WO2016125793A1 - Solar cell sealing film, solar cell sealing film roll, and method for manufacturing solar cell module - Google Patents

Solar cell sealing film, solar cell sealing film roll, and method for manufacturing solar cell module Download PDF

Info

Publication number
WO2016125793A1
WO2016125793A1 PCT/JP2016/053059 JP2016053059W WO2016125793A1 WO 2016125793 A1 WO2016125793 A1 WO 2016125793A1 JP 2016053059 W JP2016053059 W JP 2016053059W WO 2016125793 A1 WO2016125793 A1 WO 2016125793A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
solar cell
ethylene
recesses
cell sealing
Prior art date
Application number
PCT/JP2016/053059
Other languages
French (fr)
Japanese (ja)
Inventor
貴信 室伏
徳弘 淳
昌道 徳武
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to JP2016573379A priority Critical patent/JPWO2016125793A1/en
Priority to KR1020177020456A priority patent/KR20170101257A/en
Priority to CN201680008453.6A priority patent/CN107343383A/en
Publication of WO2016125793A1 publication Critical patent/WO2016125793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell sealing film, a solar cell sealing film roll, and a method for manufacturing a solar cell module.
  • Patent Document 1 describes a solar cell sealing film made of an embossed ethylene-vinyl acetate copolymer resin film.
  • the film is provided with recesses by embossing, and the percentage V of the total volume V H of the recesses per unit area of the film and the apparent volume V A of the unit area multiplied by the maximum thickness V H / VA ⁇ 100% is 5 to 80%.
  • a cushioning property is imparted to the film at the time of heat processing in the sealing process when the solar cell is manufactured, and damage to the solar cell is prevented, and deaeration failure is prevented.
  • Patent Document 1 states that regarding the depth of the recess formed by embossing, the depth ratio with respect to the maximum thickness t max of the film is emphasized, and the depth ratio is preferably 20 to 95%. Yes. Therefore, when the thickness of the film is increased, the area occupied by the recesses is inevitably reduced in order to maintain a specific porosity. And according to examination of inventors, in the film as described in patent document 1, when storing as a film roll etc., it is clear that blocking may occur between film surfaces which contact each other. became.
  • the present invention provides a film for sealing a solar cell that is less likely to cause blocking between film surfaces during transportation and storage, and that is excellent in air bleedability in the production of a solar cell module.
  • the inventors have adjusted the average depth of the recesses and the area ratio of the upper surface of the film, so that blocking between the film surfaces during transportation and storage is less likely to occur.
  • the inventors have found that a solar cell sealing film having excellent air release properties can be obtained in the production of solar cell modules, and have completed the present invention.
  • the following solar cell sealing film is provided.
  • a plurality of recesses are formed in a grid pattern, The average depth of the plurality of recesses is 50 ⁇ m or more and 200 ⁇ m or less, In at least one surface, when the apparent surface area of the case where the surface is to be flat and the S a, the area of the upper surface of the plurality of recesses are not formed S t, S t / S a ⁇ 100 (% The film for solar cell sealing whose area ratio of the said upper surface represented by this is 10% or less. [2] In the solar cell sealing film according to the above [1], The film for solar cell sealing whose period of the arrangement
  • a preparation step of preparing a film for sealing solar cells While laminating the surface side transparent protective member, the first solar cell sealing film, the solar battery cell, the second solar cell sealing film, and the back surface protective member in this order, to form a laminate, Sealing and integrating the laminate by heating and pressing,
  • a plurality of recesses are arranged in a lattice pattern on at least one surface, The average depth of the plurality of recesses is 50 ⁇ m or more and 200 ⁇ m or less, In at least one surface, when the apparent surface area of the case where the surface is to be flat and the S a, the area of the upper surface of the plurality of recesses are not formed S t, S t / S a ⁇ 100 (% The manufacturing method of the solar cell module whose area ratio of the said upper surface represented by this is 10% or less.
  • the present invention it is possible to provide a solar cell sealing film that is less likely to cause blocking between film surfaces during transportation and storage, and that is excellent in air bleedability in the production of solar cell modules.
  • FIG. 2 is a cross-sectional view observed in the direction indicated by an arrow in the drawing from the cross section of the alternate long and short dash line AA shown in FIG.
  • FIG. 2 is a cross-sectional view observed in the direction indicated by an arrow in the drawing from the cross section of the alternate long and short dash line AA shown in FIG.
  • FIG. 2 shows the example of the structure of the film for solar cell sealing which a recessed part is an equilateral triangle and arranged in the triangular lattice form.
  • It is sectional drawing which shows the example of the structure of the film for solar cell sealing in case a recessed part consists of a curved surface.
  • FIG. 1 is a diagram showing a structure of a solar cell sealing film 10 (hereinafter referred to as “film 10”) according to the present embodiment.
  • FIG. 2 is a plan view of the film 10, and FIG. 2 is a cross-sectional view of the cross section taken along the alternate long and short dash line AA shown in FIG.
  • the film 10 according to the present embodiment is formed with a plurality of concave portions 100 arranged in a lattice pattern on at least one surface. And the average depth of the some recessed part 100 is 50 micrometers or more and 200 micrometers or less. Further, in at least one surface, when the apparent surface area S a when the surface has to be flat, the area of the upper surface 110 a plurality of recesses 100 are not formed as S t, S t / S a ⁇ The area ratio of the upper surface 110 represented by 100 (%) is 10% or less. This will be described in detail below.
  • the film 10 is transported and stored, for example, as a solar cell sealing film roll formed by winding the film 10 around a core material.
  • the film 10 is not limited to a roll shape, and may be stacked and transported and stored.
  • a plurality of recesses 100 are provided on one side or both sides of the film 10.
  • the plurality of recesses 100 are arranged in a lattice pattern, and are filled with a certain distance from each other.
  • the lattice shape is not limited to a square lattice but may be an array according to a lattice such as an orthorhombic lattice, a triangular lattice, or a hexagonal lattice.
  • the recess 100 is preferably formed over the entire surface of at least one surface of the film 10.
  • the shape of the plurality of recesses 100 is not particularly limited, but from the viewpoint of efficiently filling the surface and from the viewpoint of ease of formation of the recesses 100, a square, rectangle, rhombus, parallelogram, triangle, or six in plan view A rectangular shape is preferred.
  • the recessed part 100 is a triangle, it is more preferable that it is a regular triangle or an isosceles triangle.
  • the shape of the concave portion 100 in plan view is a shape determined by a line where the concave portion 100 and the upper surface 110 intersect, that is, the outline 104 of the concave portion 100.
  • the upper surface 110 is a region where the concave portion 100 is not formed on the surface of the film 10 where the concave portion 100 is formed, that is, the top surface of the convex ridge portion.
  • the film 10 wound up or stacked on the film roll 20 comes into contact with the adjacent film surface at the portion of the upper surface 110.
  • FIG. 1 shows an example in which the recesses 100 are square and arranged in a square lattice pattern.
  • FIG. 3 is a diagram showing an example of the structure of the film 10 in which the recesses 100 are equilateral triangles and arranged in a triangular lattice pattern as a modification.
  • the average depth of the plurality of recesses 100 is 50 ⁇ m or more and 200 ⁇ m or less, more preferably 80 ⁇ m or more and 200 ⁇ m or less, and further preferably 100 ⁇ m or more and 200 ⁇ m or less.
  • the depth d of each recessed part 100 is the maximum depth of the recessed part 100 with respect to the upper surface 110
  • the average depth of the several recessed part 100 is an average value of the depth d.
  • the average depth is less than or equal to the above upper limit, air is less likely to be trapped when the irregularities are crushed by heating and pressurization, that is, the air is easily removed and bubbles are reduced. Further, if the average depth is equal to or less than the above upper limit, when a film roll or the like is used, a useless space inside the film can be reduced, and transportation efficiency is improved. On the other hand, if the average depth is equal to or more than the above lower limit, the bottom surface of the recess 100 is unlikely to contact the adjacent film surface, and blocking between the film surfaces can be effectively suppressed.
  • the average depth of the recess 100 is a range that does not exceed the maximum thickness t max of the film 10 to be described later is preferably 50% or less of the maximum thickness t max of the film 10, less than 40% of the maximum thickness t max of the film 10 Is more preferable.
  • the recessed part 100 has shown the example which is a structure which has a plane slope and a bottom face.
  • the shape of the recess 100 made of the outer shell 104 and the shape made of the outer shell 102 on the bottom surface may be the same or different from each other.
  • FIG. 4 is sectional drawing which shows the example of the structure of the film 10 in case the recessed part 100 consists of curved surfaces as a modification.
  • the depth d of each recess 100 can be defined as the maximum depth of the recess 100 relative to the upper surface 110.
  • the average depth of the recessed part 100 can be calculated
  • FIG. 5 is a diagram for explaining an example of a position at which a film piece 200 is cut out from a solar cell sealing film roll 20 (hereinafter referred to as “film roll 20”) in which the film 10 is rolled.
  • the center line of the film roll 20 in the width direction is indicated by a one-dot chain line.
  • 20 mm ⁇ 20 mm square film pieces 200 are cut out at the center of the film roll 20 and at three locations 10 cm inside from both ends in the width direction as shown in the figure.
  • the depth d of each recessed part 100 in these film pieces 200 is measured by the cross-sectional observation with an electron microscope 10 pieces per one film piece 200, and those average values are calculated,
  • the plurality of recessed parts 100 are calculated. Average depth can be determined.
  • the area ratio of the upper surface 110 is 10% or less, more preferably 8% or less. If the said area ratio is below the said upper limit, since the contact area of the film surfaces which oppose can be reduced, blocking of film surfaces can be suppressed effectively.
  • the area ratio of the upper surface 110 can be, for example, 1% or more, preferably 2% or more, more preferably 4% or more.
  • the area ratio of the upper surface 110 when the apparent surface area S a when the surface has to be flat, the area of the upper surface 110 a plurality of recesses 100 is not formed and the S t, S t / S It is a value represented by a ⁇ 100 (%). That is, the apparent surface area S a is the width to a value obtained by multiplying the length of the film of the film, the area S t of the upper surface 110 is the area of the region of the upper surface 110 shown in FIGS. 1 and 2 .
  • the area ratio of the upper surface 110 can be adjusted by adjusting the distance between the recesses 100 or the width of the upper surface 110.
  • the area ratio of the upper surface 110 can be obtained, for example, by observing the film piece 200 of the film 10 with an optical microscope. Specifically, first, similarly to the evaluation of the average depth of the recess 100, square film pieces 200 of 10 mm ⁇ 10 mm are cut out from the three locations shown in FIG. And the surface shape of these film pieces 200 is measured with an optical microscope, the area ratio of the upper surface 110 is calculated, and the average value of the three film pieces 200 can be obtained as the area ratio of the upper surface 110.
  • the period p of the arrangement of the plurality of recesses 100 is preferably in the range of 500 ⁇ m to 2000 ⁇ m, more preferably in the range of 500 ⁇ m to 1500 ⁇ m, and still more preferably in the range of 500 ⁇ m to 1200 ⁇ m.
  • the period p need not be the same throughout the film 10. If the period p is less than or equal to the above upper limit, the bottom of the recess 100 is unlikely to contact the adjacent film surface. Therefore, blocking can be effectively suppressed. On the other hand, if the period p is equal to or greater than the lower limit, the film 10 is excellent in air bleeding.
  • the period p is the distance between the centers of gravity of one recess 100 and the recess 100 adjacent thereto, as shown in FIGS.
  • the center of gravity of the recess 100 is the center of gravity of the shape of the recess 100 determined by the outer shell 104.
  • the minimum center-to-center distance may be within the above range, but the minimum center-to-center distance and the maximum center-to-center distance are Both are more preferably in the above range.
  • the period p can be obtained, for example, by observing the film piece 200 of the film 10 with an optical microscope. Specifically, first, similarly to the evaluation of the average depth of the recess 100, square film pieces 200 of 5 mm ⁇ 5 mm are cut out from the three locations shown in FIG. And the surface shape of these film pieces 200 is measured with an optical microscope, the period is measured, and it can be confirmed whether it exists in the said range.
  • the upper surface 110 of the film 10 and the surfaces constituting the plurality of recesses 100 intersect at 30 ° or more and 60 ° or less. That is, in the cross-sectional shape of the recess 100 perpendicular to the film surface, it is preferable that an angle r formed by the recess 100 and the upper surface 110 at an intersection of 30 ° or more and 60 ° or less. Specifically, for example, it is preferable that the angle r formed by the recess 100 and the upper surface 110 shown in FIGS. 2 and 4 is within the above range. As shown in FIG. 2, when the recess 100 has a flat slope, the angle r is an angle formed between the upper surface 110 and the slope.
  • the angle r is an angle formed between the tangent to the curved surface and the upper surface 110 at the point where the concave portion 100 and the upper surface 110 intersect. If the angle r is not more than the above upper limit, the yield of forming the recesses 100 on the film 10 is improved. On the other hand, if it is more than the said minimum, blocking can be suppressed effectively.
  • the angle r can be obtained, for example, by observing a cross section of the film piece 200 of the film 10 with an electron microscope. Specifically, first, similarly to the evaluation of the average depth of the concave portion 100, square film pieces 200 of 20 mm ⁇ 20 mm are cut out from the three locations shown in FIG. Then, the angle r between each of the concave portions 100 and the upper surface 110 in these film pieces 200 is measured by cross-sectional observation with an electron microscope at 10 pieces per film piece, and it can be confirmed whether or not it is in the above range.
  • the ratio V H /% of the total volume V H of the recesses per unit area of the film and the apparent volume V A of the film is preferably 3 to 30%, and more preferably 10 to 28%.
  • the apparent volume VA of the film is obtained by multiplying the unit area by the maximum thickness of the film 10.
  • the porosity P can be obtained by the following calculation.
  • V A (mm 3 ) t max (mm) ⁇ 10 6 (mm 2 ) (3)
  • the actual volume V 0 (mm 3 ) of the film of this unit area is the specific weight ⁇ (g / mm 3 ) of the resin composition constituting the film and the actual weight of the film per unit area (1 m 2 ). It is calculated by applying W (g) to the following formula (4).
  • V H (mm 3 ) W / ⁇ (4)
  • the total volume V H (mm 3 ) of the recesses per unit area of the film is obtained by subtracting the “actual volume V 0 ” from the “film apparent volume V A ” as shown in the following formula (5).
  • the porosity (%) can be obtained by the above formula, but can also be obtained by taking an image of a cross-section or a concave surface of an actual film with a microscope and performing image processing.
  • the maximum thickness t max of the film indicates the distance (in the thickness direction of the film) from one upper surface to the other surface when a concave portion is formed on one surface of the film.
  • the distance (in the film thickness direction) from one upper surface to the other upper surface is shown.
  • the maximum thickness t max of the film 10 is preferably 0.01 mm to 2 mm, more preferably 0.1 to 1 mm, and further preferably 0.3 to 0.8 mm.
  • the maximum thickness t max of the solar cell sealing film is within this range, damage to the front surface side transparent protective member, the solar cell, the back surface side protective member, etc. in the laminating step can be suppressed, and the solar cell can be obtained even at a relatively low temperature. This is preferable because the module can be laminated.
  • the film 10 can ensure sufficient light transmittance, and the solar cell module using the film 10 has a high photovoltaic power generation amount.
  • the film 10 can be manufactured by molding a thermoplastic resin composition.
  • the thermoplastic resin composition is not particularly limited, but preferably has high transparency.
  • the thermoplastic resin composition includes a thermoplastic resin, and further includes a crosslinking agent, a crosslinking accelerator, a coupling agent, a light stabilizer, an ultraviolet absorber, an antioxidant, and the like as necessary.
  • thermoplastic resin examples include an ethylene / ⁇ -olefin copolymer composed of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms, a high density ethylene resin, a low density ethylene resin, a medium density ethylene resin, and an ultra-low Density ethylene resin, propylene (co) polymer, 1-butene (co) polymer, 4-methylpentene-1 (co) polymer, ethylene / cyclic olefin copolymer, ethylene / ⁇ -olefin / cyclic olefin copolymer Polymer, ethylene / ⁇ -olefin / non-conjugated polyene copolymer, ethylene / ⁇ -olefin / conjugated polyene copolymer, ethylene / aromatic vinyl copolymer, ethylene / ⁇ -olefin / aromatic vinyl copolymer, etc.
  • Olefin resin ethylene / unsaturated carboxylic anhydride copolymer, ethylene / ⁇ -olefin / unsaturated carboxylic anhydride copolymer , Ethylene / epoxy-containing unsaturated compound copolymer, ethylene / ⁇ -olefin / epoxy-containing unsaturated compound copolymer, ethylene / vinyl acetate copolymer; ethylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer Ethylene / unsaturated carboxylic acid copolymers such as copolymers, ethylene / ethyl acrylate copolymers, ethylene / unsaturated carboxylic acid ester copolymers such as ethylene / methacrylic acid methyl copolymer, unsaturated carboxylic acid esters ( (Co) polymers, (meth) acrylic acid ester (co) polymers, ethylene / acrylic acid metal salt copolymers, iono
  • an ethylene / ⁇ -olefin copolymer comprising ethylene and an ⁇ -olefin having 3 to 20 carbon atoms, a low density ethylene resin, a medium density ethylene resin, an ultra low density ethylene resin, propylene (co) heavy 1-butene (co) polymer, 4-methylpentene-1 (co) polymer, ethylene / cyclic olefin copolymer, ethylene / ⁇ -olefin / cyclic olefin copolymer, ethylene / ⁇ -olefin / non Conjugated polyene copolymers, ethylene / ⁇ -olefin / conjugated polyene copolymers, ethylene / aromatic vinyl copolymers, ethylene / ⁇ -olefin / aromatic vinyl copolymers and other olefin resins, ethylene / unsaturated anhydrous Carboxylic acid copolymers, ethylene / ⁇ -olefin
  • the ethylene / ⁇ -olefin copolymer preferably satisfies the following requirements a1) to a4).
  • a1) The content ratio of the structural unit derived from ethylene is 80 to 90 mol%, and the content ratio of the structural unit derived from the ⁇ -olefin having 3 to 20 carbon atoms is 10 to 20 mol%.
  • a2) Based on ASTM D1238, MFR measured under the conditions of 190 ° C. and 2.16 kg load is 0.5 to 50 g / 10 min. a3)
  • the density measured according to ASTM D1505 is 0.865 to 0.884 g / cm 3 .
  • the Shore A hardness measured according to ASTM D2240 is 60 to 85.
  • the proportion of structural units derived from ⁇ -olefins having 3 to 20 carbon atoms (hereinafter also referred to as “ ⁇ -olefin units”) contained in the ethylene / ⁇ -olefin copolymer is transparent, flexible, and manufactured. From the viewpoint of balance of efficiency, 10 to 20 mol% is preferable, 12 to 20 mol% is more preferable, and 13 to 18 mol% is still more preferable.
  • the ethylene / ⁇ -olefin copolymer may contain a non-conjugated polyene.
  • a non-conjugated polyene a compound having two or more non-conjugated unsaturated bonds can be used without limitation.
  • the non-conjugated polyene either a non-conjugated cyclic polyene or a non-conjugated chain polyene can be used, and a non-conjugated cyclic polyene and a non-conjugated chain polyene can also be used in combination.
  • the non-conjugated polyene includes a non-conjugated polyene in which only one carbon / carbon double bond that can be polymerized with a catalyst exists in one molecule, and a carbon / carbon double bond.
  • any non-conjugated polyene having two carbon / carbon double bonds that can be polymerized with the catalyst may be used.
  • the non-conjugated polyene in which only one polymerizable carbon / carbon double bond is present in one molecule does not include a chain polyene in which both ends are vinyl groups (CH 2 ⁇ CH—).
  • non-conjugated polyene When there are two or more carbon / carbon double bonds in such a non-conjugated polyene, only one carbon / carbon double bond is present as a vinyl group at the molecular end, and other carbon / carbon double bonds are present.
  • the concept of non-conjugated cyclic polyene and non-conjugated chain polyene includes the above-described non-conjugated polyene having only one polymerizable carbon / carbon double bond in one molecule, and carbon / carbon double bond. Of these, non-conjugated polyenes in which two carbon / carbon double bonds that can be polymerized with the catalyst exist in one molecule are also included.
  • the conjugated chain polyene also includes conjugated triene or tetraene.
  • non-conjugated polyene examples include compounds described in paragraphs 0061 to 0084 of WO 2005/105867 pamphlet and paragraphs 0026 to 0035 of JP 2008-308696 A.
  • non-conjugated polyene having only one polymerizable carbon / carbon double bond in one molecule an alicyclic moiety having one carbon / carbon double bond (unsaturated bond), an alkylidene group, etc. And a chain portion having an internal olefin bond (carbon / carbon double bond) that is not polymerized or poorly polymerized by the metallocene catalyst.
  • specific examples include 5-ethylidene-2-norbornene (ENB), 5-propylidene-2-norbornene, and 5-butylidene-2-norbornene.
  • non-conjugated polyene having two polymerizable carbon / carbon double bonds in one molecule among the carbon / carbon double bonds include 5-vinyl-2-norbornene (VNB), 5-alkenyl-2-norbornene such as 5-allyl-2-norbornene; 2,5-norbornadiene, dicyclopentadiene (DCPD), tetracyclo [4.4.0.1 2,5 .
  • Alicyclic polyenes such as 1 7,10 ] dodeca-3,8-diene; ⁇ , ⁇ -dienes such as 1,7-octadiene and 1,9-decadiene.
  • non-conjugated polyene units the proportion of structural units derived from non-conjugated polyene (hereinafter also referred to as “non-conjugated polyene units”) is 0.01 to 5.0 mol%.
  • the amount is preferably 0.01 to 4.5 mol%, more preferably 0.05 to 4.0 mol%.
  • the content ratio of the non-conjugated polyene unit is 0.01 mol% or more, the crosslinking property is excellent.
  • melt flow rate (MFR) of ethylene / ⁇ -olefin copolymer measured under the conditions of 190 ° C. and 2.16 kg load is the production efficiency, insulation resistance, moisture permeability, glass, etc. From the viewpoint of the balance between adhesion and heat resistance, it is preferably 0.5 to 50 g / 10 minutes, more preferably 10 to 45 g / 10 minutes, and further preferably 10 to 40 g / 10 minutes. preferable.
  • the MFR of the ethylene / ⁇ -olefin copolymer is adjusted by adjusting the polymerization temperature, the polymerization pressure, the molar ratio of the ethylene and ⁇ -olefin monomer concentrations and the hydrogen concentration in the polymerization system, and the like. Can be adjusted.
  • the density of the ethylene / ⁇ -olefin copolymer measured according to ASTM D1505 is 0.865 to 0.884 g / cm 3 from the viewpoint of balance of transparency, production efficiency, flexibility, and heat resistance. It is preferably 0.865 to 0.880 g / cm 3 .
  • the density of the ethylene / ⁇ -olefin copolymer can be adjusted by a balance between the content ratio of ethylene units and the content ratio of ⁇ -olefin units. That is, when the content ratio of the ethylene unit is increased, the crystallinity is increased and a high-density ethylene / ⁇ -olefin copolymer can be obtained. On the other hand, when the content ratio of the ethylene unit is lowered, the crystallinity is lowered and an ethylene / ⁇ -olefin copolymer having a low density can be obtained.
  • the Shore A hardness of the ethylene / ⁇ -olefin copolymer is preferably 60 to 85 from the viewpoint of balance between production efficiency, heat resistance, transparency, and flexibility. 60 to 83 is more preferable, and 65 to 80 is still more preferable.
  • the Shore A hardness of the ethylene / ⁇ -olefin copolymer can be adjusted by controlling the content and density of the ethylene unit in the ethylene / ⁇ -olefin copolymer. That is, an ethylene / ⁇ -olefin copolymer having a high ethylene unit content and high density has a high Shore A hardness. On the other hand, an ethylene / ⁇ -olefin copolymer having a low content of ethylene units and a low density has a low Shore A hardness.
  • a film made of a thermoplastic resin composition containing an ethylene / ⁇ -olefin copolymer satisfying the above requirements a1) to a4) tends to cause blocking and air remaining, but is effectively improved by the present invention.
  • a film for encapsulating a solar cell according to this embodiment comprises 100 parts by weight of the aforementioned ethylene / ⁇ -olefin copolymer, 0.1 to 5 parts by weight of a silane coupling agent such as an ethylenically unsaturated silane compound,
  • a preferred embodiment is composed of an ethylene-based resin composition containing 0.1 to 3 parts by weight of a crosslinking agent such as an oxide.
  • the ethylene-based resin composition contains 0.1 to 4 parts by weight of an ethylenically unsaturated silane compound and 0.2 to 3 parts of an organic peroxide with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer. It is preferably contained in an amount of 0.1 to 3 parts by weight of the ethylenically unsaturated silane compound and 0.2 to 2.5 parts of the organic peroxide with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer. It is particularly preferable to contain parts by weight.
  • Adhesiveness can be improved as an ethylenically unsaturated silane compound is 0.1 weight part or more.
  • the ethylenically unsaturated silane compound is 4 parts by weight or less, the balance between cost and performance of the solar cell sealing film can be improved, and the ethylenically unsaturated silane compound can be used in the solar cell module. It is possible to reduce the amount of organic peroxide added to cause graft reaction to the ethylene / ⁇ -olefin copolymer during lamination. For this reason, the gelatinization at the time of obtaining the film for solar cell sealing into a film form with an extruder can be suppressed.
  • the content of the ethylenically unsaturated silane compound should be 4 parts by weight or less.
  • a decrease in dielectric breakdown voltage can be suppressed.
  • moisture permeation easily occurs at the gel material interface.
  • the content of the ethylenically unsaturated silane compound 4 parts by weight or less it is possible to suppress a decrease in moisture permeability. .
  • a conventionally well-known thing can be used for an ethylenically unsaturated silane compound, and there is no restriction
  • vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxyethoxysilane), ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane Etc. can be used.
  • Organic peroxide is used as a radical initiator for graft modification of an ethylenically unsaturated silane compound and an ethylene / ⁇ -olefin copolymer, and further, an ethylene / ⁇ -olefin copolymer solar cell module laminate. Used as a radical initiator in the crosslinking reaction during molding. By graft-modifying an ethylenically unsaturated silane compound to the ethylene / ⁇ -olefin copolymer, a solar cell module having good adhesion to the surface side transparent protective member, solar cell, back side protective member, etc. is obtained. It is done. Further, by crosslinking the ethylene / ⁇ -olefin copolymer, a solar cell module having excellent heat resistance and adhesiveness can be obtained.
  • the organic peroxide preferably used is one that can graft-modify an ethylenically unsaturated silane compound to the ethylene / ⁇ -olefin copolymer or crosslink the ethylene / ⁇ -olefin copolymer.
  • the one-minute half-life temperature of the organic peroxide is 100 to 170 ° C. from the balance between the productivity in extrusion film forming and the crosslinking rate in the lamination of the solar cell module.
  • the one-minute half-life temperature of the organic peroxide is 100 ° C.
  • the one-minute half-life temperature of the organic peroxide is 170 ° C. or lower, it is possible to suppress a decrease in the crosslinking rate during the lamination molding of the solar cell module, and thus it is possible to prevent a decrease in the productivity of the solar cell module. . Moreover, the heat resistance of a solar cell sealing film and the fall of adhesiveness can also be prevented.
  • organic peroxides can be used.
  • Preferred examples of the organic peroxide having a 1 minute half-life temperature in the range of 100 to 170 ° C. include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate Dibenzoyl peroxide, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1 , 1-Di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylperoxy) cyclohexane, t-amylperoxyisononanoate, t-amylperoxynormal Octoate, 1,1-di (t-butylperoxy) -3,3,5-trimethyl
  • dilauroyl peroxide t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, t-butyl peroxyisononanoate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxybenzoate, etc. Is mentioned.
  • the ethylene resin composition preferably contains at least one additive selected from the group consisting of ultraviolet absorbers, light stabilizers, and heat stabilizers.
  • the amount of these additives is preferably 0.005 to 5 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer.
  • the blending amount of the above additive is within the above range, the effect of improving the resistance to high temperature and high humidity, heat cycle resistance, weather resistance stability, and heat stability is sufficiently secured, and for solar cell sealing Since transparency of a film and the adhesiveness fall with a surface side transparent protection member, a photovoltaic cell, a back surface side protection member, etc. can be prevented, it is preferable.
  • the ultraviolet absorber examples include 2-hydroxy-4-normal-octyloxybenzophenone, 2-hydroxy-4methoxybenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy- Benzophenones such as 4-carboxybenzophenone and 2-hydroxy-4-N-octoxybenzophenone; 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-5 -Methylphenyl) benzotriazoles such as benzotriazole; salicylic acid esters such as phenylsalicylate and p-octylphenylsulcylate are used.
  • Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3, 5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇
  • Hindered amine compounds such as hindered piperidine compounds and the like are preferably used.
  • heat-resistant stabilizers include tris (2,4-di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester.
  • Phosphorous acid tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylbisphosphonite, and bis (2,4-di-tert-butylphenyl) Phosphite heat stabilizers such as pentaerythritol diphosphite; lactone heat stabilizers such as the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene; 3,3 ′, 3 ′′, 5,5 ′, 5 ′′ -hexa-tert-butyl-a, a ′, a ′′-(methylene-2,4,6-triyl) tri-p-cresol, 1,3 , 5-trime Tyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxyphenyl) benzylbenzene, pentaerythritol t
  • ethylene resin composition constituting the solar cell sealing film can be appropriately contained in the ethylene resin composition constituting the solar cell sealing film as long as the object of the present invention is not impaired.
  • examples include various polyolefins other than ethylene / ⁇ -olefin copolymers, styrene-based, ethylene-based block copolymers, and propylene-based polymers. These may be contained in an amount of 0.0001 to 50 parts by weight, preferably 0.001 to 40 parts by weight, based on 100 parts by weight of the ethylene / ⁇ -olefin copolymer.
  • the above additives can be appropriately contained.
  • the amount of crosslinking aid is 0.05 to 5 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer. It is preferable because it can have heat resistance, mechanical properties, and adhesiveness.
  • crosslinking aid conventionally known ones generally used for olefinic resins can be used.
  • a crosslinking aid is a compound having two or more double bonds in the molecule.
  • monoacrylates such as t-butyl acrylate, lauryl acrylate, cetyl acrylate, stearyl acrylate, 2-methoxyethyl acrylate, ethyl carbitol acrylate, methoxytripropylene glycol acrylate; t-butyl methacrylate, lauryl methacrylate, cetyl methacrylate
  • Monomethacrylate such as stearyl methacrylate, methoxyethylene glycol methacrylate, methoxypolyethylene glycol methacrylate; 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, neopentyl glycol diacrylate , Diethylene glycol diacryl
  • triacrylates such as diacrylate, dimethacrylate, divinyl aromatic compound, trimethylolpropane triacrylate, tetramethylolmethane triacrylate, pentaerythritol triacrylate; trimethylolpropane trimethacrylate , Trimethacrylates such as trimethylolethane trimethacrylate; tetraacrylates such as pentaerythritol tetraacrylate and tetramethylolmethane tetraacrylate; cyanurates such as triallyl cyanurate and triallyl isocyanurate; diallyl compounds such as diallyl phthalate; triallyl compound: p -Oximes such as quinonedioxime and pp'-dibenzoylquinonedioxime: phenylmaleimi And maleimides. Further, among these, triallyl isocyanurate is particularly preferable, and the balance between
  • the tensile elastic modulus at 23 ° C. of the film 10 is preferably 6 to 13 MPa.
  • the tensile elastic modulus is measured as follows, for example. First, a 1 mm thick film having the same composition as the film 10 is prepared. Then, the film is punched with a dumbbell according to JIS K7113, and measured with an autograph (manufactured by Shimadzu Corporation: AGS-J) at a chuck interval of 40 mm and a tensile speed of 1 mm / min. At this time, the temperature of the measurement environment is 23 ° C. and the humidity is 50% Rh.
  • a commonly used method can be used, but it is preferably produced by melt blending using a kneader, a Banbury mixer, an extruder, or the like.
  • the production with an extruder capable of continuous production is preferred.
  • composition is obtained by blending a peroxide, an ultraviolet absorber, a light stabilizer, a heat stabilizer, and other additives as required. And the obtained composition is thrown into the extrusion film molding hopper, extrusion film molding is performed while melt-kneading, and a solar cell sealing film is obtained.
  • the extrusion temperature is 100 to 130 ° C. When the extrusion temperature is 100 ° C.
  • the productivity of the solar cell sealing film can be improved.
  • the extrusion temperature is 130 ° C. or lower, gelation hardly occurs when the ethylene resin composition used for the solar cell sealing film is formed into a film by an extruder to obtain a solar cell sealing film. Therefore, the torque of the extruder can be prevented from increasing, and film formation can be facilitated.
  • it becomes difficult to generate unnecessary unevenness on the surface of the sheet it is possible to prevent deterioration of the appearance.
  • production of the crack in a film inside can be suppressed when a voltage is applied, the fall of a dielectric breakdown voltage can be prevented. Furthermore, a decrease in moisture permeability can also be suppressed.
  • the film 10 can be used in a sheet type cut according to the size of the solar cell module, or a roll type that can be cut according to the size immediately before producing the solar cell module.
  • the film 10 may include a hard coat layer for protecting the front surface or the back surface, an adhesive layer, an antireflection layer, a gas barrier layer, an antifouling layer, and the like. If classified by material, layer made of UV curable resin, layer made of thermosetting resin, layer made of polyolefin resin, layer made of carboxylic acid modified polyolefin resin, layer made of fluorine-containing resin, cyclic olefin (co) Examples thereof include a layer made of a polymer and a layer made of an inorganic compound.
  • the film 10 having a recess formed on the surface can be produced by embossing using an embossing roll having a specific shape.
  • the embossing roll can be prepared by forming, on the surface of a metal roll, a convex part pattern designed according to the concave part desired to be formed on the film by metal processing according to the prior art.
  • the shape, average depth, area ratio of the upper surface 110, period p, and the like are formed on the film roll 20.
  • the angle r can be adjusted.
  • the solar cell sealing film as described above blocking between the film surfaces is suppressed, and a solar cell sealing film with high transport storage efficiency is obtained. Moreover, if the film for solar cell sealing as described above is used for manufacturing a solar cell module, the generation of bubbles due to air entrainment can be suppressed.
  • FIG. 6 is a schematic cross-sectional view illustrating the process of the method for manufacturing the solar cell module according to this embodiment.
  • the manufacturing method of the solar cell module according to the present embodiment includes a preparation process and a sealing process.
  • the preparation step the solar cell sealing film 10 is prepared.
  • the sealing step the front surface side transparent protective member 40, the first solar cell sealing film 120, the solar battery cell 30, the second solar cell sealing film 140, and the back surface side protective member 42 are laminated in this order.
  • the laminate is formed, and the laminate is integrated by heating and pressing. This will be described in detail below.
  • the laminate includes, for example, the front surface side transparent protective member 40, the first solar cell sealing film 120, the solar battery cell 30, the second solar cell sealing film 140, and the back surface side protective member 42 in this order. Laminated.
  • the surface-side transparent protective member 40 is not particularly limited, but is located on the outermost layer of the solar cell module, and therefore has long-term reliability in outdoor exposure of the solar cell module including weather resistance, water repellency, contamination resistance, mechanical strength, and the like. It is preferable to have performance for ensuring the property. Moreover, in order to utilize sunlight effectively, it is preferable that it is a highly transparent sheet
  • a resin film or glass substrate made of polyester resin such as polyethylene terephthalate (PET), fluorine resin, acrylic resin, cyclic olefin (co) polymer, ethylene-vinyl acetate copolymer, etc. Etc.
  • PET polyethylene terephthalate
  • the glass substrate preferably has a total light transmittance of light having a wavelength of 350 to 1400 nm of 80% or more, and more preferably 90% or more.
  • white plate glass with little absorption in the infrared region, but even blue plate glass has little influence on the output characteristics of the solar cell module as long as the thickness is 3 mm or less.
  • tempered glass can be obtained by heat treatment to increase the mechanical strength of the glass substrate, but float plate glass without heat treatment may be used.
  • an antireflection coating may be provided on the light receiving surface side of the glass substrate in order to suppress reflection.
  • the back surface side protection member 42 is not particularly limited, since it is located on the outermost layer of the solar cell module, various characteristics such as weather resistance and mechanical strength are required in the same manner as the above surface side transparent protection member 40. Therefore, the back surface side protection member 42 may be made of the same material as the front surface side transparent protection member 40. That is, the above-described various materials used as the front surface side transparent protective member 40 can also be used as the back surface side protective member 42. In particular, a polyester resin and glass can be preferably used. Moreover, since the back surface side protection member 42 does not presuppose passage of sunlight, the transparency calculated
  • a reinforcing plate may be attached to increase the mechanical strength of the solar cell module or to prevent distortion and warpage due to temperature change.
  • a steel plate, a plastic plate, an FRP (glass fiber reinforced plastic) plate or the like can be preferably used as the reinforcing plate.
  • a plurality of recesses 100 are arranged in a grid pattern on at least one surface of the first solar cell sealing film 120 and the second solar cell sealing film 140.
  • the average depth of the plurality of recesses 100 is 50 ⁇ m or more and 200 ⁇ m or less, and the area ratio of the upper surface 110 is 10% or less.
  • the first solar cell sealing film 120 and the second solar cell sealing film 140 may be the same film or may be different from each other. That is, at least one of the shape and arrangement of the recesses 100, the average depth of the recesses 100, the area ratio of the upper surface 110, the period p, the angle r, the resin composition, and the like may be different from each other.
  • the front surface side transparent protective member 40, the first solar cell sealing film 120, the solar battery cell 30, the second solar cell sealing film 140, and the back surface side protective member 42 are laminated in this order.
  • the laminate is formed, and the laminate is integrated by heating and pressing. By heating and pressurizing in this step, the resin constituting the film 10 flows and the concave portion 100 of the film 10 is lost.
  • the direction of the film is not particularly limited, but the surface 120A on which the concave portion 100 of the first solar cell sealing film 120 is formed, and the second solar cell sealing film 140. It is preferable that the laminated body is formed by laminating so that the surface 140 ⁇ / b> A on which the concave portion 100 is formed faces the solar battery cell 30. Alternatively, the stacked body may be formed by stacking so that the surface having the concave portion is in contact with the solar battery cell 30.
  • the function as a cushion can be fulfill
  • damage to the solar battery cell can be suppressed.
  • the concave portion forms a passage for air, and the deaeration performance is improved. For this reason, poor deaeration is suppressed.
  • the heated and flowable resin can flow into the recess during the process of heating and pressurizing and integrating the laminate, there is an inconvenience that such resin protrudes outside the laminate. Can be suppressed.
  • the first solar cell sealing film 120 and the second solar cell sealing film 140 that have become flowable by heating protrude from the laminate. It is preferable to apply pressure and heat under such conditions.
  • the laminate may be pressurized in a state where the laminate is placed on the hot plate 50.
  • the laminate may be pressurized by atmospheric pressure.
  • the laminate in the step of integrating the laminate in the sealing step, may be surrounded by the soft sheet 60 and the hot plate 50, and the inside may be depressurized and pressurized by applying atmospheric pressure to the laminate.
  • the back surface side protection member 42, the second solar cell sealing film 140, the solar cell 30, the first solar cell sealing film 120, and the front surface side transparent protective member 40 are stacked in this order on the hot plate 50.
  • One or more solar cells 30 can be included in the stacked body.
  • the several photovoltaic cell 30 is contained in the laminated body.
  • the some photovoltaic cell 30 is connected in series using the electrode which is not shown in figure.
  • the configuration and material of the electrode are not particularly limited, but in a specific example, the electrode has a laminated structure of a transparent conductive film and a metal film.
  • the transparent conductive film is made of SnO 2 , ITO, ZnO or the like.
  • the metal film is made of a metal such as silver, gold, copper, tin, aluminum, cadmium, zinc, mercury, chromium, molybdenum, tungsten, nickel, and vanadium. These metal films may be used alone or as a composite alloy.
  • the transparent conductive film and the metal film are formed by a method such as CVD, sputtering, or vapor deposition.
  • the first solar cell sealing film 120 and the second solar cell sealing film 140 may be separated from each other, but the first solar cell sealing film is formed by one film 10. 120 and the 2nd solar cell sealing film 140 may be comprised. For example, by folding a single film so as to enclose the solar battery cell 30, the solar battery cell 30 as shown in the figure is turned into the first solar battery sealing film 120 and the second solar battery sealing film 140. You may implement
  • the laminate as described above is covered with the soft sheet 60 as shown in the figure, the internal space surrounded by the soft sheet 60 and the hot plate 50 is decompressed. As a result, the laminate can be pressurized by atmospheric pressure. At this time, the hot plate 50 is heated to a predetermined temperature, and the first solar cell sealing film 120 and the second solar cell sealing film 140 are also heated by the heat.
  • the hot plate temperature is 70 ° C. or more and 170 ° C. or less
  • the vacuum time is 1 minute or more and 10 minutes or less
  • the press pressure is 0.1 atmosphere or more and 1 atmosphere or less
  • the pressurization time is 1 minute or more and 20 minutes or less. It is.
  • the solar cell module is not limited to the above configuration, and layers other than the above can be appropriately provided as long as the object of the present invention is not impaired.
  • the layer other than the above include an adhesive layer, a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, and a light diffusion layer. These layers are not particularly limited, but can be provided at appropriate positions in consideration of the purpose and characteristics of each layer.
  • the film surfaces are less likely to be blocked when transported and stored, and the air release property in the production of the solar cell module is excellent.
  • Example 1 [Synthesis of ethylene / ⁇ -olefin copolymer]
  • a 50 L internal polymerization vessel equipped with a stirring blade 8.0 mmol / hr of a toluene solution of methylaluminoxane as a cocatalyst and bis (1,3-dimethylcyclopentadienyl) zirconium as a main catalyst
  • the ethylene / ⁇ -olefin copolymer normal hexane / toluene mixed solution produced in the polymerization vessel is continuously discharged through a discharge port provided at the bottom of the polymerization vessel, and the ethylene / ⁇ -olefin copolymer solution is discharged.
  • the jacket portion was led to a connecting pipe heated with 3 to 25 kg / cm 2 steam so that the normal hexane / toluene mixed solution had a temperature of 150 to 190 ° C.
  • a supply port for injecting methanol, which is a catalyst deactivator, is attached, and methanol is injected at a rate of about 0.75 L / hr.
  • the mixture was merged into a combined normal hexane / toluene mixed solution.
  • the normal hexane / toluene mixed solution of the ethylene / ⁇ -olefin copolymer kept at about 190 ° C. in the connection pipe with steam jacket is subjected to pressure provided at the end of the connection pipe so as to maintain about 4.3 MPaG.
  • the liquid was continuously fed to the flash tank by adjusting the opening of the control valve. In the transfer to the flash tank, the solution temperature and the pressure adjustment valve opening are set so that the pressure in the flash tank is about 0.1 MPaG and the temperature of the vapor part in the flash tank is maintained at about 180 ° C. It was broken.
  • the strand was cooled in a water tank through a single screw extruder set at a die temperature of 180 ° C., and the strand was cut with a pellet cutter to obtain an ethylene / ⁇ -olefin copolymer as pellets.
  • the yield was 2.2 kg / hr.
  • the content ratio of ethylene units and the content ratio of ⁇ -olefin units in the copolymer were quantified.
  • the content of the ⁇ -olefin unit in the ethylene / ⁇ -olefin copolymer of this example was 14 mol%.
  • MFR Based on ASTM D1238, the MFR of the ethylene / ⁇ -olefin copolymer was measured under the conditions of 190 ° C. and 2.16 kg load. As a result, the MFR of the ethylene / ⁇ -olefin copolymer of this example was 20 g / 10 min.
  • the density of the ethylene / ⁇ -olefin copolymer was measured in accordance with ASTM D1505. As a result, the density of the ethylene / ⁇ -olefin copolymer of this example was 0.870 g / cm 3 .
  • the ethylene / ⁇ -olefin copolymer was pressurized at 190 ° C., heated for 4 minutes and at 10 MPa, and then pressure-cooled at 10 MPa to room temperature for 5 minutes to obtain a sheet having a thickness of 3 mm.
  • the Shore A hardness of the ethylene / ⁇ -olefin copolymer was measured in accordance with ASTM D2240. As a result, the Shore A hardness of the ethylene / ⁇ -olefin copolymer of this example was 70.
  • the convex pattern which has two or more square convex parts by planar view was uniformly formed in the whole on the surface of the embossing roll used in the present Example.
  • Examples 2 to 7, 9 and Comparative Examples 1 to 3 A solar cell sealing film was obtained in the same manner as in Example 1 except that an embossing roll having a convex pattern different from that in Example 1 was used. In any of the examples and comparative examples, a convex pattern having a plurality of convex portions was uniformly formed on the entire surface of the embossing roll used.
  • Example 8 A solar cell sealing film was obtained in the same manner as in Example 1 except that an ethylene / vinyl acetate copolymer (VA 28%, MFR 15 g / 10 min) was used as the resin composition B instead of the resin composition A.
  • an ethylene / vinyl acetate copolymer (VA 28%, MFR 15 g / 10 min) was used as the resin composition B instead of the resin composition A.
  • ⁇ Average depth of recess> The average depth of the concave portion of the solar cell sealing film was measured. Specifically, 20 mm ⁇ 20 mm square film pieces are cut out at the center of the roll and at three locations 10 cm inside from both ends in the width direction of the roll, and the depth of each recess in these film pieces is set to one film piece. The average depth was determined by measuring 10 pieces per section by cross-sectional observation with an electron microscope. In each example and each comparative example, an emboss roll in which a convex pattern is uniformly formed on the whole is used, and thus the average value obtained in this way can be regarded as the average of the whole.
  • ⁇ Angle between top surface and recess> The angle between the upper surface of the solar cell sealing film and the recess was measured. Specifically, in three places similar to the evaluation of the average depth of the concave portions, square film pieces of 20 mm ⁇ 20 mm are cut out, and the angle between each concave portion and the upper surface of these film pieces is 10 per film piece. Each was measured by cross-sectional observation with an electron microscope. The measured angles were almost uniform and were in the range of 45 ⁇ 1 ° in Examples 1-6, 8, 9 and Comparative Examples 1-3. The angle was in the range of 25 ⁇ 1 ° in Example 7. For convenience, Table 1 shows median values.
  • ⁇ Cycle> The period p of the array of recesses was measured. Specifically, 5 mm ⁇ 5 mm square film pieces were cut out from the same three places as in the evaluation of the average depth, and the surface shapes of these film pieces were measured with an optical microscope to measure the period. The period was substantially uniform, and in Example 1, it was in the range of 1030 ⁇ 5 ⁇ m. For convenience, Table 1 shows median values. In all examples and comparative examples, the period was in the range of the median value ⁇ 5 ⁇ m.
  • ⁇ Porosity> The porosity P [%] of the solar cell sealing film was measured. Specifically, a 10 cm ⁇ 10 cm square film piece was cut out from the center of the roll, and the weight W [g] per unit area was measured from the total mass. Separately, the maximum film thickness t max [mm] of the film and the specific gravity ⁇ [g / mm 3 ] of the film material were determined, and P (%) 1 ⁇ W / ( ⁇ ⁇ t max ⁇ 10 6 ) ⁇ 100 From the relationship, the porosity P was determined. Here, the maximum film thickness tmax was measured by cross-sectional observation similar to that performed in the evaluation of the average depth of the recesses. Moreover, specific gravity (rho) of film material was measured using the film obtained without performing embossing by the process similar to a present Example.
  • the tensile elasticity modulus of the film for solar cell sealing was measured.
  • a 1 mm thick film having the same composition as the solar cell sealing film was prepared.
  • the film was punched with a dumbbell according to JIS K7113, and measured with an autograph (manufactured by Shimadzu Corporation: AGS-J) at a chuck interval of 40 mm and a tensile speed of 1 mm / min.
  • the temperature of the measurement environment was 23 ° C., and the humidity was 50% Rh.
  • the tensile modulus was 8 MPa for the resin composition A used in Examples 1 to 7, 9 and Comparative Examples 1 to 3, and 15 MPa for the resin composition B used in Example 8.
  • a PET-based back sheet including silica-deposited PET was used as a back sheet (back side protection member).
  • a part of the back sheet was cut with a cutter-knife into a part to be removed from the cell, and 18 cells were connected in series.
  • the positive terminal and the negative terminal were taken out, and a solar cell sealing film was laminated using a vacuum laminator (NPC: LM-110x160-S) at a hot plate temperature of 150 ° C., a vacuum time of 4 minutes, and a pressurization time of 15 minutes. .
  • NPC vacuum laminator
  • the back sheet was cut, the edge sealing material was applied to the glass edge, the aluminum frame was attached, and then the terminal part cut out from the back sheet was RTV silicone was applied and cured.

Abstract

A plurality of recessed sections (100) are arranged in a lattice shape and formed on at least one surface of a film (10). The average depth of the plurality of recessed sections (100) is 50-200 μm. On the at least one surface, when the apparent surface area when the surface is flat is defined as Sa, and the surface area of the top surface (110) on which the plurality of recessed sections (100) are not formed is defined as St, the proportion of area of the top surface (110) represented by St/Sa×100(%) is 10% or less.

Description

太陽電池封止用フィルム、太陽電池封止用フィルムロール、および太陽電池モジュールの製造方法Solar cell sealing film, solar cell sealing film roll, and solar cell module manufacturing method
 本発明は太陽電池封止用フィルム、太陽電池封止用フィルムロール、および太陽電池モジュールの製造方法に関する。 The present invention relates to a solar cell sealing film, a solar cell sealing film roll, and a method for manufacturing a solar cell module.
 特許文献1には、エンボス加工が施されたエチレン-酢酸ビニル共重合体樹脂フィルムよりなる太陽電池用封止膜が記載されている。特許文献1では、フィルムはエンボス加工により凹部が設けられており、フィルムの単位面積当りの凹部の合計体積Vと、単位面積に最大厚みを乗じたフィルムの見掛けの体積Vとの百分比V/V×100%が5~80%となっている。そうすることで、太陽電池の作製の際の封止工程の加熱加工時に、フィルムにクッション性を与え、太陽電池用セルの破損を防止するとともに、脱気不良等を防止している。 Patent Document 1 describes a solar cell sealing film made of an embossed ethylene-vinyl acetate copolymer resin film. In Patent Document 1, the film is provided with recesses by embossing, and the percentage V of the total volume V H of the recesses per unit area of the film and the apparent volume V A of the unit area multiplied by the maximum thickness V H / VA × 100% is 5 to 80%. By doing so, a cushioning property is imparted to the film at the time of heat processing in the sealing process when the solar cell is manufactured, and damage to the solar cell is prevented, and deaeration failure is prevented.
特許第3473605号公報Japanese Patent No. 3473605
 しかし、特許文献1では、エンボス加工により形成される凹部の深さに関し、フィルムの最大厚みtmaxに対する深さ率が重視され、深さ率が20~95%であることが好ましい旨記載されている。そのため、フィルムの厚みが大きくなると、特定の空隙率を保つために必然的に凹部が占める面積が小さくなっていた。そして、発明者らの検討によれば、特許文献1に記載されているようなフィルムでは、フィルムロール等として保管した場合に、接触し合うフィルム面同士でブロッキングが生じる場合があることが明らかになった。 However, Patent Document 1 states that regarding the depth of the recess formed by embossing, the depth ratio with respect to the maximum thickness t max of the film is emphasized, and the depth ratio is preferably 20 to 95%. Yes. Therefore, when the thickness of the film is increased, the area occupied by the recesses is inevitably reduced in order to maintain a specific porosity. And according to examination of inventors, in the film as described in patent document 1, when storing as a film roll etc., it is clear that blocking may occur between film surfaces which contact each other. became.
 本発明は、輸送、保管時のフィルム面同士のブロッキングが生じにくく、太陽電池モジュールの製造においてエア抜け性に優れる太陽電池封止用フィルムを提供するものである。 The present invention provides a film for sealing a solar cell that is less likely to cause blocking between film surfaces during transportation and storage, and that is excellent in air bleedability in the production of a solar cell module.
 本発明者らは上記課題を達成すべく鋭意検討した結果、凹部の平均深さ、およびフィルム上面の面積率を適切に調整することにより、輸送、保管時のフィルム面同士のブロッキングが生じにくく、太陽電池モジュールの製造においてエア抜け性に優れる太陽電池封止用フィルムが得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the inventors have adjusted the average depth of the recesses and the area ratio of the upper surface of the film, so that blocking between the film surfaces during transportation and storage is less likely to occur. The inventors have found that a solar cell sealing film having excellent air release properties can be obtained in the production of solar cell modules, and have completed the present invention.
 すなわち、本発明によれば、以下に示す太陽電池封止用フィルムが提供される。 That is, according to the present invention, the following solar cell sealing film is provided.
[1]
 少なくとも一方の面に、複数の凹部が格子状に配列して形成されており、
 前記複数の凹部の平均深さは50μm以上200μm以下であり、
 前記少なくとも一方の面において、表面が平らであるとした場合の見掛け表面積をS、前記複数の凹部が形成されていない上面の面積をSとしたとき、S/S×100(%)で表される前記上面の面積率が10%以下である太陽電池封止用フィルム。
[2]
 上記[1]に記載の太陽電池封止用フィルムにおいて、
 前記複数の凹部の配列の周期が500μm以上2000μm以下の範囲である太陽電池封止用フィルム。
[3]
 上記[1]または[2]に記載の太陽電池封止用フィルムにおいて、
 前記上面と、前記複数の凹部を構成する面とは30°以上60°以下で交わる太陽電池封止用フィルム。
[4]
 上記[1]から[3]のいずれか一つに記載の太陽電池封止用フィルムにおいて、
 前記複数の凹部は、平面視で正方形、長方形、ひし形、平行四辺形、三角形、または六角形であり、互いに一定距離離間して前記少なくとも一方の面を充填している太陽電池封止用フィルム。
[5]
 上記[1]から[4]のいずれか一つに記載の太陽電池封止用フィルムが芯材に巻き取られてなる太陽電池封止用フィルムロール。
[6]
 太陽電池封止用フィルムを準備する準備工程と、
 表面側透明保護部材、第1の前記太陽電池封止用フィルム、太陽電池セル、第2の前記太陽電池封止用フィルム、及び裏面側保護部材をこの順に積層して積層体を形成するとともに、前記積層体を加熱及び加圧して一体化する封止工程と、を含み、
 前記第1及び第2の太陽電池封止用フィルムには、少なくとも一方の面に、複数の凹部が格子状に配列して形成されており、
 前記複数の凹部の平均深さは50μm以上200μm以下であり、
 前記少なくとも一方の面において、表面が平らであるとした場合の見掛け表面積をS、前記複数の凹部が形成されていない上面の面積をSとしたとき、S/S×100(%)で表される前記上面の面積率が10%以下である太陽電池モジュールの製造方法。
[1]
On at least one surface, a plurality of recesses are formed in a grid pattern,
The average depth of the plurality of recesses is 50 μm or more and 200 μm or less,
In at least one surface, when the apparent surface area of the case where the surface is to be flat and the S a, the area of the upper surface of the plurality of recesses are not formed S t, S t / S a × 100 (% The film for solar cell sealing whose area ratio of the said upper surface represented by this is 10% or less.
[2]
In the solar cell sealing film according to the above [1],
The film for solar cell sealing whose period of the arrangement | sequence of the said several recessed part is the range of 500 to 2000 micrometers.
[3]
In the film for sealing a solar cell according to the above [1] or [2],
The film for sealing a solar cell, wherein the upper surface and the surfaces constituting the plurality of recesses intersect at 30 ° or more and 60 ° or less.
[4]
In the film for sealing a solar cell according to any one of [1] to [3],
The plurality of recesses are square, rectangular, rhombus, parallelogram, triangle, or hexagon in plan view, and are filled with at least one surface at a certain distance from each other.
[5]
The film roll for solar cell sealing formed by the film for solar cell sealing as described in any one of said [1] to [4] being wound up by the core material.
[6]
A preparation step of preparing a film for sealing solar cells;
While laminating the surface side transparent protective member, the first solar cell sealing film, the solar battery cell, the second solar cell sealing film, and the back surface protective member in this order, to form a laminate, Sealing and integrating the laminate by heating and pressing,
In the first and second solar cell sealing films, a plurality of recesses are arranged in a lattice pattern on at least one surface,
The average depth of the plurality of recesses is 50 μm or more and 200 μm or less,
In at least one surface, when the apparent surface area of the case where the surface is to be flat and the S a, the area of the upper surface of the plurality of recesses are not formed S t, S t / S a × 100 (% The manufacturing method of the solar cell module whose area ratio of the said upper surface represented by this is 10% or less.
 本発明によれば、輸送、保管時のフィルム面同士のブロッキングが生じにくく、太陽電池モジュールの製造においてエア抜け性に優れる太陽電池封止用フィルムを提供することができる。 According to the present invention, it is possible to provide a solar cell sealing film that is less likely to cause blocking between film surfaces during transportation and storage, and that is excellent in air bleedability in the production of solar cell modules.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係る太陽電池封止用フィルムの構造を示す図である。It is a figure which shows the structure of the film for solar cell sealing which concerns on this embodiment. 図1に示す一点鎖線A-Aの断面から図中矢印で示す方向に観察した断面図である。FIG. 2 is a cross-sectional view observed in the direction indicated by an arrow in the drawing from the cross section of the alternate long and short dash line AA shown in FIG. 凹部が正三角形であり、三角格子状に配列した太陽電池封止用フィルムの構造の例を示す図である。It is a figure which shows the example of the structure of the film for solar cell sealing which a recessed part is an equilateral triangle and arranged in the triangular lattice form. 凹部が曲面からなる場合の太陽電池封止用フィルムの構造の例を示す断面図である。It is sectional drawing which shows the example of the structure of the film for solar cell sealing in case a recessed part consists of a curved surface. 太陽電池封止用フィルムをロール状にした太陽電池封止用フィルムロールからフィルム片を切り出す位置の例について説明するための図である。It is a figure for demonstrating the example of the position which cuts out a film piece from the film roll for solar cell sealing which made the film for solar cell sealing into the roll shape. 実施形態に係る太陽電池モジュールの製造方法の処理を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the process of the manufacturing method of the solar cell module which concerns on embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 なお、「~」は特に断りがなければ、以上から以下を表す。 Note that “~” represents the following from the above unless otherwise specified.
 図1は、本実施形態に係る太陽電池封止用フィルム10(以下、「フィルム10」と呼ぶ)の構造を示す図である。本図はフィルム10を平面視した図であり、図2は、図1に示す一点鎖線A-Aの断面を図中矢印で示す方向に観察した断面図である。 FIG. 1 is a diagram showing a structure of a solar cell sealing film 10 (hereinafter referred to as “film 10”) according to the present embodiment. FIG. 2 is a plan view of the film 10, and FIG. 2 is a cross-sectional view of the cross section taken along the alternate long and short dash line AA shown in FIG.
 本実施形態に係るフィルム10は、少なくとも一方の面に、複数の凹部100が格子状に配列して形成されている。そして、複数の凹部100の平均深さは50μm以上200μm以下である。また、その少なくとも一方の面において、表面が平らであるとした場合の見掛け表面積をS、複数の凹部100が形成されていない上面110の面積をSとしたとき、S/S×100(%)で表される上面110の面積率が10%以下である。以下に詳細に説明する。 The film 10 according to the present embodiment is formed with a plurality of concave portions 100 arranged in a lattice pattern on at least one surface. And the average depth of the some recessed part 100 is 50 micrometers or more and 200 micrometers or less. Further, in at least one surface, when the apparent surface area S a when the surface has to be flat, the area of the upper surface 110 a plurality of recesses 100 are not formed as S t, S t / S a × The area ratio of the upper surface 110 represented by 100 (%) is 10% or less. This will be described in detail below.
 フィルム10は、たとえばフィルム10が芯材に巻き取られてなる太陽電池封止用フィルムロールとして輸送、保管される。なお、フィルム10はロール状に限らず、積層されて輸送、保管されてもよい。 The film 10 is transported and stored, for example, as a solar cell sealing film roll formed by winding the film 10 around a core material. The film 10 is not limited to a roll shape, and may be stacked and transported and stored.
 フィルム10の片面、または両面には、複数の凹部100が設けられている。複数の凹部100は格子状に配列され、互いに一定距離離間して面を充填している。ここで、格子状とは、正方格子に限らず、斜方格子、三角格子、六角格子等の格子に従った配列であってもよい。フィルム面同士のブロッキングを効果的に抑制する観点から、凹部100は、フィルム10の少なくとも一方の面において、全面にわたって形成されていることが好ましい。 A plurality of recesses 100 are provided on one side or both sides of the film 10. The plurality of recesses 100 are arranged in a lattice pattern, and are filled with a certain distance from each other. Here, the lattice shape is not limited to a square lattice but may be an array according to a lattice such as an orthorhombic lattice, a triangular lattice, or a hexagonal lattice. From the viewpoint of effectively suppressing blocking between film surfaces, the recess 100 is preferably formed over the entire surface of at least one surface of the film 10.
 複数の凹部100の形状は特に限定されないが、面を効率良く充填する観点、および、凹部100の形成の容易性の観点から、平面視で正方形、長方形、ひし形、平行四辺形、三角形、または六角形であることが好ましい。なお、凹部100が三角形である場合、正三角形または二等辺三角形であることがより好ましい。ここで、凹部100の平面視での形状とは、凹部100と上面110との交わる線、すなわち凹部100の外郭104で決まる形状である。 The shape of the plurality of recesses 100 is not particularly limited, but from the viewpoint of efficiently filling the surface and from the viewpoint of ease of formation of the recesses 100, a square, rectangle, rhombus, parallelogram, triangle, or six in plan view A rectangular shape is preferred. In addition, when the recessed part 100 is a triangle, it is more preferable that it is a regular triangle or an isosceles triangle. Here, the shape of the concave portion 100 in plan view is a shape determined by a line where the concave portion 100 and the upper surface 110 intersect, that is, the outline 104 of the concave portion 100.
 ここで、上面110とは、フィルム10の凹部100が形成された側の表面のうち、凹部100が形成されていない領域、すなわち凸となった尾根部の頂面である。フィルムロール20に巻き取られ、または重ねられたフィルム10は、上面110の部分で隣接するフィルム面と接触することとなる。 Here, the upper surface 110 is a region where the concave portion 100 is not formed on the surface of the film 10 where the concave portion 100 is formed, that is, the top surface of the convex ridge portion. The film 10 wound up or stacked on the film roll 20 comes into contact with the adjacent film surface at the portion of the upper surface 110.
 図1は、凹部100が正方形であり、正方格子状に配列した例を示している。
 一方、図3は、変形例として、凹部100が正三角形であり、三角格子状に配列したフィルム10の構造の例を示す図である。
FIG. 1 shows an example in which the recesses 100 are square and arranged in a square lattice pattern.
On the other hand, FIG. 3 is a diagram showing an example of the structure of the film 10 in which the recesses 100 are equilateral triangles and arranged in a triangular lattice pattern as a modification.
 フィルム10において、複数の凹部100の平均深さは50μm以上200μm以下であり、より好ましくは80μm以上200μm以下であり、さらに好ましくは100μm以上200μm以下である。ここで、各凹部100の深さdは上面110に対する凹部100の最大深さであり、複数の凹部100の平均深さは、深さdの平均値である。太陽電池モジュールの製造において、太陽電池封止用フィルムにその他の構成要素を積層した後、加熱及び加圧して一体化する処理時に、凹部にエアが残り積層体に気泡を生じる事がある。平均深さが上記上限以下であれば、加熱及び加圧により凹凸がつぶれる時に空気がトラップされにくく、すなわち、エア抜け性に優れ、気泡が低減される。また、平均深さが上記上限以下であれば、フィルムロール等にした際に、その内部の無駄な空間を少なくすることができ、輸送効率が向上する。一方、平均深さが上記下限以上であれば、凹部100の底面が隣接するフィルム面と接触しにくく、フィルム面同士のブロッキングを効果的に抑制できる。なお、凹部100の平均深さは後述するフィルム10の最大厚みtmaxを超えない範囲であり、フィルム10の最大厚みtmaxの50%以下が好ましく、フィルム10の最大厚みtmaxの40%以下がより好ましい。 In the film 10, the average depth of the plurality of recesses 100 is 50 μm or more and 200 μm or less, more preferably 80 μm or more and 200 μm or less, and further preferably 100 μm or more and 200 μm or less. Here, the depth d of each recessed part 100 is the maximum depth of the recessed part 100 with respect to the upper surface 110, and the average depth of the several recessed part 100 is an average value of the depth d. In the production of a solar cell module, after stacking other components on the solar cell sealing film, air may remain in the recesses and bubbles may be generated in the laminate when being integrated by heating and pressurization. If the average depth is less than or equal to the above upper limit, air is less likely to be trapped when the irregularities are crushed by heating and pressurization, that is, the air is easily removed and bubbles are reduced. Further, if the average depth is equal to or less than the above upper limit, when a film roll or the like is used, a useless space inside the film can be reduced, and transportation efficiency is improved. On the other hand, if the average depth is equal to or more than the above lower limit, the bottom surface of the recess 100 is unlikely to contact the adjacent film surface, and blocking between the film surfaces can be effectively suppressed. Incidentally, the average depth of the recess 100 is a range that does not exceed the maximum thickness t max of the film 10 to be described later is preferably 50% or less of the maximum thickness t max of the film 10, less than 40% of the maximum thickness t max of the film 10 Is more preferable.
 図2では、凹部100が、平面の斜面と底面とを有する構造である例を示している。この場合、外郭104からなる凹部100の形状と、底面の外郭102からなる形状とは同一であっても良いし、互いに異なる形状であっても良い。
 一方、図4は、変形例として、凹部100が曲面からなる場合のフィルム10の構造の例を示す断面図である。この場合も、各凹部100の深さdは、上面110に対する凹部100の最大深さとして定義できる。
In FIG. 2, the recessed part 100 has shown the example which is a structure which has a plane slope and a bottom face. In this case, the shape of the recess 100 made of the outer shell 104 and the shape made of the outer shell 102 on the bottom surface may be the same or different from each other.
On the other hand, FIG. 4 is sectional drawing which shows the example of the structure of the film 10 in case the recessed part 100 consists of curved surfaces as a modification. Again, the depth d of each recess 100 can be defined as the maximum depth of the recess 100 relative to the upper surface 110.
 凹部100の平均深さは、たとえば、フィルム10のフィルム片を電子顕微鏡で断面観察することにより求めることができる。
 図5は、フィルム10をロール状にした太陽電池封止用フィルムロール20(以下、「フィルムロール20」と呼ぶ。)からフィルム片200を切り出す位置の例について説明するための図である。本図ではフィルムロール20の幅方向の中央線を一点鎖線で示している。具体的には、まず、本図のようにフィルムロール20の中央、および幅方向の両端から10cm内側の3カ所において、20mm×20mmの正方形のフィルム片200を切り出す。そして、これらのフィルム片200にある各凹部100の深さdを1つのフィルム片200あたり10個、電子顕微鏡による断面観察で測定し、それらの平均値を算出することで、複数の凹部100の平均深さを求めることができる。
The average depth of the recessed part 100 can be calculated | required, for example by observing a cross section of the film piece of the film 10 with an electron microscope.
FIG. 5 is a diagram for explaining an example of a position at which a film piece 200 is cut out from a solar cell sealing film roll 20 (hereinafter referred to as “film roll 20”) in which the film 10 is rolled. In this figure, the center line of the film roll 20 in the width direction is indicated by a one-dot chain line. Specifically, first, 20 mm × 20 mm square film pieces 200 are cut out at the center of the film roll 20 and at three locations 10 cm inside from both ends in the width direction as shown in the figure. And the depth d of each recessed part 100 in these film pieces 200 is measured by the cross-sectional observation with an electron microscope 10 pieces per one film piece 200, and those average values are calculated, The plurality of recessed parts 100 are calculated. Average depth can be determined.
 次に、図1および図2に戻り、上面110の面積率について説明する。フィルム10の凹部100が形成された面において、上面110の面積率は10%以下であり、より好ましくは8%以下である。当該面積率が上記上限以下であれば、対向するフィルム面同士の接触面積を減らすことができるため、フィルム面同士のブロッキングを効果的に抑制できる。一方、上面110の面積率は、たとえば1%以上、好ましくは2%以上、より好ましくは4%以上とすることができる。 Next, returning to FIGS. 1 and 2, the area ratio of the upper surface 110 will be described. On the surface of the film 10 where the recess 100 is formed, the area ratio of the upper surface 110 is 10% or less, more preferably 8% or less. If the said area ratio is below the said upper limit, since the contact area of the film surfaces which oppose can be reduced, blocking of film surfaces can be suppressed effectively. On the other hand, the area ratio of the upper surface 110 can be, for example, 1% or more, preferably 2% or more, more preferably 4% or more.
 ここで、上面110の面積率とは、表面が平らであるとした場合の見掛け表面積をS、複数の凹部100が形成されていない上面110の面積をSとしたとき、S/S×100(%)で表される値である。すなわち、見掛け表面積Sとはフィルムの幅にフィルムの長さを乗じて求められる値であり、上面110の面積Sとは、図1および図2で示した上面110の領域の面積である。上面110の面積率は、凹部100同士の離間距離、又は上面110の幅等を調整することで調整できる。 Here, the area ratio of the upper surface 110, when the apparent surface area S a when the surface has to be flat, the area of the upper surface 110 a plurality of recesses 100 is not formed and the S t, S t / S It is a value represented by a × 100 (%). That is, the apparent surface area S a is the width to a value obtained by multiplying the length of the film of the film, the area S t of the upper surface 110 is the area of the region of the upper surface 110 shown in FIGS. 1 and 2 . The area ratio of the upper surface 110 can be adjusted by adjusting the distance between the recesses 100 or the width of the upper surface 110.
 上面110の面積率は、たとえば、フィルム10のフィルム片200を光学顕微鏡で観察することにより求めることができる。具体的には、まず、凹部100の平均深さの評価と同様に、図5で示した3カ所から10mm×10mmの正方形のフィルム片200を切り出す。そして、これらのフィルム片200の表面形状を光学顕微鏡で測定して上面110の面積率を算出し、3つのフィルム片200の平均値を上面110の面積率として求めることができる。 The area ratio of the upper surface 110 can be obtained, for example, by observing the film piece 200 of the film 10 with an optical microscope. Specifically, first, similarly to the evaluation of the average depth of the recess 100, square film pieces 200 of 10 mm × 10 mm are cut out from the three locations shown in FIG. And the surface shape of these film pieces 200 is measured with an optical microscope, the area ratio of the upper surface 110 is calculated, and the average value of the three film pieces 200 can be obtained as the area ratio of the upper surface 110.
 複数の凹部100の配列の周期pは、500μm以上2000μm以下の範囲であることが好ましく、500μm以上1500μm以下の範囲であることがより好ましく、500μm以上1200μm以下の範囲であることがさらに好ましい。なお、周期pはフィルム10の全体にわたって同一である必要は無い。周期pが上記上限以下であれば、凹部100の底部が隣接するフィルム面と接触しにくい。そのため、ブロッキングを効果的に抑制できる。一方、周期pが上記下限以上であれば、エア抜け性に優れたフィルム10となる。 The period p of the arrangement of the plurality of recesses 100 is preferably in the range of 500 μm to 2000 μm, more preferably in the range of 500 μm to 1500 μm, and still more preferably in the range of 500 μm to 1200 μm. The period p need not be the same throughout the film 10. If the period p is less than or equal to the above upper limit, the bottom of the recess 100 is unlikely to contact the adjacent film surface. Therefore, blocking can be effectively suppressed. On the other hand, if the period p is equal to or greater than the lower limit, the film 10 is excellent in air bleeding.
 ここで、周期pとは、図1および図3に示した通り、1つの凹部100とそれに隣接する凹部100との重心間距離である。なお、凹部100の重心とは、外郭104で決まる凹部100の形状の、重心である。1つの凹部100に対して隣接する凹部100との重心間距離が複数ある場合には、最小の重心間距離が上記範囲内にあればよいが、最小の重心間距離と最大の重心間距離がともに上記範囲にあることがさらに好ましい。 Here, the period p is the distance between the centers of gravity of one recess 100 and the recess 100 adjacent thereto, as shown in FIGS. Note that the center of gravity of the recess 100 is the center of gravity of the shape of the recess 100 determined by the outer shell 104. When there are a plurality of center-to-center distances between adjacent recesses 100 with respect to one recess 100, the minimum center-to-center distance may be within the above range, but the minimum center-to-center distance and the maximum center-to-center distance are Both are more preferably in the above range.
 周期pは、たとえば、フィルム10のフィルム片200を光学顕微鏡で観察することにより求めることができる。具体的には、まず、凹部100の平均深さの評価と同様に、図5で示した3カ所から5mm×5mmの正方形のフィルム片200を切り出す。そして、これらのフィルム片200の表面形状を光学顕微鏡で測定して周期を測定し、上記範囲にあるかどうかを確認できる。 The period p can be obtained, for example, by observing the film piece 200 of the film 10 with an optical microscope. Specifically, first, similarly to the evaluation of the average depth of the recess 100, square film pieces 200 of 5 mm × 5 mm are cut out from the three locations shown in FIG. And the surface shape of these film pieces 200 is measured with an optical microscope, the period is measured, and it can be confirmed whether it exists in the said range.
 フィルム10の上面110と、複数の凹部100を構成する面とは30°以上60°以下で交わることが好ましい。すなわち、フィルム面に垂直な凹部100の断面形状において、凹部100と上面110とが交わる点でのそれらのなす角度rが30°以上60°以下であることが好ましい。具体的には、たとえば、図2および図4に示した凹部100と上面110とのなす角度rが、上記範囲内にあることが好ましい。図2の様に、凹部100が平面の斜面を有する場合には、角度rは、上面110と斜面とのなす角度である。一方、図4の様に、凹部100が曲面からなる場合には、角度rは凹部100と上面110とが交わる点での当該曲面の接線と上面110とのなす角度である。角度rが上記上限以下であれば、フィルム10への凹部100の形成歩留まりが向上する。一方、上記下限以上であれば、ブロッキングを効果的に抑制できる。 It is preferable that the upper surface 110 of the film 10 and the surfaces constituting the plurality of recesses 100 intersect at 30 ° or more and 60 ° or less. That is, in the cross-sectional shape of the recess 100 perpendicular to the film surface, it is preferable that an angle r formed by the recess 100 and the upper surface 110 at an intersection of 30 ° or more and 60 ° or less. Specifically, for example, it is preferable that the angle r formed by the recess 100 and the upper surface 110 shown in FIGS. 2 and 4 is within the above range. As shown in FIG. 2, when the recess 100 has a flat slope, the angle r is an angle formed between the upper surface 110 and the slope. On the other hand, when the concave portion 100 is a curved surface as shown in FIG. 4, the angle r is an angle formed between the tangent to the curved surface and the upper surface 110 at the point where the concave portion 100 and the upper surface 110 intersect. If the angle r is not more than the above upper limit, the yield of forming the recesses 100 on the film 10 is improved. On the other hand, if it is more than the said minimum, blocking can be suppressed effectively.
 角度rは、たとえば、フィルム10のフィルム片200を電子顕微鏡で断面観察することにより求めることができる。具体的には、まず、凹部100の平均深さの評価と同様に、図5で示した3カ所から20mm×20mmの正方形のフィルム片200を切り出す。そして、これらのフィルム片200にある各凹部100と上面110との角度rを1つのフィルム片あたり10個、電子顕微鏡による断面観察により測定して、上記範囲にあるかどうかを確認できる。 The angle r can be obtained, for example, by observing a cross section of the film piece 200 of the film 10 with an electron microscope. Specifically, first, similarly to the evaluation of the average depth of the concave portion 100, square film pieces 200 of 20 mm × 20 mm are cut out from the three locations shown in FIG. Then, the angle r between each of the concave portions 100 and the upper surface 110 in these film pieces 200 is measured by cross-sectional observation with an electron microscope at 10 pieces per film piece, and it can be confirmed whether or not it is in the above range.
 太陽電池モジュール製造時のエア抜け性と、クッション性のバランスの観点から、フィルム10において、フィルムの単位面積当りの凹部の合計体積Vと、フィルムの見掛けの体積Vとの百分比V/V×100で表される空隙率P(%)が、3~30%であることが好ましく、10~28%であることがより好ましい。なお、フィルムの見掛けの体積Vは、単位面積にフィルム10の最大厚みを乗じることにより得られる。 From the viewpoint of the balance between air release properties and cushioning properties when manufacturing the solar cell module, in the film 10, the ratio V H /% of the total volume V H of the recesses per unit area of the film and the apparent volume V A of the film The porosity P (%) represented by V A × 100 is preferably 3 to 30%, and more preferably 10 to 28%. The apparent volume VA of the film is obtained by multiplying the unit area by the maximum thickness of the film 10.
 空隙率Pは、次のような計算により求めることができる。凹部が形成されたフィルムの、見掛けの体積V(mm)は、フィルムの最大厚みtmax(mm)と単位面積(例えば1m=1000×1000=10mm)との積によって、下記式(3)のようにして算出される。
  V(mm)=tmax(mm)×10(mm)     (3)
 一方、この単位面積のフィルムの実際の体積V(mm)は、フィルムを構成する樹脂組成物の比重ρ(g/mm)と単位面積(1m)当りのフィルムの実際の重さW(g)と、を下記式(4)に当てはめることにより算出される。
  V(mm)=W/ρ      (4)
 フィルムの単位面積当りの凹部の合計体積V(mm)は、下記式(5)に示されるように、「フィルムの見掛けの体積V」から「実際の体積V」を差し引くことによって算出される。
  V(mm)=V-V=V-(W/ρ)     (5)
 したがって、空隙率(%)は次のようにして求めることができる。
 空隙率P(%)=V/V×100
  =(V-(W/ρ))/V×100
  =1-W/(ρ・V)×100
  =1-W/(ρ・tmax・10)×100
The porosity P can be obtained by the following calculation. The apparent volume V A (mm 3 ) of the film in which the recess is formed is determined by the product of the maximum thickness t max (mm) of the film and the unit area (for example, 1 m 2 = 1000 × 1000 = 10 6 mm 2 ), It is calculated as in the following formula (3).
V A (mm 3 ) = t max (mm) × 10 6 (mm 2 ) (3)
On the other hand, the actual volume V 0 (mm 3 ) of the film of this unit area is the specific weight ρ (g / mm 3 ) of the resin composition constituting the film and the actual weight of the film per unit area (1 m 2 ). It is calculated by applying W (g) to the following formula (4).
V 0 (mm 3 ) = W / ρ (4)
The total volume V H (mm 3 ) of the recesses per unit area of the film is obtained by subtracting the “actual volume V 0 ” from the “film apparent volume V A ” as shown in the following formula (5). Calculated.
V H (mm 3 ) = V A −V 0 = V A − (W / ρ) (5)
Therefore, the porosity (%) can be obtained as follows.
Porosity P (%) = V H / V A × 100
= (V A- (W / ρ)) / V A × 100
= 1−W / (ρ · V A ) × 100
= 1−W / (ρ · t max · 10 6 ) × 100
 空隙率(%)は、上記の計算式によって求めることができるが、実際のフィルムの断面や凹部が形成された面を顕微鏡撮影し、画像処理などすることによって求めることもできる。 The porosity (%) can be obtained by the above formula, but can also be obtained by taking an image of a cross-section or a concave surface of an actual film with a microscope and performing image processing.
 ここで、フィルムの最大厚みtmaxとは、フィルムの一方の面に凹部が形成されている場合、一方の上面から他方の面までの(フィルムの厚さ方向の)距離を示し、フィルムの両方の面に凹部が形成されている場合は、一方の上面から他方の上面までの(フィルム厚さ方向の)距離を示す。 Here, the maximum thickness t max of the film indicates the distance (in the thickness direction of the film) from one upper surface to the other surface when a concave portion is formed on one surface of the film. When a concave portion is formed on the surface, the distance (in the film thickness direction) from one upper surface to the other upper surface is shown.
 フィルム10の最大厚みtmaxは0.01mm~2mmであることが好ましく、0.1~1mmであることがより好ましく、0.3~0.8mmであることがさらに好ましい。太陽電池封止用フィルムの最大厚みtmaxがこの範囲内であると、ラミネート工程における、表面側透明保護部材、太陽電池セル、裏面側保護部材などの破損を抑制でき、比較的低温でも太陽電池モジュールのラミネート成形ができるので好ましい。また、フィルム10は、十分な光線透過率を確保でき、それを用いた太陽電池モジュールは高い光発電量を有する。 The maximum thickness t max of the film 10 is preferably 0.01 mm to 2 mm, more preferably 0.1 to 1 mm, and further preferably 0.3 to 0.8 mm. When the maximum thickness t max of the solar cell sealing film is within this range, damage to the front surface side transparent protective member, the solar cell, the back surface side protective member, etc. in the laminating step can be suppressed, and the solar cell can be obtained even at a relatively low temperature. This is preferable because the module can be laminated. Moreover, the film 10 can ensure sufficient light transmittance, and the solar cell module using the film 10 has a high photovoltaic power generation amount.
 フィルム10は、熱可塑性樹脂組成物を成形して製造できる。熱可塑性樹脂組成物は特に限定されないが、透明性が高いことが好ましい。熱可塑性樹脂組成物には、熱可塑性樹脂が含まれ、さらに必要に応じて架橋剤、架橋促進剤、カップリング剤、光安定化剤、紫外線吸収剤、酸化防止剤等が含まれる。 The film 10 can be manufactured by molding a thermoplastic resin composition. The thermoplastic resin composition is not particularly limited, but preferably has high transparency. The thermoplastic resin composition includes a thermoplastic resin, and further includes a crosslinking agent, a crosslinking accelerator, a coupling agent, a light stabilizer, an ultraviolet absorber, an antioxidant, and the like as necessary.
 熱可塑性樹脂としては、たとえば、エチレンおよび炭素数3~20のα-オレフィンからなるエチレン・α-オレフィン共重合体、高密度エチレン系樹脂、低密度エチレン系樹脂、中密度エチレン系樹脂、超低密度エチレン系樹脂、プロピレン(共)重合体、1-ブテン(共)重合体、4-メチルペンテン-1(共)重合体、エチレン・環状オレフィン共重合体、エチレン・α-オレフィン・環状オレフィン共重合体、エチレン・α-オレフィン・非共役ポリエン共重合体、エチレン・α-オレフィン・共役ポリエン共重合体、エチレン・芳香族ビニル共重合体、エチレン・α-オレフィン・芳香族ビニル共重合体などのオレフィン系樹脂、エチレン・不飽和無水カルボン酸共重合体、エチレン・α-オレフィン・不飽和無水カルボン酸共重合体、エチレン・エポキシ含有不飽和化合物共重合体、エチレン・α-オレフィン・エポキシ含有不飽和化合物共重合体、エチレン・酢酸ビニル共重合体;エチレン・アクリル酸共重合体、エチレン・メタアクリル酸共重合体などのエチレン・不飽和カルボン酸共重合体、エチレン・アクリル酸エチル共重合体、エチレン・メタアクリル酸メチル共重合体などのエチレン・不飽和カルボン酸エステル共重合体、不飽和カルボン酸エステル(共)重合体、(メタ)アクリル酸エステル(共)重合体、エチレン・アクリル酸金属塩共重合体、エチレン・メタアクリル酸金属塩共重合体などのアイオノマー樹脂、ウレタン系樹脂、シリコーン系樹脂、アクリル酸系樹脂、メタアクリル酸系樹脂、環状オレフィン(共)重合体、α-オレフィン・芳香族ビニル化合物・芳香族ポリエン共重合体、エチレン・α-オレフィン・芳香族ビニル化合物・芳香族ポリエン共重合体、エチレン・芳香族ビニル化合物・芳香族ポリエン共重合体、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、スチレン・共役ジエン共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・エチレン・α-オレフィン・非共役ポリエン・スチレン共重合体、アクリロニトリル・エチレン・α-オレフィン・共役ポリエン・スチレン共重合体、メタアクリル酸・スチレン共重合体、エチレンテレフタレート樹脂、フッ素樹脂、ポリエステルカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、1,2ポリブタジエン系熱可塑性エラストマー、トランスポリイソプレン系熱可塑性エラストマー、塩素化ポリエチレン系熱可塑性エラストマー、液晶性ポリエステル、ポリ乳酸などが挙げられる。 Examples of the thermoplastic resin include an ethylene / α-olefin copolymer composed of ethylene and an α-olefin having 3 to 20 carbon atoms, a high density ethylene resin, a low density ethylene resin, a medium density ethylene resin, and an ultra-low Density ethylene resin, propylene (co) polymer, 1-butene (co) polymer, 4-methylpentene-1 (co) polymer, ethylene / cyclic olefin copolymer, ethylene / α-olefin / cyclic olefin copolymer Polymer, ethylene / α-olefin / non-conjugated polyene copolymer, ethylene / α-olefin / conjugated polyene copolymer, ethylene / aromatic vinyl copolymer, ethylene / α-olefin / aromatic vinyl copolymer, etc. Olefin resin, ethylene / unsaturated carboxylic anhydride copolymer, ethylene / α-olefin / unsaturated carboxylic anhydride copolymer , Ethylene / epoxy-containing unsaturated compound copolymer, ethylene / α-olefin / epoxy-containing unsaturated compound copolymer, ethylene / vinyl acetate copolymer; ethylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer Ethylene / unsaturated carboxylic acid copolymers such as copolymers, ethylene / ethyl acrylate copolymers, ethylene / unsaturated carboxylic acid ester copolymers such as ethylene / methacrylic acid methyl copolymer, unsaturated carboxylic acid esters ( (Co) polymers, (meth) acrylic acid ester (co) polymers, ethylene / acrylic acid metal salt copolymers, ionomer resins such as ethylene / methacrylic acid metal salt copolymers, urethane resins, silicone resins, Acrylic acid resin, methacrylic acid resin, cyclic olefin (co) polymer, α-olefin, aromatic vinyl Compounds, aromatic polyene copolymers, ethylene / α-olefin / aromatic vinyl compounds / aromatic polyene copolymers, ethylene / aromatic vinyl compounds / aromatic polyene copolymers, styrene resins, acrylonitrile / butadiene / Styrene copolymer, styrene / conjugated diene copolymer, acrylonitrile / styrene copolymer, acrylonitrile / ethylene / α-olefin / non-conjugated polyene / styrene copolymer, acrylonitrile / ethylene / α-olefin / conjugated polyene / styrene copolymer Polymer, methacrylic acid / styrene copolymer, ethylene terephthalate resin, fluororesin, polyester carbonate, polyvinyl chloride, polyvinylidene chloride, polyolefin-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, polyurethane-based heat Examples thereof include a plastic elastomer, a 1,2 polybutadiene-based thermoplastic elastomer, a trans polyisoprene-based thermoplastic elastomer, a chlorinated polyethylene-based thermoplastic elastomer, a liquid crystalline polyester, and polylactic acid.
 これらの中でも、エチレンおよび炭素数3~20のα-オレフィンからなるエチレン・α-オレフィン共重合体、低密度エチレン系樹脂、中密度エチレン系樹脂、超低密度エチレン系樹脂、プロピレン(共)重合体、1-ブテン(共)重合体、4-メチルペンテン-1(共)重合体、エチレン・環状オレフィン共重合体、エチレン・α-オレフィン・環状オレフィン共重合体、エチレン・α-オレフィン・非共役ポリエン共重合体、エチレン・α-オレフィン・共役ポリエン共重合体、エチレン・芳香族ビニル共重合体、エチレン・α-オレフィン・芳香族ビニル共重合体などのオレフィン系樹脂、エチレン・不飽和無水カルボン酸共重合体、エチレン・α-オレフィン・不飽和無水カルボン酸共重合体、エチレン・エポキシ含有不飽和化合物共重合体、エチレン・α-オレフィン・エポキシ含有不飽和化合物共重合体、エチレン・アクリル酸共重合体、エチレン・メタアクリル酸共重合体などのエチレン・不飽和カルボン酸共重合体、エチレン・アクリル酸エチル共重合体、不飽和カルボン酸エステル(共)重合体、(メタ)アクリル酸エステル(共)重合体、エチレン・メタアクリル酸メチル共重合体などのエチレン・不飽和カルボン酸エステル共重合体、エチレン・アクリル酸金属塩共重合体、エチレン・メタアクリル酸金属塩共重合体などのアイオノマー樹脂、環状オレフィン(共)重合体、α-オレフィン・芳香族ビニル化合物・芳香族ポリエン共重合体、エチレン・α-オレフィン・芳香族ビニル化合物・芳香族ポリエン共重合体、エチレン・芳香族ビニル化合物・芳香族ポリエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、スチレン・共役ジエン共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・エチレン・α-オレフィン・非共役ポリエン・スチレン共重合体、アクリロニトリル・エチレン・α-オレフィン・共役ポリエン・スチレン共重合体、メタアクリル酸・スチレン共重合体が好ましい。
 さらに、エチレンおよび炭素数3~20のα-オレフィンからなるエチレン・α-オレフィン共重合体がより好ましい。前述した熱可塑性樹脂組成物は、シラン化合物によって変性されていても良い。
Among these, an ethylene / α-olefin copolymer comprising ethylene and an α-olefin having 3 to 20 carbon atoms, a low density ethylene resin, a medium density ethylene resin, an ultra low density ethylene resin, propylene (co) heavy 1-butene (co) polymer, 4-methylpentene-1 (co) polymer, ethylene / cyclic olefin copolymer, ethylene / α-olefin / cyclic olefin copolymer, ethylene / α-olefin / non Conjugated polyene copolymers, ethylene / α-olefin / conjugated polyene copolymers, ethylene / aromatic vinyl copolymers, ethylene / α-olefin / aromatic vinyl copolymers and other olefin resins, ethylene / unsaturated anhydrous Carboxylic acid copolymers, ethylene / α-olefin / unsaturated carboxylic anhydride copolymers, ethylene / epoxy-containing unsaturated compounds Ethylene / α-olefin / epoxy-containing unsaturated compound copolymer, ethylene / acrylic acid copolymer, ethylene / unsaturated carboxylic acid copolymer such as ethylene / methacrylic acid copolymer, ethylene / ethyl acrylate Copolymers, unsaturated carboxylic acid ester (co) polymers, (meth) acrylic acid ester (co) polymers, ethylene / unsaturated carboxylic acid ester copolymers such as ethylene / methyl methacrylate copolymer, ethylene・ Ionomer resins such as acrylic acid metal salt copolymers, ethylene / methacrylic acid metal salt copolymers, cyclic olefin (co) polymers, α-olefins, aromatic vinyl compounds, aromatic polyene copolymers, ethylene α-olefin / aromatic vinyl compound / aromatic polyene copolymer, ethylene / aromatic vinyl compound / aromatic poly En copolymer, acrylonitrile / butadiene / styrene copolymer, styrene / conjugated diene copolymer, acrylonitrile / styrene copolymer, acrylonitrile / ethylene / α-olefin / non-conjugated polyene / styrene copolymer, acrylonitrile / ethylene / α-olefin / conjugated polyene / styrene copolymer and methacrylic acid / styrene copolymer are preferred.
Further, an ethylene / α-olefin copolymer composed of ethylene and an α-olefin having 3 to 20 carbon atoms is more preferable. The thermoplastic resin composition described above may be modified with a silane compound.
 なお、エチレン・α-オレフィン共重合体は、以下の要件a1)~a4)を満たすことが好ましい。
 a1)エチレンに由来する構成単位の含有割合が80~90mol%であるとともに、炭素数3~20のα-オレフィンに由来する構成単位の含有割合が10~20mol%である。
 a2)ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるMFRが0.5~50g/10分である。
 a3)ASTM D1505に準拠して測定される密度が0.865~0.884g/cmである。
 a4)ASTM D2240に準拠して測定されるショアA硬度が60~85である。
The ethylene / α-olefin copolymer preferably satisfies the following requirements a1) to a4).
a1) The content ratio of the structural unit derived from ethylene is 80 to 90 mol%, and the content ratio of the structural unit derived from the α-olefin having 3 to 20 carbon atoms is 10 to 20 mol%.
a2) Based on ASTM D1238, MFR measured under the conditions of 190 ° C. and 2.16 kg load is 0.5 to 50 g / 10 min.
a3) The density measured according to ASTM D1505 is 0.865 to 0.884 g / cm 3 .
a4) The Shore A hardness measured according to ASTM D2240 is 60 to 85.
 以下、要件a1)~a4)について説明する。 Hereinafter, requirements a1) to a4) will be described.
(要件a1)
 エチレン・α-オレフィン共重合体に含まれる、炭素数3~20のα-オレフィンに由来する構成単位(以下、「α-オレフィン単位」とも記す)の割合は、透明性、柔軟性、および製造効率のバランスの観点から、10~20mol%が好ましく、12~20mol%がより好ましく、13~18mol%が更に好ましい。
(Requirement a1)
The proportion of structural units derived from α-olefins having 3 to 20 carbon atoms (hereinafter also referred to as “α-olefin units”) contained in the ethylene / α-olefin copolymer is transparent, flexible, and manufactured. From the viewpoint of balance of efficiency, 10 to 20 mol% is preferable, 12 to 20 mol% is more preferable, and 13 to 18 mol% is still more preferable.
 なお、エチレン・α-オレフィン共重合体には、非共役ポリエンを含んでいてもよい。非共役ポリエンとしては、非共役不飽和結合を2個以上有する化合物を制限なく使用することができる。具体的には、非共役ポリエンとして、非共役環状ポリエン、非共役鎖状ポリエンのいずれも用いることができ、非共役環状ポリエンと非共役鎖状ポリエンを二種以上組み合わせて用いることもできる。また、非共役ポリエンとしては、炭素・炭素二重結合のうち、触媒で重合可能な炭素・炭素二重結合が1分子内に1個のみ存在する非共役ポリエンと、炭素・炭素二重結合のうち当該触媒で重合可能な炭素・炭素二重結合が1分子内に2個存在する非共役ポリエンのいずれを用いてもよい。このうち、重合可能な炭素・炭素二重結合が1分子中に1個のみ存在する非共役ポリエンには、両末端がビニル基(CH=CH-)である鎖状ポリエンは含まれない。このような非共役ポリエンにおいて2個以上の炭素・炭素二重結合が存在する場合には、1個の炭素・炭素二重結合のみが、分子末端にビニル基として存在し、他の炭素・炭素二重結合(C=C)は、分子鎖(主鎖及び側鎖を含む)中に内部オレフィン構造の形で存在していることが好ましい。なお、非共役環状ポリエン、非共役鎖状ポリエンの概念には、上述した重合可能な炭素・炭素二重結合が1分子中に1個のみ存在する非共役ポリエン、及び炭素・炭素二重結合のうち当該触媒で重合可能な炭素・炭素二重結合が1分子内に2個存在する非共役ポリエンも含まれる。また、共役鎖状ポリエンとしては、共役トリエン又はテトラエンも含まれる。 The ethylene / α-olefin copolymer may contain a non-conjugated polyene. As the non-conjugated polyene, a compound having two or more non-conjugated unsaturated bonds can be used without limitation. Specifically, as the non-conjugated polyene, either a non-conjugated cyclic polyene or a non-conjugated chain polyene can be used, and a non-conjugated cyclic polyene and a non-conjugated chain polyene can also be used in combination. The non-conjugated polyene includes a non-conjugated polyene in which only one carbon / carbon double bond that can be polymerized with a catalyst exists in one molecule, and a carbon / carbon double bond. Of these, any non-conjugated polyene having two carbon / carbon double bonds that can be polymerized with the catalyst may be used. Among these, the non-conjugated polyene in which only one polymerizable carbon / carbon double bond is present in one molecule does not include a chain polyene in which both ends are vinyl groups (CH 2 ═CH—). When there are two or more carbon / carbon double bonds in such a non-conjugated polyene, only one carbon / carbon double bond is present as a vinyl group at the molecular end, and other carbon / carbon double bonds are present. The double bond (C = C) is preferably present in the form of an internal olefin structure in the molecular chain (including the main chain and the side chain). The concept of non-conjugated cyclic polyene and non-conjugated chain polyene includes the above-described non-conjugated polyene having only one polymerizable carbon / carbon double bond in one molecule, and carbon / carbon double bond. Of these, non-conjugated polyenes in which two carbon / carbon double bonds that can be polymerized with the catalyst exist in one molecule are also included. The conjugated chain polyene also includes conjugated triene or tetraene.
 非共役ポリエンの具体例としては、国際公開第2005/105867号パンフレットの段落0061~0084、及び特開2008-308696号公報の段落0026~0035に記載の化合物を挙げることができる。 Specific examples of the non-conjugated polyene include compounds described in paragraphs 0061 to 0084 of WO 2005/105867 pamphlet and paragraphs 0026 to 0035 of JP 2008-308696 A.
 特に、重合可能な炭素・炭素二重結合が1分子中に1個のみ存在する非共役ポリエンとしては、炭素・炭素二重結合(不飽和結合)を1個有する脂環部分と、アルキリデン基等のメタロセン触媒で重合しない又は重合性が劣る内部オレフィン結合(炭素・炭素二重結合)を有する鎖状部分と、から構成されるポリエンを挙げることができる。具体的には、5-エチリデン-2-ノルボルネン(ENB)、5-プロピリデン-2-ノルボルネン、及び5-ブチリデン-2-ノルボルネン等を挙げることができる。また、前記炭素・炭素二重結合のうち、重合可能な炭素・炭素二重結合が1分子内に2個存在する非共役ポリエンの具体例としては、5-ビニル-2-ノルボルネン(VNB)、5-アリル-2-ノルボルネン等の5-アルケニル-2-ノルボルネン;2,5-ノルボルナジエン、ジシクロペンタジエン(DCPD)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3,8-ジエン等の脂環族ポリエン;1,7-オクタジエン、1,9-デカジエン等のα,ω-ジエン等を挙げることができる。 In particular, as non-conjugated polyene having only one polymerizable carbon / carbon double bond in one molecule, an alicyclic moiety having one carbon / carbon double bond (unsaturated bond), an alkylidene group, etc. And a chain portion having an internal olefin bond (carbon / carbon double bond) that is not polymerized or poorly polymerized by the metallocene catalyst. Specific examples include 5-ethylidene-2-norbornene (ENB), 5-propylidene-2-norbornene, and 5-butylidene-2-norbornene. Specific examples of the non-conjugated polyene having two polymerizable carbon / carbon double bonds in one molecule among the carbon / carbon double bonds include 5-vinyl-2-norbornene (VNB), 5-alkenyl-2-norbornene such as 5-allyl-2-norbornene; 2,5-norbornadiene, dicyclopentadiene (DCPD), tetracyclo [4.4.0.1 2,5 . Alicyclic polyenes such as 1 7,10 ] dodeca-3,8-diene; α, ω-dienes such as 1,7-octadiene and 1,9-decadiene.
 エチレン・α-オレフィン・非共役ポリエン共重合体となる場合の、非共役ポリエンに由来する構成単位(以下、「非共役ポリエン単位」とも記す)の割合は0.01~5.0mol%であり、好ましくは0.01~4.5mol%、更に好ましくは0.05~4.0mol%である。非共役ポリエン単位の含有割合が0.01mol%以上であると、架橋特性に優れる。一方、非共役ポリエン単位の含有割合が5.0mol%以下であると、フィルムにゲル状の異物が発生することを抑制することができる。 In the case of an ethylene / α-olefin / non-conjugated polyene copolymer, the proportion of structural units derived from non-conjugated polyene (hereinafter also referred to as “non-conjugated polyene units”) is 0.01 to 5.0 mol%. The amount is preferably 0.01 to 4.5 mol%, more preferably 0.05 to 4.0 mol%. When the content ratio of the non-conjugated polyene unit is 0.01 mol% or more, the crosslinking property is excellent. On the other hand, it can suppress that a gel-like foreign material generate | occur | produces in the film as the content rate of a nonconjugated polyene unit is 5.0 mol% or less.
(要件a2)
 ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるエチレン・α-オレフィン共重合体のメルトフローレ-ト(MFR)は、製造効率、絶縁抵抗、透湿性、ガラス等との密着性、および耐熱性のバランスの観点から、0.5~50g/10分であることが好ましく、10~45g/10分であることがより好ましく、10~40g/10分であることが更に好ましい。エチレン・α-オレフィン共重合体のMFRは、上述した重合反応の際の重合温度、重合圧力、並びに重合系内のエチレン及びα-オレフィンのモノマー濃度と水素濃度のモル比率等を調整することにより、調整することができる。
(Requirement a2)
According to ASTM D1238, the melt flow rate (MFR) of ethylene / α-olefin copolymer measured under the conditions of 190 ° C. and 2.16 kg load is the production efficiency, insulation resistance, moisture permeability, glass, etc. From the viewpoint of the balance between adhesion and heat resistance, it is preferably 0.5 to 50 g / 10 minutes, more preferably 10 to 45 g / 10 minutes, and further preferably 10 to 40 g / 10 minutes. preferable. The MFR of the ethylene / α-olefin copolymer is adjusted by adjusting the polymerization temperature, the polymerization pressure, the molar ratio of the ethylene and α-olefin monomer concentrations and the hydrogen concentration in the polymerization system, and the like. Can be adjusted.
(要件a3)
 ASTM D1505に準拠して測定されるエチレン・α-オレフィン共重合体の密度は、透明性、製造効率、柔軟性、および耐熱性のバランスの観点から、0.865~0.884g/cmであることが好ましく、0.865~0.880g/cmであることがより好ましい。エチレン・α-オレフィン共重合体の密度は、エチレン単位の含有割合とα-オレフィン単位の含有割合とのバランスにより調整することができる。即ち、エチレン単位の含有割合を高くすると結晶性が高くなり、密度の高いエチレン・α-オレフィン共重合体を得ることができる。一方、エチレン単位の含有割合を低くすると結晶性が低くなり、密度の低いエチレン・α-オレフィン共重合体を得ることができる。
(Requirement a3)
The density of the ethylene / α-olefin copolymer measured according to ASTM D1505 is 0.865 to 0.884 g / cm 3 from the viewpoint of balance of transparency, production efficiency, flexibility, and heat resistance. It is preferably 0.865 to 0.880 g / cm 3 . The density of the ethylene / α-olefin copolymer can be adjusted by a balance between the content ratio of ethylene units and the content ratio of α-olefin units. That is, when the content ratio of the ethylene unit is increased, the crystallinity is increased and a high-density ethylene / α-olefin copolymer can be obtained. On the other hand, when the content ratio of the ethylene unit is lowered, the crystallinity is lowered and an ethylene / α-olefin copolymer having a low density can be obtained.
(要件a4)
 ASTM D2240に準拠して測定される、エチレン・α-オレフィン共重合体のショアA硬度は、製造効率、耐熱性、透明性、及び柔軟性のバランスの観点から、60~85であることが好ましく、60~83であることがより好ましく、65~80であることが更に好ましい。エチレン・α-オレフィン共重合体のショアA硬度は、エチレン・α-オレフィン共重合体のエチレン単位の含有割合や密度を制御することにより、調整することができる。即ち、エチレン単位の含有割合が高く、密度が高いエチレン・α-オレフィン共重合体は、ショアA硬度が高くなる。一方、エチレン単位の含有割合が低く、密度が低いエチレン・α-オレフィン共重合体は、ショアA硬度が低くなる。
(Requirement a4)
The Shore A hardness of the ethylene / α-olefin copolymer, measured according to ASTM D2240, is preferably 60 to 85 from the viewpoint of balance between production efficiency, heat resistance, transparency, and flexibility. 60 to 83 is more preferable, and 65 to 80 is still more preferable. The Shore A hardness of the ethylene / α-olefin copolymer can be adjusted by controlling the content and density of the ethylene unit in the ethylene / α-olefin copolymer. That is, an ethylene / α-olefin copolymer having a high ethylene unit content and high density has a high Shore A hardness. On the other hand, an ethylene / α-olefin copolymer having a low content of ethylene units and a low density has a low Shore A hardness.
 上記の要件a1)~a4)を満たすエチレン・α-オレフィン共重合体を含む熱可塑性樹脂組成物からなるフィルムでは、ブロッキングやエア残りを生じやすくなるが本発明により効果的に改善される。 A film made of a thermoplastic resin composition containing an ethylene / α-olefin copolymer satisfying the above requirements a1) to a4) tends to cause blocking and air remaining, but is effectively improved by the present invention.
 上記のようなエチレン・α-オレフィン共重合体を含むフィルムとしては、国際公開第2012/60086号パンフレット、国際公開第2012/046456号パンフレットに記載のものを用いることができる。 As the film containing the ethylene / α-olefin copolymer as described above, those described in International Publication No. 2012/60086 and International Publication No. 2012/046456 can be used.
(エチレン系樹脂組成物)
 本実施形態に係る太陽電池封止用フィルムは、前述のエチレン・α-オレフィン共重合体100重量部とエチレン性不飽和シラン化合物などのシランカップリング剤0.1~5重量部と、有機過酸化物などの架橋剤0.1~3重量部とを含有するエチレン系樹脂組成物からなることが、好ましい態様である。
(Ethylene resin composition)
A film for encapsulating a solar cell according to this embodiment comprises 100 parts by weight of the aforementioned ethylene / α-olefin copolymer, 0.1 to 5 parts by weight of a silane coupling agent such as an ethylenically unsaturated silane compound, A preferred embodiment is composed of an ethylene-based resin composition containing 0.1 to 3 parts by weight of a crosslinking agent such as an oxide.
 さらに、エチレン系樹脂組成物には、エチレン・α-オレフィン共重合体100重量部に対し、エチレン性不飽和シラン化合物が0.1~4重量部、および有機過酸化物が0.2~3重量部含有されることが好ましく、エチレン・α-オレフィン共重合体100重量部に対し、エチレン性不飽和シラン化合物が0.1~3重量部、有機過酸化物が0.2~2.5重量部含有されることがとくに好ましい。 Further, the ethylene-based resin composition contains 0.1 to 4 parts by weight of an ethylenically unsaturated silane compound and 0.2 to 3 parts of an organic peroxide with respect to 100 parts by weight of the ethylene / α-olefin copolymer. It is preferably contained in an amount of 0.1 to 3 parts by weight of the ethylenically unsaturated silane compound and 0.2 to 2.5 parts of the organic peroxide with respect to 100 parts by weight of the ethylene / α-olefin copolymer. It is particularly preferable to contain parts by weight.
(エチレン性不飽和シラン化合物)
 エチレン性不飽和シラン化合物が0.1重量部以上であると、接着性を向上させることができる。一方、エチレン性不飽和シラン化合物が4重量部以下であると、太陽電池封止用フィルムのコストと性能のバランスを良好にすることができ、また、エチレン性不飽和シラン化合物を太陽電池モジュールのラミネート時にエチレン・α-オレフィン共重合体にグラフト反応させるための有機過酸化物の添加量を低減できる。このため、太陽電池封止用フィルムを押出機でフィルム状にして得る際のゲル化を抑制することができる。このため、押出機のトルクが低下するため、フィルム成形を容易にすることができる。また、押出機内でゲル物の発生が抑制できるため、フィルムの表面における不要な凹凸の発生を抑制でき、外観の悪化を抑制することできる。
(Ethylenically unsaturated silane compound)
Adhesiveness can be improved as an ethylenically unsaturated silane compound is 0.1 weight part or more. On the other hand, when the ethylenically unsaturated silane compound is 4 parts by weight or less, the balance between cost and performance of the solar cell sealing film can be improved, and the ethylenically unsaturated silane compound can be used in the solar cell module. It is possible to reduce the amount of organic peroxide added to cause graft reaction to the ethylene / α-olefin copolymer during lamination. For this reason, the gelatinization at the time of obtaining the film for solar cell sealing into a film form with an extruder can be suppressed. For this reason, since the torque of an extruder falls, film shaping | molding can be made easy. Moreover, since generation | occurrence | production of a gel thing can be suppressed in an extruder, generation | occurrence | production of the unnecessary unevenness | corrugation in the surface of a film can be suppressed, and the deterioration of an external appearance can be suppressed.
 なお、フィルム内部にゲル物があると、電圧を印加した場合にゲル物周辺にクラックが生じ、絶縁破壊電圧が低下するが、エチレン性不飽和シラン化合物の含有量を4重量部以下にすることで、絶縁破壊電圧の低下を抑制することができる。また、フィルム内部にゲル物があるとゲル物界面において透湿し易くなるが、エチレン性不飽和シラン化合物の含有量を4重量部以下にすることで、透湿性の低下を抑制することもできる。 If there is a gel in the film, cracks will occur around the gel when a voltage is applied, and the dielectric breakdown voltage will decrease, but the content of the ethylenically unsaturated silane compound should be 4 parts by weight or less. Thus, a decrease in dielectric breakdown voltage can be suppressed. In addition, when there is a gel material inside the film, moisture permeation easily occurs at the gel material interface. However, by making the content of the ethylenically unsaturated silane compound 4 parts by weight or less, it is possible to suppress a decrease in moisture permeability. .
 エチレン性不飽和シラン化合物は、従来公知のものが使用でき、とくに制限はない。具体的には、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β-メトキシエトキシシラン)、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシランなどが使用できる。好ましくは、接着性が良好なγ-グリシドキシプロピルメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。 A conventionally well-known thing can be used for an ethylenically unsaturated silane compound, and there is no restriction | limiting in particular. Specifically, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxysilane), γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane Etc. can be used. Preferred are γ-glycidoxypropylmethoxysilane, γ-aminopropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, and vinyltriethoxysilane, which have good adhesion.
(有機過酸化物)
 有機過酸化物は、エチレン性不飽和シラン化合物と、エチレン・α-オレフィン共重合体とのグラフト変性の際のラジカル開始剤として、さらに、エチレン・α-オレフィン共重合体の太陽電池モジュールのラミネート成形時の架橋反応の際のラジカル開始剤として用いられる。エチレン・α-オレフィン共重合体に、エチレン性不飽和シラン化合物をグラフト変性することにより、表面側透明保護部材、太陽電池セル、裏面側保護部材等との接着性が良好な太陽電池モジュールが得られる。さらに、エチレン・α-オレフィン共重合体を架橋することにより、耐熱性、接着性に優れた太陽電池モジュールを得ることができる。
(Organic peroxide)
The organic peroxide is used as a radical initiator for graft modification of an ethylenically unsaturated silane compound and an ethylene / α-olefin copolymer, and further, an ethylene / α-olefin copolymer solar cell module laminate. Used as a radical initiator in the crosslinking reaction during molding. By graft-modifying an ethylenically unsaturated silane compound to the ethylene / α-olefin copolymer, a solar cell module having good adhesion to the surface side transparent protective member, solar cell, back side protective member, etc. is obtained. It is done. Further, by crosslinking the ethylene / α-olefin copolymer, a solar cell module having excellent heat resistance and adhesiveness can be obtained.
 好ましく用いられる有機過酸化物は、エチレン・α-オレフィン共重合体にエチレン性不飽和シラン化合物をグラフト変性したり、エチレン・α-オレフィン共重合体を架橋したりすることが可能なものであればよいが、押出フィルム成形での生産性と太陽電池モジュールのラミネート成形時の架橋速度のバランスから、有機過酸化物の1分間半減期温度が100~170℃である。有機過酸化物の1分間半減期温度が100℃以上であると、押出フィルム成形時に樹脂組成物から得られる太陽電池封止用フィルムにゲルが発生するのを防ぐことができ、押出機のトルクが低下するため、フィルム成形を容易にすることができる。また、押出機内でゲル物の発生が抑制できるため、フィルムの表面における不要な凹凸の発生を抑制でき、外観の悪化を抑制することできる。 The organic peroxide preferably used is one that can graft-modify an ethylenically unsaturated silane compound to the ethylene / α-olefin copolymer or crosslink the ethylene / α-olefin copolymer. However, the one-minute half-life temperature of the organic peroxide is 100 to 170 ° C. from the balance between the productivity in extrusion film forming and the crosslinking rate in the lamination of the solar cell module. When the one-minute half-life temperature of the organic peroxide is 100 ° C. or higher, it is possible to prevent the gel from being generated on the solar cell sealing film obtained from the resin composition during extrusion film molding, and the torque of the extruder Decreases, film formation can be facilitated. Moreover, since generation | occurrence | production of a gel thing can be suppressed in an extruder, generation | occurrence | production of the unnecessary unevenness | corrugation in the surface of a film can be suppressed, and the deterioration of an external appearance can be suppressed.
 なお、フィルム内部にゲル物があると、電圧を印加した場合にゲル物周辺にクラックが生じ、絶縁破壊電圧が低下するが、有機過酸化物の1分間半減期温度を100℃以上にすることで、絶縁破壊電圧の低下を抑制することができる。また、フィルム内部にゲル物があるとゲル物界面において透湿し易くなるが、有機過酸化物の1分間半減期温度を100℃以上にすることで、透湿性の低下を抑制することもできる。 If there is a gel in the film, a crack will occur around the gel when a voltage is applied, and the dielectric breakdown voltage will decrease, but the half-life temperature of the organic peroxide will be 100 ° C or higher. Thus, a decrease in dielectric breakdown voltage can be suppressed. In addition, if there is a gel material inside the film, moisture permeation easily occurs at the gel material interface. However, by reducing the one-minute half-life temperature of the organic peroxide to 100 ° C. or higher, it is possible to suppress a decrease in moisture permeability. .
 一方、有機過酸化物の1分間半減期温度が170℃以下であると、太陽電池モジュールのラミネート成形時の架橋速度の低下を抑制できるため、太陽電池モジュールの生産性の低下を防ぐことができる。また、太陽電池封止用フィルムの耐熱性、接着性の低下を防ぐこともできる。 On the other hand, when the one-minute half-life temperature of the organic peroxide is 170 ° C. or lower, it is possible to suppress a decrease in the crosslinking rate during the lamination molding of the solar cell module, and thus it is possible to prevent a decrease in the productivity of the solar cell module. . Moreover, the heat resistance of a solar cell sealing film and the fall of adhesiveness can also be prevented.
 有機過酸化物としては公知のものが使用できる。1分間半減期温度が100~170℃の範囲にある有機過酸化物の好ましい具体例としては、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジベンゾイルパーオキサイド、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレイン酸、1,1-ジ(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン、t-アミルパーオキシイソノナノエート、t-アミルパーオキシノルマルオクトエート、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-アミル-パーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、2,2-ジ(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、などが挙げられる。好ましくは、ジラウロイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、t-ブチルパーオキシベンゾエートなどが挙げられる。 Known organic peroxides can be used. Preferred examples of the organic peroxide having a 1 minute half-life temperature in the range of 100 to 170 ° C. include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate Dibenzoyl peroxide, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1 , 1-Di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylperoxy) cyclohexane, t-amylperoxyisononanoate, t-amylperoxynormal Octoate, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di ( -Butylperoxy) cyclohexane, t-butylperoxyisopropyl carbonate, t-butylperoxy-2-ethylhexyl carbonate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-amyl-peroxy Examples include benzoate, t-butyl peroxyacetate, t-butyl peroxyisononanoate, 2,2-di (t-butylperoxy) butane, t-butyl peroxybenzoate, and the like. Preferably, dilauroyl peroxide, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, t-butyl peroxyisononanoate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxybenzoate, etc. Is mentioned.
(紫外線吸収剤、光安定化剤、耐熱安定剤)
 エチレン系樹脂組成物には、紫外線吸収剤、光安定化剤、および耐熱安定剤からなる群より選択される少なくとも一種の添加剤が含有されることが好ましい。これらの添加剤の配合量は、エチレン・α-オレフィン共重合体100重量部に対して、それぞれ0.005~5重量部であることが好ましい。さらに、上記三種から選ばれる少なくとも二種の添加剤を含有することが好ましく、とくに、上記三種の全てが含有されていることが好ましい。上記添加剤の配合量が上記範囲にあると、高温高湿への耐性、ヒートサイクルの耐性、耐候安定性、および耐熱安定性を向上する効果を十分に確保し、かつ、太陽電池封止用フィルムの透明性や表面側透明保護部材、太陽電池セル、裏面側保護部材等との接着性の低下を防ぐことができるので好ましい。
(UV absorber, light stabilizer, heat stabilizer)
The ethylene resin composition preferably contains at least one additive selected from the group consisting of ultraviolet absorbers, light stabilizers, and heat stabilizers. The amount of these additives is preferably 0.005 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. Furthermore, it is preferable to contain at least two kinds of additives selected from the above three kinds, and it is particularly preferred that all of the above three kinds are contained. When the blending amount of the above additive is within the above range, the effect of improving the resistance to high temperature and high humidity, heat cycle resistance, weather resistance stability, and heat stability is sufficiently secured, and for solar cell sealing Since transparency of a film and the adhesiveness fall with a surface side transparent protection member, a photovoltaic cell, a back surface side protection member, etc. can be prevented, it is preferable.
 紫外線吸収剤としては、具体的には、2-ヒドロキシ-4-ノルマル-オクチルオキシベンゾフェノン、2-ヒドロキシ-4メトキシベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4-カルボキシベンゾフェノン、2-ヒドロキシ-4-N-オクトキシベンゾフェノンなどのベンゾフェノン系;2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾールなどのベンゾトリアリゾール系;フェニルサルチレート、p-オクチルフェニルサルチレートなどのサリチル酸エステル系のものが用いられる。 Specific examples of the ultraviolet absorber include 2-hydroxy-4-normal-octyloxybenzophenone, 2-hydroxy-4methoxybenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy- Benzophenones such as 4-carboxybenzophenone and 2-hydroxy-4-N-octoxybenzophenone; 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-5 -Methylphenyl) benzotriazoles such as benzotriazole; salicylic acid esters such as phenylsalicylate and p-octylphenylsulcylate are used.
 光安定化剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]などのヒンダードアミン系、ヒンダードピペリジン系化合物などのものが好ましく使用される。 Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3, 5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino} Hindered amine compounds such as hindered piperidine compounds and the like are preferably used.
 耐熱安定剤としては、具体的には、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4'-ジイルビスホスフォナイト、およびビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトなどのホスファイト系耐熱安定剤;3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとo-キシレンとの反応生成物などのラクトン系耐熱安定剤;3,3',3",5,5',5"-ヘキサ-tert-ブチル-a,a',a"-(メチレン-2,4,6-トリイル)トリ-p-クレゾール、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ベンジルベンゼン、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]などのヒンダードフェノール系耐熱安定剤;硫黄系耐熱安定剤;アミン系耐熱安定剤などを挙げることができる。また、これらを一種単独でまたは二種以上を組み合わせて用いることもできる。中でも、ホスファイト系耐熱安定剤、およびヒンダードフェノール系耐熱安定剤が好ましい。 Specific examples of heat-resistant stabilizers include tris (2,4-di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester. Phosphorous acid, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylbisphosphonite, and bis (2,4-di-tert-butylphenyl) Phosphite heat stabilizers such as pentaerythritol diphosphite; lactone heat stabilizers such as the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene; 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(methylene-2,4,6-triyl) tri-p-cresol, 1,3 , 5-trime Tyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxyphenyl) benzylbenzene, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], etc. Hindered phenol heat stabilizers, sulfur heat stabilizers, amine heat stabilizers, etc. In addition, these can be used alone or in combination of two or more. A heat resistant stabilizer and a hindered phenol heat stabilizer are preferable.
(その他の添加剤)
 太陽電池封止用フィルムを構成するエチレン系樹脂組成物には、以上詳述した諸成分以外の各種成分を、本発明の目的を損なわない範囲において、適宜含有させることができる。例えば、エチレン・α-オレフィン共重合体以外の各種ポリオレフィン、スチレン系やエチレン系ブロック共重合体、プロピレン系重合体などが挙げられる。これらは、上記エチレン・α-オレフィン共重合体100重量部に対して、0.0001~50重量部、好ましくは0.001~40重量部含有されていてもよい。また、ポリオレフィン以外の各種樹脂、および/または各種ゴム、可塑剤、充填剤、顔料、染料、帯電防止剤、抗菌剤、防黴剤、難燃剤、架橋助剤、および分散剤などから選ばれる一種以上の添加剤を適宜含有することができる。
(Other additives)
Various components other than the components detailed above can be appropriately contained in the ethylene resin composition constituting the solar cell sealing film as long as the object of the present invention is not impaired. Examples include various polyolefins other than ethylene / α-olefin copolymers, styrene-based, ethylene-based block copolymers, and propylene-based polymers. These may be contained in an amount of 0.0001 to 50 parts by weight, preferably 0.001 to 40 parts by weight, based on 100 parts by weight of the ethylene / α-olefin copolymer. One kind selected from various resins other than polyolefin, and / or various rubbers, plasticizers, fillers, pigments, dyes, antistatic agents, antibacterial agents, antifungal agents, flame retardants, crosslinking aids, and dispersing agents. The above additives can be appropriately contained.
 とくに、架橋助剤を含有させる場合において、架橋助剤の配合量は、エチレン・α-オレフィン共重合体100重量部に対して、0.05~5重量部であると、適度な架橋構造を有することができ、耐熱性、機械物性、接着性を向上できるため好ましい。 In particular, when a crosslinking aid is contained, the amount of crosslinking aid is 0.05 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. It is preferable because it can have heat resistance, mechanical properties, and adhesiveness.
 架橋助剤としては、オレフィン系樹脂に対して一般に使用される従来公知のものが使用できる。このような架橋助剤は、分子内に二重結合を二個以上有する化合物である。具体的には、t-ブチルアクリレート、ラウリルアクリレート、セチルアクリレート、ステアリルアクリレート、2-メトキシエチルアクリレート、エチルカルビトールアクリレート、メトキシトリプロピレングリコールアクリレートなどのモノアクリレート;t-ブチルメタクリレート、ラウリルメタクリレート、セチルメタクリレート、ステアリルメタクリレート、メトキシエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレートなどのモノメタクリレート;1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレートなどのジアクリレート;1,3-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレートネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレートなどのジメタクリレート;トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレートなどのトリアクリレート;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレートなどのトリメタクリレート;ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレートなどのテトラアクリレート;ジビニルベンゼン、ジ-i-プロペニルベンゼンなどのジビニル芳香族化合物;トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌレート;ジアリルフタレートなどのジアリル化合物;トリアリル化合物:p-キノンジオキシム、p-p'-ジベンゾイルキノンジオキシムなどのオキシム:フェニルマレイミドなどのマレイミドが挙げられる。これらの架橋助剤の中でより好ましいのは、ジアクリレート、ジメタクリレート、ジビニル芳香族化合物、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレートなどのトリアクリレート;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレートなどのトリメタクリレート;ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレートなどのテトラアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌレート、ジアリルフタレートなどのジアリル化合物;トリアリル化合物:p-キノンジオキシム、p-p'-ジベンゾイルキノンジオキシムなどのオキシム:フェニルマレイミドなどのマレイミドである。さらにこれらの中でとくに好ましいのは、トリアリルイソシアヌレートであり、ラミネート後の太陽電池封止用フィルムの気泡発生や架橋特性のバランスが最も優れる。 As the crosslinking aid, conventionally known ones generally used for olefinic resins can be used. Such a crosslinking aid is a compound having two or more double bonds in the molecule. Specifically, monoacrylates such as t-butyl acrylate, lauryl acrylate, cetyl acrylate, stearyl acrylate, 2-methoxyethyl acrylate, ethyl carbitol acrylate, methoxytripropylene glycol acrylate; t-butyl methacrylate, lauryl methacrylate, cetyl methacrylate Monomethacrylate such as stearyl methacrylate, methoxyethylene glycol methacrylate, methoxypolyethylene glycol methacrylate; 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, neopentyl glycol diacrylate , Diethylene glycol diacrylate, tetraethylene glycol diacrylate Diacrylates such as polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate; 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate neo Dimethacrylates such as pentyl glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate; triacrylates such as trimethylolpropane triacrylate, tetramethylolmethane triacrylate, pentaerythritol triacrylate; Trimethylolpropane trimethacrylate Trimethacrylates such as methylolethane trimethacrylate; Tetraacrylates such as pentaerythritol tetraacrylate and tetramethylolmethane tetraacrylate; Divinyl aromatic compounds such as divinylbenzene and di-i-propenylbenzene; Triallyl cyanurate and triallyl isocyanurate A diallyl compound such as diallyl phthalate; a triallyl compound: p-quinonedioxime, an oxime such as pp′-dibenzoylquinonedioxime, and a maleimide such as phenylmaleimide. Among these crosslinking aids, more preferred are triacrylates such as diacrylate, dimethacrylate, divinyl aromatic compound, trimethylolpropane triacrylate, tetramethylolmethane triacrylate, pentaerythritol triacrylate; trimethylolpropane trimethacrylate , Trimethacrylates such as trimethylolethane trimethacrylate; tetraacrylates such as pentaerythritol tetraacrylate and tetramethylolmethane tetraacrylate; cyanurates such as triallyl cyanurate and triallyl isocyanurate; diallyl compounds such as diallyl phthalate; triallyl compound: p -Oximes such as quinonedioxime and pp'-dibenzoylquinonedioxime: phenylmaleimi And maleimides. Further, among these, triallyl isocyanurate is particularly preferable, and the balance between the generation of bubbles and the crosslinking property of the solar cell sealing film after lamination is most excellent.
 ここで、フィルム10の23℃における引張弾性率は、6~13MPaであることが好ましい。当該引張弾性率は、たとえば以下のように測定される。まず、フィルム10と同一の組成からなる厚み1mmのフィルムを準備する。そして、当該フィルムをJIS K7113に準拠してダンベルで打ち抜き、オートグラフ(島津製作所社製:AGS-J)にて、チャック間:40mm、引張速度:1mm/minで測定する。このとき、測定環境の温度は23℃、湿度は50%Rhとする。 Here, the tensile elastic modulus at 23 ° C. of the film 10 is preferably 6 to 13 MPa. The tensile elastic modulus is measured as follows, for example. First, a 1 mm thick film having the same composition as the film 10 is prepared. Then, the film is punched with a dumbbell according to JIS K7113, and measured with an autograph (manufactured by Shimadzu Corporation: AGS-J) at a chuck interval of 40 mm and a tensile speed of 1 mm / min. At this time, the temperature of the measurement environment is 23 ° C. and the humidity is 50% Rh.
 上記の様な引張弾性率を有するフィルム10では、ブロッキングやエア残りを生じやすくなるが本発明により効果的に改善される。 In the film 10 having the tensile modulus as described above, blocking and air remaining are likely to occur, but this is effectively improved by the present invention.
 本実施形態に係るフィルム10の製造方法としては通常用いられている方法が利用できるが、ニーダー、バンバリミキサー、押出機などにより溶融ブレンドすることにより製造することが好ましい。とくに、連続生産が可能な押出機での製造が好ましい。 As a method for producing the film 10 according to the present embodiment, a commonly used method can be used, but it is preferably produced by melt blending using a kneader, a Banbury mixer, an extruder, or the like. In particular, the production with an extruder capable of continuous production is preferred.
 太陽電池封止用フィルム10の成形方法にはとくに制限は無いが、公知の各種の成形方法(キャスト成形、押出フィルム成形、インフレーション成形、射出成形、圧縮成形など)を採用することが可能である。とくに、以下のように太陽電池封止用フィルムを得ることが最も好ましい実施形態である。すなわち、例えば、ポリ袋などの袋の中で人力でのブレンドや、ヘンシェルミキサー、タンブラー、スーパーミキサーなどの攪拌混合機を用いてエチレン・α-オレフィン共重合体、エチレン性不飽和シラン化合物、有機過酸化物、紫外線吸収剤、光安定化剤、耐熱安定剤、および必要に応じてその他添加剤をブレンドし、組成物を得る。そして、得られた組成物を押出フィルム成形のホッパーに投入し、溶融混練を行いつつ押出フィルム成形を行い、太陽電池封止用フィルムを得る。押出温度範囲としては、押出温度が100~130℃である。押出温度を100℃以上にすると、太陽電池封止用フィルムの生産性を向上させることができる。押出温度を130℃以下にすると、太陽電池封止用フィルムに用いられるエチレン系樹脂組成物を押出機でフィルム化して太陽電池封止用フィルムを得る際にゲル化を起こしにくくなる。そのため、押出機のトルクが上昇を防ぎ、フィルム成形が容易にできる。また、シートの表面に不要な凹凸が発生しにくくなるため、外観の悪化を防ぐことができる。また、電圧をかけたときフィルム内部におけるクラックの発生を抑制できるため、絶縁破壊電圧の低下を防止することができる。さらに、透湿性の低下も抑制できる。 Although there is no restriction | limiting in particular in the shaping | molding method of the film 10 for solar cell sealing, It is possible to employ | adopt well-known various shaping | molding methods (Cast shaping | molding, extrusion film shaping | molding, inflation molding, injection molding, compression molding, etc.). . In particular, it is the most preferred embodiment to obtain a solar cell sealing film as follows. That is, for example, blending by hand in a bag such as a plastic bag, or using an agitator / mixer such as a Henschel mixer, tumbler, or super mixer, ethylene / α-olefin copolymer, ethylenically unsaturated silane compound, organic A composition is obtained by blending a peroxide, an ultraviolet absorber, a light stabilizer, a heat stabilizer, and other additives as required. And the obtained composition is thrown into the extrusion film molding hopper, extrusion film molding is performed while melt-kneading, and a solar cell sealing film is obtained. As the extrusion temperature range, the extrusion temperature is 100 to 130 ° C. When the extrusion temperature is 100 ° C. or higher, the productivity of the solar cell sealing film can be improved. When the extrusion temperature is 130 ° C. or lower, gelation hardly occurs when the ethylene resin composition used for the solar cell sealing film is formed into a film by an extruder to obtain a solar cell sealing film. Therefore, the torque of the extruder can be prevented from increasing, and film formation can be facilitated. Moreover, since it becomes difficult to generate unnecessary unevenness on the surface of the sheet, it is possible to prevent deterioration of the appearance. Moreover, since generation | occurrence | production of the crack in a film inside can be suppressed when a voltage is applied, the fall of a dielectric breakdown voltage can be prevented. Furthermore, a decrease in moisture permeability can also be suppressed.
 さらに、フィルム10は、太陽電池モジュールサイズに合わせて裁断された枚葉形式、または太陽電池モジュールを作製する直前にサイズに合わせて裁断可能なロール形式にて用いることができる。 Furthermore, the film 10 can be used in a sheet type cut according to the size of the solar cell module, or a roll type that can be cut according to the size immediately before producing the solar cell module.
 フィルム10は、表面または裏面保護のためのハードコート層、接着層、反射防止層、ガスバリア層、防汚層などを含んでも良い。材質で分類するならば、紫外線硬化性樹脂からなる層、熱硬化性樹脂からなる層、ポリオレフィン樹脂からなる層、カルボン酸変性ポリオレフィン樹脂からなる層、フッ素含有樹脂からなる層、環状オレフィン(共)重合体からなる層、無機化合物からなる層などを挙げることができる。 The film 10 may include a hard coat layer for protecting the front surface or the back surface, an adhesive layer, an antireflection layer, a gas barrier layer, an antifouling layer, and the like. If classified by material, layer made of UV curable resin, layer made of thermosetting resin, layer made of polyolefin resin, layer made of carboxylic acid modified polyolefin resin, layer made of fluorine-containing resin, cyclic olefin (co) Examples thereof include a layer made of a polymer and a layer made of an inorganic compound.
 表面に凹部が形成されたフィルム10は、特定の形状を有するエンボスロールを用いてエンボス加工を行うことで製造することができる。エンボスロールはたとえば、金属製のロールの表面に、フィルムに形成したい凹部に応じて設計した凸部パターンを、従来技術に準じた金属加工にて形成して準備することができる。かかる場合、エンボスロール表面の凸部の大きさ、形状、位置、深さ等を調整することで、フィルムロール20に形成される凹部100の形状、平均深さ、上面110の面積率、周期p、角度r等を調整することができる。 The film 10 having a recess formed on the surface can be produced by embossing using an embossing roll having a specific shape. For example, the embossing roll can be prepared by forming, on the surface of a metal roll, a convex part pattern designed according to the concave part desired to be formed on the film by metal processing according to the prior art. In such a case, by adjusting the size, shape, position, depth, etc. of the protrusions on the surface of the embossing roll, the shape, average depth, area ratio of the upper surface 110, period p, and the like are formed on the film roll 20. The angle r can be adjusted.
 上述の様な太陽電池封止用フィルムでは、フィルム面同士のブロッキングが抑制され、輸送保管効率が高い太陽電池封止用フィルムが得られる。また、上述の様な太陽電池封止用フィルムを太陽電池モジュールの製造に用いれば、空気巻き込みによる気泡の発生を抑えることができる。 In the solar cell sealing film as described above, blocking between the film surfaces is suppressed, and a solar cell sealing film with high transport storage efficiency is obtained. Moreover, if the film for solar cell sealing as described above is used for manufacturing a solar cell module, the generation of bubbles due to air entrainment can be suppressed.
 本実施形態に係るフィルム10を用いて太陽電池モジュールを製造する方法について以下に説明する。
 図6は、本実施形態に係る太陽電池モジュールの製造方法の処理を説明する断面模式図である。
 本実施形態に係る太陽電池モジュールの製造方法は、準備工程および封止工程を含む。準備工程では、太陽電池封止用フィルム10を準備する。封止工程では、表面側透明保護部材40、第1の太陽電池封止用フィルム120、太陽電池セル30、第2の太陽電池封止用フィルム140、及び裏面側保護部材42をこの順に積層して積層体を形成するとともに、積層体を加熱及び加圧して一体化する。以下に詳しく説明する。
A method for producing a solar cell module using the film 10 according to this embodiment will be described below.
FIG. 6 is a schematic cross-sectional view illustrating the process of the method for manufacturing the solar cell module according to this embodiment.
The manufacturing method of the solar cell module according to the present embodiment includes a preparation process and a sealing process. In the preparation step, the solar cell sealing film 10 is prepared. In the sealing step, the front surface side transparent protective member 40, the first solar cell sealing film 120, the solar battery cell 30, the second solar cell sealing film 140, and the back surface side protective member 42 are laminated in this order. The laminate is formed, and the laminate is integrated by heating and pressing. This will be described in detail below.
 積層体は、例えば、表面側透明保護部材40、第1の太陽電池封止用フィルム120、太陽電池セル30、第2の太陽電池封止用フィルム140、及び、裏面側保護部材42をこの順に積層したものである。 The laminate includes, for example, the front surface side transparent protective member 40, the first solar cell sealing film 120, the solar battery cell 30, the second solar cell sealing film 140, and the back surface side protective member 42 in this order. Laminated.
 表面側透明保護部材40は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、耐候性、撥水性、耐汚染性、機械強度をはじめとして、太陽電池モジュールの屋外暴露における長期信頼性を確保するための性能を有することが好ましい。また、太陽光を有効に活用するために、光学ロスの小さい、透明性の高いシートであることが好ましい。 The surface-side transparent protective member 40 is not particularly limited, but is located on the outermost layer of the solar cell module, and therefore has long-term reliability in outdoor exposure of the solar cell module including weather resistance, water repellency, contamination resistance, mechanical strength, and the like. It is preferable to have performance for ensuring the property. Moreover, in order to utilize sunlight effectively, it is preferable that it is a highly transparent sheet | seat with a small optical loss.
 表面側透明保護部材40の材料としては、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、フッ素樹脂、アクリル樹脂、環状オレフィン(共)重合体、エチレン-酢酸ビニル共重合体などからなる樹脂フィルムやガラス基板などが挙げられる。ガラス基板を用いる場合、ガラス基板は、波長350~1400nmの光の全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。かかるガラス基板としては、赤外部の吸収の少ない白板ガラスを使用するのが一般的であるが、青板ガラスであっても厚さが3mm以下であれば太陽電池モジュールの出力特性への影響は少ない。また、ガラス基板の機械的強度を高めるために熱処理により強化ガラスを得ることができるが、熱処理無しのフロート板ガラスを用いてもよい。また、ガラス基板の受光面側に反射を抑えるために反射防止のコーティングをしてもよい。 As the material of the surface side transparent protective member 40, a resin film or glass substrate made of polyester resin such as polyethylene terephthalate (PET), fluorine resin, acrylic resin, cyclic olefin (co) polymer, ethylene-vinyl acetate copolymer, etc. Etc. When a glass substrate is used, the glass substrate preferably has a total light transmittance of light having a wavelength of 350 to 1400 nm of 80% or more, and more preferably 90% or more. As such a glass substrate, it is common to use white plate glass with little absorption in the infrared region, but even blue plate glass has little influence on the output characteristics of the solar cell module as long as the thickness is 3 mm or less. . Further, tempered glass can be obtained by heat treatment to increase the mechanical strength of the glass substrate, but float plate glass without heat treatment may be used. Further, an antireflection coating may be provided on the light receiving surface side of the glass substrate in order to suppress reflection.
 裏面側保護部材42は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、上述の表面側透明保護部材40と同様に、耐候性、機械強度などの諸特性を求められる。したがって、表面側透明保護部材40と同様の材質で裏面側保護部材42を構成してもよい。すなわち、表面側透明保護部材40として用いられる上述の各種材料を、裏面側保護部材42としても用いることができる。特に、ポリエステル樹脂、およびガラスを好ましく用いることができる。また、裏面側保護部材42は、太陽光の通過を前提としないため、表面側透明保護部材40で求められる透明性は必ずしも要求されない。そこで、太陽電池モジュールの機械的強度を増すために、あるいは温度変化による歪、反りを防止するために、補強板を張り付けてもよい。補強板は、例えば、鋼板、プラスチック板、FRP(ガラス繊維強化プラスチック)板などを好ましく使用することができる。 Although the back surface side protection member 42 is not particularly limited, since it is located on the outermost layer of the solar cell module, various characteristics such as weather resistance and mechanical strength are required in the same manner as the above surface side transparent protection member 40. Therefore, the back surface side protection member 42 may be made of the same material as the front surface side transparent protection member 40. That is, the above-described various materials used as the front surface side transparent protective member 40 can also be used as the back surface side protective member 42. In particular, a polyester resin and glass can be preferably used. Moreover, since the back surface side protection member 42 does not presuppose passage of sunlight, the transparency calculated | required by the surface side transparent protection member 40 is not necessarily requested | required. Therefore, a reinforcing plate may be attached to increase the mechanical strength of the solar cell module or to prevent distortion and warpage due to temperature change. As the reinforcing plate, for example, a steel plate, a plastic plate, an FRP (glass fiber reinforced plastic) plate or the like can be preferably used.
 第1の太陽電池封止用フィルム120および第2の太陽電池封止用フィルム140の少なくとも一方の面には、複数の凹部100が格子状に配列して形成されている。複数の凹部100の平均深さは50μm以上200μm以下であり、上面110の面積率が10%以下である。第1の太陽電池封止用フィルム120および第2の太陽電池封止用フィルム140は同じフィルムでも良いし、互いに異なるフィルムでもよい。すなわち、凹部100の形状、配列、凹部100の平均深さ、上面110の面積率、周期p、角度r、樹脂組成等のうち、少なくとも一つが互いに異なるものであっても良い。 A plurality of recesses 100 are arranged in a grid pattern on at least one surface of the first solar cell sealing film 120 and the second solar cell sealing film 140. The average depth of the plurality of recesses 100 is 50 μm or more and 200 μm or less, and the area ratio of the upper surface 110 is 10% or less. The first solar cell sealing film 120 and the second solar cell sealing film 140 may be the same film or may be different from each other. That is, at least one of the shape and arrangement of the recesses 100, the average depth of the recesses 100, the area ratio of the upper surface 110, the period p, the angle r, the resin composition, and the like may be different from each other.
 封止工程では、表面側透明保護部材40、第1の太陽電池封止用フィルム120、太陽電池セル30、第2の太陽電池封止用フィルム140、及び裏面側保護部材42をこの順に積層して積層体を形成するとともに、積層体を加熱及び加圧して一体化する。本工程で加熱及び加圧されることにより、フィルム10を構成する樹脂が流動してフィルム10の凹部100は失われる。 In the sealing step, the front surface side transparent protective member 40, the first solar cell sealing film 120, the solar battery cell 30, the second solar cell sealing film 140, and the back surface side protective member 42 are laminated in this order. The laminate is formed, and the laminate is integrated by heating and pressing. By heating and pressurizing in this step, the resin constituting the film 10 flows and the concave portion 100 of the film 10 is lost.
 封止する工程の積層体において、フィルムの向きは特に限定されないが、第1の太陽電池封止用フィルム120の凹部100が形成されている面120A、および第2の太陽電池封止用フィルム140の凹部100が形成されている面140Aが太陽電池セル30に対峙するように積層して積層体を形成することが好ましい。また、凹部を有する面が太陽電池セル30と接するように積層して、積層体を形成してもよい。このようにすることで、積層体を加熱及び加圧して一体化する処理時に、凹部がつぶれることでクッションとしての機能を果たし、太陽電池セルに加わる押圧力を軽減することができる。結果、太陽電池セルの破損を抑制することができる。 In the laminated body in the sealing step, the direction of the film is not particularly limited, but the surface 120A on which the concave portion 100 of the first solar cell sealing film 120 is formed, and the second solar cell sealing film 140. It is preferable that the laminated body is formed by laminating so that the surface 140 </ b> A on which the concave portion 100 is formed faces the solar battery cell 30. Alternatively, the stacked body may be formed by stacking so that the surface having the concave portion is in contact with the solar battery cell 30. By doing in this way, at the time of the process which heats and pressurizes a laminated body and integrates, the function as a cushion can be fulfill | performed by crushing a recessed part, and the pressing force added to a photovoltaic cell can be reduced. As a result, damage to the solar battery cell can be suppressed.
 また、積層体を加熱及び加圧して一体化する処理時に、凹部が空気の通り道を形成し、脱気性が向上する。このため、脱気不良が抑制される。 In addition, when the laminate is heated and pressurized to be integrated, the concave portion forms a passage for air, and the deaeration performance is improved. For this reason, poor deaeration is suppressed.
 さらに、積層体を加熱及び加圧して一体化する処理時に、加熱され流動可能な状態となった樹脂が凹部内に流入することができるので、このような樹脂が積層体の外部にはみ出す不都合を抑制することができる。 Furthermore, since the heated and flowable resin can flow into the recess during the process of heating and pressurizing and integrating the laminate, there is an inconvenience that such resin protrudes outside the laminate. Can be suppressed.
 なお、封止工程における積層体を一体化する工程では、加熱により流動可能な状態となった第1の太陽電池封止用フィルム120および第2の太陽電池封止用フィルム140が積層体からはみ出さないような条件で加圧及び加熱することが好ましい。 In the step of integrating the laminate in the sealing step, the first solar cell sealing film 120 and the second solar cell sealing film 140 that have become flowable by heating protrude from the laminate. It is preferable to apply pressure and heat under such conditions.
 また、封止工程における積層体を一体化する工程では、積層体を熱板50の上に載置した状態で、積層体を加圧してもよい。 Further, in the step of integrating the laminate in the sealing step, the laminate may be pressurized in a state where the laminate is placed on the hot plate 50.
 また、封止工程における積層体を一体化する工程では、大気圧により積層体を加圧してもよい。 In the step of integrating the laminate in the sealing step, the laminate may be pressurized by atmospheric pressure.
 また、封止工程における積層体を一体化する工程では、積層体を軟質シート60及び熱板50で囲み、内部を減圧して大気圧を積層体に加えることで、加圧してもよい。 Further, in the step of integrating the laminate in the sealing step, the laminate may be surrounded by the soft sheet 60 and the hot plate 50, and the inside may be depressurized and pressurized by applying atmospheric pressure to the laminate.
 例えば、図6に示すように、上から裏面側保護部材42、第2の太陽電池封止用フィルム140、太陽電池セル30、第1の太陽電池封止用フィルム120、表面側透明保護部材40をこの順に積層した積層体を、熱板50の上に載置する。 For example, as shown in FIG. 6, from the top, the back surface side protection member 42, the second solar cell sealing film 140, the solar cell 30, the first solar cell sealing film 120, and the front surface side transparent protective member 40. Are stacked in this order on the hot plate 50.
 なお、積層体の中には、1つまたは複数の太陽電池セル30を含めることができる。図示する例では、複数の太陽電池セル30が積層体の中に含まれている。そして、複数の太陽電池セル30は、図示しない電極を用いて直列接続されている。ここで、電極の構成および材料は、とくに限定されないが、具体的な例では、透明導電膜と金属膜の積層構造を有する。透明導電膜は、SnO、ITO、ZnOなどからなる。金属膜は、銀、金、銅、錫、アルミニウム、カドミウム、亜鉛、水銀、クロム、モリブデン、タングステン、ニッケル、バナジウムなどの金属からなる。これらの金属膜は、単独で用いられてもよいし、複合化された合金として用いられてもよい。透明導電膜と金属膜とは、CVD、スパッタ、蒸着などの方法により形成される。 One or more solar cells 30 can be included in the stacked body. In the example shown in figure, the several photovoltaic cell 30 is contained in the laminated body. And the some photovoltaic cell 30 is connected in series using the electrode which is not shown in figure. Here, the configuration and material of the electrode are not particularly limited, but in a specific example, the electrode has a laminated structure of a transparent conductive film and a metal film. The transparent conductive film is made of SnO 2 , ITO, ZnO or the like. The metal film is made of a metal such as silver, gold, copper, tin, aluminum, cadmium, zinc, mercury, chromium, molybdenum, tungsten, nickel, and vanadium. These metal films may be used alone or as a composite alloy. The transparent conductive film and the metal film are formed by a method such as CVD, sputtering, or vapor deposition.
 なお、第1の太陽電池封止用フィルム120および第2の太陽電池封止用フィルム140は互いに分離したものであってもよいが、一つのフィルム10により、第1の太陽電池封止用フィルム120および第2の太陽電池封止用フィルム140が構成されていてもよい。例えば、太陽電池セル30を内包するように一つのフィルムを折り曲げることで、図示するような、太陽電池セル30を第1の太陽電池封止用フィルム120および第2の太陽電池封止用フィルム140で挟み込んだ状態を実現してもよい。 The first solar cell sealing film 120 and the second solar cell sealing film 140 may be separated from each other, but the first solar cell sealing film is formed by one film 10. 120 and the 2nd solar cell sealing film 140 may be comprised. For example, by folding a single film so as to enclose the solar battery cell 30, the solar battery cell 30 as shown in the figure is turned into the first solar battery sealing film 120 and the second solar battery sealing film 140. You may implement | achieve the state pinched | interposed by.
 上述のような積層体を、図示するように軟質シート60で覆った後、軟質シート60及び熱板50で囲まれた内部空間を減圧する。結果、大気圧により積層体を加圧することができる。この時、熱板50は所定温度に加熱されており、当該熱で、第1の太陽電池封止用フィルム120および第2の太陽電池封止用フィルム140も加熱されている。 After the laminate as described above is covered with the soft sheet 60 as shown in the figure, the internal space surrounded by the soft sheet 60 and the hot plate 50 is decompressed. As a result, the laminate can be pressurized by atmospheric pressure. At this time, the hot plate 50 is heated to a predetermined temperature, and the first solar cell sealing film 120 and the second solar cell sealing film 140 are also heated by the heat.
 なお、この時の条件の一例としては、熱板温度70℃以上170℃以下、真空時間1分以上10分以下、プレス圧力0.1気圧以上1気圧以下、加圧時間1分以上20分以下である。 As an example of the conditions at this time, the hot plate temperature is 70 ° C. or more and 170 ° C. or less, the vacuum time is 1 minute or more and 10 minutes or less, the press pressure is 0.1 atmosphere or more and 1 atmosphere or less, and the pressurization time is 1 minute or more and 20 minutes or less. It is.
 なお、太陽電池モジュールは、上記の構成には限定されず、本発明の目的を損なわない範囲で、上記以外の層を適宜設けることができる。上記以外の層としては、例えば接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、および光拡散層などを挙げることができる。これらの層は、とくに限定はないが、各層を設ける目的や特性を考慮して、適切な位置に設けることができる。 In addition, the solar cell module is not limited to the above configuration, and layers other than the above can be appropriately provided as long as the object of the present invention is not impaired. Examples of the layer other than the above include an adhesive layer, a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, and a light diffusion layer. These layers are not particularly limited, but can be provided at appropriate positions in consideration of the purpose and characteristics of each layer.
 以上、本実施形態に係る太陽電池封止用フィルムを用いた太陽電池モジュールの製造方法によれば、太陽電池セルの割れ、封止時の脱気不良による空気巻き込み、積層体の端面への樹脂組成物のはみ出しなどの問題を解決することができる。 As described above, according to the method for manufacturing a solar cell module using the solar cell sealing film according to the present embodiment, cracking of the solar cell, air entrainment due to poor deaeration at the time of sealing, resin to the end face of the laminate Problems such as protrusion of the composition can be solved.
 次に、本実施形態の作用および効果について説明する。
 本実施形態に係る太陽電池封止用フィルムでは、輸送、保管する際のフィルム面同士のブロッキングが生じにくく、太陽電池モジュールの製造におけるエア抜け性が優れる。
Next, the operation and effect of this embodiment will be described.
In the solar cell sealing film according to the present embodiment, the film surfaces are less likely to be blocked when transported and stored, and the air release property in the production of the solar cell module is excellent.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope that can achieve the object of the present invention are included in the present invention.
 以下、実施例によって本発明を具体的に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. In addition, this embodiment is not limited to description of these Examples at all.
(実施例1)
[エチレン・α-オレフィン共重合体の合成]
 撹拌羽根を備えた内容積50Lの連続重合器の一つの供給口に、共触媒としてメチルアルミノキサンのトルエン溶液を8.0mmol/hr、主触媒としてビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロライドのヘキサンスラリーを0.025mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.5mmol/hrの割合で供給し、触媒溶液と重合溶媒として用いる脱水精製したノルマルヘキサンの合計が20L/hrとなるように脱水精製したノルマルヘキサンを連続的に供給した。同時に重合器の別の供給口に、エチレンを3kg/hr、1-ブテンを15kg/hr、水素を5NL/hrの割合で連続供給し、重合温度90℃、全圧3MPaG、滞留時間1.0時間の条件下で連続溶液重合を行った。重合器で生成したエチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、重合器の底部に設けられた排出口を介して連続的に排出させ、エチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液が150~190℃となるように、ジャケット部が3~25kg/cmスチームで加熱された連結パイプに導いた。なお、連結パイプに至る直前には、触媒失活剤であるメタノールが注入される供給口が付設されており、約0.75L/hrの速度でメタノールを注入してエチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液に合流させた。スチームジャケット付き連結パイプ内で約190℃に保温されたエチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、約4.3MPaGを維持するように、連結パイプ終端部に設けられた圧力制御バルブの開度の調整によって連続的にフラッシュ槽に送液された。なお、フラッシュ槽内への移送においては、フラッシュ槽内の圧力が約0.1MPaG、フラッシュ槽内の蒸気部の温度が約180℃を維持するように溶液温度と圧力調整バルブ開度設定が行われた。その後、ダイス温度を180℃に設定した単軸押出機を通し、水槽にてストランドを冷却し、ペレットカッターにてストランドを切断し、ペレットとしてエチレン・α-オレフィン共重合体を得た。収量は2.2kg/hrであった。
(Example 1)
[Synthesis of ethylene / α-olefin copolymer]
At one supply port of a 50 L internal polymerization vessel equipped with a stirring blade, 8.0 mmol / hr of a toluene solution of methylaluminoxane as a cocatalyst and bis (1,3-dimethylcyclopentadienyl) zirconium as a main catalyst Supply dichlorinated hexane slurry at a rate of 0.025 mmol / hr and triisobutylaluminum hexane at a rate of 0.5 mmol / hr, so that the total amount of dehydrated and purified normal hexane used as the polymerization solvent and polymerization solvent is 20 L / hr. Was fed continuously with dehydrated and purified normal hexane. At the same time, ethylene is continuously supplied to another supply port at a rate of 3 kg / hr, 1-butene at 15 kg / hr, and hydrogen at a rate of 5 NL / hr, a polymerization temperature of 90 ° C., a total pressure of 3 MPaG, and a residence time of 1.0. Continuous solution polymerization was performed under conditions of time. The ethylene / α-olefin copolymer normal hexane / toluene mixed solution produced in the polymerization vessel is continuously discharged through a discharge port provided at the bottom of the polymerization vessel, and the ethylene / α-olefin copolymer solution is discharged. The jacket portion was led to a connecting pipe heated with 3 to 25 kg / cm 2 steam so that the normal hexane / toluene mixed solution had a temperature of 150 to 190 ° C. Immediately before reaching the connecting pipe, a supply port for injecting methanol, which is a catalyst deactivator, is attached, and methanol is injected at a rate of about 0.75 L / hr. The mixture was merged into a combined normal hexane / toluene mixed solution. The normal hexane / toluene mixed solution of the ethylene / α-olefin copolymer kept at about 190 ° C. in the connection pipe with steam jacket is subjected to pressure provided at the end of the connection pipe so as to maintain about 4.3 MPaG. The liquid was continuously fed to the flash tank by adjusting the opening of the control valve. In the transfer to the flash tank, the solution temperature and the pressure adjustment valve opening are set so that the pressure in the flash tank is about 0.1 MPaG and the temperature of the vapor part in the flash tank is maintained at about 180 ° C. It was broken. Thereafter, the strand was cooled in a water tank through a single screw extruder set at a die temperature of 180 ° C., and the strand was cut with a pellet cutter to obtain an ethylene / α-olefin copolymer as pellets. The yield was 2.2 kg / hr.
[エチレン・α-オレフィン共重合体の評価]
<エチレン単位およびα-オレフィン単位の含有割合>
 試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させて得られた溶液をグラスフィルター(G2)濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入した。日本電子社製のJNM GX-400型NMR測定装置を使用し、120℃で13C-NMR測定を行った。積算回数は8000回以上とした。得られた13C-NMRスペクトルより、共重合体中のエチレン単位の含有割合、およびα-オレフィン単位の含有割合を定量した。その結果、本実施例のエチレン・α-オレフィン共重合体のα-オレフィン単位の含有割合は14mol%であった。
[Evaluation of ethylene / α-olefin copolymer]
<Content ratio of ethylene unit and α-olefin unit>
A solution obtained by heating and dissolving 0.35 g of a sample in 2.0 ml of hexachlorobutadiene was filtered through a glass filter (G2), 0.5 ml of deuterated benzene was added, and the mixture was placed in an NMR tube having an inner diameter of 10 mm. Using a JNM GX-400 type NMR measuring apparatus manufactured by JEOL Ltd., 13 C-NMR measurement was performed at 120 ° C. The number of integration was 8000 times or more. From the obtained 13 C-NMR spectrum, the content ratio of ethylene units and the content ratio of α-olefin units in the copolymer were quantified. As a result, the content of the α-olefin unit in the ethylene / α-olefin copolymer of this example was 14 mol%.
[MFR]
 ASTM D1238に準拠し、190℃、2.16kg荷重の条件にてエチレン・α-オレフィン共重合体のMFRを測定した。その結果、本実施例のエチレン・α-オレフィン共重合体のMFRは20g/10分であった。
[MFR]
Based on ASTM D1238, the MFR of the ethylene / α-olefin copolymer was measured under the conditions of 190 ° C. and 2.16 kg load. As a result, the MFR of the ethylene / α-olefin copolymer of this example was 20 g / 10 min.
[密度]
 ASTM D1505に準拠して、エチレン・α-オレフィン共重合体の密度を測定した。その結果、本実施例のエチレン・α-オレフィン共重合体の密度は0.870g/cmであった。
[density]
The density of the ethylene / α-olefin copolymer was measured in accordance with ASTM D1505. As a result, the density of the ethylene / α-olefin copolymer of this example was 0.870 g / cm 3 .
[ショアA硬度]
 エチレン・α-オレフィン共重合体を190℃、加熱4分、10MPaで加圧した後、10MPaで常温まで5分間加圧冷却して3mm厚のシートを得た。得られたシートを用いて、ASTM D2240に準拠してエチレン・α-オレフィン共重合体のショアA硬度を測定した。その結果、本実施例のエチレン・α-オレフィン共重合体のショアA硬度は70であった。
[Shore A hardness]
The ethylene / α-olefin copolymer was pressurized at 190 ° C., heated for 4 minutes and at 10 MPa, and then pressure-cooled at 10 MPa to room temperature for 5 minutes to obtain a sheet having a thickness of 3 mm. Using the obtained sheet, the Shore A hardness of the ethylene / α-olefin copolymer was measured in accordance with ASTM D2240. As a result, the Shore A hardness of the ethylene / α-olefin copolymer of this example was 70.
[太陽電池封止用フィルムの製造]
 得られたエチレン・α-オレフィン共重合体100重量部に対し、エチレン性不飽和シラン化合物としてγ-メタクリロキシプロピルトリメトキシシランを0.5重量部、有機過酸化物として1分間半減期温度が166℃のt-ブチルパーオキシ-2-エチルヘキシルカーボネートを1.0重量部、架橋助剤としてトリアリルイソシアヌレートを1.2重量部、紫外線吸収剤として2-ヒドロキシ-4-ノルマル-オクチルオキシベンゾフェノンを0.4重量部、ラジカル捕捉剤(光安定化剤)としてビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケートを0.2重量部、および耐熱安定剤1としてトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト0.1重量部、耐熱安定剤2としてオクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート0.1重量部を配合し、樹脂組成物Aを得た。
[Manufacture of solar cell sealing film]
With respect to 100 parts by weight of the obtained ethylene / α-olefin copolymer, 0.5 part by weight of γ-methacryloxypropyltrimethoxysilane as an ethylenically unsaturated silane compound and a half-life temperature of 1 minute as an organic peroxide 1.0 parts by weight of t-butylperoxy-2-ethylhexyl carbonate at 166 ° C., 1.2 parts by weight of triallyl isocyanurate as a crosslinking aid, and 2-hydroxy-4-normal-octyloxybenzophenone as an ultraviolet absorber 0.4 parts by weight, 0.2 parts by weight of bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate as a radical scavenger (light stabilizer), and Tris ( 2,4-di-tert-butylphenyl) phosphite 0.1 parts by weight, octadecyl-3- (3,5 as heat stabilizer 2 -Di-tert-butyl-4-hydroxyphenyl) propionate (0.1 part by weight) was blended to obtain a resin composition A.
 サーモ・プラスチック社製の単軸押出機(スクリュー径20mmφ、L/D=28)にコートハンガー式T型ダイス(リップ形状:270×0.8mm)を装着し、ダイス温度100℃の条件下、ロール温度30℃、巻き取り速度1.0m/minで、第1冷却ロールにエンボスロールを用いて成形を行い、厚み500μmのエンボスフィルム(太陽電池封止用フィルム)を得た。なお、本実施例において用いたエンボスロールの表面には、平面視で正方形の凸部を複数有する凸パターンが全体に一様に形成されていた。 A coat hanger type T die (lip shape: 270 × 0.8 mm) is attached to a single screw extruder (screw diameter: 20 mmφ, L / D = 28) manufactured by Thermo Plastic, and the die temperature is 100 ° C. Molding was performed using an embossing roll as the first cooling roll at a roll temperature of 30 ° C. and a winding speed of 1.0 m / min to obtain an embossed film (film for solar cell sealing) having a thickness of 500 μm. In addition, the convex pattern which has two or more square convex parts by planar view was uniformly formed in the whole on the surface of the embossing roll used in the present Example.
(実施例2~7、9、及び比較例1~3)
 凸パターンが実施例1とは異なるエンボスロールを用いた以外は、実施例1と同様にして太陽電池封止用フィルムを得た。いずれの実施例および比較例においても、用いたエンボスロールの表面には、複数の凸部を有する凸パターンが全体に一様に形成されていた。
(Examples 2 to 7, 9 and Comparative Examples 1 to 3)
A solar cell sealing film was obtained in the same manner as in Example 1 except that an embossing roll having a convex pattern different from that in Example 1 was used. In any of the examples and comparative examples, a convex pattern having a plurality of convex portions was uniformly formed on the entire surface of the embossing roll used.
(実施例8)
 樹脂組成物Aの代わりに、樹脂組成物Bとしてエチレン・酢酸ビニル共重合体(VA28%、MFR15g/10min)を用いた以外は実施例1と同様にして太陽電池封止用フィルムを得た。
(Example 8)
A solar cell sealing film was obtained in the same manner as in Example 1 except that an ethylene / vinyl acetate copolymer (VA 28%, MFR 15 g / 10 min) was used as the resin composition B instead of the resin composition A.
[太陽電池封止用フィルムの評価]
 各実施例及び各比較例で得られた太陽電池封止用フィルムについて以下の各評価を行い、その結果を表1に纏めた。
[Evaluation of solar cell sealing film]
The following evaluation was performed about the film for solar cell sealing obtained in each Example and each comparative example, and the result was put together in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<凹部の形状>
 太陽電池封止用フィルムの凹部の形状を光学顕微鏡で観察した。その結果、実施例1~5、7、8、9および比較例1~3では、図1のように、複数の正方形の凹部が正方格子状に配列して形成されていた。実施例6では、図3のように、複数の正三角形の凹部が三角格子状に配列して形成されていた。
<Recessed shape>
The shape of the concave portion of the solar cell sealing film was observed with an optical microscope. As a result, in Examples 1 to 5, 7, 8, and 9 and Comparative Examples 1 to 3, a plurality of square recesses were formed in a square lattice pattern as shown in FIG. In Example 6, as shown in FIG. 3, a plurality of equilateral triangular recesses were arranged in a triangular lattice pattern.
<凹部の平均深さ>
 太陽電池封止用フィルムの凹部の平均深さを測定した。具体的には、ロール中央、およびロールの幅方向の両端から10cm内側の3カ所において、20mm×20mmの正方形のフィルム片を切り出し、これらのフィルム片にある各凹部の深さを1つのフィルム片あたり10個、電子顕微鏡による断面観察により測定し、平均深さを求めた。各実施例及び各比較例では凸パターンが全体に一様に形成されたエンボスロールを用いているため、この様に求めた平均値は、全体の平均とみなすことができる。
<Average depth of recess>
The average depth of the concave portion of the solar cell sealing film was measured. Specifically, 20 mm × 20 mm square film pieces are cut out at the center of the roll and at three locations 10 cm inside from both ends in the width direction of the roll, and the depth of each recess in these film pieces is set to one film piece. The average depth was determined by measuring 10 pieces per section by cross-sectional observation with an electron microscope. In each example and each comparative example, an emboss roll in which a convex pattern is uniformly formed on the whole is used, and thus the average value obtained in this way can be regarded as the average of the whole.
<上面と凹部との角度>
 太陽電池封止用フィルムの上面と凹部との角度を測定した。具体的には、凹部の平均深さの評価と同様の3カ所において、20mm×20mmの正方形のフィルム片を切り出し、これらのフィルム片にある各凹部と上面との角度を1つのフィルム片あたり10個、電子顕微鏡による断面観察により測定した。測定された角度はほぼ一様であり、実施例1~6、8、9および比較例1~3では45±1°の範囲にあった。また、当該角度は実施例7では25±1°の範囲にあった。なお、便宜上、表1には中央値を記載した。
<Angle between top surface and recess>
The angle between the upper surface of the solar cell sealing film and the recess was measured. Specifically, in three places similar to the evaluation of the average depth of the concave portions, square film pieces of 20 mm × 20 mm are cut out, and the angle between each concave portion and the upper surface of these film pieces is 10 per film piece. Each was measured by cross-sectional observation with an electron microscope. The measured angles were almost uniform and were in the range of 45 ± 1 ° in Examples 1-6, 8, 9 and Comparative Examples 1-3. The angle was in the range of 25 ± 1 ° in Example 7. For convenience, Table 1 shows median values.
<上面の面積率>
 上面の面積率を測定した。具体的には、平均深さの評価と同様の3カ所から10mm×10mmの正方形のフィルム片を切り出し、これらのフィルム片の表面形状を光学顕微鏡により測定して上面の面積率を算出し、3つのフィルム片の平均値をフィルムの上面の面積率として求めた。各実施例及び各比較例では凸パターンが全体に一様に形成されたエンボスロールを用いているため、この様に求めた面積率はフィルム全体における上面の面積率と見なすことができる。
<Area ratio of top surface>
The area ratio of the upper surface was measured. Specifically, 10 mm × 10 mm square film pieces were cut out from the same three places as in the evaluation of the average depth, the surface shape of these film pieces was measured with an optical microscope, and the area ratio of the upper surface was calculated. The average value of two film pieces was determined as the area ratio of the upper surface of the film. In each example and each comparative example, an embossing roll in which a convex pattern is uniformly formed on the whole is used. Therefore, the area ratio obtained in this way can be regarded as the area ratio of the upper surface in the entire film.
<周期>
 凹部の配列の周期pを測定した。具体的には、平均深さの評価と同様の3カ所から5mm×5mmの正方形のフィルム片を切り出し、これらのフィルム片の表面形状を光学顕微鏡により測定して周期を測定した。周期はほぼ一様であり、実施例1では1030±5μmの範囲にあった。なお、便宜上、表1には中央値を記載した。いずれの実施例、比較例においても、周期は中央値±5μmの範囲にあった。
<Cycle>
The period p of the array of recesses was measured. Specifically, 5 mm × 5 mm square film pieces were cut out from the same three places as in the evaluation of the average depth, and the surface shapes of these film pieces were measured with an optical microscope to measure the period. The period was substantially uniform, and in Example 1, it was in the range of 1030 ± 5 μm. For convenience, Table 1 shows median values. In all examples and comparative examples, the period was in the range of the median value ± 5 μm.
<空隙率>
 太陽電池封止用フィルムの空隙率P[%]を測定した。具体的には、ロール中央から10cm×10cmの正方形のフィルム片を切り出し、これらの合計質量から単位面積あたりの重さW[g]を測定した。また、別途フィルムの最大膜厚tmax[mm]、およびフィルム材料の比重ρ[g/mm]を求め、P(%)=1-W/(ρ・tmax・10)×100の関係から、空隙率Pを求めた。ここで、最大膜厚tmaxは、凹部の平均深さの評価で行ったのと同様の断面観察で測定した。また、フィルム材料の比重ρは、本実施例と同様のプロセスで、エンボス加工を行わずに得たフィルムを用いて測定した。
<Porosity>
The porosity P [%] of the solar cell sealing film was measured. Specifically, a 10 cm × 10 cm square film piece was cut out from the center of the roll, and the weight W [g] per unit area was measured from the total mass. Separately, the maximum film thickness t max [mm] of the film and the specific gravity ρ [g / mm 3 ] of the film material were determined, and P (%) = 1−W / (ρ · t max · 10 6 ) × 100 From the relationship, the porosity P was determined. Here, the maximum film thickness tmax was measured by cross-sectional observation similar to that performed in the evaluation of the average depth of the recesses. Moreover, specific gravity (rho) of film material was measured using the film obtained without performing embossing by the process similar to a present Example.
<引張弾性率>
 また、太陽電池封止用フィルムの引張弾性率を測定した。太陽電池封止用フィルムと同一の組成からなる厚み1mmのフィルムを準備した。そして、当該フィルムをJIS K7113に準拠してダンベルで打ち抜き、オートグラフ(島津製作所社製:AGS-J)にて、チャック間:40mm、引張速度:1mm/minで測定した。このとき、測定環境の温度は23℃、湿度は50%Rhとした。その結果、引張弾性率は実施例1~7、9、および比較例1~3において用いた樹脂組成物Aが8MPa、実施例8において用いた樹脂組成物Bが15MPaであった。
<Tensile modulus>
Moreover, the tensile elasticity modulus of the film for solar cell sealing was measured. A 1 mm thick film having the same composition as the solar cell sealing film was prepared. Then, the film was punched with a dumbbell according to JIS K7113, and measured with an autograph (manufactured by Shimadzu Corporation: AGS-J) at a chuck interval of 40 mm and a tensile speed of 1 mm / min. At this time, the temperature of the measurement environment was 23 ° C., and the humidity was 50% Rh. As a result, the tensile modulus was 8 MPa for the resin composition A used in Examples 1 to 7, 9 and Comparative Examples 1 to 3, and 15 MPa for the resin composition B used in Example 8.
<ブロッキングの抑制性能>
 得られた250mm幅の太陽電池封止用フィルムロールを35℃で1週間静置した後、フィルムを引き出したとき、引き出し強度が1kgf未満の場合を○、1kgf以上1.5kgf未満の場合を△、1.5kgf以上の場合を×として評価した。
<Blocking suppression performance>
When the obtained film roll for solar cell sealing having a width of 250 mm is left at 35 ° C. for 1 week and then the film is pulled out, the pulling strength is less than 1 kgf, and the case where the pulling strength is less than 1 kgf and less than 1.5 kgf is Δ The case of 1.5 kgf or more was evaluated as x.
[太陽電池モジュールの製造]
 得られた太陽電池封止用フィルムを用いて、単結晶セルを用い18セル直列接続した小モジュールを作製し、評価した。表面側透明保護部材には、24×21cmにカットした旭硝子ファブリテック社製の白板フロートガラス3.2mm厚みのエンボス付き熱処理ガラスを用いた。結晶系セル(Shinsung製の単結晶セル)は受光面側のバスバー銀電極を中央にして5×3cmにカットしたものを用いた。このセルを銅箔に共晶ハンダを表面コートされた銅リボン電極を用いて18セル直列接続した。バックシート(裏面側保護部材)として、シリカ蒸着PETを含むPET系バックシートを用い、バックシートの一部にセルからの取り出し部位にカッタ-ナイフで約2cm切り込みを入れ18セル直列接続したセルのプラス端子とマイナス端子を取り出し、真空ラミネーター(NPC製:LM-110x160-S)を用いて熱板温度150℃、真空時間4分、加圧時間15分にて太陽電池封止用フィルムをラミネートした。その後、ガラスからはみ出した太陽電池封止用フィルム、バックシートをカットし、ガラスエッジには端面封止材を付与して、アルミフレームを取り付けた後、バックシートから取り出した端子部分の切れ込み部位はRTVシリコーンを付与して硬化させた。
[Manufacture of solar cell modules]
Using the obtained solar cell sealing film, a small module in which 18 cells were connected in series using a single crystal cell was prepared and evaluated. As the surface-side transparent protective member, heat-treated glass with embossing having a thickness of 3.2 mm made of white plate float glass manufactured by Asahi Glass Fabricate Co., Ltd. cut to 24 × 21 cm was used. A crystal cell (single crystal cell manufactured by Shinsung) was used which was cut into 5 × 3 cm with the bus bar silver electrode on the light receiving surface side as the center. The cells were connected in series in 18 cells using a copper ribbon electrode in which eutectic solder was coated on the copper foil. As a back sheet (back side protection member), a PET-based back sheet including silica-deposited PET was used. A part of the back sheet was cut with a cutter-knife into a part to be removed from the cell, and 18 cells were connected in series. The positive terminal and the negative terminal were taken out, and a solar cell sealing film was laminated using a vacuum laminator (NPC: LM-110x160-S) at a hot plate temperature of 150 ° C., a vacuum time of 4 minutes, and a pressurization time of 15 minutes. . After that, the solar cell sealing film protruding from the glass, the back sheet was cut, the edge sealing material was applied to the glass edge, the aluminum frame was attached, and then the terminal part cut out from the back sheet was RTV silicone was applied and cured.
[太陽電池モジュールの評価]
<エア抜け性>
 得られた太陽電池モジュールのガラス越しに観察し、光学顕微鏡による観察で気泡が確認されない場合を○、光学顕微鏡による観察で気泡が確認されるが、目視では気泡が確認されず、製品品質として問題がない場合を△、目視で気泡が確認される場合を×として評価した。
[Evaluation of solar cell module]
<Air escape characteristics>
Observe through the glass of the obtained solar cell module, when bubbles are not confirmed by observation with an optical microscope, bubbles are confirmed by observation with an optical microscope, but bubbles are not confirmed by visual observation, which is a problem as product quality The case where there was no bubble was evaluated as Δ, and the case where bubbles were visually confirmed was evaluated as ×.
 表1に示す様に、実施例1~9では、ブロッキング抑制性能およびエア抜け性がいずれも優れることが確かめられた。一方、凹部の平均深さが50μmよりも小さい比較例1および上面の面積率が10%よりも大きい比較例3では、ブロッキング抑制性能に劣っていた。また、凹部の平均深さが200μmよりも大きい比較例2では、エア抜け性に劣っていた。 As shown in Table 1, in Examples 1 to 9, it was confirmed that both the blocking suppression performance and the air release property were excellent. On the other hand, in Comparative Example 1 in which the average depth of the recesses was smaller than 50 μm and Comparative Example 3 in which the area ratio of the upper surface was larger than 10%, the blocking suppression performance was inferior. Moreover, in the comparative example 2 with the average depth of a recessed part larger than 200 micrometers, it was inferior to air bleedability.
 この出願は、2015年2月4日に出願された日本出願特願2015-020253号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-020253 filed on Feb. 4, 2015, the entire disclosure of which is incorporated herein.

Claims (6)

  1.  少なくとも一方の面に、複数の凹部が格子状に配列して形成されており、
     前記複数の凹部の平均深さは50μm以上200μm以下であり、
     前記少なくとも一方の面において、表面が平らであるとした場合の見掛け表面積をS、前記複数の凹部が形成されていない上面の面積をSとしたとき、S/S×100(%)で表される前記上面の面積率が10%以下である太陽電池封止用フィルム。
    On at least one surface, a plurality of recesses are formed in a grid pattern,
    The average depth of the plurality of recesses is 50 μm or more and 200 μm or less,
    In at least one surface, when the apparent surface area of the case where the surface is to be flat and the S a, the area of the upper surface of the plurality of recesses are not formed S t, S t / S a × 100 (% The film for solar cell sealing whose area ratio of the said upper surface represented by this is 10% or less.
  2.  請求項1に記載の太陽電池封止用フィルムにおいて、
     前記複数の凹部の配列の周期が500μm以上2000μm以下の範囲である太陽電池封止用フィルム。
    In the solar cell sealing film according to claim 1,
    The film for solar cell sealing whose period of the arrangement | sequence of the said several recessed part is the range of 500 to 2000 micrometers.
  3.  請求項1または2に記載の太陽電池封止用フィルムにおいて、
     前記上面と、前記複数の凹部を構成する面とは30°以上60°以下で交わる太陽電池封止用フィルム。
    In the solar cell sealing film according to claim 1 or 2,
    The film for sealing a solar cell, wherein the upper surface and the surfaces constituting the plurality of recesses intersect at 30 ° or more and 60 ° or less.
  4.  請求項1から3のいずれか一項に記載の太陽電池封止用フィルムにおいて、
     前記複数の凹部は、平面視で正方形、長方形、ひし形、平行四辺形、三角形、または六角形であり、互いに一定距離離間して前記少なくとも一方の面を充填している太陽電池封止用フィルム。
    In the solar cell sealing film according to any one of claims 1 to 3,
    The plurality of recesses are square, rectangular, rhombus, parallelogram, triangle, or hexagon in plan view, and are filled with at least one surface at a certain distance from each other.
  5.  請求項1から4のいずれか一項に記載の太陽電池封止用フィルムが芯材に巻き取られてなる太陽電池封止用フィルムロール。 A film roll for sealing a solar cell, wherein the film for sealing a solar cell according to any one of claims 1 to 4 is wound around a core material.
  6.  太陽電池封止用フィルムを準備する準備工程と、
     表面側透明保護部材、第1の前記太陽電池封止用フィルム、太陽電池セル、第2の前記太陽電池封止用フィルム、及び裏面側保護部材をこの順に積層して積層体を形成するとともに、前記積層体を加熱及び加圧して一体化する封止工程と、を含み、
     前記第1及び第2の太陽電池封止用フィルムには、少なくとも一方の面に、複数の凹部が格子状に配列して形成されており、
     前記複数の凹部の平均深さは50μm以上200μm以下であり、
     前記少なくとも一方の面において、表面が平らであるとした場合の見掛け表面積をS、前記複数の凹部が形成されていない上面の面積をSとしたとき、S/S×100(%)で表される前記上面の面積率が10%以下である太陽電池モジュールの製造方法。
    A preparation step of preparing a film for sealing solar cells;
    While laminating the surface side transparent protective member, the first solar cell sealing film, the solar battery cell, the second solar cell sealing film, and the back surface protective member in this order, to form a laminate, Sealing and integrating the laminate by heating and pressing,
    In the first and second solar cell sealing films, a plurality of recesses are arranged in a lattice pattern on at least one surface,
    The average depth of the plurality of recesses is 50 μm or more and 200 μm or less,
    In at least one surface, when the apparent surface area of the case where the surface is to be flat and the S a, the area of the upper surface of the plurality of recesses are not formed S t, S t / S a × 100 (% The manufacturing method of the solar cell module whose area ratio of the said upper surface represented by this is 10% or less.
PCT/JP2016/053059 2015-02-04 2016-02-02 Solar cell sealing film, solar cell sealing film roll, and method for manufacturing solar cell module WO2016125793A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016573379A JPWO2016125793A1 (en) 2015-02-04 2016-02-02 Solar cell sealing film, solar cell sealing film roll, and solar cell module manufacturing method
KR1020177020456A KR20170101257A (en) 2015-02-04 2016-02-02 Solar cell sealing film, solar cell sealing film roll, and method for manufacturing solar cell module
CN201680008453.6A CN107343383A (en) 2015-02-04 2016-02-02 The manufacture method of solar cell sealing film, solar cell sealing film roll and solar module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-020253 2015-02-04
JP2015020253 2015-02-04

Publications (1)

Publication Number Publication Date
WO2016125793A1 true WO2016125793A1 (en) 2016-08-11

Family

ID=56564133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053059 WO2016125793A1 (en) 2015-02-04 2016-02-02 Solar cell sealing film, solar cell sealing film roll, and method for manufacturing solar cell module

Country Status (4)

Country Link
JP (1) JPWO2016125793A1 (en)
KR (1) KR20170101257A (en)
CN (1) CN107343383A (en)
WO (1) WO2016125793A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150217A1 (en) * 2016-02-29 2017-09-08 三井化学東セロ株式会社 Resin sheet, laminated glass, and solar cell module
WO2018043182A1 (en) * 2016-08-29 2018-03-08 日本ゼオン株式会社 Method for producing adhesive sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232311A (en) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd Sealing sheet for solar cell
JP2011119406A (en) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp Method of manufacturing solar cell sealing sheet, and solar cell sealing sheet
JP2012214050A (en) * 2011-03-31 2012-11-08 Toray Ind Inc Method for producing solar cell sealing sheet, and solar cell module
JP2015005646A (en) * 2013-06-21 2015-01-08 三井化学株式会社 Solar battery-sealing sheet set, and solar battery module using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180866A1 (en) * 2009-09-29 2012-07-19 Toppan Printing Co., Ltd. Sealing material sheet
WO2012133196A1 (en) * 2011-03-31 2012-10-04 東レ株式会社 Process for producing solar cell sealing sheet
CN102544162B (en) * 2012-02-18 2014-07-09 西安黄河光伏科技股份有限公司 Solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232311A (en) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd Sealing sheet for solar cell
JP2011119406A (en) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp Method of manufacturing solar cell sealing sheet, and solar cell sealing sheet
JP2012214050A (en) * 2011-03-31 2012-11-08 Toray Ind Inc Method for producing solar cell sealing sheet, and solar cell module
JP2015005646A (en) * 2013-06-21 2015-01-08 三井化学株式会社 Solar battery-sealing sheet set, and solar battery module using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150217A1 (en) * 2016-02-29 2017-09-08 三井化学東セロ株式会社 Resin sheet, laminated glass, and solar cell module
WO2018043182A1 (en) * 2016-08-29 2018-03-08 日本ゼオン株式会社 Method for producing adhesive sheet
JPWO2018043182A1 (en) * 2016-08-29 2019-06-24 日本ゼオン株式会社 Method of manufacturing adhesive sheet

Also Published As

Publication number Publication date
KR20170101257A (en) 2017-09-05
CN107343383A (en) 2017-11-10
JPWO2016125793A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5465813B2 (en) Sheet set for solar cell sealing
JP5696044B2 (en) Ethylene-based resin composition, solar cell sealing material, and solar cell module using the same
JP5405699B1 (en) Solar cell encapsulant and solar cell module
JP5922232B2 (en) Solar cell module
JP5859633B2 (en) Solar cell encapsulant and solar cell module
JP6001087B2 (en) Solar cell encapsulant and solar cell module
US20150171247A1 (en) Solar cell module
JP6501906B2 (en) Solar cell module
JP5854473B2 (en) Solar cell encapsulant and solar cell module
JP6034756B2 (en) Solar cell sealing sheet set and solar cell module using the same
JP6166377B2 (en) Solar cell sealing sheet set and solar cell module
JP5801733B2 (en) Solar cell encapsulant and solar cell module
JP2013229410A (en) Solar cell sealing material and solar cell module
WO2016125793A1 (en) Solar cell sealing film, solar cell sealing film roll, and method for manufacturing solar cell module
JP5940661B2 (en) Solar cell module
JP6586175B2 (en) Resin sheet, laminated glass and solar cell module
JP2012207144A (en) Ethylene-based resin composition, solar cell sealing material and solar cell module using the same
JP2016136628A (en) Solar cell module and method of manufacturing the same
WO2016047524A1 (en) Sealing-sheet package body and method for storing sealing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573379

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020456

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746624

Country of ref document: EP

Kind code of ref document: A1