JP5854473B2 - Solar cell encapsulant and solar cell module - Google Patents

Solar cell encapsulant and solar cell module Download PDF

Info

Publication number
JP5854473B2
JP5854473B2 JP2012170285A JP2012170285A JP5854473B2 JP 5854473 B2 JP5854473 B2 JP 5854473B2 JP 2012170285 A JP2012170285 A JP 2012170285A JP 2012170285 A JP2012170285 A JP 2012170285A JP 5854473 B2 JP5854473 B2 JP 5854473B2
Authority
JP
Japan
Prior art keywords
solar cell
ethylene
sealing material
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012170285A
Other languages
Japanese (ja)
Other versions
JP2014029953A (en
Inventor
成伸 池永
成伸 池永
文人 竹内
文人 竹内
伊藤 智章
智章 伊藤
薫 大清水
薫 大清水
正昭 大土井
正昭 大土井
一広 遣水
一広 遣水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Mitsui Chemicals Tohcello Inc
Original Assignee
Mitsui Chemicals Inc
Mitsui Chemicals Tohcello Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Mitsui Chemicals Tohcello Inc filed Critical Mitsui Chemicals Inc
Priority to JP2012170285A priority Critical patent/JP5854473B2/en
Publication of JP2014029953A publication Critical patent/JP2014029953A/en
Application granted granted Critical
Publication of JP5854473B2 publication Critical patent/JP5854473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池封止材および太陽電池モジュールに関する。   The present invention relates to a solar cell sealing material and a solar cell module.

地球環境問題、エネルギー問題などが深刻さを増す中、クリーンかつ枯渇のおそれが無いエネルギー生成手段として太陽電池が注目されている。太陽電池を建物の屋根部分などの屋外で使用する場合、太陽電池モジュールの形で使用することが一般的である。   As global environmental problems and energy problems become more serious, solar cells are attracting attention as a means of generating energy that is clean and free from depletion. When a solar cell is used outdoors such as a roof portion of a building, it is generally used in the form of a solar cell module.

上記の太陽電池モジュールは、一般に、以下の手順によって製造される。まず、多結晶シリコン、単結晶形シリコンなどにより形成される結晶型太陽電池素子(以下、発電素子あるいはセルと表記する。)、あるいはアモルファスシリコンや結晶シリコンなどを、ガラスなどの基板の上に数μmの非常に薄い膜を形成して得られる薄膜型太陽電池素子などを製造する。
次に、結晶型太陽電池モジュールを得るには、太陽電池モジュール用保護シート(表面側透明保護部材)/太陽電池封止材/結晶型太陽電池素子/太陽電池封止材/太陽電池モジュール用保護シート(裏面側保護部材)の順に積層する。
一方、薄膜系太陽電池モジュールを得るには、薄膜型太陽電池素子/太陽電池封止材/太陽電池モジュール用保護シート(裏面側保護部材)の順に積層する。
その後、これらを真空吸引して加熱圧着するラミネーション法などを利用することにより、太陽電池モジュールが製造される。このようにして製造される太陽電池モジュールは、耐候性を有し、建物の屋根部分などの屋外での使用にも適したものとなっている。
The above solar cell module is generally manufactured by the following procedure. First, a crystalline solar cell element (hereinafter, referred to as a power generation element or a cell) formed of polycrystalline silicon, single crystal silicon, or the like, or amorphous silicon or crystalline silicon is placed on a substrate such as glass. A thin-film solar cell element obtained by forming a very thin film of μm is manufactured.
Next, in order to obtain a crystalline solar cell module, a solar cell module protective sheet (surface side transparent protective member) / solar cell encapsulant / crystalline solar cell element / solar cell encapsulant / protection for solar cell module The sheets (back side protective member) are laminated in this order.
On the other hand, in order to obtain a thin film solar cell module, the thin film solar cell element / solar cell sealing material / solar cell module protective sheet (back surface side protective member) are laminated in this order.
Then, a solar cell module is manufactured by utilizing the lamination method etc. which vacuum-suck these and heat-press them. The solar cell module manufactured in this way has weather resistance and is suitable for outdoor use such as a roof portion of a building.

太陽電池封止材として、エチレン・酢酸ビニル共重合体(EVA)膜は、透明性、柔軟性、および接着性などに優れていることから、広く用いられている。しかしながら、EVA組成物を太陽電池封止材の構成材料として使用する場合、EVAが分解して発生する酢酸ガスなどの成分が、太陽電池素子に影響を与える可能性が懸念されていた。   As a solar cell encapsulant, an ethylene / vinyl acetate copolymer (EVA) film is widely used because it is excellent in transparency, flexibility, adhesiveness, and the like. However, when the EVA composition is used as a constituent material of the solar cell sealing material, there is a concern that components such as acetic acid gas generated by the decomposition of EVA may affect the solar cell element.

これに対して、エチレン・α−オレフィン共重合体と、有機過酸化物と、シランカップリング剤とからなる太陽電池封止材用樹脂組成物が提案されている(例えば、特許文献1参照)。この太陽電池封止材用樹脂組成物は、耐熱性、透明性、柔軟性およびガラス基板への接着性に優れるとされている。   On the other hand, the resin composition for solar cell sealing materials which consists of an ethylene-alpha-olefin copolymer, an organic peroxide, and a silane coupling agent is proposed (for example, refer patent document 1). . This resin composition for solar cell encapsulant is said to be excellent in heat resistance, transparency, flexibility and adhesion to a glass substrate.

国際公開第2010/114028号パンフレットInternational Publication No. 2010/114028 Pamphlet

ところが、本発明者らの検討によれば、特許文献1に記載されたようなエチレン・α−オレフィン共重合体を主成分とする太陽電池封止材は、押出成形性や透明性は良好であるものの、太陽電池モジュールを作成する時に太陽電池素子や配線がずれる不具合が生じる場合があることが明らかになってきた。また、ラミネート加工時に太陽電池封止材がはみ出し、ラミネート装置やオーブンを汚す不具合も生じる場合があることが明らかになってきた。   However, according to the study by the present inventors, a solar cell encapsulant mainly composed of an ethylene / α-olefin copolymer as described in Patent Document 1 has good extrusion moldability and transparency. However, it has been clarified that there may be a problem that the solar cell element and the wiring are shifted when the solar cell module is formed. In addition, it has become clear that the solar cell encapsulating material protrudes during laminating, which may cause a problem that soils the laminating apparatus and the oven.

そこで、本発明では、太陽電池モジュール製造時の歩留まりに優れた太陽電池封止材を提供することを課題とする。   Then, this invention makes it a subject to provide the solar cell sealing material excellent in the yield at the time of solar cell module manufacture.

本発明者らは、太陽電池モジュール製造時に上述した不具合が生じる要因について鋭意検討を重ねた。その結果、当該太陽電池封止材の複素粘度を適切に調整することにより、上述した不具合が抑制されることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies on the factors that cause the above-described problems when manufacturing a solar cell module. As a result, the inventors have found that the above-described problems can be suppressed by appropriately adjusting the complex viscosity of the solar cell sealing material, and have completed the present invention.

すなわち、本発明によれば、以下に示す太陽電池封止材および太陽電池モジュールが提供される。   That is, according to this invention, the solar cell sealing material and solar cell module which are shown below are provided.

[1]
エチレン・α−オレフィン共重合体と、有機過酸化物とを含む太陽電池封止材であって、
ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定される、上記エチレン・α−オレフィン共重合体のMFRが10〜50g/10分であり、
測定温度範囲25〜180℃、周波数0.016Hz、昇温速度3℃/分、ずりモードでの固体粘弾性測定における、当該太陽電池封止材の複素粘度(η*)の最小粘度が2.0×10Pa・s〜3.0×10Pa・sの範囲内である、太陽電池封止材。
[1]
A solar cell encapsulant comprising an ethylene / α-olefin copolymer and an organic peroxide,
According to ASTM D1238, the MFR of the ethylene / α-olefin copolymer is 10 to 50 g / 10 min as measured under conditions of 190 ° C. and 2.16 kg load,
The minimum viscosity of the complex viscosity (η *) of the solar cell encapsulant in the measurement of the solid viscoelasticity in a measurement temperature range of 25 to 180 ° C., a frequency of 0.016 Hz, a heating rate of 3 ° C./min, and a shear mode is 2. The solar cell sealing material which exists in the range of 0 * 10 < 3 > Pa * s-3.0 * 10 < 4 > Pa * s.

[2]
上記エチレン・α−オレフィン共重合体が、以下の要件a1)〜a3)を満たす、上記[1]に記載の太陽電池封止材。
a1)エチレンに由来する構成単位の含有割合が80〜90mol%であり、炭素数3〜20のα−オレフィンに由来する構成単位の含有割合が10〜20mol%である。
a2)ASTM D1505に準拠して測定される密度が0.865〜0.884g/cmである。
a3)ASTM D2240に準拠して測定されるショアA硬度が60〜85である。
[2]
The solar cell encapsulating material according to [1], wherein the ethylene / α-olefin copolymer satisfies the following requirements a1) to a3).
a1) The content rate of the structural unit derived from ethylene is 80-90 mol%, and the content rate of the structural unit derived from a C3-C20 alpha olefin is 10-20 mol%.
a2) The density measured according to ASTM D1505 is 0.865 to 0.884 g / cm 3 .
a3) Shore A hardness measured according to ASTM D2240 is 60-85.

[3]
上記最小粘度の温度が100〜120℃である、上記[1]または[2]に記載の太陽電池封止材。
[3]
The solar cell encapsulating material according to [1] or [2], wherein the temperature of the minimum viscosity is 100 to 120 ° C.

[4]
さらにシリカ粉末を含む、上記[1]乃至[3]いずれか一つに記載の太陽電池封止材。
[4]
Furthermore, the solar cell sealing material according to any one of [1] to [3], further including silica powder.

[5]
上記シリカ粉末が親水性シリカである、上記[4]に記載の太陽電池封止材。
[5]
The solar cell encapsulating material according to [4], wherein the silica powder is hydrophilic silica.

[6]
上記シリカ粉末のBET法により測定した比表面積が、50〜500m/gである、上記[4]または[5]に記載の太陽電池封止材。
[6]
The solar cell sealing material according to [4] or [5], wherein the silica powder has a specific surface area measured by a BET method of 50 to 500 m 2 / g.

[7]
上記シリカ粉末が非多孔性シリカである、上記[4]乃至[6]いずれか一つに記載の太陽電池封止材。
[7]
The solar cell encapsulant according to any one of [4] to [6], wherein the silica powder is non-porous silica.

[8]
当該太陽電池封止材中の上記シリカ粉末の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して1.0〜15.0重量部である、上記[4]乃至[7]いずれか一つに記載の太陽電池封止材。
[8]
[4] to [7], wherein the content of the silica powder in the solar cell encapsulant is 1.0 to 15.0 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. ] The solar cell sealing material as described in any one.

[9]
350〜800nmの波長域における、当該太陽電池封止材の全光線透過率が85%以上である、上記[1]乃至[8]いずれか一つに記載の太陽電池封止材。
[9]
The solar cell sealing material according to any one of the above [1] to [8], wherein the total light transmittance of the solar cell sealing material in a wavelength region of 350 to 800 nm is 85% or more.

[10]
上記有機過酸化物の1分間半減期温度が100〜170℃であり、
当該太陽電池封止材中の上記有機過酸化物の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して0.1〜3重量部である、上記[1]乃至[9]いずれか一つに記載の太陽電池封止材。
[10]
The organic peroxide has a 1 minute half-life temperature of 100 to 170 ° C.,
[1] to [9], wherein the content of the organic peroxide in the solar cell encapsulant is 0.1 to 3 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. ] The solar cell sealing material as described in any one.

[11]
シランカップリング剤をさらに含み、
当該太陽電池封止材中の上記シランカップリング剤の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して0.1〜5重量部である、上記[1]乃至[10]いずれか一つに記載の太陽電池封止材。
[11]
Further comprising a silane coupling agent,
[1] to [10], wherein the content of the silane coupling agent in the solar cell encapsulant is 0.1 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. ] The solar cell sealing material as described in any one.

[12]
ヒンダードフェノール系安定剤をさらに含み、
当該太陽電池封止材中の上記ヒンダードフェノール系安定剤の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して0.005〜0.1重量部である、上記[1]乃至[11]いずれか一つに記載の太陽電池封止材。
[12]
Further comprising a hindered phenol stabilizer,
[1] The content of the hindered phenol stabilizer in the solar cell encapsulant is 0.005 to 0.1 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. ] The solar cell sealing material as described in any one of [11].

[13]
ヒンダードアミン系光安定剤をさらに含み、
当該太陽電池封止材中の上記ヒンダードアミン系光安定剤の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して0.01〜2.0重量部である、上記[1]乃至[12]いずれか一つに記載の太陽電池封止材。
[13]
Further comprising a hindered amine light stabilizer,
[1] The content of the hindered amine light stabilizer in the solar cell encapsulant is 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. Thru | or [12] The solar cell sealing material as described in any one.

[14]
リン系安定剤をさらに含み、
当該太陽電池封止材中の上記リン系安定剤の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して0.005〜0.5重量部である、上記[1]乃至[13]いずれか一つに記載の太陽電池封止材。
[14]
Further comprising a phosphorus stabilizer,
The content of the phosphorus stabilizer in the solar cell sealing material is 0.005 to 0.5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. [13] The solar cell sealing material according to any one of the above.

[15]
紫外線吸収剤をさらに含み、
当該太陽電池封止材中の上記紫外線吸収剤の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して0.005〜5重量部である、上記[1]乃至[14]いずれか一つに記載の太陽電池封止材。
[15]
Further comprising a UV absorber,
[1] to [14], wherein the content of the ultraviolet absorber in the solar cell encapsulant is 0.005 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material as described in any one.

[16]
架橋助剤をさらに含み、
当該太陽電池封止材中の上記架橋助剤の含有量が、上記エチレン・α−オレフィン共重合体100重量部に対して0.05〜5重量部である、上記[1]乃至[15]いずれか一つに記載の太陽電池封止材。
[16]
Further comprising a crosslinking aid,
[1] to [15], wherein the content of the crosslinking aid in the solar cell encapsulant is 0.05 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material as described in any one.

[17]
シート状である、上記[1]乃至[16]いずれか一つに記載の太陽電池封止材。
[17]
The solar cell encapsulating material according to any one of [1] to [16], which is in a sheet form.

[18]
上記エチレン・α−オレフィン共重合体と、上記有機過酸化物とを含む樹脂組成物を溶融混錬後、シート状に押出成形して得られた、上記[17]に記載の太陽電池封止材。
[18]
The solar cell sealing according to [17], obtained by melt-kneading a resin composition containing the ethylene / α-olefin copolymer and the organic peroxide and then extruding the resin composition into a sheet shape. Wood.

[19]
表面側透明保護部材と、
裏面側保護部材と、
太陽電池素子と、
上記[1]乃至[18]いずれか一つに記載の太陽電池封止材を架橋させて形成された、上記太陽電池素子を上記表面側透明保護部材と上記裏面側保護部材との間に封止する封止層と、
を備えた太陽電池モジュール。
[19]
A surface-side transparent protective member;
A back side protection member;
A solar cell element;
The solar cell element formed by crosslinking the solar cell encapsulant according to any one of [1] to [18] is sealed between the front surface side transparent protective member and the back surface side protective member. A sealing layer to stop;
Solar cell module with

本発明によれば、太陽電池モジュール製造時の歩留まりに優れた太陽電池封止材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solar cell sealing material excellent in the yield at the time of solar cell module manufacture can be provided.

また、本発明によれば、この様な太陽電池封止材を用いることで、太陽電池封止材の諸特性のバランスが優れることに加え、太陽電池モジュールの使用時に温度上昇しても、封止材が変形したりするようなトラブルを回避することが可能である。そして、太陽電池の外観を損なうこともなく、コストなどの経済性に優れた太陽電池モジュールを提供することができる。   Further, according to the present invention, by using such a solar cell encapsulant, the balance of various characteristics of the solar cell encapsulant is excellent, and even if the temperature rises during use of the solar cell module, the sealing is performed. It is possible to avoid troubles such as deformation of the stop material. And the solar cell module excellent in economical efficiency, such as cost, can be provided, without impairing the external appearance of a solar cell.

本発明の太陽電池モジュールの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the solar cell module of this invention. 太陽電池素子の受光面と裏面の一構成例を模式的に示す平面図である。It is a top view which shows typically the example of 1 structure of the light-receiving surface and back surface of a solar cell element.

以下、本発明の実施の形態について、図面を用いながら説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「〜」はとくに断りがなければ、以上から以下を表す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. In addition, unless otherwise specified, “to” represents the following.

1.太陽電池封止材について
本実施形態の太陽電池封止材は、エチレン・α−オレフィン共重合体と、有機過酸化物と、を必須成分として含んでいる。
1. About solar cell sealing material The solar cell sealing material of this embodiment contains the ethylene-alpha-olefin copolymer and the organic peroxide as an essential component.

そして、本実施形態の太陽電池封止材は、測定温度範囲25〜180℃、周波数0.016Hz、昇温速度3℃/分、ずりモードでの固体粘弾性測定における、複素粘度(η*)の最小粘度が2.0×10Pa・s以上であり、好ましくは3.0×10Pa・s以上であり、より好ましくは3.5×10Pa・s以上である。
また、本実施形態の太陽電池封止材は、測定温度範囲25〜180℃、周波数0.016Hz、昇温速度3℃/分、ずりモードでの固体粘弾性測定における、複素粘度(η*)の最小粘度が3.0×10Pa・s以下であり、好ましくは2.5×10Pa・s以下である。
The solar cell encapsulant of the present embodiment has a measurement temperature range of 25 to 180 ° C., a frequency of 0.016 Hz, a temperature increase rate of 3 ° C./min, and a complex viscosity (η *) in solid viscoelasticity measurement in shear mode. The minimum viscosity is 2.0 × 10 3 Pa · s or more, preferably 3.0 × 10 3 Pa · s or more, and more preferably 3.5 × 10 3 Pa · s or more.
In addition, the solar cell encapsulant of this embodiment has a complex viscosity (η *) in a measurement of a solid viscoelasticity in a shear mode with a measurement temperature range of 25 to 180 ° C., a frequency of 0.016 Hz, a heating rate of 3 ° C./min. The minimum viscosity is 3.0 × 10 4 Pa · s or less, preferably 2.5 × 10 4 Pa · s or less.

一般的に、太陽電池封止材は、温度の上昇とともに複素粘度は減少していく。そして、ある温度から急激に複素粘度は上昇する。この複素粘度の急激な上昇は、太陽電池封止材に含まれる有機過酸化物が分解し、それにより太陽電池封止材の架橋反応が開始されることにより引き起こされる。よって、上記複素粘度の最小粘度とは、複素粘度が急激に上昇する前のある温度での粘度であり、架橋反応の開始時の複素粘度を意味する。   In general, the complex viscosity of the solar cell encapsulant decreases with increasing temperature. And complex viscosity rises rapidly from a certain temperature. This sudden increase in the complex viscosity is caused by the decomposition of the organic peroxide contained in the solar cell encapsulant, thereby initiating a crosslinking reaction of the solar cell encapsulant. Therefore, the minimum viscosity of the complex viscosity is a viscosity at a certain temperature before the complex viscosity suddenly increases, and means the complex viscosity at the start of the crosslinking reaction.

本発明者らの検討によれば、エチレン・α−オレフィン共重合体を主成分とする従来の太陽電池封止材は、架橋反応の開始時の複素粘度が低いため、太陽電池モジュールを作成する時に太陽電池素子や配線がずれる不具合や、ラミネート加工時に太陽電池封止材がはみ出し、ラミネート装置やオーブンを汚す不具合が生じてしまうことが明らかになった。
そこで、本発明者らは、太陽電池モジュール製造時に生じる上記不具合を解消すべく鋭意研究をおこなった。その結果、上記複素粘度(η*)の最小粘度をある特定の範囲に調整することにより、太陽電池モジュール製造時の歩留まりに優れた太陽電池封止材を得ることができることを見出し、本発明を完成するに至った。
According to the study by the present inventors, a conventional solar cell encapsulant mainly composed of an ethylene / α-olefin copolymer has a low complex viscosity at the start of the crosslinking reaction, and thus a solar cell module is produced. It has become clear that sometimes solar cell elements and wirings are misaligned, and that the solar cell encapsulating material protrudes during laminating, resulting in a problem of soiling the laminating apparatus and oven.
Therefore, the present inventors have intensively studied to eliminate the above-mentioned problems that occur when manufacturing solar cell modules. As a result, it was found that by adjusting the minimum viscosity of the complex viscosity (η *) to a specific range, a solar cell encapsulant excellent in yield at the time of manufacturing a solar cell module can be obtained. It came to be completed.

本実施形態の太陽電池封止材は、複素粘度(η*)の最小粘度が上記下限値以上であることにより、太陽電池モジュールを作成する時に太陽電池素子や配線がずれる不具合が生じることや、ラミネート加工時に太陽電池封止材がはみ出し、ラミネート装置やオーブンを汚す不具合も生じることを抑制することができる。
また、複素粘度(η*)の最小粘度が上記上限値以下であることにより、押出成形において外観が良好な太陽電池封止材を得ることができる。
The solar cell encapsulant of the present embodiment has a problem that the solar cell element and the wiring are displaced when the solar cell module is created, because the minimum viscosity of the complex viscosity (η *) is equal to or higher than the lower limit. It can suppress that the solar cell sealing material protrudes at the time of a lamination process, and the malfunction which soils a lamination apparatus and oven also arises.
Moreover, when the minimum viscosity of complex viscosity ((eta) *) is below the said upper limit, the solar cell sealing material with a favorable external appearance can be obtained in extrusion molding.

したがって、本発明によれば、複素粘度(η*)の最小粘度が上記範囲内であることにより、太陽電池モジュール製造時の歩留まりに優れた太陽電池封止材を得ることができる。   Therefore, according to the present invention, when the minimum viscosity of the complex viscosity (η *) is within the above range, a solar cell encapsulant excellent in yield at the time of manufacturing a solar cell module can be obtained.

本実施形態の太陽電池封止材は、測定温度範囲25〜180℃、周波数0.016Hz、昇温速度3℃/分、ずりモードでの固体粘弾性測定における、複素粘度(η*)の最小粘度での温度が100〜120℃であることが好ましい。
最小粘度での温度が100℃以上であると、押出成形性に優れ、シート外観がより一層良好なシートを得ることができる。最小粘度での温度が120℃以下であると、ラミネート工程での架橋が早期に行え、太陽電池素子または電極のずれをより一層抑制することができる。さらに、ラミネート装置およびオーブンの汚れをより一層抑制することができる。
なお、ずりモードでの固体粘弾性測定は、厚さ0.5mmのプレスシートを作成し、ReoStress(HAAKE製)を用いて、25℃(室温)〜180℃まで0.016Hzの周波数を掛けながら、3℃/分の昇温速度で測定することができる。最小粘度での温度は、測定プロファイルより読み取ることができる。
The solar cell encapsulant of this embodiment has a measurement temperature range of 25 to 180 ° C., a frequency of 0.016 Hz, a heating rate of 3 ° C./min, and a minimum complex viscosity (η *) in solid viscoelasticity measurement in shear mode. It is preferable that the temperature in viscosity is 100 to 120 ° C.
When the temperature at the minimum viscosity is 100 ° C. or higher, a sheet excellent in extrusion moldability and having a better sheet appearance can be obtained. When the temperature at the minimum viscosity is 120 ° C. or lower, crosslinking in the laminating process can be performed at an early stage, and the displacement of the solar cell element or electrode can be further suppressed. Furthermore, dirt on the laminating apparatus and the oven can be further suppressed.
In addition, the solid viscoelasticity measurement in the shear mode was performed by creating a press sheet having a thickness of 0.5 mm and applying a frequency of 0.016 Hz from 25 ° C. (room temperature) to 180 ° C. using ReoPress (manufactured by HAAKE). It can be measured at a rate of temperature increase of 3 ° C./min. The temperature at the minimum viscosity can be read from the measurement profile.

また、本実施形態の太陽電池封止材に含まれるエチレン・α−オレフィン共重合体は、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるメルトフローレ−ト(MFR)が、10g/10分以上であり、好ましくは13g/10分以上であり、より好ましくは14g/10分以上である。
また、本実施形態の太陽電池封止材に含まれるエチレン・α−オレフィン共重合体は、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるメルトフローレ−ト(MFR)が、50g/10分以下であり、好ましくは40g/10分以下であり、より好ましくは35g/10分以下であり、とくに好ましくは27g/10分以下であり、最も好ましくは25g/10分以下である。
エチレン・α−オレフィン共重合体のMFRは、後述する重合反応の際の重合温度、重合圧力、並びに重合系内のエチレンおよびα−オレフィンのモノマー濃度と水素濃度のモル比率などを調整することにより、調整することができる。
In addition, the ethylene / α-olefin copolymer contained in the solar cell encapsulant of the present embodiment is a melt flow rate (MFR) measured under conditions of 190 ° C. and 2.16 kg load in accordance with ASTM D1238. Is 10 g / 10 min or more, preferably 13 g / 10 min or more, more preferably 14 g / 10 min or more.
In addition, the ethylene / α-olefin copolymer contained in the solar cell encapsulant of the present embodiment is a melt flow rate (MFR) measured under conditions of 190 ° C. and 2.16 kg load in accordance with ASTM D1238. Is 50 g / 10 min or less, preferably 40 g / 10 min or less, more preferably 35 g / 10 min or less, particularly preferably 27 g / 10 min or less, and most preferably 25 g / 10 min or less. It is.
The MFR of the ethylene / α-olefin copolymer is adjusted by adjusting the polymerization temperature, the polymerization pressure, the molar ratio of the ethylene and α-olefin monomer concentration and the hydrogen concentration in the polymerization system, which will be described later. Can be adjusted.

MFRが10g/10分以上であると、エチレン・α−オレフィン共重合体を含む樹脂組成物の流動性が向上し、シート押出成形時の生産性を向上させることができる。また、樹脂組成物のスコーチ性が低下するのでゲル化を抑制することができる。ゲル化が抑制されると、押出機のトルクが低下するため、シート成形を容易にすることができる。また、シートが得られた後、押出機内でゲル物の発生を抑制できるため、シートの表面における凹凸の発生を抑制でき、外観の低下を抑制することができる。   When the MFR is 10 g / 10 min or more, the fluidity of the resin composition containing the ethylene / α-olefin copolymer is improved, and the productivity at the time of sheet extrusion molding can be improved. Moreover, since the scorch property of a resin composition falls, gelatinization can be suppressed. When gelation is suppressed, the torque of the extruder is reduced, and sheet molding can be facilitated. Moreover, since generation | occurrence | production of a gel thing can be suppressed in an extruder after a sheet | seat is obtained, generation | occurrence | production of the unevenness | corrugation in the surface of a sheet | seat can be suppressed, and the fall of an external appearance can be suppressed.

なお、シート内部にゲル物があると、電圧をかけたときゲル物周辺にクラックが生じ、絶縁破壊電圧が低下するが、MFRを10g/10分以上にすることで、絶縁破壊電圧の低下を抑制することができる。また、シート内部にゲル物があるとゲル物界面において透湿し易くなるが、MFRを10g/10分以上にすることで、透湿性の低下を抑制することもできる。   In addition, if there is a gel material inside the sheet, cracks will occur around the gel material when voltage is applied, and the dielectric breakdown voltage will decrease, but by reducing the MFR to 10 g / 10 min or more, the dielectric breakdown voltage will decrease. Can be suppressed. Further, if there is a gel material inside the sheet, moisture permeation easily occurs at the gel material interface. However, by reducing the MFR to 10 g / 10 min or more, a decrease in moisture permeability can be suppressed.

また、シート表面に凹凸が発生すると、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との密着性が悪化し、接着が不十分となるが、MFRを50g/10分以下にすると、分子量が大きくなるため、チルロールなどのロール面への付着を抑制できるため、剥離が不要となり、均一な厚みのシートに成形することができる。さらに、「コシ」がある樹脂組成物となるため、0.1mm以上の厚いシートを容易に成形することができる。また、太陽電池モジュールのラミネート成形時の架橋特性が向上するため、十分に架橋させて、耐熱性の低下を抑制することができる。MFRが27g/10分以下であると、さらに、シート成形時のドローダウンを抑制できるため、幅の広いシートを成形でき、また架橋特性および耐熱性がさらに向上し、最も良好な太陽電池封止材シートを得ることができる。   Moreover, when unevenness | corrugation generate | occur | produces on the sheet | seat surface, adhesiveness with a surface side transparent protective member, a cell, an electrode, and a back surface side protective member will deteriorate at the time of a lamination process of a solar cell module, and adhesion | attachment becomes inadequate, but MFR is 50g. When it is set to / 10 minutes or less, the molecular weight is increased, and therefore, adhesion to a roll surface such as a chill roll can be suppressed. Furthermore, since it becomes a resin composition with “koshi”, a thick sheet of 0.1 mm or more can be easily formed. Moreover, since the crosslinking characteristic at the time of laminate molding of the solar cell module is improved, it is possible to sufficiently crosslink and suppress a decrease in heat resistance. If the MFR is 27 g / 10 min or less, the drawdown during sheet forming can be further suppressed, so that a wide sheet can be formed, the cross-linking characteristics and heat resistance are further improved, and the best solar cell sealing A material sheet can be obtained.

(エチレン・α−オレフィン共重合体)
本実施形態の太陽電池封止材は、以下のエチレン・α−オレフィン共重合体を含むことが好ましい態様の一つである。
(Ethylene / α-olefin copolymer)
The solar cell encapsulant of this embodiment is one of the preferred embodiments that contains the following ethylene / α-olefin copolymer.

本実施形態の太陽電池封止材に用いられるエチレン・α−オレフィン共重合体は、エチレンと、炭素数3〜20のα−オレフィンとを共重合することによって得られる。α−オレフィンとしては、通常、炭素数3〜20のα−オレフィンを1種類単独でまたは2種類以上を組み合わせて用いることができる。炭素数3〜20のα−オレフィンとしては、直鎖状または分岐状のα−オレフィン、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテン、3,3−ジメチル−1−ブテン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセンなどを挙げることができる。中でも好ましいのは、炭素数が10以下であるα−オレフィンであり、とくに好ましいのは炭素数が3〜8のα−オレフィンである。入手の容易さからプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテンおよび1−オクテンが好ましい。なお、エチレン・α−オレフィン共重合体はランダム共重合体であっても、ブロック共重合体であってもよいが、柔軟性の観点からランダム共重合体が好ましい。   The ethylene / α-olefin copolymer used in the solar cell encapsulant of the present embodiment is obtained by copolymerizing ethylene and an α-olefin having 3 to 20 carbon atoms. As the α-olefin, usually, an α-olefin having 3 to 20 carbon atoms can be used alone or in combination of two or more. Examples of the α-olefin having 3 to 20 carbon atoms include linear or branched α-olefins such as propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3, 3 -Dimethyl-1-butene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like can be mentioned. Among these, α-olefins having 10 or less carbon atoms are preferable, and α-olefins having 3 to 8 carbon atoms are particularly preferable. Propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene and 1-octene are preferred because of their availability. The ethylene / α-olefin copolymer may be a random copolymer or a block copolymer, but a random copolymer is preferred from the viewpoint of flexibility.

さらに、本実施形態の太陽電池封止材に用いられるエチレン・α−オレフィン共重合体は、エチレンと、炭素数3〜20のα−オレフィンと非共役ポリエンからなる共重合体であってもよい。α−オレフィンは前述と同様であって、非共役ポリエンとしては、5−エチリデン−2−ノルボルネン(ENB)、5−ビニル−2−ノルボルネン(VNB)、ジシクロペンタジエン(DCPD)などが挙げられる。これら非共役ポリエンを1種単独、または2種以上を組み合わせて用いることができる。   Furthermore, the ethylene / α-olefin copolymer used in the solar cell encapsulant of the present embodiment may be a copolymer composed of ethylene, an α-olefin having 3 to 20 carbon atoms, and a non-conjugated polyene. . The α-olefin is the same as described above, and examples of the non-conjugated polyene include 5-ethylidene-2-norbornene (ENB), 5-vinyl-2-norbornene (VNB), and dicyclopentadiene (DCPD). These non-conjugated polyenes can be used alone or in combination of two or more.

本実施形態の太陽電池封止材に用いられるエチレン・α−オレフィン共重合体は、芳香族ビニル化合物、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、メトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、p−クロロスチレン、ジビニルベンゼンなどのスチレン類;3−フェニルプロピレン、4−フェニルプロピレン、α−メチルスチレン、炭素数が3〜20の環状オレフィン類、例えば、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、などを併用してもよい。   The ethylene / α-olefin copolymer used in the solar cell encapsulant of this embodiment is an aromatic vinyl compound such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-. Styrenes such as dimethyl styrene, methoxy styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl benzyl acetate, hydroxystyrene, p-chlorostyrene, divinylbenzene; 3-phenylpropylene, 4-phenylpropylene, α-methylstyrene, carbon Cyclic olefins having a number of 3 to 20 such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene and the like may be used in combination.

本実施形態のエチレン・α―オレフィン共重合体は、以下の要件a1〜a3をさらに満たすことが好ましい。   The ethylene / α-olefin copolymer of the present embodiment preferably further satisfies the following requirements a1 to a3.

(要件a1)
エチレン・α−オレフィン共重合体に含まれる、エチレンに由来する構成単位の含有割合は、好ましくは80〜90mol%であり、より好ましくは80〜88mol%であり、さらに好ましくは82〜88mol%であり、とくに好ましくは82〜87mol%である。エチレン・α−オレフィン共重合体に含まれる、炭素数3〜20のα−オレフィンに由来する構成単位(以下、「α−オレフィン単位」とも記す)の含有割合は、好ましくは10〜20mol%であり、より好ましくは12〜20mol%であり、さらに好ましくは12〜18mol%、とくに好ましくは13〜18mol%である。
(Requirement a1)
The content ratio of the structural unit derived from ethylene contained in the ethylene / α-olefin copolymer is preferably 80 to 90 mol%, more preferably 80 to 88 mol%, still more preferably 82 to 88 mol%. Yes, particularly preferably 82 to 87 mol%. The content ratio of the structural unit derived from an α-olefin having 3 to 20 carbon atoms (hereinafter also referred to as “α-olefin unit”) contained in the ethylene / α-olefin copolymer is preferably 10 to 20 mol%. More preferably, it is 12-20 mol%, More preferably, it is 12-18 mol%, Most preferably, it is 13-18 mol%.

エチレン・α−オレフィン共重合体に含まれるα−オレフィン単位の含有割合が10mol%以上であると、高い透明性が得られる。また、低温での押出成形を容易に行うことができ、例えば130℃以下での押出成形が可能である。このため、エチレン・α−オレフィン共重合体に有機過酸化物を練り込む場合においても、押出機内での架橋反応が進行することを抑制でき、太陽電池封止材のシートにゲル状の異物が発生して、シートの外観が悪化するのを防ぐことができる。また、適度な柔軟性が得られるため、太陽電池モジュールのラミネート成形時に太陽電池素子の割れや、薄膜電極のカケなどの発生を防ぐことができる。   When the content ratio of the α-olefin unit contained in the ethylene / α-olefin copolymer is 10 mol% or more, high transparency is obtained. Further, extrusion molding at a low temperature can be easily performed, and for example, extrusion molding at 130 ° C. or lower is possible. For this reason, even when the organic peroxide is kneaded into the ethylene / α-olefin copolymer, it is possible to suppress the progress of the crosslinking reaction in the extruder, and gel-like foreign matters are present on the sheet of the solar cell sealing material. Occurrence and deterioration of the appearance of the sheet can be prevented. Moreover, since moderate softness | flexibility is acquired, generation | occurrence | production of the crack of a solar cell element, the crack of a thin film electrode, etc. can be prevented at the time of lamination molding of a solar cell module.

エチレン・α−オレフィン共重合体に含まれるα−オレフィン単位の含有割合が20mol%以下であると、エチレン・α−オレフィン共重合体の結晶化速度が適度になるため、押出機より押し出されたシートがベタつかず、冷却ロールでの剥離が容易であり、シート状の太陽電池封止材を効率的に得ることができる。また、シートにベタツキが発生しないのでブロッキングを防止でき、シートの繰り出し性が良好にある。また、耐熱性の低下を防ぐこともできる。   When the content ratio of the α-olefin unit contained in the ethylene / α-olefin copolymer is 20 mol% or less, the crystallization speed of the ethylene / α-olefin copolymer becomes appropriate, and thus the ethylene / α-olefin copolymer was extruded from an extruder. The sheet is not sticky, can be easily peeled off by a cooling roll, and a sheet-like solar cell sealing material can be obtained efficiently. Further, since no stickiness is generated on the sheet, blocking can be prevented, and the sheet feeding property is good. In addition, a decrease in heat resistance can be prevented.

(要件a2)
ASTM D1505に準拠して測定されるエチレン・α−オレフィン共重合体の密度は好ましくは0.865〜0.884g/cmであり、より好ましくは0.866〜0.883g/cmであり、さらに好ましくは0.866〜0.880g/cmであり、とくに好ましくは0.867〜0.880g/cmである。エチレン・α−オレフィン共重合体の密度は、エチレン単位の含有割合とα−オレフィン単位の含有割合とのバランスにより調整することができる。すなわち、エチレン単位の含有割合を高くすると結晶性が高くなり、密度の高いエチレン・α−オレフィン共重合体を得ることができる。一方、エチレン単位の含有割合を低くすると結晶性が低くなり、密度の低いエチレン・α−オレフィン共重合体を得ることができる。
(Requirement a2)
The density of the ethylene / α-olefin copolymer measured according to ASTM D1505 is preferably 0.865 to 0.884 g / cm 3 , more preferably 0.866 to 0.883 g / cm 3 . , more preferably from 0.866~0.880g / cm 3, particularly preferably 0.867~0.880g / cm 3. The density of the ethylene / α-olefin copolymer can be adjusted by a balance between the content ratio of ethylene units and the content ratio of α-olefin units. That is, when the content ratio of the ethylene unit is increased, the crystallinity is increased, and a high-density ethylene / α-olefin copolymer can be obtained. On the other hand, when the content ratio of the ethylene unit is lowered, the crystallinity is lowered and an ethylene / α-olefin copolymer having a low density can be obtained.

エチレン・α−オレフィン共重合体の密度が0.884g/cm以下であると、結晶性が低くなり、透明性を高くすることができる。さらに、低温での押出成形が容易となり、例えば130℃以下で押出成形を行うことができる。このため、エチレン・α−オレフィン共重合体に有機過酸化物を練り込んでも、押出機内での架橋反応が進行するのを防ぎ、太陽電池封止材のシートにゲル状の異物の発生を抑制し、シートの外観の悪化を抑制することもできる。また、柔軟性が高いため、太陽電池モジュールのラミネート成形時に太陽電池素子であるセルの割れや薄膜電極のカケなどの発生を防ぐことができる。 When the density of the ethylene / α-olefin copolymer is 0.884 g / cm 3 or less, the crystallinity is lowered and the transparency can be increased. Furthermore, extrusion molding at low temperature becomes easy, and for example, extrusion molding can be performed at 130 ° C. or lower. For this reason, even if an organic peroxide is kneaded into the ethylene / α-olefin copolymer, the cross-linking reaction in the extruder is prevented from progressing, and the generation of gel-like foreign matters on the sheet of the solar cell encapsulant is suppressed. In addition, deterioration of the appearance of the sheet can be suppressed. Moreover, since it is highly flexible, it is possible to prevent the occurrence of cell cracks and thin film electrode cracks, which are solar cell elements, when the solar cell module is laminated.

一方、エチレン・α−オレフィン共重合体の密度が0.865g/cm以上であると、エチレン・α−オレフィン共重合体の結晶化速度を速くできるため、押出機より押し出されたシートがベタつきにくく、冷却ロールでの剥離が容易になり、太陽電池封止材のシートを容易に得ることができる。また、シートにベタツキが発生しにくくなるのでブロッキングの発生を抑制し、シートの繰り出し性を向上させることができる。また、十分に架橋させられるため、耐熱性の低下を抑制することができる。 On the other hand, when the density of the ethylene / α-olefin copolymer is 0.865 g / cm 3 or more, the crystallization speed of the ethylene / α-olefin copolymer can be increased, so that the sheet extruded from the extruder is sticky. It is difficult, peeling with a cooling roll becomes easy, and the sheet | seat of a solar cell sealing material can be obtained easily. Further, since stickiness is less likely to occur in the sheet, the occurrence of blocking can be suppressed, and the sheet feedability can be improved. Moreover, since it can fully bridge | crosslink, a heat resistant fall can be suppressed.

(要件a3)
ASTM D2240に準拠して測定される、エチレン・α−オレフィン共重合体のショアA硬度は好ましくは60〜85であり、より好ましくは62〜83であり、さらに好ましくは62〜80であり、とくに好ましくは65〜80である。エチレン・α−オレフィン共重合体のショアA硬度は、エチレン・α−オレフィン共重合体のエチレン単位の含有割合や密度を上述の数値範囲に制御することにより、調整することができる。すなわち、エチレン単位の含有割合が高く、密度が高いエチレン・α−オレフィン共重合体は、ショアA硬度が高くなる。一方、エチレン単位の含有割合が低く、密度が低いエチレン・α−オレフィン共重合体は、ショアA硬度が低くなる。
(Requirement a3)
The Shore A hardness of the ethylene / α-olefin copolymer, measured according to ASTM D2240, is preferably 60 to 85, more preferably 62 to 83, still more preferably 62 to 80, and particularly Preferably it is 65-80. The Shore A hardness of the ethylene / α-olefin copolymer can be adjusted by controlling the content ratio and density of the ethylene units in the ethylene / α-olefin copolymer within the above-mentioned numerical range. That is, an ethylene / α-olefin copolymer having a high ethylene unit content and high density has a high Shore A hardness. On the other hand, an ethylene / α-olefin copolymer having a low ethylene unit content and a low density has a low Shore A hardness.

ショアA硬度が60以上であると、エチレン・α−オレフィン共重合体がベタつきにくくなり、ブロッキングを抑制できる。また、太陽電池封止材をシート状に加工する際は、シートの繰り出し性を向上させることもでき、耐熱性の低下も抑制できる。   When the Shore A hardness is 60 or more, the ethylene / α-olefin copolymer is less sticky and blocking can be suppressed. Moreover, when processing a solar cell sealing material into a sheet form, the drawing | feeding-out property of a sheet | seat can also be improved and the fall of heat resistance can also be suppressed.

一方、ショアA硬度が85以下であると、結晶性が低くなり、透明性を高くすることができる。さらに、柔軟性が高いため、太陽電池モジュールのラミネート成形時に太陽電池素子であるセルの割れや、薄膜電極のカケなどを防ぐことができる。   On the other hand, when the Shore A hardness is 85 or less, the crystallinity is lowered and the transparency can be increased. Furthermore, since it is highly flexible, it is possible to prevent cracking of cells that are solar cell elements and chipping of thin film electrodes during laminate molding of the solar cell module.

さらに、本実施形態の太陽電池封止材は、以下の要件をさらに満たすことも好ましい態様である。   Furthermore, the solar cell sealing material of this embodiment is also a preferable aspect that further satisfies the following requirements.

(融解ピーク)
エチレン・α−オレフィン共重合体の、示差走査熱量測定(DSC)に基づく融解ピークは30〜90℃の範囲に存在することが好ましく、33〜90℃の範囲に存在することがより好ましく、33〜88℃の範囲に存在することがとくに好ましい。融解ピークが90℃以下であると、結晶化度が低くなり、得られる太陽電池封止材の柔軟性が高まるため、太陽電池モジュールをラミネート成形する際に、セルの割れや薄膜電極のカケの発生を防止することができる。一方、融解ピークが30℃以上であると、樹脂組成物の柔軟性を適度に高くできるため、押出成形にて太陽電池封止材シートを容易に得ることができる。また、シートのベタつきによるブロッキングを防止して、シートの繰り出し性の悪化を抑制することができる。
(Melting peak)
The melting peak based on differential scanning calorimetry (DSC) of the ethylene / α-olefin copolymer is preferably in the range of 30 to 90 ° C., more preferably in the range of 33 to 90 ° C., 33 It is particularly preferable that it exists in the range of ˜88 ° C. When the melting peak is 90 ° C. or lower, the degree of crystallinity is lowered, and the flexibility of the obtained solar cell encapsulant is increased. Therefore, when the solar cell module is laminated, cell cracks and thin film electrode cracks are observed. Occurrence can be prevented. On the other hand, when the melting peak is 30 ° C. or higher, the flexibility of the resin composition can be appropriately increased, and thus a solar cell encapsulant sheet can be easily obtained by extrusion molding. Further, blocking due to stickiness of the sheet can be prevented, and deterioration of the sheet feeding property can be suppressed.

(エチレン・α−オレフィン共重合体の製造方法)
エチレン・α−オレフィン共重合体は、チーグラー化合物、バナジウム化合物、メタロセン化合物などを触媒として用いて製造することができる。中でも以下に示す種々のメタロセン化合物を触媒として用いて製造することが好ましい。メタロセン化合物としては、例えば、特開2006−077261号公報、特開2008−231265号公報、特開2005−314680号公報などに記載のメタロセン化合物を用いることができる。ただし、これらの特許文献に記載のメタロセン化合物とは異なる構造のメタロセン化合物を使用してもよいし、二種以上のメタロセン化合物を組み合わせて使用してもよい。
(Method for producing ethylene / α-olefin copolymer)
The ethylene / α-olefin copolymer can be produced using a Ziegler compound, a vanadium compound, a metallocene compound or the like as a catalyst. Among them, it is preferable to produce using various metallocene compounds shown below as catalysts. As the metallocene compound, for example, the metallocene compounds described in JP-A-2006-077261, JP-A-2008-231265, JP-A-2005-314680 and the like can be used. However, a metallocene compound having a structure different from the metallocene compounds described in these patent documents may be used, or two or more metallocene compounds may be used in combination.

メタロセン化合物を用いる重合反応としては、例えば以下に示す態様を好適例として挙げることができる。   As a polymerization reaction using a metallocene compound, for example, the following modes can be mentioned as preferred examples.

従来公知のメタロセン化合物と、(II)(II−1)有機アルミニウムオキシ化合物、(II−2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物、および(II−3)有機アルミニウム化合物からなる群より選択される少なくとも一種の化合物(助触媒ともいう)と、からなるオレフィン重合用触媒の存在下に、エチレンとα−オレフィンなどから選ばれる一種以上のモノマーを供給する。   A conventionally known metallocene compound, (II) (II-1) an organoaluminum oxy compound, (II-2) a compound that reacts with the metallocene compound (I) to form an ion pair, and (II-3) an organoaluminum In the presence of an olefin polymerization catalyst comprising at least one compound selected from the group consisting of compounds (also referred to as a co-catalyst), one or more monomers selected from ethylene and α-olefin are supplied.

(II−1)有機アルミニウムオキシ化合物、(II−2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物、および(II−3)有機アルミニウム化合物としては、例えば、特開2006−077261号公報、特開2008−231265号公報、および特開2005−314680号公報などに記載のメタロセン化合物を用いることができる。ただし、これらの特許文献に記載のメタロセン化合物とは異なる構造のメタロセン化合物を使用してもよい。これら化合物は、個別に、あるいは予め接触させて重合雰囲気に投入してもよい。さらに、例えば特開2005−314680号公報などに記載の微粒子状無機酸化物担体に担持して用いてもよい。
なお、好ましくは、前述の(II−2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物を実質的に使用せずに製造することで、電気特性の優れるエチレン・α−オレフィン共重合体を得ることができる。
Examples of (II-1) an organoaluminum oxy compound, (II-2) a compound that reacts with the metallocene compound (I) to form an ion pair, and (II-3) an organoaluminum compound include, for example, The metallocene compounds described in Japanese Patent No. 077261, Japanese Patent Application Laid-Open No. 2008-231265, Japanese Patent Application Laid-Open No. 2005-314680, and the like can be used. However, you may use the metallocene compound of a structure different from the metallocene compound described in these patent documents. These compounds may be put into the polymerization atmosphere individually or in advance in contact with each other. Further, for example, it may be supported on a particulate inorganic oxide carrier described in JP-A-2005-314680.
Preferably, (II-2) the ethylene / α-olefin having excellent electrical characteristics is produced by substantially using the compound (II-2) that reacts with the metallocene compound (I) to form an ion pair. A copolymer can be obtained.

エチレン・α−オレフィン共重合体の重合は、従来公知の気相重合法、およびスラリー重合法、溶液重合法などの液相重合法のいずれでも行うことができる。好ましくは溶液重合法などの液相重合法により行われる。上記のようなメタロセン化合物を用いて、エチレンと炭素数3〜20のα−オレフィンとの共重合を行ってエチレン・α−オレフィン共重合体を製造する場合、(I)のメタロセン化合物は、反応容積1リットル当り、通常10−9〜10−1モル、好ましくは10−8〜10−2モルになるような量で用いられる。 Polymerization of the ethylene / α-olefin copolymer can be carried out by any of the conventionally known gas phase polymerization methods and liquid phase polymerization methods such as slurry polymerization methods and solution polymerization methods. Preferably, it is carried out by a liquid phase polymerization method such as a solution polymerization method. When the ethylene / α-olefin copolymer is produced by copolymerizing ethylene and an α-olefin having 3 to 20 carbon atoms using the metallocene compound as described above, the metallocene compound of (I) It is used in an amount of usually 10 −9 to 10 −1 mol, preferably 10 −8 to 10 −2 mol per liter of volume.

化合物(II−1)は、化合物(II−1)と、化合物(I)中の全遷移金属原子(M)とのモル比[(II−1)/M]が通常1〜10000、好ましくは10〜5000となるような量で用いられる。化合物(II−2)は、化合物(II−2)と、化合物(I)中の全遷移金属(M)とのモル比[(II−2)/M]が、通常0.5〜50、好ましくは1〜20となるような量で用いられる。化合物(II−3)は、重合容積1リットル当り、通常0〜5ミリモル、好ましくは約0〜2ミリモルとなるような量で用いられる。   In the compound (II-1), the molar ratio [(II-1) / M] of the compound (II-1) and all transition metal atoms (M) in the compound (I) is usually 1 to 10,000, preferably It is used in such an amount that it becomes 10-5000. In the compound (II-2), the molar ratio [(II-2) / M] of the compound (II-2) and the total transition metal (M) in the compound (I) is usually 0.5 to 50, Preferably it is used in such an amount as to be 1-20. Compound (II-3) is generally used in an amount of 0 to 5 mmol, preferably about 0 to 2 mmol, per liter of polymerization volume.

溶液重合法では、上述のようなメタロセン化合物の存在下に、エチレンと炭素数3〜20のα−オレフィンとの共重合を行うことによって、コモノマー含量が高く、組成分布が狭く、分子量分布が狭いエチレン・α−オレフィン共重合体を効率よく製造できる。ここで、エチレンと、炭素数3〜20のα−オレフィンとの仕込みモル比は、通常、エチレン:α−オレフィン=10:90〜99.9:0.1、好ましくはエチレン:α−オレフィン=30:70〜99.9:0.1、さらに好ましくはエチレン:α−オレフィン=50:50〜99.9:0.1である。   In the solution polymerization method, by copolymerizing ethylene and an α-olefin having 3 to 20 carbon atoms in the presence of the metallocene compound as described above, the comonomer content is high, the composition distribution is narrow, and the molecular weight distribution is narrow. An ethylene / α-olefin copolymer can be produced efficiently. Here, the charged molar ratio of ethylene and the α-olefin having 3 to 20 carbon atoms is usually ethylene: α-olefin = 10: 90 to 99.9: 0.1, preferably ethylene: α-olefin = 30:70 to 99.9: 0.1, more preferably ethylene: α-olefin = 50: 50 to 99.9: 0.1.

「溶液重合法」とは、後述の不活性炭化水素溶媒中にポリマーが溶解した状態で重合を行う方法の総称である。溶液重合法における重合温度は、通常0〜200℃、好ましくは20〜190℃、さらに好ましくは40〜180℃である。溶液重合法においては、重合温度が0℃に満たない場合、その重合活性は極端に低下し、重合熱の除熱も困難となり、生産性の点で実用的でない。また、重合温度が200℃を超えると、重合活性が極端に低下するので生産性の点で実用的でない。   The “solution polymerization method” is a general term for methods in which polymerization is performed in a state in which a polymer is dissolved in an inert hydrocarbon solvent described later. The polymerization temperature in the solution polymerization method is usually 0 to 200 ° C, preferably 20 to 190 ° C, more preferably 40 to 180 ° C. In the solution polymerization method, when the polymerization temperature is less than 0 ° C., the polymerization activity is extremely lowered and it is difficult to remove the heat of polymerization, which is not practical in terms of productivity. On the other hand, when the polymerization temperature exceeds 200 ° C., the polymerization activity is extremely lowered, so that it is not practical in terms of productivity.

重合圧力は、通常、常圧〜10MPaゲージ圧、好ましくは常圧〜8MPaゲージ圧の条件下である。共重合は、回分式、半連続式、連続式のいずれの方法においても行うことができる。反応時間(共重合反応が連続法で実施される場合には、平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なり、適宜選択することができるが、通常1分間〜3時間、好ましくは10分間〜2.5時間である。さらに、重合を反応条件の異なる2段以上に分けて行うことも可能である。得られるエチレン・α−オレフィン共重合体の分子量は、重合系中の水素濃度や重合温度を変化させることによっても調節することができる。さらに、使用する化合物(II)の量により調節することもできる。水素を添加する場合、その量は、生成するエチレン・α−オレフィン共重合体1kgあたり0.001〜5,000NL程度が適当である。また、得られるエチレン・α−オレフィン共重合体の分子末端に存在するビニル基およびビニリデン基は、重合温度を高くすること、水素添加量を極力少なくすることで調整できる。   The polymerization pressure is usually a normal pressure to 10 MPa gauge pressure, preferably a normal pressure to 8 MPa gauge pressure. Copolymerization can be carried out in any of batch, semi-continuous and continuous methods. The reaction time (average residence time when the copolymerization reaction is carried out in a continuous process) varies depending on conditions such as the catalyst concentration and polymerization temperature, and can be selected as appropriate, but usually 1 minute to 3 hours, Preferably, it is 10 minutes to 2.5 hours. Furthermore, the polymerization can be carried out in two or more stages having different reaction conditions. The molecular weight of the obtained ethylene / α-olefin copolymer can also be adjusted by changing the hydrogen concentration or polymerization temperature in the polymerization system. Furthermore, it can also adjust with the quantity of the compound (II) to be used. When hydrogen is added, the amount is suitably about 0.001 to 5,000 NL per 1 kg of the ethylene / α-olefin copolymer to be produced. Further, the vinyl group and vinylidene group present at the molecular terminals of the obtained ethylene / α-olefin copolymer can be adjusted by increasing the polymerization temperature and decreasing the amount of hydrogenation as much as possible.

溶液重合法において用いられる溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50℃〜200℃の飽和炭化水素である。具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素が挙げられる。なお、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類や、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素も「不活性炭化水素溶媒」の範疇に入り、その使用を制限するものではない。   The solvent used in the solution polymerization method is usually an inert hydrocarbon solvent, preferably a saturated hydrocarbon having a boiling point of 50 ° C. to 200 ° C. under normal pressure. Specific examples include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, and kerosene; and alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane. Aromatic hydrocarbons such as benzene, toluene and xylene, and halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane are also included in the category of “inert hydrocarbon solvents” and their use is not limited. .

上述したように、溶液重合法においては、従来汎用されてきた芳香族炭化水素に溶解する有機アルミニウムオキシ化合物のみならず、脂肪族炭化水素や脂環族炭化水素に溶解するMMAOのような修飾メチルアルミノキサンを使用できる。この結果、溶液重合用の溶媒として脂肪族炭化水素や脂環族炭化水素を採用すれば、重合系内や生成するエチレン・α−オレフィン共重合体中に芳香族炭化水素が混入する可能性をほぼ完全に排除することが可能となる。すなわち、溶液重合法は、環境負荷を軽減化でき、人体健康への影響を最小化できるという特徴も有する。なお、物性値のばらつきを抑制するため、重合反応により得られたエチレン・α−オレフィン共重合体、および所望により添加される他の成分は、任意の方法で溶融され、混練、造粒などを施されるのが好ましい。   As described above, in the solution polymerization method, a modified methyl such as MMAO that dissolves in an aliphatic hydrocarbon or an alicyclic hydrocarbon as well as an organoaluminum oxy compound that dissolves in an aromatic hydrocarbon that has been widely used conventionally. Aluminoxane can be used. As a result, if aliphatic hydrocarbons or alicyclic hydrocarbons are used as the solvent for the solution polymerization, there is a possibility that aromatic hydrocarbons are mixed in the polymerization system or in the ethylene / α-olefin copolymer to be produced. It becomes possible to eliminate almost completely. That is, the solution polymerization method has characteristics that it can reduce the environmental burden and can minimize the influence on human health. In order to suppress variations in physical property values, the ethylene / α-olefin copolymer obtained by the polymerization reaction and other components added as desired are melted by any method, and kneaded, granulated, etc. Preferably it is applied.

(有機過酸化物)
本実施形態の太陽電池封止材は、有機過酸化物を含んでいる。有機過酸化物は、シランカップリング剤と、エチレン・α−オレフィン共重合体とのグラフト変性の際のラジカル開始剤として、さらに、エチレン・α−オレフィン共重合体の太陽電池モジュールのラミネート成形時の架橋反応の際のラジカル開始剤として用いられる。エチレン・α−オレフィン共重合体に、シランカップリング剤をグラフト変性することにより、表面側透明保護部材、裏面側保護部材、セル、電極との接着性が良好な太陽電池モジュールが得られる。さらに、エチレン・α−オレフィン共重合体を架橋することにより、耐熱性、接着性に優れた太陽電池モジュールを得ることができる。
(Organic peroxide)
The solar cell sealing material of this embodiment contains an organic peroxide. The organic peroxide is used as a radical initiator for graft modification of a silane coupling agent and an ethylene / α-olefin copolymer, and further, at the time of laminate molding of an ethylene / α-olefin copolymer solar cell module. It is used as a radical initiator in the crosslinking reaction. By graft-modifying the ethylene / α-olefin copolymer with a silane coupling agent, a solar cell module having good adhesion to the front surface side transparent protective member, the back surface side protective member, the cell, and the electrode can be obtained. Furthermore, the solar cell module excellent in heat resistance and adhesiveness can be obtained by crosslinking the ethylene / α-olefin copolymer.

好ましく用いられる有機過酸化物は、エチレン・α−オレフィン共重合体にシランカップリング剤をグラフト変性したり、エチレン・α−オレフィン共重合体を架橋したりすることが可能なものであれば特に限定されないが、押出シート成形での生産性と太陽電池モジュールのラミネート成形時の架橋速度のバランスから、有機過酸化物の1分間半減期温度が100〜170℃であることが好ましい。有機過酸化物の1分間半減期温度が100℃以上であると、押出シート成形時に樹脂組成物から得られる太陽電池封止シートにゲルが発生しにくくなるので、押出機のトルクの上昇を抑制しシート成形を容易にすることができる。また、押出機内で発生したゲル物によりシートの表面に凹凸が発生するのを抑制できるため、外観の低下を防止することができる。また、電圧をかけたとき、シート内部におけるクラックの発生を防止できるため、絶縁破壊電圧の低下を防ぐことができる。さらに、透湿性の低下も防止できる。また、シート表面に凹凸が発生するのを抑制できるため、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との密着性が良好となり、接着性も向上する。押出シート成形の押出温度を90℃以下に下げると成形は可能であるが、生産性が大幅に低下する。有機過酸化物の1分間半減期温度が170℃以下であると、太陽電池モジュールのラミネート成形時の架橋速度の低下を抑制できるため、太陽電池モジュールの生産性の低下を防ぐことができる。また、太陽電池封止材の耐熱性、接着性の低下を防ぐこともできる。   The organic peroxides preferably used are particularly those that can graft-modify a silane coupling agent on the ethylene / α-olefin copolymer or crosslink the ethylene / α-olefin copolymer. Although not limited, it is preferable that the 1-minute half-life temperature of an organic peroxide is 100-170 degreeC from the balance of the productivity in extrusion sheet | seat shaping | molding, and the crosslinking rate at the time of the lamination shaping | molding of a solar cell module. When the half-life temperature of the organic peroxide is 100 ° C. or higher, gels are less likely to occur in the solar cell encapsulating sheet obtained from the resin composition during extrusion sheet molding, and thus the increase in the torque of the extruder is suppressed. Sheet forming can be facilitated. Moreover, since it can suppress that an unevenness | corrugation generate | occur | produces on the surface of a sheet | seat with the gel thing which generate | occur | produced in the extruder, the fall of an external appearance can be prevented. Moreover, since the generation | occurrence | production of the crack inside a sheet | seat can be prevented when a voltage is applied, the fall of a dielectric breakdown voltage can be prevented. Furthermore, it is possible to prevent a decrease in moisture permeability. Moreover, since it can suppress that an unevenness | corrugation generate | occur | produces on the sheet | seat surface, the adhesiveness with a surface side transparent protection member, a cell, an electrode, and a back surface side protection member becomes favorable at the time of the lamination process of a solar cell module, and adhesiveness also improves. If the extrusion temperature of extrusion sheet molding is lowered to 90 ° C. or lower, molding is possible, but productivity is greatly reduced. When the one-minute half-life temperature of the organic peroxide is 170 ° C. or lower, it is possible to suppress a decrease in the crosslinking rate when the solar cell module is laminated, and thus it is possible to prevent a decrease in the productivity of the solar cell module. Moreover, the heat resistance of a solar cell sealing material and the fall of adhesiveness can also be prevented.

有機過酸化物としては公知のものが使用できる。1分間半減期温度が100〜170℃の範囲にある有機過酸化物の好ましい具体例としては、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、ジベンゾイルパーオキサイド、t−アミルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレイン酸、1,1−ジ(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−アミルパーオキシ)シクロヘキサン、t−アミルパーオキシイソノナノエート、t−アミルパーオキシノルマルオクトエート、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−アミル−パーオキシベンゾエート、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソノナノエート、2,2−ジ(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、などが挙げられる。好ましくは、ジラウロイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソノナノエート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシベンゾエートなどが挙げられる。上記有機過酸化物は、一種単独で用いてもよく、二種以上を混合して用いてもよい。   Known organic peroxides can be used. Preferred specific examples of the organic peroxide having a 1 minute half-life temperature in the range of 100 to 170 ° C. include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate Dibenzoyl peroxide, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1 , 1-Di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylperoxy) cyclohexane, t-amylperoxyisononanoate, t-amylperoxynormal Octoate, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di ( -Butylperoxy) cyclohexane, t-butylperoxyisopropyl carbonate, t-butylperoxy-2-ethylhexyl carbonate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-amyl-peroxy Examples include benzoate, t-butyl peroxyacetate, t-butyl peroxyisononanoate, 2,2-di (t-butylperoxy) butane, t-butyl peroxybenzoate, and the like. Preferably, dilauroyl peroxide, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, t-butyl peroxyisononanoate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxybenzoate, etc. Is mentioned. The said organic peroxide may be used individually by 1 type, and may mix and use 2 or more types.

太陽電池封止材中の有機過酸化物の含有量は、前述のエチレン・α−オレフィン共重合体100重量部に対して、0.1〜3.0重量部であることが好ましく、0.2〜3.0重量部であることがより好ましく、0.2〜2.5重量部であることがとくに好ましい。   The content of the organic peroxide in the solar cell encapsulant is preferably 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the above-mentioned ethylene / α-olefin copolymer. It is more preferably 2 to 3.0 parts by weight, and particularly preferably 0.2 to 2.5 parts by weight.

有機過酸化物の含有量が0.1重量部以上であると、太陽電池封止材の架橋度合いや架橋速度などの架橋特性の低下を抑制し、シランカップリング剤のエチレン系共重合体の主鎖へのグラフト反応を良好にして、耐熱性、接着性の低下を抑制することができる。
有機過酸化物の含有量が3.0重量部以下であると、押出シート成形時に樹脂組成物から得られる太陽電池封止シートにゲルの発生がなく、押出機のトルクを抑制でき、シート成形が容易となる。シートも、押出機内でゲル物を発生しないためシートの表面に凹凸がなく、外観が良好である。また、ゲルがないため、電圧をかけてもシート内部のゲル物に起因するクラックが生じないため、絶縁破壊抵抗が良好である。また、透湿性も良好である。さらに、シート表面に凹凸がないため、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との接着性も良好である。
When the content of the organic peroxide is 0.1 parts by weight or more, the deterioration of the crosslinking characteristics such as the crosslinking degree and crosslinking rate of the solar cell encapsulant is suppressed, and the ethylene copolymer of the silane coupling agent It is possible to improve the graft reaction to the main chain and suppress the decrease in heat resistance and adhesiveness.
When the organic peroxide content is 3.0 parts by weight or less, the solar cell encapsulating sheet obtained from the resin composition at the time of extrusion sheet molding does not generate gel, and the torque of the extruder can be suppressed. Becomes easy. Since the sheet does not generate a gel in the extruder, the surface of the sheet is not uneven and the appearance is good. In addition, since there is no gel, cracks due to the gel in the sheet do not occur even when a voltage is applied, so that the dielectric breakdown resistance is good. Moreover, moisture permeability is also favorable. Furthermore, since there is no unevenness | corrugation on the sheet | seat surface, the adhesiveness with a surface side transparent protection member, a cell, an electrode, and a back surface side protection member is favorable at the time of the lamination process of a solar cell module.

(シリカ粉末)
本実施形態の太陽電池封止材は、さらにシリカ粉末を含むのが好ましい。シリカ粉末はその化学成分のほとんどがSiOであり、シランカップリング剤を介して架橋反応が起こるため、太陽電池封止材の架橋特性が向上すると推察される。シリカ粉末は、非晶質合成シリカが好ましく。中でも、一次凝集体(アグリゲート)および二次凝集体(アグロメレート)の粒径が均一な非晶質合成シリカが好ましい。非晶質合成シリカとしては、燃焼法、金属シリコン、フェロシリコン又はその他の珪素合金等を製造する際に副産物として得られる乾式シリカ、沈降法、ゲル法、ゾルゲル法による湿式シリカのいずれでもよい。さらに、親水性シリカ、疎水性シリカのいずれでもよいが、親水性シリカの方が架橋特性の向上に優れるため好ましい。
(Silica powder)
It is preferable that the solar cell sealing material of this embodiment further contains silica powder. Since most of the chemical components of silica powder are SiO 2 and a crosslinking reaction occurs via a silane coupling agent, it is assumed that the crosslinking characteristics of the solar cell encapsulant are improved. The silica powder is preferably amorphous synthetic silica. Among these, amorphous synthetic silica having a uniform particle size of the primary aggregate (aggregate) and the secondary aggregate (agglomerate) is preferable. As the amorphous synthetic silica, any of dry silica obtained as a by-product when producing a combustion method, metal silicon, ferrosilicon, or other silicon alloys, a precipitation method, a gel method, or a wet silica by a sol-gel method may be used. Furthermore, any of hydrophilic silica and hydrophobic silica may be used, but hydrophilic silica is preferred because it is excellent in improving the crosslinking property.

本実施形態のシリカ粉末のBET比表面積は、50〜500m/gであることが好ましく、70〜500m/gであることがより好ましく、80〜400m/gであることがとくに好ましい。
シリカ粉末のBET比表面積が50m/g以上であると、シリカ粉末の一次凝集体または一次粒子の見かけの粒子径を抑制できるため、得られる太陽電池封止材の透明性をより一層向上させることができる。また、シリカ粉末のBET比表面積が500m/g以下であると、シリカ粉末中への有機過酸化物、シランカップリング剤の吸着を抑制できるため、太陽電池封止材の架橋特性の低下を抑制することができる。また、シリカ粉末のBET比表面積が500m/g以下であると、シリカ粉末の合成が可能である。
BET specific surface area of the silica powder of the present embodiment is preferably 50 to 500 m 2 / g, more preferably 70~500m 2 / g, and particularly preferably a 80~400m 2 / g.
When the BET specific surface area of the silica powder is 50 m 2 / g or more, the apparent particle size of the primary aggregate or primary particle of the silica powder can be suppressed, and thus the transparency of the obtained solar cell sealing material is further improved. be able to. Moreover, since the adsorption | suction of the organic peroxide and silane coupling agent in a silica powder can be suppressed as the BET specific surface area of a silica powder is 500 m < 2 > / g or less, the bridge | crosslinking characteristic of a solar cell sealing material falls. Can be suppressed. Further, when the BET specific surface area of the silica powder is 500 m 2 / g or less, the silica powder can be synthesized.

太陽電池封止材中のシリカ粉末の含有量としては、前述のエチレン・α−オレフィン共重合体100重量部に対して、1.0〜15.0重量部であることが好ましく、2.0〜15.0重量部であることがより好ましく、3.0〜10.0重量部であることがとくに好ましい。
シリカ粉末の含有量が1.0重量部以上であると、太陽電池封止材の架橋特性がより一層向上する。また、シリカ粉末の含有量が15.0重量部以下であると、架橋特性がより一層向上するとともに、透明性により一層優れた太陽電池封止材を得ることができる。
As content of the silica powder in a solar cell sealing material, it is preferable that it is 1.0-15.0 weight part with respect to 100 weight part of the above-mentioned ethylene alpha-olefin copolymer, 2.0 It is more preferably ˜15.0 parts by weight, and particularly preferably 3.0 to 10.0 parts by weight.
When the content of the silica powder is 1.0 part by weight or more, the crosslinking characteristics of the solar cell sealing material are further improved. In addition, when the content of the silica powder is 15.0 parts by weight or less, the crosslinking characteristics are further improved, and a solar cell encapsulant that is more excellent in transparency can be obtained.

本実施形態のシリカ粉末は、非多孔性シリカであることが好ましい。非多孔性シリカであると、シリカ粉末中への有機過酸化物、シランカップリング剤の吸着をより一層抑制できるため、太陽電池封止材の架橋特性の低下をより一層抑制することができる。
また、非多孔性シリカであると、シリカ粉末の一次凝集体または一次粒子の見かけの粒子径を抑制できるため、得られる太陽電池封止材の透明性をより一層向上させることができる。
The silica powder of this embodiment is preferably nonporous silica. Since the adsorption of the organic peroxide and the silane coupling agent into the silica powder can be further suppressed when it is non-porous silica, it is possible to further suppress the deterioration of the crosslinking characteristics of the solar cell sealing material.
Moreover, since the apparent particle diameter of the primary aggregate or primary particle of a silica powder can be suppressed as it is a non-porous silica, the transparency of the solar cell sealing material obtained can be improved further.

(シランカップリング剤)
本実施形態の太陽電池封止材は、さらにシランカップリング剤を含むのが好ましい。本実施形態の太陽電池封止材中のシランカップリング剤の含有量は、エチレン・α−オレフィン共重合体100重量部に対して、好ましくは0.1〜5重量部であり、より好ましくは0.1〜4重量部であり、とくに好ましくは0.1〜3重量部である。
(Silane coupling agent)
It is preferable that the solar cell sealing material of this embodiment further contains a silane coupling agent. The content of the silane coupling agent in the solar cell encapsulant of this embodiment is preferably 0.1 to 5 parts by weight, more preferably 100 parts by weight of ethylene / α-olefin copolymer. 0.1 to 4 parts by weight, particularly preferably 0.1 to 3 parts by weight.

シランカップリング剤の含有量が0.1重量部以上であると、接着性が向上する。一方、シランカップリング剤の含有量が5重量部以下であると、シランカップリング剤を太陽電池モジュールのラミネート時にエチレン・α−オレフィン共重合体にグラフト反応させるための有機過酸化物の添加量を抑制できる。このため、太陽電池封止材を押出機でシート状にして得る際のゲル化を抑制でき、その結果、押出機のトルクを抑制できるため、押出シートの成形が容易となる。押出機内でゲル物を発生しないためシートの表面に凹凸がなく、シートの外観が良好である。また、ゲルがないため、電圧をかけてもシート内部のゲル物に起因するクラックが生じないため、絶縁破壊抵抗が良好である。また、透湿性も良好である。   Adhesiveness improves that content of a silane coupling agent is 0.1 weight part or more. On the other hand, when the content of the silane coupling agent is 5 parts by weight or less, the addition amount of the organic peroxide for grafting the silane coupling agent to the ethylene / α-olefin copolymer when laminating the solar cell module Can be suppressed. For this reason, since gelatinization at the time of obtaining a solar cell sealing material by making into a sheet form with an extruder can be suppressed and the torque of an extruder can be suppressed as a result, shaping | molding of an extrusion sheet becomes easy. Since no gel material is generated in the extruder, the surface of the sheet is not uneven and the appearance of the sheet is good. In addition, since there is no gel, cracks due to the gel in the sheet do not occur even when a voltage is applied, so that the dielectric breakdown resistance is good. Moreover, moisture permeability is also favorable.

また、シランカップリング剤自体が縮合反応を起こし、太陽電池封止材に白い筋として存在し、製品外観が悪化する場合もあるが、シランカップリング剤が5重量部以下であると、白い筋の発生も抑制できる。   In addition, the silane coupling agent itself undergoes a condensation reaction and exists as white streaks in the solar cell sealing material, which may deteriorate the appearance of the product. However, when the silane coupling agent is 5 parts by weight or less, the white streaks Can also be suppressed.

シランカップリング剤は、従来公知のものが使用でき、とくに制限はない。具体的には、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシエトキシシラン)、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクロキシプロピルメチルジメトキシシラン、3−メタクロキシプロピルメチルジメトキシシラン、3−メタクロキシプロピルトリエトキシシラン、3−メタクロキシプロピルメチルジエトキシシラン、3−アクロキシプロピルトリメトキシシランなどが使用できる。好ましくは、接着性が良好な3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−アミノプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクロキシプロピルトリエトキシシラン、3−アクロキシプロピルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。   A conventionally well-known thing can be used for a silane coupling agent, and there is no restriction | limiting in particular. Specifically, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxysilane), 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethylditriethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltri Methoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3- Dimethyl-butylidene) propi Amine, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3- Methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltrimethoxysilane and the like can be used. Preferably, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyl with good adhesion Examples include triethoxysilane, 3-acryloxypropyltrimethoxysilane, and vinyltriethoxysilane.

(ヒンダードアミン系光安定剤)
本実施形態の太陽電池封止材は、ヒンダードアミン系光安定剤をさらに含むのが好ましい。ヒンダードアミン系光安定剤を含むことで、エチレン・α−オレフィン共重合体に有害なラジカル種を補足し、新たなラジカルの発生を抑制できる。
(Hindered amine light stabilizer)
It is preferable that the solar cell sealing material of this embodiment further contains a hindered amine light stabilizer. By including a hindered amine light stabilizer, radicals harmful to the ethylene / α-olefin copolymer can be captured, and generation of new radicals can be suppressed.

ヒンダードアミン系光安定剤としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]などのヒンダードアミン系、ヒンダードピペリジン系化合物などを用いることができる。
また、下記一般式(1)の低分子量ヒンダードアミン系光安定剤も使用できる。
Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3. , 5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino }] And the like, hindered piperidine compounds, and the like can be used.
Moreover, the low molecular weight hindered amine light stabilizer of the following general formula (1) can also be used.

Figure 0005854473
Figure 0005854473

上記一般式(1)中、R,Rは、水素、アルキル基などを示す。RとRは、同一であっても異なっていてもどちらでもよい。RとRは、好ましくは水素またはメチル基である。Rは、水素、アルキル基、アルケニル基などを示す。Rは、好ましくは水素またはメチル基である。 In the general formula (1), R 1 and R 2 represent hydrogen, an alkyl group, or the like. R 1 and R 2 may be the same or different. R 1 and R 2 are preferably hydrogen or a methyl group. R 3 represents hydrogen, an alkyl group, an alkenyl group, or the like. R 3 is preferably hydrogen or a methyl group.

上記一般式(1)で表されるヒンダードアミン系光安定剤としては、具体的には、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−アクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1,2,2,6,6−ペンタメチルペリジン、4−メタクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジンなどが挙げられる。
また、下記式で表される高分子量ヒンダードアミン系光安定剤も使用できる。高分子量ヒンダードアミン系光安定剤とは、分子量が1000〜5000のものを言う。
Specific examples of the hindered amine light stabilizer represented by the general formula (1) include 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1,2,2. , 6,6-pentamethylpiperidine, 4-acryloyloxy-1-ethyl-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1-propyl-2,2,6,6-tetramethylpiperidine 4-acryloyloxy-1-butyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-1,2,2, 6,6-pentamethylperidine, 4-methacryloyloxy-1-ethyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyl Xyl-1-butyl-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-1-propyl-2,2, Examples include 6,6-tetramethylpiperidine.
Moreover, the high molecular weight hindered amine light stabilizer represented by the following formula can also be used. The high molecular weight hindered amine light stabilizer means one having a molecular weight of 1000 to 5000.

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

Figure 0005854473
Figure 0005854473

本実施形態の太陽電池封止材中のヒンダードアミン系光安定剤の含有量は、上述のエチレン・α−オレフィン共重合体100重量部に対して、好ましくは0.01〜2.0重量部であり、より好ましくは0.01〜1.6重量部であり、とくに好ましくは0.05〜1.6重量部である。ヒンダードアミン系光安定剤の含有量が0.01重量部以上であると、耐候性および耐熱性が良好である。ヒンダードアミン系光安定剤の含有量が2.0重量部以下であると、有機過酸化物で発生したラジカルの消滅が抑制でき、接着性、耐熱性、架橋特性が良好である。   The content of the hindered amine light stabilizer in the solar cell encapsulant of this embodiment is preferably 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the above-mentioned ethylene / α-olefin copolymer. Yes, more preferably 0.01 to 1.6 parts by weight, particularly preferably 0.05 to 1.6 parts by weight. When the content of the hindered amine light stabilizer is 0.01 parts by weight or more, the weather resistance and heat resistance are good. When the content of the hindered amine light stabilizer is 2.0 parts by weight or less, extinction of radicals generated by the organic peroxide can be suppressed, and adhesiveness, heat resistance, and crosslinking characteristics are good.

(ヒンダードフェノール系安定剤)
本実施形態の太陽電池封止材は、ヒンダードフェノール系安定剤をさらに含むのが好ましい。ヒンダードフェノール系安定剤を含むことにより、酸素存在下でエチレン・α−オレフィン共重合体に有害なラジカル種を補足し、新たなラジカルの発生を抑制でき、酸化劣化を防止できる。
ヒンダードフェノール系安定剤としては、従来公知の化合物を用いることができ、例えば、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニルブタン、4,4'−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、2,2−チオビス(4−メチル−6−t−ブチルフェノール)、7−オクタデシル−3−(4'−ヒドロキシ−3',5'−ジ−t−ブチルフェニル)プロピオネート、テトラキス−[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネートメタン、ペンタエリスリトール−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N'−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ)−ヒドロシンナアミド、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、3,5−ジ−t−ブチル−4−ヒドロキシベンジル−ホスホネート−ジエチルエステル、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメイト)]メタン、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロオン酸エステル、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4−8,10−テトラオキサスピロ[5,5]ウンデカンなどを挙げることができる。中でも、特にペンタエリスリトール−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロオン酸エステルが好ましい。
(Hindered phenol stabilizer)
It is preferable that the solar cell sealing material of this embodiment further contains a hindered phenol-based stabilizer. By including a hindered phenol-based stabilizer, harmful radical species are captured in the ethylene / α-olefin copolymer in the presence of oxygen, generation of new radicals can be suppressed, and oxidative degradation can be prevented.
As the hindered phenol stabilizer, a conventionally known compound can be used. For example, 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenylbutane, 4,4 ′ -Butylidenebis- (3-methyl-6-tert-butylphenol), 2,2-thiobis (4-methyl-6-tert-butylphenol), 7-octadecyl-3- (4'-hydroxy-3 ', 5'- Di-t-butylphenyl) propionate, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate methane, pentaerythritol-tetrakis [3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphene) Nyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4 -Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, 2,2-thio- Diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy) -hydrocinna Amido, 2,4-bis [(octylthio) methyl] -o-cresol, 3,5-di-tert-butyl-4-hydroxybenzyl-phosphonate-diethyl ester, tetrakis [methyle (3,5-di-t-butyl-4-hydroxyhydrocinnamate)] methane, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) proonate, 3,9- Bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4-8,10-tetraoxaspiro [5,5 Undecane, etc., among others, pentaerythritol-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t -Butyl-4-hydroxyphenyl) proonate is preferred.

本実施形態の太陽電池封止材中のヒンダードフェノール系安定剤の含有量は、エチレン・α−オレフィン共重合体100重量部に対して、好ましくは0.005〜0.1重量部であり、より好ましくは0.01〜0.1重量部であり、とくに好ましくは0.01〜0.06重量部である。ヒンダードフェノール系安定剤の含有量が0.005重量部以上であると、耐熱性が良好で、例えば120℃以上の高温での耐熱老化試験において、太陽電池封止材の黄変が抑制できる傾向にある。ヒンダードフェノール系安定剤の含有量が0.1重量部以下であると、太陽電池封止材の架橋特性が良好で、耐熱性、接着性が良好である。   The content of the hindered phenol-based stabilizer in the solar cell encapsulant of the present embodiment is preferably 0.005 to 0.1 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. More preferably, it is 0.01-0.1 weight part, Most preferably, it is 0.01-0.06 weight part. When the content of the hindered phenol stabilizer is 0.005 parts by weight or more, the heat resistance is good, and for example, in a heat aging test at a high temperature of 120 ° C. or more, yellowing of the solar cell sealing material can be suppressed. There is a tendency. When the content of the hindered phenol stabilizer is 0.1 parts by weight or less, the crosslinking property of the solar cell encapsulant is good, and the heat resistance and adhesiveness are good.

また、恒温恒湿下では、塩基性を有するヒンダードアミン系光安定剤と併用するとヒンダードフェノール安定剤の水酸基が塩を形成し、キノン化および二量化した共役ビスキノンメチド化合物を形成し、太陽電池封止材の黄変を起こしやすい傾向にあるが、ヒンダードフェノール系安定剤が0.1重量部以下であると、太陽電池封止材の黄変を抑制することができる。   In addition, under constant temperature and humidity, when used in combination with a basic hindered amine light stabilizer, the hydroxyl group of the hindered phenol stabilizer forms a salt, forming a conjugated bisquinone methide compound that is quinonated and dimerized, and is sealed with solar cells. Although it tends to cause yellowing of the material, when the hindered phenol-based stabilizer is 0.1 parts by weight or less, the yellowing of the solar cell sealing material can be suppressed.

(リン系安定剤)
本実施形態の太陽電池封止材は、リン系安定剤をさらに含むのが好ましい。リン系安定剤を含んでいると、押出成形時の有機過酸化物の分解を抑制でき、外観が良好なシートを得ることができる。ヒンダードアミン系光安定剤、ヒンダードフェノール系安定剤を含んでいると、発生したラジカルを消滅させ、外観が良好なシートを生産することもできるが、シート押出工程で安定剤を消費してしまい、耐熱性、耐候性などの長期信頼性が低下する傾向にある。
(Phosphorus stabilizer)
It is preferable that the solar cell sealing material of this embodiment further contains a phosphorus-based stabilizer. When the phosphorus stabilizer is contained, decomposition of the organic peroxide during extrusion molding can be suppressed, and a sheet having a good appearance can be obtained. When a hindered amine light stabilizer and a hindered phenol stabilizer are included, the generated radicals can be extinguished and a sheet with a good appearance can be produced, but the stabilizer is consumed in the sheet extrusion process, Long-term reliability such as heat resistance and weather resistance tends to decrease.

リン系安定剤としては、従来公知の化合物を用いることができ、例えば、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4'−ジイルビスホスフォナイト、およびビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトなどが挙げられる。中でも、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイトが好ましい。   As the phosphorus stabilizer, a conventionally known compound can be used, for example, tris (2,4-di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid, tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite, and bis (2,4 -Di-tert-butylphenyl) pentaerythritol diphosphite and the like. Among these, tris (2,4-di-tert-butylphenyl) phosphite is preferable.

本実施形態の太陽電池封止材中のリン系安定剤の含有量は、エチレン・α−オレフィン共重合体100重量部に対して、好ましくは0.005〜0.5重量部であり、より好ましくは0.01〜0.5重量部であり、とくに好ましくは0.02〜0.2重量部である。リン系安定剤の含有量が0.005重量部以上であると、押出成形時の有機過酸化物の分解を抑制でき、外観が良好なシートを得ることができる。また、耐熱性が良好で、例えば120℃以上の高温での耐熱老化試験において、太陽電池封止材の黄変が抑制できる傾向にある。リン系安定剤の含有量が0.5重量部以下であると、太陽電池封止材の架橋特性が良好で、耐熱性、接着性が良好である。また、リン系安定剤の分解で発生する酸による影響が見られず、金属腐食も発生しない。
なお、同一分子内に亜リン酸エステル構造とヒンダードフェノール構造を有する安定剤があるが、本実施形態の太陽電池封止材のように有機過酸化物が多量に含有している組成物においては、押出成形時に有機過酸化物の分解を抑制する性能が不十分であり、ゲルを生成して外観が良好なシートが得られない傾向にある。
The content of the phosphorus stabilizer in the solar cell encapsulant of the present embodiment is preferably 0.005 to 0.5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer, and more. Preferably it is 0.01-0.5 weight part, Most preferably, it is 0.02-0.2 weight part. When the content of the phosphorus stabilizer is 0.005 parts by weight or more, decomposition of the organic peroxide during extrusion molding can be suppressed, and a sheet having a good appearance can be obtained. Moreover, heat resistance is favorable, and it exists in the tendency which can suppress yellowing of a solar cell sealing material, for example in the heat-resistant aging test in 120 degreeC or more high temperature. When the content of the phosphorus stabilizer is 0.5 parts by weight or less, the crosslinking property of the solar cell encapsulant is good, and the heat resistance and adhesiveness are good. In addition, there is no influence of acid generated by the decomposition of the phosphorus stabilizer, and metal corrosion does not occur.
In addition, there is a stabilizer having a phosphite structure and a hindered phenol structure in the same molecule, but in a composition containing a large amount of organic peroxide like the solar cell sealing material of this embodiment. Has insufficient performance to suppress the decomposition of the organic peroxide during extrusion molding, and tends to produce a gel and a sheet having a good appearance.

(紫外線吸収剤)
本実施形態の太陽電池封止材は、紫外線吸収剤をさらに含むのが好ましい。
本実施形態の太陽電池封止材中の紫外線吸収剤の含有量は、エチレン・α−オレフィン共重合体100重量部に対して、0.005〜5重量部であることが好ましい。紫外線吸収剤の含有量が上記範囲内にあると、耐候安定性、架橋特性のバランスが優れるので好ましい。
(UV absorber)
It is preferable that the solar cell sealing material of this embodiment further contains an ultraviolet absorber.
It is preferable that content of the ultraviolet absorber in the solar cell sealing material of this embodiment is 0.005-5 weight part with respect to 100 weight part of ethylene * alpha-olefin copolymers. It is preferable for the content of the ultraviolet absorber to be in the above-mentioned range since the balance between weather resistance stability and crosslinking properties is excellent.

紫外線吸収剤としては、具体的には、2−ヒドロキシ−4−ノルマル−オクチルオキシベンゾフェノン、2−ヒドロキシ−4メトキシベンゾフェノン、2,2−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−4−カルボキシベンゾフェノン、2−ヒドロキシ−4−N−オクトキシベンゾフェノンなどのベンゾフェノン系;2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾールなどのベンゾトリアリゾール系;フェニルサルチレート、p−オクチルフェニルサルチレートなどのサリチル酸エステル系のものが用いられる。   Specific examples of the ultraviolet absorber include 2-hydroxy-4-normal-octyloxybenzophenone, 2-hydroxy-4methoxybenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy- Benzophenones such as 4-carboxybenzophenone and 2-hydroxy-4-N-octoxybenzophenone; 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-5 -Methylphenyl) benzotriazol-based compounds such as benzotriazole; salicylic acid ester-based compounds such as phenylsalicylate and p-octylphenylsalicylate are used.

(その他の添加剤)
本実施形態の太陽電池封止材を構成する樹脂組成物には、以上詳述した諸成分以外の各種成分を、本発明の目的を損なわない範囲において、適宜含有させることができる。例えば、エチレン・α−オレフィン共重合体以外の各種ポリオレフィン、スチレン系やエチレン系ブロック共重合体、プロピレン系重合体などが挙げられる。太陽電池封止材中の各種成分の含有量は、上記エチレン・α−オレフィン共重合体100重量部に対して、好ましくは0.0001〜50重量部であり、より好ましくは0.001〜40重量部である。また、ポリオレフィン以外の各種樹脂、および/または各種ゴム、可塑剤、充填剤、顔料、染料、帯電防止剤、抗菌剤、防黴剤、難燃剤、架橋助剤、ヒンダードフェノール系安定剤およびリン系安定剤以外のその他の耐熱安定剤、および分散剤などから選ばれる一種以上の添加剤を適宜含有することができる。
(Other additives)
In the resin composition constituting the solar cell encapsulant of the present embodiment, various components other than the components detailed above can be appropriately contained within a range not impairing the object of the present invention. Examples include various polyolefins other than ethylene / α-olefin copolymers, styrene-based, ethylene-based block copolymers, and propylene-based polymers. The content of various components in the solar cell encapsulant is preferably 0.0001 to 50 parts by weight, more preferably 0.001 to 40 parts per 100 parts by weight of the ethylene / α-olefin copolymer. Parts by weight. Various resins other than polyolefin, and / or various rubbers, plasticizers, fillers, pigments, dyes, antistatic agents, antibacterial agents, antifungal agents, flame retardants, crosslinking aids, hindered phenol stabilizers and phosphorus One or more additives selected from other heat stabilizers other than system stabilizers, dispersants and the like can be appropriately contained.

ヒンダードフェノール系安定剤およびリン系安定剤以外のその他の耐熱安定剤としては、具体的には、3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物などのラクトン系耐熱安定剤、ジミリスチルチオジプロピオネート、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾイミダゾールの亜鉛塩、2−メルカプトメチルベンゾイミダゾール、2−メルカプトメチルベンゾイミダゾールの亜鉛塩、4,4'−チオビス(6−t−ブチル−3−メチルフェノール)、2,6−ジ−t−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノールなどの硫黄系耐熱安定剤;アミン系耐熱安定剤などを挙げることができる。   As other heat stabilizers other than the hindered phenol stabilizer and the phosphorus stabilizer, specifically, 3-hydroxy-5,7-di-tert-butyl-furan-2-one, o-xylene, Lactone heat-resistant stabilizers such as reaction products of dimyristylthiodipropionate, dilaurylthiodipropionate, distearylthiodipropionate, ditridecylthiodipropionate, pentaerythritol-tetrakis- (β-lauryl- Thiopropionate), 2-mercaptobenzimidazole, zinc salt of 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, zinc salt of 2-mercaptomethylbenzimidazole, 4,4′-thiobis (6-t-butyl) -3-methylphenol), 2,6-di-t-butyl-4- 4,6-bis (octylthio) -1,3,5-triazin-2-ylamino) sulfur-based heat stabilizers such as phenol; and amine-based heat stabilizer and the like.

とくに、架橋助剤を含有させる場合において、本実施形態の太陽電池封止材中の架橋助剤の含有量は、エチレン・α−オレフィン共重合体100重量部に対して、好ましくは0.05〜5重量部であり、より好ましくは0.1〜3重量部である。架橋助剤の含有量が上記範囲内であると、適度な架橋構造を有することができ、耐熱性、機械物性、接着性を向上できるため好ましい。   In particular, when a crosslinking aid is contained, the content of the crosslinking aid in the solar cell encapsulant of the present embodiment is preferably 0.05 with respect to 100 parts by weight of the ethylene / α-olefin copolymer. -5 parts by weight, more preferably 0.1-3 parts by weight. It is preferable for the content of the crosslinking aid to be in the above-mentioned range since an appropriate crosslinked structure can be obtained, and heat resistance, mechanical properties and adhesiveness can be improved.

架橋助剤としては、オレフィン系樹脂に対して一般に使用される従来公知のものが使用できる。このような架橋助剤は、分子内に二重結合を二個以上有する化合物である。具体的には、t−ブチルアクリレート、ラウリルアクリレート、セチルアクリレート、ステアリルアクリレート、2−メトキシエチルアクリレート、エチルカルビトールアクリレート、メトキシトリプロピレングリコールアクリレートなどのモノアクリレート;t−ブチルメタクリレート、ラウリルメタクリレート、セチルメタクリレート、ステアリルメタクリレート、メトキシエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレートなどのモノメタクリレート;1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレートなどのジアクリレート;1,3−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレートネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレートなどのジメタクリレート;トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレートなどのトリアクリレート;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレートなどのトリメタクリレート;ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレートなどのテトラアクリレート;ジビニルベンゼン、ジ−i−プロペニルベンゼンなどのジビニル芳香族化合物;トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌレート;ジアリルフタレートなどのジアリル化合物;トリアリル化合物;p−キノンジオキシム、p−p'−ジベンゾイルキノンジオキシムなどのオキシム;フェニルマレイミドなどのマレイミドが挙げられる。
これらの架橋助剤の中でより好ましいのは、ジアクリレート、ジメタクリレート、ジビニル芳香族化合物、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレートなどのトリアクリレート;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレートなどのトリメタクリレート;ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレートなどのテトラアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌレート、ジアリルフタレートなどのジアリル化合物;トリアリル化合物;p−キノンジオキシム、p−p'−ジベンゾイルキノンジオキシムなどのオキシム;フェニルマレイミドなどのマレイミドである。さらにこれらの中でとくに好ましいのは、トリアリルイソシアヌレートであり、ラミネート後の太陽電池封止材の気泡発生や架橋特性のバランスが最も優れる。
As the crosslinking aid, conventionally known ones generally used for olefinic resins can be used. Such a crosslinking aid is a compound having two or more double bonds in the molecule. Specifically, monoacrylates such as t-butyl acrylate, lauryl acrylate, cetyl acrylate, stearyl acrylate, 2-methoxyethyl acrylate, ethyl carbitol acrylate, methoxytripropylene glycol acrylate; t-butyl methacrylate, lauryl methacrylate, cetyl methacrylate Monomethacrylate such as stearyl methacrylate, methoxyethylene glycol methacrylate, methoxypolyethylene glycol methacrylate; 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, neopentyl glycol diacrylate , Diethylene glycol diacrylate, tetraethylene glycol diacrylate Diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, etc .; 1,3-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate neo Dimethacrylates such as pentyl glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate; triacrylates such as trimethylolpropane triacrylate, tetramethylolmethane triacrylate, pentaerythritol triacrylate; Trimethylolpropane trimethacrylate Trimethacrylates such as methylolethane trimethacrylate; Tetraacrylates such as pentaerythritol tetraacrylate and tetramethylolmethane tetraacrylate; Divinyl aromatic compounds such as divinylbenzene and di-i-propenylbenzene; Triallyl cyanurate and triallyl isocyanurate A diallyl compound such as diallyl phthalate; a triallyl compound; an oxime such as p-quinonedioxime and pp′-dibenzoylquinonedioxime; and a maleimide such as phenylmaleimide.
Among these crosslinking aids, more preferred are triacrylates such as diacrylate, dimethacrylate, divinyl aromatic compound, trimethylolpropane triacrylate, tetramethylolmethane triacrylate, pentaerythritol triacrylate; trimethylolpropane trimethacrylate , Trimethacrylates such as trimethylolethane trimethacrylate; tetraacrylates such as pentaerythritol tetraacrylate and tetramethylolmethane tetraacrylate, cyanurates such as triallyl cyanurate and triallyl isocyanurate, diallyl compounds such as diallyl phthalate; triallyl compounds; p -Oximes such as quinonedioxime and pp'-dibenzoylquinonedioxime; phenylmaleimi And maleimides. Further, among these, triallyl isocyanurate is particularly preferable, and the balance between the generation of bubbles and the crosslinking property of the solar cell sealing material after lamination is most excellent.

本実施形態の太陽電池封止材は、上述のエチレン・α−オレフィン共重合体100重量部に対して、有機過酸化物の含有量が0.1〜3重量部であり、ヒンダードフェノール系安定剤の含有量が0.005〜0.1重量部であり、ヒンダードアミン系光安定剤の含有量が0.01〜2.0重量部であり、リン系安定剤の含有量が0.005〜0.5重量部である樹脂組成物からなることが好ましい態様である。   The solar cell encapsulant of this embodiment has an organic peroxide content of 0.1 to 3 parts by weight with respect to 100 parts by weight of the above-mentioned ethylene / α-olefin copolymer, and is a hindered phenol-based material. The stabilizer content is 0.005 to 0.1 parts by weight, the hindered amine light stabilizer content is 0.01 to 2.0 parts by weight, and the phosphorus stabilizer content is 0.005. It is a preferable aspect that it consists of the resin composition which is -0.5 weight part.

さらに、本実施形態の太陽電池封止材は、上述のエチレン・α−オレフィン共重合体100重量部に対して、有機過酸化物の含有量が0.2〜2.5重量部であり、ヒンダードフェノール系安定剤の含有量が0.01〜0.06重量部であり、ヒンダードアミン系光安定剤の含有量が0.05〜1.6重量部であり、リン系安定剤の含有量が0.02〜0.2重量部である樹脂組成物からなることがとくに好ましい態様である。   Furthermore, the solar cell encapsulant of the present embodiment has an organic peroxide content of 0.2 to 2.5 parts by weight with respect to 100 parts by weight of the above-described ethylene / α-olefin copolymer, The content of the hindered phenol stabilizer is 0.01 to 0.06 parts by weight, the content of the hindered amine light stabilizer is 0.05 to 1.6 parts by weight, and the content of the phosphorus stabilizer It is a particularly preferable embodiment that consists of a resin composition having 0.02 to 0.2 parts by weight.

本実施形態の太陽電池封止材は、押出成形性および透明性を保持しつつ、太陽電池モジュール製造時の歩留まりに優れ、さらに表面側透明保護部材、裏面側保護部材、薄膜電極、アルミニウム、太陽電池素子などの各種太陽電池部材との接着性、耐熱性、柔軟性、外観、耐候性、体積固有抵抗、電気絶縁性、透湿性、電極腐食性、プロセス安定性のバランスに優れている。このため、従来公知の太陽電池モジュールの太陽電池封止材として好適に用いられる。本実施形態の太陽電池封止材の製造方法としては通常用いられている方法が利用できるが、ニーダー、バンバリミキサー、押出機などにより溶融ブレンドすることにより製造することが好ましい。とくに、連続生産が可能な押出機での製造が好ましい。   The solar cell encapsulant of this embodiment is excellent in yield at the time of manufacturing a solar cell module while maintaining extrudability and transparency, and further, a front surface side transparent protective member, a back surface side protective member, a thin film electrode, aluminum, solar Excellent balance of adhesion to various solar cell members such as battery elements, heat resistance, flexibility, appearance, weather resistance, volume resistivity, electrical insulation, moisture permeability, electrode corrosion, and process stability. For this reason, it is used suitably as a solar cell sealing material of a conventionally well-known solar cell module. As a method for producing the solar cell encapsulant of this embodiment, a commonly used method can be used, but it is preferably produced by melt blending with a kneader, a Banbury mixer, an extruder, or the like. In particular, the production with an extruder capable of continuous production is preferred.

太陽電池封止材は、その全体形状がシート状であることも好ましい実施形態の一つである。また、前述の太陽電池封止材からなるシートを少なくとも一層有する、他の層と複合化された太陽電池封止材も好適に用いることができる。太陽電池封止材の層の厚みは、通常0.01〜2mm、好ましくは0.05〜1.5mm、より好ましくは0.1〜1.2mm、さらに好ましくは0.2〜1mm、とくに好ましくは0.3〜0.9mm、最も好ましくは0.3〜0.8mmである。厚みがこの範囲内であると、ラミネート工程における、表面側透明保護部材、太陽電池素子、薄膜電極などの破損が抑制でき、かつ、十分な光線透過率を確保することにより高い光発電量を得ることができる。さらには、低温での太陽電池モジュールのラミネート成形ができるので好ましい。   The solar cell encapsulant is also one of preferred embodiments in which the overall shape is a sheet. Moreover, the solar cell sealing material combined with the other layer which has at least one sheet | seat which consists of the above-mentioned solar cell sealing material can also be used suitably. The thickness of the solar cell encapsulant layer is usually 0.01 to 2 mm, preferably 0.05 to 1.5 mm, more preferably 0.1 to 1.2 mm, still more preferably 0.2 to 1 mm, particularly preferably. Is 0.3 to 0.9 mm, most preferably 0.3 to 0.8 mm. When the thickness is within this range, damage to the surface side transparent protective member, solar cell element, thin film electrode, etc. in the laminating step can be suppressed, and a high amount of photovoltaic power can be obtained by ensuring sufficient light transmittance. be able to. Furthermore, it is preferable because the solar cell module can be laminated at a low temperature.

本実施形態の太陽電池封止材は、350〜800nmの波長域における、当該太陽電池封止材の全光線透過率が85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがとくに好ましい。全光線透過率が上記下限値以上であると、得られる太陽電池モジュールはより一層高い光発電量を得ることができる。   In the solar cell encapsulant of the present embodiment, the total light transmittance of the solar cell encapsulant in the wavelength region of 350 to 800 nm is preferably 85% or more, more preferably 88% or more, 90% or more is particularly preferable. When the total light transmittance is equal to or higher than the lower limit, the obtained solar cell module can obtain a higher amount of photovoltaic power generation.

太陽電池封止材シートの成形方法はとくに制限は無いが、公知の各種の成形方法(キャスト成形、押出シート成形、インフレーション成形、射出成形、圧縮成形など)を採用することができる。
これらの中でも、以下の方法が最も好ましい実施形態である。はじめに、エチレン・α−オレフィン共重合体と、有機過酸化物と、シリカ粉末と、必要に応じてシランカップリング剤、ヒンダードアミン系光安定剤、ヒンダードフェノール系安定剤、リン系安定剤、紫外線吸収剤、架橋助剤、およびその他添加剤から選択される1種以上の添加剤とを、例えば、ポリ袋などの袋の中で人力でのブレンドや、ヘンシェルミキサー、タンブラー、スーパーミキサーなどの攪拌混合機を用いてブレンドする。次いで、得られた樹脂組成物を、押出シート成形機のホッパーに投入し、溶融混練を行いつつ押出シート成形を行い、シート状の太陽電池封止材を得る。
また、シリカ粉末と必要に応じてヒンダードアミン系光安定剤、ヒンダードフェノール系安定剤、リン系安定剤、紫外線吸収剤、架橋助剤およびその他添加剤をマスターバッチ化して用いてもよい。
Although there is no restriction | limiting in particular in the shaping | molding method of a solar cell sealing material sheet, Well-known various shaping | molding methods (Cast shaping | molding, extrusion sheet shaping | molding, inflation shaping | molding, injection molding, compression molding etc.) are employable.
Among these, the following method is the most preferred embodiment. First, ethylene / α-olefin copolymer, organic peroxide, silica powder, silane coupling agent, hindered amine light stabilizer, hindered phenol stabilizer, phosphorus stabilizer, ultraviolet light as necessary One or more additives selected from absorbents, crosslinking aids, and other additives are blended manually in a bag such as a plastic bag, or stirred by a Henschel mixer, tumbler, super mixer, etc. Blend using a blender. Next, the obtained resin composition is put into a hopper of an extrusion sheet molding machine, and extrusion sheet molding is performed while melt-kneading to obtain a sheet-shaped solar cell encapsulant.
Further, silica powder and, if necessary, a hindered amine light stabilizer, a hindered phenol stabilizer, a phosphorus stabilizer, an ultraviolet absorber, a crosslinking aid, and other additives may be used as a master batch.

なお、配合した樹脂組成物にて一度押出機にてペレット化を行い、さらに押出成形やプレス成形でシート化を行う際は、一般的に水層をくぐらせるか、あるいはアンダーウォーターカッター式の押出機を用いてストランドを冷却し、カットしてペレットを得ている。そのため、水分が付着するので添加剤、とくにシランカップリング剤の劣化が起り、例えば再度押出機でシート化を行う際に、シランカップリング剤同士の縮合反応が進行し、接着性が低下する傾向にあるため好ましくはない。
また、エチレン・α−オレフィン共重合体と有機過酸化物やシランカップリング剤を除く添加剤(ヒンダードフェノール系安定剤、リン系安定剤、ヒンダードアミン系光安定剤、紫外線吸収剤などの安定剤)を事前に押出機を用いてマスターバッチ化した後、有機過酸化物やシランカップリング剤をブレンドし、再度押出機などでシート成形する場合も、ヒンダードフェノール系安定剤、リン系安定剤、ヒンダードアミン系光安定剤、紫外線吸収剤などの安定剤は二度押出機を介しているため、安定剤が劣化し耐候性や耐熱性などの長期信頼性が低下する傾向にあり、好ましくない。
In addition, when the pelletized resin composition is once pelletized with the compounded resin composition and further formed into a sheet by extrusion molding or press molding, generally an aqueous layer is passed through or an underwater cutter type extrusion is performed. The strand is cooled using a machine and cut to obtain pellets. Therefore, since moisture adheres, deterioration of additives, particularly silane coupling agents, occurs, for example, when a sheet is formed again with an extruder, the condensation reaction between silane coupling agents proceeds, and the adhesiveness tends to decrease. Therefore, it is not preferable.
Additives other than ethylene / α-olefin copolymers and organic peroxides and silane coupling agents (stabilizers such as hindered phenol stabilizers, phosphorus stabilizers, hindered amine light stabilizers, UV absorbers, etc.) ) Is pre-mastered using an extruder, blended with an organic peroxide or silane coupling agent, and then sheeted again with an extruder or the like, a hindered phenol stabilizer and phosphorus stabilizer Stabilizers such as hindered amine light stabilizers and UV absorbers are not preferred because they are twice passed through an extruder, and the stabilizers deteriorate and long-term reliability such as weather resistance and heat resistance tends to decrease.

押出温度範囲としては、押出温度が100〜130℃である。押出温度を100℃以上にすると、太陽電池封止材の生産性を向上させることができる。押出温度を130℃以下にすると、樹脂組成物を押出機でシート化して太陽電池封止材を得る際にゲル化を起こしにくくなる。そのため、押出機のトルクの上昇を防ぎ、シート成形を容易にできる。また、シートの表面に凹凸が発生しにくくなるため、外観の低下を防ぐことができる。また、電圧をかけたときシート内部におけるクラックの発生を抑制できるため、絶縁破壊電圧の低下を防止することができる。さらに、透湿性の低下も抑制できる。また、シート表面に凹凸が発生しにくくなるため、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との密着性が良好になり、接着性を向上させることができる。   As the extrusion temperature range, the extrusion temperature is 100 to 130 ° C. When the extrusion temperature is 100 ° C. or higher, the productivity of the solar cell encapsulant can be improved. When the extrusion temperature is 130 ° C. or lower, gelation hardly occurs when the resin composition is formed into a sheet with an extruder to obtain a solar cell sealing material. Therefore, an increase in the torque of the extruder can be prevented and sheet forming can be facilitated. Moreover, since it becomes difficult for unevenness | corrugation to generate | occur | produce on the surface of a sheet | seat, the fall of an external appearance can be prevented. Moreover, since generation | occurrence | production of the crack inside a sheet | seat can be suppressed when a voltage is applied, the fall of a dielectric breakdown voltage can be prevented. Furthermore, a decrease in moisture permeability can also be suppressed. In addition, since unevenness on the sheet surface is less likely to occur, adhesion to the surface side transparent protective member, cells, electrodes, and back surface side protective member is improved when laminating the solar cell module, thereby improving adhesion. it can.

また、太陽電池封止材のシート(または層)の表面には、エンボス加工が施されてもよい。太陽電池封止材のシート表面を、エンボス加工によって装飾することで、封止材シート同士、または封止材シートと他のシートなどとのブロッキングを防止しうる。さらに、エンボスが、太陽電池封止材(太陽電池封止材シート)の貯蔵弾性率を低下させるため、太陽電池封止材シートと太陽電池素子とをラミネートする時に太陽電池素子などに対するクッションとなって、太陽電池素子の破損を防止することができる。   Moreover, the surface of the sheet | seat (or layer) of a solar cell sealing material may be embossed. By decorating the sheet surface of the solar cell encapsulant by embossing, blocking between the encapsulant sheets or between the encapsulant sheet and other sheets can be prevented. Furthermore, since the embossing reduces the storage elastic modulus of the solar cell encapsulant (solar cell encapsulant sheet), it becomes a cushion for the solar cell element when laminating the solar cell encapsulant sheet and the solar cell element. Thus, damage to the solar cell element can be prevented.

太陽電池封止材のシートの単位面積当りの凹部の合計体積Vと、太陽電池封止材のシートの見掛けの体積Vとの百分比V/V×100で表される空隙率P(%)が、10〜50%であることが好ましく、10〜40%であることがより好ましく、15〜40%であることがさらに好ましい。なお、太陽電池封止材のシートの見掛けの体積Vは、単位面積に太陽電池封止材の最大厚みを乗じることにより得られる。空隙率Pが10%以上であると、太陽電池封止材の弾性率を十分低下させることができるため、十分なクッション性を得ることができる。したがって、モジュールの製造工程にて、二段階でラミネート加工(加圧工程)する際に、結晶系太陽電池では、シリコンセルやシリコンセルと電極とを固定する半田の割れを防ぎ、薄膜系太陽電池では、銀電極の割れを防ぐことができる。すなわち、太陽電池封止材の空隙率が10%以上であると、太陽電池封止材に局所的に圧力が加えられた場合であっても、圧力が加えられた凸部が潰れるように変形する。このため、ラミネート加工時に、例えばシリコンセルなどに対して局所的に大きな圧力が加わったとしても、シリコンセルが割れてしまうのを防止することができる。また、太陽電池封止材の空隙率が10%以上であると、空気の通り道が確保できるため、ラミネート加工時に良好に脱気できる。このため、太陽電池モジュールに空気が残留して外観が悪化したり、長期使用時には、残留した空気中の水分により電極の腐食が生じたりすることを防止することができる。さらに、ラミネート時に、流動した樹脂組成物に生じる空隙が少なくなるため、太陽電池モジュールの各被着体の外部にはみ出して、ラミネーターを汚染することを防ぐことができる。 Porosity P expressed as a percentage V H / V A × 100 of the total volume V H of the recesses per unit area of the solar cell encapsulant sheet and the apparent volume VA of the solar cell encapsulant sheet (%) Is preferably 10 to 50%, more preferably 10 to 40%, and still more preferably 15 to 40%. The apparent volume VA of the solar cell encapsulant sheet is obtained by multiplying the unit area by the maximum thickness of the solar cell encapsulant. When the porosity P is 10% or more, the elastic modulus of the solar cell encapsulating material can be sufficiently lowered, so that sufficient cushioning properties can be obtained. Therefore, in the module manufacturing process, when laminating (pressing process) in two steps, the crystalline solar cell prevents the cracking of the silicon cell and the solder that fixes the silicon cell and the electrode, and the thin film solar cell Then, the crack of a silver electrode can be prevented. That is, when the porosity of the solar cell encapsulant is 10% or more, even if pressure is locally applied to the solar cell encapsulant, the convex portion to which pressure is applied is deformed so as to be crushed. To do. For this reason, even when a large pressure is locally applied to the silicon cell, for example, during the lamination process, the silicon cell can be prevented from being broken. Moreover, since the passage of air can be ensured as the porosity of the solar cell encapsulant is 10% or more, it can be well deaerated during lamination. For this reason, it is possible to prevent the appearance of the solar cell module from deteriorating due to air remaining, or the corrosion of the electrode due to the remaining moisture in the air during long-term use. Furthermore, since the space | gap which arises in the resin composition which flowed at the time of a lamination decreases, it can prevent that it protrudes outside each adherend of a solar cell module, and contaminates a laminator.

一方、空隙率Pが80%以下であると、ラミネート加工の加圧時に空気を良好に脱気できるため、太陽電池モジュール内に空気が残留するのを防ぐことができる。このため、太陽電池モジュールの外観の悪化を防ぎ、長期使用時には、残留した空気中の水分により電極の腐食が起こることもない。また、ラミネート加工の加圧時に空気を良好に脱気できるため、太陽電池封止材と被着体との接着面積が増えて、十分な接着強度を得ることができる。   On the other hand, when the porosity P is 80% or less, air can be satisfactorily degassed during pressurization of the laminate process, and thus air can be prevented from remaining in the solar cell module. For this reason, deterioration of the external appearance of the solar cell module is prevented, and corrosion of the electrode does not occur due to residual moisture in the air during long-term use. Moreover, since air can be satisfactorily degassed at the time of pressurization during laminating, the adhesion area between the solar cell sealing material and the adherend increases, and sufficient adhesion strength can be obtained.

空隙率Pは、次のような計算により求めることができる。エンボス加工が施された太陽電池封止材の、見掛けの体積V(mm)は、太陽電池封止材の最大厚みtmax(mm)と単位面積(例えば1m=1000×1000=10mm)との積によって、下記式(12)のようにして算出される。
(mm)=tmax(mm)×10(mm) (12)
一方、この単位面積の太陽電池封止材の実際の体積V(mm)は、太陽電池封止材を構成する樹脂の比重ρ(g/mm)と単位面積(1m)当りの太陽電池封止材の実際の重さW(g)と、を下記式(13)に当てはめることにより算出される。
(mm)=W/ρ (13)
太陽電池封止材の単位面積当りの凹部の合計体積V(mm)は、下記式(14)に示されるように、「太陽電池封止材の見掛けの体積V」から「実際の体積V」を差し引くことによって算出される。
(mm)=V−V=V−(W/ρ) (14)
したがって、空隙率P(%)は次のようにして求めることができる。
空隙率P(%)=V/V×100
=(V−(W/ρ))/V×100
=1−W/(ρ・V)×100
=1−W/(ρ・tmax・10)×100
The porosity P can be obtained by the following calculation. The apparent volume V A (mm 3 ) of the embossed solar cell encapsulant is the maximum thickness t max (mm) of the solar cell encapsulant and the unit area (eg 1 m 2 = 1000 × 1000 = 10). 6 mm 2 ), and is calculated as the following formula (12).
V A (mm 3 ) = t max (mm) × 10 6 (mm 2 ) (12)
On the other hand, the actual volume V 0 (mm 3 ) of the solar cell encapsulant of this unit area is based on the specific gravity ρ (g / mm 3 ) and unit area (1 m 2 ) of the resin constituting the solar cell encapsulant. It is calculated by applying the actual weight W (g) of the solar cell encapsulant to the following equation (13).
V 0 (mm 3 ) = W / ρ (13)
The total volume V H (mm 3 ) of the recesses per unit area of the solar cell encapsulant is expressed as “Actual volume V A of solar cell encapsulant” from “Actual volume V A ” as shown in the following formula (14). It is calculated by subtracting the volume “V 0 ”.
V H (mm 3) = V A -V 0 = V A - (W / ρ) (14)
Therefore, the porosity P (%) can be obtained as follows.
Porosity P (%) = V H / V A × 100
= (V A- (W / ρ)) / V A × 100
= 1−W / (ρ · V A ) × 100
= 1−W / (ρ · t max · 10 6 ) × 100

空隙率P(%)は、上記の計算式によって求めることができるが、実際の太陽電池封止材の断面やエンボス加工が施された面を顕微鏡撮影し、画像処理などすることによって求めることもできる。   The porosity P (%) can be obtained by the above calculation formula, but it can also be obtained by taking an image of a cross section or an embossed surface of an actual solar cell encapsulant and performing image processing. it can.

エンボス加工により形成される凹部の深さは、太陽電池封止材の最大厚みの20〜95%であることが好ましく、50〜95%であることがより好ましく、65〜95%であることがより好ましい。シートの最大厚みtmaxに対する凹部の深さDの百分比を、凹部の「深さ率」と称する場合がある。 The depth of the recess formed by embossing is preferably 20 to 95% of the maximum thickness of the solar cell encapsulant, more preferably 50 to 95%, and 65 to 95%. More preferred. The percentage of the depth D of the recess with respect to the maximum thickness t max of the sheet may be referred to as the “depth ratio” of the recess.

エンボス加工の凹部の深さとは、エンボス加工による太陽電池封止材の凹凸面の凸部の最頂部と凹部の最深部との高低差Dを示す。また、太陽電池封止材の最大厚みtmaxとは、太陽電池封止材の一方の面にエンボス加工してある場合、一方の凸部の最頂部から他方の面までの(太陽電池封止材厚さ方向の)距離を示し、太陽電池封止材の両方の面にエンボス加工が施されている場合は、一方の面の凸部の最頂部から他方の凸部の最頂部までの(太陽電池封止材厚さ方向の)距離を示す。 The depth of the embossed recess indicates a height difference D between the topmost portion of the convex portion and the deepest portion of the concave portion of the uneven surface of the solar cell encapsulating material by embossing. In addition, the maximum thickness t max of the solar cell encapsulating material means that when one surface of the solar cell encapsulating material is embossed, the solar cell encapsulating material from the top of one convex portion to the other surface (solar cell encapsulating In the case of embossing on both surfaces of the solar cell encapsulant, the distance from the top of the convex portion on one surface to the top of the other convex portion (in the thickness direction) The distance (in the thickness direction of the solar cell encapsulant) is shown.

エンボス加工は、太陽電池封止材の片面に施されていても、両面に施されていてもよい。エンボス加工の凹部の深さを大きくする場合は、太陽電池封止材の片面にのみ形成するのが好ましい。エンボス加工が太陽電池封止材の片面にのみ施されている場合、太陽電池封止材の最大厚みtmaxは0.01mm〜2mmであり、好ましくは0.05〜1mmであり、より好ましくは0.1〜1mmであり、さらに好ましくは0.15〜1mmであり、さらに好ましくは0.2〜1mmであり、さらに好ましくは0.2〜0.9mmであり、とくに好ましくは0.3〜0.9mmであり、最も好ましくは0.3〜0.8mmである。太陽電池封止材の最大厚みtmaxがこの範囲内であると、ラミネート工程における、表面側透明保護部材、太陽電池素子、薄膜電極などの破損を抑制でき、比較的低温でも太陽電池モジュールのラミネート成形ができるので好ましい。また、太陽電池封止材は、十分な光線透過率を確保でき、それを用いた太陽電池モジュールは高い光発電量を有する。 Embossing may be performed on one side of the solar cell encapsulant or on both sides. When increasing the depth of the embossed recess, it is preferably formed only on one side of the solar cell encapsulant. When embossing is performed only on one side of the solar cell encapsulant, the maximum thickness t max of the solar cell encapsulant is 0.01 mm to 2 mm, preferably 0.05 to 1 mm, more preferably. It is 0.1-1 mm, More preferably, it is 0.15-1 mm, More preferably, it is 0.2-1 mm, More preferably, it is 0.2-0.9 mm, Most preferably, it is 0.3- 0.9 mm, most preferably 0.3 to 0.8 mm. When the maximum thickness t max of the solar cell encapsulant is within this range, damage to the surface side transparent protective member, solar cell element, thin film electrode, etc. in the laminating step can be suppressed, and the solar cell module laminate can be performed even at a relatively low temperature. It is preferable because it can be molded. Moreover, the solar cell sealing material can ensure sufficient light transmittance, and the solar cell module using the solar cell encapsulant has a high photovoltaic power generation amount.

さらに、そのシートは、太陽電池モジュールサイズに合わせて裁断された枚葉形式、または太陽電池モジュールを作製する直前にサイズに合わせて裁断可能なロール形式にて太陽電池封止材として用いることができる。本発明の好ましい実施形態であるシート状の太陽電池封止材(太陽電池封止材シート)は、太陽電池封止材からなる層を少なくとも一層有していればよい。したがって、本実施形態の太陽電池封止材からなる層の数は、一層であってもよいし、二層以上であってもよい。構造を単純にしてコストを下げる観点、および層間での界面反射を極力小さくし、光を有効に活用する観点などからは、一層であることが好ましい。   Further, the sheet can be used as a solar cell encapsulant in a single wafer form cut to fit the solar cell module size or a roll form that can be cut to fit the size just before producing the solar cell module. . The sheet-like solar cell encapsulant (solar cell encapsulant sheet) which is a preferred embodiment of the present invention only needs to have at least one layer made of the solar cell encapsulant. Therefore, the number of layers made of the solar cell encapsulant of this embodiment may be one layer or two or more layers. From the viewpoint of simplifying the structure and reducing costs, and from the viewpoint of effectively utilizing light by minimizing interfacial reflection between layers, it is preferable to be further increased.

太陽電池封止材シートは、本実施形態の太陽電池封止材からなる層のみで構成されていてもよいし、太陽電池封止材を含有する層以外の層(以下、「その他の層」とも記す)を有していてもよい。その他の層の例としては、目的で分類するならば、表面または裏面保護のためのハードコート層、接着層、反射防止層、ガスバリア層、防汚層などを挙げることができる。材質で分類するならば、紫外線硬化性樹脂からなる層、熱硬化性樹脂からなる層、ポリオレフィン樹脂からなる層、カルボン酸変性ポリオレフィン樹脂からなる層、フッ素含有樹脂からなる層、環状オレフィン(共)重合体からなる層、無機化合物からなる層などを挙げることができる。   The solar cell encapsulant sheet may be composed of only a layer made of the solar cell encapsulant of the present embodiment, or a layer other than the layer containing the solar cell encapsulant (hereinafter “other layers”). May also be included). Examples of other layers include a hard coat layer, an adhesive layer, an antireflection layer, a gas barrier layer, and an antifouling layer for protecting the front or back surface, if classified for purposes. If classified by material, layer made of UV curable resin, layer made of thermosetting resin, layer made of polyolefin resin, layer made of carboxylic acid modified polyolefin resin, layer made of fluorine-containing resin, cyclic olefin (co) Examples thereof include a layer made of a polymer and a layer made of an inorganic compound.

本実施形態の太陽電池封止材からなる層と、その他の層との位置関係にはとくに制限はなく、本発明の目的との関係で好ましい層構成が適宜選択される。すなわち、その他の層は、2以上の太陽電池封止材からなる層の間に設けられてもよいし、太陽電池封止材シートの最外層に設けられてもよいし、それ以外の箇所に設けられてもよい。また、太陽電池封止材からなる層の片面にのみその他の層が設けられてもよいし、両面にその他の層が設けられてもよい。その他の層の層数にとくに制限はなく、任意の数のその他の層を設けることができるし、その他の層を設けなくともよい。   There is no particular limitation on the positional relationship between the layer made of the solar cell encapsulant of this embodiment and the other layers, and a preferred layer configuration is appropriately selected in relation to the object of the present invention. That is, the other layer may be provided between layers made of two or more solar cell encapsulants, or may be provided in the outermost layer of the solar cell encapsulant sheet, or in other locations. It may be provided. In addition, other layers may be provided only on one side of the layer made of the solar cell sealing material, or other layers may be provided on both sides. There is no restriction | limiting in particular in the number of layers of another layer, Arbitrary number of other layers can be provided and it is not necessary to provide another layer.

構造を単純にしてコストを下げる観点、および界面反射を極力小さくし光を有効に活用する観点などからは、その他の層を設けず、本実施形態の太陽電池封止材からなる層のみで太陽電池封止材シートを作製すればよい。ただし、目的との関係で必要または有用なその他の層があれば、適宜そのようなその他の層を設ければよい。   From the viewpoint of simplifying the structure and reducing costs, and from the viewpoint of effectively utilizing light by minimizing interface reflection, the other layers are not provided, and only the layer made of the solar cell encapsulant of the present embodiment is used. What is necessary is just to produce a battery sealing material sheet. However, if there are other layers necessary or useful in relation to the purpose, such other layers may be provided as appropriate.

その他の層を設ける場合における、本実施形態の太陽電池封止材からなる層と他の層との積層方法についてはとくに制限はないが、キャスト成形機、押出シート成形機、インフレーション成形機、射出成形機などの公知の溶融押出機を用いて共押出して積層体を得る方法、あるいは予め成形された一方の層上に他方の層を溶融または加熱ラミネートして積層体を得る方法が好ましい。   In the case of providing other layers, there are no particular restrictions on the method of laminating the layer made of the solar cell encapsulant of this embodiment and the other layers, but there are no limitations on cast molding machines, extrusion sheet molding machines, inflation molding machines, injections. A method of obtaining a laminate by co-extrusion using a known melt extruder such as a molding machine, or a method of obtaining a laminate by melting or heating and laminating the other layer on one previously formed layer is preferred.

また、適当な接着剤(例えば、無水マレイン酸変性ポリオレフィン樹脂(三井化学社製の商品名「アドマー(登録商標)」、三菱化学社製の商品名「モディック(登録商標)」など)、不飽和ポリオレフィンなどの低(非)結晶性軟質重合体、エチレン/アクリル酸エステル/無水マレイン酸三元共重合体(住化シーディエフ化学社製の商品名「ボンダイン(登録商標)」など)をはじめとするアクリル系接着剤、エチレン/酢酸ビニル系共重合体、またはこれらを含む接着性樹脂組成物など)を用いたドライラミネート法、あるいはヒートラミネート法などにより積層してもよい。接着剤としては、120〜150℃程度の耐熱性があるものが好ましく使用され、ポリエステル系あるいはポリウレタン系接着剤などが好適なものとして例示される。また、両層の接着性を改良するために、例えば、シラン系カップリング処理、チタン系カップリング処理、コロナ処理、プラズマ処理などを用いてもよい。   In addition, suitable adhesives (for example, maleic anhydride-modified polyolefin resin (trade name “Admer (registered trademark)” manufactured by Mitsui Chemicals, Inc., product name “Modic (registered trademark)” manufactured by Mitsubishi Chemical Corporation, etc.)), unsaturated Including low (non) crystalline soft polymers such as polyolefins, ethylene / acrylic acid ester / maleic anhydride terpolymers (trade name “Bondaine (registered trademark)” manufactured by Sumika DF Chemical Co., Ltd.), etc. An acrylic adhesive, an ethylene / vinyl acetate copolymer, or an adhesive resin composition containing these) may be laminated by a dry laminating method or a heat laminating method. As the adhesive, one having a heat resistance of about 120 to 150 ° C. is preferably used, and a polyester-based or polyurethane-based adhesive is exemplified as a suitable one. Moreover, in order to improve the adhesiveness of both layers, for example, a silane coupling treatment, a titanium coupling treatment, a corona treatment, a plasma treatment, or the like may be used.

2.太陽電池モジュールについて
太陽電池モジュールは、例えば、通常、多結晶シリコンなどにより形成された太陽電池素子を太陽電池封止材シートで挟み積層し、さらに、表裏両面を保護シートでカバーした結晶型太陽電池モジュールが挙げられる。すなわち、典型的な太陽電池モジュールは、太陽電池モジュール用保護シート(表面側透明保護部材)/太陽電池封止材/太陽電池素子/太陽電池封止材/太陽電池モジュール用保護シート(裏面側保護部材)という構成になっている。
ただし、本発明の好ましい実施形態の1つである太陽電池モジュールは、上記の構成には限定されず、本発明の目的を損なわない範囲で、上記の各層の一部を適宜省略し、または上記以外の層を適宜設けることができる。上記以外の層としては、例えば接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、および光拡散層などを挙げることができる。これらの層は、とくに限定はないが、各層を設ける目的や特性を考慮して、適切な位置に設けることができる。
2. About solar cell module A solar cell module is a crystalline solar cell in which, for example, a solar cell element usually formed of polycrystalline silicon or the like is sandwiched between solar cell sealing material sheets, and both front and back surfaces are covered with a protective sheet. Module. That is, a typical solar cell module includes a solar cell module protective sheet (front surface side transparent protective member) / solar cell encapsulant / solar cell element / solar cell encapsulant / solar cell module protective sheet (back side protection). Member).
However, the solar cell module which is one of the preferred embodiments of the present invention is not limited to the above-described configuration, and a part of each of the above layers is appropriately omitted or the above-described range within a range not impairing the object of the present invention. Other layers can be provided as appropriate. Examples of the layer other than the above include an adhesive layer, a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, and a light diffusion layer. These layers are not particularly limited, but can be provided at appropriate positions in consideration of the purpose and characteristics of each layer.

(結晶シリコン系の太陽電池モジュール)
図1は、本発明の太陽電池モジュールの一実施形態を模式的に示す断面図である。なお、図1においては、結晶シリコン系の太陽電池モジュール20の構成の一例が示されている。図1に示されるように、太陽電池モジュール20は、インターコネクタ29により電気的に接続された複数の結晶シリコン系の太陽電池素子22と、それを挟持する一対の表面側透明保護部材24と裏面側保護部材26とを有し、これらの保護部材と複数の太陽電池素子22との間に、封止層28が充填されている。封止層28は、本実施形態の太陽電池用封止材を貼り合わせた後、加熱圧着されて得られ、太陽電池素子22の受光面および裏面に形成された電極と接している。電極とは、太陽電池素子22の受光面および裏面にそれぞれ形成された集電部材であり、後述する集電線、タブ付用母線、および裏面電極層などを含む。
(Crystalline silicon solar cell module)
FIG. 1 is a cross-sectional view schematically showing one embodiment of the solar cell module of the present invention. In FIG. 1, an example of the configuration of a crystalline silicon solar cell module 20 is shown. As shown in FIG. 1, the solar cell module 20 includes a plurality of crystalline silicon-based solar cell elements 22 electrically connected by an interconnector 29, a pair of front surface side transparent protective members 24 and a back surface thereof. A side protection member 26 is provided, and a sealing layer 28 is filled between these protection members and the plurality of solar cell elements 22. The sealing layer 28 is obtained by bonding the solar cell sealing material of the present embodiment and then thermocompression bonding, and is in contact with the electrodes formed on the light receiving surface and the back surface of the solar cell element 22. The electrode is a current collecting member formed on each of the light receiving surface and the back surface of the solar cell element 22 and includes a power collecting wire, a tabbed bus, a back electrode layer, and the like which will be described later.

図2は、太陽電池素子の受光面と裏面の一構成例を模式的に示す平面図である。図2においては、太陽電池素子22の受光面22Aと裏面22Bの構成の一例が示されている。図2(A)に示されるように、太陽電池素子22の受光面22Aには、ライン状に多数形成された集電線32と、集電線32から電荷を収集するとともに、インターコネクタ29(図1)と接続されるタブ付用母線(バスバー)34Aと、が形成されている。また、図2(B)に示されるように、太陽電池素子22の裏面22Bには、全面に導電層(裏面電極)36が形成され、その上に導電層36から電荷を収集するとともに、インターコネクタ29(図1)と接続されるタブ付用母線(バスバー)34Bが形成されている。集電線32の線幅は、例えば0.1mm程度であり、タブ付用母線34Aの線幅は、例えば2〜3mm程度であり、タブ付用母線34Bの線幅は、例えば5〜7mm程度である。集電線32、タブ付用母線34Aおよびタブ付用母線34Bの厚みは、例えば20〜50μm程度である。   FIG. 2 is a plan view schematically showing one configuration example of the light receiving surface and the back surface of the solar cell element. In FIG. 2, an example of the configuration of the light receiving surface 22A and the back surface 22B of the solar cell element 22 is shown. As shown in FIG. 2 (A), the light receiving surface 22A of the solar cell element 22 collects a large number of linearly-collected current lines 32, charges from the current collector lines 32, and interconnector 29 (FIG. 1). ) And a bus bar with a tab (bus bar) 34 </ b> A connected thereto. Further, as shown in FIG. 2B, a conductive layer (back electrode) 36 is formed on the entire back surface 22B of the solar cell element 22, and charges are collected from the conductive layer 36 on the back surface 22B. A tabbed bus bar (bus bar) 34B connected to the connector 29 (FIG. 1) is formed. The line width of the collector line 32 is, for example, about 0.1 mm, the line width of the tabbed bus 34A is, for example, about 2-3 mm, and the line width of the tabbed bus 34B is, for example, about 5-7 mm. is there. The thickness of the power collection line 32, the tab-attached bus 34A, and the tab-attached bus 34B is, for example, about 20 to 50 μm.

集電線32、タブ付用母線34A、およびタブ付用母線34Bは、導電性が高い金属を含むことが好ましい。このような導電性の高い金属の例には、金、銀、銅などが含まれるが、導電性や耐腐食性が高い点などから、銀や銀化合物、銀を含有する合金などが好ましい。導電層36は、導電性の高い金属だけでなく、受光面で受けた光を反射させて太陽電池素子の光電変換効率を向上させるという観点などから、光反射性の高い成分、例えばアルミニウムを含むことが好ましい。集電線32、タブ付用母線34A、タブ付用母線34B、および導電層36は、太陽電池素子22の受光面22Aまたは裏面22Bに、上記導電性の高い金属を含む導電材塗料を、例えばスクリーン印刷により50μmの塗膜厚さに塗布した後、乾燥し、必要に応じて例えば600〜700℃で焼き付けすることにより形成される。   It is preferable that the current collecting wire 32, the tabbed bus 34A, and the tabbed bus 34B include a metal having high conductivity. Examples of such highly conductive metals include gold, silver, copper, and the like. From the viewpoint of high conductivity and high corrosion resistance, silver, silver compounds, alloys containing silver, and the like are preferable. The conductive layer 36 contains not only a highly conductive metal but also a highly light reflective component, for example, aluminum from the viewpoint of improving the photoelectric conversion efficiency of the solar cell element by reflecting light received by the light receiving surface. It is preferable. The current collector 32, the tabbed bus 34 </ b> A, the tabbed bus 34 </ b> B, and the conductive layer 36 are formed by applying a conductive material paint containing the above highly conductive metal to the light receiving surface 22 </ b> A or the back surface 22 </ b> B of the solar cell element 22, for example, It is formed by applying to a coating thickness of 50 μm by printing, then drying, and baking at, for example, 600 to 700 ° C. as necessary.

表面側透明保護部材24は、受光面側に配置されることから、透明である必要がある。表面側透明保護部材24の例には、透明ガラス板や透明樹脂フィルムなどが含まれる。一方、裏面側保護部材26は透明である必要はなく、その材質はとくに限定されない。裏面側保護部材26の例にはガラス基板やプラスチックフィルムなどが含まれるが、耐久性や透明性の観点からガラス基板が好適に用いられる。   Since the surface side transparent protective member 24 is disposed on the light receiving surface side, it needs to be transparent. Examples of the surface side transparent protective member 24 include a transparent glass plate and a transparent resin film. On the other hand, the back surface side protection member 26 does not need to be transparent, and the material is not particularly limited. Examples of the back surface side protection member 26 include a glass substrate and a plastic film, but a glass substrate is preferably used from the viewpoint of durability and transparency.

太陽電池モジュール20は、任意の製造方法で得ることができる。太陽電池モジュール20は、例えば、裏面側保護部材26、太陽電池封止材、複数の太陽電池素子22、太陽電池封止材、および表面側透明保護部材24をこの順に積層した積層体を得る工程;該積層体を、ラミネーターなどにより加圧し貼り合わせ、同時に必要に応じて加熱する工程;上記工程の後、さらに必要に応じて積層体を加熱処理し、上記封止材を硬化する工程により得ることができる。
太陽電池素子22には、通常、発生した電気を取り出すための集電電極が配置される。集電電極の例には、バスバー電極、フィンガー電極などが含まれる。一般に、集電電極は、太陽電池素子の表面と裏面の両面に配置した構造をとるが、受光面に集電電極を配置すると、集電電極が光を遮ってしまうため発電効率が低下するという問題が生じうる。
The solar cell module 20 can be obtained by any manufacturing method. The solar cell module 20 is a process of obtaining a laminated body in which, for example, the back surface side protective member 26, the solar cell sealing material, the plurality of solar cell elements 22, the solar cell sealing material, and the front surface side transparent protective member 24 are stacked in this order. A step of pressurizing and laminating the laminate with a laminator or the like, and simultaneously heating as necessary; after the step, the laminate is further subjected to a heat treatment as necessary to obtain the step of curing the sealing material; be able to.
The solar cell element 22 is usually provided with a collecting electrode for taking out the generated electricity. Examples of current collecting electrodes include bus bar electrodes, finger electrodes, and the like. In general, the collector electrode has a structure in which the collector electrode is disposed on both the front and back surfaces of the solar cell element. However, if the collector electrode is disposed on the light receiving surface, the collector electrode blocks light and power generation efficiency is reduced. Problems can arise.

また、発電効率を向上させるために、受光面に集電電極を配置する必要のないバックコンタクト型太陽電池素子を用いることができる。バックコンタクト型太陽電池素子の一態様では、太陽電池素子の受光面の反対側に設けられた裏面側に、pドープ領域とnドープ領域とを交互に設ける。バックコンタクト型太陽電池素子の他の態様では、貫通孔(スルーホール)を設けた基板にp/n接合を形成し、スルーホール内壁および裏面側のスルーホール周辺部まで表面(受光面)側のドープ層を形成し、裏面側で受光面の電流を取り出す。   Further, in order to improve power generation efficiency, a back contact solar cell element that does not require a collector electrode on the light receiving surface can be used. In one aspect of the back contact solar cell element, p-doped regions and n-doped regions are alternately provided on the back surface side provided on the opposite side of the light receiving surface of the solar cell element. In another aspect of the back contact solar cell element, a p / n junction is formed on a substrate provided with a through hole (through hole), and the surface (light-receiving surface) side of the through hole inner wall and the through hole peripheral portion on the back surface side is formed. A doped layer is formed, and the current on the light receiving surface is taken out on the back side.

一般に太陽電池システムにおいては、上述の太陽電池モジュールを直列数台から数十台につないでおり、住宅用の小規模のものでも50V〜500V、メガソーラーと呼ばれる大規模のものでは600〜1000Vでの運用がなされる。太陽電池モジュールの外枠には、強度保持などを目的にアルミフレームなどが使用され、安全上の観点からアルミフレームはアース(接地)される場合が多い。その結果太陽電池が発電することで、封止材に比較して電気抵抗の低い表面側透明保護部材面と太陽電池素子の間には、発電による電圧差が生じることになる。
その結果、発電セルと表面側透明保護部材またはアルミフレームとの間に封止される、太陽電池封止材には、高い電気絶縁性、高抵抗などの良好な電気特性が求められる。
In general, in the solar cell system, the above-described solar cell modules are connected in series to several tens of units, 50 V to 500 V for a small-scale one for residential use, and 600 to 1000 V for a large-scale one called a mega solar. Is operated. An aluminum frame or the like is used for the outer frame of the solar cell module for the purpose of maintaining strength, and the aluminum frame is often grounded (grounded) from the viewpoint of safety. As a result, when the solar cell generates power, a voltage difference due to power generation occurs between the surface-side transparent protective member surface having a lower electrical resistance than the sealing material and the solar cell element.
As a result, the solar cell encapsulant that is sealed between the power generation cell and the surface-side transparent protective member or the aluminum frame is required to have good electrical characteristics such as high electrical insulation and high resistance.

(薄膜シリコン系(アモルファスシリコン系)の太陽電池モジュール)
薄膜シリコン系の太陽電池モジュールは、(1)表面側透明保護部材(ガラス基板)/薄膜太陽電池素子/封止層/裏面側保護部材をこの順に積層したもの;(2)表面側透明保護部材/封止層/薄膜太陽電池素子/封止層/裏面側保護部材をこの順に積層したものなどでありうる。表面側透明保護部材、裏面側保護部材、および封止層は、前述の「結晶シリコン系の太陽電池モジュール」の場合と同様である。
(Thin film silicon (amorphous silicon) solar cell module)
The thin-film silicon-based solar cell module has (1) a surface-side transparent protective member (glass substrate) / thin-film solar cell element / sealing layer / back-side protective member stacked in this order; (2) a surface-side transparent protective member / Sealing layer / thin film solar cell element / sealing layer / back surface side protective member may be laminated in this order. The front surface side transparent protective member, the back surface side protective member, and the sealing layer are the same as those in the above-mentioned “crystalline silicon solar cell module”.

(1)の態様における薄膜太陽電池素子は、例えば、透明電極層/pin型シリコン層/裏面電極層をこの順に含む。透明電極層の例には、In、SnO、ZnO、CdSnO、ITO(InにSnを添加したもの)などの半導体系酸化物が含まれる。裏面電極層は、例えば銀薄膜層を含む。各層は、プラズマCVD(ケミカル・ベ−パ・デポジション)法やスパッタ法により形成される。封止層は、裏面電極層(例えば銀薄膜層)と接するように配置される。透明電極層は、表面側透明保護部材上に形成されるので、表面側透明保護部材と透明電極層との間に封止層は配置されないことが多い。 The thin film solar cell element in the aspect of (1) includes, for example, transparent electrode layer / pin type silicon layer / back electrode layer in this order. Examples of the transparent electrode layer include semiconductor oxides such as In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (In 2 O 3 with Sn added). The back electrode layer includes, for example, a silver thin film layer. Each layer is formed by a plasma CVD (chemical vapor deposition) method or a sputtering method. A sealing layer is arrange | positioned so that a back surface electrode layer (for example, silver thin film layer) may be contact | connected. Since the transparent electrode layer is formed on the front surface side transparent protective member, the sealing layer is often not disposed between the front surface side transparent protective member and the transparent electrode layer.

(2)の態様における薄膜太陽電池素子は、例えば、透明電極層/pin型シリコン層/金属箔、または耐熱性高分子フィルム上に配置された金属薄膜層(例えば、銀薄膜層)、をこの順に含む。金属箔の例には、ステンレススチール箔などが含まれる。耐熱性高分子フィルムの例には、ポリイミドフィルムなどが含まれる。透明電極層およびpin型シリコン層は、前述と同様、CVD法やスパッタ法により形成される。つまり、pin型シリコン層は、金属箔、または耐熱性高分子フィルム上に配置された金属薄膜層に形成され;さらに透明電極層はpin型シリコン層に形成される。また、耐熱性高分子フィルム上に配置される金属薄膜層もCVD法やスパッタ法により形成されうる。   The thin-film solar cell element in the aspect (2) includes, for example, a transparent electrode layer / pin type silicon layer / metal foil, or a metal thin film layer (for example, a silver thin film layer) disposed on a heat-resistant polymer film. In order. Examples of the metal foil include stainless steel foil. Examples of the heat resistant polymer film include a polyimide film. The transparent electrode layer and the pin type silicon layer are formed by the CVD method or the sputtering method as described above. That is, the pin-type silicon layer is formed on a metal foil or a metal thin film layer disposed on a heat-resistant polymer film; and the transparent electrode layer is formed on a pin-type silicon layer. Moreover, the metal thin film layer arrange | positioned on a heat resistant polymer film can also be formed by CVD method or a sputtering method.

この場合、封止層は、透明電極層と表面側透明保護部材との間;および金属箔または耐熱性高分子フィルムと裏面側保護部材との間にそれぞれ配置される。このように、太陽電池封止材から得られる封止層は、太陽電池素子の集電線、タブ付用母線、および導電層などの電極と接している。また(2)の態様における薄膜太陽電池素子は、シリコン層が、結晶シリコン系の太陽電池素子に比べて薄いため、太陽電池モジュール製造時の加圧や上記モジュール稼動時の外部からの衝撃により破損しにくい。このため、結晶シリコン系の太陽電池モジュールに用いられるものよりも、薄膜太陽電池モジュールに用いる太陽電池封止材の柔軟性は低くてもよい。一方、上記薄膜太陽電池素子の電極は上述のように金属薄膜層であるため、腐食により劣化した場合、発電効率が著しく低下する恐れがある。   In this case, the sealing layer is disposed between the transparent electrode layer and the front surface side transparent protective member; and between the metal foil or the heat resistant polymer film and the back surface side protective member. Thus, the sealing layer obtained from a solar cell sealing material is in contact with electrodes, such as a current collection line of a solar cell element, a bus bar with a tab, and a conductive layer. In addition, the thin-film solar cell element in the aspect (2) has a silicon layer that is thinner than a crystalline silicon-based solar cell element. Therefore, the thin-film solar cell element is damaged by pressurization when manufacturing a solar cell module or external impact when operating the module. Hard to do. For this reason, the softness | flexibility of the solar cell sealing material used for a thin film solar cell module may be lower than what is used for a crystalline silicon type solar cell module. On the other hand, since the electrode of the thin film solar cell element is a metal thin film layer as described above, when it is deteriorated by corrosion, the power generation efficiency may be significantly reduced.

また、その他の太陽電池モジュールとして、太陽電池素子にシリコンを用いた太陽電池モジュールがある。太陽電池素子にシリコンを用いた太陽電池モジュールには、結晶シリコンとアモルファスシリコンを積層したハイブリッド型(HIT型)太陽電池モジュール、吸収波長域の異なるシリコン層を積層した多接合型(タンデム型)太陽電池モジュール、太陽電池素子の受光面の反対側に設けられた裏面側にpドープ領域とnドープ領域とを交互に設けたバックコンタクト型太陽電池モジュール、無数の球状シリコン粒子(直径1mm程度)と集光能力を上げる直径2〜3mmの凹面鏡(電極を兼ねる)を組み合わせた球状シリコン型太陽電池モジュールなどが挙げられる。また、太陽電池素子にシリコンを用いた太陽電池モジュールには、従来のpin接合構造を持つアモルファスシリコン型のp型窓層の役割を、「絶縁された透明電極」から「電界効果によって誘起される反転層」に置き換えた構造を持つ電界効果型太陽電池モジュールなども挙げられる。また、太陽電池素子に単結晶のGaAsを用いたGaAs系太陽電池モジュール;太陽電池素子としてシリコンの代わりに、Cu、In、Ga、Al、Se、Sなどからなるカルコパイライト系と呼ばれるI−III−VI族化合物を用いたCISまたはCIGS系(カルコパイライト系)太陽電池モジュール;太陽電池素子としてCd化合物薄膜を用いたCdTe−CdS系太陽電池、CuZnSnS(CZTS)太陽電池モジュールなどが挙げられる。本実施形態の太陽電池封止材は、これら全ての太陽電池モジュールの太陽電池封止材として用いることができる。 As another solar cell module, there is a solar cell module using silicon as a solar cell element. Solar cell modules using silicon for solar cell elements include hybrid type (HIT type) solar cell modules in which crystalline silicon and amorphous silicon are laminated, and multi-junction type (tandem type) solar cells in which silicon layers having different absorption wavelength ranges are laminated. A battery module, a back contact solar cell module in which p-doped regions and n-doped regions are alternately provided on the back side provided on the opposite side of the light-receiving surface of the solar cell element, innumerable spherical silicon particles (diameter of about 1 mm) and Examples thereof include a spherical silicon solar cell module combined with a concave mirror (also serving as an electrode) having a diameter of 2 to 3 mm for increasing the light collecting ability. Further, in a solar cell module using silicon as a solar cell element, the role of an amorphous silicon type p-type window layer having a conventional pin junction structure is induced by “field effect” from “insulated transparent electrode”. A field effect solar cell module having a structure replaced with an “inversion layer” is also included. Further, a GaAs-based solar cell module using single-crystal GaAs as a solar cell element; I-III called a chalcopyrite system made of Cu, In, Ga, Al, Se, S or the like instead of silicon as a solar cell element -VI compound the CIS or CIGS system using (chalcopyrite) solar cell modules; CdTe-CdS-based solar cell, such as Cu 2 ZnSnS 4 (CZTS) solar cell module mentioned with Cd compound thin film solar cell element It is done. The solar cell encapsulant of this embodiment can be used as a solar cell encapsulant for all these solar cell modules.

とくに、太陽電池モジュ−ルを構成する光起電力素子の下に積層する封止材層は、光起電力素子の上部に積層される封止材層・電極・裏面保護層との接着性を有することが必要である。また、光起電力素子としての太陽電池素子の裏面の平滑性を保持するために、熱可塑性を有することが必要である。さらに、光起電力素子としての太陽電池素子を保護するために、耐スクラッチ性、衝撃吸収性などに優れていることが必要である。   In particular, the sealing material layer laminated under the photovoltaic element constituting the solar cell module has an adhesive property with the sealing material layer / electrode / back surface protective layer laminated on the photovoltaic element. It is necessary to have. Moreover, in order to maintain the smoothness of the back surface of the solar cell element as a photovoltaic element, it is necessary to have thermoplasticity. Furthermore, in order to protect the solar cell element as a photovoltaic element, it is necessary to be excellent in scratch resistance, shock absorption and the like.

上記封止材層としては、耐熱性を有することが望ましい。とくに、太陽電池モジュ−ル製造の際、真空吸引して加熱圧着するラミネーション法などにおける加熱作用や、太陽電池モジュ−ルなどの長期間の使用における太陽光などの熱の作用などにより、封止材層を構成する樹脂組成物が変質したり、劣化ないし分解したりしないことが望ましい。仮に、該樹脂組成物に含まれる添加剤などが溶出したり、分解物が生成したりすると、それらが太陽電池素子の起電力面(素子面)に作用し、その機能、性能などを劣化させてしまうことになる。このため、耐熱性は、太陽電池モジュ−ルの封止材層の有する特性として必要不可欠のものである。
さらに、上記封止材層は、防湿性に優れていることが好ましい。この場合、太陽電池モジュールの裏面側からの水分の透過を防ぐことができ、太陽電池モジュールの光起電力素子の腐食、劣化を防ぐことができる。
The sealing material layer preferably has heat resistance. In particular, when manufacturing solar cell modules, they are sealed by heating such as in the lamination method in which vacuum suction is applied and thermocompression bonding, or by the action of heat such as sunlight in long-term use of solar cell modules, etc. It is desirable that the resin composition constituting the material layer does not change in quality or deteriorate or decompose. If the additives contained in the resin composition are eluted or decomposed products are generated, they act on the electromotive force surface (element surface) of the solar cell element, deteriorating its function and performance. It will end up. For this reason, heat resistance is indispensable as a characteristic of the sealing material layer of the solar cell module.
Furthermore, the sealing material layer is preferably excellent in moisture resistance. In this case, moisture permeation from the back side of the solar cell module can be prevented, and corrosion and deterioration of the photovoltaic element of the solar cell module can be prevented.

上記封止材層は、光起電力素子の上に積層する充填剤層と異なり、必ずしも透明性を有することを必要としない。本実施形態の太陽電池封止材は、上記の特性を有しており、結晶型太陽電池モジュールの裏面側の太陽電池封止材、水分浸透に弱い薄膜型太陽電池モジュールの太陽電池封止材として好適に用いることができる。   Unlike the filler layer laminated | stacked on a photovoltaic element, the said sealing material layer does not necessarily need to have transparency. The solar cell encapsulant of the present embodiment has the above-described characteristics, and the solar cell encapsulant on the back surface side of the crystalline solar cell module and the solar cell encapsulant of the thin-film solar cell module vulnerable to moisture penetration Can be suitably used.

本実施形態の太陽電池モジュールは、本発明の目的を損なわない範囲で、任意の部材を適宜有してもよい。典型的には、接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、光拡散層などを設けることができるが、これらに限定されない。これらの層を設ける位置にはとくに限定はなく、そのような層を設ける目的、および、そのような層の特性を考慮し、適切な位置に設けることができる。   The solar cell module of the present embodiment may appropriately include any member as long as the object of the present invention is not impaired. Typically, an adhesive layer, a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, a light diffusion layer, and the like can be provided, but not limited thereto. There are no particular limitations on the positions where these layers are provided, and the layers can be provided at appropriate positions in consideration of the purpose of providing such layers and the characteristics of such layers.

(太陽電池モジュール用表面側透明保護部材)
太陽電池モジュールに用いられる太陽電池モジュール用表面側透明保護部材は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、耐候性、撥水性、耐汚染性、機械強度をはじめとして、太陽電池モジュールの屋外暴露における長期信頼性を確保するための性能を有することが好ましい。また、太陽光を有効に活用するために、光学ロスの小さい、透明性の高いシートであることが好ましい。
(Surface-side transparent protective member for solar cell module)
The surface side transparent protective member for the solar cell module used in the solar cell module is not particularly limited, but because it is located on the outermost layer of the solar cell module, including weather resistance, water repellency, contamination resistance, mechanical strength, It is preferable to have a performance for ensuring long-term reliability in outdoor exposure of the solar cell module. Moreover, in order to utilize sunlight effectively, it is preferable that it is a highly transparent sheet | seat with a small optical loss.

太陽電池モジュール用表面側透明保護部材の材料としては、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、環状オレフィン(共)重合体、エチレン−酢酸ビニル共重合体などからなる樹脂フィルムやガラス基板などが挙げられる。樹脂フィルムは、好ましくは、透明性、強度、コストなどの点で優れたポリエステル樹脂、とくにポリエチレンテレフタレート樹脂や、耐侯性のよいフッ素樹脂などである。フッ素樹脂の例としては、四フッ化エチレン−エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)がある。耐候性の観点ではポリフッ化ビニリデン樹脂が優れているが、耐候性および機械的強度の両立では四フッ化エチレン−エチレン共重合体が優れている。また、封止材層などの他の層を構成する材料との接着性の改良のために、コロナ処理、プラズマ処理を表面側透明保護部材に行うことが望ましい。また、機械的強度向上のために延伸処理が施してあるシート、例えば2軸延伸のポリプロピレンシートを用いることも可能である。   Examples of the material for the surface side transparent protective member for solar cell module include resin films and glass substrates made of polyester resin, fluororesin, acrylic resin, cyclic olefin (co) polymer, ethylene-vinyl acetate copolymer, and the like. . The resin film is preferably a polyester resin excellent in transparency, strength, cost and the like, particularly a polyethylene terephthalate resin, a fluorine resin having good weather resistance, and the like. Examples of fluororesins include tetrafluoroethylene-ethylene copolymer (ETFE), polyvinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), and tetrafluoroethylene. -There are a hexafluoropropylene copolymer (FEP) and a polytrifluoroethylene chloride (CTFE). Polyvinylidene fluoride resin is excellent in terms of weather resistance, but tetrafluoroethylene-ethylene copolymer is excellent in terms of both weather resistance and mechanical strength. In addition, it is desirable to perform corona treatment and plasma treatment on the surface-side transparent protective member in order to improve adhesion with materials constituting other layers such as a sealing material layer. It is also possible to use a sheet that has been subjected to stretching treatment for improving mechanical strength, for example, a biaxially stretched polypropylene sheet.

太陽電池モジュール用表面側透明保護部材としてガラス基板を用いる場合、ガラス基板は、波長350〜1400nmの光の全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。かかるガラス基板としては、赤外部の吸収の少ない白板ガラスを使用するのが一般的であるが、青板ガラスであっても厚さが3mm以下であれば太陽電池モジュールの出力特性への影響は少ない。また、ガラス基板の機械的強度を高めるために熱処理により強化ガラスを得ることができるが、熱処理無しのフロート板ガラスを用いてもよい。また、ガラス基板の受光面側に反射を抑えるために反射防止のコーティングをしてもよい。   When a glass substrate is used as the surface-side transparent protective member for a solar cell module, the glass substrate preferably has a total light transmittance of light having a wavelength of 350 to 1400 nm of 80% or more, more preferably 90% or more. . As such a glass substrate, it is common to use white plate glass with little absorption in the infrared region, but even blue plate glass has little influence on the output characteristics of the solar cell module as long as the thickness is 3 mm or less. . Further, tempered glass can be obtained by heat treatment to increase the mechanical strength of the glass substrate, but float plate glass without heat treatment may be used. Further, an antireflection coating may be provided on the light receiving surface side of the glass substrate in order to suppress reflection.

(太陽電池モジュール用裏面側保護部材)
太陽電池モジュールに用いられる太陽電池モジュール用裏面側保護部材は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、上述の表面側透明保護部材と同様に、耐候性、機械強度などの諸特性を求められる。したがって、表面側透明保護部材と同様の材質で太陽電池モジュール用裏面側保護部材を構成してもよい。すなわち、表面側透明保護部材として用いられる上述の各種材料を、裏面側保護部材としても用いることができる。とくに、ポリエステル樹脂、およびガラスを好ましく用いることができる。また、裏面側保護部材は、太陽光の通過を前提としないため、表面側透明保護部材で求められる透明性は必ずしも要求されない。そこで、太陽電池モジュールの機械的強度を増すために、あるいは温度変化による歪み、反りを防止するために、補強板を張り付けてもよい。補強板は、例えば、鋼板、プラスチック板、FRP(ガラス繊維強化プラスチック)板などを好ましく使用することができる。
(Back side protection member for solar cell module)
The solar cell module back surface side protective member used for the solar cell module is not particularly limited, but is located on the outermost surface layer of the solar cell module, so that the weather resistance, mechanical strength, etc. are similar to the above surface side transparent protective member. Are required. Therefore, you may comprise the back surface side protection member for solar cell modules with the material similar to a surface side transparent protection member. That is, the above-mentioned various materials used as the front surface side transparent protective member can also be used as the back surface side protective member. In particular, a polyester resin and glass can be preferably used. Moreover, since the back surface side protection member does not presuppose passage of sunlight, the transparency calculated | required by the surface side transparent protection member is not necessarily requested | required. Therefore, a reinforcing plate may be attached to increase the mechanical strength of the solar cell module or to prevent distortion and warpage due to temperature change. As the reinforcing plate, for example, a steel plate, a plastic plate, an FRP (glass fiber reinforced plastic) plate or the like can be preferably used.

さらに、本実施形態の太陽電池封止材が、太陽電池モジュール用裏面側保護部材と一体化していてもよい。太陽電池封止材と太陽電池モジュール用裏面側保護部材とを一体化させることにより、モジュール組み立て時に太陽電池封止材および太陽電池モジュール用裏面側保護部材をモジュールサイズに裁断する工程を短縮できる。また、太陽電池封止材と太陽電池モジュール用裏面側保護部材とをそれぞれレイアップする工程を、一体化したシートでレイアップする工程にすることで、レイアップ工程を短縮・省略することもできる。太陽電池封止材と太陽電池モジュール用裏面側保護部材とを一体化させる場合における、太陽電池封止材と太陽電池モジュール用裏面側保護部材の積層方法は、とくに制限されない。積層方法には、キャスト成形機、押出シート成形機、インフレーション成形機、射出成形機などの公知の溶融押出機を用いて共押出して積層体を得る方法や;予め成形された一方の層上に、他方の層を溶融あるいは加熱ラミネートして積層体を得る方法が好ましい。   Furthermore, the solar cell sealing material of this embodiment may be integrated with the back surface side protective member for solar cell modules. By integrating the solar cell encapsulant and the back side protection member for the solar cell module, the process of cutting the solar cell encapsulant and the back side protection member for the solar cell module into a module size at the time of module assembly can be shortened. Moreover, the process of laying up the solar cell encapsulant and the back side protection member for the solar cell module can be shortened or omitted by making the process of laying up with an integrated sheet. . The method for laminating the solar cell sealing material and the solar cell module back surface protection member in the case of integrating the solar cell sealing material and the solar cell module back surface side protection member is not particularly limited. The lamination method includes a method of obtaining a laminate by co-extrusion using a known melt extruder such as a cast molding machine, an extrusion sheet molding machine, an inflation molding machine, an injection molding machine, or the like; A method of obtaining a laminate by melting or heat laminating the other layer is preferred.

また、適当な接着剤(例えば、無水マレイン酸変性ポリオレフィン樹脂(三井化学社製の商品名「アドマー(登録商標)」、三菱化学社製の商品名「モディック(登録商標)」など)、不飽和ポリオレフィンなどの低(非)結晶性軟質重合体、エチレン/アクリル酸エステル/無水マレイン酸三元共重合体(住化シーディエフ化学社製の商品名「ボンダイン(登録商標)」など)をはじめとするアクリル系接着剤、エチレン/酢酸ビニル系共重合体、またはこれらを含む接着性樹脂組成物など)を用いたドライラミネート法、あるいはヒートラミネート法などにより積層してもよい。   In addition, suitable adhesives (for example, maleic anhydride-modified polyolefin resin (trade name “Admer (registered trademark)” manufactured by Mitsui Chemicals, Inc., product name “Modic (registered trademark)” manufactured by Mitsubishi Chemical Corporation, etc.)), unsaturated Including low (non) crystalline soft polymers such as polyolefins, ethylene / acrylic acid ester / maleic anhydride terpolymers (trade name “Bondaine (registered trademark)” manufactured by Sumika DF Chemical Co., Ltd.), etc. An acrylic adhesive, an ethylene / vinyl acetate copolymer, or an adhesive resin composition containing these) may be laminated by a dry laminating method or a heat laminating method.

接着剤としては、120〜150℃程度の耐熱性があるものが好ましく、具体的にはポリエステル系またはポリウレタン系接着剤などが好ましい。また、二つの層の接着性を向上させるために、少なくとも一方の層に、例えばシラン系カップリング処理、チタン系カップリング処理、コロナ処理、プラズマ処理などを施してもよい。   As the adhesive, those having a heat resistance of about 120 to 150 ° C. are preferable, and specifically, polyester-based or polyurethane-based adhesives are preferable. In order to improve the adhesion between the two layers, at least one of the layers may be subjected to, for example, a silane coupling treatment, a titanium coupling treatment, a corona treatment, or a plasma treatment.

(太陽電池素子)
太陽電池モジュールに用いられる太陽電池素子は、半導体の光起電力効果を利用して発電できるものであれば、とくに制限はない。太陽電池素子は、例えば、シリコン(単結晶系、多結晶系、非結晶(アモルファス)系)太陽電池、化合物半導体(III−III族、II−VI族、その他)太陽電池、湿式太陽電池、有機半導体太陽電池などを用いることができる。これらの中では、発電性能とコストとのバランスなどの観点から、多結晶シリコン太陽電池が好ましい。
(Solar cell element)
The solar cell element used for the solar cell module is not particularly limited as long as it can generate power using the photovoltaic effect of the semiconductor. Solar cell elements include, for example, silicon (single crystal, polycrystalline, amorphous) solar cells, compound semiconductors (III-III, II-VI, etc.) solar cells, wet solar cells, organic A semiconductor solar cell or the like can be used. Among these, a polycrystalline silicon solar cell is preferable from the viewpoint of balance between power generation performance and cost.

シリコン太陽電池素子、化合物半導体太陽電池素子とも、太陽電池素子として優れた特性を有しているが、外部からの応力、衝撃などにより破損し易いことで知られている。本実施形態の太陽電池封止材は、柔軟性に優れているので、太陽電池素子への応力、衝撃などを吸収して、太陽電池素子の破損を防ぐ効果が大きい。したがって、本実施形態の太陽電池モジュールにおいては、本実施形態の太陽電池封止材からなる層が、太陽電池素子と直接的に接合されていることが望ましい。また、太陽電池封止材が熱可塑性を有していると、一旦、太陽電池モジュールを作製した後であっても、比較的容易に太陽電池素子を取り出すことができるため、リサイクル性に優れている。本実施形態の太陽電池封止材を構成する樹脂組成物は、熱可塑性を有するため、太陽電池封止材全体としても熱可塑性を有しており、リサイクル性の観点からも好ましい。   Both silicon solar cell elements and compound semiconductor solar cell elements have excellent characteristics as solar cell elements, but are known to be easily damaged by external stress and impact. Since the solar cell sealing material of this embodiment is excellent in flexibility, it has a great effect of absorbing stress, impact, etc. on the solar cell element and preventing damage to the solar cell element. Therefore, in the solar cell module of this embodiment, it is desirable that the layer made of the solar cell sealing material of this embodiment is directly joined to the solar cell element. In addition, when the solar cell encapsulant has thermoplasticity, the solar cell element can be taken out relatively easily even after the solar cell module is once produced. Yes. Since the resin composition constituting the solar cell encapsulant of the present embodiment has thermoplasticity, the solar cell encapsulant as a whole has thermoplasticity, which is also preferable from the viewpoint of recyclability.

(金属電極)
太陽電池モジュールに用いられる金属電極の構成および材料は、とくに限定されないが、具体的な例では、透明導電膜と金属膜の積層構造を有する。透明導電膜は、SnO、ITO、ZnOなどからなる。金属膜は、銀、金、銅、錫、アルミニウム、カドミウム、亜鉛、水銀、クロム、モリブデン、タングステン、ニッケル、バナジウムなどから選択される少なくとも一種の金属からなる。これらの金属膜は、単独で用いられてもよいし、複合化された合金として用いられてもよい。透明導電膜と金属膜とは、CVD、スパッタ、蒸着などの方法により形成される。
(Metal electrode)
Although the structure and material of the metal electrode used for a solar cell module are not specifically limited, In a specific example, it has a laminated structure of a transparent conductive film and a metal film. The transparent conductive film is made of SnO 2 , ITO, ZnO or the like. The metal film is made of at least one metal selected from silver, gold, copper, tin, aluminum, cadmium, zinc, mercury, chromium, molybdenum, tungsten, nickel, vanadium, and the like. These metal films may be used alone or as a composite alloy. The transparent conductive film and the metal film are formed by a method such as CVD, sputtering, or vapor deposition.

太陽電池素子と金属電極は、例えば、以下の方法により、接合される。まず、通常よく知られたロジン系フラックスや、水溶性フラックスのIPA(イソプロピルアルコール)または水の水溶液を、金属電極表面に塗布する。次いで、ヒーターや温風で乾燥し、ハンダ融解槽で融解されたハンダ融液を通して、金属電極の表面にハンダをコートする。その後、再加熱し太陽電池素子と金属電極または金属電極同士を接合する。
近年は、接合箇所に直接フラックスおよびハンダまたはハンダのみを塗布し、太陽電池素子と金属電極または金属電極同士を接合する方法も取られている。
A solar cell element and a metal electrode are joined by the following method, for example. First, a well-known rosin flux, a water-soluble flux of IPA (isopropyl alcohol) or an aqueous solution of water is applied to the surface of the metal electrode. Next, the surface of the metal electrode is coated with solder through a solder melt which is dried with a heater or hot air and melted in a solder melting tank. Then, it reheats and a solar cell element and a metal electrode or metal electrodes are joined.
In recent years, a method of directly applying a flux and solder or solder to the joining portion and joining the solar cell element and the metal electrode or metal electrodes is also taken.

(太陽電池モジュールの製造方法)
本実施形態の太陽電池モジュールの製造方法は、(i)表面側透明保護部材と、本実施形態の太陽電池封止材と、太陽電池素子(セル)と、本実施形態の太陽電池封止材と、裏面側保護部材とをこの順に積層して積層体を形成する工程と、(ii)得られた積層体を加圧および加熱して一体化する工程と、を含むことを特徴とする。
(Method for manufacturing solar cell module)
The manufacturing method of the solar cell module of the present embodiment includes (i) a surface-side transparent protective member, a solar cell sealing material of the present embodiment, a solar cell element (cell), and a solar cell sealing material of the present embodiment. And a step of laminating the back-side protection member in this order to form a laminate, and (ii) a step of pressurizing and heating the obtained laminate to integrate them.

工程(i)において、太陽電池封止材の凹凸形状(エンボス形状)が形成された面を太陽電池素子側になるように配置することが好ましい。   In the step (i), it is preferable to dispose the surface on which the uneven shape (embossed shape) of the solar cell sealing material is formed on the solar cell element side.

工程(ii)において、工程(i)で得られた積層体を、常法に従って真空ラミネーター、または熱プレスを用いて、加熱および加圧して一体化(封止)する。封止において、本実施形態の太陽電池封止材は、クッション性が高いため、太陽電池素子の損傷を防止することができる。また、脱気性が良好であるため空気の巻き込みもなく、高品質の製品を歩留り良く製造することができる。   In step (ii), the laminate obtained in step (i) is integrated (sealed) by heating and pressurizing using a vacuum laminator or a hot press according to a conventional method. In sealing, since the solar cell sealing material of this embodiment has high cushioning properties, damage to the solar cell element can be prevented. Moreover, since the deaeration property is good, there is no air entrainment, and a high-quality product can be manufactured with a high yield.

太陽電池モジュールを製造するときに、太陽電池封止材を構成するエチレン・α−オレフィン系樹脂組成物を架橋硬化させる。この架橋工程は、工程(ii)と同時に行ってもよいし、工程(ii)の後に行ってもよい。   When producing a solar cell module, the ethylene / α-olefin resin composition constituting the solar cell encapsulant is crosslinked and cured. This crosslinking step may be performed simultaneously with step (ii) or after step (ii).

架橋工程を工程(ii)の後に行う場合、工程(ii)において温度125〜160℃、真空圧10Torr以下の条件で3〜6分間真空・加熱し;次いで、大気圧による加圧を1〜15分間程度行い、上記積層体を一体化する。工程(ii)の後に行う架橋工程は、一般的な方法により行うことができ、例えば、トンネル式の連続式架橋炉を用いてもよいし、棚段式のバッチ式架橋炉を用いてもよい。また、架橋条件は、通常、130〜155℃で20〜60分程度である。   When the cross-linking step is performed after step (ii), vacuum and heating is performed for 3 to 6 minutes under the conditions of a temperature of 125 to 160 ° C. and a vacuum pressure of 10 Torr or less in step (ii); The above laminate is integrated for about one minute. The crosslinking step performed after step (ii) can be performed by a general method. For example, a tunnel-type continuous crosslinking furnace may be used, or a shelf-type batch-type crosslinking furnace may be used. . Moreover, crosslinking conditions are 130-155 degreeC normally for about 20 to 60 minutes.

一方、架橋工程を工程(ii)と同時に行う場合、工程(ii)における加熱温度を145〜170℃とし、大気圧による加圧時間を6〜30分とすること以外は、架橋工程を工程(ii)の後に行う場合と同様にして行うことができる。本実施形態の太陽電池封止材は特定の有機過酸化物を含有することで優れた架橋特性を有しており、工程(ii)において二段階の接着工程を経る必要はなく、高温度で短時間に完結することができ、工程(ii)の後に行う架橋工程を省略してもよく、モジュールの生産性を格段に改良することができる。   On the other hand, when the crosslinking step is performed simultaneously with the step (ii), the crosslinking step is performed in the step (ii) except that the heating temperature in the step (ii) is 145 to 170 ° C. and the pressurization time by atmospheric pressure is 6 to 30 minutes. This can be done in the same way as after ii). The solar cell encapsulant of this embodiment has excellent cross-linking properties by containing a specific organic peroxide, and does not need to go through a two-step bonding process in step (ii), and at a high temperature. It can be completed in a short time, the cross-linking step performed after step (ii) may be omitted, and the module productivity can be significantly improved.

いずれにしても、本実施形態の太陽電池モジュールの製造は、架橋剤が実質的に分解せず、かつ本実施形態の太陽電池封止材が溶融するような温度で、太陽電池素子や保護材に太陽電池封止材を仮接着し、次いで昇温して十分な接着と封止材の架橋を行えばよい。諸条件を満足できるような添加剤処方を選べばよく、例えば、上記架橋剤および上記架橋助剤などの種類および含浸量を選択すればよい。   In any case, the solar cell module of this embodiment is manufactured at a temperature at which the crosslinking agent is not substantially decomposed and the solar cell sealing material of this embodiment melts. The solar cell encapsulant is temporarily adhered to the substrate, and then the temperature is raised to sufficiently bond and crosslink the encapsulant. What is necessary is just to select the additive prescription which can satisfy various conditions, for example, what is necessary is just to select the kind and impregnation amount, such as the said crosslinking agent and the said crosslinking adjuvant.

本実施形態の太陽電池封止材は、上記架橋条件でラミネート加工された太陽電池封止材シートのゲル分率の算出として、例えば、太陽電池モジュールより封止材シートサンプル1gを採取し、沸騰トルエンでのソックスレー抽出を10時間行い、30メッシュのステンレスメッシュでろ過後、メッシュを110℃にて8時間減圧乾燥を行い、メッシュ上の残存量より算出する方法を用いた場合、ゲル分率が50〜95%、好ましくは50〜90%、さらに好ましくは60〜90%、最も好ましくは65〜90%の範囲にある。
ゲル分率が50%以上であると、太陽電池封止材の耐熱性が良好となり、85℃×85%RHでの恒温恒湿試験、ブラックパネル温度83℃での高強度キセノン照射試験、−40℃〜90℃でのヒートサイクル試験、耐熱試験での接着性が向上する。ゲル分率が95%以下であると、高い柔軟性を有する太陽電池封止材となり、−40℃〜90℃でのヒートサイクル試験での温度追従性が向上するため、剥離の発生を防止することができる。
The solar cell encapsulant of the present embodiment is obtained by, for example, collecting 1 g of the encapsulant sheet sample from the solar cell module and calculating the gel fraction of the solar cell encapsulant sheet laminated under the above crosslinking conditions. Soxhlet extraction with toluene is performed for 10 hours, filtered through a 30 mesh stainless steel mesh, the mesh is dried under reduced pressure at 110 ° C. for 8 hours, and the method of calculating from the residual amount on the mesh is used, the gel fraction is It is in the range of 50 to 95%, preferably 50 to 90%, more preferably 60 to 90%, and most preferably 65 to 90%.
When the gel fraction is 50% or more, the heat resistance of the solar cell encapsulant becomes good, a constant temperature and humidity test at 85 ° C. × 85% RH, a high strength xenon irradiation test at a black panel temperature of 83 ° C., − Adhesiveness in a heat cycle test and a heat resistance test at 40 ° C. to 90 ° C. is improved. When the gel fraction is 95% or less, a solar cell sealing material having high flexibility is obtained, and temperature followability in a heat cycle test at −40 ° C. to 90 ° C. is improved, thereby preventing occurrence of peeling. be able to.

(発電設備)
本実施形態の太陽電池モジュールは、生産性、発電効率、寿命などに優れている。このため、この様な太陽電池モジュールを用いた発電設備は、コスト、発電効率、寿命などに優れ、実用上高い価値を有する。上記の発電設備は、家屋の屋根に設置する、キャンプなどのアウトドア向けの移動電源として利用する、自動車バッテリーの補助電源として利用するなどの、屋外、屋内を問わず長期間の使用に好適である。
(Power generation equipment)
The solar cell module of this embodiment is excellent in productivity, power generation efficiency, life, and the like. For this reason, the power generation equipment using such a solar cell module is excellent in cost, power generation efficiency, life and the like, and has a high practical value. The power generation equipment described above is suitable for long-term use, both outdoors and indoors, such as being installed on the roof of a house, used as a mobile power source for outdoor activities such as camping, and used as an auxiliary power source for automobile batteries. .

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(1)測定方法
[エチレン単位およびα−オレフィン単位の含有割合]
試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させて得られた溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入した。日本電子社製のJNM GX−400型NMR測定装置を使用し、120℃で13C−NMR測定を行った。積算回数は8000回以上とした。得られた13C−NMRスペクトルより、共重合体中のエチレン単位の含有割合、およびα−オレフィン単位の含有割合を定量した。
(1) Measuring method [content ratio of ethylene unit and α-olefin unit]
A solution obtained by dissolving 0.35 g of a sample in 2.0 ml of hexachlorobutadiene by heating was filtered through a glass filter (G2), 0.5 ml of deuterated benzene was added, and the mixture was charged into an NMR tube having an inner diameter of 10 mm. Using a JNM GX-400 type NMR measuring apparatus manufactured by JEOL Ltd., 13 C-NMR measurement was performed at 120 ° C. The number of integration was 8000 times or more. From the obtained 13 C-NMR spectrum, the content ratio of ethylene units and the content ratio of α-olefin units in the copolymer were quantified.

[MFR]
ASTM D1238に準拠し、190℃、2.16kg荷重の条件にてエチレン・α−オレフィン共重合体のMFRを測定した。
[MFR]
Based on ASTM D1238, the MFR of the ethylene / α-olefin copolymer was measured under the conditions of 190 ° C. and 2.16 kg load.

[密度]
ASTM D1505に準拠して、エチレン・α−オレフィン共重合体の密度を測定した。
[density]
The density of the ethylene / α-olefin copolymer was measured according to ASTM D1505.

[ショアA硬度]
エチレン・α−オレフィン共重合体を190℃、加熱4分、10MPaで加圧した後、10MPaで常温まで5分間加圧冷却して3mm厚のシートを得た。得られたシートを用いて、ASTM D2240に準拠してエチレン・α−オレフィン共重合体のショアA硬度を測定した。
[Shore A hardness]
The ethylene / α-olefin copolymer was heated at 190 ° C., heated for 4 minutes and at 10 MPa, and then pressurized and cooled at 10 MPa to room temperature for 5 minutes to obtain a sheet having a thickness of 3 mm. Using the obtained sheet, the Shore A hardness of the ethylene / α-olefin copolymer was measured based on ASTM D2240.

[BET比表面積]
シリカ粉末の表面に占有面積が既知の気体分子(窒素分子)を吸着させ、この気体分子の吸着量から比表面積を求める気相吸着法によって測定した。測定器具は柴田科学機会工業社製(SA1100)を用いた。
[BET specific surface area]
Measurement was performed by a gas phase adsorption method in which a gas molecule (nitrogen molecule) having a known occupation area was adsorbed on the surface of the silica powder, and the specific surface area was determined from the amount of adsorption of the gas molecule. As a measuring instrument, Shibata Science Opportunity Industries Co., Ltd. (SA1100) was used.

[ずりモードでの固体粘弾性]
厚さ0.5mmのプレスシートサンプルを、ずりモードでの固体粘弾性装置(ReoStress、HAAKE製)で、25℃(室温)〜180℃まで0.016Hzの周波数、3℃/分の昇温速度にて測定した。なお、プレートは20mmφのディスポータブルのパラレルプレートを用い、ひずみ制御は0.01で行った。最小複素粘度および最小複素粘度での温度は、測定プロファイルより読み取った。
[Solid viscoelasticity in shear mode]
A press sheet sample having a thickness of 0.5 mm is subjected to a temperature increase rate of 0.016 Hz from 25 ° C. (room temperature) to 180 ° C. at a temperature increase rate of 3 ° C./min. Measured with The plate was a 20 mmφ portable parallel plate, and the strain was controlled at 0.01. The minimum complex viscosity and the temperature at the minimum complex viscosity were read from the measurement profile.

[全光線透過率]
波長350〜800nmの範囲内において吸収域を有しない白板ガラスを使用し、白板ガラスサイズに切断したエンボスシートサンプルを白板ガラス/エンボスシートサンプル/白板ガラスの構成で、真空ラミネーター(NPC社製、LM−110X160S)内に仕込み、150℃に温調したホットプレート上に載せて3分間減圧、15分間加熱後、150℃のオーブンにて30分架橋し、積層体を作製した。得られた積層体を、日立製作所社製の分光光度計(商品名「U−3010」)にφ150mmの積分球を取り付けたものを使用し、350〜800nmの波長域における、上記積層体中のシートサンプルの全光線透過率を測定した。そして、測定結果に、標準光D65および標準視感効率V(λ)を乗じ、可視光の全光線透過率(Tvis)を算出した。
[Total light transmittance]
A white plate glass having no absorption region within a wavelength range of 350 to 800 nm is used, and an embossed sheet sample cut into a white plate glass size is composed of a white plate glass / embossed sheet sample / white plate glass, and a vacuum laminator (manufactured by NPC, LM -110X160S), placed on a hot plate adjusted to 150 ° C., decompressed for 3 minutes, heated for 15 minutes, and then crosslinked in an oven at 150 ° C. for 30 minutes to produce a laminate. Using the obtained laminate, a spectrophotometer (trade name “U-3010”) manufactured by Hitachi, Ltd., with an integrating sphere of φ150 mm attached, in the wavelength range of 350 to 800 nm in the laminate. The total light transmittance of the sheet sample was measured. Then, the total light transmittance (Tvis) of visible light was calculated by multiplying the measurement result by the standard light D65 and the standard luminous efficiency V (λ).

[電極のずれ試験]
得られたエンボスシートサンプルを上記と同じ白板ガラスサイズ(12.5×7.5cm)に裁断し、幅1cm×長さ5cm×厚さ0.2mmのアルミシート3本を長辺方向に3本を並べてシートサンプルで挟んで、白板ガラス/エンボスシートサンプル/アルミシート/エンボスシートサンプル/PETフィルムの構成で、真空ラミネーター(NPC社製、LM−110X160S)内に仕込み、150℃に温調したホットプレート上に載せて3分間減圧、15分間加熱後、150℃のオーブンにて30分架橋し、積層体を作製した。
得られた積層体中の3本の中心のアルミシートに対して左右のアルミシートのずれを以下の通りに評価した。評価は、5サンプルでの左右のずれの平均値である。
○:アルミシートのずれがない
△:アルミシートのずれが2mm以下
×:アルミシートのずれが2mm超過
[Electrode displacement test]
The obtained embossed sheet sample was cut into the same white glass glass size (12.5 × 7.5 cm) as above, and three aluminum sheets each having a width of 1 cm, a length of 5 cm and a thickness of 0.2 mm were arranged in the long side direction. Are placed in a sheet sample, white glass / embossed sheet sample / aluminum sheet / embossed sheet sample / PET film, and prepared in a vacuum laminator (NPC, LM-110X160S), and the temperature is adjusted to 150 ° C. After being placed on a plate and decompressed for 3 minutes and heated for 15 minutes, it was crosslinked in an oven at 150 ° C. for 30 minutes to produce a laminate.
The deviation of the left and right aluminum sheets relative to the three central aluminum sheets in the obtained laminate was evaluated as follows. The evaluation is an average value of left and right deviations in five samples.
○: There is no deviation of the aluminum sheet Δ: The deviation of the aluminum sheet is 2 mm or less ×: The deviation of the aluminum sheet is over 2 mm

[ラミネート装置の汚れ]
上記全光線透過率測定用のサンプルの作製過程において、ラミネート装置でラミネートした段階における、積層体を挟んだガラスメッシュ入りポリテトラフルオロエチレン(PTFE)製シートの汚れを目視で観察した。
○:汚れなし
△:下部のガラスメッシュ入りPTFE製シートに汚れが少しあり
×:下部のガラスメッシュ入りPTFE製シートに封止材が垂れて、ガラスメッシュ入りPTFE製シートに大きな汚れあり
[Dirt of laminating equipment]
In the process of preparing the sample for measuring the total light transmittance, the stain on the glass-polytetrafluoroethylene (PTFE) sheet containing the glass mesh sandwiching the laminate was visually observed at the stage of lamination with the laminating apparatus.
○: No dirt △: There is a little dirt on the PTFE sheet with the lower glass mesh ×: The sealing material hangs on the PTFE sheet with the lower glass mesh, and there is a large dirt on the PTFE sheet with the glass mesh

[オーブンの汚れ]
上記全光線透過率測定用のサンプルの作製過程において、ラミネートしたサンプルをオーブンで架橋した段階における、積層体を載せたオーブンの金網の汚れを目視で観察した。
○:汚れなし
△:金網に汚れが少しあり
×:金網に封止材が垂れて、金網に大きな汚れあり
[Oven dirt]
In the process of producing the sample for measuring the total light transmittance, the stain on the wire mesh of the oven on which the laminate was placed was visually observed at the stage where the laminated sample was crosslinked in the oven.
○: No dirt △: There is a little dirt on the wire mesh.

(2)エチレン・α−オレフィン共重合体の合成
(合成例1)
撹拌羽根を備えた内容積50Lの連続重合器の一つの供給口に、共触媒としてメチルアルミノキサンのトルエン溶液を8.0mmol/hr、主触媒としてビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジクロライドのヘキサンスラリーを0.025mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.5mmol/hrの割合で供給し、触媒溶液と重合溶媒として用いる脱水精製したノルマルヘキサンの合計が20L/hrとなるように脱水精製したノルマルヘキサンを連続的に供給した。同時に重合器の別の供給口に、エチレンを3kg/hr、1−ブテンを15kg/hr、水素を5NL/hrの割合で連続供給し、重合温度90℃、全圧3MPaG、滞留時間1.0時間の条件下で連続溶液重合を行った。重合器で生成したエチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、重合器の底部に設けられた排出口を介して連続的に排出させ、エチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液が150〜190℃となるように、ジャケット部が3〜25kg/cmスチームで加熱された連結パイプに導いた。
なお、連結パイプに至る直前には、触媒失活剤であるメタノールが注入される供給口が付設されており、約0.75L/hrの速度でメタノールを注入してエチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液に合流させた。スチームジャケット付き連結パイプ内で約190℃に保温されたエチレン・α−オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、約4.3MPaGを維持するように、連結パイプ終端部に設けられた圧力制御バルブの開度の調整によって連続的にフラッシュ槽に送液された。なお、フラッシュ槽内への移送においては、フラッシュ槽内の圧力が約0.1MPaG、フラッシュ槽内の蒸気部の温度が約180℃を維持するように溶液温度と圧力調整バルブ開度設定が行われた。その後、ダイス温度を180℃に設定した単軸押出機を通し、水槽にてストランドを冷却し、ペレットカッターにてストランドを切断し、ペレットとしてエチレン・α−オレフィン共重合体を得た。収量は2.2kg/hrであった。物性を表1に示す。
(2) Synthesis of ethylene / α-olefin copolymer (Synthesis Example 1)
To one supply port of a 50 L internal polymerization vessel equipped with a stirring blade, 8.0 mmol / hr of a toluene solution of methylaluminoxane as a cocatalyst and bis (1,3-dimethylcyclopentadienyl) zirconium as a main catalyst Supply dichlorinated hexane slurry at a rate of 0.025 mmol / hr and triisobutylaluminum hexane at a rate of 0.5 mmol / hr, so that the total amount of dehydrated and purified normal hexane used as the polymerization solvent and polymerization solvent is 20 L / hr. Was fed continuously with dehydrated and purified normal hexane. At the same time, ethylene is continuously supplied to another supply port of ethylene at a rate of 3 kg / hr, 1-butene at 15 kg / hr, and hydrogen at a rate of 5 NL / hr, polymerization temperature 90 ° C., total pressure 3 MPaG, residence time 1.0 Continuous solution polymerization was performed under conditions of time. The ethylene / α-olefin copolymer normal hexane / toluene mixed solution produced in the polymerization vessel is continuously discharged through a discharge port provided at the bottom of the polymerization vessel, and the ethylene / α-olefin copolymer solution is discharged. The jacket portion was led to a connecting pipe heated with 3 to 25 kg / cm 2 steam so that the normal hexane / toluene mixed solution was 150 to 190 ° C.
Immediately before reaching the connecting pipe, a supply port for injecting methanol, which is a catalyst deactivator, is attached, and methanol is injected at a rate of about 0.75 L / hr. The mixture was merged into a combined normal hexane / toluene mixed solution. The normal hexane / toluene mixed solution of the ethylene / α-olefin copolymer kept at about 190 ° C. in the connection pipe with steam jacket is a pressure provided at the end of the connection pipe so as to maintain about 4.3 MPaG. The liquid was continuously fed to the flash tank by adjusting the opening of the control valve. In the transfer to the flash tank, the solution temperature and the pressure adjustment valve opening are set so that the pressure in the flash tank is about 0.1 MPaG and the temperature of the vapor part in the flash tank is maintained at about 180 ° C. It was broken. Thereafter, the strand was cooled in a water tank through a single screw extruder having a die temperature set at 180 ° C., and the strand was cut with a pellet cutter to obtain an ethylene / α-olefin copolymer as pellets. The yield was 2.2 kg / hr. The physical properties are shown in Table 1.

(合成例2)
主触媒としての[ジメチル(t−ブチルアミド)(テトラメチル−η5−シクロペンタジエニル)シラン]チタンジクロライドのヘキサン溶液を0.012mmol/hr、共触媒としてのトリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートのトルエン溶液を0.05mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.4mmol/hrの割合でそれぞれ供給するとともに、1−ブテンを5kg/hr、水素を100NL/hrの割合で供給した以外は、前述の合成例1と同様にしてエチレン・α−オレフィン共重合体を得た。収量は1.3kg/hrであった。物性を表1に示す。
(Synthesis Example 2)
0.012 mmol / hr of hexane solution of [dimethyl (t-butylamide) (tetramethyl-η5-cyclopentadienyl) silane] titanium dichloride as the main catalyst, triphenylcarbenium (tetrakispentafluorophenyl) as the cocatalyst Other than supplying borate in toluene at 0.05 mmol / hr and triisobutylaluminum in hexane at a rate of 0.4 mmol / hr, 1-butene at 5 kg / hr and hydrogen at a rate of 100 NL / hr Obtained an ethylene / α-olefin copolymer in the same manner as in Synthesis Example 1 described above. The yield was 1.3 kg / hr. The physical properties are shown in Table 1.

(合成例3)
主触媒としてビス(p−トリル)メチレン(シクロペンタジエニル)(1,1,4,4,7,7,10,10−オクタメチル−1,2,3,4,7,8,9,10−オクタヒドロジベンズ(b,h)−フルオレニル)ジルコニウムジクロリドのヘキサン溶液を0.003mmol/hr、共触媒としてのメチルアルミノキサンのトルエン溶液を3.0mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.6mmol/hrの割合でそれぞれ供給したこと;エチレンを4.3kg/hrの割合で供給したこと;1−ブテンの代わりに1−オクテンを6.4kg/hrの割合で供給したこと;1−オクテンと触媒溶液と重合溶媒として用いる脱水精製したノルマルヘキサンの合計が20L/hrとなるように脱水精製したノルマルヘキサンを連続的に供給したこと;水素を60NL/hrの割合で供給したこと;および重合温度を130℃にしたこと以外は、合成例1と同様にしてエチレン・α−オレフィン共重合体を得た。収量は4.3kg/hrであった。物性を表1に示す。
(Synthesis Example 3)
Bis (p-tolyl) methylene (cyclopentadienyl) (1,1,4,4,7,7,10,10-octamethyl-1,2,3,4,7,8,9,10 as the main catalyst A hexane solution of octahydrodibenz (b, h) -fluorenyl) zirconium dichloride is 0.003 mmol / hr, a toluene solution of methylaluminoxane as a cocatalyst is 3.0 mmol / hr, and a hexane solution of triisobutylaluminum is 0. Each was supplied at a rate of 6 mmol / hr; ethylene was supplied at a rate of 4.3 kg / hr; 1-octene was supplied at a rate of 6.4 kg / hr instead of 1-butene; 1-octene And dehydrated and purified normal so that the total of dehydrated and purified normal hexane used as a polymerization solvent and polymerization solvent is 20 L / hr. An ethylene / α-olefin copolymer was obtained in the same manner as in Synthesis Example 1, except that xylene was continuously supplied; hydrogen was supplied at a rate of 60 NL / hr; and the polymerization temperature was 130 ° C. It was. The yield was 4.3 kg / hr. The physical properties are shown in Table 1.

(合成例4)
水素を4NL/hrの割合で供給したこと以外は、合成例1と同様にしてエチレン・α−オレフィン共重合体を得た。収量は2.1kg/hrであった。物性を表1に示す。
(Synthesis Example 4)
An ethylene / α-olefin copolymer was obtained in the same manner as in Synthesis Example 1 except that hydrogen was supplied at a rate of 4 NL / hr. The yield was 2.1 kg / hr. The physical properties are shown in Table 1.

(合成例5)
水素を6NL/hrの割合で供給したこと以外は、合成例1と同様にしてエチレン・α−オレフィン共重合体を得た。収量は2.1kg/hrであった。物性を表1に示す。
(Synthesis Example 5)
An ethylene / α-olefin copolymer was obtained in the same manner as in Synthesis Example 1 except that hydrogen was supplied at a rate of 6 NL / hr. The yield was 2.1 kg / hr. The physical properties are shown in Table 1.

(合成例6)
水素を90NL/hrの割合で供給したこと以外は、合成例2と同様にしてエチレン・α−オレフィン共重合体を得た。収量は1.2kg/hrであった。物性を表1に示す。
(Synthesis Example 6)
An ethylene / α-olefin copolymer was obtained in the same manner as in Synthesis Example 2 except that hydrogen was supplied at a rate of 90 NL / hr. The yield was 1.2 kg / hr. The physical properties are shown in Table 1.

(合成例7)
主触媒としてビス(p−トリル)メチレン(シクロペンタジエニル)(1,1,4,4,7,7,10,10−オクタメチル−1,2,3,4,7,8,9,10−オクタヒドロジベンズ(b,h)−フルオレニル)ジルコニウムジクロリドのヘキサン溶液を0.004mmol/hr、メチルアルミノキサンのトルエン溶液を4.0mmol/hr、水素を70NL/hrの割合で供給したこと以外は、合成例3と同様にしてエチレン・α−オレフィン共重合体を得た。収量は5.0kg/hrであった。物性を表1に示す。
(Synthesis Example 7)
Bis (p-tolyl) methylene (cyclopentadienyl) (1,1,4,4,7,7,10,10-octamethyl-1,2,3,4,7,8,9,10 as the main catalyst -Octahydrodibenz (b, h) -fluorenyl) zirconium dichloride in hexane solution at 0.004 mmol / hr, methylaluminoxane in toluene solution at 4.0 mmol / hr, and hydrogen at a rate of 70 NL / hr In the same manner as in Synthesis Example 3, an ethylene / α-olefin copolymer was obtained. The yield was 5.0 kg / hr. The physical properties are shown in Table 1.

Figure 0005854473
Figure 0005854473

(3)太陽電池封止材(シート)の製造
(実施例1)
合成例1のエチレン・α−オレフィン共重合体100重量部に対し、有機過酸化物として1分間半減期温度が166℃のt−ブチルパーオキシ−2−エチルヘキシルカーボネートを1.0重量部、シリカ粉末1としてBET比表面積380m/gの親水性ヒュームドシリカを2重量部、シランカップリング剤として3−メタクリロキシプロピルトリメトキシシランを0.5重量部、架橋助剤としてトリアリルイソシアヌレートを1.2重量部、紫外線吸収剤として2−ヒドロキシ−4−ノルマル−オクチルオキシベンゾフェノンを0.4重量部、ヒンダードアミン系光安定剤としてビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートを0.2重量部、ヒンダードフェノール系安定剤としてオクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート0.05重量部、リン系安定剤としてトリス(2,4−ジ−tert−ブチルフェニル)ホスファイト0.1重量部を配合した。
得られた配合物を、内容積60ccの小型混練装置(ラボプラストミル4C150−01、東洋精機製作所製)を用いて、100℃、30rpmで5分間混練した。混練したサンプルを、100℃で加熱3分、10MPaG加圧2分でプレスし、次いで10MPaGで冷却プレスして、厚み0.5mmのプレスシートを得た。得られたプレスシートを用いて、ずりモードでの固体粘弾性測定を行った。測定結果を表2に示す。
(3) Production of solar cell encapsulant (sheet) (Example 1)
1.0 part by weight of t-butylperoxy-2-ethylhexyl carbonate having a 1-minute half-life temperature of 166 ° C. as an organic peroxide, based on 100 parts by weight of the ethylene / α-olefin copolymer of Synthesis Example 1, silica 2 parts by weight of hydrophilic fumed silica having a BET specific surface area of 380 m 2 / g as powder 1, 0.5 parts by weight of 3-methacryloxypropyltrimethoxysilane as a silane coupling agent, and triallyl isocyanurate as a crosslinking aid 1.2 parts by weight, 0.4 part by weight of 2-hydroxy-4-normal-octyloxybenzophenone as an ultraviolet absorber, and bis (2,2,6,6-tetramethyl-4-piperidyl as a hindered amine light stabilizer ) 0.2 parts by weight of sebacate, octadecyl-3- (3,5-di) as a hindered phenol stabilizer -Tert-butyl-4-hydroxyphenyl) propionate 0.05 parts by weight and tris (2,4-di-tert-butylphenyl) phosphite 0.1 parts by weight as a phosphorus stabilizer were blended.
The obtained blend was kneaded at 100 ° C. and 30 rpm for 5 minutes using a small kneading apparatus (laboplast mill 4C150-01, manufactured by Toyo Seiki Seisakusho) with an internal volume of 60 cc. The kneaded sample was heated at 100 ° C. for 3 minutes and pressed at 10 MPaG for 2 minutes, and then cooled and pressed at 10 MPaG to obtain a press sheet having a thickness of 0.5 mm. Using the obtained press sheet, solid viscoelasticity measurement was performed in shear mode. The measurement results are shown in Table 2.

次いで、サーモ・プラスチック社製の単軸押出機(スクリュー径20mmφ、L/D=28)にコートハンガー式T型ダイス(リップ形状:270×0.8mm)を装着し、ダイス温度100℃の条件下、ロール温度30℃、巻き取り速度1.0m/minで、冷却ロールにエンボスロールを用いて成形を行い、最大厚み500μmのエンボスシート(太陽電池封止材シート)を得た。得られたシートの空隙率は28%であった。得られたシートの各種評価結果を表2に示す。   Next, a coat hanger type T die (lip shape: 270 × 0.8 mm) is mounted on a single screw extruder (screw diameter: 20 mmφ, L / D = 28) manufactured by Thermo Plastic, and the die temperature is 100 ° C. Then, molding was performed using an embossing roll as a cooling roll at a roll temperature of 30 ° C. and a winding speed of 1.0 m / min to obtain an embossed sheet (solar cell sealing material sheet) having a maximum thickness of 500 μm. The porosity of the obtained sheet was 28%. Table 2 shows various evaluation results of the obtained sheet.

(実施例2〜7)
表2に示す配合としたこと以外は、前述の実施例1と同様にしてプレスシート、エンボスシート(太陽電池封止材シート)を得た。得られたエンボスシートの空隙率は全て28%であった。得られたエンボスシートの各種評価結果を表2に示す。
(Examples 2 to 7)
A press sheet and an embossed sheet (solar cell sealing material sheet) were obtained in the same manner as in Example 1 except that the composition shown in Table 2 was used. The void ratios of the obtained embossed sheets were all 28%. Table 2 shows various evaluation results of the obtained embossed sheet.

(比較例1)
表2に示す配合としたこと以外は、前述の実施例1と同様にしてエンボスシート(太陽電池封止材シート)を得ようとしたが、押出機のトルクが高くなりすぎてしまい、トルクオーバーとなってエンボスシートを得ることができなかった。
(Comparative Example 1)
Except for the formulation shown in Table 2, an embossed sheet (solar cell encapsulant sheet) was obtained in the same manner as in Example 1, but the torque of the extruder became too high, resulting in torque over. Thus, an embossed sheet could not be obtained.

(比較例2)
表2に示す配合としたこと以外は、前述の実施例1と同様にしてプレスシート、エンボスシート(太陽電池封止材シート)を得た。得られたエンボスシートの空隙率は全て28%であった。得られたエンボスシートの各種評価結果を表2に示す。ただ、得られたエンボスシートには、ゲルが見られた。
(Comparative Example 2)
A press sheet and an embossed sheet (solar cell sealing material sheet) were obtained in the same manner as in Example 1 except that the composition shown in Table 2 was used. The void ratios of the obtained embossed sheets were all 28%. Table 2 shows various evaluation results of the obtained embossed sheet. However, gel was seen in the obtained embossed sheet.

(比較例3〜4)
表2に示す配合としたこと以外は、前述の実施例1と同様にしてプレスシート、エンボスシート(太陽電池封止材シート)を得た。得られたエンボスシートの空隙率は全て28%であった。得られたエンボスシートの各種評価結果を表2に示す。
(Comparative Examples 3-4)
A press sheet and an embossed sheet (solar cell sealing material sheet) were obtained in the same manner as in Example 1 except that the composition shown in Table 2 was used. The void ratios of the obtained embossed sheets were all 28%. Table 2 shows various evaluation results of the obtained embossed sheet.

Figure 0005854473
Figure 0005854473

ここで、表2のシリカ粉末1〜3は以下のものを用いた。
シリカ粉末1:BET比表面積380m/gの親水性ヒュームドシリカ (AEROSIL380、EVONIK製)
シリカ粉末2:BET比表面積90m/gの親水性ヒュームドシリカ (AEROSIL90、EVONIK製)
シリカ粉末3:BET比表面積200m/gの親水性ヒュームドシリカ (AEROSIL200、EVONIK製)
Here, the following silica powders 1 to 3 in Table 2 were used.
Silica powder 1: hydrophilic fumed silica having a BET specific surface area of 380 m 2 / g (AEROSIL 380, manufactured by EVONIK)
Silica powder 2: hydrophilic fumed silica having a BET specific surface area of 90 m 2 / g (AEROSIL 90, manufactured by EVONIK)
Silica powder 3: hydrophilic fumed silica having a BET specific surface area of 200 m 2 / g (AEROSIL 200, manufactured by EVONIK)

20 太陽電池モジュール
22 太陽電池素子
22A 受光面
22B 裏面
24 表面側透明保護部材
26 裏面側保護部材
28 封止層
29 インターコネクタ
32 集電線
34A タブ付用母線
34B タブ付用母線
36 導電層
20 Solar cell module 22 Solar cell element 22A Light receiving surface 22B Back surface 24 Front side transparent protective member 26 Back surface side protective member 28 Sealing layer 29 Interconnector 32 Current collector 34A Tabbed bus 34B Tabbed bus 36 Conductive layer

Claims (17)

以下の要件a1)を満たすエチレン・α−オレフィン共重合体と、有機過酸化物と、シリカ粉末とを含む太陽電池封止材であって、
ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定される、前記エチレン・α−オレフィン共重合体のMFRが10〜50g/10分であり、
測定温度範囲25〜180℃、周波数0.016Hz、昇温速度3℃/分、ずりモードでの固体粘弾性測定における、当該太陽電池封止材の複素粘度(η*)の最小粘度が2.0×10Pa・s〜3.0×10Pa・sの範囲内である、太陽電池封止材。
a1)エチレンに由来する構成単位の含有割合が80〜90mol%であり、炭素数3〜20のα−オレフィンに由来する構成単位の含有割合が10〜20mol%である。
A solar cell encapsulant comprising an ethylene / α-olefin copolymer satisfying the following requirement a1) , an organic peroxide, and silica powder,
According to ASTM D1238, the MFR of the ethylene / α-olefin copolymer measured at 190 ° C. and a load of 2.16 kg is 10 to 50 g / 10 min.
The minimum viscosity of the complex viscosity (η *) of the solar cell encapsulant in the measurement of the solid viscoelasticity in a measurement temperature range of 25 to 180 ° C., a frequency of 0.016 Hz, a heating rate of 3 ° C./min, and a shear mode is 2. The solar cell sealing material which exists in the range of 0 * 10 < 3 > Pa * s-3.0 * 10 < 4 > Pa * s.
a1) The content rate of the structural unit derived from ethylene is 80-90 mol%, and the content rate of the structural unit derived from a C3-C20 alpha olefin is 10-20 mol%.
前記エチレン・α−オレフィン共重合体が、以下の要件aおよびa3)をさらに満たす、請求項1に記載の太陽電池封止材
2)ASTM D1505に準拠して測定される密度が0.865〜0.884g/cmである。
a3)ASTM D2240に準拠して測定されるショアA硬度が60〜85である。
The solar cell encapsulant according to claim 1, wherein the ethylene / α-olefin copolymer further satisfies the following requirements a 2 ) and a3) .
a 2) The density measured according to ASTM D1505 is 0.865 to 0.884 g / cm 3 .
a3) Shore A hardness measured according to ASTM D2240 is 60-85.
前記最小粘度の温度が100〜120℃である、請求項1または2に記載の太陽電池封止材。   The solar cell sealing material according to claim 1 or 2, wherein the temperature of the minimum viscosity is 100 to 120 ° C. 前記シリカ粉末が親水性シリカである、請求項1乃至3いずれか一項に記載の太陽電池封止材。   The solar cell sealing material according to any one of claims 1 to 3, wherein the silica powder is hydrophilic silica. 前記シリカ粉末のBET法により測定した比表面積が、50〜500m/gである、請求項1乃至4いずれか一項に記載の太陽電池封止材。 The solar cell sealing material as described in any one of Claims 1 thru | or 4 whose specific surface area measured by BET method of the said silica powder is 50-500 m < 2 > / g. 前記シリカ粉末が非多孔性シリカである、請求項1乃至5いずれか一項に記載の太陽電池封止材。   The solar cell sealing material according to any one of claims 1 to 5, wherein the silica powder is non-porous silica. 当該太陽電池封止材中の前記シリカ粉末の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して1.0〜15.0重量部である、請求項1乃至6いずれか一項に記載の太陽電池封止材。   The content of the silica powder in the solar cell encapsulant is 1.0 to 15.0 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material according to one item. 350〜800nmの波長域における、当該太陽電池封止材の全光線透過率が85%以上である、請求項1乃至7いずれか一項に記載の太陽電池封止材。   The solar cell sealing material as described in any one of Claims 1 thru | or 7 whose total light transmittance of the said solar cell sealing material in the wavelength range of 350-800 nm is 85% or more. 前記有機過酸化物の1分間半減期温度が100〜170℃であり、
当該太陽電池封止材中の前記有機過酸化物の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して0.1〜3重量部である、請求項1乃至8いずれか一項に記載の太陽電池封止材。
The organic peroxide has a 1 minute half-life temperature of 100 to 170 ° C .;
The content of the organic peroxide in the solar cell encapsulant is 0.1 to 3 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material according to one item.
シランカップリング剤をさらに含み、
当該太陽電池封止材中の前記シランカップリング剤の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して0.1〜5重量部である、請求項1乃至9いずれか一項に記載の太陽電池封止材。
Further comprising a silane coupling agent,
The content of the silane coupling agent in the solar cell encapsulant is 0.1 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material according to one item.
ヒンダードフェノール系安定剤をさらに含み、
当該太陽電池封止材中の前記ヒンダードフェノール系安定剤の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して0.005〜0.1重量部である、請求項1乃至10いずれか一項に記載の太陽電池封止材。
Further comprising a hindered phenol stabilizer,
The content of the hindered phenol stabilizer in the solar cell encapsulant is 0.005 to 0.1 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material as described in any one of thru | or 10.
ヒンダードアミン系光安定剤をさらに含み、
当該太陽電池封止材中の前記ヒンダードアミン系光安定剤の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して0.01〜2.0重量部である、請求項1乃至11いずれか一項に記載の太陽電池封止材。
Further comprising a hindered amine light stabilizer,
The content of the hindered amine light stabilizer in the solar cell encapsulant is 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. 11. The solar cell sealing material according to any one of 11 above.
リン系安定剤をさらに含み、
当該太陽電池封止材中の前記リン系安定剤の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して0.005〜0.5重量部である、請求項1乃至12いずれか一項に記載の太陽電池封止材。
Further comprising a phosphorus stabilizer,
The content of the phosphorus stabilizer in the solar cell encapsulant is 0.005 to 0.5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material as described in any one.
紫外線吸収剤をさらに含み、
当該太陽電池封止材中の前記紫外線吸収剤の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して0.005〜5重量部である、請求項1乃至13いずれか一項に記載の太陽電池封止材。
Further comprising a UV absorber,
The content of the ultraviolet absorber in the solar cell encapsulant is 0.005 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material according to Item.
架橋助剤をさらに含み、
当該太陽電池封止材中の前記架橋助剤の含有量が、前記エチレン・α−オレフィン共重合体100重量部に対して0.05〜5重量部である、請求項1乃至14いずれか一項に記載の太陽電池封止材。
Further comprising a crosslinking aid,
The content of the crosslinking assistant in the solar cell encapsulant is 0.05 to 5 parts by weight with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The solar cell sealing material according to Item.
シート状である、請求項1乃至15いずれか一項に記載の太陽電池封止材。   The solar cell sealing material according to any one of claims 1 to 15, which is in a sheet form. 表面側透明保護部材と、
裏面側保護部材と、
太陽電池素子と、
請求項1乃至1いずれか一項に記載の太陽電池封止材架橋体であり、かつ、前記太陽電池素子を前記表面側透明保護部材と前記裏面側保護部材との間に封止する封止層と、
を備えた太陽電池モジュール。
A surface-side transparent protective member;
A back side protection member;
A solar cell element;
It is a bridge | crosslinking body of the solar cell sealing material as described in any one of Claims 1 thru | or 16 , and seals the said solar cell element between the said surface side transparent protection member and the said back surface side protection member. A sealing layer;
Solar cell module with
JP2012170285A 2012-07-31 2012-07-31 Solar cell encapsulant and solar cell module Active JP5854473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170285A JP5854473B2 (en) 2012-07-31 2012-07-31 Solar cell encapsulant and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170285A JP5854473B2 (en) 2012-07-31 2012-07-31 Solar cell encapsulant and solar cell module

Publications (2)

Publication Number Publication Date
JP2014029953A JP2014029953A (en) 2014-02-13
JP5854473B2 true JP5854473B2 (en) 2016-02-09

Family

ID=50202337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170285A Active JP5854473B2 (en) 2012-07-31 2012-07-31 Solar cell encapsulant and solar cell module

Country Status (1)

Country Link
JP (1) JP5854473B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6310869B2 (en) * 2014-02-25 2018-04-11 日清紡メカトロニクス株式会社 PID countermeasure / power generation degradation countermeasure solar cell encapsulating sheet and PID countermeasure / power generation degradation countermeasure solar cell module
JP2015198096A (en) * 2014-03-31 2015-11-09 凸版印刷株式会社 solar cell module
MY187469A (en) * 2014-10-30 2021-09-23 Dow Global Technologies Llc Pv module with film layer comprising micronized silica gel
KR20210148222A (en) * 2019-03-29 2021-12-07 다우 글로벌 테크놀로지스 엘엘씨 PV Module With Film Layer Containing Hydrophilic Fumed Silica
CN113795929A (en) * 2019-03-29 2021-12-14 陶氏环球技术有限责任公司 Photovoltaic module having a film layer comprising hydrophobically treated fumed silica
KR20220056205A (en) * 2019-08-30 2022-05-04 다우 글로벌 테크놀로지스 엘엘씨 Encapsulant film for photovoltaic power generation containing fumed alumina
CN114437444B (en) * 2020-10-30 2023-12-08 中国石油化工股份有限公司 Ultraviolet-resistant moisture-resistant EVA material, and preparation method and application thereof
WO2023199978A1 (en) * 2022-04-13 2023-10-19 株式会社Adeka Resin additive composition, method for producing resin additive composition, method for improving blocking resistance of resin additive composition, resin composition, resin structure, method for producing resin composition, hindered amine compound, and phenolic antioxidant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03004946A (en) * 2000-12-06 2005-02-14 Omlidon Technologies Llc Melt-processible, wear resistant polyethylene.
JP2010100839A (en) * 2008-09-26 2010-05-06 Kaneka Corp Curable composition for solar cell module and solar cell module
JP2010226044A (en) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp Method for manufacturing resin sealing sheet
JP2011151388A (en) * 2009-12-24 2011-08-04 Mitsubishi Plastics Inc Solar cell sealing material and solar cell module produced using the same
TWI550005B (en) * 2010-10-08 2016-09-21 三井化學股份有限公司 Solar cell sealing material, and solar cell module
JP5568436B2 (en) * 2010-10-22 2014-08-06 三井化学東セロ株式会社 Crosslinkable resin composition and sealing agent containing the same

Also Published As

Publication number Publication date
JP2014029953A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5922232B2 (en) Solar cell module
JP5859633B2 (en) Solar cell encapsulant and solar cell module
JP5016153B2 (en) Solar cell encapsulant and solar cell module
JP6001087B2 (en) Solar cell encapsulant and solar cell module
JP5483646B2 (en) Solar cell encapsulant and solar cell module
JP5465813B2 (en) Sheet set for solar cell sealing
JP5854473B2 (en) Solar cell encapsulant and solar cell module
JP5405699B1 (en) Solar cell encapsulant and solar cell module
JP5964326B2 (en) Solar cell encapsulant and solar cell module
JP5444039B2 (en) Resin composition, solar cell sealing material, and solar cell module using the same
JP6034756B2 (en) Solar cell sealing sheet set and solar cell module using the same
JP5801733B2 (en) Solar cell encapsulant and solar cell module
JP5830600B2 (en) Solar cell encapsulant and solar cell module
JP2013229410A (en) Solar cell sealing material and solar cell module
JP5940661B2 (en) Solar cell module
JP2012207144A (en) Ethylene-based resin composition, solar cell sealing material and solar cell module using the same
JP2016136628A (en) Solar cell module and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5854473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250