点を享受するためには、中間排滓工程において、いかに速やかに目標量のスラグを炉内から排出するかが、操業上の重要なポイントとなる。中間排滓工程でのスラグの排出量が少ない場合には、上述したようなCaO系媒溶剤の使用量を削減できる効果は期待できず、CaO系媒溶剤の使用量は途中の排滓を行わない方法とあまり変わらない。そこで、特許文献1及び特許文献2には、中間排滓工程において効率的に排滓を行うために、1段階目の送酸精錬において溶融スラグをフォーミングさせて、溶融スラグの体積を増大させることにより、炉口から中間排滓する際に炉口下端からのスラグ浴面の高さを高くし、溶融スラグの溢流による排出効率を高めることが記載されている。ここで、スラグのフォーミングとは、溶融状態のスラグが気泡を含み、見掛け上、体積膨脹する現象である。 In order to enjoy these advantages, an important operational point is how quickly the target amount of slag is discharged from the furnace in the intermediate discharge process. When the amount of slag discharged in the intermediate evacuation process is small, the effect of reducing the amount of CaO-based solvent used as described above cannot be expected, and the amount of CaO-based solvent used is evacuated midway. Not much different from no method. Therefore, in Patent Document 1 and Patent Document 2, in order to efficiently perform the waste disposal in the intermediate waste disposal process, the molten slag is formed in the first-stage acid refining to increase the volume of the molten slag. Thus, it is described that when intermediate waste is discharged from the furnace port, the height of the slag bath surface from the lower end of the furnace port is increased, and the discharge efficiency due to overflow of molten slag is increased. Here, slag forming is a phenomenon in which molten slag contains bubbles and apparently expands in volume.
 しかし、溶融スラグのフォーミングは、必ずしも意図している程度に制御し易いものではなく、フォーミングが過剰になると、炉下の台車上に載置した溶滓収容容器(排滓鍋)からオーバーフローして操業を阻害する事態を招くこともあるので、溶滓収容容器のフリーボードを確認しながらスラグの排出速度を制限せざるを得ず、中間排滓の作業時間の延長を招いていた。また、溶滓収容容器の容量は、フォーミングしたスラグの体積に対して必ずしも十分なものではないことが一般的であり、溶滓収容容器内でのフォーミングの沈静化を待ってスラグの排出を行わざるを得ず、効率的な中間排滓を行う上で問題であった。 However, the forming of molten slag is not always easy to control to the intended level, and if the forming becomes excessive, it will overflow from the hot metal container (steaming pan) placed on the bogie under the furnace. Since the situation may hinder the operation, it was necessary to limit the discharge rate of the slag while checking the freeboard of the hot metal container, leading to the extension of the work time of intermediate waste. In general, the capacity of the hot metal container is not necessarily sufficient for the volume of the formed slag, and the slag is discharged after the forming of the hot metal container is settled. Inevitably, it was a problem in carrying out efficient intermediate evacuation.
 特許文献2に開示されている方法では、中間排滓前の精錬中にスラグレベルをモニタリングして適正なスラグレベルに制御することによって、中間排滓時の過剰なフォーミングを抑制することを試みているが、溶滓収容容器内でのフォーミングの抑制には必ずしも十分な効果は得られていなかった。また、特許文献2には、比較的高塩基度でエージング処理が必要な脱燐スラグの発生を抑制し、脱燐スラグを、エージング処理を省略しても良好な体積安定性が得られる脱珪スラグに転換することによりスラグの利用を図ることも記載されているが、フォーミングしたスラグから製造されるスラグ製品は単位体積質量が小さくなることから、単位体積質量が1.5kg/L以上であることを要する路盤材などの用途には適さず、用途が制限されていた。 In the method disclosed in Patent Document 2, an attempt is made to suppress excessive forming during intermediate evacuation by monitoring the slag level during refining before intermediate evacuation and controlling it to an appropriate slag level. However, a sufficient effect was not necessarily obtained for suppressing forming in the hot metal container. Further, Patent Document 2 discloses that dephosphorization slag, which requires a relatively high basicity and requires aging treatment, is suppressed, and dephosphorization slag can be obtained with good volume stability even if aging treatment is omitted. Although it is also described that slag is used by converting to slag, the unit volume mass is 1.5 kg / L or more because the slag product produced from the formed slag has a smaller unit volume mass. It is not suitable for applications such as roadbed materials that require it, and the applications are limited.
 これに対して特許文献1には、中間排滓中に、パルプ滓を乾重量で35質量%以上65質量%以下、製鋼スラグ20質量%以上50質量%以下、油分3質量%以上10質量%以下、水分15質量%以下を含み、かつ、比重が1.5g/cm以上2.5g/cm以下の塊状のフォーミング鎮静材を排滓鍋に投入して、排滓鍋内のスラグのフォーミングを鎮静しながらスラグを排滓鍋内に排出する方法が開示されている。しかし、この方法では、スラグ中にフォーミング鎮静材に由来する異物が混入する可能性があり、スラグ製品の品質管理上は必ずしも好ましい方法ではない。 On the other hand, Patent Document 1 discloses that during the intermediate waste, the pulp cake is 35% by mass to 65% by mass in dry weight, the steelmaking slag is 20% by mass to 50% by mass, and the oil content is 3% by mass to 10% by mass. In the following, a lump forming soothing material containing water of 15% by mass or less and having a specific gravity of 1.5 g / cm 3 or more and 2.5 g / cm 3 or less is introduced into the slag pan, A method is disclosed in which slag is discharged into a drain pan while calming the forming. However, in this method, there is a possibility that foreign matters derived from the forming sedative material are mixed in the slag, which is not necessarily a preferable method in terms of quality control of the slag product.
 一方、特許文献3には、溶銑の脱珪・脱燐処理後のスラグ或いは脱炭処理後のスラグを排滓鍋に排出した後、スラグ表面に粉霧状の水を散布することによってフォーミングを抑制する方法が開示されている。この方法では、スラグ表面付近からのガス抜きと表面固化の作用によってフォーミングを鎮静するとされているが、脱珪スラグなどの低塩基度の溶銑予備処理スラグでは、表面からの冷却による作用等で、排滓鍋内のスラグ全体のフォーミングを鎮静化するには長時間を要する。また、排滓鍋内にスラグを排出しながら散水する場合には十分な鎮静効果が得られなかったことから、中間排滓の作業時間を短縮するためには効果的ではなかった。 On the other hand, in Patent Document 3, after the slag after desiliconization / dephosphorization treatment of hot metal or slag after decarburization treatment is discharged to a waste pan, forming is performed by spraying mist-like water on the slag surface. A method of suppression is disclosed. In this method, it is said that the forming is subdued by the action of degassing and solidifying the surface of the slag surface, but with low basicity hot metal pretreatment slag such as desiliconized slag, due to the action by cooling from the surface, etc. It takes a long time to calm down the forming of the entire slag in the slag pan. In addition, when watering while discharging slag into the sewage pan, a sufficient sedation effect was not obtained, so it was not effective in reducing the work time for intermediate sewage.
 また、特許文献4には、溶銑を鋳床脱珪剤とともに混銑車に受銑する際に、混銑車内でフォーミングしている脱珪スラグに対して、20m/s以上の高流速の水を吹き付けることによってフォーミングを抑制する方法が開示されている。鋳床脱珪剤とともに混銑車に受銑された溶銑中では、脱珪剤を構成する酸化鉄或いはこの酸化鉄を含有するスラグを溶銑の落下流によって溶銑中に巻き込むことによって、酸化鉄を溶銑中の珪素と反応させて脱珪反応を進行させている。しかし、この際の溶銑温度は1500℃程度と高く、この温度は、熱力学的に酸化鉄と溶銑中の炭素との反応による脱炭反応を優勢に進行させる条件であるため、溶銑中に巻き込まれた酸化鉄或いは酸化鉄含有スラグからCOガスが高い生成速度で発生する。この溶銑中から発生するCOガスは、界面張力の関係から溶銑とスラグとの界面に溜まり易く、溶銑とスラグとの界面において比較的粗大な気泡が形成される。そのCOガス気泡がスラグ層を通過する際に、気泡の生成速度が大きかったり、浮上速度が小さい条件となった場合にスラグをフォーミングさせることになる。特許文献4の方法では、高流速の水でスラグ層を切り裂いてCOガスを抜く(逃す)ための通路を作り、溶銑とスラグとの界面に溜まっているCOガスを抜くことで、スラグのフォーミングを抑制するとしている。またこの際、高流速の水は、溶銑表面に到達し、高温の溶銑と反応して小さな水蒸気爆発を起こし、爆発の力によってスラグ層を破る、としている。 Further, in Patent Document 4, when hot metal is received in a kneading car together with a cast floor desiliconizing agent, water having a high flow rate of 20 m / s or more is sprayed on the desiliconizing slag forming in the kneading car. Thus, a method for suppressing forming is disclosed. In the hot metal received by the kneading vehicle together with the cast iron desiliconizing agent, the iron oxide is melted by winding the iron oxide constituting the desiliconizing agent or the slag containing this iron oxide into the hot metal by the falling flow of the hot metal. The desiliconization reaction proceeds by reacting with the silicon inside. However, the hot metal temperature at this time is as high as about 1500 ° C., and this temperature is a condition in which the decarburization reaction due to the reaction between iron oxide and carbon in the hot metal proceeds predominately. CO gas is generated at a high production rate from the produced iron oxide or iron oxide-containing slag. The CO gas generated from the hot metal easily accumulates at the interface between the hot metal and the slag because of the interfacial tension, and relatively coarse bubbles are formed at the interface between the hot metal and the slag. When the CO gas bubbles pass through the slag layer, the slag is formed when the bubble generation speed is high or the rising speed is low. In the method of Patent Document 4, a slag layer is formed by tearing the slag layer with high-speed water to remove (escape) the CO gas, and the CO gas accumulated at the interface between the hot metal and the slag is removed to form the slag. It is going to suppress. At this time, the high flow rate of water reaches the hot metal surface, reacts with the hot metal and causes a small steam explosion, and the slag layer is broken by the force of the explosion.
 しかし、転炉型精錬炉を用いた送酸精錬の中間排滓において、溶滓収容容器(排滓鍋)で問題となるスラグのフォーミングは、特許文献4が対象とする混銑車内でのスラグのフォーミングとは、COガスの生成形態を含めた発生機構が全く異なり、このため特許文献4の方法では、中間排滓の溶滓収容容器内でのスラグのフォーミングを抑制することはできない。すなわち、転炉型精錬炉を用いた送酸精錬の中間排滓では、転炉型精錬炉において既にフォーミングしているスラグが溶滓収容容器に排滓される。この際、スラグや溶銑の温度は1350℃程度と比較的低いため、スラグの粘度は相対的に高いものとなる。また、炉内フリーボードの大きい転炉型精錬炉では、混銑車での処理に比べて送酸速度や撹拌動力密度が桁違いに大きいため、スラグ中には大量の微小な気泡が分散し、高粘度のスラグ中に滞留する。このことから、スラグはフォーミング状態が維持される。溶滓収容容器内の溶融スラグ中では、スラグ中に分散して存在する溶鉄中のCとスラグ中の酸化鉄成分とが反応してCOガスが発生する。この反応は吸熱反応であり、反応の進行とともにさらに温度低下とスラグの粘度上昇を招くので、継続的に大量のCOガスが生成し続ける訳ではない。特許文献4の方法において混銑車内に受銑された溶銑中で生成するCOガスに較べれば、生成速度は格段に低い。また、中間排滓の溶滓収容容器中には不可避的にスラグに混入する少量の溶銑が存在するだけであり、しかも、特許文献4の方法のように大量の溶銑の落下流によって酸化鉄或いは酸化鉄含有スラグが熱容量の大きい溶銑浴中に継続的に巻き込まれている状況ではないので、スラグ層の下の溶銑浴中でCOガスが大量に発生してこれが溶銑とスラグとの界面に溜まるということもない。このように中間排滓の溶滓収容容器内でのスラグフォーミングは、特許文献4の方法が前提とするようなスラグフォーミングの状況とは根本的に異なるため、特許文献4の方法は適用できない。すなわち、転炉型精錬炉を用いた送酸精錬の中間排滓における溶滓収容容器内のスラグのフォーミングのように、高粘性のスラグ中に大量の微小な気泡が分散して滞留している場合に、この気泡の破壊・離脱を促進するためには、特許文献4の方法のように高流速の水でスラグ層を切り裂いてガスの抜け道を部分的に作っても有効ではない。 However, slag forming, which is a problem in the hot metal storage container (slagging pan), in the intermediate smelting of acid refining using a converter-type smelting furnace, The generation mechanism including the generation form of CO gas is completely different from the forming. Therefore, the method of Patent Document 4 cannot suppress the slag forming in the hot metal container of the intermediate waste. That is, in the intermediate waste of the acid feeding refining using the converter type refining furnace, the slag already formed in the converter refining furnace is discharged into the hot metal container. At this time, since the temperature of the slag and hot metal is relatively low at about 1350 ° C., the viscosity of the slag is relatively high. In addition, in converter-type refining furnaces with large in-furnace freeboards, a large amount of microbubbles are dispersed in the slag because the acid feed rate and the stirring power density are orders of magnitude greater than those in a chaotic car. It stays in high viscosity slag. For this reason, the slag is maintained in the forming state. In the molten slag in the hot metal container, C in the molten iron dispersed and present in the slag reacts with the iron oxide component in the slag to generate CO gas. This reaction is an endothermic reaction, and as the reaction proceeds, the temperature is further lowered and the viscosity of the slag is increased. Therefore, a large amount of CO gas is not continuously generated. Compared with the CO gas produced in the hot metal received in the kneading vehicle in the method of Patent Document 4, the production rate is remarkably low. In addition, there is only a small amount of hot metal inevitably mixed in the slag in the hot metal storage container of the intermediate waste, and in addition, iron oxide or Since the iron oxide-containing slag is not continuously entrained in the hot metal bath with a large heat capacity, a large amount of CO gas is generated in the hot metal bath below the slag layer, and this accumulates at the interface between the hot metal and slag. There is no such thing. As described above, the slag forming in the hot metal container of the intermediate waste is fundamentally different from the slag forming situation assumed by the method of Patent Document 4, and therefore the method of Patent Document 4 cannot be applied. That is, a large amount of minute bubbles are dispersed and staying in the highly viscous slag, like the slag forming in the hot metal container in the intermediate waste of the acid refining using the converter type refining furnace In this case, in order to promote the destruction and detachment of the bubbles, it is not effective to partially cut the slag layer with water having a high flow rate as in the method of Patent Document 4 to partially make a gas escape passage.
特開2008-255446号公報JP 2008-255446 A 国際公開第2014/115526号International Publication No. 2014/115526 特開平8-325619号公報JP-A-8-325619 特開平3-291321号公報Japanese Patent Laid-Open No. 3-291321
 したがって本発明の目的は、以上のような従来技術の課題を解決し、1つの転炉型精錬炉で、2つの送酸精錬工程を途中の中間排滓工程を挟んで連続して行う溶銑の精錬において、中間排滓を短時間で実施可能とするために、中間排滓工程で転炉型精錬炉から溶滓収容容器に排滓された溶融スラグのフォーミングを効果的に鎮静することができる溶融スラグのフォーミング鎮静方法を提供することにある。また、本発明の他の目的は、そのフォーミング鎮静方法を脱珪処理と脱燐処理との間の中間排滓工程で利用することで、中間排滓された脱珪スラグから高品質のスラグ製品を安定して製造することができるスラグ製品の製造方法を提供することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and in a converter-type refining furnace, two acid feed refining processes are performed continuously with an intermediate intermediate discharge process in between. In refining, in order to enable intermediate waste to be carried out in a short time, the formation of molten slag discharged from the converter-type refining furnace to the hot metal container in the intermediate waste process can be effectively calmed down. It is in providing the forming sedation method of molten slag. In addition, another object of the present invention is to use the forming sedation method in an intermediate evacuation process between the desiliconization process and the dephosphorization process. It is providing the manufacturing method of the slag product which can be manufactured stably.
 本発明者らは、上記課題を解決するために、中間排滓において溶融スラグが排滓された溶滓収容容器内でのスラグフォーミングを鎮静する方法について実験と検討を重ねた。その結果、本発明者らは、中間排滓中若しくは排滓後に、溶滓収容容器に収容された溶融スラグに所定の運動量の水噴流を噴射し、溶融スラグに流動を与えて水滴がフォーミングしたスラグ中に巻き込まれるようにすることにより、溶融スラグ中に巻き込まれて分散した水滴が蒸発・膨張することでフォーミング状態にあるスラグ中の気泡を破泡し、その結果、スラグフォーミングが効果的に鎮静されることを見出した。
 また、脱珪処理と脱燐処理との間の中間排滓工程で排滓された脱珪スラグに対して、上記のような水噴流の噴射を行うことにより、スラグフォーミングが鎮静されるだけでなく、冷却・凝固後のスラグが緻密化して、単位容積質量が大きい高品質のスラグ製品が得られることが判った。
In order to solve the above-mentioned problems, the present inventors have repeated experiments and studies on a method for calming slag forming in a hot metal container in which molten slag has been discharged in intermediate waste. As a result, the present inventors injected a water jet having a predetermined momentum into the molten slag accommodated in the hot metal storage container during or after the intermediate waste, and the water droplets were formed by giving a flow to the molten slag. By entraining in the slag, the water droplets entrained and dispersed in the molten slag evaporates and expands to break bubbles in the forming slag, resulting in effective slag forming. I found out that I was sedated.
In addition, by spraying the water jet as described above on the desiliconized slag discharged in the intermediate discharging process between the desiliconization process and the dephosphorization process, the slag forming is only calmed down. However, it was found that the slag after cooling and solidification was densified, and a high-quality slag product having a large unit volume mass was obtained.
 本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]1つの転炉型精錬炉(x)を用い、高炉から出銑された溶銑を酸化精錬して予備処理を行う一次送酸精錬工程(A)と、該一次送酸精錬工程(A)を経た前記溶銑を前記転炉型精錬炉(x)内に残留させたまま前記一次送酸精錬工程(A)で生成した溶融スラグを前記転炉型精錬炉(x)から溶滓収容容器(y)に排滓する中間排滓工程(B)と、前記転炉型精錬炉(x)内に残留させた前記溶銑を脱燐処理及び/又は脱炭処理する二次送酸精錬工程(C)と、をこの順に行う溶銑の精錬のうち、前記中間排滓工程(B)において、前記溶滓収容容器(y)での溶融スラグのフォーミングを鎮静する方法であって、前記中間排滓工程(B)における排滓中及び/又は排滓後に、前記溶滓収容容器(y)に収容された溶融スラグに、水噴流を、単位時間当たりの水噴流の運動量が50kg・m/s以上となるように噴射することにより前記溶融スラグのフォーミングを鎮静することを特徴とする溶融スラグのフォーミング鎮静方法。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] A primary acid refining process (A) in which a single converter-type refining furnace (x) is used to oxidize and refine hot metal discharged from a blast furnace to perform a pretreatment, and the primary acid refining process (A ), The molten slag generated in the primary acid refining step (A) is left in the converter refining furnace (x) while the molten slag is left in the converter refining furnace (x) from the converter refining furnace (x). (B) an intermediate slagging process (B), and a secondary acid refining process (B) for dephosphorizing and / or decarburizing the molten iron remaining in the converter-type smelting furnace (x) ( C) and the refining of hot metal performed in this order, in the intermediate waste process (B), the method of calming the formation of molten slag in the hot metal storage container (y), the intermediate waste During and / or after evacuation in the step (B), a water jet is supplied to the molten slag contained in the hot metal container (y). A molten slag forming sedation method, wherein the molten slag forming is sedated by jetting such that the momentum of the water jet per hour is 50 kg · m / s 2 or more.
[2]1つの転炉型精錬炉(x)を用い、高炉から出銑された溶銑を脱珪処理する一次送酸精錬工程(a)と、該一次送酸精錬工程(a)を経た前記溶銑を前記転炉型精錬炉(x)内に残留させたまま前記一次送酸精錬工程(a)で生成した脱珪スラグを前記転炉型精錬炉(x)から溶滓収容容器(y)に排滓する中間排滓工程(b)と、前記転炉型精錬炉(x)内に残留させた前記溶銑を脱燐処理する二次送酸精錬工程(c)と、該二次送酸精錬工程(c)を経た前記溶銑を前記転炉型精錬炉(x)から出湯する出湯工程(d)と、をこの順に行うこととし、前記中間排滓工程(b)で排滓した脱珪スラグを原料とするスラグ製品の製造方法であって、前記中間排滓工程(b)における排滓中及び/又は排滓後に、前記溶滓収容容器(y)に収容された脱珪スラグに、水噴流を、単位時間当たりの水噴流の運動量が50kg・m/s以上となるように噴射することによりスラグのフォーミングを鎮静した後、溶滓収容容器(y)から脱珪スラグを排出し、該脱珪スラグを凝固させて、前記スラグ製品に加工することを特徴とするスラグ製品の製造方法。 [2] A primary acid refining step (a) for desiliconizing hot metal discharged from a blast furnace using one converter-type refining furnace (x), and the primary acid refining step (a) The desiliconized slag produced in the primary acid refining step (a) while the hot metal remains in the converter type refining furnace (x) is transferred from the converter type refining furnace (x) to the hot metal container (y). An intermediate waste discharging step (b) for discharging the molten iron, a secondary acid feeding refining step (c) for dephosphorizing the hot metal remaining in the converter type refining furnace (x), and the secondary acid feeding The hot metal process that has passed through the refining process (c) is performed in this order from the hot water discharge process (d) in which the hot metal is discharged from the converter-type refining furnace (x), and desiliconization that has been discharged in the intermediate exhaust process (b). A method for producing a slag product using slag as a raw material, which is accommodated in the hot metal container (y) during and / or after the waste in the intermediate waste process (b). After the slag forming is subdued by spraying the water jet on the desiliconized slag so that the momentum of the water jet per unit time is 50 kg · m / s 2 or more, from the hot metal container (y) A method for producing a slag product, comprising discharging the desiliconized slag, solidifying the desiliconized slag, and processing the slag product.
[3]前記出湯工程(d)後、前記転炉型精錬炉(x)内のスラグを排出することなく、次チャージの溶銑を装入して、一次送酸精錬工程(a)、中間排滓工程(b)、二次送酸精錬工程(c)及び出湯工程(d)をこの順に行うことを特徴とする[2]に記載のスラグ製品の製造方法。
[4]凝固させた脱珪スラグを粉砕、分級して、単位容積質量が1.5kg/L以上のスラグ製品とすることを特徴とする[2]又は[3]に記載のスラグ製品の製造方法。
[3] After the tapping step (d), without discharging the slag in the converter-type refining furnace (x), the molten iron of the next charge is charged, the primary acid refining step (a), the intermediate discharge The method for producing a slag product according to [2], wherein the dredging step (b), the secondary acid refining step (c), and the tapping step (d) are performed in this order.
[4] Slag product production according to [2] or [3], wherein the solidified desiliconized slag is pulverized and classified to obtain a slag product having a unit volume mass of 1.5 kg / L or more. Method.
 本発明に係る溶融スラグのフォーミング鎮静方法によれば、転炉型精錬炉で溶銑を保持したまま、2つの送酸精錬工程を途中の中間排滓工程を挟んで連続して行う溶銑の精錬において、中間排滓工程で転炉型精錬炉から溶滓収容容器に排滓された溶融スラグのフォーミングを効果的に鎮静することができ、このため目標量の溶融スラグを速やかに炉外に排出し、中間排滓を短時間で終了させることができる。これにより、転炉型精錬炉の稼働率を高め、生産性を向上させることができるので、溶銑予備処理の実施チャージの比率を高めることができ、精錬工程全体でのCaO系媒溶剤の使用量を削減することができる。或いは、中間排滓でのスラグ排出量を増大できるので、二次送酸精錬工程でのCaO系媒溶剤の使用量を削減することができる。したがって、CaO系媒溶剤の製造に要するエネルギー消費の削減にも寄与することができる。
 また、本発明に係るスラグ製品の製造方法によれば、上記のスラグフォーミング鎮静方法を脱珪処理と脱燐処理との間の中間排滓工程で利用することにより、中間排滓された脱珪スラグから単位体積質量が大きい高品質のスラグ製品を安定して製造することができる。このため脱珪スラグによるスラグ製品の用途を拡大することができる。
According to the molten slag forming sedation method according to the present invention, in the refining of hot metal, the two acid feeding refining processes are continuously performed with the intermediate waste process interposed between them while holding the hot metal in the converter type refining furnace. Therefore, the formation of molten slag discharged from the converter-type smelting furnace into the molten iron storage container in the intermediate smelting process can be effectively subdued, so that the target amount of molten slag can be quickly discharged out of the furnace. The intermediate excretion can be completed in a short time. As a result, the operating rate of the converter-type refining furnace can be increased and the productivity can be improved, so that the ratio of the charge for the hot metal pretreatment can be increased, and the amount of CaO-based solvent used in the entire refining process Can be reduced. Or since the slag discharge | emission amount in an intermediate waste can be increased, the usage-amount of the CaO type | system | group solvent solvent in a secondary acid refining process can be reduced. Therefore, it can also contribute to reduction of energy consumption required for the production of the CaO-based medium solvent.
Moreover, according to the manufacturing method of the slag product according to the present invention, the above-described slag forming sedation method is used in an intermediate evacuation process between the desiliconization process and the dephosphorization process, so that the intermediate evacuated desiliconization is performed. A high-quality slag product having a large unit volume mass can be stably produced from the slag. For this reason, the use of the slag product by desiliconization slag can be expanded.
本発明法における精錬形態の一例を工程順に示す説明図である。It is explanatory drawing which shows an example of the refinement | purification form in this invention method in process order. 本発明法の中間排滓工程において、溶滓収容容器yに収容されたスラグに水噴流を噴射する実施状況を模式的に示す説明図である。It is explanatory drawing which shows typically the implementation condition which injects a water jet to the slag accommodated in the hot metal storage container y in the intermediate | middle waste process of this invention method. 本発明法の中間排滓工程において、溶滓収容容器yに収容されたスラグに水噴流を噴射している実施状況を斜め上方から撮影した写真である。It is the photograph which image | photographed the implementation condition which injects the water jet to the slag accommodated in the hot metal container y in the intermediate | middle waste process of this invention method from diagonally upward. 中間排滓工程において、単位時間当たりの運動量が異なる水噴流を溶滓収容容器y内のスラグに噴射した場合と、水噴流の噴射を行わなかった場合について、脱珪処理するに当たって転炉型精錬炉xに装入した溶銑のSi濃度と中間排滓時間との関係を示すグラフである。In the intermediate waste removal process, the converter type refining is performed in the desiliconization process when water jets with different momentum per unit time are injected into the slag in the hot metal container y and when water jets are not injected. It is a graph which shows the relationship between the Si density | concentration of the hot metal charged into the furnace x, and intermediate waste time. 本発明法の中間排滓工程において、溶滓収容容器y内のスラグに水噴流を噴射するための設備の一実施形態とその使用状況を示すもので、排滓のために転炉型精錬炉xを傾動させた状態で示す正面図である。1 shows an embodiment of equipment for injecting a water jet into a slag in a hot metal container y in the intermediate waste process of the present invention and its usage, and a converter type refining furnace for waste It is a front view shown in the state where x was tilted. 図5の実施形態において、排滓のために転炉型精錬炉xを傾動させた状態で示す平面図である。FIG. 6 is a plan view showing the converter type refining furnace x tilted for waste in the embodiment of FIG. 5. 本発明法で使用する転炉型精錬炉xを示す説明図である。It is explanatory drawing which shows the converter type refining furnace x used by this invention method.
 以下、本発明に係る溶融スラグのフォーミング鎮静方法の一例について説明する。
 この溶融スラグのフォーミング鎮静方法は、1つの転炉型精錬炉xを用い、高炉から出銑された溶銑を酸化精錬を行って予備処理する一次送酸精錬工程(A)と、この一次送酸精錬工程(A)を経た溶銑を転炉型精錬炉x内に残留させたまま一次送酸精錬工程(A)で生成した溶融スラグを転炉型精錬炉xから溶滓収容容器yに排滓する中間排滓工程(B)と、転炉型精錬炉x内に残留させた溶銑を脱燐処理及び/又は脱炭処理する二次送酸精錬工程(C)をこの順に行う溶銑の精錬において、中間排滓工程(B)における排滓中及び/又は排滓後に、溶滓収容容器yに収容された溶融スラグに対して、水噴流を、単位時間当たりの水噴流の運動量が50kg・m/s以上となるように噴射することによりスラグのフォーミングを鎮静するものである。
Hereinafter, an example of the forming and calming method for molten slag according to the present invention will be described.
The molten slag forming and calming method uses a single converter type refining furnace x, a primary acid refining process (A) in which the hot metal discharged from the blast furnace is subjected to oxidation refining and pretreated, and this primary acid refining process. Molten slag generated in the primary acid refining step (A) is discharged from the converter type refining furnace x to the hot metal containing container y while the hot metal after the refining step (A) remains in the converter type refining furnace x. In the refining of hot metal, the intermediate waste process (B) and the secondary acid refining process (C) of dephosphorizing and / or decarburizing the hot metal remaining in the converter-type refining furnace x are performed in this order. In addition, during and / or after evacuation in the intermediate evacuation step (B), a water jet is applied to the molten slag contained in the hot metal container y, and the momentum of the water jet per unit time is 50 kg · m. / S2 Forming of slag is calmed down by spraying to become 2 or more Is.
 本発明の前提となる溶銑の精錬処理は、種々の形態を採ることができ、例えば、次の形態が挙げることができる。
(i)一次送酸精錬工程(A)が脱珪処理、二次送酸精錬工程(C)が脱燐処理である形態
(ii)一次送酸精錬工程(A)が脱珪処理、二次送酸精錬工程(C)が脱燐・脱炭処理である形態
(iii)一次送酸精錬工程(A)が脱珪・脱燐処理、二次送酸精錬工程(C)が脱炭処理である形態
(iv)一次送酸精錬工程(A)が脱燐処理、二次送酸精錬工程(C)が脱炭処理である形態
 これらのうち、主に本発明の対象となるのは(i)及び(iii)の形態である。
 図1は、上記(i)の精錬形態を工程順に示しており、脱珪処理(脱Si吹錬)が一次送酸精錬工程(A)に、脱燐処理(脱P吹錬)が二次送酸精錬工程(C)に、それぞれ相当する。
The hot metal refining process which is the premise of the present invention can take various forms, for example, the following forms.
(I) Form in which primary acid refining step (A) is desiliconization treatment and secondary acid refining step (C) is dephosphorization treatment (ii) primary acid refining step (A) is desiliconization treatment, secondary Form in which the acid feeding refining process (C) is dephosphorization / decarburization treatment (iii) The primary acid sending refining process (A) is desiliconization / dephosphorization treatment, and the secondary acid sending refining process (C) is decarburization treatment Form (iv) Form in which the primary acid refining process (A) is a dephosphorization process and the secondary acid refining process (C) is a decarburization process. Of these, the object of the present invention is mainly (i ) And (iii).
FIG. 1 shows the refining forms of (i) above in the order of processes, where the desiliconization treatment (desiliconization blowing) is the primary acid refining step (A), and the dephosphorization treatment (dephosphorus P blowing) is the secondary. This corresponds to the acid refining step (C).
 図1において、転炉型精錬炉x内には、まず鉄スクラップなどの冷鉄源3が装入され、次いで高炉溶銑を搬送してきた装入鍋4から溶銑1が装入された後、一次送酸精錬工程(A)として脱珪処理(脱Si吹錬)が行われる。この脱珪処理は、炉内に酸素源を供給し、さらに必要に応じてCaO系媒溶剤や、珪素源などの燃焼熱源を供給して行われる。この脱珪処理では、次工程の中間排滓においてスラグの排滓性を高めるため、スラグが適度にフォーミングするように実施条件が制御される。この脱珪処理の実施条件の詳細は後述する。脱珪処理が終了した後、中間排滓工程(B)として、脱珪処理で生成したスラグ2(脱珪スラグ)の少なくとも一部が溶滓収容容器y(排滓鍋)に排滓される。この中間排滓時のスラグ排出量は、次の送酸精錬工程(C)でのCaO系媒溶剤の使用量を効果的に削減するために、転炉型精錬炉x内のスラグ2の半量程度以上とすることが望ましい。そこで、炉口から溶銑を排出することなく、スラグを効率よく排出できるように、スラグをフォーミングさせてスラグ層の表面レベルを高くした状態で中間排滓が行われるが、その実施条件などの詳細は後述する。次いで、二次送酸精錬工程(C)として脱燐処理(脱P吹錬)が行われる。この脱燐処理は、CaO系媒溶剤と酸素源を供給して行われるが、実施条件などの詳細は後述する。この脱燐処理後、溶銑1が出湯され、次工程(脱炭処理)に送られる。この場合、脱燐処理で生成したスラグ9(脱燐スラグ)を排滓せず、そのまま残して次チャージの脱珪処理に利用してもよい。 In FIG. 1, a cold iron source 3 such as iron scrap is first charged in a converter-type refining furnace x, and then hot metal 1 is charged from a charging pot 4 that has transported the blast furnace hot metal, and then primary. A desiliconization process (deSi blowing) is performed as the acid refining step (A). This desiliconization process is performed by supplying an oxygen source into the furnace and, if necessary, supplying a combustion heat source such as a CaO-based solvent or a silicon source. In this desiliconization treatment, in order to enhance the slag evacuation performance in the intermediate evacuation in the next process, the execution conditions are controlled so that the slag is appropriately formed. Details of the conditions for carrying out this silicon removal treatment will be described later. After the desiliconization process is completed, at least a part of the slag 2 (desiliconization slag) generated by the desiliconization process is discharged into the hot metal container y (removal pan) as an intermediate waste removal process (B). . The amount of slag discharged at the time of intermediate waste is half the amount of slag 2 in the converter type refining furnace x in order to effectively reduce the amount of CaO-based solvent used in the next acid refining process (C). It is desirable to set it to about or more. Therefore, in order to efficiently discharge slag without discharging hot metal from the furnace port, intermediate slag is performed with the surface level of the slag layer increased by forming the slag, but details such as the implementation conditions Will be described later. Subsequently, a dephosphorization process (de-P blowing) is performed as a secondary acid refining process (C). This dephosphorization process is performed by supplying a CaO-based medium solvent and an oxygen source, and details such as implementation conditions will be described later. After this dephosphorization treatment, the hot metal 1 is discharged and sent to the next step (decarburization treatment). In this case, the slag 9 (dephosphorization slag) generated by the dephosphorization process may be left as it is and used for the desiliconization process of the next charge.
 本発明法では、以上のような、1つの転炉型精錬炉xを用い、2つの送酸精錬工程(A),(C)を、それらの途中に中間排滓工程(B)を挟んで連続して行う溶銑の精錬において、中間排滓工程(B)における排滓中及び/又は排滓後に、溶滓収容容器yに収容された溶融スラグ(フォーミング状態のスラグ浴)に対して所定の運動量の水噴流を噴射し、溶融スラグに流動を与えて水滴がフォーミングしたスラグ中に巻き込まれるようにすることでスラグのフォーミングを鎮静する。
 図2は、その実施状況を模式的に示したものであり、符号5は転炉型精錬炉xから溶滓収容容器yに排滓されるスラグ流、符号6は溶滓収容容器y内のフォーミング状態のスラグ浴、符号7は水噴射ノズル、符号8はこの水噴射ノズルから水が噴射されて形成される水噴流を示してある。図2に示すように、溶滓収容容器yの上方位置に配置された水噴射ノズル7から溶滓収容容器y内のスラグ(フォーミング状態のスラグ浴6)に水噴流8が噴射される。この水噴流8は、複数の水噴射ノズル7から或いは単一の水噴射ノズル7の異なる噴射口から、それぞれ2つ(2本)以上噴射してもよい。
In the method of the present invention, using one converter-type refining furnace x as described above, two acid feeding refining steps (A) and (C) are sandwiched between them and an intermediate waste discharging step (B) is sandwiched between them. In the hot metal refining performed continuously, a predetermined amount is applied to the molten slag (foamed slag bath) accommodated in the hot metal storage container y during and / or after the intermediate waste process (B). A jet of momentum is injected, and the molten slag is flowed so that water droplets are entrained in the formed slag, thereby reducing the slag forming.
FIG. 2 schematically shows the state of implementation. Reference numeral 5 denotes a slag flow discharged from the converter-type refining furnace x to the hot metal container y, and reference numeral 6 denotes the hot metal container y. A slag bath in a forming state, numeral 7 is a water jet nozzle, and numeral 8 is a water jet formed by jetting water from the water jet nozzle. As shown in FIG. 2, a water jet 8 is injected from the water injection nozzle 7 disposed above the hot metal container y into the slag (forming slag bath 6) in the hot metal container y. Two (two) or more of these water jets 8 may be jetted from a plurality of water jet nozzles 7 or from different jet ports of the single water jet nozzle 7.
 本発明法において、溶融スラグのフォーミングが鎮静されるメカニズムを説明すると、溶滓収容容器y内のフォーミングしたスラグ(フォーミング状態のスラグ浴6)に十分な運動量の水噴流8を噴射すると、スラグに流動が与えられて水噴流8の水滴がフォーミングしたスラグ中に巻き込まれ、微細な水滴がスラグ中に分散する。そして、このスラグ中に分散した水滴が蒸発・膨張することで、フォーミング状態にあるスラグ中に大量に存在する微小な気泡を破泡し、フォーミング状態のスラグ浴6の含有気体(主にCOガス)をフォーミング状態のスラグ浴6の外に放出することにより、スラグのフォーミングが鎮静されるものと考えられる。 In the method of the present invention, the mechanism by which molten slag forming is subsided will be described. When a water jet 8 having a sufficient momentum is injected into the formed slag (forming slag bath 6) in the hot metal container y, The water droplets of the water jet 8 are entrained in the formed slag due to the flow, and the fine water droplets are dispersed in the slag. The water droplets dispersed in the slag evaporate and expand to break up a large amount of microbubbles present in the slag in the forming state, and the gas contained in the slag bath 6 in the forming state (mainly CO gas) ) Is released to the outside of the slag bath 6 in the forming state, and it is considered that the slag forming is calmed down.
 図3は、排滓後に溶滓収容容器(排滓鍋)内のスラグに噴射ノズルから水噴流を噴射している状況を斜め上方から撮影した写真であり、矢印に沿って水噴流が流れ、水がフォーミング状態のスラグ浴に巻き込まれている様子が判る。スラグ浴面の水噴流の衝突箇所では、スラグの流動が誘起されて表面が更新されることから高温のホットスポットが形成されており、周囲のスラグ浴表面が放射冷却によって表面温度が低下しているのとは著しく異なる様相を呈している。このスラグ浴表面の高温部(ホットスポット)では、水噴流の水がスラグ中に巻き込まれて微小な液滴として分散してから蒸発・膨張して、スラグ浴中で大量の水蒸気を発生させるため、これにより生じる浮力でスラグ浴内の流動がいっそう加速されているものと考えられる。ここで、溶融スラグ中に巻き込まれた液体の水は、溶融スラグとの界面張力の方が気体との界面張力よりも小さいことから、溶融スラグ中の気泡間の液膜中に侵入し易いので、この気泡間の液膜中で蒸発・膨張することで効果的に破泡が進行すると考えられる。 FIG. 3 is a photograph of the situation in which a water jet is jetted from the jet nozzle onto the slag in the hot metal container (steaming pan) after drainage, taken obliquely from above, and the water jet flows along the arrow, You can see how water is caught in the forming slag bath. At the location where the water jet collides with the slag bath surface, slag flow is induced and the surface is renewed, so a hot hot spot is formed, and the surface temperature of the surrounding slag bath surface decreases due to radiation cooling. This is a very different aspect. At the high temperature part (hot spot) on the surface of this slag bath, water in the water jet is entrained in the slag and dispersed as fine droplets, then evaporates and expands, generating a large amount of water vapor in the slag bath It is considered that the flow in the slag bath is further accelerated by the buoyancy generated thereby. Here, since the liquid water entrained in the molten slag has a lower interfacial tension with the molten slag than the interfacial tension with the gas, it easily enters the liquid film between the bubbles in the molten slag. It is considered that the bubble breakage proceeds effectively by evaporating and expanding in the liquid film between the bubbles.
 本発明法では、溶滓収容容器y内の溶融スラグに対して噴射する水噴流8の単位時間当たりの運動量を50kg・m/s以上とする。ここで、水噴流8が複数の場合には、単位時間当たりの運動量はその合計量とするが、水噴流の衝突箇所のスラグ浴表面の高温部(ホットスポット)が複数箇所生じる場合は一箇所当たりの合計量とする。また、一般的には運動量はベクトル量であり、合計量とは、ベクトル的に加算した運動量の絶対値を意味するものとする。
 本発明では十分な運動量の水噴流8をフォーミング状態の溶融スラグに噴射することにより、スラグに流動を与えて水滴がスラグ中に巻き込まれるようにし、フォーミング状態のスラグ中に分散した水滴が蒸発・膨張することでフォーミングしたスラグ中に存在する微小な気泡を破泡するものであるが、水噴流8の単位時間当たりの運動量が小さいと、溶融スラグが冷却される方が勝ってスラグに十分な流動を与えることができないため、水滴をスラグ中に適切に巻き込ませることが難しくなり、溶融スラグのフォーミング抑制効果が十分に得られない。また、水噴流8の噴射方向が水平方向に近付くにつれてスラグ浴に流動が伝わり難くなるため、水噴流8の単位時間当たりの運動量の鉛直方向成分を40kg・m/s以上とするように水噴流8を噴射することがより好ましい。
In the method of the present invention, the momentum per unit time of the water jet 8 injected to the molten slag in the hot metal container y is set to 50 kg · m / s 2 or more. Here, in the case where there are a plurality of water jets 8, the momentum per unit time is the total amount, but there is one place when there are a plurality of high temperature portions (hot spots) on the surface of the slag bath where the water jet collides. The total amount per unit. In general, the amount of exercise is a vector amount, and the total amount means the absolute value of the amount of exercise added in vector.
In the present invention, a sufficient amount of momentum of the water jet 8 is injected into the molten slag in the forming state so that the slag is flowed so that the water droplets are entrained in the slag, and the water droplets dispersed in the slag in the forming state evaporate and Although it expands the minute bubbles existing in the formed slag by expanding, if the momentum per unit time of the water jet 8 is small, the molten slag is more cooled and more sufficient for the slag. Since it cannot give a flow, it becomes difficult to properly entrain water droplets in the slag, and the forming suppression effect of the molten slag cannot be sufficiently obtained. Further, since the flow becomes difficult to be transmitted to the slag bath as the injection direction of the water jet 8 approaches the horizontal direction, the vertical component of the momentum per unit time of the water jet 8 is set to 40 kg · m / s 2 or more. More preferably, the jet 8 is jetted.
 水噴流8の単位時間当たりの運動量の上限は特にないが、運動量が増大すると溶融スラグの飛散量が増大する傾向があるため、200kg・m/s程度を上限とするのが好ましい。水噴流8を噴射するのは排滓中及び/又は排滓後であるが、溶滓収容容器yの容量に対して中間排滓で排出するフォーミング状態のスラグの容積が大きい場合には、排滓中に噴射してスラグのフォーミングを鎮静することにより中間排滓の作業時間の短縮が可能となるので好ましい。この際、水噴流8の噴射は、中間排滓中の溶滓収容容器y内のスラグ浴の表面レベルを参照しながら、スラグを溶滓収容容器yからオーバーフローさせないで転炉型精錬炉xから効率よく排滓できるように、適宜実施すればよい。溶滓収容容器yの容量が十分に大きい場合には、排滓後に水噴流8を噴射してスラグの緻密化を図るようにしてもよい。 The upper limit of the momentum per unit time of the water jet 8 is not particularly limited. However, since the amount of molten slag scattered tends to increase as the momentum increases, the upper limit is preferably about 200 kg · m / s 2 . The water jet 8 is injected during and / or after the discharge, but if the volume of the slag in the forming state discharged by the intermediate discharge is larger than the capacity of the hot metal container y, the water jet 8 is discharged. It is preferable to reduce the working time of intermediate waste by injecting it into the soot to calm down the slag forming. At this time, the water jet 8 is injected from the converter-type refining furnace x without overflowing the slag from the hot metal container y while referring to the surface level of the slag bath in the hot metal container y during the intermediate waste. What is necessary is just to implement suitably so that it can discharge efficiently. When the capacity of the hot metal storage container y is sufficiently large, the water jet 8 may be injected after the discharge to make the slag dense.
 水噴流8を噴射するスラグ面の位置(場所)に特別な制限はないが、図2のように排滓中の場合には、少なくとも1つの水噴流8がスラグ流5の落ち口(滝壺)に当たるように噴射することが好ましい。排滓後の場合には、排滓終了後に長時間経過するとスラグ浴の表面に凝固層が発達して水噴流8がスラグ浴内に巻き込まれ難くなるので、排滓終了後10分程度以内のできるだけ短時間の内に水噴流8の噴射を開始することが望ましい。
 水噴流8を噴射するスラグ面の位置は、通常は溶滓収容容器y内のスラグ表面の中央部に1箇所あればフォーミングの鎮静に十分であるが、溶滓収容容器yが大きくてスラグ浴表面に占めるホットスポットの面積の割合が小さい場合には、ホットスポットを移動させるように水噴流を噴射するスラグ面の位置を移動させたり、ホットスポットを複数個所設けるように噴射位置を複数個所設けることにより、より短時間でフォーミングを鎮静でき、効果的である。
There is no particular restriction on the position (place) of the slag surface that injects the water jet 8, but at the time of evacuation as shown in FIG. It is preferable to inject so that it may hit. In the case of evacuation, a solidified layer develops on the surface of the slag bath for a long time after the end of evacuation, so that the water jet 8 is less likely to be caught in the slag bath. It is desirable to start the water jet 8 in as short a time as possible.
The position of the slag surface for injecting the water jet 8 is usually sufficient to calm the forming if there is only one central portion of the slag surface in the hot metal container y, but the hot metal container y is large and the slag bath When the ratio of the area of the hot spot occupying the surface is small, the position of the slag surface for injecting the water jet is moved so as to move the hot spot, or the injection positions are provided so as to provide a plurality of hot spots. Thus, the forming can be calmed down in a shorter time, which is effective.
 また、水噴流8の流量は大きい方が、より短時間でフォーミングを鎮静できるが、溶融スラグ滴の飛散量が増大する傾向がある。したがって、作業時間を許容できる範囲とするように水の流量を増大し、かつ、スラグ飛散を許容できる範囲とするように水の流量を減少するように調整すればよく、100~300L/min程度の範囲で水の流量を調整することが望ましい。水噴流8の噴射時間は、噴射後のフォーミングの鎮静状況を目視で確認して、鎮静効果が十分得られる範囲で適宜短縮するように調整すればよい。しかし、短時間でフォーミングを鎮静しようとして水の流量を増大させるとスラグ飛散が増大する問題があるため、3~15分程度の範囲で噴射時間を調整することが望ましい。
 一般的に運動量は保存されるので、水噴流8の流速が水噴射ノズル7からスラグ表面に到達するまでの間に減衰することはあまり考慮する必要はなく、水噴流8の単位時間当たりの運動量(kg・m/s)を算出する場合には、水噴射ノズル出口での流速(m/s)と質量流量(kg/s)とを乗算して算出すればよい。ただし、ノズル内径が小さくなると空気の巻き込みによる減衰が無視できなくなってくるので、ノズルの内径(断面が円形でない場合は、断面積の4倍を周長で除して算出される等価直径)は5mm以上であることが望ましい。
Moreover, although the one where the flow volume of the water jet 8 is large can calm down forming in a short time, there exists a tendency for the scattering amount of a molten slag droplet to increase. Therefore, the flow rate of water may be adjusted so as to increase the flow rate so as to allow the working time, and the flow rate of water may be decreased so as to allow the slag scattering, which is about 100 to 300 L / min. It is desirable to adjust the flow rate of water within the range. The jetting time of the water jet 8 may be adjusted so as to be appropriately shortened within a range in which the sedation effect is sufficiently obtained by visually confirming the sedation state of forming after jetting. However, if the flow rate of water is increased in order to calm down the forming in a short time, there is a problem that slag scattering increases. Therefore, it is desirable to adjust the injection time in the range of about 3 to 15 minutes.
Since the momentum is generally preserved, it is not necessary to consider that the flow velocity of the water jet 8 is attenuated before reaching the slag surface from the water jet nozzle 7, and the momentum per unit time of the water jet 8 is not necessary. In calculating (kg · m / s 2 ), the flow velocity (m / s) at the outlet of the water injection nozzle may be multiplied by the mass flow rate (kg / s). However, since the attenuation due to air entrainment cannot be ignored when the nozzle inner diameter becomes smaller, the inner diameter of the nozzle (equivalent diameter calculated by dividing the cross-sectional area by four times the circumference if the section is not circular) is It is desirable that it is 5 mm or more.
 図4は、後述する図5及び図6の設備において、単位時間当たりの運動量が異なる水噴流8を溶滓収容容器y内のスラグ2(溶融スラグ)に対して中間排滓中に噴射した場合と、水噴流の噴射を行わなかった場合について、脱珪処理するに当たって転炉型精錬炉xに装入した溶銑のSi濃度と中間排滓時に排滓開始から排滓終了までに要した時間(中間排滓時間)との関係を示すものである。水噴流8の噴射は、溶滓収容容器y内のスラグ浴の表面レベルが溶滓収容容器y内の高さの半分程度になった時点から開始し、排滓の中断中も含めて、スラグ浴の表面レベルを排出スラグを受け入れるのに適正なレベルとするように継続して実施した。水噴流の噴射の有無に関わらず、溶滓収容容器y内のスラグ浴の表面レベルが上昇してスラグのオーバーフローが懸念される場合は、転炉型精錬炉xの傾動角度を調節してスラグの排出速度を小さくしたり、排滓を中断する対応を行う。このため、水噴流を噴射しない従来の中間排滓では、目標とするスラグ質量を排出するのに長時間を要する頻度が高かった。
 図4によれば、水噴流8を噴射することにより、中間排滓時間の特に長いチャージは大幅に減少しており、特に、水噴流8の単位時間当たりの運動量が78kg・m/sの場合には、26kg・m/sの場合よりもいっそう中間排滓時間が長いチャージが減少していることから、スラグフォーミングの抑制により効果的であることが判り、水噴流を噴射しない場合に比べて平均値では3分程度の中間排滓時間の短縮が可能となっている。
FIG. 4 shows a case where water jets 8 having different momentum per unit time are injected into intermediate waste with respect to the slag 2 (molten slag) in the hot metal container y in the equipment shown in FIGS. In the case where the water jet was not injected, the silicon concentration of the hot metal charged in the converter type refining furnace x and the time required from the start of discharge to the end of discharge during intermediate discharge in the desiliconization process ( This shows the relationship with the intermediate elimination time. The jet of the water jet 8 starts when the surface level of the slag bath in the hot metal container y becomes about half of the height in the hot metal container y, and includes the slag including when the exhaust gas is suspended. The bath was continuously carried out so that the surface level of the bath was at a level appropriate for receiving the discharged slag. Regardless of whether water jet is injected or not, if the surface level of the slag bath in the hot metal container y rises and there is concern about slag overflow, adjust the tilt angle of the converter-type refining furnace x to adjust the slag. Decrease the discharge speed or stop the discharge. For this reason, in the conventional intermediate waste which does not inject a water jet, the frequency which requires a long time to discharge | emit the target slag mass was high.
According to FIG. 4, by charging the water jet 8, the particularly long charge of the intermediate evacuation time is greatly reduced. In particular, the momentum per unit time of the water jet 8 is 78 kg · m / s 2 . In this case, since the charge with a longer intermediate evacuation time is reduced compared to the case of 26 kg · m / s 2 , it turns out that it is effective by suppressing slag forming, and the water jet is not injected. Compared to the average value, it is possible to shorten the intermediate elimination time by about 3 minutes.
 図5及び図6は、中間排滓において溶滓収容容器y(排滓鍋)内のスラグに水噴流を噴射するための設備の一実施形態とその使用状況を示すもので、図5は排滓のために転炉型精錬炉x(転炉)を傾動させた状態で示す正面図、図6は同じく平面図である。
 転炉型精錬炉x(転炉)の側方であって且つ排滓位置に停止した溶滓収容容器y(排滓鍋)の上方位置には、水噴射ノズル7が設置され、中間排滓工程の排滓中及び/又は排滓後に、水噴射ノズル7から溶滓収容容器y内の溶融スラグに対して所定の運動量の水噴流8を噴射し、溶融スラグに流動を与えて水滴がフォーミングしたスラグ中に巻き込まれるようにする。
 水噴射ノズル7には、水供給管11から水が供給され、この水供給管11を含む水供給機構は遮熱壁10で排滓時の熱から保護されている。また、水噴射ノズル7は、図5及び図6に破線で示したように、水噴流の到達位置を調節できるように、噴射方向を水平方向及び上下方向に調整可能な機構を設けることが望ましい。これにより、転炉型精錬炉xの傾動角度に合せて調節する溶滓収容容器yの位置に追随できるとともに、溶滓収容容器y内のスラグ表面での水噴流8の到達位置も調整できる。
FIGS. 5 and 6 show an embodiment of equipment for injecting a water jet to the slag in the hot metal container y (a waste pan) in the intermediate waste, and the use state thereof. FIG. A front view showing a state in which the converter type refining furnace x (converter) is tilted for dredging, FIG. 6 is also a plan view.
A water injection nozzle 7 is installed on the side of the converter-type refining furnace x (converter) and above the hot metal container y (slagging pan) stopped at the rejecting position. During and / or after the discharge of the process, a water jet 8 having a predetermined momentum is jetted from the water jet nozzle 7 to the molten slag in the hot metal container y, and the molten slag is flowed to form water droplets. In the slag.
Water is supplied to the water injection nozzle 7 from a water supply pipe 11, and the water supply mechanism including the water supply pipe 11 is protected by the heat shield wall 10 from heat at the time of discharge. In addition, as shown by the broken lines in FIGS. 5 and 6, the water injection nozzle 7 is desirably provided with a mechanism capable of adjusting the injection direction in the horizontal direction and the vertical direction so that the arrival position of the water jet can be adjusted. . Thereby, it is possible to follow the position of the hot metal container y adjusted in accordance with the tilt angle of the converter-type refining furnace x, and it is also possible to adjust the arrival position of the water jet 8 on the slag surface in the hot metal container y.
 本発明によれば、他の精錬形態においても、中間排滓時に溶滓収容容器yでのスラグのフォーミングを同様に鎮静することが可能であり、これにより中間排滓に要する時間を短縮して生産性を向上することができる。例えば、さきに挙げた(i)~(iv)の精錬形態のなかで、一次送酸精錬工程(A)が脱珪処理、二次送酸精錬工程(C)が脱燐・脱炭処理である(ii)の精錬形態は、特に溶銑の珪素含有量が高い場合や、珪素を燃焼熱源として追加して大量のスクラップ溶解を行う場合、脱珪処理と同時に脱硫反応を進行させる場合などに実施されるが、脱燐・脱炭処理でのスラグ組成制御やスラグからの復硫防止の観点から、特に中間排滓後の残留スラグ量を減少させることが必要となる。このため、通常は溶銑を一旦出湯後、炉内スラグをほぼ全量排出する方法が用いられることが多い。 According to the present invention, in other refining forms, it is possible to calm down the slag forming in the molten iron storage container y at the time of intermediate waste, thereby reducing the time required for intermediate waste. Productivity can be improved. For example, in the refining forms (i) to (iv) mentioned above, the primary acid refining process (A) is desiliconization, and the secondary acid refining process (C) is dephosphorization / decarburization. The refining form (ii) is carried out when the silicon content of the hot metal is particularly high, when a large amount of scrap is melted by adding silicon as a combustion heat source, or when the desulfurization reaction proceeds simultaneously with the desiliconization process. However, it is necessary to reduce the amount of residual slag, especially after intermediate waste, from the viewpoints of slag composition control in dephosphorization / decarburization treatment and prevention of slag from slag. For this reason, usually, a method of discharging almost all of the in-furnace slag after pouring hot metal once is often used.
 また、一次送酸精錬工程(A)が脱珪・脱燐処理、二次送酸精錬工程(C)が脱炭処理である(iii)の精錬形態は、(i)の精錬形態と並んでよく用いられるが、一次送酸精錬工程(A)では脱燐まで行うため、スラグの塩基度は(i)の精錬形態の場合よりも高く調整される。しかし、中間排滓で排滓し易くするようにスラグをフォーミングさせる点では(i)の精錬形態と共通しており、スラグの塩基度を溶銑の脱燐処理としては比較的低位な1.2~1.8程度の範囲に調節するとともに、スラグ中の酸化鉄濃度を高めるようにしてスラグのフォーミングを促進する。したがって、中間排滓時には、(i)の精錬形態の場合と同様に中間排滓時間の延長を招き易いという課題があり、本発明に係る溶融スラグのフォーミング鎮静方法を適用することが効果的である。
 また、一次送酸精錬工程(A)が脱燐処理、二次送酸精錬工程(C)が脱炭処理である(iv)の精錬形態は、事前に脱珪処理を行った溶銑を対象とするものであるが、中間排滓を効率良く行うためには脱燐処理において大量の酸化珪素源を追加する必要がある。このため、通常は溶銑を一旦出湯後、炉内スラグをほぼ全量排出する方法が用いられることが多い。
The refining form of (iii), in which the primary acid refining process (A) is desiliconization / dephosphorization, and the secondary acid refining process (C) is decarburization, is the same as the refining form of (i). Although often used, in the primary acid refining step (A), since dephosphorization is performed, the basicity of the slag is adjusted to be higher than in the refining form of (i). However, it is the same as the refined form (i) in that the slag is formed so that it can be easily discharged by intermediate waste, and the basicity of the slag is 1.2, which is relatively low as the dephosphorization treatment of hot metal. While adjusting to a range of about ~ 1.8, the iron oxide concentration in the slag is increased to promote slag forming. Therefore, at the time of intermediate evacuation, as in the case of the refinement form (i), there is a problem that the intermediate evacuation time is likely to be extended, and it is effective to apply the molten slag forming sedation method according to the present invention. is there.
The refining mode (iv) in which the primary acid refining process (A) is dephosphorization and the secondary acid refining process (C) is decarburization is intended for hot metal previously desiliconized. However, in order to efficiently perform the intermediate waste, it is necessary to add a large amount of silicon oxide source in the dephosphorization process. For this reason, usually, a method of discharging almost all of the in-furnace slag after pouring hot metal once is often used.
 次に、本発明に係るスラグ製品の製造方法について説明する。
 このスラグ製品の製造方法は、1つの転炉型精錬炉xを用い、高炉から出銑された溶銑を脱珪処理する一次送酸精錬工程(a)と、この一次送酸精錬工程(a)を経た溶銑を転炉型精錬炉x内に残留させたまま一次送酸精錬工程(a)で生成した脱珪スラグを転炉型精錬炉xから溶滓収容容器yに排滓する中間排滓工程(b)と、転炉型精錬炉x内に残留させた溶銑を脱燐処理する二次送酸精錬工程(c)と、該二次送酸精錬工程(c)を経た溶銑を転炉型精錬炉xから出湯する出湯工程(d)をこの順に行い、中間排滓工程(b)で排滓した脱珪スラグを凝固させた後、スラグ製品に加工するスラグ製品の製造方法であって、中間排滓工程(b)における排滓中及び/又は排滓後に、溶滓収容容器yに収容された脱珪スラグに対して、水噴流を、単位時間当たりの水噴流の運動量が50kg・m/s以上となるように噴射することによりスラグのフォーミングを鎮静した後、溶滓収容容器yから脱珪スラグを排出し、凝固させるものである。
Next, the manufacturing method of the slag product which concerns on this invention is demonstrated.
This slag product manufacturing method uses a single converter-type refining furnace x, a primary acid refining process (a) in which the molten iron discharged from the blast furnace is desiliconized, and this primary acid refining process (a). The intermediate waste that discharges the desiliconized slag generated in the primary acid feed refining step (a) from the converter type refining furnace x to the hot metal container y while the hot metal having passed through the furnace remains in the converter type refining furnace x Step (b), secondary acid refining step (c) for dephosphorizing the hot metal remaining in the converter type refining furnace x, and the hot metal after the secondary acid refining step (c) A method for producing a slag product in which the hot water discharge step (d) discharged from the mold refining furnace x is performed in this order, and the desiliconized slag discharged in the intermediate waste discharge step (b) is solidified and then processed into a slag product. The water jet is applied to the desiliconized slag contained in the hot metal container y during and / or after the waste in the intermediate waste process (b). , Slag forming is subdued by jetting so that the momentum of the water jet per unit time is 50 kg · m / s 2 or more, and then desiliconized slag is discharged from the hot metal container y and solidified. It is.
 図1は、本発明によるスラグ製品の製造方法における精錬形態(工程順)の一例も示しており、脱珪処理(脱Si吹錬)が一次送酸精錬工程(a)であり、脱燐処理(脱P吹錬)が二次送酸精錬工程(c)である形態が、前記一例に相当する。この図1に記載の各工程の内容は、さきに述べた通りである。また、各工程の実施条件の詳細は後述する。
 本発明法では、以上のような1つの転炉型精錬炉xを用い、脱珪処理を行う送酸精錬工程(a)と脱燐処理を行う送酸精錬工程(c)を途中の中間排滓工程(b)を挟んで連続して行う溶銑の精錬において、中間排滓工程(b)における排滓中及び/又は排滓後に、溶滓収容容器yに収容された脱珪スラグ(フォーミング状態のスラグ浴)に対して所定の運動量の水噴流を噴射し、脱珪スラグに流動を与えて、フォーミングしたスラグ中に水滴が巻き込まれるようにすることでスラグのフォーミングを鎮静した後、溶滓収容容器yから脱珪スラグを排出し、凝固させるものである。そして、この脱珪スラグを加工処理(通常、粉砕・分級する)ことによりスラグ製品を得る。
FIG. 1 also shows an example of a refining mode (in order of steps) in the method for producing a slag product according to the present invention, in which the desiliconization treatment (deSi blowing) is the primary acid refining step (a), and the dephosphorization treatment The form in which (de-P blowing) is the secondary acid refining step (c) corresponds to the above example. The contents of each step shown in FIG. 1 are as described above. Details of the conditions for performing each step will be described later.
In the method of the present invention, using one converter-type refining furnace x as described above, an acid-feeding refining step (a) for performing desiliconization treatment and an acid-feeding refining step (c) for carrying out dephosphorization treatment are performed in the middle. In the refining of hot metal performed continuously with the hot metal step (b) in between, desiliconized slag (forming state) accommodated in the hot metal container y during and / or after the hot metal removal in the intermediate waste step (b) After spraying a water jet with a predetermined momentum on the slag bath) and applying flow to the desiliconized slag, water droplets are entrained in the formed slag, and the slag foaming is subdued. The desiliconized slag is discharged from the storage container y and solidified. Then, this desiliconized slag is processed (usually pulverized and classified) to obtain a slag product.
 この脱珪スラグに対する水噴流の噴射に関して、その実施状況、水噴流の噴射による流滓時間の短縮化効果、水噴流の噴射に使用する設備などについては、さきに図2~図6に基づいて説明したとおりである。
 本発明法において、脱珪処理と脱燐処理との間の中間排滓工程で排滓された脱珪スラグに対して、上記のような水噴流の噴射を行うことにより、スラグフォーミングが鎮静されるだけでなく、冷却・凝固後のスラグが緻密化して、単位容積質量が大きい高品質のスラグ製品が得られる。
Regarding the injection of water jet to this desiliconized slag, the implementation status, the effect of shortening the fluent time by water jet injection, the equipment used for water jet injection, etc. are based on FIG. As explained.
In the method of the present invention, the slag forming is calmed by spraying the water jet as described above to the desiliconized slag discharged in the intermediate waste process between the desiliconization process and the dephosphorization process. In addition, the slag after cooling and solidification becomes dense, and a high-quality slag product with a large unit volume mass is obtained.
 本発明法では、冷却・凝固後のスラグを緻密化させてスラグ製品の単位容積質量を大きくするために、中間排滓工程(b)において溶滓収容容器y内の脱珪スラグに水噴流を噴射するに当たり、脱珪スラグの嵩比重が0.7kg/L以上となるように水噴流を噴射してスラグのフォーミングを鎮静し、しかる後、溶滓収容容器y内の脱珪スラグをスラグヤードに排出して放冷し、凝固させることが好ましい。凝固の進行とともにさらに脱泡してスラグ中の気孔が減少するが、溶滓収容容器y内で嵩比重が0.7kg/L以上となるようにフォーミングを鎮静してからスラグヤードに排出することにより、スラグ製品の単位容積質量を安定して1.5kg/L以上とすることができる。
 また、上記と同様の観点から、脱珪スラグに噴射される水噴流の合計噴射水量を30~150L/脱珪スラグ-t(トン)とすることが好ましい。噴射水量が少ないと脱泡が不十分でスラグ製品の単位容積質量が小さくなる場合がある。また、噴射水量をこれより多くしても効果が飽和するとともに、さらに噴射水量を増大すると噴射中に部分的に凝固が進行して、逆に凝固スラグ中の気孔率が増大するおそれがある。
In the present invention method, in order to increase the unit volume mass of the slag product by densifying the slag after cooling and solidification, a water jet is applied to the desiliconized slag in the hot metal container y in the intermediate waste disposal step (b). In the injection, water jet is injected so that the bulk specific gravity of the desiliconized slag is 0.7 kg / L or more to calm down the forming of the slag, and then the desiliconized slag in the hot metal container y is slag yarded. It is preferable that the product is discharged and allowed to cool and solidify. As the solidification progresses, the air bubbles are further defoamed and the pores in the slag are reduced, but the forming is subdued so that the bulk specific gravity is 0.7 kg / L or more in the hot metal storage container y, and then discharged into the slag yard. Thereby, the unit volume mass of a slag product can be stably made into 1.5 kg / L or more.
From the same viewpoint as described above, it is preferable that the total amount of water jet of the water jet injected into the desiliconized slag is 30 to 150 L / desiliconized slag-t (tons). If the amount of jet water is small, defoaming may be insufficient and the unit volume mass of the slag product may be small. Further, even if the amount of jet water is increased, the effect is saturated, and when the amount of jet water is further increased, solidification partially progresses during jetting, and conversely, the porosity in the solidified slag may increase.
 中間排滓工程(b)で排出された後、冷却・凝固した脱珪スラグは、通常、粉砕、分級してスラグ製品とするが、上述したように本発明法では冷却・凝固後の脱珪スラグが緻密化するので、上層路盤材用途で要求される単位容積質量1.5kg/L以上を満たすスラグ製品を容易に得ることができる。水噴流の噴射を行わないで得られたスラグ製品は、多孔質であり(したがって低強度である)、単位容積質量が小さいため日本工業規格 JIS A 5015:2013に規定される上層路盤材の製品規格を満たさない。また、スラグ粒子が多孔質で強度が低いことから、支持力など他の特性にも悪影響を及ぼすおそれがあり、このような脱珪スラグは路盤材用途には適さない。これに対して、本発明法により水噴流の噴射を行って得られたスラグ製品は、緻密化して単位容積質量が大きくなっており、上記の製品規格を満足する。 The desiliconized slag cooled and solidified after being discharged in the intermediate waste process (b) is usually pulverized and classified into a slag product. As described above, the desiliconized slag after cooling and solidification is used in the method of the present invention. Since the slag is densified, a slag product satisfying a unit volume mass of 1.5 kg / L or more required for upper layer roadbed materials can be easily obtained. Slag products obtained without jetting water jets are porous (and therefore have low strength), and because of their small unit volume mass, products of upper-layer roadbed materials as defined in Japanese Industrial Standards JIS A 5015: 2013 Does not meet standards. In addition, since the slag particles are porous and low in strength, there is a possibility that other characteristics such as supporting force may be adversely affected, and such desiliconized slag is not suitable for roadbed materials. On the other hand, the slag product obtained by jetting a water jet according to the method of the present invention is densified and has a large unit volume mass and satisfies the above product standards.
 脱燐スラグは、一般に脱珪スラグと比較して高塩基度であるので、水和膨張性などの特性から、土木材料に用いる際に用途に制約を受ける場合が多い。したがって、脱燐スラグの発生量を極力低減し、脱燐スラグをこのような用途制約の少ない脱珪スラグに転換するためには、前チャージの脱燐処理を終え、炉内の溶銑を出湯した後、炉内の脱燐スラグを排出せず、炉内に前チャージの脱燐スラグを残留させたまま新たな溶銑を装入し、本発明の精錬工程を繰り返すことが好ましい。すなわち、溶銑を脱燐処理する二次送酸精錬工程(c)を経た溶銑を転炉型精錬炉xから出湯する出湯工程(d)後、転炉型精錬炉x内のスラグを排出することなく、次チャージの溶銑を装入して、一次送酸精錬工程(a)、中間排滓工程(b)、二次送酸精錬工程(c)及び出湯工程(d)をこの順に行うようにするものである。この方法では、脱珪処理時でのCaO系媒溶剤の使用量を削減することもできる。 Since dephosphorization slag generally has a higher basicity than desiliconization slag, its use in civil engineering materials is often restricted due to characteristics such as hydration expansion. Therefore, in order to reduce the amount of dephosphorization slag as much as possible and convert dephosphorization slag to desiliconization slag with less application restrictions, the pre-charge dephosphorization process was completed and the hot metal in the furnace was discharged. After that, it is preferable not to discharge the dephosphorization slag in the furnace, but to charge new hot metal while leaving the pre-charge dephosphorization slag in the furnace and repeat the refining process of the present invention. That is, the slag in the converter-type smelting furnace x is discharged after the hot water discharge process (d) in which the hot metal that has undergone the secondary acid refining process (c) for dephosphorizing the hot metal is discharged from the converter-type smelting furnace x. Instead, the first charge acid refining step (a), the intermediate discharge step (b), the second acid refining step (c) and the tapping step (d) are performed in this order by charging the molten iron of the next charge. To do. In this method, the amount of CaO-based solvent used during the desiliconization process can be reduced.
 また、本発明で得られるスラグ製品のなかで、特に、(質量%CaO)/(質量%SiO)を0.8~1.5とし、且つ「出湯工程(d)後、転炉型精錬炉x内のスラグを排出することなく、次チャージの溶銑を装入して、本発明の精錬工程を繰り返す」方法で得られたスラグ製品は、緻密で単位容積質量が大きいだけでなく、低アルカリで膨張量が少ないという特性を有しており、路盤材用途に特に好適なものであるといえる。 Further, among the slag products obtained in the present invention, in particular, (mass% CaO) / (mass% SiO 2 ) is set to 0.8 to 1.5, and “after the hot water step (d), the converter type refining The slag product obtained by the method of repeating the refining process of the present invention by charging the molten iron of the next charge without discharging the slag in the furnace x is not only dense and large in unit volume mass but also low in volume. It has the characteristic that it is alkali and has a small amount of expansion, and can be said to be particularly suitable for roadbed material applications.
 次に、本発明で使用する転炉型精錬炉xの構成と、本発明で行う脱珪処理、中間排滓、脱燐処理の実施条件(すでに述べた以外の実施条件)の詳細を説明する。
 図7は、本発明で使用する転炉型精錬炉xの一例(概略断面)を示すものである。この転炉型精錬炉xは上底吹き可能な転炉であり、上吹き用の昇降可能な送酸ランス12(上吹きランス)を備えとともに、炉体底部にはガス底吹き用の底吹きノズル13(底吹き羽口)が、炉体上部側の側部には出湯口14が、それぞれ設けられている。
 送酸ランス12からは、気体酸素源として酸素ガス(工業用純酸素ガス)または酸素含有ガス(酸素富化空気、空気、酸素ガスと不活性ガスとの混合ガスなど)が溶銑に供給される。また、底吹きノズル13からは、撹拌用の底吹きガス(アルゴンガスや窒素ガスなどの不活性ガス、酸素を含有するガスなど)が炉内の溶銑に吹き込まれる。また、底吹きガスを搬送ガスとして媒溶剤などを吹き込んでもよい。
Next, the details of the configuration of the converter type refining furnace x used in the present invention and the implementation conditions (execution conditions other than those already described) of the desiliconization treatment, intermediate waste removal, and dephosphorization treatment performed in the present invention will be described. .
FIG. 7 shows an example (schematic cross section) of the converter type refining furnace x used in the present invention. This converter-type refining furnace x is a converter capable of blowing an upper bottom, and includes an up-and-down raising and lowering acid lance 12 (upper blowing lance), and a bottom blowing for gas bottom blowing at the bottom of the furnace body. A nozzle 13 (bottom blowing tuyere) is provided, and a hot water outlet 14 is provided on the side of the furnace body upper side.
From the acid delivery lance 12, oxygen gas (industrial pure oxygen gas) or oxygen-containing gas (oxygen-enriched air, air, mixed gas of oxygen gas and inert gas, etc.) is supplied to the hot metal as a gaseous oxygen source. . From the bottom blowing nozzle 13, a bottom blowing gas for stirring (inert gas such as argon gas and nitrogen gas, gas containing oxygen, etc.) is blown into the hot metal in the furnace. Further, a medium solvent or the like may be blown using the bottom blowing gas as a carrier gas.
 本発明において、一次送酸精錬工程(A)として或いは一次送酸精錬工程(a)として行われる脱珪処理は、転炉型精錬炉x内の溶銑に酸素源として気体酸素源を供給し、さらに必要に応じて酸化鉄などの固体酸素源を供給して行われる。溶銑に含有される珪素と酸素源中の酸素とが反応(Si+2O→SiO)して脱珪処理が進行する。この脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源の溶解が促進される。
 気体酸素源の供給は送酸ランス12を通じて行われ、必要に応じて、酸化鉄などの固体酸素源、生成するスラグの塩基度を調整するための媒溶剤(CaO系媒溶剤、MgO系媒溶剤など)や珪素源などの燃焼熱源が装入される。また、底吹きノズル13から撹拌ガスを溶銑中に吹き込むことにより、溶銑の撹拌を強化して冷鉄源の溶解を促進する。
 固体酸素源や媒溶剤などの固体の供給方法としては、通常、粒状及び塊状のものは炉上のホッパーから装入し、粉状のものは送酸ランス12や底吹きノズル13を通じて供給する。
In the present invention, the desiliconization treatment performed as the primary acid refining step (A) or the primary acid refining step (a) is performed by supplying a gaseous oxygen source as an oxygen source to the hot metal in the converter type refining furnace x, Further, a solid oxygen source such as iron oxide is supplied as necessary. Silicon contained in the hot metal reacts with oxygen in the oxygen source (Si + 2O → SiO 2 ), and desiliconization proceeds. The hot metal temperature rises due to the oxidation heat of silicon by this desiliconization reaction, and the melting of the cold iron source in the hot metal is promoted.
The gaseous oxygen source is supplied through the acid lance 12 and, if necessary, a solid oxygen source such as iron oxide and a medium solvent for adjusting the basicity of the generated slag (CaO-based solvent, MgO-based solvent) Etc.) and a combustion heat source such as a silicon source. Further, by blowing the stirring gas from the bottom blowing nozzle 13 into the hot metal, the hot metal stirring is strengthened and the melting of the cold iron source is promoted.
As a method for supplying solids such as a solid oxygen source and a medium solvent, granular and lump-shaped ones are usually charged from a hopper on the furnace, and powdery ones are fed through an acid feed lance 12 and a bottom blowing nozzle 13.
 また、中間排滓工程でのスラグの排滓性を高めるために、スラグを転炉型精錬炉x内でフォーミングさせるが、そのためには、スラグ中の酸化鉄とスラグ中に液滴として巻き込まれた溶銑に含まれる炭素との反応により発生するCOガスの発生速度を高める必要がある。このために、スラグ中の酸化鉄濃度を高めることが有効であり、送酸速度の増大、固体酸素源の添加、ランス高さの増大、底吹きガス流量の低減といった方法でフォーミングの促進が可能である。一方、精錬中にスラグのフォーミングが過剰になると、炉口からスラグが溢れ出して精錬の中断により処理時間の延長を招くなどの問題が生じる場合がある。したがって、フォーミング状態のスラグ層の表面レベルの実績を参照して、上記の操業因子を適正な範囲に制御することが望ましい。 In addition, in order to improve the slag dischargeability in the intermediate slagging process, the slag is formed in the converter-type refining furnace x. For this purpose, the iron oxide in the slag and the slag are entrained as droplets. It is necessary to increase the generation rate of CO gas generated by the reaction with carbon contained in the molten iron. For this reason, it is effective to increase the iron oxide concentration in the slag, and forming can be promoted by methods such as increasing the acid feed rate, adding a solid oxygen source, increasing the lance height, and reducing the bottom blowing gas flow rate. It is. On the other hand, if slag forming becomes excessive during refining, there may be a problem that the slag overflows from the furnace port and the refining is interrupted, resulting in an increase in processing time. Therefore, it is desirable to control the above operating factors within an appropriate range with reference to the results of the surface level of the slag layer in the forming state.
 中間排滓工程(B)又は中間排滓工程(b)では、転炉型精錬炉xを出湯口14が設けられた側とは反対側に傾動させ、炉内のスラグを炉口から流出させ、下方に待機した溶滓収容容器y(排滓鍋)に排出する。この中間排滓は、スラグをフォーミングさせた状態で行われるが、通常、スラグの一部は炉内に残留する。
 本発明では、この中間排滓工程において、さきに述べたような溶滓収容容器y内のスラグに対する水噴流の噴射が行われる。
In the intermediate waste process (B) or the intermediate waste process (b), the converter-type refining furnace x is tilted to the side opposite to the side where the outlet 14 is provided, and the slag in the furnace is caused to flow out of the furnace mouth. Then, the molten metal is discharged into a hot metal container y (a waste pan) waiting in the downward direction. This intermediate evacuation is performed with the slag formed, but usually a part of the slag remains in the furnace.
In the present invention, in this intermediate evacuation step, the water jet is jetted onto the slag in the hot metal container y as described above.
 本発明において、二次送酸精錬工程(C)として或いは二次送酸精錬工程(c)として行われる脱燐処理は、中間排滓工程後に転炉型精錬炉x内に残留させた溶銑にCaO系媒溶剤及び酸素源を供給して行われる。この脱燐処理で供給される酸素源は、脱珪処理と同様に、送酸ランス12からの気体酸素源を主体とするものであるが、酸化鉄などの固体酸素源を併用してもよい。
 固体酸素源や媒溶剤などの固体の供給方法としては、通常、粒状及び塊状のものは炉上のホッパーから装入し、粉状のものは送酸ランス12や底吹きノズル13を通じて供給する。
In the present invention, the dephosphorization treatment performed as the secondary acid refining process (C) or as the secondary acid refining process (c) is performed on the hot metal left in the converter refining furnace x after the intermediate waste process. It is performed by supplying a CaO-based medium solvent and an oxygen source. The oxygen source supplied by the dephosphorization treatment is mainly composed of a gaseous oxygen source from the acid delivery lance 12 as in the desiliconization treatment, but a solid oxygen source such as iron oxide may be used in combination. .
As a method for supplying solids such as a solid oxygen source and a medium solvent, granular and lump-shaped ones are usually charged from a hopper on the furnace, and powdery ones are fed through an acid feed lance 12 and a bottom blowing nozzle 13.
 溶銑中の燐は供給される酸素源中の酸素に酸化されて燐酸化物(P)となり、この燐酸化物が、CaO系媒溶剤の滓化によって生成され脱燐精錬剤として機能するスラグ中に、3CaO・Pなる安定形態の化合物として取り込まれ、溶銑の脱燐反応が進行する。脱燐処理後には、燐酸化物を含有する脱燐スラグが生成される。
 脱燐処理の完了後、転炉型精錬炉xを出湯口14が設置された側に傾転させ、転炉型精錬炉x内の溶銑を、出湯口14から出湯する(出湯工程)。この出湯工程後、炉内の脱燐スラグを排出せずに、転炉型精錬炉xに溶銑を装入し、次チャージの脱珪処理を開始してもよい。
Phosphorus in the hot metal is oxidized to oxygen in the supplied oxygen source to become phosphor oxide (P 2 O 5 ), and this phosphor oxide is produced by the incubation of the CaO-based solvent and functions as a dephosphorizing refining agent. It is taken in as a stable compound of 3CaO · P 2 O 5 and the hot metal dephosphorization reaction proceeds. After the dephosphorization treatment, dephosphorization slag containing a phosphorus oxide is generated.
After the dephosphorization process is completed, the converter type refining furnace x is tilted to the side where the tap hole 14 is installed, and the hot metal in the converter type refining furnace x is discharged from the tap port 14 (hot water process). After the hot water discharge process, the dephosphorization slag in the furnace may not be discharged, and hot metal may be charged into the converter-type refining furnace x to start the next charge desiliconization process.
 図7に示すような溶銑容量330tの転炉型精錬炉において、高炉から出銑した溶銑の脱珪処理(脱Si吹錬)と脱燐処理(脱P吹錬)を中間排滓工程を挟んで連続して行い、中間排滓工程において溶滓収容容器に収容された脱珪スラグに水噴流を噴射して脱珪スラグのフォーミングを鎮静する操業を、水噴流の噴射条件を変更して複数回実施した(比較例1~4及び発明例1~4)。中間排滓工程では、図5及び図6に示すような設備を用いて、排滓中に溶滓収容容器内のスラグ浴の表面が所定のレベルに達してから、溶滓収容容器に収容された脱珪スラグ(フォーミング状態のスラグ浴)に対して、水噴流の噴射を開始した。中間排滓中は水噴流の噴射を継続し、溶滓収容容器内のスラグ浴の表面レベルが上昇してスラグのオーバーフローが懸念される場合は、転炉型精錬炉の傾動角度を調節してスラグの排出速度を小さくするか、排滓を中断するかして、水噴流の噴射を継続した。排滓終了後に溶滓収容容器内のスラグ浴の表面が嵩比重0.7kg/Lに対応した所定のレベルよりも高い場合には、スラグ浴の表面が所定のレベル以下となるように、水噴流の噴射時間が10分程度以内の範囲で、水噴流の噴射を継続した。 In a converter-type refining furnace having a hot metal capacity of 330 t as shown in FIG. 7, the desiliconization treatment (desiliconization blowing) and dephosphorization treatment (dephosphorization P blowing) of hot metal discharged from the blast furnace are sandwiched between the intermediate waste removal processes. In the intermediate evacuation process, a water jet is injected into the desiliconized slag contained in the hot metal container to calm down the formation of the desiliconized slag. (Comparative Examples 1 to 4 and Invention Examples 1 to 4). In the intermediate waste removal process, the equipment as shown in FIGS. 5 and 6 is used, and after the surface of the slag bath in the hot metal storage container reaches a predetermined level during waste discharge, it is stored in the hot metal storage container. Water jet injection was started against desiliconized slag (forming slag bath). During the intermediate slag, water jet injection is continued, and if the slag bath surface level in the hot metal container rises and slag overflow is a concern, adjust the tilt angle of the converter smelting furnace. Water jet was continued by reducing the slag discharge speed or interrupting the slag. When the surface of the slag bath in the hot metal storage container is higher than a predetermined level corresponding to a bulk specific gravity of 0.7 kg / L after the end of the slag, water is used so that the surface of the slag bath is below a predetermined level. The jet of water jet was continued within a jet time of about 10 minutes or less.
 転炉型精錬炉内には事前に冷鉄源(鉄スクラップ)を装入し、そこに装入鍋から高炉溶銑を装入した後、脱珪処理を行った。この脱珪処理では、送酸ランスから酸素ガスを供給するとともに、底吹きノズルから撹拌ガスを溶銑中に吹き込んだ。また、必要に応じて、固体酸素源(酸化鉄)、媒溶剤(CaO系媒溶剤など)、珪素源(フェロシリコン)を装入した。この脱珪処理では、中間排滓工程でのスラグの排滓性を高めるために、スラグの塩基度を0.8~1.3の範囲に調整するとともに、送酸速度とランス高さを調整することで脱珪処理後のスラグ中の酸化鉄含有量が10~30質量%となるような操業条件として、スラグをフォーミングさせた。 In the converter-type refining furnace, a cold iron source (iron scrap) was charged in advance, and blast furnace hot metal was charged from the charging pot into the furnace, followed by desiliconization treatment. In this desiliconization treatment, oxygen gas was supplied from the acid feed lance and stirring gas was blown into the hot metal from the bottom blowing nozzle. Moreover, a solid oxygen source (iron oxide), a medium solvent (CaO-based medium solvent, etc.), and a silicon source (ferrosilicon) were charged as necessary. In this desiliconization treatment, the basicity of the slag is adjusted in the range of 0.8 to 1.3, and the acid feed rate and lance height are adjusted in order to improve the slag evacuation performance in the intermediate evacuation process. As a result, the slag was formed under operating conditions such that the iron oxide content in the slag after desiliconization was 10 to 30% by mass.
 中間排滓工程では、転炉型精錬炉を出湯口が設けられた側とは反対側に傾動させ、炉内のスラグを炉口から流出させ、下方に待機した溶滓収容容器に排出した。この際、表1に示す条件で、溶滓収容容器内のスラグ(フォーミング状態のスラグ浴)に対して水噴流を噴射した。この水噴流の噴射は、1本の水供給管の先端部に設けた1つまたは2つの噴射ノズルを用いて、溶滓収容容器内のスラグ浴面の中央部に向けて噴射するように噴射方向を調節して行った。2つの噴射ノズルを用いた場合には、水噴流の中心位置はスラグ浴の表面レベルでは0.7m程度離れていたが、スラグ浴表面のホットスポットは合体するようにして一箇所となっていた。溶滓収容容器内のスラグのフォーミングが鎮静した後、溶滓収容容器をスラグヤードに搬送し、脱珪スラグを溶滓収容容器からスラグヤードに排出して放冷し、凝固させた。この凝固した脱珪スラグを重機で粗破砕してさらに冷却した後、粉砕・分級して、目開き26.5mmの篩を全て通過する上層路盤材用のスラグ製品とした。 In the intermediate slagging process, the converter-type smelting furnace was tilted to the side opposite to the side provided with the tapping port, the slag in the furnace was allowed to flow out of the furnace port, and discharged to the hot metal storage container waiting below. Under the present circumstances, the water jet was injected with respect to the slag (forming slag bath) in a hot metal storage container on the conditions shown in Table 1. This water jet is jetted so as to be jetted toward the center of the slag bath surface in the hot metal container using one or two jet nozzles provided at the tip of one water supply pipe. The direction was adjusted. In the case of using two injection nozzles, the center position of the water jet was about 0.7 m away at the surface level of the slag bath, but the hot spot on the surface of the slag bath became one place so as to merge. . After the forming of the slag in the hot metal container was subdued, the hot metal container was transported to the slag yard, and the desiliconized slag was discharged from the hot metal container to the slag yard and allowed to cool and solidify. The solidified desiliconized slag was roughly crushed with a heavy machine, further cooled, and then pulverized and classified to obtain a slag product for an upper roadbed material that passed through all sieves having an aperture of 26.5 mm.
 各回の操業(発明例1~4及び比較例1~4)では、それぞれ50チャージ程度の溶銑の予備処理を実施した。中間排滓工程での中間排滓時間と、得られたスラグ製品の単位容積質量の平均値を、中間排滓工程での水噴流の噴射条件とともに表1に示す。 In each operation (Invention Examples 1 to 4 and Comparative Examples 1 to 4), a hot metal pretreatment of about 50 charges was performed. Table 1 shows the intermediate evacuation time in the intermediate evacuation process and the average value of the unit volume mass of the obtained slag product together with the injection conditions of the water jet in the intermediate evacuation process.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 何れの操業においても、脱珪処理前の溶銑のSi濃度は0.25~0.45質量%の範囲で安定しており、中間排滓でのスラグの平均排出量は10t/チャージ程度であった。表1によれば、本発明例では、中間排滓が短時間で終了し、しかも、中間排滓された脱珪スラグから単位体積質量が大きい高品質のスラグ製品が得られている。 In any operation, the Si concentration in the hot metal before desiliconization was stable in the range of 0.25 to 0.45 mass%, and the average discharge of slag at the intermediate waste was about 10 t / charge. It was. According to Table 1, in the example of the present invention, intermediate waste was completed in a short time, and a high-quality slag product having a large unit volume mass was obtained from the desiliconized slag that was intermediately discharged.
 x  転炉型精錬炉
 y  溶滓収容容器
 1  溶銑
 2  スラグ(脱珪スラグ)
 3  冷鉄源
 4  装入鍋
 5  スラグ流
 6  フォーミング状態のスラグ浴
 7  水噴射ノズル
 8  水噴流
 9  スラグ(脱燐スラグ)
 10 遮熱壁
 11 水供給管
 12 送酸ランス
 13 底吹きノズル
 14 出湯口
 
x Converter type refining furnace y Hot metal container 1 Hot metal 2 Slag (desiliconized slag)
3 Cold Iron Source 4 Charging Pan 5 Slag Flow 6 Forming Slag Bath 7 Water Injection Nozzle 8 Water Jet 9 Slag (Dephosphorization Slag)
DESCRIPTION OF SYMBOLS 10 Heat insulation wall 11 Water supply pipe 12 Acid feed lance 13 Bottom blowing nozzle 14 Hot water outlet

Claims (4)

  1.  1つの転炉型精錬炉(x)を用い、高炉から出銑された溶銑を酸化精錬して予備処理を行う一次送酸精錬工程(A)と、該一次送酸精錬工程(A)を経た前記溶銑を前記転炉型精錬炉(x)内に残留させたまま前記一次送酸精錬工程(A)で生成した溶融スラグを前記転炉型精錬炉(x)から溶滓収容容器(y)に排滓する中間排滓工程(B)と、前記転炉型精錬炉(x)内に残留させた前記溶銑を脱燐処理及び/又は脱炭処理する二次送酸精錬工程(C)と、をこの順に行う溶銑の精錬のうち、前記中間排滓工程(B)において、前記溶滓収容容器(y)での溶融スラグのフォーミングを鎮静する方法であって、
     前記中間排滓工程(B)における排滓中及び/又は排滓後に、前記溶滓収容容器(y)に収容された溶融スラグに、水噴流を、単位時間当たりの水噴流の運動量が50kg・m/s以上となるように噴射することにより前記溶融スラグのフォーミングを鎮静することを特徴とする溶融スラグのフォーミング鎮静方法。
    A primary acid refining step (A) in which a single converter-type refining furnace (x) is used for pretreatment by oxidizing and refining the hot metal discharged from the blast furnace, and the primary acid refining step (A) The molten slag generated in the primary acid refining step (A) with the hot metal remaining in the converter type refining furnace (x) is transferred from the converter type refining furnace (x) to the hot metal storage container (y). An intermediate slagging step (B) for evacuating to the furnace, and a secondary acid feeding smelting step (C) for dephosphorizing and / or decarburizing the hot metal remaining in the converter type smelting furnace (x) Among the refining of hot metal that is performed in this order, in the intermediate waste process (B), the method of calming the forming of molten slag in the hot metal container (y),
    During and / or after evacuation in the intermediate evacuation step (B), a water jet is applied to the molten slag contained in the hot metal container (y), and the momentum of the water jet per unit time is 50 kg. A molten slag forming sedation method, wherein the molten slag forming is sedated by spraying so as to be m / s 2 or more.
  2.  1つの転炉型精錬炉(x)を用い、高炉から出銑された溶銑を脱珪処理する一次送酸精錬工程(a)と、該一次送酸精錬工程(a)を経た前記溶銑を前記転炉型精錬炉(x)内に残留させたまま前記一次送酸精錬工程(a)で生成した脱珪スラグを前記転炉型精錬炉(x)から溶滓収容容器(y)に排滓する中間排滓工程(b)と、前記転炉型精錬炉(x)内に残留させた前記溶銑を脱燐処理する二次送酸精錬工程(c)と、該二次送酸精錬工程(c)を経た前記溶銑を前記転炉型精錬炉(x)から出湯する出湯工程(d)と、をこの順に行うこととし、前記中間排滓工程(b)で排滓した脱珪スラグを原料とするスラグ製品の製造方法であって、
     前記中間排滓工程(b)における排滓中及び/又は排滓後に、前記溶滓収容容器(y)に収容された脱珪スラグに、水噴流を、単位時間当たりの水噴流の運動量が50kg・m/s以上となるように噴射することによりスラグのフォーミングを鎮静した後、溶滓収容容器(y)から脱珪スラグを排出し、
     該脱珪スラグを凝固させて、前記スラグ製品に加工することを特徴とするスラグ製品の製造方法。
    A primary acid refining step (a) for desiliconizing hot metal discharged from a blast furnace using one converter-type refining furnace (x), and the hot metal that has undergone the primary acid refining step (a) The desiliconized slag generated in the primary acid refining step (a) while remaining in the converter type refining furnace (x) is discharged from the converter type refining furnace (x) to the hot metal container (y). Intermediate refining process (b), a secondary acid refining process (c) for dephosphorizing the hot metal remaining in the converter type refining furnace (x), and a secondary acid refining process ( c), the hot metal step (d) for discharging the hot metal from the converter type refining furnace (x) is performed in this order, and the desiliconized slag discharged in the intermediate waste step (b) is used as a raw material. A method for producing a slag product,
    During and / or after evacuation in the intermediate evacuation step (b), a water jet is applied to the desiliconized slag contained in the hot metal container (y), and the momentum of the water jet per unit time is 50 kg. -After calming down slag forming by spraying to m / s 2 or more, desiliconized slag is discharged from the hot metal container (y),
    A method for producing a slag product, wherein the desiliconized slag is solidified and processed into the slag product.
  3.  前記出湯工程(d)後、前記転炉型精錬炉(x)内のスラグを排出することなく、次チャージの溶銑を装入して、一次送酸精錬工程(a)、中間排滓工程(b)、二次送酸精錬工程(c)及び出湯工程(d)をこの順に行うことを特徴とする請求項2に記載のスラグ製品の製造方法。 After the tapping step (d), without discharging the slag in the converter type refining furnace (x), the hot metal of the next charge is charged, and the primary acid feeding refining step (a), intermediate waste step ( The method for producing a slag product according to claim 2, wherein b), secondary acid refining step (c) and tapping step (d) are performed in this order.
  4.  凝固させた脱珪スラグを粉砕、分級して、単位容積質量が1.5kg/L以上のスラグ製品とすることを特徴とする請求項2又は3に記載のスラグ製品の製造方法。
     
    The method for producing a slag product according to claim 2 or 3, wherein the solidified desiliconized slag is pulverized and classified to obtain a slag product having a unit volume mass of 1.5 kg / L or more.
PCT/JP2015/001874 2015-02-10 2015-03-31 Method for inhibiting foaming of molten slag, and method for manufacturing slag product WO2016129016A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112015009830-4A BR112015009830B1 (en) 2015-02-10 2015-03-31 method for suppressing molten slag foaming and method for making slag products
CN201580075672.1A CN107208169B (en) 2015-02-10 2015-03-31 The manufacturing method of the blistering sedation methods and clinker product of molten slag
KR1020177021562A KR101997377B1 (en) 2015-02-10 2015-03-31 Method of suppressing foaming of molten slag and method of manufacturing slag products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-023839 2015-02-10
JP2015023839A JP5888445B1 (en) 2015-02-10 2015-02-10 Method for calming molten slag and method for producing slag product

Publications (1)

Publication Number Publication Date
WO2016129016A1 true WO2016129016A1 (en) 2016-08-18

Family

ID=55530462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001874 WO2016129016A1 (en) 2015-02-10 2015-03-31 Method for inhibiting foaming of molten slag, and method for manufacturing slag product

Country Status (6)

Country Link
JP (1) JP5888445B1 (en)
KR (1) KR101997377B1 (en)
CN (1) CN107208169B (en)
BR (1) BR112015009830B1 (en)
TW (1) TWI585061B (en)
WO (1) WO2016129016A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150862A1 (en) * 2017-02-20 2018-08-23 新日鐵住金株式会社 Slag foaming suppression material, slag foaming suppression method, and converter furnace blowing method
CN110139938A (en) * 2017-02-08 2019-08-16 日本制铁株式会社 Inhibit the method for slag bloating

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564396B1 (en) * 2016-12-27 2022-10-12 JFE Steel Corporation Method for dephosphorization of molten iron, and refining agent
JP6420873B2 (en) * 2017-07-20 2018-11-07 株式会社マネースクエアHd Financial product transaction management device, program
JP6835233B2 (en) * 2017-08-25 2021-02-24 日本製鉄株式会社 Slag forming suppression method and converter refining method
JP6766796B2 (en) * 2017-11-20 2020-10-14 Jfeスチール株式会社 How to sedate slag
JP6915522B2 (en) * 2017-12-15 2021-08-04 日本製鉄株式会社 Slag forming suppression method and converter refining method
WO2019208303A1 (en) * 2018-04-24 2019-10-31 日本製鉄株式会社 Method for killing foaming of discharged slag, and refining facility using said method
JP7147550B2 (en) * 2018-12-27 2022-10-05 日本製鉄株式会社 Slag foaming suppression method and converter refining method
JP7393634B2 (en) 2019-12-13 2023-12-07 日本製鉄株式会社 Slag forming sedation method
JP7375802B2 (en) * 2020-12-04 2023-11-08 Jfeスチール株式会社 Method for suppressing slag forming, sedative injection nozzle and sedative injection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291321A (en) * 1990-04-09 1991-12-20 Kawasaki Steel Corp Refining method for molten metal
JPH05195040A (en) * 1992-01-13 1993-08-03 Daido Steel Co Ltd Treatment of steelmaking slag
JPH08325619A (en) * 1995-05-29 1996-12-10 Nippon Steel Corp Method for restraining foaming of steelmaking slag
JP2014159632A (en) * 2013-01-24 2014-09-04 Jfe Steel Corp Method for pre-treating molten iron

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254725A (en) * 1988-08-17 1990-02-23 Sumitomo Metal Ind Ltd Method for preventing foaming of molten slag
JP4907411B2 (en) 2007-04-06 2012-03-28 新日本製鐵株式会社 Slag sedation method
WO2014112432A1 (en) * 2013-01-18 2014-07-24 Jfeスチール株式会社 Converter steelmaking process
CN104955965B (en) 2013-01-24 2017-09-22 杰富意钢铁株式会社 The preprocess method of molten iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291321A (en) * 1990-04-09 1991-12-20 Kawasaki Steel Corp Refining method for molten metal
JPH05195040A (en) * 1992-01-13 1993-08-03 Daido Steel Co Ltd Treatment of steelmaking slag
JPH08325619A (en) * 1995-05-29 1996-12-10 Nippon Steel Corp Method for restraining foaming of steelmaking slag
JP2014159632A (en) * 2013-01-24 2014-09-04 Jfe Steel Corp Method for pre-treating molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139938A (en) * 2017-02-08 2019-08-16 日本制铁株式会社 Inhibit the method for slag bloating
WO2018150862A1 (en) * 2017-02-20 2018-08-23 新日鐵住金株式会社 Slag foaming suppression material, slag foaming suppression method, and converter furnace blowing method

Also Published As

Publication number Publication date
KR20170103850A (en) 2017-09-13
CN107208169B (en) 2019-06-21
JP2016148061A (en) 2016-08-18
CN107208169A (en) 2017-09-26
BR112015009830B1 (en) 2021-01-05
BR112015009830A2 (en) 2017-07-11
TWI585061B (en) 2017-06-01
JP5888445B1 (en) 2016-03-22
KR101997377B1 (en) 2019-07-05
TW201628992A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP5888445B1 (en) Method for calming molten slag and method for producing slag product
TWI473883B (en) Converter steelmaking method
JP4907411B2 (en) Slag sedation method
JP6945055B2 (en) Method of slag in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel
JP6477333B2 (en) Slag forming suppression method
KR101430377B1 (en) Method of same processing for desiliconizing and dephosphorizing hot metal
CN109790590B (en) Dephosphorization apparatus and dephosphorization method of molten iron using the same
KR102315999B1 (en) A method for refining a high manganese steel and amanufacturing of a high manganese steel
JP5272378B2 (en) Hot metal dephosphorization method
JP6806288B2 (en) Steel manufacturing method
JP6468084B2 (en) Converter discharge method
WO2019039326A1 (en) Slag foaming suppression method and converter refining method
JP2019090078A (en) Immersion lance for blowing and refining method of molten iron
JP7375802B2 (en) Method for suppressing slag forming, sedative injection nozzle and sedative injection device
JP7464843B2 (en) Method for foaming and settling slag and method for refining with converter
JP6760237B2 (en) Desiliconization method of hot metal
JP4025713B2 (en) Dephosphorization method of hot metal
JP2011058046A (en) Method for dephosphorizing molten iron
WO2018146754A1 (en) Method for controlling slag foaming
TWI638895B (en) Method for suppressing slag foaming
JP6289204B2 (en) Desiliconization and desulfurization methods in hot metal ladle
KR20040021204A (en) Method for control slag forming and molten iron temperature down in dephosphorization operation
JP2015040325A (en) Preliminary treatment method of molten iron
JP4403055B2 (en) Steelmaking slag treatment method
JP2010189668A (en) Method for operating converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881892

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015009830

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015009830

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150430

ENP Entry into the national phase

Ref document number: 20177021562

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017/11332

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881892

Country of ref document: EP

Kind code of ref document: A1