WO2016127809A1 - 一种基于微处理器的红外信号解码方法 - Google Patents
一种基于微处理器的红外信号解码方法 Download PDFInfo
- Publication number
- WO2016127809A1 WO2016127809A1 PCT/CN2016/072325 CN2016072325W WO2016127809A1 WO 2016127809 A1 WO2016127809 A1 WO 2016127809A1 CN 2016072325 W CN2016072325 W CN 2016072325W WO 2016127809 A1 WO2016127809 A1 WO 2016127809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- infrared signal
- infrared
- calculation
- interval
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000001186 cumulative effect Effects 0.000 claims abstract description 47
- 238000012544 monitoring process Methods 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims abstract description 22
- 230000006870 function Effects 0.000 claims abstract description 8
- 238000004364 calculation method Methods 0.000 claims description 71
- 238000009825 accumulation Methods 0.000 claims description 34
- 230000000630 rising effect Effects 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C23/00—Non-electrical signal transmission systems, e.g. optical systems
- G08C23/04—Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
Definitions
- the invention relates to the field of infrared signal decoding technology, in particular to a microprocessor-based infrared signal decoding method.
- the infrared remote control transmits data by emitting infrared rays.
- Infrared is an invisible light.
- the prism can be used to decompose sunlight into seven kinds of visible light. If the visible light is arranged from the left and the left is red, then the left side of the red visible light is infrared light.
- the infrared remote control generates an infrared signal (a "remote control code” consisting of "1" and "0") through the internal circuit, and then modulates the infrared signal to a high frequency wave of 38 kHz, using an infrared light emitting diode (IRLED). ) emit infrared light.
- IRLED infrared light emitting diode
- PWM Pulse Width Modulation
- PPM Pulse Position Modulation
- PWM Pulse Width Modulation
- PPM Pulse Position Modulation
- NEC standard The frequency of the remote carrier is 38KHz (duty cycle is 1:3).
- the system first transmits a complete full code. If the button is pressed for more than 108ms and has not been released, the next transmitted code (continuous code) will only be started by the code (9ms) and The end code (2.5ms) is composed.
- a complete full code boot code + client code + client code + data code + data inverse code, where the boot code includes 4.5ms high level and 4.5ms low level; customer code 8 bits, customer code (or customer code) ) 8 bits, 8 data bits, a total of 32 bits.
- the customer code (or customer code and customer reverse code) has a total of 16 bits, which are used to distinguish different infrared remote control devices to prevent the infrared remote control codes of different models from interfering with each other.
- the 8-bit data code and the 8-bit data inverse code after the client code are used to check whether the data reception is accurate.
- the receiving end makes a judgment as to what action should be performed based on the data code.
- the burst code is a code that is sent when the button is pressed, and is used to inform the receiver that a button is continuously pressed.
- the transmission code "1” is emitted by emitting infrared light of 38khz for 0.56ms and stopping transmission of 1.69ms. Said.
- PWM Pulse Width Modulation
- the full code of the PWM encoder is reversed by "boot code + client code + client code (or client code inversion) + data code + data code) "Composition, the definitions of data "0" and “1" are the same, but the duration of the high and low levels of the pilot code in the full code is different, the number of bits of the client code is long and short, and the first short code in the full code is The delay between the last one of the short codes is different, and the leading pulses of the short codes are different.
- TOSHIBA's TC9012 has a pilot code of 4.5ms for carrier transmission and 4.5ms for no transmission. Its "0” is 0.52ms for carrier transmission and 0.52ms for transmission. Its "1" is 0.52ms for carrier transmission and 1.04ms for transmission.
- the above customer code may also be referred to as a user code, or a system code.
- customer reverse code ie, the customer code is reversed
- user reverse code ie, the user code is negated
- system is reversed (that is, the system code is inverted).
- the above data code may also be referred to as an instruction code or an operation code.
- the above-mentioned data inversion (ie, the inverse of the data code) may also be referred to as an instruction inversion (ie, the instruction code is inverted) or an operation inversion (ie, the operation code is inverted).
- PHILIPS RC-5 standard The carrier frequency is 38KHz, there is no shortcode; when the button is pressed, the control code switches between “1” and “0”; if the button is pressed continuously, the control code does not change.
- a full code start code + control code + system code + data code (ie instruction code), as shown in Figure 2.
- the data “0” is represented by “0.9 low level + 0.9 high level”; the data “1” is represented by “0.9 high level + 0.9 low level”, as shown in FIG. 3 .
- the continuous code repetition delay is 114ms.
- the receiving end is usually an infrared receiver, the infrared receiver integrates an infrared receiving diode, a frequency selective circuit at 38KHz, and a demodulation circuit, and receives and outputs the infrared signal through receiving, amplifying and demodulating the infrared signal.
- the infrared receiver integrates an infrared receiving diode, a frequency selective circuit at 38KHz, and a demodulation circuit, and receives and outputs the infrared signal through receiving, amplifying and demodulating the infrared signal.
- infrared coding and decoding have standard and regular rules, it is very difficult for infrared receiver to realize infrared decoding for different types of infrared remote controllers without infrared learning matching.
- Each air conditioner manufacturer uses a central processing unit (CPU) as its remote control chip according to its own requirements.
- CPU central processing unit
- the full code sent may not include the boot code (and the code of the TV audio class has a boot code), the check mode is the summation (and the verification mode of the TV audio type is generally the inverse code).
- the state of the air conditioner is high, and multiple states need to be sent once, for example, cooling, temperature, wind speed, automatic, timing, humidification, heating, etc.
- the full code of the air conditioner code is very long, and the same button is in different states.
- the full code sent under is not the same, so it is very difficult to find a way to decode the remote control code (ie full code) of all infrared remote controls.
- the embodiment of the present invention provides a microprocessor-based infrared signal decoding method for a single infrared receiver that cannot decode an infrared signal emitted by an infrared remote controller of a different type.
- an embodiment of the present invention provides a microprocessor-based infrared signal decoding method comprising: timing a received 38KHZ infrared signal, and monitoring whether the accumulated time of the received 38KHZ infrared signal reaches a certain duration.
- Monitor whether the accumulated time of the 38KHZ infrared signal received each time reaches a certain length including:
- the interval monitoring method or the continuous monitoring method is used to monitor whether the accumulated time of each received 38KHz infrared signal reaches a certain length of time.
- the interval monitoring method includes the following steps:
- the infrared remote controller sends an infrared signal
- the infrared receiving module amplifies, detects, shapes, and outputs the received infrared signal to the microprocessor;
- the microprocessor performs the following processing on the signal
- the microprocessor determines, according to the calculation result of the time interval, whether the infrared signal received by the microprocessor ends: if yes, clears the accumulated time; if not, the delay interval time;
- Determining whether the cumulative time calculation value reaches the effective time cumulative value if yes, determining that the received infrared signal is a valid command; if not, recalculating the time interval;
- the time interval is calculated
- the continuous monitoring method includes the following steps:
- the infrared remote controller sends an infrared signal
- the infrared receiving module amplifies, detects, shapes, and outputs the received infrared signal to the microprocessor;
- the microprocessor performs the following processing on the signal
- the microprocessor determines whether the infrared signal received by the microprocessor ends the time interval calculation result; if yes, clears the accumulated time; if not, performs the sixth step, that is, performs the time cumulative calculation;
- time cumulative calculation value reaches the effective time cumulative value: if yes, it is determined that the received infrared signal is a valid command; if not, the eighth step is performed, that is, the time interval calculation is performed again;
- time accumulation calculation After the time accumulation calculation is performed, it is judged whether the time cumulative calculation value reaches the time accumulation limit value: if yes, the accumulated time is cleared; if not, the time interval calculation is performed again.
- the infrared signal sent by the infrared remote controller includes an infrared signal sent by any infrared remote controller after any of its own keys are pressed.
- the accumulated time may be that the pulse of the infrared signal received by the infrared receiver is 38KHZ, the debounce time is removed, and the time interval of the signal interruption is less than the set duration, and the set duration may be 0.01 to 0.1 s. Any value.
- the debounce time can be: 10 ms.
- the time interval is calculated by calculating a time interval between two consecutive high levels; or calculating a time interval between two consecutive rising edges; or calculating a time interval between two consecutive falling edges; or calculating The time interval between one rising edge and one falling edge; or calculating one consecutive The time interval between the falling edge and a rising edge.
- the effective time accumulated value may range from 2 to 5 s; preferably, the effective time accumulated value may be 3 s.
- the time accumulation limit value may be a preset minute-level arbitrary value; preferably, it may be 10 minutes.
- the time cumulative calculation described in the interval monitoring method may be the sum of the accumulated time and the interval time after the delay; the interval time after the delay may be a preset millisecond level arbitrary value, preferably 10 ms;
- the time cumulative calculation described in the continuous monitoring method can be the sum of the accumulated time and the time interval.
- the infrared signal decoding method provided by the embodiment of the present invention does not need to undergo infrared signal matching learning, that is, the function that the prior art must be realized through infrared signal matching learning can be realized.
- the method provided by the embodiment of the invention is simple in operation, the circuit used is simple, and the cost is very low, and the cost thereof is almost negligible for a complete set of products;
- the method provided by the embodiment of the invention is more convenient to operate and the cost is lower;
- the infrared signal decoding method provided by the embodiment of the invention is used together with the intelligent electric appliance, and can also realize the intelligent control power-off when the electric appliance is in standby or shutdown, and can restore the power supply by remote control, which saves energy and is convenient to operate.
- 1 is a schematic diagram of an infrared transmission code under the NEC standard
- FIG. 2 is a schematic diagram of an infrared transmission code under the PHILIPS standard
- FIG. 3 is a schematic diagram showing the representations of data “0” and “1” under the PHILIPS standard
- FIG. 4 is a schematic diagram of infrared receiving and decoding according to an embodiment of the present invention.
- FIG. 5 is a flowchart of a continuous monitoring method according to an embodiment of the present invention.
- FIG. 6 is a flowchart of an interval monitoring method according to an embodiment of the present invention.
- FIG. 7 is a continuous detection method according to an embodiment of the present invention (time monitoring between two consecutive high levels) Schematic diagram of the cumulative calculation of time;
- FIG. 8 is a schematic diagram of time accumulation calculation of an interval detection method (time monitoring method between two consecutive high levels) according to an embodiment of the present invention.
- FIG. 9 is a schematic diagram of infrared signal processing in which a certain duration is greater than an effective time cumulative value but less than a time cumulative limit value according to an embodiment of the present invention.
- FIG. 10 is a schematic diagram of infrared signal processing in which a duration is greater than an effective value accumulated value and greater than a time cumulative limit value according to an embodiment of the present invention.
- the embodiment of the invention provides a microprocessor-based infrared signal decoding method, which comprises: timing the received 38KHZ infrared signal, Monitor whether the accumulated time of the 38KHZ infrared signal received each time reaches a certain length of time.
- the infrared signal decoding method provided by the embodiment of the present invention is to time-process the received 38KHZ infrared signal without analyzing which meanings of the remote control code (ie, the full code) respectively represent, and does not need to analyze those bits.
- the data code not to mention the execution action represented by the data code.
- the infrared signal sent by the infrared remote controller includes an infrared signal sent by any infrared remote controller after any of its own keys are pressed.
- the infrared remote control generates an infrared signal (a "remote control code” consisting of "1" and “0") through an internal circuit, and then modulates the infrared signal onto a high frequency wave of 38 kHz, and emits infrared light into the space by using an infrared emitting diode (IRLED). in.
- a "remote control code” consisting of "1” and "0”
- IRLED infrared emitting diode
- the timing processing of the received 38KHZ infrared signal may include: when it is detected that the accumulated time of the received 38KHZ infrared signal reaches a certain length of time, it is considered to be a valid action instruction, and the certain duration may be 2 ⁇ Any length of time 5s (preferably, the certain length of time may be 3s, because the time is too short, misoperation may occur, the time is too long, the operator may feel unaccustomed).
- the infrared receiving and decoding circuitry is very simple.
- Infrared receiving refers to the use of an integrated infrared receiver to amplify, detect, and shape the received infrared signal, and output a TTL signal that can be recognized by the microprocessor, and the decoded signal output of the infrared receiver is connected to the micro The I/O port of the processor.
- the capacitor C1 is used for power supply decoupling filtering to ensure stable operation of the infrared receiver.
- the interval between the high and low levels is also the millisecond level, so the time interval between the "1" and "0" of the remote control code of any infrared remote controller is much smaller than
- the duration of the high and low levels therefore, the signal that can be interrupted far less than the duration of the level (ie, set the duration) can be considered as a continuous signal, as long as the received 38KHZ infrared signal (continuous signal) accumulates 3S, Think of it as a valid order.
- the set duration may be between 0.01 and 0.1 S, preferably 0.01 s.
- the infrared signal decoding method provided by the embodiment of the present invention can ignore the control command represented by the remote control code (ie, the full code), and only judge whether the received command is a valid command according to the accumulated time.
- Debounce refers to removing the jitter that may occur when the remote control is pressed.
- the debounce time can be set to 10ms.
- monitoring whether the accumulated time of the received 38KHZ infrared signal reaches a certain duration may include:
- the interval monitoring method or the continuous monitoring method is used to monitor whether the accumulated time of each received 38KHz infrared signal reaches a certain length of time.
- an embodiment of the present invention provides a microprocessor-based infrared signal decoding method, and the continuous monitoring method includes the following steps:
- the infrared remote controller sends an infrared signal
- the infrared receiver amplifies, detects, and shapes the received infrared signal, and outputs the same to the microprocessor.
- the microprocessor performs the following processing on the signal
- the microprocessor determines, according to the calculation result of the time interval, whether the infrared signal received by the microprocessor is greater than a certain duration (the certain duration may be any time in the range of 0.01 to 0.1 s, for example, setting the certain duration to 0.01 s): If yes, execute S513 to clear the accumulated time; if not, execute S506, that is, time cumulative calculation;
- time cumulative calculation value cumulative time + time interval
- accumulative time that is, the pulse of the infrared signal received from the infrared receiver at 38 kHz is started, the debounce time of 10 ms is removed, and the signal interruption is ignored.
- the set time duration may be any value from 0.01 to 0.1 s, for example, the set duration is set to 0.01 s;
- the microprocessor determines whether the time cumulative calculated value reaches the effective time cumulative value (for example, the effective time cumulative value can be set to 3s): if yes, execute S508, and determine that the received infrared signal is a valid command; Returning to S504, re-calculating the time interval, wherein the time interval calculation may adopt a time interval between two consecutive high levels;
- the microprocessor determines whether the time cumulative calculated value reaches the time accumulation limit value, and if so, executes S513; if not, returns to S509, that is, performs the time interval calculation again.
- the time accumulation limit value can be set to 10 min.
- an embodiment of the present invention provides a microprocessor-based infrared signal decoding method, and the interval monitoring method includes the following steps:
- the infrared remote controller sends an infrared signal
- the infrared receiver amplifies, detects, and shapes the received infrared signal, and outputs the same to the microprocessor.
- the microprocessor performs the following processing on the signal
- the microprocessor determines whether the infrared signal received by the microprocessor ends the time interval calculation result; if yes, executes S615, and the accumulated time is cleared; if not, executes S606, that is, the delay interval time operation (execution delay time) Interval operation means extending the time interval), preferably, when the delay interval is The interval (that is, the time interval after the delay) is set to 10ms;
- the time accumulation is calculated as the sum of the accumulated time and the time interval, that is, the cumulative time + 10 ms;
- the calculation method may be: calculating a time interval between two consecutive high levels;
- the microprocessor determines whether the infrared signal received by the microprocessor ends according to the time accumulation calculation result; if yes, executing S615, the accumulated time is cleared; if not, executing S612;
- time accumulation calculation preferably, the time accumulation is calculated as the sum of the accumulated time and the time interval, that is, the cumulative time + 10 ms;
- the microprocessor performs a delay (ie, extension) interval.
- the microprocessor determines whether the time cumulative calculated value reaches the time accumulation limit value, and if so, executes S615; if not, returns to S609, that is, the time interval calculation is performed again.
- the microprocessor performs the accumulated time clearing.
- the time accumulation limit value can be set to 10 min.
- the time interval is calculated by calculating a time interval between two consecutive high levels; or calculating a time interval between two consecutive rising edges; or calculating a time interval between consecutive two falling edges; Or calculate the time interval between one successive rising edge and one falling edge; or calculate the time interval between one successive falling edge and one rising edge.
- the accumulated time can be started by counting the pulse of the infrared signal received from the infrared receiver by 38KHZ, and the debounce time is removed, that is, the time interval in which the signal discontinuity is less than the set duration is ignored, and the set duration can be any value from 0.01 to 0.1 s. For example, set the set duration to 0.01 s.
- the debounce time can be: 10ms.
- the time interval calculation method may be: calculating a time interval between two consecutive high levels; or Calculate the time interval between two consecutive rising edges; or calculate the time interval between two consecutive falling edges; or calculate the time interval between consecutive rising edges and one falling edge; or calculate one successive falling edge and one rising edge The time interval between.
- the effective time accumulated value may range from 2 to 5 s; preferably, the effective time accumulated value may be 3 s.
- the time accumulation limit value may be a preset minute-level arbitrary value; preferably, it may be 10 minutes.
- the time cumulative calculation in the interval monitoring method may be the sum of the accumulated time and the interval time after the delay; the time interval after the delay may be an arbitrary value of a preset millisecond level, preferably 10 ms;
- the time cumulative calculation in the continuous monitoring method can be the sum of the accumulated time and the time interval.
- Infrared transmission means that the operator uses any infrared remote control to press any key of the infrared remote control.
- the infrared signal sent by the infrared remote controller includes the infrared signal sent by any infrared remote controller after any of its own keys are pressed.
- Infrared reception refers to the use of an integrated infrared receiver to amplify, detect, and shape the received infrared signal, and output a TTL signal that can be recognized by the microprocessor.
- the microprocessor-based infrared signal decoding method provided by the embodiment of the invention can be used in a device or device for realizing an infrared remote control function through infrared learning matching, and can be particularly used in a smart socket, a smart socket, a smart lamp, and a smart home.
- decoding can be implemented for any infrared remote controller, thereby making instructions of different functions of any infrared remote controller, such as "on", “off", or more
- the secondary switch is used in the control of electrical appliances (such as smart appliances) that implement different functions.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Selective Calling Equipment (AREA)
- Optical Communication System (AREA)
Abstract
一种解码方法包括:对接收到的38KHz红外信号进行计时处理,监测每次接收到的38KHz红外信号累计时间是否达到一定时长,具体采用间隔监测法或者连续监测法中的一种进行监测。该方法不需要经过红外信号匹配学习,即能实现利用红外信号匹配学习实现的功能。相比于具有开关功能的蓝牙,操作更加方便,成本更低,红外线遥控器解码方法配合智能电器使用,还可以实现电器待机或关机时智能控制断电,再需要供电时打开方便,既节约能源又操作简易。
Description
本专利申请要求于2015年02月09日提交的,申请号为201510066340.9,申请人为张春雨,发明名称为“一种基于微处理器的红外线遥控信号解码方式、方法及应用”的中国专利申请的优先权,该申请的全文以引用的方式并入本申请中。
本发明涉及红外信号解码技术领域,特别涉及一种基于微处理器的红外信号解码方法。
随着社会的发展,红外遥控器的使用也越来越多。
红外遥控器是通过发射红外线来传输数据的。红外线是一种不可见的光,利用三棱镜可以把太阳光分解出7种可见光,如果这7钟可见光从左依次排列且红色在最左边,那么,红色可见光左边的不可光就是红外光。红外遥控器通过内部电路产生红外信号(一个由“1”和“0”组成的“遥控码”),再把红外信号调制到38KHZ的高频波上,利用红外发射二极管(Infrared Light-emitting diode,IRLED)发射红外线。当红外遥控器的按键被按下后,即有遥控码发出,被按下的按键不同时,发出的遥控码也不同。
不同公司的遥控芯片,采用的遥控码格式也不一样。目前比较普遍使用的遥控码格式有两种:脉冲宽度调制(Pulse Width Modulation,PWM)和脉冲位置调制(Pulse Position Modulation,PPM)。分别采用这两种遥控码格式进行编码的代表分别为(Nippon Electric Company,NEC)日本电气公司和PHILIPS飞利浦。
PWM(脉冲宽度调制):用发射红外载波的占空比表示“0”和“1”。为了
节省能量,一般情况下,发射红外载波的时间固定,通过改变不发射载波的时间来改变占空比。PPM(脉冲位置调制):用发射载波的位置表示“0”和“1”,从发射载波到不发射载波为“0”,从不发射载波到发射载波为“1”,其发射载波和不发射载波的时间相同,也就是每位的时间是固定的。
NEC标准:遥控载波的频率为38KHz(占空比为1∶3)。当某个按键被按下时,系统首先发射一个完整的全码,如果按键被按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。一个完整的全码=引导码+客户码+客户码+数据码+数据反码,其中,引导码包括4.5ms高电平和4.5ms低电平;客户码8位,客户码(或客户反码)8位,数据码8位,共32位。客户码(或客户码和客户反码)共16位,用于区分不同的红外遥控设备,防止不同机种的红外遥控码互相干扰。在客户码之后的8位的数据码和8位的数据反码,用于核对数据接收是否准确。接收端根据数据码做出应该执行什么动作的判断。连发代码是在持续按键时发送的码,用于告知接收端,某按键是在被持续地按着。
如图1,NEC标准下的红外发射码示意图:发射数据时“0”用“0.56ms高电平+0.565ms低电平=1.125ms”表示,数据“1”用“0.56ms高电平+1.69ms低电平=2.25ms”表示,即发射码“0”用发射38khz的红外线0.56ms和停止发射0.565ms来表示,发射码“1”用发射38khz的红外线0.56ms和停止发射1.69ms来表示。但并不是所有的PWM(脉冲宽度调制)编码器都是如此,虽然PWM编码器的全码都由“引导码+客户码+客户码(或客户码取反)+数据码+数据码取反”组成,数据“0”和“1”的定义相同,但是,全码中的引导码高低电平的持续时间不同,客户码位数有长有短,全码中的第一位简码和最后一位简码之间的延时不同,简码的引导脉冲不同等。比如TOSHIBA的TC9012,其引导码为载波发射4.5ms,不发射4.5ms,其“0”为载波发射0.52ms,不发射0.52ms,其“1”为载波发射0.52ms,不发射1.04ms。
上述客户码也可称为用户码,或者系统码。
上述客户反码(即客户码取反)也可称为用户反码(即用户码取反),或者
系统反码(即系统码取反)。
上述数据码也可称为指令码,或者操作码。
上述数据反码(即数据码取反)也可称为指令反码(即指令码取反)或者操作反码(即操作码取反)。
PHILIPS RC-5标准:载波频率为38KHz,没有简码;点按键时,控制码在“1”和“0”之间切换;若持续按键,则控制码不变。一个全码=起始码+控制码+系统码+数据码(即指令码),如图2所示。
数据“0”用“0.9低电平+0.9高电平”表示;数据“1”用“0.9高电平+0.9低电平”表示,如图3所示。连续码重复延时114ms。
接收端通常为红外接收器,红外接收器集成红外线的接收二极管、选频在38KHz的放大电路、解调电路,通过对红外信号接收、放大、解调,完成红外信号的接收和输出。
不同的公司采用不同的芯片和不同红外编码方式,相应地,各个公司也会采用自己的解码方式。但其原理还是“读出”全码中的“数据码”,然后根据数据码做出应该执行什么动作的判断。
根据以上的分析,红外编码和解码虽然是有标准和规律可循的,但在不通过红外学习匹配的前提下,红外接收器针对不同机种的红外遥控器实现红外解码还是非常困难的。
各家空调厂商都是按各自的要求用中央处理器(CPU,Central Processing Unit)做遥控芯片,编码形式就有很多种。比如,发送的全码可能不包含引导码(而电视音响类的编码都有引导码)、校验方式为取累加和(而电视音响类的校验方式一般为取反码)等。因为空调的状态多,而且多个状态需要一次发送完毕,例如,制冷、温度、风速、自动、定时、加湿、制热等,所以空调编码的全码很长,并且同一个按键,在不同状态下发送的全码不一样,因此,找出能够解码所有红外遥控器的遥控码(即全码)的方法还是非常困难。
发明内容
针对单个红外接收器无法解码不同机种的红外遥控器发出的红外信号的问题,本发明实施例提供一种基于微处理器的红外信号解码方法。
为实现上述目的,本发明实施例提供一种基于微处理器的红外信号解码方法包括:对接收到的38KHZ红外信号进行计时处理,监测每次收到的38KHZ红外信号累计时间是否达到一定时长。
监测每次收到的38KHZ红外信号累计时间是否达到一定时长,包括:
采用间隔监测法或者连续监测法,监测每次收到的38KHz红外信号的累计时间是否达到一定时长。
所述的间隔监测法包括以下步骤:
红外线遥控器发送红外信号;
红外接收模块将接收到的红外信号的进行放大、检波、整形,并且输出到微处理器;
微处理器将信号进行以下处理;
对微处理器收到信号进行消抖处理;
对消抖处理后的信号进行时间间隔计算;
微处理器根据时间间隔计算结果判断所述微处理器接收到的红外信号是否结束:若是,清零累计时间;若否,延时间隔时间;
在执行延时间隔时间后进行时间累计计算;
判断时间累计计算值是否达到有效时间累计值:若是,判定此次接收到的红外信号为一次有效命令;若否,重新进行时间间隔计算;
在判定此次接收到的红外信号为一次有效命令后,进行时间间隔计算;
根据时间累计计算结果判断所述微处理器接收到的红外信号是否结束;若是,清零累计时间;若否,延时间隔时间;
在延时间隔时间后,进行时间累积计算;
判断时间累计计算值是否达到时间累计限度值;若是,清零累计时间;若否,重新进行时间间隔计算。
所述的连续监测法包括以下步骤:
红外线遥控器发送红外信号;
红外接收模块将接收到的红外信号的进行放大、检波、整形,并且输出到微处理器;
微处理器将信号进行以下处理;
对微处理器收到信号进行消抖处理;
对消抖处理后的信号进行时间间隔计算;
微处理器对时间间隔计算结果进行判断微处理器接收到的红外信号是否结束;若是,清零累计时间;若否,执行第六步,即执行时间累计计算;
执进行时间累计计算;
在执行时间累计计算后,判断时间累计计算值是否达到有效时间累计值:若是,判定此次接收到的红外信号为一次有效命令;若否,进行第八步,即重新进行时间间隔计算;
进行时间间隔计算;
在进行时间间隔计算后,根据时间累计计算结果判断所述微处理器接收到的红外信号是否结束:若是,累计清零;若否,进行第十步,即执行时间累积计算;
进行时间累积计算;
在进行时间累积计算后,判断时间累计计算值是否达到时间累计限度值:若是,清零累计时间;若否,重新进行时间间隔计算。
所述红外线遥控器发送的红外信号包括任意红外遥控器在自身的任意键被按下后发送的红外信号。
所述累计时间可以为,从红外接收器接收到38KHZ的红外信号的脉冲开始计时,去除消抖时间,忽略信号间断小于设定时长的时间间隔,所述设定时长可以为0.01~0.1s中的任意值。
所述消抖时间可以为:10ms。
所述的时间间隔计算的方法为:计算连续两个高电平之间的时间间隔;或者计算连续两个上升沿之间的时间间隔;或者计算连续两下降沿之间的时间间隔;或者计算连续一个上升沿和一个下降沿之间的时间间隔;或者计算连续一
个下降沿和一个上升沿之间的时间间隔。
所述有效时间累计值的范围可以为2~5s;优选地,有效时间累计值可以为3s。
所述时间累积限度值可以为预先设定的分钟级任意值;优选地,可以为10min。
间隔监测法中所述的时间累计计算可以为累计时间与延时后的间隔时间的和;所述延时后的间隔时间可以为预先设定的毫秒级任意值,优选10ms;
连续监测方法中所述的时间累计计算可以为累计时间与时间间隔的和。
本发明的有益效果在于:
1、本发明实施例提供的红外信号解码方法不需要经过红外信号匹配学习,即能实现现有技术必须经过红外信号匹配学习才能实现的功能。相比于红外信号匹配学习,本发明实施例提供的方法操作简易,所使用的电路简单,且成本非常低,其成本对于一个成套产品几乎可以忽略;
2、相比于具有开关功能的蓝牙,本发明实施例提供的方法操作更加方便,所需成本更低;
3、本发明实施例提供的红外信号解码方法配合智能电器使用,还可以实现电器待机或关机时智能控制断电,且可以遥控恢复供电,既节约能源又操作方便。
图1为NEC标准下的红外发射码示意图;
图2为PHILIPS标准下的红外发射码示意图;
图3为PHILIPS标准下的数据“0”和“1”的表示示意图;
图4为本发明实施例的红外接收和解码示意图;
图5为本发明实施例提供的连续监测法流程图;
图6为本发明实施例提供的间隔监测法流程图;
图7为本发明实施例提供的连续检测法(连续两个高电平之间的时间监测
法)的时间累计计算示意图;
图8为本发明实施例提供的间隔检测法(连续两个高电平之间的时间监测法)的时间累计计算示意图;
图9为本发明实施例提供的中某一次持续时间大于有效时间累计值,但小于时间累计限度值的红外信号处理示意图;
图10为本发明实施例某一次持续时间大于有效时间累计值,并大于时间累计限度值的红外信号处理示意图。
下面结合附图和具体实施方式对本发明作进一步说明。
为了解决红外接收器无法解码不同机种的红外遥控器的红外信号的问题,本发明实施例提供一种基于微处理器的红外信号解码方法,包括:对接收到的38KHZ红外信号进行计时处理,监测每次收到的38KHZ红外信号累计时间是否达到一定时长。
本发明实施例提供的红外信号解码方法是对接收到的38KHZ红外信号进行计时处理,而无需分析遥控码(即全码)的哪几位分别代表的什么含义,也不需要分析那几位是数据码,更不用分析数据码代表的执行动作是什么。其中的红外线遥控器发送的红外信号包括任意红外遥控器在自身的任意键被按下后发送的红外信号。红外遥控器通过内部电路产生红外信号(一个由“1”和“0”组成的“遥控码”),再把红外信号调制到38KHZ的高频波上,利用红外发射二极管(IRLED)把红外线发射到空间中。所述的对接收到的38KHZ红外信号进行计时处理可以包括在监测到某次收到的38KHZ红外信号累计时间达到一定时长时,就认为这是一次有效的动作指令,该一定时长可以为2~5s中的任意时长(优选地,该一定时长可以为3s,因为时间太短了可能会出现误操作,时间太长了,操作者会觉得不习惯)。如图4所示,红外接收和解码电路非常简单。红外接收是指采用一体化红外线接收器,将接收到的红外信号的进行放大、检波、整形,并且输出可以让微处理器识别的TTL信号,红外接收器的解码信号输出接入微
处理器的I/O口。此外,电容C1用于电源去耦滤波,保证红外接收器稳定工作。
因为硬件或非门的反应速度是纳秒级的,高低电平之间的间隔也是毫秒级别的,所以任意红外遥控器的遥控码的“1”和“0”之间的时间间隔远远小于高低电平的持续时长,因此,可以将间断远小于电平的持续时长(即设定时长)的信号都可以认为是连续信号,只要接收到的38KHZ红外信号(连续信号)累计达3S,就认为是一次有效的指令。上述设定时长可以在0.01~0.1S之间,较佳地,可以为0.01s。本发明实施例提供的红外信号解码方法可以忽略遥控码(即全码)所代表的控制指令,而只根据累计时间判断出收到的指令是否是一次有效的指令。消抖是指去掉遥控器刚按下时可能发生的抖动,消抖时间可设定为10ms。
较佳地,监测每次收到的38KHZ红外信号累计时间是否达到一定时长,可以包括:
采用间隔监测法或者连续监测法,监测每次收到的38KHz红外信号的累计时间是否达到一定时长。
参考附图5、附图7与附图9,本发明实施例提供一种基于微处理器的红外信号解码方法,该连续监测法包括以下步骤:
S501,红外线遥控器发送红外信号;
S502,红外接收器将接收到的红外信号的进行放大、检波、整形,并且输出到微处理器;
微处理器将信号进行以下处理;
S503,对微处理器收到信号进行消抖处理,例如可以将消抖时间设置为10ms;
S504,对消抖处理后的信号进行时间间隔计算;
S505,微处理器根据时间间隔计算结果判断微处理器接收到的红外信号是否大于一定时长(该一定时长可以为0.01~0.1s中的任意时间,例如,将该一定时长设置为0.01s):若是,执行S513,清零累计时间;若否,执行S506,即时间累计计算;
S506,执进行时间累计计算,该时间累计计算为累计时间与时间间隔的和
(例如,在程序中执行公式:时间累计计算值=累计时间+时间间隔);累计时间,即从红外接收器接收到38KHZ的红外信号的脉冲开始计时,去除10ms的消抖时间,忽略信号间断小于设定时长的时间间隔,该设定时长可以为0.01~0.1s中的任意值,例如,将该设定时长设置为0.01s;
S507,微处理器判断时间累计计算值是否达到有效时间累计值(例如,可以设定有效时间累计值为3s):若是,执行S508,判定此次接收到的红外信号为一次有效命令;若否,返回S504,重新进行时间间隔计算,其中,时间间隔计算可以采用连续两个高电平之间的时间间隔;
S508,判定此次接收到的红外信号为一次有效命令;
S509,在执行S508后,微处理器进行时间间隔计算;
S510,根据时间累计计算结果判断微处理器接收到的红外信号是否结束;若是,执行S513,清零累计时间;若否,执行S511,执行时间累积计算,较佳地,时间累计计算为累计时间与时间间隔的和;
S511,进行时间累积计算;
S512,微处理器判断时间累计计算值是否达到时间累计限度值,若是,执行S513;若否,返回S509,即重新进行时间间隔计算。
较佳地,该时间累积限度值可以设置为10min。
参考附图6、附图8与附图10,本发明实施例提供一种基于微处理器的红外信号解码方法,该间隔监测法包括以下步骤:
S601,红外线遥控器发送红外信号;
S602,红外接收器将接收到的红外信号的进行放大、检波、整形,并且输出到微处理器;
微处理器将信号进行以下处理;
S603,对微处理器收到信号进行10ms消抖处理;
S604,对消抖处理后的信号进行时间间隔计算;
S605,微处理器对时间间隔计算结果进行判断微处理器接收到的红外信号是否结束;若是,执行S615,累计时间清零;若否,执行S606,即延时间隔时间操作(执行延时时间间隔操作表示将时间间隔延长),较佳地,将延时间隔时
间(即延时后的时间间隔)设置为10ms;
S606,在执行延时间隔时间操作后进行时间累计计算,较佳地,时间累计计算为累计时间与时间间隔的和,即累计时间+10ms;
S607,判断时间累计计算值是否达到有效时间累计值:若是,执行S609,判定此次接收到的红外信号为一次有效命令;若否,返回S604,重新进行时间间隔计算,较佳地,时间间隔计算的方法可以为:计算连续两个高电平之间的时间间隔;
S609,判定此次接收到的红外信号为一次有效命令。
S610,进行时间间隔计算;
S611,微处理器根据时间累计计算结果判断微处理器接收到的红外信号是否结束;若是,执行S615,累计时间清零;若否,执行S612;
S612,执行时间累积计算,较佳地,时间累计计算为累计时间与时间间隔的和,即累计时间+10ms;
S612,微处理器执行延时(即延长)间隔时间。
S613,在执行延时间隔时间操作后进行时间累积计算;
S614,微处理器判断时间累计计算值是否达到时间累计限度值,若是,执行S615;若否,返回S609,即重新进行时间间隔计算。
S615,微处理器进行累计时间清零。
较佳地,该时间累积限度值可以设置为10min。
较佳地,上述时间间隔计算的方法为:计算连续两个高电平之间的时间间隔;或者计算连续两个上升沿之间的时间间隔;或者计算连续两下降沿之间的时间间隔;或者计算连续一个上升沿和一个下降沿之间的时间间隔;或者计算连续一个下降沿和一个上升沿之间的时间间隔。
累计时间可以为从红外接收器接收到38KHZ的红外信号的脉冲开始计时,去除消抖时间,即忽略信号间断小于设定时长的时间间隔,该设定时长可以为0.01~0.1s中的任意值,例如,将该设定时长设置为0.01s。
消抖时间可以为:10ms。
时间间隔计算的方法可以为:计算连续两个高电平之间的时间间隔;或者
计算连续两个上升沿之间的时间间隔;或者计算连续两下降沿之间的时间间隔;或者计算连续一个上升沿和一个下降沿之间的时间间隔;或者计算连续一个下降沿和一个上升沿之间的时间间隔。
有效时间累计值的范围可以为2~5s;优选地,有效时间累计值可以为3s。
时间累积限度值可以为预先设定的分钟级任意值;优选地,可以为10min。
间隔断监测方法中的时间累计计算可以为累计时间与延时后的间隔时间的和;延时后的时间间隔可以为预先设定毫秒级任意值,优选10ms;
连续监测方法中的时间累计计算可以为累计时间与时间间隔的和。
红外发送是指操作者使用任意红外遥控器按红外遥控器任意键。
红外线遥控器发送的红外信号包括任意红外遥控器在自身的任意键被按下后发送的红外信号。
红外接收是指采用一体化红外线接收器,将接收到的红外信号的进行放大、检波、整形,并且输出可以让微处理器识别的TTL信号。
本发明实施例提供的基于微处理器的红外信号解码方法可以用在通过红外学习匹配实现红外遥控功能的设备或装置上,特别可以用在智能插座、智能插排、智能灯具、智能家居上。
运用本发明实施例提供的基于微处理器的红外信号解码方法,就可以针对任意红外遥控器实现解码,从而将任意红外遥控器的不同功能的指令,如“开”、“关”、或多次开关,应用于实现不同功能的电器(如智能家电)控制中。
虽然以上描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式作出多种变更或修改,而不背离发明的原理和实质,本发明的保护范围仅由所附权利要求书限定。
Claims (11)
- 一种基于微处理器的红外信号解码方法,其特征在于,包括:对接收到的38KHZ红外信号进行计时处理,监测每次收到的38KHZ红外信号累计时间是否达到一定时长。
- 根据权利要求1所述的方法,其特征在于,监测每次收到的38KHZ红外信号累计时间是否达到一定时长,包括:采用间隔监测法或者连续监测法,监测每次收到的38KHz红外信号的累计时间是否达到一定时长。
- 根据权利要求2所述的方法,其特征在于,所述间隔监测法包括以下步骤:红外接收器接收红外线遥控器发送的红外信号;所述红外接收器将接收到的红外信号的进行放大、检波、整形,并且输出到微处理器;所述微处理器对收到的红外信号进行以下处理:对所述红外信号进行消抖处理;对消抖处理后的信号进行时间间隔计算;根据时间间隔计算结果判断所述微处理器接收到的红外信号是否结束:若是,清零累计时间;若否,延时间隔时间;在执行延时间隔时间后进行时间累计计算,获得时间累计计算值;判断所述时间累计计算值是否达到有效时间累计值:若是,判定此次接收到的红外信号为一次有效命令;若否,重新进行时间间隔计算;在判定此次接收到的红外信号为一次有效命令后,进行时间间隔计算;根据时间时间间隔计算值判断所述微处理器接收到的红外信号是否结束;若是,清零累计时间;若否,延时间隔时间;在延时间隔时间后,进行时间累积计算,获得时间累计计算值;判断所述时间累计计算值是否达到时间累计限度值;若是,清零累计时间;若否,重新进行时间间隔计算。
- 根据权利要求2所述的方法,其特征在于,所述连续监测法包括以下步骤:红外接收器接收红外线遥控器发送的红外信号;所述红外接收器将接收到的红外信号的进行放大、检波、整形,并且输出到微处理器;所述微处理器对收到的红外信号进行以下处理;对所述红外信号进行消抖处理;对消抖处理后的信号进行时间间隔计算;根据时间间隔计算结果判断接收到的所述红外线遥控器发送的红外信号是否结束:若是,清零累计时间;若否,执行时间累计计算;在执行时间累计计算后,获取时间累计计算值,判断所述时间累计计算值是否达到有效时间累计值:若是,判定此次接收到的红外信号为一次有效命令;若否,重新进行时间间隔计算;在进行时间间隔计算后,根据时间累计计算结果判断接收到的所述红外线遥控器发送的红外信号是否结束:若是,清零累计时间;若否,执行时间累积计算;在进行时间累积计算后,获取时间累计计算值,判断所述时间累计计算值是否达到时间累计限度值:若是,清零累计时间;若否,重新进行时间间隔计算。
- 根据权利要求3或4所述的方法,其特征在于:所述红外线遥控器发送的红外信号包括任意红外遥控器在自身的任意键被按下后发送的红外信号;所述红外接收器将接收到的红外信号的进行放大、检波、整形,包括:所述红外接收器采用一体化红外线接收器,将接收到的红外信号的进行放大、检波、整形,并且输出可以让所述微处理器识别的TTL,Transistor-Transistor Logic,信号。
- 根据权利要求3或4所述的方法,其特征在于:所述累计时间,从红外接收器接收到38KHZ的红外信号的脉冲开始计时,去除消抖时间,忽略信号间断小于设定时长的时间间隔,所述设定时长为0.01~0.1s中的任意值;所述消抖时间为10ms;所述有效时间累计值为2~5s;所述时间累积限度值为预先设定的分钟级任意值。
- 根据权利要求3或4所述的方法,其特征在于:所述时间间隔的计算方法为:计算连续两个高电平之间的时间间隔;或者计算连续两个上升沿之间的时间间隔;或者计算连续一个下降沿之间的时间间隔;或者计算连续一个上升沿和一个下降沿之间的时间间隔;或者计算连续一个下降沿和一个上升沿之间的时间间隔。
- 根据权利要求3所述的方法,其特征在于:所述时间累计计算为累计时间与延时后的间隔时间的和;所述延时后的间隔时间为预先设定毫秒级任意值。
- 根据权利要求4所述的方法,其特征在于:所述时间累计计算为累计时间与时间间隔的和。
- 根据权利要求6所述的方法,其特征在于,将所述有效时间累计值设置为3s,将所述时间累计限度值设置为10min。
- 根据权利要求1-10中任一项所述的方法,其特征在于:将所述红外信号解码方法应用于任意通过红外学习匹配实现红外遥控功能的设备或装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510066340.9 | 2015-02-09 | ||
CN201510066340.9A CN104616481B (zh) | 2015-02-09 | 2015-02-09 | 一种基于微处理器的红外线遥控信号解码方式、方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016127809A1 true WO2016127809A1 (zh) | 2016-08-18 |
Family
ID=53150912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/072325 WO2016127809A1 (zh) | 2015-02-09 | 2016-01-27 | 一种基于微处理器的红外信号解码方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104616481B (zh) |
WO (1) | WO2016127809A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113706851A (zh) * | 2021-08-13 | 2021-11-26 | 珠海格力智能装备有限公司 | 遥控器红外信号的解码方法、装置与遥控器 |
CN113724483A (zh) * | 2021-08-27 | 2021-11-30 | 佛山市顺德区美的电子科技有限公司 | 红外干扰检测方法、装置、设备及存储介质 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104616481B (zh) * | 2015-02-09 | 2019-05-03 | 张春雨 | 一种基于微处理器的红外线遥控信号解码方式、方法及应用 |
CN105656738A (zh) * | 2016-02-03 | 2016-06-08 | 上海应用技术学院 | 一种新型智能型插座 |
CN110428601B (zh) * | 2019-08-12 | 2021-10-26 | 安徽大学 | 一种基于单片机的红外遥控方法及其中继器、遥控系统 |
CN115453648A (zh) * | 2022-08-08 | 2022-12-09 | 宁波奥克斯电气股份有限公司 | 一种红外检测方法、装置以及一种空调 |
CN115173850B (zh) * | 2022-09-07 | 2022-12-06 | 广州市保伦电子有限公司 | 一种基于红外原理的触摸按键控制方法、装置及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450799A2 (en) * | 1990-03-20 | 1991-10-09 | Showa R And D Co., Ltd. | Remote control transmit-receive system |
CN101645198A (zh) * | 2009-03-27 | 2010-02-10 | 青岛海信电器股份有限公司 | 按键识别方法及遥控器 |
CN101814233A (zh) * | 2010-04-08 | 2010-08-25 | 郑州炜盛电子科技有限公司 | 红外遥控软件解码方法 |
CN103714690A (zh) * | 2013-12-23 | 2014-04-09 | 乐视致新电子科技(天津)有限公司 | 从遥控编码脉冲中解析出物理码的方法及装置 |
CN104616481A (zh) * | 2015-02-09 | 2015-05-13 | 张春雨 | 一种基于微处理器的红外线遥控信号解码方式、方法及应用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2775889Y (zh) * | 2005-01-21 | 2006-04-26 | 黄玉良 | 遥控电源插座 |
CN201247866Y (zh) * | 2008-06-25 | 2009-05-27 | 蒋华旦 | 一种智能节能插座 |
TWI389064B (zh) * | 2008-12-09 | 2013-03-11 | Mstar Semiconductor Inc | 紅外線遙控控制指令解碼方法與裝置 |
JP5424383B2 (ja) * | 2008-12-25 | 2014-02-26 | 三星電子株式会社 | 放送受信装置、キーワード検索方法及びプログラム |
US8213809B2 (en) * | 2009-01-23 | 2012-07-03 | Conexant Systems, Inc. | Universal systems and methods for determining an incoming carrier frequency and decoding an incoming signal |
CN101477744A (zh) * | 2009-02-10 | 2009-07-08 | 方家立 | 红外线节电遥控插座 |
CN201781141U (zh) * | 2009-11-23 | 2011-03-30 | 天津莱克斯特电气有限责任公司 | 新型电视遥控插座 |
CN102110938A (zh) * | 2011-02-18 | 2011-06-29 | 黄浩波 | 一种全智能节能电源转换插座 |
CN104617450B (zh) * | 2015-02-09 | 2017-08-29 | 张春雨 | 一种基于微处理器的红外线遥控信号解码方式的外插式智能功率插座 |
-
2015
- 2015-02-09 CN CN201510066340.9A patent/CN104616481B/zh active Active
-
2016
- 2016-01-27 WO PCT/CN2016/072325 patent/WO2016127809A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450799A2 (en) * | 1990-03-20 | 1991-10-09 | Showa R And D Co., Ltd. | Remote control transmit-receive system |
CN101645198A (zh) * | 2009-03-27 | 2010-02-10 | 青岛海信电器股份有限公司 | 按键识别方法及遥控器 |
CN101814233A (zh) * | 2010-04-08 | 2010-08-25 | 郑州炜盛电子科技有限公司 | 红外遥控软件解码方法 |
CN103714690A (zh) * | 2013-12-23 | 2014-04-09 | 乐视致新电子科技(天津)有限公司 | 从遥控编码脉冲中解析出物理码的方法及装置 |
CN104616481A (zh) * | 2015-02-09 | 2015-05-13 | 张春雨 | 一种基于微处理器的红外线遥控信号解码方式、方法及应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113706851A (zh) * | 2021-08-13 | 2021-11-26 | 珠海格力智能装备有限公司 | 遥控器红外信号的解码方法、装置与遥控器 |
CN113724483A (zh) * | 2021-08-27 | 2021-11-30 | 佛山市顺德区美的电子科技有限公司 | 红外干扰检测方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN104616481A (zh) | 2015-05-13 |
CN104616481B (zh) | 2019-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016127809A1 (zh) | 一种基于微处理器的红外信号解码方法 | |
KR100935186B1 (ko) | 플러그장치 | |
CN101452290B (zh) | 基于语音识别和无线传感网的智能家电控制系统 | |
KR20020071704A (ko) | 원격 제어가 가능한 절전형 콘센트 장치 | |
EP3955465A1 (en) | Reset system of outdoor device unit | |
CN112542038A (zh) | 一种抗干扰红外信号控制装置 | |
CN102635888B (zh) | 吸油烟机风力调节方法 | |
US9919410B2 (en) | Method for controlling an electrical tool | |
CN201528093U (zh) | 一种自动节能插座电路 | |
JP4945656B2 (ja) | リモコン信号受信装置及びこれを用いた電気機器 | |
CN202652647U (zh) | 一种led控制器 | |
WO2009020370A2 (en) | Method and apparatus of saving power using distance information | |
Rasheed et al. | Detection and study of various IR handheld remote control signals and using them for home applications | |
KR101215842B1 (ko) | 인체 감지에 의한 콘센트의 전력 자동 제어 방법 | |
WO2016192193A1 (zh) | 红外发射结构、红外遥控器和红外遥控方法 | |
CN110876076B (zh) | 一种分离式家电控制装置 | |
Min | Design of multi-channel wireless remote switch control system for smarthome control system | |
KR20120071843A (ko) | 가전기기의 전원 상태와 연동되는 전원 콘센트 장치 및 그 제어 방법 | |
KR100964489B1 (ko) | 플러그장치 | |
JP2011035451A (ja) | リモコン信号受信装置 | |
CN201297738Y (zh) | 自动空调节电电路 | |
CN106125609B (zh) | 一种吸尘器及其防干扰通讯系统 | |
KR20160108910A (ko) | 대기전력 차단장치 | |
CN219916477U (zh) | 一种无线遥控接收器 | |
JP2008061064A (ja) | リモートコントロール装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16748610 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16748610 Country of ref document: EP Kind code of ref document: A1 |