JP4403055B2 - Steelmaking slag treatment method - Google Patents

Steelmaking slag treatment method Download PDF

Info

Publication number
JP4403055B2
JP4403055B2 JP2004336044A JP2004336044A JP4403055B2 JP 4403055 B2 JP4403055 B2 JP 4403055B2 JP 2004336044 A JP2004336044 A JP 2004336044A JP 2004336044 A JP2004336044 A JP 2004336044A JP 4403055 B2 JP4403055 B2 JP 4403055B2
Authority
JP
Japan
Prior art keywords
slag
steelmaking slag
steelmaking
bubbles
height difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004336044A
Other languages
Japanese (ja)
Other versions
JP2006144079A (en
Inventor
潤二 中島
貴士 新井
俊哉 原田
充高 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004336044A priority Critical patent/JP4403055B2/en
Publication of JP2006144079A publication Critical patent/JP2006144079A/en
Application granted granted Critical
Publication of JP4403055B2 publication Critical patent/JP4403055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は,製鋼スラグの処理方法に関し,さらに詳細には,製鋼スラグ中に含有する気泡を低減して緻密な高品質の製鋼スラグを得るための製鋼スラグの処理方法に関する。   The present invention relates to a method for processing steelmaking slag, and more particularly, to a method for processing steelmaking slag to obtain a dense high-quality steelmaking slag by reducing bubbles contained in the steelmaking slag.

従来より,製鋼スラグの高品質化を図り商品価値を高めるために,製鋼スラグに対して各種改質処理を施すことが行われている。   Conventionally, various reforming treatments have been applied to steelmaking slag in order to improve the quality of the steelmaking slag and increase the commercial value.

例えば,特許文献1には,製鋼スラグに珪酸含有改質材,炭素含有還元剤および鉄スクラップを混合し,かかる混合物に対して酸素含有気体を供給しつつ還元性雰囲気に維持しながら溶融するスラグ熱間改質方法が開示されている。かかる方法により,製鋼スラグ中の遊離CaO(以下,f.CaOと称する),酸化リン及び有価金属酸化物が減少されるので,再資源化を図ることができる。   For example, Patent Document 1 discloses a slag that mixes a steel-containing slag with a silicic acid-containing modifier, a carbon-containing reducing agent, and iron scrap, and melts the mixture while supplying an oxygen-containing gas and maintaining a reducing atmosphere. A hot reforming method is disclosed. By this method, free CaO (hereinafter referred to as f. CaO), phosphorus oxide, and valuable metal oxides in the steelmaking slag are reduced, so that recycling can be achieved.

また,特許文献2には,製鋼スラグを精錬時の挿入副原料のCaO量を50kg/粗鋼ton以下,およびスラグ塩基度3.5以下を基準として分別して放冷固化した後,スラグ温度が400〜1,000℃の顕熱を維持した状態で,40〜100℃の温水槽に投入して,f・CaOの水和反応を促進させて安定化処理する製鋼スラグの安定化処理方法が開示されている。かかる方法により,製鋼スラグの膨張および粉化の軽減を図ることができる。   Further, Patent Document 2 discloses that the amount of CaO as an insertion auxiliary raw material when refining steelmaking slag is 50 kg / crude steel ton or less and slag basicity is 3.5 or less and is allowed to cool and solidify, and then the slag temperature is 400. Disclosed is a method for stabilizing steelmaking slag in which sensible heat at ˜1,000 ° C. is maintained and charged into a hot water bath at 40 ° C. to 100 ° C. to promote the hydration reaction of f · CaO and stabilize. Has been. By such a method, expansion and powdering of the steelmaking slag can be reduced.

また,溶融スラグが泡立った状態で凝固すると,スラグに気泡が含有してしまうため品質低下の原因となる。特許文献3には,排滓鍋中の溶融スラグにミスト状の水を噴霧して溶融スラグの泡立ちを抑制する製鋼スラグの処理方法が開示されている。   In addition, if the molten slag is solidified in a foamed state, bubbles will be contained in the slag, resulting in quality degradation. Patent Document 3 discloses a steelmaking slag treatment method that suppresses foaming of molten slag by spraying mist-like water onto the molten slag in the waste pan.

特開平6−115984号公報JP-A-6-115984 特開平6−183792号公報JP-A-6-183792 特開平5−195040号公報Japanese Patent Laid-Open No. 5-195040

しかしながら,上記特許文献1に記載の方法では,鉄スクラップを添加するため,混合物を1,550℃以上の温度に加熱して溶融しなければならず,多量の熱と時間が必要となる,という問題がある。また,製鋼スラグを還元雰囲気で処理することから,金属酸化物が還元されるためf・CaOが反応する金属酸化物が減少するため,改質スラグにはCaOが残存してしまう,という問題もある。   However, in the method described in Patent Document 1, since iron scrap is added, the mixture must be melted by heating to a temperature of 1,550 ° C. or higher, which requires a large amount of heat and time. There's a problem. Further, since the steelmaking slag is treated in a reducing atmosphere, the metal oxide is reduced, so that the metal oxide with which f · CaO reacts is reduced, so that CaO remains in the modified slag. is there.

また,上記特許文献2に記載の方法では,製鋼スラグを安定化するために長時間(例えば数日程度)を要するため,処理能力に劣る,という問題がある。さらに,特許文献2に記載の方法では,製鋼スラグを上層路盤材に使用可能なまでに改質することができず,改質しても吸水率が高く強度が不足する,という問題がある。   In addition, the method described in Patent Document 2 has a problem that the processing capacity is inferior because it takes a long time (for example, about several days) to stabilize the steelmaking slag. Furthermore, the method described in Patent Document 2 has a problem that the steelmaking slag cannot be reformed until it can be used for the upper roadbed material, and even if it is modified, the water absorption rate is high and the strength is insufficient.

また,上記特許文献3に記載のスラグの泡立ち抑制方法は,排滓鍋中の溶融スラグを廃棄スポットに安全に運搬するためのものであって,スラグの高品質化に関するものではない。このため,気泡が残存した溶融スラグに水が散布されて急冷却されるため,スラグに多数の気泡が含有してしまう,という問題がある。   Moreover, the method for suppressing foaming of slag described in Patent Document 3 is for safely transporting molten slag in a waste pan to a disposal spot, and does not relate to improving the quality of slag. For this reason, since water is sprinkled on the molten slag in which bubbles remain and is rapidly cooled, there is a problem that a large number of bubbles are contained in the slag.

このように,上記各先行文献には,製鋼スラグの各種改質方法については記載されているが,製鋼スラグ中の気泡を低減して高品質化することについては記載されていない。   As described above, each of the above prior art documents describes various methods for reforming steelmaking slag, but does not describe how to improve the quality by reducing bubbles in the steelmaking slag.

かかる製鋼スラグの気泡を脱泡する場合に,気泡を含有する製鋼スラグを単に排滓鍋から鉄容器に排滓しただけでは,水を散布して急冷したか否かに関わらず,気泡を含有した状態で凝固し,低品質なもの(高吸水率)となってしまう。このような製鋼スラグ中の気泡を,改質材,加熱手段等などの別途の手段を用いて脱泡するとすれば高コストになる。一方,改質材,加熱手段等などの別途の手段を用いることなく低減することができれば,低コストで高品質スラグを得ることができる。   When defoaming such steelmaking slag bubbles, simply evacuating the steelmaking slag containing bubbles from the slag pan to the iron container contains bubbles regardless of whether or not the water is sprayed and quenched. It solidifies in this state and becomes low quality (high water absorption). If bubbles in such steelmaking slag are defoamed using a separate means such as a reforming material or a heating means, the cost becomes high. On the other hand, if it can be reduced without using a separate means such as a reforming material or a heating means, a high quality slag can be obtained at low cost.

したがって,本発明の目的は,溶融した製鋼スラグ中の気泡を簡易かつ容易な方法で脱泡処理して高品質な製鋼スラグを得ることが可能な新規かつ改良された製鋼スラグの処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a new and improved steelmaking slag treatment method capable of defoaming bubbles in a molten steelmaking slag by a simple and easy method to obtain a high quality steelmaking slag. There is to do.

上記課題を解決するため,本発明の第1の観点においては,溶融した製鋼スラグとして溶銑予備処理スラグを用いて,2m以上の高低差を有する位置から落下を開始して凝固させる方法であって,落下の衝撃による脱泡後は前記スラグの液相線温度以下とすることを特徴とする製鋼スラグの処理方法が提供される。 In order to solve the above-mentioned problems, in a first aspect of the present invention, a hot metal pretreatment slag is used as a molten steelmaking slag , and the method starts to drop from a position having a height difference of 2 m or more and solidifies. A method for treating steelmaking slag is provided, wherein after defoaming due to a drop impact, the temperature is equal to or lower than the liquidus temperature of the slag.

上記記載の発明では,内部に気泡を含有した(例えば,見かけのかさ比重が1未満の)製鋼スラグ(即ち,フォーミングスラグ)を重力によるスラグの落下エネルギーを利用するだけで,スラグに衝撃を与えてスラグ中の気泡の破泡を促進することができる。この結果,凝固した製鋼スラグ中の気泡は著しく減少されて,製鋼スラグの吸水率が例えば4質量%(以下,質量%は単に%と記載する)以下で,かつ例えば真比重の2〜4g/cmの緻密なスラグ塊を得ることができる。このように,改質材,加熱手段等の別途の手段を用いることなく,製鋼スラグは簡易かつ容易な方法で脱泡処理されるので,例えば上層路盤材として適用可能な高品質のスラグを低コストで製造することができる。 In the invention described above, a steelmaking slag containing bubbles (for example, an apparent bulk specific gravity of less than 1) (ie, a forming slag) is impacted on the slag simply by utilizing the slag fall energy due to gravity. The bubble breakage of the slag can be promoted. As a result, the bubbles in the solidified steelmaking slag are remarkably reduced, and the water absorption rate of the steelmaking slag is, for example, 4% by mass (hereinafter referred to simply as “%”) and the true specific gravity is 2-4 g / A dense slag lump of cm 3 can be obtained. In this way, steelmaking slag can be defoamed in a simple and easy manner without using additional means such as a reforming material and heating means. For example, high-quality slag that can be applied as an upper roadbed material is reduced. Can be manufactured at cost.

なお,製鋼スラグは,常に,2m以上の落下高低差を維持して落下するのが好ましい。このことにより,既に凝固したスラグ塊上に残りの溶融スラグが落下するような場合(製鋼スラグの落下高低差が低くなる場合)であっても,気泡を脱泡するための落下エネルギーを最後まで十分に確保することができる。また,製鋼スラグの落下高低差は,3m以上であるのが好ましく,さらに,4m以上であるのがより好ましい。即ち,製鋼スラグの落下高低差が高くなるほど,凝固した製鋼スラグの吸水率が低下して(例えば3mでは吸水率が3%程度,4mでは2%程度),より高品質のスラグを得ることができる。但し,製鋼スラグの落下高低差が5m以上とするのは,クレーン等の設備的な問題から現実的ではなく,スラグが飛散して収率が低下したり,製鋼スラグの吸収率の更なる向上も見込まれないことから,あまり好ましくはない。   It is preferable that the steelmaking slag always falls while maintaining a drop height difference of 2 m or more. As a result, even when the remaining molten slag falls on the already solidified slag lump (when the drop height difference of the steelmaking slag becomes low), the drop energy for defoaming bubbles is reduced to the end. It can be secured sufficiently. Further, the drop height difference of the steelmaking slag is preferably 3 m or more, and more preferably 4 m or more. That is, as the drop height difference of the steelmaking slag increases, the water absorption rate of the solidified steelmaking slag decreases (for example, the water absorption rate is about 3% at 3 m and about 2% at 4 m), and a higher quality slag can be obtained. it can. However, the drop height difference of steelmaking slag is not more than 5m because of the problems of cranes and other equipment. The slag is scattered and the yield is reduced, and the steelmaking slag absorption rate is further improved. Is not preferable because it is not expected.

また,前記製鋼スラグの塩基度は,0.6≦CaO/SiO≦2.0,の範囲にある,如く構成すれば,脱泡し難い低塩基度のスラグを対象スラグとするので,スラグの脱泡効果が従来よりも著しく向上される。なお,製鋼スラグの塩基度の下限を0.6としているのは,通常の実操業上における下限値であることによる。なお,スラグの塩基度とは,スラグ中のCaOとSiOの質量比(CaO/SiO)のことである。 Further, if the basicity of the steelmaking slag is in the range of 0.6 ≦ CaO / SiO 2 ≦ 2.0, a low basicity slag that is difficult to degas is used as the target slag. The defoaming effect is significantly improved as compared with the prior art. The reason why the lower limit of the basicity of steelmaking slag is 0.6 is that it is the lower limit in normal actual operation. The basicity of slag is the mass ratio of CaO and SiO 2 in the slag (CaO / SiO 2 ).

また,前記製鋼スラグ中の粒鉄含有量は,15質量%以下である,如く構成すれば,製鋼スラグが落下して脱泡した後に,気泡を再発泡することを抑制することができる。即ち,鉄酸化物を含有する製鋼スラグ中に所定量以上の粒鉄(メタリック鉄)が含有していると,鉄酸化物中の酸素と粒鉄中の炭素とが反応してCO気泡が発生しやすくなる。このため,凝固後のスラグ品質を維持するため,製鋼スラグ中の粒鉄含有量は,15質量%以下であるのが好ましい。粒鉄含有量の下限値は,特に規定するものではないが,通常は2〜3%程度である。   Moreover, if it comprises so that the content of granular iron in the said steelmaking slag is 15 mass% or less, it can suppress that a steelmaking slag falls and defoaming a bubble after degassing. That is, if steelmaking slag containing iron oxide contains a certain amount or more of granular iron (metallic iron), oxygen in the iron oxide reacts with carbon in the granular iron to generate CO bubbles. It becomes easy to do. For this reason, in order to maintain the slag quality after solidification, the content of granular iron in the steelmaking slag is preferably 15% by mass or less. The lower limit of the granular iron content is not particularly specified, but is usually about 2 to 3%.

また,前記製鋼スラグの落下開始時の温度(例えば,1,200〜1,400℃)から800℃に到達するまでの平均冷却速度は,20℃/分以上である,如く構成すれば,製鋼スラグ中の気泡を好適に脱泡することができる。即ち,製鋼スラグの再発泡を防止するため,落下の衝撃による脱泡後は,製鋼スラグの温度がその液相線温度(例えば1,100℃〜1,200℃程度)以下の温度になることが好ましい。この点において,製鋼スラグの落下開始時の温度から800℃に到達するまでの平均冷却速度を20℃/分以上となる条件で製鋼スラグの処理をおこなうことにより,製鋼スラグの再発泡が防止されることが知見されている。   Moreover, if the average cooling rate until it reaches 800 degreeC from the temperature (for example, 1,200-1,400 degreeC) at the time of the fall start of the said steelmaking slag is 20 degree-C / min or more, steelmaking will be carried out. Air bubbles in the slag can be suitably removed. That is, in order to prevent re-foaming of steel slag, after defoaming due to the impact of dropping, the temperature of the steel slag should be lower than its liquidus temperature (for example, about 1,100 ° C to 1,200 ° C). Is preferred. In this respect, re-foaming of the steelmaking slag is prevented by processing the steelmaking slag under the condition that the average cooling rate from the temperature at which the steelmaking slag starts to fall to 800 ° C is 20 ° C / min or more. It has been found that

改質材,加熱手段等の別途の手段を用いることなく,製鋼スラグが簡易かつ容易な方法で脱泡処理されるので,例えば上層路盤材として適用可能な高品質のスラグを低コストで製造することができる。   Steelmaking slag is degassed in a simple and easy way without using additional means such as a modifier and heating means. For example, high-quality slag that can be used as an upper roadbed material is manufactured at low cost. be able to.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

まず,図1に基づいて,本実施形態にかかる製鋼スラグの処理方法について説明する。なお,図1は,本実施形態にかかる製鋼スラグの処理方法のフローを説明するための説明図である。   First, based on FIG. 1, the processing method of the steelmaking slag concerning this embodiment is demonstrated. In addition, FIG. 1 is explanatory drawing for demonstrating the flow of the processing method of the steelmaking slag concerning this embodiment.

まず,図1(a)に示すように,溶銑予備処理を行った後の溶融した製鋼スラグ(本実施形態では,溶銑予備処理スラグ)100を転炉200から排滓鍋300に排出する。即ち,本実施形態における製鋼スラグは,高炉溶銑を転炉に装入して溶銑予備処理を行った後脱炭吹錬を行う精錬工程において,溶銑予備処理を行った後の溶銑予備処理スラグであり,表1にその組成の一例を示す。 First, as shown in FIG. 1A, molten steelmaking slag (in this embodiment , hot metal pretreatment slag) 100 after hot metal pretreatment is discharged from a converter 200 to a ladle 300. That is, the steelmaking slag in the present embodiment is a hot metal pretreatment slag after hot metal pretreatment in a refining process in which blast furnace hot metal is charged into a converter and hot metal pretreatment is performed followed by decarburization blowing. Yes, Table 1 shows an example of the composition.

Figure 0004403055
但し,M−Fe(メタリック鉄)は,外数である。また,スラグ成分は,MnO,P,Sなど工程によって不可避的に含まれる成分は除外している。また,M−Feの値は,採取したスラグを粉砕し磁石に付着したものの質量(mass)%である。
Figure 0004403055
However, M-Fe (metallic iron) is an outside number. The slag component excludes components inevitably included in the process such as MnO, P, and S. Further, the value of M-Fe is the mass% of the slag collected and adhered to the magnet.

なお,表1に示すように,本実施形態にかかる製鋼スラグの塩基度は,0.6≦CaO/SiO≦2.0,の範囲にあるのが好ましい。製鋼スラグ100の塩基度が低いと(例えば,0.6≦CaO/SiO≦2.0の範囲),製鋼スラグ中の気泡が抜けにくいことから,後述する製鋼スラグの処理方法での脱泡効果が高められるので,特に有用である。なお,製鋼スラグの塩基度の下限を0.6としているのは,通常の実操業上における下限値であることによる。 As shown in Table 1, the basicity of the steelmaking slag according to this embodiment is preferably in the range of 0.6 ≦ CaO / SiO 2 ≦ 2.0. When the steelmaking slag 100 has a low basicity (for example, a range of 0.6 ≦ CaO / SiO 2 ≦ 2.0), bubbles in the steelmaking slag are difficult to escape. It is particularly useful because it increases the effect. The reason why the lower limit of the basicity of steelmaking slag is 0.6 is that it is the lower limit in normal actual operation.

また,表1に示すように,本実施形態にかかる製鋼スラグ中の粒鉄(M−Fe)含有量は,15質量%以下であるのが好ましい。製鋼スラグ中の粒鉄含有量が,15%以下であると,後述する製鋼スラグの処理方法において製鋼スラグが落下して脱泡された後に,気泡が再発泡することが抑制される。即ち,鉄酸化物を含有する製鋼スラグ中に所定量以上の粒鉄(メタリック鉄)が含有していると,鉄酸化物中の酸素と粒鉄中の炭素とが反応してCO気泡が発生しやすくなる。このため,凝固後のスラグ品質を維持するため,製鋼スラグ中の粒鉄含有量は,15質量%以下であるのが好ましい。   Moreover, as shown in Table 1, the content of granular iron (M-Fe) in the steelmaking slag according to the present embodiment is preferably 15% by mass or less. When the content of the granular iron in the steelmaking slag is 15% or less, after the steelmaking slag is dropped and defoamed in the steelmaking slag treatment method described later, bubbles are suppressed from being refoamed. That is, if steelmaking slag containing iron oxide contains a certain amount or more of granular iron (metallic iron), oxygen in the iron oxide reacts with carbon in the granular iron to generate CO bubbles. It becomes easy to do. For this reason, in order to maintain the slag quality after solidification, the content of granular iron in the steelmaking slag is preferably 15% by mass or less.

次いで,図1(b)に示すように,排出された製鋼スラグ100が収容された排滓鍋300を搬送車400に載置してスラグ処理場に搬送する。   Next, as shown in FIG. 1 (b), the slag pan 300 in which the discharged steelmaking slag 100 is accommodated is placed on a transport vehicle 400 and transported to a slag treatment plant.

最後に,本実施形態にかかる製鋼スラグの処理方法として,図1(c)に示すように,例えば1,305℃の製鋼スラグ100が収容された排滓鍋300を,少なくとも落下高低差Hが2m以上となる高さまでクレーンで吊り上げ,その高さを維持しながら排滓鍋300を傾転し,スラグ冷却容器500(例えば,鉄皮の内側にアルミナ系の不定形耐火物を10cmの厚みで施工したもの)に注入する。   Finally, as a steelmaking slag processing method according to the present embodiment, as shown in FIG. 1 (c), for example, a waste pan 300 in which a steelmaking slag 100 of 1,305 ° C. is accommodated has at least a drop height difference H. The crane is lifted up to a height of 2 m or more, and the slag pan 300 is tilted while maintaining the height, and a slag cooling container 500 (for example, an alumina-based amorphous refractory with a thickness of 10 cm is placed inside the iron skin. Pour into the construction).

従来においては,排滓鍋300から製鋼スラグ100をスラグ冷却容器500に移し替えることのみが目的であったため,製鋼スラグ100が収容された排滓鍋300は,製鋼スラグ100を注入可能な最低限の高さまで持ち上げられてスラグ冷却容器500に製鋼スラグ100を注入していた。このため,製鋼スラグ100内の気泡を取り除かれずに,凝固スラグ中には多数の気泡が存在してしまい,スラグの品質低下の要因となっていた。   Conventionally, the purpose was only to transfer the steelmaking slag 100 from the slag ladle 300 to the slag cooling vessel 500. Therefore, the slagpan 300 in which the steelmaking slag 100 is accommodated is the minimum at which the steelmaking slag 100 can be injected. The steelmaking slag 100 was poured into the slag cooling vessel 500. For this reason, the air bubbles in the steelmaking slag 100 are not removed, and a large number of air bubbles are present in the solidified slag, which causes a reduction in the quality of the slag.

本実施形態においては,従来と異なり,製鋼スラグ100をスラグ冷却容器500内に注入する際には,2m以上の高低差を有する位置から落下を開始して凝固させる方法であって,落下の衝撃による脱泡後は前記スラグの液相線温度以下とする方法を採用している。かかる方法によれば,内部に気泡を含有した(例えば,見かけのかさ比重が1未満の)製鋼スラグ(即ち,フォーミングスラグ)を重力によるスラグの落下エネルギーを利用するだけで,スラグに衝撃を与えてスラグ中の気泡の破泡を促進することができる。 In the present embodiment, unlike the prior art, when the steelmaking slag 100 is poured into the slag cooling vessel 500, it is a method of starting the drop from a position having a height difference of 2 m or more and solidifying it. After defoaming by, a method is adopted in which the liquidus temperature is lower than the slag . According to such a method, steel slag containing bubbles (for example, apparent bulk specific gravity of less than 1) is impacted on the slag simply by using the slag fall energy due to gravity. The bubble breakage of the slag can be promoted.

上記製鋼スラグの落下高低差と,凝固したスラグ塊の吸水率との関係を,図2に基づいて説明する。なお,図2は,本実施形態にかかる製鋼スラグの注入高さと凝固したスラグの吸水率との関係を示すグラフ図である。なお,図2に示すグラフ図は,上記表1に示す組成の製鋼スラグ(1,305℃の温度)100を収容した排滓鍋300をクレーンで吊った状態でその注入高さHを各種高さに変更してスラグ冷却容器500内に注入した後,スラグ冷却容器内で凝固した各スラグの吸水率を調査したものである。ここで,「注入高さ」とは,製鋼スラグの注入開始時の落下高低差である。なお,スラグ冷却容器に落下したスラグはこの容器内に留まって凝固するため,この容器底の高さが徐々に増加してくることになるが,この容器内で冷却されて凝固したスラグの高さは,通常,高くても30cm程度である。このため,後から落下したスラグの落下高低差は,注入開始時のスラグの落下高低差よりも若干少ないことになるが,この程度の範囲内であれば,本発明の効果を奏することができる。   The relationship between the drop height difference of the steel slag and the water absorption rate of the solidified slag lump will be described with reference to FIG. FIG. 2 is a graph showing the relationship between the steelmaking slag injection height and the water absorption rate of the solidified slag according to this embodiment. The graph shown in FIG. 2 shows that the pouring height H of the slagging ladle 300 containing the steelmaking slag (temperature of 1,305 ° C.) 100 having the composition shown in Table 1 above is suspended by a crane. The water absorption rate of each slag solidified in the slag cooling container after being poured into the slag cooling container 500 was investigated. Here, “injection height” is the drop height difference at the start of steelmaking slag injection. The slag that has fallen into the slag cooling container stays in the container and solidifies, so the height of the bottom of the container gradually increases. However, the height of the slag that has cooled and solidified in the container is increased. The height is usually about 30 cm at the highest. For this reason, the drop height difference of the slag that has fallen later is slightly smaller than the drop height difference of the slag at the start of pouring, but the effect of the present invention can be achieved as long as it is within this range. .

製鋼スラグの吸水率は,図2に示すように, 製鋼スラグの落下高低差が高くなればなるほど指数的に減少していることが理解される。これは,製鋼スラグの落下高低差が高くなるほど製鋼スラグの有する位置エネルギーが大きくなり,スラグ冷却容器に注入される際の製鋼スラグの落下速度及びその衝撃度が高くなることから製鋼スラグの脱泡効果が高められるものと思量される。   As shown in Fig. 2, it is understood that the water absorption rate of steelmaking slag decreases exponentially as the drop height difference of steelmaking slag increases. This is because the potential energy of the steelmaking slag increases as the drop height difference of the steelmaking slag increases, and the falling speed of the steelmaking slag and its impact level when injected into the slag cooling vessel increase. It is thought that the effect is enhanced.

なお,製鋼スラグの高級用途としては,一般的に,4%以下の吸水率であることが必要とされている。このように,凝固スラグの吸水率を4%以下とするためには,図2を参照すれば,製鋼スラグの落下高低差Hを2m以上とすれば良いことが認識される。このような低吸収率のスラグは,上層路盤材,コンクリート骨材等の高級な用途で利用可能となる。   In addition, as a high-grade application of steelmaking slag, it is generally required that the water absorption is 4% or less. Thus, in order to make the water absorption rate of the solidified slag 4% or less, referring to FIG. 2, it is recognized that the drop height difference H of the steelmaking slag should be 2 m or more. Such low-absorption slag can be used for high-grade applications such as upper roadbed materials and concrete aggregates.

なお,製鋼スラグの塩基度が,0.6≦CaO/SiO≦2.0の範囲において,図2に示す結果と同様に,製鋼スラグの落下高低差が高くなればなるほど指数的に減少する傾向を示し,製鋼スラグの落下高低差Hを2m以上とすれば,4%以下の吸水率となることが確認されている。 In addition, in the range of 0.6 ≦ CaO / SiO 2 ≦ 2.0, the basicity of the steelmaking slag decreases exponentially as the drop height difference of the steelmaking slag increases, similarly to the result shown in FIG. It has been confirmed that the water absorption rate is 4% or less if the drop height difference H of steelmaking slag is 2 m or more.

また,溶融した製鋼スラグは,例えば,凝固するスラグ塊の高さを考慮して予め余裕のある高さを設定したり,あるいはクレーンにより排滓鍋を徐々に吊り上げるなどして,常に,2m以上の高低差を維持するようにして落下するのが好ましい。このことにより,既に凝固したスラグ塊上に残りの製鋼スラグが落下するような場合(製鋼スラグの落下高低差が低くなる場合)であっても,気泡を脱泡するための落下エネルギーを最後まで十分に確保することができる。また,製鋼スラグの落下高低差は,3m以上であるのが好ましく,さらに,4m以上であるのがより好ましい。即ち,落下高低差が高くなるほど,製鋼スラグの吸水率が低下して(例えば3mでは吸水率が3%程度,4mでは2%程度),より高品質のスラグを得ることができる。但し,溶融スラグの落下高低差が5m以上とするのは,クレーンなどの設備的な問題から現実的ではなく,スラグが飛散して収率が低下したり,製鋼スラグの吸収率の更なる向上も見込まれないことから,あまり好ましくはない。   In addition, the molten steelmaking slag is always 2 m or more, for example, by setting a sufficient height in consideration of the height of the solidified slag lump or by gradually lifting the waste pan with a crane. It is preferable to drop so as to maintain the height difference. As a result, even when the remaining steelmaking slag falls on the already solidified slag lump (when the drop height difference of the steelmaking slag becomes low), the drop energy for defoaming bubbles is reduced to the end. It can be secured sufficiently. Further, the drop height difference of the steelmaking slag is preferably 3 m or more, and more preferably 4 m or more. That is, the higher the drop height difference, the lower the water absorption rate of the steelmaking slag (for example, the water absorption rate is about 3% at 3 m and about 2% at 4 m), and a higher quality slag can be obtained. However, it is not realistic to set the drop height difference of molten slag to 5 m or more because of problems with equipment such as cranes. The slag is scattered and the yield is reduced, and the steel slag absorption rate is further improved. Is not preferable because it is not expected.

また,製鋼スラグの冷却速度は,製鋼スラグの落下開始時の温度(例えば1,200℃〜1,400℃)から800℃に到達するまでの平均冷却速度として,20℃/分以上とするとなる条件で製鋼スラグの処理をおこなうことにより,製鋼スラグの再発泡が防止されることが知見されている。即ち,製鋼スラグの再発泡を防止するため,落下の衝撃による脱泡後は,製鋼スラグの温度がその液相線温度(例えば1,100℃〜1,200℃程度)以下の温度にならなければならない。このような条件を満たすことにより,製鋼スラグ中の気泡を好適に脱泡することができる。   Further, the cooling rate of the steelmaking slag is 20 ° C / min or more as the average cooling rate until the temperature reaches 800 ° C from the temperature at which the steelmaking slag starts to fall (eg, 1,200 ° C to 1,400 ° C). It is known that re-foaming of steelmaking slag can be prevented by processing steelmaking slag under conditions. That is, in order to prevent re-foaming of steelmaking slag, the temperature of steelmaking slag must be below its liquidus temperature (for example, about 1,100 ° C to 1,200 ° C) after defoaming due to a drop impact. I must. By satisfy | filling such conditions, the bubble in steelmaking slag can be defoamed suitably.

なお,上記製鋼スラグの液相線温度は,例えば,鉄と鋼 Vol.88(2002)NO2 p51〜58に記されているように,FactStage等の市販の計算ソフトを用いて,スラグ組成より溶融温度(液相線温度)を算出することが可能である。同様に,例えば,耐火物の支持台(図示せず)の上に白金箔(図示せず)を載せ,その上に2〜3gのスラグ(図示せず)を微粉砕し,プレスにて直径1cmの円柱状に成形した後,一定の昇温速度で昇温し,液滴高さが1/2になった時点の温度を測定して求めることもできる。   The liquidus temperature of the steelmaking slag is, for example, iron and steel Vol. 88 (2002) NO2 p51 to 58, it is possible to calculate the melting temperature (liquidus temperature) from the slag composition using commercially available calculation software such as FactStage. Similarly, for example, a platinum foil (not shown) is placed on a refractory support (not shown), and 2 to 3 g of slag (not shown) is finely pulverized, and the diameter is reduced by a press. After forming into a 1 cm cylindrical shape, the temperature is raised at a constant rate of temperature rise, and the temperature at the time when the droplet height becomes ½ can also be measured.

本実施形態においては,内部に気泡を含有した(例えば,見かけのかさ比重が1未満の)製鋼スラグ(即ち,フォーミングスラグ)を重力によるスラグの落下エネルギーを利用するだけで,スラグに衝撃を与えてスラグ中の気泡の破泡を促進することができる。この結果,凝固した製鋼スラグ中の気泡は著しく減少されて,真比重が2〜4g/cmの緻密なスラグ塊を得ることができる。このように,改質材,加熱手段等の別途の手段を用いることなく,製鋼スラグは簡易かつ容易な方法で脱泡処理されるので,例えば上層路盤材として適用可能な高品質のスラグを低コストで製造することができる。 In this embodiment, a steelmaking slag containing bubbles (for example, an apparent bulk specific gravity of less than 1) (ie, forming slag) is impacted on the slag simply by using the falling energy of the slag due to gravity. The bubble breakage of the slag can be promoted. As a result, bubbles in the solidified steelmaking slag are remarkably reduced, and a dense slag lump having a true specific gravity of 2 to 4 g / cm 3 can be obtained. In this way, steelmaking slag can be defoamed in a simple and easy manner without using additional means such as a reforming material and heating means. For example, high-quality slag that can be applied as an upper roadbed material is reduced. Can be manufactured at cost.

次に,上記実施形態に基づいて製鋼スラグを処理して,凝固した製鋼スラグの吸水率などについて評価したので,以下に具体的に説明する。   Next, steelmaking slag was processed based on the above embodiment, and the water absorption rate of the solidified steelmaking slag was evaluated, and will be specifically described below.

(実施方法)
まず,高炉溶銑を350トン転炉に装入,酸素吹錬を行って,溶銑予備処理を行った後,脱炭吹錬を行う精錬工程において,溶銑予備処理を行った後の溶銑予備処理スラグ(10トン)を,35m 容量の排滓鍋に排出した。
(Implementation method)
First, the blast furnace hot metal is charged into a 350-ton converter, oxygen blown, and hot metal pretreatment is performed. (10 tons), and discharged to a discharge slag pot 35m 3 volume.

次いで,排滓鍋をスラグ処理場に搬送した。   Next, the waste pan was transported to the slag treatment plant.

その後,排滓鍋をクレーンで3mの高さまで吊り上げて,その高さを維持した状態で排滓鍋を傾転して,溶銑予備処理スラグ(5トン分)を落下させてスラグ冷却容器(3m×3m×1m:鉄皮の内側にアルミナ系の不定形耐火物を10cmの厚みで施工したもの)内に注入した。さらに,注入したスラグをスラグ冷却容器内で10分間静置して,スラグが凝固した後,上面に水を散布して冷却した。   After that, the waste pan is lifted to a height of 3m with a crane, and the waste pan is tilted with the height maintained, and the hot metal pretreatment slag (5 tons) is dropped and the slag cooling container (3m X 3 m x 1 m: Alumina-based amorphous refractory with a thickness of 10 cm was poured inside the iron skin. Further, the injected slag was allowed to stand in a slag cooling container for 10 minutes, and after the slag solidified, water was sprayed on the upper surface and cooled.

このとき,本実施例における溶銑予備処理スラグは,表2に示す組成であり,そのスラグ温度は,1320℃とした。   At this time, the hot metal pretreatment slag in this example had the composition shown in Table 2, and the slag temperature was 1320 ° C.

Figure 0004403055
但し,M−Fe(メタリック鉄)は,外数である。また,スラグ成分は,MnO,P,Sなど工程によって不可避的に含まれる成分は除外している。また,M−Feの値は,採取したスラグを粉砕し磁石に付着したものの質量(mass)%である。
Figure 0004403055
However, M-Fe (metallic iron) is an outside number. The slag component excludes components inevitably included in the process such as MnO, P, and S. Further, the value of M-Fe is the mass% of the slag collected and adhered to the magnet.

(結果)
上記実施例により得られたスラグの吸水率を調査した。なお,吸水率の測定は,JIS A1109またはA1110に規定される試験方法を用いて行った。その結果,上記実施例により得られたスラグの吸水率は1.2%であり,上層路盤材などとして適用可能な低吸水率の品質を得ることができた。
(result)
The water absorption rate of the slag obtained by the above example was investigated. The water absorption rate was measured using a test method defined in JIS A1109 or A1110. As a result, the water absorption rate of the slag obtained by the above example was 1.2%, and a low water absorption quality applicable as an upper roadbed material or the like could be obtained.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. It is understood.

例えば,上記実施例においては,製鋼スラグを3mの高さから落下した構成を例に挙げて説明したが,かかる例には限定されない。製鋼スラグの落下高低差は,2m以上であれば,例えばスラグ組成,溶融スラグ温度,スラグの液相線温度,吸水率等の所望の品質などに応じて適宜設定することができる。   For example, in the said Example, although the structure which dropped the steelmaking slag from the height of 3 m was mentioned as an example, it demonstrated, It is not limited to this example. If the drop height difference of the steelmaking slag is 2 m or more, it can be appropriately set according to the desired quality such as the slag composition, the molten slag temperature, the liquidus temperature of the slag, the water absorption rate, and the like.

本発明は,製鋼スラグの処理方法に適用可能であり,特に,製鋼スラグ中の気泡を低減するための製鋼スラグの処理方法に適用可能である。   The present invention can be applied to a steelmaking slag treatment method, and in particular, can be applied to a steelmaking slag treatment method for reducing bubbles in the steelmaking slag.

第1の実施の形態にかかる製鋼スラグの処理方法の工程を説明するための説明図である。It is explanatory drawing for demonstrating the process of the processing method of the steelmaking slag concerning 1st Embodiment. 第1の実施の形態にかかる製鋼スラグの注入高さと凝固したスラグの吸水率との関係を示すグラフ図である。It is a graph which shows the relationship between the injection height of the steelmaking slag concerning 1st Embodiment, and the water absorption rate of the solidified slag.

符号の説明Explanation of symbols

100 製鋼スラグ
200 転炉
300 排滓鍋
400 搬送車
500 スラグ冷却容器
100 Steelmaking slag 200 Converter 300 Waste pan 400 Transport vehicle 500 Slag cooling vessel

Claims (4)

溶融している製鋼スラグとして溶銑予備処理スラグを用いて,2m以上の高低差を有する位置から落下を開始して凝固させる方法であって,落下の衝撃による脱泡後は前記スラグの液相線温度以下とすることを特徴とする製鋼スラグの処理方法。 This is a method of using a hot metal pretreatment slag as a molten steelmaking slag and starting to solidify by dropping from a position having a height difference of 2 m or more, and after degassing due to the impact of the drop, the liquidus of the slag The processing method of the steelmaking slag characterized by setting it as temperature or less . 前記製鋼スラグの塩基度は,0.6≦CaO/SiO≦2.0,の範囲にあることを特徴とする請求項1に記載の製鋼スラグの処理方法。 The basicity of the steel slag, the process method of the steel slag according to claim 1, wherein the 0.6 ≦ CaO / SiO 2 ≦ 2.0 , the range near Turkey. 前記製鋼スラグ中の粒鉄含有量は,15質量%以下であることを特徴とする請求項1または2に記載の製鋼スラグの処理方法。 Granulated metallic iron content of the steel slag, the process method of the steel slag according to claim 1 or 2, characterized in the Der Turkey 15 wt% or less. 前記製鋼スラグの落下開始時の温度から800℃に到達するまでの平均冷却速度は,20℃/分以上であることを特徴とする請求項1〜3のいずれか1項に記載の製鋼スラグの処理方法。 The average cooling rate from the temperature at the start falling steel slag until reaching 800 ° C., the steel according to any one of claims 1 to 3, wherein the der 20 ° C. / min or more Turkey Slag processing method.
JP2004336044A 2004-11-19 2004-11-19 Steelmaking slag treatment method Active JP4403055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336044A JP4403055B2 (en) 2004-11-19 2004-11-19 Steelmaking slag treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336044A JP4403055B2 (en) 2004-11-19 2004-11-19 Steelmaking slag treatment method

Publications (2)

Publication Number Publication Date
JP2006144079A JP2006144079A (en) 2006-06-08
JP4403055B2 true JP4403055B2 (en) 2010-01-20

Family

ID=36624122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336044A Active JP4403055B2 (en) 2004-11-19 2004-11-19 Steelmaking slag treatment method

Country Status (1)

Country Link
JP (1) JP4403055B2 (en)

Also Published As

Publication number Publication date
JP2006144079A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
KR102290861B1 (en) Desulfurization treatment method and desulfurization agent of molten steel
BR112014017695B1 (en) PROCESS FOR PRELIMINARY CAST IRON TREATMENT
CN113102712B (en) Steel ladle casting residue recycling method suitable for ultra-low carbon steel
JP6945055B2 (en) Method of slag in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel
JP4571818B2 (en) Method for reforming steelmaking slag
JP2006274349A (en) Method for refining steel
JP6816777B2 (en) Slag forming suppression method and converter refining method
JP4403055B2 (en) Steelmaking slag treatment method
JP2011184753A (en) Method for desiliconizing molten iron
JP5272378B2 (en) Hot metal dephosphorization method
JP6835233B2 (en) Slag forming suppression method and converter refining method
KR102251032B1 (en) Deoxidizer and processing method for molten steel
JP4511909B2 (en) Steelmaking slag treatment method
JP6658049B2 (en) Hot metal desiliconization method
JP3750588B2 (en) Hot metal desiliconization method
JP4214894B2 (en) Hot metal pretreatment method
JP4254412B2 (en) Hot metal desulfurization method
JP5994549B2 (en) Hot metal dephosphorization refining agent used in converters.
JPS6123243B2 (en)
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JP5574468B2 (en) Cast iron refining method and refining apparatus
JP4772454B2 (en) Hot metal refining method
JP5266700B2 (en) Hot metal dephosphorization method
JP5477704B2 (en) Hot metal dephosphorization method
JP2005200762A (en) Method for desulfurizing molten pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

R151 Written notification of patent or utility model registration

Ref document number: 4403055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350