WO2012133196A1 - Process for producing solar cell sealing sheet - Google Patents

Process for producing solar cell sealing sheet Download PDF

Info

Publication number
WO2012133196A1
WO2012133196A1 PCT/JP2012/057531 JP2012057531W WO2012133196A1 WO 2012133196 A1 WO2012133196 A1 WO 2012133196A1 JP 2012057531 W JP2012057531 W JP 2012057531W WO 2012133196 A1 WO2012133196 A1 WO 2012133196A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
solar cell
temperature
resin composition
encapsulant
Prior art date
Application number
PCT/JP2012/057531
Other languages
French (fr)
Japanese (ja)
Inventor
岡善之
中原誠
佐藤誠
一ノ宮崇
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020137024913A priority Critical patent/KR20140010961A/en
Priority to CN201280014497.1A priority patent/CN103442880B/en
Publication of WO2012133196A1 publication Critical patent/WO2012133196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a solar cell encapsulant sheet.
  • the present invention relates to a method for producing a sheet suitably used for producing a solar cell encapsulant sheet having a small heat shrinkage and having a clear protrusion formed on the surface.
  • a solar cell is a solar cell sealing material sheet (hereinafter referred to as a sealing material sheet) between a light-receiving surface protective material typified by a glass substrate and a back surface protective material called a back sheet. The cell is sealed.
  • a sealing material sheet a solar cell sealing material sheet between a light-receiving surface protective material typified by a glass substrate and a back surface protective material called a back sheet. The cell is sealed.
  • Crystalline silicon solar cells which are mainstream as solar cell modules, are generally manufactured as follows. First, a glass substrate, a sealing material sheet, a solar battery cell (silicon power generation element), a sealing material sheet, and a back sheet are laminated in this order.
  • This sealing material sheet is generally composed of an ethylene-vinyl acetate copolymer (hereinafter referred to as EVA). Subsequently, this laminated body is heated under vacuum with a vacuum laminator, and the sealing material sheet is heated and melted to be cured by crosslinking. In this way, a solar cell module in which the constituent members are bonded without bubbles is manufactured.
  • EVA ethylene-vinyl acetate copolymer
  • the solar cell module since the solar cell module is used for a long time after manufacturing, its reliability is extremely important. Typical defects that occur in a solar cell module that has been used for a long period of time include peeling between the solar cells and the sealing material sheet, poor appearance such as swelling, and a corresponding decrease in the amount of power generation. The reason for these malfunctions is not necessarily clarified, but studies have been made from the raw material side constituting the encapsulant sheet. For example, a method of adjusting the viscosity of EVA constituting the encapsulant sheet (Patent Document 2) and a method of adding a silane coupling agent to improve the adhesive strength between the solar battery cell and the encapsulant sheet (Patent Document) 3) etc. are being studied.
  • Patent Document 6 after forming an embossed shape on the surface of a sheet in the manufacturing process (hereinafter referred to as a process sheet), the process sheet is annealed. Therefore, when the process sheet is sufficiently heated to reduce the heat shrinkage of the encapsulant sheet, the embossed shape formed on the surface of the process sheet is broken by the heating. Conversely, if the heating of the process sheet is loosened in order to maintain the embossed shape, the annealing process becomes insufficient. As described above, in the manufacturing method of Patent Document 6, it is very difficult to achieve both reduction in heat shrinkage and clear formation of an embossed shape.
  • the encapsulant sheet composed of EVA often contains a cross-linking agent, and the molding temperature of the process sheet becomes low, so that a lot of residual distortion remains in the process sheet.
  • the residual strain is often not uniform in the width direction of the wide process sheet.
  • an object of the present invention is to provide a production method capable of forming a clear embossed shape on the surface of the encapsulant sheet while sufficiently reducing the heat shrinkage of the encapsulant sheet.
  • the method for producing a solar cell encapsulant sheet of the present invention is characterized in that the following step (a), step (b) and step (c) are performed in this order.
  • a solar cell encapsulant sheet having a small heat shrinkage and a clear embossed shape can be efficiently produced at low cost.
  • FIG. 1 is a schematic diagram showing an example of a method for producing a solar cell encapsulant sheet of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a conventional method for producing a solar cell encapsulant sheet.
  • FIG. 3 is a diagram for explaining a method of measuring the height of the protrusions of the solar cell encapsulant sheet having protrusions formed on one side.
  • FIG. 4 is a diagram for explaining a method for measuring the height of the protrusions of the solar cell encapsulant sheet having protrusions formed on both sides.
  • FIG. 5 is a diagram illustrating the length D of the bottom side of the protrusion.
  • FIG. 1 is a schematic diagram showing one embodiment of the production method of the present invention.
  • Step (a) is a step of forming a raw material resin into a sheet and cooling it to obtain a process sheet.
  • the step (a) is referred to as a film forming step.
  • the film forming process in FIG. 1 includes an extruder 11 that melts and kneads the raw resin and additives at high temperature, a gear pump 31 that reduces the pressure fluctuation of the resin and stabilizes the thickness of the sheet, and the kneaded molten resin into the sheet.
  • a die 12 to be extruded into a shape and polishing rollers 13a, 13b and 13c for cooling and solidifying the extruded high-temperature process sheet to form a solid process sheet are installed.
  • a single screw extruder or a twin screw extruder can be used as the extruder 11.
  • the use of a twin screw extruder is preferred from the viewpoints of productivity, kneadability of resin and additive, and the like.
  • a single screw extruder since the inside of the extruder is filled with resin, the pressure fluctuation at the die portion at the tip of the extruder is relatively small, and therefore it is not always necessary to install a quantitative supply device such as the gear pump 31. .
  • a twin screw extruder is used, the inside of the extruder is not filled, and therefore it is preferable to install a quantitative supply device such as a gear pump 31 between the extruder and the die.
  • the raw material resin and the additive to be charged into the extruder 11 may be mixed in advance using a mixer or a blender, or may be individually charged. Moreover, you may use the method etc. which side-feed an additive from the middle of an extruder, or add with an injection pump etc., if it is a liquid additive.
  • the temperature at which the raw material resin and the additive are kneaded depends on the type and viscosity of the resin used, but is preferably in the range of (melting point of raw material resin + 10 ° C.) to (melting point of raw material resin + 60 ° C.).
  • the melting point is an endothermic peak value temperature when the temperature is raised at 10 ° C./min in differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • an organic peroxide is often contained as an additive in order to crosslink EVA. Therefore, it should be noted that the organic peroxide is kneaded without being decomposed as much as possible.
  • the resin temperature is preferably in the range of 80 to 130 ° C., for example, in the case of EVA having a melting point of about 70 ° C. More preferably, it is in the range of 100 to 120 ° C. If it is less than 80 degreeC, kneadability becomes inadequate and the uniform dispersibility of an additive may fall. As a result, the appearance of the encapsulant sheet may be deteriorated. When it exceeds 130 ° C., when an organic peroxide is blended, the organic peroxide is decomposed, the quality of the sealing material sheet is not stabilized, and the continuous productivity may be lowered.
  • the molten resin kneaded by melting the raw resin and the additive in the extruder 11 or the like is extruded into a sheet shape using the die 12.
  • a T die, a circular die, or the like can be used. Since a flat die has a wide shape in accordance with the sheet width to be extruded, it becomes a T shape when attached to an extruder, and is collectively called a T die.
  • the residence time and flow rate differ in the die width direction in the T die, problems such as uneven thickness and uneven thickness in the width direction occur when the process sheet is heated in step (b). It's easy to do.
  • a cylindrical circular die is a cylindrical die for extruding a resin into a cylindrical shape and cutting it into a sheet shape, and the physical properties in the width direction of the sheet tend to be relatively uniform.
  • the process sheet extruded using the die 12 is formed into a sheet shape by polishing rollers 13a, 13b, and 13c.
  • the polishing roller is a process sheet conveying apparatus composed of a plurality of rollers for simultaneously pressing the molten resin between a pair of rollers and shaping the sheet thickness and surface properties.
  • Each configured roller includes a mechanism that adjusts the temperature to a temperature suitable for cooling and shaping of the molten resin, and a mechanism that adjusts the gap between the rollers and the pressure.
  • the temperature of the cooling water is preferably adjusted in the range of 0 to 30 ° C.
  • the thickness of the silicon rubber on the surface of the polishing roller 13a is 3 to 10 mm. It is preferably 4 to 8 mm.
  • the thickness of the silicon rubber is less than 3 mm, the transfer of the textured pattern becomes insufficient, and the process sheet may adhere to a free roller or the like for conveying the process sheet. If the thickness of the silicon rubber exceeds 10 mm, the heat from the molten resin is stored on the rubber surface, and the resin may stick to the roller.
  • the heater 16 for heating the process sheet is not particularly limited as long as it can heat the process sheet, and a known method such as a ceramic heater, a stainless steel heater, or a sheath heater can be used.
  • a known method such as a ceramic heater, a stainless steel heater, or a sheath heater can be used.
  • the method of heating the sheet with infrared rays is preferable because the sheet can be heated uniformly in the thickness direction of the sheet.
  • heating with a heat medium such as hot air or steam, a method of contacting with a heated roll, or the like can also be preferably used. These heating methods may be used alone or in combination of several methods.
  • the conveyance roller 17 for conveying the process sheet is excellent in releasability in order to convey the heated process sheet.
  • fluorocarbon resins such as polytetrafluoroethylene, perfluoroethylene propene copolymer, and perfluoroalkoxyalkane are coated on metal rollers that have uneven surfaces by embossing or thermal spraying of compounds such as metals and metal oxides. You may use the roller which did. Or you may use the roller which wound the paper, the film, etc. which performed the releasable coating process on the surface of the metal roller.
  • These means for imparting releasability need not be particularly limited, and conventionally known methods can be used.
  • the heater 16 and the transport roller 17 are installed in the annealing furnace 15 and the contact with the outside air is minimized as the temperature in the furnace is stabilized and the heat treatment of the process sheet is stabilized. Moreover, it is one of the preferable aspects to supply hot air into a furnace in order to stabilize the temperature in a furnace uniformly.
  • nip rollers 14 upstream of the annealing furnace 15 as necessary.
  • Providing the nip roller 14 is preferable because the influence of the annealing process on the film forming process can be blocked. Specifically, shrinkage when heating the process sheet can be prevented from affecting the film forming process, and the supply of the process sheet to the annealing process can be stabilized.
  • the distance between the annealing furnace 15 and the embossing roller 20 is preferably as short as possible.
  • a plurality of sheet take-out rollers 18 can be installed, but it is preferable that the number is less, and it is preferable that the number be at most 3 or less, and more preferably 1 or 2.
  • the annealing process heating is performed until the maximum temperature of at least one surface of the process sheet reaches a temperature equal to or higher than the melting point of the resin composition constituting the surface portion.
  • the surface on the heated side is embossed in the next step (c).
  • the “resin composition constituting the surface portion” is a resin composition constituting the process sheet
  • the process sheet is a laminated sheet in which a plurality of layers are laminated. In this case, it is a resin composition constituting the layer on the surface on the heated side.
  • the maximum surface temperature is within the temperature range of (the melting point of the resin composition constituting the heated surface portion + 5 ° C.) to (the melting point of the resin composition constituting the heated surface portion + 35 ° C.). preferable. If the temperature during the annealing process becomes too high, the process sheet may adhere to the transport roller, the flatness may deteriorate, or wrinkles may occur in the next process (c) due to these reasons.
  • the highest surface temperature in the annealing process is preferably in the range of 76 to 106 ° C.
  • Step (c) is a step of embossing the process sheet that has been brought to a high temperature state by heating in the annealing process to form an embossed shape on the surface of the process sheet.
  • an embossing roller 20, an embossing counter roller 19, and a cooling roller 21 for forming an embossed shape on the process sheet are provided.
  • this step (c) is referred to as an embossing step.
  • the surface of the embossing roller 20 is engraved with the embossed shape inverted corresponding to the embossed shape desired to be formed on the process sheet. What is necessary is just to determine the emboss shape formed in a process sheet
  • the engraving pattern applied to the surface of the embossing roller can be a hemispherical shape, a triangular pyramid shape, a quadrangular pyramid shape, a hexagonal pyramid shape, a conical shape such as a conical shape, or a trapezoidal shape with a flat top.
  • the pattern in which these shapes were mixed may be sufficient.
  • a hemispherical shape and / or a quadrangular pyramid shape are preferable.
  • “hemispherical and quadrangular pyramid” means sculpture with a pattern in which hemispherical and quadrangular pyramid are mixed.
  • a hemispherical shape is preferable in that concentrated load is not easily applied when the encapsulant sheet is pressed against the solar battery cell, and the load can be uniformly dispersed. Further, a quadrangular pyramid shape is preferable in that unevenness of reflected light of the encapsulant sheet hardly occurs and the surface quality is excellent. And since both hemispherical and quadrangular pyramid features can be produced, a pattern in which hemispherical and quadrangular pyramid shapes are mixed is also preferable. When the hemispherical shape and the quadrangular pyramid shape are mixed, the ratio of each may be arbitrarily determined according to which feature is to be obtained. Particularly preferably, all are hemispherical patterns.
  • the engraving depth of the emboss roller is preferably in the range of 65 to 350 ⁇ m, although it depends on the thickness of the process sheet.
  • the depth of engraving of the embossing roller is the distance from the center of the embossing roller to the surface of the embossing roller (the part not engraved) and the deepest of the engraving recess (the valley part) from the center of the embossing roller. Indicates the difference from the distance to the part.
  • the depth of this sculpture is indicated by the maximum height Pz ( ⁇ m) measured using a surface roughness measuring machine in accordance with JIS B0601 (2001).
  • the surface of the embossing roller is preferably further recessed with a depth of 1 to 20 ⁇ m.
  • minute projections are formed on the surface of the sheet.
  • the slipperiness of the sheet is improved and handling is facilitated, and light is scattered by minute projections, and the whiteness of the sheet is improved, so that it is easy to inspect adhered foreign matters and the like.
  • Such a minute depression can be easily formed by carrying out a known blasting process after engraving the embossing roller surface.
  • the depth of the minute recess can be adjusted by the particle size at the time of blasting and the pressure condition.
  • the embossing counter roller 19 facing the embossing roller is preferably a rubber roller wrapped around a metal roller in order to improve transferability of the embossing roller surface to the engraving process sheet.
  • the type of rubber is not particularly limited, such as silicone rubber, nitrile rubber, and chloroprene rubber, but rubber having a type A hardness in the range of 65 to 85 ° in accordance with JIS K 6253-2006 is preferable. Even if the angle is less than 65 ° or exceeds 85 °, the transfer property of the embossed shape may be deteriorated.
  • silicon rubber is most preferable because of its good releasability from a process sheet that is easily adhered at high temperatures.
  • the temperature of the surface heated in the annealing process of the process sheet supplied to the embossing roller is set to (melting point of the resin composition constituting this surface ⁇ 10 ° C.) to (of the resin composition constituting this surface). (Melting point + 20 ° C.). If it is less than (the melting point of the resin composition ⁇ 10 ° C.), the transferability of the embossed shape is lowered. If it exceeds (the melting point of the resin composition + 20 ° C.), the temperature of the process sheet in the annealing process becomes too high, and wrinkles and the like are likely to occur in the annealing process. For example, when the surface layer is made of EVA resin having a melting point of 71 ° C., the surface temperature during embossing is in the range of 61 to 91 ° C.
  • the pressing pressure of the embossing roller 20 is preferably set so that the linear pressure applied to the process sheet is in the range of 150 to 500 N / cm. More preferably, it is in the range of 200 to 450 N / cm. If the linear pressure is less than 150 N / cm, the embossed shape transferability may be lowered. If an attempt is made to apply a linear pressure exceeding 500 N / cm, it is necessary to increase the size of the equipment, and in this case, the life of the opposing rubber roller is reduced.
  • a linear pressure of about 100 N / cm is sufficient even if the pressing pressure of the embossing roller 13b 'is high. This is because the temperature of the resin extruded from the T die is, for example, in the range of 100 to 120 ° C. when EVA resin having a melting point of 71 ° C. is used. It is estimated that a pressure of about 100 N / cm is sufficient.
  • embossing is performed within the temperature range of (melting point of resin composition ⁇ 10 ° C.) to (melting point of resin composition + 20 ° C.).
  • the linear pressure is preferably 150 N / cm or more.
  • the linear pressure said by this invention is the value which remove
  • the process sheet is held by the embossing roller 20 in order to improve the transferability of the embossed shape.
  • the hugging angle to the embossing roller is preferably in the range of 30 to 270 °. If only shallow embossing is to be applied, the hugging angle may be less than 30 °. However, in order to give a deep and well-defined embossing, it is preferable to set the hugging angle to 30 ° or more.
  • the hugging angle can be simply calculated from the ratio between the arc length of the portion where the process sheet 32 is in contact with the embossing roller 20 and the circumference of the embossing roller. For example, when the hugging angle is 90 °, it means that the process sheet is in contact with a portion corresponding to 1 ⁇ 4 of the circumference of the embossing roller.
  • the process sheet After releasing the process sheet from the embossing roller, the process sheet is cooled by the cooling roller 21, and the surface temperature of the process sheet is quickly lowered to near room temperature.
  • the process sheet 32 is adjusted to a desired width by a defect inspection and then rolled into a roll shape by a winder or the like. Or cut into a cut sheet having a desired length and used for manufacturing a solar cell module.
  • the encapsulant sheet preferably has an independent protrusion having a height of 60 to 300 ⁇ m on the surface.
  • the air remaining between the encapsulant sheet and the solar cells is multi-directional during vacuum lamination when manufacturing a solar cell module. It is possible to efficiently remove the bubbles and suppress the generation of bubbles. Furthermore, it is possible to disperse the pressing force of the encapsulant sheet to the solar battery cells and suppress the occurrence of cell cracking.
  • the shape of the surface of the sealing material sheet is not an independent protrusion but a continuous groove shape, deaeration in a direction perpendicular to the groove becomes insufficient, and the remaining air becomes bubbles. Further, when the height of the protrusion is 300 ⁇ m or less, the concentration of the load on the top of the protrusion during vacuum lamination is suppressed, and the solar battery cell can be prevented from cracking.
  • the “independent protrusion” refers to a protrusion having a bottom length D to be described later in the range of 70 to 6000 ⁇ m when attention is paid to the bottom surface of the protrusion.
  • the independent protrusions are sandwiched between flat plates, applied with a pressure of 50 kPa in the thickness direction and compressed to deform the protrusions, and when the area where the tops of the protrusions contact the flat plate expands, It is preferable that a gap of 20 to 800 ⁇ m is secured between the two regions derived from the protrusions.
  • the independent protrusion preferably has a ratio (T / D) of the protrusion height (T) to the base length (D) of 0.05 to 0.80. More preferably, it is 0.15 to 0.80. If the T / D ratio is less than 0.05, the cushioning property of the encapsulant sheet may be insufficient. When the T / D ratio exceeds 0.80, a concentrated load on the top of the protrusion occurs, and cell cracking may occur.
  • the height T of the protrusion is measured as follows. First, the case where there is a protrusion on one side will be described. The surface of the encapsulant sheet having the protrusions is referred to as A surface, and the surface having no protrusion is referred to as B surface. As shown in FIG.
  • the distance from the apex of the protrusion on the A surface to the B surface is Tmax, and the distance from the portion having no protrusion on the A surface to the B surface is Tmin.
  • Tmax the distance from the portion having no protrusion on the A surface to the B surface
  • Tmin the distance from the portion having no protrusion on the A surface to the B surface.
  • Tmax the distance from the portion having no protrusion on the A surface to the B surface.
  • Tmin The difference between Tmax and Tmin is the height T of the protrusion.
  • the distance from the apex of the protrusion on the A surface to the portion without the protrusion on the B surface is TAmax
  • the distance from the apex of the protrusion on the B surface to the portion without the protrusion on the A surface is TBmax
  • the distance from the portion having no protrusion to the portion having no protrusion on the B surface is defined as Tmin.
  • the difference between TAmax and Tmin is the height TA of the projection on the A surface
  • the difference between TBmax and Tmin is the height TB of the projection on the B surface.
  • the length of the bottom of the protrusion is the outer diameter D of the protrusion shown in FIG.
  • Desirable protrusion height T is 60 to 300 ⁇ m as described above.
  • the length of the base D of the protrusion is preferably 75 to 1200 ⁇ m, more preferably 75 to 400 ⁇ m.
  • the length of the base D of the protrusion is preferably 375 to 6000 ⁇ m, more preferably 375 to 2000 ⁇ m.
  • the number of independent protrusions is preferably 40 to 2300 per 1 cm 2 area on one side of the sheet. More preferably, it is 40 to 1100. If the number of independent protrusions is less than 40 / cm 2 , cell cracks or bubbles may occur. If it exceeds 2300 pieces / cm 2 , the T / D ratio increases, and cell cracking may occur due to the concentrated load on the top of the protrusion.
  • the “sheet flow direction” is a direction in which the process sheet flows in the manufacturing process of the sealing material sheet.
  • vacuuming is performed without applying pressure to the sealing material sheet until the sealing material sheet is sufficiently melted, and the sealing material sheet is melted and removed. Do care.
  • the encapsulant sheet contracts, and as a result, cell cracks and displacement occur.
  • the heat shrinkage rate in the sheet flow direction is 30. It was found that the cell cracking can be further suppressed if it is at most%.
  • the state where the inside of the vacuum laminator is reproduced is a state where the process sheet is left in 80 ° warm water.
  • the heat shrinkage rate in the direction orthogonal to the flow direction of the sheet is not particularly limited because it is minute compared to the flow direction, but is preferably 5% or less.
  • the shape of the independent protrusion is preferably a hemispherical shape, a pyramid shape such as a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, or a cone, or a trapezoidal shape in which the tops thereof are flattened.
  • a hemispherical shape and / or a quadrangular pyramid shape are preferable.
  • “hemispherical and quadrangular pyramid” means a surface shape in which hemispherical protrusions and quadrangular pyramidal protrusions are mixed.
  • a hemispherical shape is preferable in that a concentrated load on the solar battery cell is difficult to be applied and the load can be uniformly dispersed when the pressure is applied to the solar battery cell. Further, a quadrangular pyramid shape is also preferable in that unevenness of reflected light hardly occurs and the surface quality is excellent. And since both hemispherical and quadrangular pyramid features can be obtained, a shape in which a hemispherical shape and a quadrangular pyramid shape are mixed is also preferable. When the hemispherical shape and the quadrangular pyramid shape are mixed, the ratio of each may be arbitrarily determined according to which feature is to be obtained. Particularly preferably, all are hemispherical patterns.
  • the sealing material sheet of the present invention preferably further has a protrusion having a height of 1 to 15 ⁇ m on the surface having an independent protrusion.
  • Such fine protrusions can be achieved by the manufacturing method of the present invention in which embossing is performed after the annealing step.
  • embossing is performed after the annealing step.
  • large protrusions with a height of several tens of ⁇ m may remain on the sheet even after the heat treatment, but they are very small with a height of several ⁇ m. The protrusion disappears with the heat treatment.
  • the height of the minute protrusion is a numerical value measured as follows.
  • the surface of the sheet is photographed at a magnification of 400 using a well-known laser microscope such as a laser microscope VK-X100 manufactured by Keyence Corporation in accordance with JIS B0601 (2001).
  • a well-known laser microscope such as a laser microscope VK-X100 manufactured by Keyence Corporation in accordance with JIS B0601 (2001).
  • the Rz value when the cutoff value is 0.080 mm is defined as the height of the minute protrusion.
  • the repulsive stress of the sheet when the surface having the projection of the encapsulant sheet is compressed 100 ⁇ m in the thickness direction is used. adopt.
  • the repulsive stress at which cell cracking is suppressed is preferably 70 kPa or less.
  • the above repulsive stress is a sealing material sheet using a compression test apparatus having a resolution of 5 ⁇ m or less as a compression displacement and 100 Pa or less as a compression load, and a flat pressure terminal at a pressure rate of 0.02 mm / s. It is obtained by measuring the repulsive stress (kPa) of the sheet when the surface having the protrusions is pressed 100 ⁇ m in the thickness direction.
  • the repulsive stress of the encapsulant sheet is 70 kPa or less, the solar cell can be prevented from cracking by laminating the surface having the protrusion so as to be in contact with the solar cell and performing vacuum lamination.
  • the shape of the surface opposite to the surface having the projection of the encapsulant sheet is not particularly limited, but it is about 2 to 10 ⁇ m in height from the viewpoint of preventing adhesion of the encapsulant sheet when manufacturing the solar cell module. It is preferable to have minute protrusions.
  • the thickness of the sealing material sheet is preferably 50 to 1500 ⁇ m. More preferably, it is 100 to 1000 ⁇ m, particularly preferably 200 to 800 ⁇ m. If it is less than 50 ⁇ m, the cushioning property of the solar cell encapsulant sheet may be poor, or a problem may occur from the viewpoint of workability. On the other hand, if the thickness exceeds 1500 ⁇ m, a decrease in productivity and a decrease in adhesion may be a problem.
  • the thickness of a sealing material sheet is the distance from the vertex of a permite
  • the encapsulant sheet is used in the production method of the present invention. It is preferable to manufacture.
  • the resin composition which comprises a sealing material sheet contains polyolefin resin.
  • Polyolefin resins include homopolypropylene, copolymers with other monomers based on propylene, polypropylene resins such as ethylene-propylene-butene terpolymers, low density polyethylene, ultra low density polyethylene, straight Examples thereof include chain-type low-density polyethylene, medium-density polyethylene, high-density polyethylene, polyethylene resins such as copolymers with other monomers mainly composed of ethylene, and polyolefin-based thermoplastic elastomers.
  • Examples of the copolymer with other monomers mainly composed of ethylene include an ethylene- ⁇ -olefin copolymer and an ethylene-unsaturated monomer copolymer.
  • ⁇ -olefin ethylene, propylene, 1-butene, isobutylene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 1-heptane, 1 -Octene, 1-nonene, 1-decene and the like.
  • Examples of the unsaturated monomer include vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, and vinyl alcohol.
  • these polyolefin resins are copolymerized or modified in a small amount using a silane compound, a carboxylic acid, a glycidyl compound, or the like, if necessary.
  • ethylene vinyl acetate copolymer ethylene methyl methacrylate copolymer
  • low density polyethylene ethylene vinyl acetate copolymer
  • the content of the copolymer component is preferably in the range of 15 to 40% by mass.
  • the resin composition constituting the sealing material sheet contains an organic peroxide. Any organic peroxide can be used as long as it decomposes at a temperature of 100 ° C. or higher to generate radicals.
  • the temperature at which the solar cell encapsulant sheet is produced, the solar cell What is necessary is just to select in consideration of the heating and laminating temperature at the time of producing a module, the storage stability of the crosslinking agent itself, and the like. In particular, those having a decomposition temperature of 70 hours or more with a half-life of 10 hours are preferred.
  • organic peroxides examples include 1,1-di (t-hexylperoxy) cyclohexane, n-butyl 4,4-di- (t-butylperoxy) valerate, 2,5-dimethyl- 2,5-di (t-butylperoxy) hexane, di-t-butyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 Disuccinic acid peroxide, di (4-t-butylcyclohexyl) peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexa Noate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropyl monocarbonate, di (4-t-
  • organic peroxides may be used in combination of two or more.
  • the content of these organic peroxides is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the amount is more preferably 0.1 to 3 parts by mass, particularly preferably 0.2 to 2 parts by mass. If the content of the organic peroxide is less than 0.1 part by mass, the polyolefin resin may not be crosslinked. Even if the content exceeds 5 parts by mass, the content effect is low, and undecomposed organic peroxide may remain in the encapsulant sheet, which may cause deterioration over time.
  • the resin composition constituting the encapsulant sheet may further contain a crosslinking aid, a silane coupling agent, a light stabilizer, an ultraviolet absorber, an antioxidant, and the like.
  • the crosslinking aid is a polyfunctional monomer having a plurality of unsaturated bonds in the molecule and reacts with the active radical compound generated by the decomposition of the organic peroxide to uniformly and efficiently crosslink the polyolefin resin. Used for.
  • crosslinking aids examples include triallyl isocyanurate, triallyl cyanurate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris [(meth) acryloyloxyethyl] isocyanurate, Dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerystol penta (meth) acrylate, dipentaerystol hexa (meth) acrylate, divinylbenzene, etc. Can be mentioned.
  • These crosslinking aids may be used alone or in combination of two or more.
  • “(meth) acrylate” means “acrylate or methacrylate”.
  • crosslinking aids triallyl isocyanurate and trimethylolpropane tri (meth) acrylate are particularly preferable.
  • the content in the case of adding these crosslinking aids is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the amount is more preferably 0.1 to 3 parts by mass, particularly preferably 0.3 to 3 parts by mass. Even if the content exceeds 5 parts by mass, the effect is only slightly improved, which causes a cost increase.
  • alkoxysilane compounds having a functional group include methacryloxy group-containing alkoxysilane compounds such as ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • Acryloxy group-containing alkoxysilane compounds such as ⁇ -acryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyl
  • Epoxy group-containing alkoxysilane compounds such as trimethoxysilane, mercapto group-containing alkoxysilane compounds such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane
  • Ureido group-containing alkoxysilane compounds such as ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane
  • benzophenone ultraviolet absorber examples include 2,2′-dihydroxy-4,4′-di (hydroxymethyl) benzophenone, 2,2′-dihydroxy-4,4′-di (2-hydroxyethyl) benzophenone, 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-di (hydroxymethyl) benzophenone, 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-di (2-hydroxy Ethyl) benzophenone, 2,2′-dihydroxy-3,3′-di (hydroxymethyl) -5,5′-dimethoxybenzophenone, 2,2′-dihydroxy-3,3′-di (2-hydroxyethyl)- Examples include 5,5′-dimethoxybenzophenone and 2,2-dihydroxy-4,4-dimethoxybenzophenone.
  • benzotriazole ultraviolet absorber examples include 2- [2′-hydroxy-5 ′-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(2-hydroxyethyl). ) Phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-methyl-5'- (Hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-3′-methyl-5 ′-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy- 3′-methyl-5 ′-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy- '-T-butyl-5'-(hydroxymethyl) phenyl] -2H-benzotriazole
  • triazine ultraviolet absorbers examples include 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4, 6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-diphenyl-s-triazine, 2- [2-hydroxy -4- (2-hydroxyethyl) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4, 6-diphenyl-s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -S-triazine, 2- [2-hydroxy-4- (3-hydroxypropoxy) phenyl] -4
  • salicylic acid ultraviolet absorber examples include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate and the like.
  • cyanoacrylate ultraviolet absorber examples include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and the like.
  • benzophenone-based ultraviolet absorbers are most preferable from the viewpoints of the ultraviolet absorption effect and coloring of the ultraviolet absorber itself.
  • 0.05 to 3 parts by mass is preferable with respect to 100 parts by mass of the polyolefin resin. More preferably, it is 0.05 to 2.0 parts by mass.
  • the content is less than 0.05 parts by mass, the content effect is low, and when it exceeds 3 parts by mass, a coloring tendency occurs.
  • the resin composition which comprises a sealing material sheet contains a light stabilizer further.
  • the light stabilizer captures radical species that are harmful to the polymer and prevents the generation of new radicals.
  • a hindered amine light stabilizer is preferably used as the light stabilizer.
  • Hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroperoxide and octane produced by reaction with decanedioic acid 70% by mass of a product and 30% by mass of polypropylene, bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxy Phenyl] methyl] butyl malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate mixture, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl ) -1,2,3,4-butanetetracar
  • hindered amine light stabilizers include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl seba. It is preferred to use a mixture of ketates, as well as methyl-4-piperidyl sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate. Moreover, it is preferable to use a hindered amine light stabilizer having a melting point of 60 ° C. or higher.
  • the content is preferably 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the polyolefin resin. More preferably, it is 0.05 to 1.0 part by mass. If the content is less than 0.05 parts by mass, the stabilizing effect is insufficient, and even if the content exceeds 3.0 parts by mass, coloring and cost increase are caused.
  • an antioxidant a flame retardant, a flame retardant aid, a plasticizer, a lubricant, a colorant, and the like may be included as necessary within the range not impairing the effects of the present invention.
  • the solar cell module is composed of a light-receiving surface protective material, a back surface protective material, and a layer in which the solar cells are sealed with a sealing material sheet disposed between the light-receiving surface protective agent and the back surface protective material.
  • a sealing material sheet used here, you may use the sealing material sheet obtained by the manufacturing method of this invention, and use the sealing material sheet which has the permite
  • the encapsulant sheet obtained by the production method of the present invention has small heat shrinkage when the above-structured materials are laminated and integrated. Therefore, the residual stress at the time of molding between the solar battery cell and the encapsulant sheet, between the light-receiving surface protective material and the encapsulant sheet, and between the back surface protector and the encapsulant sheet is small, and long-term durability Becomes an excellent solar cell module.
  • the sealing material sheet having independent protrusions on the surface described above can disperse the pressing force to the solar battery cells when the materials having the above-mentioned configuration are laminated and integrated, the solar battery cells and the sealing material Residual stress between the sheet and the sheet can be reduced. In addition, no bubbles remain in the sealing material. Therefore, the solar cell module is excellent in durability over a long period of time.
  • Thickness of sheet The 20-point thickness of the molded encapsulant sheet was measured in the width direction to obtain an average thickness.
  • a thickness gauge (type 547-301) manufactured by Mitutoyo Corporation was used.
  • the thickness of the sealing material sheet was measured by measuring the distance from the top of the protrusion to the surface opposite to the surface having the protrusion when the protrusion was formed only on one side of the sealing material sheet. When protrusions were formed on both surfaces of the encapsulant sheet, the distance from the top of the protrusion on one surface to the top of the protrusion on the opposite surface was measured.
  • T ( ⁇ m) Tmax ⁇ Tmin (i)
  • Tmin the distance from the apex of the protrusion on the A surface to the portion without the protrusion on the B surface.
  • TA ( ⁇ m) TAmax ⁇ Tmin (ii)
  • TB ( ⁇ m) TBmax ⁇ Tmin (iii).
  • Pattern depth of embossing roller The surface of the embossing roller was measured under the measurement conditions of a standard length of 20 mm, a load of 0.75 mN, and a measurement speed of 0.3 mm / s in accordance with JIS B0601 (2001). The measurement was performed by using a small surface roughness measuring device SJ401 manufactured by Mitutoyo Corporation and a diamond stylus having a cone of 60 ° and a tip curvature radius of 2 ⁇ m. This measured value was taken as the pattern depth Pz value ( ⁇ m) of the embossing roller.
  • Heat shrinkage rate A flat square test piece having a side of 120 mm was cut out from the encapsulant sheet. On this test piece, two parallel straight lines (5 cm) in the TD direction were drawn at a distance of 100 mm at the center in the TD direction during production. And the mark was attached
  • Bottom length of protrusion (D) The surface having the protrusions on the sheet is observed with a stereomicroscope, and the base length (D) is measured.
  • the shape of the bottom surface of the protrusion is a polygon such as a triangle or a hexagon, or an ellipse, the diameter of the smallest perfect circle including the shape was measured.
  • the sealing material sheet was laminated so that the surface having the protrusions was in contact with the solar battery cell.
  • This laminate was vacuum laminated under the conditions of a temperature of 145 ° C., evacuation for 30 seconds, pressing for 1 minute, and pressure holding for 10 minutes to produce a solar cell module.
  • the obtained solar cell module was photographed with a solar cell EL image inspection device, and a light emission image was taken, and the total crack length (mm) of the cell crack portion was measured. This test was repeated three times to obtain the average value of the total crack length.
  • Example 1 A solar cell encapsulant sheet was prepared according to the production method shown in FIG. 1.
  • the resin composition consisting of 1 part by mass was supplied to the extruder 11 set at 80 ° C.
  • the kneaded resin composition was extruded from a T-die 12 connected to an extruder 11 and maintained at 105 ° C.
  • the T die used had a lip width of 1300 mm and a lip gap of 0.8 mm.
  • the resin composition thus extruded was cooled and solidified by polishing rollers 13a, 13b, and 13c maintained at 20 ° C. to form a sheet.
  • seat at the time of discharging from T die was 107 degreeC. At this time, the width of the process sheet was 1150 mm, the thickness was 450 ⁇ m, and the conveyance speed was 10 m / min.
  • the heat shrinkage rate and emboss transfer rate of the obtained solar cell encapsulant sheet were evaluated. The results are shown in Table 1. As shown in Table 1, a solar cell encapsulant sheet having a very small heat shrinkage and an embossed pattern clearly transferred was obtained.
  • Example 3 A sealing material sheet was prepared in the same manner as in Example 1 except that the hot air temperature in step (b) was 80 ° C., the heater temperature was 300 ° C., the residence time in the furnace was 30 seconds, and the linear pressure was 450 N / cm. did. Since the surface temperature of the process sheet was further lowered, the heat shrinkage rate was slightly increased and the emboss transfer rate was slightly lowered, but the heat shrinkage rate was very small as in Example 1 and the embossed pattern was clearly transferred. A solar cell encapsulant sheet was obtained.
  • Example 4 A sealing material sheet was prepared in the same manner as in Example 3 except that the linear pressure in the step (c) was 200 N / cm. Although the emboss transfer rate was slightly low, a solar cell encapsulant sheet in which the emboss pattern was clearly transferred as in Example 3 was obtained.
  • Example 5 A sheet was prepared in the same manner as in Example 1 except that the hot air temperature in the step (b) was 110 ° C., the residence time in the furnace was 27 seconds, and the linear pressure in the step (c) was 200 N / cm. Since the surface temperature of the process sheet increased, the solar cell encapsulant sheet with a very small heating shrinkage and a clear emboss transfer rate was obtained.
  • Example 6 A sealing material sheet was prepared in the same manner as in Example 5 except that the hugging angle to the embossing roller in the step (c) was 45 °. The embossing transfer rate was slightly shallow due to the shallow hugging angle, but the sheet had a good appearance.
  • the solar cell encapsulant sheets prepared in Examples 1 to 7 had a low heat shrinkage rate and a high emboss transfer rate, and the emboss shape was clearly transferred.
  • a solar cell module was created by a conventionally known method. At the time of module creation, problems such as cell displacement, cell cracking, and air bubbles were introduced. I did not.
  • Comparative Example 1 since the temperature during annealing and the sheet temperature at the entrance of the embossing roller 20 were both low, the heat shrinkage rate was large and the embossing transfer rate was low. In Comparative Example 3, since the space between the annealing furnace outlet and the embossing roller inlet was widened, the sheet temperature was lowered and the embossing transfer rate was lowered. In Comparative Example 4, since the sheet surface temperature in the annealing furnace was low, the heat shrinkage rate could not be sufficiently reduced. In Comparative Example 2, the process sheet was wound around the embossing roller, and a sample could not be obtained.
  • Comparative Example 5 since the annealing treatment time was short, the heat shrinkage of the solar cell encapsulant sheet could not be sufficiently reduced.
  • Comparative Examples 6 and 7 the embossed shape was given by the polishing roller, so the embossed shape was clear. However, when trying to reduce the heat shrinkage, the embossed shape collapsed, and when trying to maintain the embossed shape, the heat shrinkage was reduced. could not.
  • the kneaded resin composition was extruded from a T die connected to a twin screw extruder and held at 105 ° C.
  • the lip width of the T die was 1300 mm, and the lip gap was 0.8 mm.
  • the EVA sheet was cooled and solidified by a polishing roll maintained at 20 ° C.
  • the sheet temperature when the EVA sheet was discharged from the T die was 107 ° C.
  • the sheet width was 1150 mm
  • the sheet thickness was 450 ⁇ m
  • the sheet conveyance speed was 10 m / min.
  • annealing treatment and embossing were continuously performed.
  • the embossing process is performed by embossing the sheet taken out of the annealing furnace with an embossing roller having a pattern depth of 180 ⁇ m, a diameter of 460 ⁇ m and 450 hemispherical concave engraving patterns / cm 2, and a hardness of 75 °. This was carried out by passing it between opposed rollers wound with a thickness of 10 mm.
  • Sheet surface temperature at the annealing furnace entrance 23 ° C
  • Hot air temperature 93 ° C
  • Maximum temperature of sheet surface in annealing furnace 90 ° C
  • Sheet surface temperature at annealing furnace outlet 90 ° C
  • Sheet residence time in the annealing furnace 28 seconds
  • Sheet speed at the outlet of the annealing furnace 15: 9.6 m / min
  • Sheet surface temperature at the embossing roller entrance 78 ° C
  • Embossed roller linear pressure 350 N / cm Hang angle to emboss roller: 120 °.
  • the heat shrinkage rate, rebound stress, cell cracking property during module production, and the number of bubbles of the obtained encapsulant sheet were evaluated.
  • the results are shown in Table 3.
  • the sheet was a sealing material sheet having a small sheet heat shrinkage ratio and having few cell cracks and bubbles during module production.
  • Example 9 The embossing roller in step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 120 ⁇ m, a diameter of 460 ⁇ m, and 450 hemispherical concave engraving patterns / cm 2. A material sheet was created. As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage ratio and few cell cracks and bubbles during module production.
  • Example 10 The embossing roller in the step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 300 ⁇ m, a diameter of 460 ⁇ m, and 450 hemispherical concave engraving patterns / cm 2.
  • a material sheet was created.
  • the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage ratio and few cell cracks and bubbles during module production.
  • Example 11 The embossing roller in the step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 300 ⁇ m and a diameter of 330 ⁇ m and a hemispherical concave engraving pattern of 980 pieces / cm 2.
  • a material sheet was created.
  • the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage ratio and few cell cracks and bubbles during module production.
  • Example 12 In the same manner as in Example 8, except that the embossing roller in the step (c) was changed to an embossing roller having a pattern depth of 180 ⁇ m, an outer diameter of 460 ⁇ m and a rectangular pyramid-shaped concave engraving pattern of 840 pieces / cm 2.
  • a sealing material sheet was prepared. As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and few bubbles, although some cell cracking during module production occurred.
  • Example 13 A sealing material sheet was prepared in the same manner as in Example 8 except that the annealing was not performed and the sheet surface temperature was heated to 90 ° C. with an infrared heater and embossing was performed. As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet with a small number of bubbles, although the sheet had a large heat shrinkage rate and cell cracking occurred slightly during module production.
  • Example 14 A sealing material sheet was prepared in the same manner as in Example 8 except that the EVA resin was changed to an EVA resin having a melt flow rate of 10 g / 10 min. As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and few bubbles, although some cell cracking during module production occurred.
  • Example 15 In the same manner as in Example 8, except that the embossing roller in the step (c) was changed to an embossing roller having a pattern depth of 180 ⁇ m, an outer peripheral diameter of 2000 ⁇ m, and 45 pyramidal concave engraving patterns / cm 2.
  • a sealing material sheet was prepared. As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet with a small number of bubbles, although the sheet heat shrinkage rate was small and cell cracking during module production was slightly generated.
  • the sealing material sheet which implemented by annealing method by the method similar to Example 8 was created, and it used for evaluation.
  • the obtained encapsulant sheet was a encapsulant sheet in which the heat shrinkage rate of the sheet was small, but a large number of cell cracks and bubbles were generated during module production.
  • Example 8 except that the embossing roller in the step (c) was changed to an embossing roller having a pattern depth of 180 ⁇ m and an engraving pattern of a semicircular groove (groove width 460 ⁇ m) continuous in the rotation direction of the roll.
  • a sealing material sheet was prepared in the same manner.
  • the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and few cell cracks during module production, but having many bubbles.
  • the embossing roller in the step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 180 ⁇ m and a diameter of 150 ⁇ m and a hemispherical concave engraving pattern of 4500 pieces / cm 2.
  • a material sheet was created.
  • the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and a small number of bubbles, but many cell cracks during module production.
  • step (c) The embossing roller in step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 180 ⁇ m, a diameter of 3800 ⁇ m, and 7 hemispherical concave engraving patterns / cm 2.
  • a material sheet was created. As shown in Table 4, the obtained encapsulant sheet had a small sheet heat shrinkage rate, but was a encapsulant sheet with many cell cracks and bubbles during module production.

Abstract

The present invention is a process for producing a solar cell sealing sheet, the process comprising conducting the following steps (a), (b), and (c) in the this order: a step (a) in which a resin composition that has been melted by heating is formed into a sheet and then cooled to obtain a web sheet; a step (b) in which at least one surface of the web sheet obtained in the step (a) is heated for 22-55 seconds to elevate, during this heating, the temperature of this surface to a temperature not lower than the melting point of the resin composition that constitutes this surface; and a step (c) in which the surface of the web sheet which has been heated in the step (b) is made to have a temperature within a specific range, and an embossing roller is subsequently pushed against this surface to form an embossed pattern in the surface. Thus, a solar cell sealing sheet which suffers little heat shrinkage and in which a distinct embossed pattern has been formed can be efficiently produced at low cost.

Description

太陽電池封止材シートの製造方法Method for producing solar cell encapsulant sheet
 本発明は、太陽電池封止材シートの製造方法に関する。特に、加熱収縮が小さく、表面に明瞭な突起が形成された太陽電池封止材シートを製造するのに好適に用いられるシートの製造方法に関する。 The present invention relates to a method for producing a solar cell encapsulant sheet. In particular, the present invention relates to a method for producing a sheet suitably used for producing a solar cell encapsulant sheet having a small heat shrinkage and having a clear protrusion formed on the surface.
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、様々な開発が進められている。太陽電池は、一般に、ガラス基板に代表される受光面保護材とバックシートと称される裏面保護材との間に、太陽電池封止材シート(以下、封止材シートとする)で太陽電池セルを封止した構成となっている。 In recent years, solar cells that directly convert sunlight into electrical energy have attracted attention and are being developed in various ways from the viewpoint of effective use of resources and prevention of environmental pollution. Generally, a solar cell is a solar cell sealing material sheet (hereinafter referred to as a sealing material sheet) between a light-receiving surface protective material typified by a glass substrate and a back surface protective material called a back sheet. The cell is sealed.
 太陽電池モジュールとして主流である結晶シリコン型太陽電池は、一般的に次のように製造される。まず、ガラス基板、封止材シート、太陽電池セル(シリコン発電素子)、封止材シートおよびバックシートをこの順に積層する。この封止材シートは、一般的にエチレン-酢酸ビニル共重合体(以下、EVAとする)で構成されている。次いで真空ラミネータによりこの積層体を真空下で加熱し、封止材シートを加熱溶融して架橋硬化させる。このようにして、各構成部材が気泡なく接着された太陽電池モジュールが製造される。 Crystalline silicon solar cells, which are mainstream as solar cell modules, are generally manufactured as follows. First, a glass substrate, a sealing material sheet, a solar battery cell (silicon power generation element), a sealing material sheet, and a back sheet are laminated in this order. This sealing material sheet is generally composed of an ethylene-vinyl acetate copolymer (hereinafter referred to as EVA). Subsequently, this laminated body is heated under vacuum with a vacuum laminator, and the sealing material sheet is heated and melted to be cured by crosslinking. In this way, a solar cell module in which the constituent members are bonded without bubbles is manufactured.
 このような太陽電池モジュールの製造において、封止材シートの加熱時の収縮が大きいと、その収縮変形によりシリコン発電素子が破損したり、セルの位置がずれたりする場合がある。そのため、封止材シートには、加熱時の収縮が小さいことが要求される。さらに近年、結晶シリコンの資源有効活用や、太陽電池モジュール普及に向けたコストダウンのため、シリコン発電素子の厚さは100μm前後に薄くなり、さらに破損しやすくなっている。そのため、封止材シートの加熱収縮を小さくする要求がさらに強くなっている。このため、封止材シートの加熱収縮率を小さくする様々な方法が検討されている。(例えば、特許文献1)。 In the manufacture of such a solar cell module, if the shrinkage when the encapsulant sheet is heated is large, the shrinkage deformation may damage the silicon power generation element or shift the position of the cell. Therefore, the encapsulant sheet is required to have small shrinkage during heating. Further, in recent years, the thickness of silicon power generation elements has been reduced to about 100 μm and is more likely to be damaged due to effective utilization of crystalline silicon resources and cost reduction for the spread of solar cell modules. Therefore, the request | requirement which makes heat shrinkage of a sealing material sheet small is still stronger. For this reason, various methods for reducing the heat shrinkage rate of the encapsulant sheet have been studied. (For example, patent document 1).
 また、上記の製造時に対する要求に加えて、太陽電池モジュールは、製造後長期間に渡って使用されるために、その信頼性は極めて重要である。長期間使用した太陽電池モジュールにおいて発生する代表的な不具合として、太陽電池セルと封止材シートの間の剥離や、膨れ等の外観不良や、それに伴う発電量の低下がある。これらの不具合現象の理由は必ずしも明確にされているわけではないが、封止材シートを構成する原材料面からの検討がなされている。例えば、封止材シートを構成するEVAの粘度を調整する方法(特許文献2)や、太陽電池セルと封止材シートの接着強度を向上させるためにシランカップリング剤を添加する方法(特許文献3)などが検討されている。 Moreover, in addition to the above requirements for manufacturing, since the solar cell module is used for a long time after manufacturing, its reliability is extremely important. Typical defects that occur in a solar cell module that has been used for a long period of time include peeling between the solar cells and the sealing material sheet, poor appearance such as swelling, and a corresponding decrease in the amount of power generation. The reason for these malfunctions is not necessarily clarified, but studies have been made from the raw material side constituting the encapsulant sheet. For example, a method of adjusting the viscosity of EVA constituting the encapsulant sheet (Patent Document 2) and a method of adding a silane coupling agent to improve the adhesive strength between the solar battery cell and the encapsulant sheet (Patent Document) 3) etc. are being studied.
 さらに、封止材シートの構造面からも種々の検討がされている。長期間使用に伴う膨れ等を防止するために、製造直後のモジュール内部の各構成部材は、できる限り気泡が無い状態で接着されていることが重要である。そこで、真空ラミネート時に空気を抜けやすくする目的で、封止材シートの表面にエンボス形状等の種々の突起や窪みを形成する試みがされている。また、これらの突起や窪みは、ラミネート時のプレス圧力で太陽電池セルが破損することを防止するためや、封止材シートのハンドリング性を向上させる等の目的で形成されることもある。エンボス模様については、その形状や深さなどについて詳細な提案がされている(特許文献4、5)。 Furthermore, various studies have been conducted from the structural aspect of the encapsulant sheet. In order to prevent swelling and the like associated with long-term use, it is important that each component in the module immediately after manufacture is bonded in a state free from bubbles as much as possible. Therefore, attempts have been made to form various protrusions and depressions such as an embossed shape on the surface of the encapsulant sheet for the purpose of facilitating air removal during vacuum lamination. In addition, these protrusions and depressions may be formed for the purpose of preventing the solar cell from being damaged by the pressing pressure during lamination, or for improving the handling property of the sealing material sheet. About the embossed pattern, the detailed proposal is made about the shape, depth, etc. (patent documents 4 and 5).
 上記の様に、封止材シートを製造する際には、封止材シートの加熱収縮を低減させつつ、封止材シートの表面に明瞭なエンボス形状を形成することが重要となっている。これまで提案されている方法としては、2軸押出機などの押出機を用いてTダイから押し出されたシートをキャストする際に、口金直下でシートにエンボス形状を形成し、その後に必要に応じて加熱収縮を低減させるアニール処理を行う方法が開示されている(特許文献6)。 As described above, when producing a sealing material sheet, it is important to form a clear embossed shape on the surface of the sealing material sheet while reducing heat shrinkage of the sealing material sheet. As a method proposed so far, when a sheet extruded from a T-die is cast using an extruder such as a twin-screw extruder, an embossed shape is formed on the sheet directly under the die, and then as necessary. A method of performing an annealing process for reducing heat shrinkage is disclosed (Patent Document 6).
特開2000-084996号公報JP 2000-084996 A 特開2002-170971号公報JP 2002-170971 A 特開2000-183382号公報JP 2000-183382 A 特開2006-134970号公報JP 2006-134970 A 特開2002-185027号公報JP 2002-185027 A 特開2010-100032号公報JP 2010-100032 A
 特許文献6の製造方法は、製造工程中のシート(以下、工程シートとする)の表面にエンボス形状を形成した後に、この工程シートにアニール処理を行う。そのため、封止材シートの加熱収縮を低減するために工程シートを十分に加熱すると、その加熱により工程シートの表面に形成したエンボス形状が崩れてしまう。逆にエンボス形状を保持するために工程シートの加熱を緩めると、アニール処理が不十分となる。このように、特許文献6の製造方法では、加熱収縮の低減と、エンボス形状を明確に形成することを両立させるのは非常に困難である。 In the manufacturing method of Patent Document 6, after forming an embossed shape on the surface of a sheet in the manufacturing process (hereinafter referred to as a process sheet), the process sheet is annealed. Therefore, when the process sheet is sufficiently heated to reduce the heat shrinkage of the encapsulant sheet, the embossed shape formed on the surface of the process sheet is broken by the heating. Conversely, if the heating of the process sheet is loosened in order to maintain the embossed shape, the annealing process becomes insufficient. As described above, in the manufacturing method of Patent Document 6, it is very difficult to achieve both reduction in heat shrinkage and clear formation of an embossed shape.
 また、封止材シートの加熱収縮を低減する方法としては、一般的には、特許文献1にも開示されている様に、樹脂フィルムを複数のローラーを有するコンベアで搬送する際に、入り口側のローラーの周速を出口側のローラーの周速よりも速くするなどして、工程シートを収縮させて加熱収縮を低減する方法が用いられる。しかし、この方法では、アニール処理中にシートを延伸するため、加熱収縮の除去が不十分であり、1~2分間の長時間にわたってアニール処理を実施する必要がある。 Moreover, as a method of reducing the heat shrinkage of the encapsulant sheet, generally, as disclosed in Patent Document 1, when the resin film is conveyed by a conveyor having a plurality of rollers, the entrance side A method of reducing the heat shrinkage by shrinking the process sheet, for example, by making the peripheral speed of the roller faster than the peripheral speed of the roller on the outlet side is used. However, in this method, since the sheet is stretched during the annealing treatment, the heat shrinkage is not sufficiently removed, and it is necessary to carry out the annealing treatment for a long time of 1 to 2 minutes.
 また、EVAで構成された封止材シートは架橋剤を含有していることが多く、工程シートの成形温度が低温となるために、工程シートには残留歪みが多く残っている。しかも、その残留歪みが広幅の工程シートの幅方向で均一ではないことが多い。この様な状態の工程シートを上述のようにアニール処理すると、シートの平面性が損なわれ、厚みが不均一になったり、アニール処理中に工程シートが蛇行するなどの不具合が発生する。さらに、この様な状態の工程シートを複数のローラーで挟持加圧し、エンボス加工などを連続して実施することは非常に困難である。 In addition, the encapsulant sheet composed of EVA often contains a cross-linking agent, and the molding temperature of the process sheet becomes low, so that a lot of residual distortion remains in the process sheet. Moreover, the residual strain is often not uniform in the width direction of the wide process sheet. When the process sheet in such a state is annealed as described above, the flatness of the sheet is impaired, the thickness becomes non-uniform, and problems such as the process sheet meandering during the annealing process occur. Furthermore, it is very difficult to continuously press and emboss the process sheet in such a state with a plurality of rollers.
 そこで、本発明の目的は、封止材シートの加熱収縮を十分低減しつつ、かつ封止材シートの表面に明瞭なエンボス形状を形成できる製造方法を提供することである。 Therefore, an object of the present invention is to provide a production method capable of forming a clear embossed shape on the surface of the encapsulant sheet while sufficiently reducing the heat shrinkage of the encapsulant sheet.
 上記課題を解決するため、本発明の太陽電池封止材シートの製造方法は、下記の工程(a)、工程(b)および工程(c)をこの順番に行うことを特徴とする。
工程(a): 加熱により溶融した樹脂組成物をシート状に成形し、次いで冷却することで工程シートを得る工程
工程(b): 前記工程(a)で得られた工程シートの少なくとも一方の表面を22~55秒間加熱し、この加熱中にこの表面の温度を、この表面部分を構成する樹脂組成物の融点以上の温度に到達させる工程
工程(c): 前記工程(b)において加熱された工程シートの表面を、(前記表面部分を構成する樹脂組成物の融点-10℃)~(前記表面部分を構成する樹脂組成物の融点+20℃)の温度にし、次いでこの表面にエンボスローラーを押し当て、この表面にエンボス形状を形成する工程
In order to solve the above problems, the method for producing a solar cell encapsulant sheet of the present invention is characterized in that the following step (a), step (b) and step (c) are performed in this order.
Step (a): Forming a resin composition melted by heating into a sheet shape, and then cooling to obtain a step sheet Step (b): At least one surface of the step sheet obtained in the step (a) Is heated for 22 to 55 seconds, and during this heating, the temperature of the surface reaches a temperature not lower than the melting point of the resin composition constituting the surface portion. Step (c): Heated in the step (b) The surface of the process sheet is brought to a temperature of (the melting point of the resin composition constituting the surface portion−10 ° C.) to (the melting point of the resin composition constituting the surface portion + 20 ° C.), and then an embossing roller is pressed against the surface Bumping and forming an embossed shape on this surface
 本発明によれば、加熱収縮が小さく、明瞭なエンボス形状が形成された太陽電池封止材シートを低コストで効率良く製造することができる。 According to the present invention, a solar cell encapsulant sheet having a small heat shrinkage and a clear embossed shape can be efficiently produced at low cost.
図1は、本発明の太陽電池封止材シートの製造方法の一例を示した概略模式図である。FIG. 1 is a schematic diagram showing an example of a method for producing a solar cell encapsulant sheet of the present invention. 図2は、従来の太陽電池封止材シートの製造方法の一例を示した概略模式図である。FIG. 2 is a schematic diagram showing an example of a conventional method for producing a solar cell encapsulant sheet. 図3は、片面に突起が形成された太陽電池封止材シートの突起の高さを測定する方法を説明する図である。FIG. 3 is a diagram for explaining a method of measuring the height of the protrusions of the solar cell encapsulant sheet having protrusions formed on one side. 図4は、両面に突起が形成された太陽電池封止材シートの突起の高さを測定する方法を説明する図である。FIG. 4 is a diagram for explaining a method for measuring the height of the protrusions of the solar cell encapsulant sheet having protrusions formed on both sides. 図5は、突起の底辺の長さDを示す図である。FIG. 5 is a diagram illustrating the length D of the bottom side of the protrusion.
 [太陽電池封止材シートの製造方法]
 本発明の太陽電池封止材シートの製造方法は、下記の工程(a)、工程(b)および工程(c)をこの順番に行う。
工程(a): 加熱により溶融した樹脂組成物をシート状に成形し、次いで冷却することで工程シートを得る工程。
工程(b): 前記工程(a)で得られた工程シートの少なくとも一方の表面を22~55秒間加熱し、この加熱中にこの表面の温度を、この表面部分を構成する樹脂組成物の融点以上の温度に到達させる工程。
工程(c): 前記工程(b)において加熱された工程シートの表面を、(前記表面部分を構成する樹脂組成物の融点-10℃)~(前記表面部分を構成する樹脂組成物の融点+20℃)の温度にし、次いでこの表面にエンボスローラーを押し当て、この表面にエンボス形状を形成する工程。
[Method for producing solar cell encapsulant sheet]
The manufacturing method of the solar cell sealing material sheet of this invention performs the following process (a), a process (b), and a process (c) in this order.
Step (a): A step of forming a resin composition melted by heating into a sheet and then cooling to obtain a process sheet.
Step (b): At least one surface of the process sheet obtained in the step (a) is heated for 22 to 55 seconds, and during this heating, the temperature of the surface is set to the melting point of the resin composition constituting the surface portion. The process of reaching the above temperature.
Step (c): The surface of the process sheet heated in the step (b) is changed from (the melting point of the resin composition constituting the surface portion−10 ° C.) to (the melting point of the resin composition constituting the surface portion + 20). C.), and then an embossing roller is pressed against the surface to form an embossed shape on the surface.
 以下、本発明の太陽電池封止材シートの製造方法について、図面を参照しながら説明する。図1は、本発明の製造方法の一つの実施態様を示す概略模式図である。 Hereinafter, the manufacturing method of the solar cell sealing material sheet of this invention is demonstrated, referring drawings. FIG. 1 is a schematic diagram showing one embodiment of the production method of the present invention.
 [工程(a):製膜工程]
 まず、工程(a)について説明する。工程(a)は、原料樹脂をシート状に成形し、これを冷却して工程シートを得る工程である。以下、工程(a)を製膜工程と呼ぶ。
[Step (a): Film-forming step]
First, the step (a) will be described. Step (a) is a step of forming a raw material resin into a sheet and cooling it to obtain a process sheet. Hereinafter, the step (a) is referred to as a film forming step.
 図1における製膜工程には、高温下で原料樹脂と添加剤を溶かし混練する押出機11、樹脂の圧力変動を低減してシートの厚みを安定化させるギヤポンプ31、混練された溶融樹脂をシート状に押し出すダイ12、押し出された高温の工程シートを冷却固化して固体の工程シートに成形するポリシングローラー13a、13bおよび13cが設置されている。 The film forming process in FIG. 1 includes an extruder 11 that melts and kneads the raw resin and additives at high temperature, a gear pump 31 that reduces the pressure fluctuation of the resin and stabilizes the thickness of the sheet, and the kneaded molten resin into the sheet. A die 12 to be extruded into a shape and polishing rollers 13a, 13b and 13c for cooling and solidifying the extruded high-temperature process sheet to form a solid process sheet are installed.
 押出機11としては、単軸押出機や2軸押出機を用いることができる。2軸押出機を用いた方が、生産性や樹脂と添加剤の混練性などの点から好ましい。単軸押出機を用いる場合は、押出機内が樹脂で充満されているので、押出機先端のダイ部分での圧力変動は比較的小さいため、必ずしもギヤポンプ31などの定量供給装置を設置する必要はない。2軸押出機を使用する場合は、押出機内は充満された状態にないため、押出機とダイの間にギヤポンプ31などの定量供給装置を設置するのが好ましい。 As the extruder 11, a single screw extruder or a twin screw extruder can be used. The use of a twin screw extruder is preferred from the viewpoints of productivity, kneadability of resin and additive, and the like. In the case of using a single screw extruder, since the inside of the extruder is filled with resin, the pressure fluctuation at the die portion at the tip of the extruder is relatively small, and therefore it is not always necessary to install a quantitative supply device such as the gear pump 31. . When a twin screw extruder is used, the inside of the extruder is not filled, and therefore it is preferable to install a quantitative supply device such as a gear pump 31 between the extruder and the die.
 押出機11に投入する原料樹脂と添加剤は、予めミキサーやブレンダーなどで混合したものを投入してもよいし、それぞれを個別に投入してもよい。また、押出機の途中から添加剤をサイドフィードしたり、液体の添加剤なら注入ポンプなどで添加する方法などを用いてもよい。 The raw material resin and the additive to be charged into the extruder 11 may be mixed in advance using a mixer or a blender, or may be individually charged. Moreover, you may use the method etc. which side-feed an additive from the middle of an extruder, or add with an injection pump etc., if it is a liquid additive.
 原料樹脂と添加剤を混練する時の温度は、使用する樹脂の種類や粘度にもよるが、(原料樹脂の融点+10℃)~(原料樹脂の融点+60℃)の範囲が好ましい。なお、本発明において融点とは、示差走査熱量測定(DSC)において、10℃/分で昇温したときの吸熱ピーク値温度のことである。封止材シートとして一般的に用いられるEVAシートの場合は、EVAを架橋させるために添加剤として有機過酸化物を含有していることが多い。そのため、有機過酸化物をできる限り分解させずに、混練することに留意する必要がある。そのため、樹脂温度としては、例えば融点が70℃程度のEVAの場合は、80~130℃の範囲で混練することが好ましい。より好ましくは100~120℃の範囲である。80℃未満では、混練性が不十分となり、添加剤の均一分散性が低下する可能性がある。その結果、封止材シートの外観が悪くなる可能性がある。130℃を超えると、有機過酸化物を配合している場合には有機過酸化物が分解し、封止材シートの品質が安定しないほか、連続生産性も低下する場合がある。 The temperature at which the raw material resin and the additive are kneaded depends on the type and viscosity of the resin used, but is preferably in the range of (melting point of raw material resin + 10 ° C.) to (melting point of raw material resin + 60 ° C.). In the present invention, the melting point is an endothermic peak value temperature when the temperature is raised at 10 ° C./min in differential scanning calorimetry (DSC). In the case of an EVA sheet generally used as a sealing material sheet, an organic peroxide is often contained as an additive in order to crosslink EVA. Therefore, it should be noted that the organic peroxide is kneaded without being decomposed as much as possible. Therefore, the resin temperature is preferably in the range of 80 to 130 ° C., for example, in the case of EVA having a melting point of about 70 ° C. More preferably, it is in the range of 100 to 120 ° C. If it is less than 80 degreeC, kneadability becomes inadequate and the uniform dispersibility of an additive may fall. As a result, the appearance of the encapsulant sheet may be deteriorated. When it exceeds 130 ° C., when an organic peroxide is blended, the organic peroxide is decomposed, the quality of the sealing material sheet is not stabilized, and the continuous productivity may be lowered.
 なお、図1の工程では、工程シートを製膜する方法として押出機を設置しているが、カレンダーローラーによる成形など、既知の異なる方法を用いてもよい。 In addition, in the process of FIG. 1, although the extruder is installed as a method of forming the process sheet into a film, a known different method such as molding with a calendar roller may be used.
 押出機11などで原料樹脂と添加剤とを溶かして混練された溶融樹脂は、ダイ12を用いてシート状に押し出される。ダイ12としては、Tダイやサーキュラーダイなどを用いることができる。平板状のダイは、押し出したいシート幅に従い幅広の形状となるため、押出機に取り付けるとT型となることから、総称してTダイと呼ばれる。また、Tダイでは、ダイの幅方向で滞留時間や流速などが異なるために、偏肉などの問題や、工程(b)にて工程シートを加熱したときに幅方向での厚みムラ等が発生しやすい。これを解決するために円筒状のサーキュラーダイを用いることも好ましい。サーキュラーダイは、樹脂を円筒状に押し出し、これを切開することでシート状に成形するための円筒状のダイであり、シートの幅方向での物性は比較的均一になりやすい。 The molten resin kneaded by melting the raw resin and the additive in the extruder 11 or the like is extruded into a sheet shape using the die 12. As the die 12, a T die, a circular die, or the like can be used. Since a flat die has a wide shape in accordance with the sheet width to be extruded, it becomes a T shape when attached to an extruder, and is collectively called a T die. In addition, since the residence time and flow rate differ in the die width direction in the T die, problems such as uneven thickness and uneven thickness in the width direction occur when the process sheet is heated in step (b). It's easy to do. In order to solve this, it is also preferable to use a cylindrical circular die. The circular die is a cylindrical die for extruding a resin into a cylindrical shape and cutting it into a sheet shape, and the physical properties in the width direction of the sheet tend to be relatively uniform.
 また、Tダイを用いる場合は、複数の押出機を用いて異なる樹脂組成物を押し出し、フィードブロック方式やマルチダイ方式などの共押出方法により工程シートを積層構成とすることもできる。この様な積層構成とすることで、各層ごとに封止材シートとして必要な機能を分離することができることや、添加剤量を調節することでコストダウンさせることができる。 Also, when using a T-die, different resin compositions are extruded using a plurality of extruders, and the process sheet can be laminated by a co-extrusion method such as a feed block method or a multi-die method. By setting it as such a laminated structure, a function required as a sealing material sheet can be isolate | separated for every layer, and cost can be reduced by adjusting the amount of additives.
 ダイ12を用いて押し出された工程シートは、ポリシングローラー13a、13b、13cでシート状に成形される。ポリシングローラーは、溶融樹脂を一対のローラーで挟持加圧してシートの厚みと表面性の賦形を同時に行うための、複数のローラーにより構成された工程シート搬送装置である。構成される各ローラーは、溶融樹脂の冷却や賦形性に適した温度に調整する機構や、各ローラー間の間隙および加圧圧力を調整する機構を備える。また、必要に応じて、冷却水などの温調水を流すことで工程シートの粘着を防止し、成形性を向上させることが好ましい。冷却水の温度は0~30℃の範囲に調整することが好ましい。ポリシングローラーのうち最も上流側に位置するポリシングローラー13aは、使用する樹脂の組成によっては、高温の樹脂がローラーの表面に粘着しやすくなることがあるため、表面にシリコンゴムなどを巻きつけ離型性を向上させることが好ましい。さら搬送性を向上させるために最も上流側に位置するポリシングローラー13aの対向ローラーの13bを梨地状の表面形態を有する金属ローラーとすることも好ましい。梨地状の面粗さは、JIS B 0601-1994で定義される10点平均粗さRzが2~10μm程度の範囲であることが好ましい。ポリシングローラー13aの表面にシリコンゴムなどを巻きつけ、かつ、対向ローラーの13bを梨地状の表面形態を有する金属ローラーとした場合には、ポリシングローラー13aの表面のシリコンゴムの厚みは3~10mmが好ましく、より好ましくは4~8mmである。シリコンゴムの厚みが3mm未満であると、梨地状の模様の転写が不十分となり、工程シートを搬送するためのフリーローラー等に、工程シートが粘着する場合がる。シリコンゴムの厚みが10mmを超えると、ゴム表面に溶融樹脂からの熱が蓄熱するため、ローラーに樹脂が粘着する場合がある。 The process sheet extruded using the die 12 is formed into a sheet shape by polishing rollers 13a, 13b, and 13c. The polishing roller is a process sheet conveying apparatus composed of a plurality of rollers for simultaneously pressing the molten resin between a pair of rollers and shaping the sheet thickness and surface properties. Each configured roller includes a mechanism that adjusts the temperature to a temperature suitable for cooling and shaping of the molten resin, and a mechanism that adjusts the gap between the rollers and the pressure. Moreover, it is preferable to prevent sticking of the process sheet and improve the moldability by flowing temperature-controlled water such as cooling water as necessary. The temperature of the cooling water is preferably adjusted in the range of 0 to 30 ° C. Of the polishing rollers, the polishing roller 13a located on the most upstream side is likely to stick high temperature resin to the surface of the roller depending on the composition of the resin used. It is preferable to improve the property. In order to further improve the transportability, it is also preferable that the opposite roller 13b of the polishing roller 13a located on the most upstream side is a metal roller having a matte surface shape. The satin-like surface roughness preferably has a 10-point average roughness Rz defined by JIS B 0601-1994 in the range of about 2 to 10 μm. When silicon rubber or the like is wound around the surface of the polishing roller 13a and the counter roller 13b is a metal roller having a satin surface shape, the thickness of the silicon rubber on the surface of the polishing roller 13a is 3 to 10 mm. It is preferably 4 to 8 mm. When the thickness of the silicon rubber is less than 3 mm, the transfer of the textured pattern becomes insufficient, and the process sheet may adhere to a free roller or the like for conveying the process sheet. If the thickness of the silicon rubber exceeds 10 mm, the heat from the molten resin is stored on the rubber surface, and the resin may stick to the roller.
 [工程(b):アニール処理工程]
 次に工程(b)について説明する。工程(b)の目的は、製膜工程で成形された工程シートが有する残留歪みを除去し、工程シートの加熱収縮を低減させることである。工程(b)では、アニール炉15の中に設置されたヒータ16で加熱しながら、複数の搬送ローラー17の上に工程シートを通すなどの方法が挙げられる。以下、工程(b)をアニール工程と呼ぶ。
[Process (b): Annealing process]
Next, the step (b) will be described. The purpose of the step (b) is to remove the residual strain of the process sheet formed in the film forming process and reduce the heat shrinkage of the process sheet. In the step (b), a method of passing the process sheet on the plurality of conveying rollers 17 while heating with the heater 16 installed in the annealing furnace 15 can be mentioned. Hereinafter, the step (b) is referred to as an annealing step.
 工程シートを加熱するためのヒータ16は、工程シートを加熱できるものであれば特に限定されず、セラミックスヒータ、ステンレスヒータ、シーズーヒータなど、公知の方法を用いることができる。特に赤外線によりシートを加熱する方式が、シートの厚み方向に均一に加熱できるため好ましい。また、熱風やスチーム等の熱媒による加熱や、加熱したロールに接触させる方法なども好ましく用いることができる。これらの加熱方法は単独で用いても、幾つかの方法を組み合わせて用いてもよい。 The heater 16 for heating the process sheet is not particularly limited as long as it can heat the process sheet, and a known method such as a ceramic heater, a stainless steel heater, or a sheath heater can be used. In particular, the method of heating the sheet with infrared rays is preferable because the sheet can be heated uniformly in the thickness direction of the sheet. Further, heating with a heat medium such as hot air or steam, a method of contacting with a heated roll, or the like can also be preferably used. These heating methods may be used alone or in combination of several methods.
 工程シートを搬送するための搬送ローラー17は、加熱された工程シートを搬送するため、離型性に優れていることが好ましい。そのため、エンボス加工や、金属や金属酸化物などの化合物を溶射することにより表面に凹凸を設けた金属ローラーに、ポリテトラフルオロエチレン、パーフルオロエチレンプロペンコポリマー、パーフルオロアルコキシアルカン等のフッ素樹脂をコーティングしたローラーを用いてもよい。あるいは、金属ローラーの表面に、離形性のコーティング処理をした紙やフィルムなどを巻き付けたローラーを用いてもよい。これらの離形性の付与手段は、特に限定する必要はなく、従来公知の方法を用いることができる。これらのローラーの離型性の程度としては、JIS Z0237-2009に規定の方法によって、ニチバン株式会社製セロハンテープに対する剥離強度が5N/mm以下の材質であることが好ましい。また、炉内の搬送ローラー17は、工程シートの収縮に合わせてその速度を個別に制御できることが、加熱収縮を効率よく除去するためには好ましい。 It is preferable that the conveyance roller 17 for conveying the process sheet is excellent in releasability in order to convey the heated process sheet. For this reason, fluorocarbon resins such as polytetrafluoroethylene, perfluoroethylene propene copolymer, and perfluoroalkoxyalkane are coated on metal rollers that have uneven surfaces by embossing or thermal spraying of compounds such as metals and metal oxides. You may use the roller which did. Or you may use the roller which wound the paper, the film, etc. which performed the releasable coating process on the surface of the metal roller. These means for imparting releasability need not be particularly limited, and conventionally known methods can be used. The degree of releasability of these rollers is preferably a material having a peel strength of 5 N / mm or less with respect to the cellophane tape manufactured by Nichiban Co., Ltd. according to the method specified in JIS Z0237-2009. Moreover, it is preferable for the conveyance roller 17 in a furnace to be able to control the speed | rate separately according to shrinkage | contraction of a process sheet | seat, in order to remove a heating shrinkage efficiently.
 ヒータ16と搬送ローラー17は、アニール炉15の中に設置し、外気との接触をできる限り少なくするほうが炉内の温度が安定し、工程シートの熱処理が安定するため好ましい。また、炉内の温度を均一に安定化させる目的で、熱風を炉内に供給することは好ましい態様の一つである。 It is preferable that the heater 16 and the transport roller 17 are installed in the annealing furnace 15 and the contact with the outside air is minimized as the temperature in the furnace is stabilized and the heat treatment of the process sheet is stabilized. Moreover, it is one of the preferable aspects to supply hot air into a furnace in order to stabilize the temperature in a furnace uniformly.
 さらに必要に応じて、一対のニップローラー14をアニール炉15の上流に設けることが好ましい。ニップローラー14を設けることで、製膜工程へのアニール処理工程の影響を遮断できるため好ましい。具体的には、工程シートを加熱する際の収縮が製膜工程へ影響することを防止したり、アニール工程への工程シートの供給を安定化させることができる。 Furthermore, it is preferable to provide a pair of nip rollers 14 upstream of the annealing furnace 15 as necessary. Providing the nip roller 14 is preferable because the influence of the annealing process on the film forming process can be blocked. Specifically, shrinkage when heating the process sheet can be prevented from affecting the film forming process, and the supply of the process sheet to the annealing process can be stabilized.
 また、アニール炉15の出口とエンボスローラー20との間にシート取り出しローラー18を設けておくことが好ましい。シート取り出しローラー18は、アニール炉15から工程シートを取り出す役割を担う。シート取り出しローラー18が無いと、アニール炉内のローラー17の中で最も出口側のローラーと、エンボス加工ローラー20との間で工程シートが引っ張られて歪みを発生させる場合がある。また、アニール処理に際して、工程シートの加熱収縮に工程シートの幅方向でムラがあるとシワ等が発生することがあるため、そのシワを除くために、シート取り出しローラー18がエキスパンダーローラー(弓形湾曲ローラー)であることも好ましい。またシート取り出しローラー18は、炉内の搬送ローラー17と同様、離型性を付与しておくことが好ましい。 Further, it is preferable to provide a sheet take-out roller 18 between the outlet of the annealing furnace 15 and the embossing roller 20. The sheet take-out roller 18 plays a role of taking out the process sheet from the annealing furnace 15. If the sheet take-out roller 18 is not provided, the process sheet may be pulled between the most outlet side roller 17 and the embossing roller 20 among the rollers 17 in the annealing furnace to cause distortion. Further, in the annealing treatment, wrinkles or the like may occur if there is unevenness in the heat shrinkage of the process sheet in the width direction of the process sheet. Therefore, in order to remove the wrinkle, the sheet take-out roller 18 is an expander roller (an arch-shaped curved roller). ) Is also preferable. The sheet take-out roller 18 is preferably provided with releasability in the same manner as the transport roller 17 in the furnace.
 また、シート取り出しローラー18は、その表面温度が低すぎると、エンボスローラーへと供給される工程シートが冷却されてしまい、エンボス形状の転写性が低下することがある。逆に、表面温度が高すぎると、工程シートがシート取り出しローラー18に粘着し、工程シートの搬送が困難になることがある。そのため、シート取り出しローラー18の表面温度は20~80℃の範囲に温度調整しておくことが好ましい。さらにはアニール炉出口の工程シートの温度と等しいか、それ以下の表面温度としておくことが好ましい。シート取り出しローラー18の表面温度がアニール炉から出た工程シートの表面温度よりも高いと、工程シートはローラーに粘着する場合がある。 Further, if the surface temperature of the sheet take-out roller 18 is too low, the process sheet supplied to the embossing roller is cooled, and the embossed shape transferability may be lowered. On the other hand, if the surface temperature is too high, the process sheet may stick to the sheet take-out roller 18 and it may be difficult to convey the process sheet. Therefore, it is preferable that the surface temperature of the sheet take-out roller 18 is adjusted in the range of 20 to 80 ° C. Furthermore, it is preferable that the surface temperature is equal to or lower than the temperature of the process sheet at the exit of the annealing furnace. If the surface temperature of the sheet take-out roller 18 is higher than the surface temperature of the process sheet taken out of the annealing furnace, the process sheet may stick to the roller.
 工程シートの温度低下を防止するために、アニール炉15とエンボスローラー20との距離は、できる限り短いのが好ましい。このため、シート取り出しローラー18は複数本設置することもできるが、より少ないほうが好ましく、多くても3本以下とすることが好ましく、より好ましくは1または2本である。 In order to prevent the temperature of the process sheet from decreasing, the distance between the annealing furnace 15 and the embossing roller 20 is preferably as short as possible. For this reason, a plurality of sheet take-out rollers 18 can be installed, but it is preferable that the number is less, and it is preferable that the number be at most 3 or less, and more preferably 1 or 2.
 アニール処理工程と次の工程(c)を連続して行うに際して、アニール炉15を出た工程シートの表面温度と、工程(c)でエンボスローラーに導入される工程シートの表面温度を制御することが好ましい。そのため、工程シートの表面温度を正しく把握するために、アニール炉15の出口部分、およびエンボス加工直前の工程シートの表面温度を測定するために、非接触式赤外線温度計33を設けるのが好ましい。さらに、アニール炉15の中にも非接触式温度計を複数設置し、工程シートの表面温度を計測するのが好ましい。 Controlling the surface temperature of the process sheet exiting the annealing furnace 15 and the surface temperature of the process sheet introduced into the embossing roller in the process (c) when performing the annealing process and the next process (c) continuously. Is preferred. Therefore, in order to correctly grasp the surface temperature of the process sheet, it is preferable to provide a non-contact infrared thermometer 33 for measuring the surface temperature of the exit part of the annealing furnace 15 and the process sheet immediately before embossing. Further, it is preferable to install a plurality of non-contact thermometers in the annealing furnace 15 and measure the surface temperature of the process sheet.
 アニール処理工程では、工程シートの少なくとも一方の表面の最高温度を、この表面部分を構成する樹脂組成物の融点以上の温度になるまで加熱する。この加熱した側の表面に、次の工程(c)において、エンボス加工が施される。ここで、「表面部分を構成する樹脂組成物」とは、工程シートが単層シートの場合、この工程シートを構成する樹脂組成物のことであり、工程シートが複数の層が積層した積層シートの場合、加熱した側の表面の層を構成する樹脂組成物のことである。最高温度が樹脂組成物の融点未満の温度にしかならないようなアニール処理を実施しても、加熱収縮率を低減する効果が不十分であったり、長時間の処理が必要となる。また、表面の最高温度は、(加熱した側の表面部分を構成する樹脂組成物の融点+5℃)~(加熱した側の表面部分を構成する樹脂組成物の融点+35℃)の温度範囲内が好ましい。アニール処理中の温度が高くなり過ぎると、工程シートが搬送ローラーに粘着したり、平面性が低下したり、それらを原因として、次の工程(c)においてシワが発生する場合がある。例えば、融点71℃のEVA樹脂で構成された工程シートの場合は、アニール処理工程での表面の最高到達温度は、76~106℃の範囲であることが好ましい。 In the annealing process, heating is performed until the maximum temperature of at least one surface of the process sheet reaches a temperature equal to or higher than the melting point of the resin composition constituting the surface portion. The surface on the heated side is embossed in the next step (c). Here, when the process sheet is a single layer sheet, the “resin composition constituting the surface portion” is a resin composition constituting the process sheet, and the process sheet is a laminated sheet in which a plurality of layers are laminated. In this case, it is a resin composition constituting the layer on the surface on the heated side. Even if an annealing process is performed in which the maximum temperature is only a temperature lower than the melting point of the resin composition, the effect of reducing the heat shrinkage rate is insufficient, or a long-time process is required. The maximum surface temperature is within the temperature range of (the melting point of the resin composition constituting the heated surface portion + 5 ° C.) to (the melting point of the resin composition constituting the heated surface portion + 35 ° C.). preferable. If the temperature during the annealing process becomes too high, the process sheet may adhere to the transport roller, the flatness may deteriorate, or wrinkles may occur in the next process (c) due to these reasons. For example, in the case of a process sheet made of EVA resin having a melting point of 71 ° C., the highest surface temperature in the annealing process is preferably in the range of 76 to 106 ° C.
 工程シートを加熱する時間、すなわちアニール炉内に工程シートを滞留させる時間は、22~55秒の範囲内である。この加熱時間は、ポリシングローラー13によって冷却された工程シートを、工程シートの表面温度を融点温度以上に到達させるまでに要する時間と、融点温度以上に到達後に加熱収縮を低減するためのアニール処理を行う時間との合計である。加熱時間が22秒未満であると、加熱収縮の除去が不十分となる。加熱時間が55秒を超えて加熱しても、効果は飽和しており、アニール炉の長さが無駄に長くなるだけである。加熱時間の下限は22秒以上が好ましく、25秒以上がより好ましい。加熱時間の上限は、加熱収縮の除去が十分にできている限りにおいて短い方がよく、45秒以下が好ましく、40秒以下がより好ましい。 The time for heating the process sheet, that is, the time for retaining the process sheet in the annealing furnace is in the range of 22 to 55 seconds. This heating time is the time required for the process sheet cooled by the polishing roller 13 to reach the surface temperature of the process sheet above the melting point temperature, and the annealing treatment to reduce the heat shrinkage after reaching the melting point temperature or more. It is the total with the time to do. If the heating time is less than 22 seconds, removal of the heat shrinkage is insufficient. Even if the heating time exceeds 55 seconds, the effect is saturated, and the length of the annealing furnace is merely increased unnecessarily. The lower limit of the heating time is preferably 22 seconds or more, and more preferably 25 seconds or more. The upper limit of the heating time is preferably shorter as long as the heat shrinkage can be sufficiently removed, preferably 45 seconds or shorter, and more preferably 40 seconds or shorter.
 [工程(c):エンボス加工工程]
 次に工程(c)について説明する。工程(c)は、アニール工程での加熱により高温状態となった工程シートにエンボス加工を施し、工程シート表面にエンボス形状を形成する工程である。工程(c)には、工程シートにエンボス形状を形成するためのエンボスローラー20、エンボス対向ローラー19、および冷却ローラー21が設けられている。以後、この工程(c)をエンボス加工工程と呼ぶ。
[Process (c): Embossing process]
Next, step (c) will be described. Step (c) is a step of embossing the process sheet that has been brought to a high temperature state by heating in the annealing process to form an embossed shape on the surface of the process sheet. In the step (c), an embossing roller 20, an embossing counter roller 19, and a cooling roller 21 for forming an embossed shape on the process sheet are provided. Hereinafter, this step (c) is referred to as an embossing step.
 エンボスローラー20の表面には、工程シートに形成したいエンボス形状に対応して、そのエンボス形状を反転した彫刻が施されている。工程シートに形成するエンボス形状は、ランダム形状や幾何学模様など、必要に応じて決定すればよい。しかし、エンボス形状の形成が不十分であると、工程シートの搬送性やロール状に巻いたときにブロッキングが生じやすくなったり、太陽電池モジュールを作成する際にエアーが抜けにくくなり、モジュール内に気泡を発生させる原因になる可能性がある。エンボスローラーの表面に施される彫刻の模様は、半球状や、三角錐、四角錐、六角錐、円錐などの錐形状や、これらの頂部を扁平にした台形状が採用できる。また、これらの形状が混在した模様でもよい。これらの中でも、半球状および/または四角錐状が好ましい。ここで「半球状および四角錐状」とは、半球状と四角錐状とが混在している模様の彫刻を意味する。封止材シートの太陽電池セルへの押し圧時に、集中加重がかかりにくく、かつ均一に加重が分散できる点で半球状が好ましい。また、封止材シートの反射光のムラが生じにくく、表面品位に優れる点で四角錐状が好ましい。そして、これら半球状と四角錐状の両方の特徴を出せるため、半球状と四角錐状とを混在させた模様も好ましい。半球状と四角錐状とを混在させる場合は、それぞれの割合は、どちらの特徴をより求めるかに応じて任意に決めればよい。特に好ましくは、全てが半球状の模様である。 The surface of the embossing roller 20 is engraved with the embossed shape inverted corresponding to the embossed shape desired to be formed on the process sheet. What is necessary is just to determine the emboss shape formed in a process sheet | seat as needed, such as a random shape and a geometric pattern. However, if the embossed shape is insufficiently formed, blocking is likely to occur when the process sheet is conveyed and rolled, or air is difficult to escape when creating a solar cell module. May cause air bubbles. The engraving pattern applied to the surface of the embossing roller can be a hemispherical shape, a triangular pyramid shape, a quadrangular pyramid shape, a hexagonal pyramid shape, a conical shape such as a conical shape, or a trapezoidal shape with a flat top. Moreover, the pattern in which these shapes were mixed may be sufficient. Among these, a hemispherical shape and / or a quadrangular pyramid shape are preferable. Here, “hemispherical and quadrangular pyramid” means sculpture with a pattern in which hemispherical and quadrangular pyramid are mixed. A hemispherical shape is preferable in that concentrated load is not easily applied when the encapsulant sheet is pressed against the solar battery cell, and the load can be uniformly dispersed. Further, a quadrangular pyramid shape is preferable in that unevenness of reflected light of the encapsulant sheet hardly occurs and the surface quality is excellent. And since both hemispherical and quadrangular pyramid features can be produced, a pattern in which hemispherical and quadrangular pyramid shapes are mixed is also preferable. When the hemispherical shape and the quadrangular pyramid shape are mixed, the ratio of each may be arbitrarily determined according to which feature is to be obtained. Particularly preferably, all are hemispherical patterns.
 エンボスローラー表面の彫刻が深すぎる場合、エンボス加工時に大きなプレス圧力が必要となり、設備が大型になる。従って、エンボスローラーの彫刻の深さは、工程シートの厚みにもよるが、65~350μmの範囲内が好ましい。なお、エンボスローラーの彫刻の深さとは、エンボスローラーの中心からエンボスローラーの表面(彫刻が施されていない部分)までの距離と、エンボスローラーの中心から彫刻の凹部(谷の部分)の最も深い部分までの距離との差のことを示す。この彫刻の深さは、JIS B0601(2001)に準拠し、表面粗さ測定機を用いて測定される最大高さPz(μm)により示される。 If the surface of the embossing roller is too deep, a large press pressure is required during embossing, resulting in a large equipment. Therefore, the engraving depth of the emboss roller is preferably in the range of 65 to 350 μm, although it depends on the thickness of the process sheet. The depth of engraving of the embossing roller is the distance from the center of the embossing roller to the surface of the embossing roller (the part not engraved) and the deepest of the engraving recess (the valley part) from the center of the embossing roller. Indicates the difference from the distance to the part. The depth of this sculpture is indicated by the maximum height Pz (μm) measured using a surface roughness measuring machine in accordance with JIS B0601 (2001).
 エンボスローラーの表面には、さらに深さ1~20μmの窪みが施されていることが好ましい。このような微小な窪みが施されたエンボスローラーでエンボス加工することにより、シートの表面に微小な突起が形成される。その結果、シートの滑り性が向上しハンドリングしやすくなる他、微小な突起により光が散乱し、シートの白色性が向上するため、付着異物等の検査が容易となる。このような微小な窪みは、エンボスローラー表面に彫刻を施した後に、公知のブラスト処理などを実施することにより容易に形成することができる。微小な窪みの深さは、ブラスト加工時の粒子サイズや、圧力条件により調整ができる。 The surface of the embossing roller is preferably further recessed with a depth of 1 to 20 μm. By embossing with an embossing roller provided with such minute depressions, minute projections are formed on the surface of the sheet. As a result, the slipperiness of the sheet is improved and handling is facilitated, and light is scattered by minute projections, and the whiteness of the sheet is improved, so that it is easy to inspect adhered foreign matters and the like. Such a minute depression can be easily formed by carrying out a known blasting process after engraving the embossing roller surface. The depth of the minute recess can be adjusted by the particle size at the time of blasting and the pressure condition.
 エンボスローラーと対向するエンボス対向ローラー19は、エンボスローラー表面の彫刻の工程シートへの転写性を向上させるために、金属ローラーにゴムを巻き付けたものを用いることが好ましい。ゴムの種類についてはシリコンゴム、ニトリルゴム、クロロプレンゴムなど、特に限定されるものではないが、JIS K 6253-2006に準拠したタイプA硬度が65~85°の範囲のゴムが好ましい。65°を下回っても、85°を超えても、エンボス形状の転写性が低下する場合がある。これらのゴムの中でも、高温で粘着しやすい工程シートとの離型性が良いため、シリコンゴムが最も好ましい。 The embossing counter roller 19 facing the embossing roller is preferably a rubber roller wrapped around a metal roller in order to improve transferability of the embossing roller surface to the engraving process sheet. The type of rubber is not particularly limited, such as silicone rubber, nitrile rubber, and chloroprene rubber, but rubber having a type A hardness in the range of 65 to 85 ° in accordance with JIS K 6253-2006 is preferable. Even if the angle is less than 65 ° or exceeds 85 °, the transfer property of the embossed shape may be deteriorated. Among these rubbers, silicon rubber is most preferable because of its good releasability from a process sheet that is easily adhered at high temperatures.
 エンボス加工工程では、エンボスローラーに供給する工程シートのアニール処理工程で加熱した表面の温度を、(この表面を構成する樹脂組成物の融点-10℃)~(この表面を構成する樹脂組成物の融点+20℃)の温度範囲内とする。(樹脂組成物の融点-10℃)未満であると、エンボス形状の転写性が低下する。(樹脂組成物の融点+20℃)を超えると、アニール工程での工程シートの温度が高くなりすぎており、アニール工程でシワなどが発生しやすくなる。例えば、表面側の層が、融点が71℃のEVA樹脂で構成されている場合は、エンボス加工時の表面温度は61~91℃の範囲内とする。 In the embossing process, the temperature of the surface heated in the annealing process of the process sheet supplied to the embossing roller is set to (melting point of the resin composition constituting this surface−10 ° C.) to (of the resin composition constituting this surface). (Melting point + 20 ° C.). If it is less than (the melting point of the resin composition−10 ° C.), the transferability of the embossed shape is lowered. If it exceeds (the melting point of the resin composition + 20 ° C.), the temperature of the process sheet in the annealing process becomes too high, and wrinkles and the like are likely to occur in the annealing process. For example, when the surface layer is made of EVA resin having a melting point of 71 ° C., the surface temperature during embossing is in the range of 61 to 91 ° C.
 さらに、エンボスローラー20の押し付け圧力は、工程シートにかかる線圧力が150~500N/cmの範囲にするのが好ましい。より好ましくは、200~450N/cmの範囲である。線圧力が150N/cm未満であると、エンボス形状の転写性が低下する場合がある。500N/cmを超えた線圧力を付加しようとすると設備を大型化する必要が生じ、その場合、対向ゴムローラーの寿命が低下することとなる。 Furthermore, the pressing pressure of the embossing roller 20 is preferably set so that the linear pressure applied to the process sheet is in the range of 150 to 500 N / cm. More preferably, it is in the range of 200 to 450 N / cm. If the linear pressure is less than 150 N / cm, the embossed shape transferability may be lowered. If an attempt is made to apply a linear pressure exceeding 500 N / cm, it is necessary to increase the size of the equipment, and in this case, the life of the opposing rubber roller is reduced.
 図2に示した従来の技術では、エンボスローラー13b’の押し付け圧力は高くても線圧力100N/cm程度で十分であった。これは、Tダイから押し出される樹脂の温度は、例えば融点が71℃のEVA樹脂を用いる場合は、100~120℃の範囲であることが多く、高温状態であるためエンボス形状の転写には線圧力100N/cm程度で十分であるためと推測される。一方、本発明の製造方法では、前述のように(樹脂組成物の融点-10℃)~(樹脂組成物の融点+20℃)の温度範囲内でエンボス加工を行う。この様に、エンボス加工時の工程シートの表面温度が低くなると、エンボス形状を転写しにくくなるため、エンボス加工に必要な押し付け圧力を高くすることが好ましい。つまり、線圧力を150N/cm以上にすることが好ましい。なお、本発明で言う線圧力とは、ローラーの押し付け荷重を、ローラーの面長で除した値である。 In the conventional technique shown in FIG. 2, a linear pressure of about 100 N / cm is sufficient even if the pressing pressure of the embossing roller 13b 'is high. This is because the temperature of the resin extruded from the T die is, for example, in the range of 100 to 120 ° C. when EVA resin having a melting point of 71 ° C. is used. It is estimated that a pressure of about 100 N / cm is sufficient. On the other hand, in the production method of the present invention, as described above, embossing is performed within the temperature range of (melting point of resin composition−10 ° C.) to (melting point of resin composition + 20 ° C.). As described above, when the surface temperature of the process sheet at the time of embossing becomes low, it becomes difficult to transfer the embossed shape. Therefore, it is preferable to increase the pressing pressure necessary for the embossing. That is, the linear pressure is preferably 150 N / cm or more. In addition, the linear pressure said by this invention is the value which remove | divided the pressing load of the roller by the surface length of the roller.
 さらに、この様に比較的低温でのエンボス加工において、エンボス形状の転写性を向上させるために、エンボスローラー20に工程シートを抱かせるようにすることが好ましい。具体的には、エンボスローラーへの抱き付け角は30~270°の範囲であることが好ましい。浅いエンボスを付与するだけであれば抱き付け角度は30°未満でもよいが、深く、はっきりとした形状のエンボスを付与するためには、抱き付け角度を30°以上にするのが好ましい。なお、抱き付け角は、簡易的にはエンボスローラー20に工程シート32が接している部分の円弧の長さと、エンボスローラーの円周との比率から計算することができる。例えば、抱き付け角が90°である場合は、エンボスローラーの円周の1/4の長さに相当する部分に工程シートが接触していることを意味する。 Furthermore, in the embossing process at a relatively low temperature as described above, it is preferable that the process sheet is held by the embossing roller 20 in order to improve the transferability of the embossed shape. Specifically, the hugging angle to the embossing roller is preferably in the range of 30 to 270 °. If only shallow embossing is to be applied, the hugging angle may be less than 30 °. However, in order to give a deep and well-defined embossing, it is preferable to set the hugging angle to 30 ° or more. Note that the hugging angle can be simply calculated from the ratio between the arc length of the portion where the process sheet 32 is in contact with the embossing roller 20 and the circumference of the embossing roller. For example, when the hugging angle is 90 °, it means that the process sheet is in contact with a portion corresponding to ¼ of the circumference of the embossing roller.
 このエンボス加工工程でのエンボスローラー20の表面温度は、(エンボス形状を転写する側の表面部分を構成する樹脂組成物の融点-20℃)以下が好ましい。エンボスローラーの温度が低いと、工程シートの離型性が良くなり、工程シートがローラーに巻きつきにくくなる。その結果、エンボスローラーから工程シートを剥がす際の負荷が軽減され、より品位のよい太陽電池封止材シートが得られる。 The surface temperature of the embossing roller 20 in this embossing process is preferably (the melting point of the resin composition constituting the surface portion on the side to which the embossed shape is transferred−20 ° C.) or less. When the temperature of the embossing roller is low, the releasability of the process sheet is improved, and the process sheet is difficult to wind around the roller. As a result, the load when the process sheet is peeled off from the embossing roller is reduced, and a solar cell encapsulant sheet with better quality can be obtained.
 工程シートをエンボスローラーから離型した後、冷却ローラー21により工程シートを冷却し、工程シートの表面温度を室温付近まで速やかに低下させる。 After releasing the process sheet from the embossing roller, the process sheet is cooled by the cooling roller 21, and the surface temperature of the process sheet is quickly lowered to near room temperature.
 このようにして製膜し、アニール処理によって加熱収縮を除去し、エンボス形状を形成した工程シート32を、欠点検査や工程シートの寸法を所望の幅に調整した後、巻き取り機などによってロール状に巻き取ったり、所望長さのカットシートに裁断し、太陽電池モジュールの製造に用いる。 After forming the film in this way, removing the heat shrinkage by annealing, and forming the embossed shape, the process sheet 32 is adjusted to a desired width by a defect inspection and then rolled into a roll shape by a winder or the like. Or cut into a cut sheet having a desired length and used for manufacturing a solar cell module.
 [太陽電池封止材シート]
 次に太陽電池封止材シートについて説明する。封止材シートは、表面に高さ60~300μmの独立した突起を有しているのが好ましい。封止材シートの表面に独立した高さ60μm以上の突起を有することにより、太陽電池モジュールを製造する際の真空ラミネート時に、封止材シートと太陽電池セルとの間に残留した空気を多方向から効率的に除去し、気泡の発生を抑制できる。さらに、封止材シートの太陽電池セルへの押し圧力を分散させ、セル割れの発生を抑制することができる。封止材シート表面の形状が独立した突起ではなく、連続した溝形状であると、溝に直行する方向への脱気が不十分となり、残留した空気が気泡となる。また、突起の高さが300μm以下であると、真空ラミネート時の突起の頂部への荷重の集中が抑制され、太陽電池セルが割れることを防止できる。ここで、「独立した突起」とは、突起の底面に着目したときに、後述する底辺の長さDが70~6000μmの範囲の突起である。
[Solar cell encapsulant sheet]
Next, the solar cell encapsulant sheet will be described. The encapsulant sheet preferably has an independent protrusion having a height of 60 to 300 μm on the surface. By having independent protrusions with a height of 60 μm or more on the surface of the encapsulant sheet, the air remaining between the encapsulant sheet and the solar cells is multi-directional during vacuum lamination when manufacturing a solar cell module. It is possible to efficiently remove the bubbles and suppress the generation of bubbles. Furthermore, it is possible to disperse the pressing force of the encapsulant sheet to the solar battery cells and suppress the occurrence of cell cracking. If the shape of the surface of the sealing material sheet is not an independent protrusion but a continuous groove shape, deaeration in a direction perpendicular to the groove becomes insufficient, and the remaining air becomes bubbles. Further, when the height of the protrusion is 300 μm or less, the concentration of the load on the top of the protrusion during vacuum lamination is suppressed, and the solar battery cell can be prevented from cracking. Here, the “independent protrusion” refers to a protrusion having a bottom length D to be described later in the range of 70 to 6000 μm when attention is paid to the bottom surface of the protrusion.
 また独立した突起は、封止材シートを平板で挟み、厚み方向に50kPaの圧力を付与して圧縮して突起が変形し、突起の頂部が平板と接する領域が拡大したときに、2つの隣接する突起に由来する2つの領域間に20~800μmの間隙が確保されることが好ましい。 In addition, the independent protrusions are sandwiched between flat plates, applied with a pressure of 50 kPa in the thickness direction and compressed to deform the protrusions, and when the area where the tops of the protrusions contact the flat plate expands, It is preferable that a gap of 20 to 800 μm is secured between the two regions derived from the protrusions.
 独立した突起は、突起の高さ(T)と突起の底辺長さ(D)との比(T/D)が0.05~0.80が好ましい。より好ましくは0.15~0.80である。T/D比が0.05未満であると、封止材シートのクッション性が不十分となる場合がある。T/D比が0.80を超えると、突起の頂部への集中荷重が起こり、セル割れが発生する場合がある。突起の高さTは次のようにして測定する。まず、片面に突起がある場合を説明する。封止材シートの突起のある側の面をA面、突起のない側の面をB面とする。図3に示すように、A面の突起の頂点からB面までの距離をTmax、A面の突起のない部分からB面までの距離をTminとする。このTmaxとTminとの差が突起の高さTである。次に両方に突起がある場合を説明する。封止材シートの一方の面をA面、もう一方の面をB面とする。図4に示すように、A面の突起の頂点からB面の突起のない部分までの距離をTAmax、B面の突起の頂点からA面の突起のない部分までの距離をTBmax、A面の突起のない部分からB面の突起のない部分までの距離をTminとする。このTAmaxとTminとの差がA面の突起の高さTA、TBmaxとTminとの差がB面の突起の高さTBである。突起の底辺の長さとは、図5に示す突起の外周直径Dである。なお、突起の底面の形状が三角形や六角形などの多角形、楕円形である場合は、突起の底辺の長さは、底面の形状を包含する最小真円の直径である。上記のTmax、Tmin、Dについては実体顕微鏡によるシートの観察により測定できる。 The independent protrusion preferably has a ratio (T / D) of the protrusion height (T) to the base length (D) of 0.05 to 0.80. More preferably, it is 0.15 to 0.80. If the T / D ratio is less than 0.05, the cushioning property of the encapsulant sheet may be insufficient. When the T / D ratio exceeds 0.80, a concentrated load on the top of the protrusion occurs, and cell cracking may occur. The height T of the protrusion is measured as follows. First, the case where there is a protrusion on one side will be described. The surface of the encapsulant sheet having the protrusions is referred to as A surface, and the surface having no protrusion is referred to as B surface. As shown in FIG. 3, the distance from the apex of the protrusion on the A surface to the B surface is Tmax, and the distance from the portion having no protrusion on the A surface to the B surface is Tmin. The difference between Tmax and Tmin is the height T of the protrusion. Next, the case where both have projections will be described. One side of the encapsulant sheet is referred to as A side and the other side is referred to as B side. As shown in FIG. 4, the distance from the apex of the protrusion on the A surface to the portion without the protrusion on the B surface is TAmax, the distance from the apex of the protrusion on the B surface to the portion without the protrusion on the A surface is TBmax, The distance from the portion having no protrusion to the portion having no protrusion on the B surface is defined as Tmin. The difference between TAmax and Tmin is the height TA of the projection on the A surface, and the difference between TBmax and Tmin is the height TB of the projection on the B surface. The length of the bottom of the protrusion is the outer diameter D of the protrusion shown in FIG. When the shape of the bottom surface of the protrusion is a polygon such as a triangle or a hexagon or an ellipse, the length of the bottom of the protrusion is the diameter of the smallest perfect circle including the shape of the bottom surface. The above Tmax, Tmin, and D can be measured by observing the sheet with a stereomicroscope.
 望ましい突起の高さTは、上記のとおり60~300μmである。突起の高さTが60μmである場合には、突起の底辺Dの長さは75~1200μmが好ましく、より好ましくは75~400μmである。突起の高さTが300μmである場合には、突起の底辺Dの長さは375~6000μmが好ましく、より好ましくは375~2000μmである。 Desirable protrusion height T is 60 to 300 μm as described above. When the height T of the protrusion is 60 μm, the length of the base D of the protrusion is preferably 75 to 1200 μm, more preferably 75 to 400 μm. When the height T of the protrusion is 300 μm, the length of the base D of the protrusion is preferably 375 to 6000 μm, more preferably 375 to 2000 μm.
 独立した突起の個数は、シート片側の面積1cmあたりで40~2300個が好ましい。より好ましくは40~1100個である。独立した突起が40個/cm未満であると、セル割れや気泡が生じる場合がある。2300個/cmを超えると、上記のT/D比が増大し、突起頂部への集中荷重によりセル割れが生じる場合がある。 The number of independent protrusions is preferably 40 to 2300 per 1 cm 2 area on one side of the sheet. More preferably, it is 40 to 1100. If the number of independent protrusions is less than 40 / cm 2 , cell cracks or bubbles may occur. If it exceeds 2300 pieces / cm 2 , the T / D ratio increases, and cell cracking may occur due to the concentrated load on the top of the protrusion.
 封止材シートは、80℃の温水中に1分間放置した際のシート流れ方向の加熱収縮率が30%以下であることが好ましい。より好ましくは25%以下である。ここで、「温水中に放置する」とは、封止材シートの比重が小さく、封止材シートが温水の表面に浮かぶ場合は、封止材シートを上から押さえて温水中に沈めたりせず、その浮かんだままの状態で放置することである。一方、封止材シートの比重が大きく、封止材シートが温水の中に沈む場合は、封止材シートを下から支えたりせず、その沈んだままの状態で放置することである。また、「シート流れ方向」とは、封止材シートの製造工程における、工程シートが流れていく方向である。太陽電池モジュールの製造における一般的な真空ラミネート工程では、封止材シートが十分に溶融するまでの間、シートを加圧することなく無荷重状態で真空引きを行い、封止材シートの溶融および脱気を行う。この際、封止材シートは80℃程度の高温で無荷重状態に曝されることから、封止材シートの収縮が発生し、結果的にセルの割れや位置ずれが発生する。本発明者らが、セルの割れや位置ずれに着眼し検討を行った結果、真空ラミネータ内を再現した無荷重状態で工程シートを1分間放置した際に、シート流れ方向の加熱収縮率が30%以下であれば、セルの割れがさらに抑制できることを見出した。この真空ラミネータ内を再現した状態というのが、80°の温水中に工程シートを放置する状態である。なお、シートの流れ方向と直交する方向の加熱収縮率は、流れ方向に比べ微少であることから特に限定されないが、5%以下であることが好ましい。 The encapsulant sheet preferably has a heat shrinkage rate of 30% or less in the sheet flow direction when left in warm water at 80 ° C. for 1 minute. More preferably, it is 25% or less. Here, “Leave in warm water” means that when the specific gravity of the encapsulant sheet is small and the encapsulant sheet floats on the surface of the warm water, the encapsulant sheet is pressed from above and submerged in the warm water. Instead, leave it in its floating state. On the other hand, when the specific gravity of the encapsulant sheet is large and the encapsulant sheet sinks in warm water, the encapsulant sheet is not allowed to be supported from below but is left in its submerged state. The “sheet flow direction” is a direction in which the process sheet flows in the manufacturing process of the sealing material sheet. In a general vacuum laminating process in the manufacture of a solar cell module, vacuuming is performed without applying pressure to the sealing material sheet until the sealing material sheet is sufficiently melted, and the sealing material sheet is melted and removed. Do care. At this time, since the encapsulant sheet is exposed to a no-load state at a high temperature of about 80 ° C., the encapsulant sheet contracts, and as a result, cell cracks and displacement occur. As a result of investigations by the inventors focusing on cell cracks and misalignment, when the process sheet is left for 1 minute in a no-load state that reproduces the inside of the vacuum laminator, the heat shrinkage rate in the sheet flow direction is 30. It was found that the cell cracking can be further suppressed if it is at most%. The state where the inside of the vacuum laminator is reproduced is a state where the process sheet is left in 80 ° warm water. The heat shrinkage rate in the direction orthogonal to the flow direction of the sheet is not particularly limited because it is minute compared to the flow direction, but is preferably 5% or less.
 独立した突起の形状は、半球状や、三角錐、四角錐、六角錐、円錐などの錐形状や、これらの頂部を扁平にした台形状が好ましい。また、これら突起形状が混在した状態でもよい。これらの中でも、半球状および/または四角錐状が好ましい。ここで「半球状および四角錐状」とは、半球状の突起と四角錐状の突起とが混在している表面形状を意味する。太陽電池セルへの押し圧時に、太陽電池セルへの集中荷重がかかりにくく、かつ均一に荷重が分散できる点で半球状が好ましい。また、反射光のムラが生じにくく、表面品位に優れる点で四角錐状も好ましい。そして、これら半球状と四角錐状の両方の特徴を出せるため、半球状と四角錐状とを混在させた形状も好ましい。半球状と四角錐状とを混在させる場合は、それぞれの割合は、どちらの特徴をより求めるかに応じて任意に決めればよい。特に好ましくは、全てが半球状の模様である。 The shape of the independent protrusion is preferably a hemispherical shape, a pyramid shape such as a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, or a cone, or a trapezoidal shape in which the tops thereof are flattened. Moreover, the state in which these protrusion shapes are mixed may be used. Among these, a hemispherical shape and / or a quadrangular pyramid shape are preferable. Here, “hemispherical and quadrangular pyramid” means a surface shape in which hemispherical protrusions and quadrangular pyramidal protrusions are mixed. A hemispherical shape is preferable in that a concentrated load on the solar battery cell is difficult to be applied and the load can be uniformly dispersed when the pressure is applied to the solar battery cell. Further, a quadrangular pyramid shape is also preferable in that unevenness of reflected light hardly occurs and the surface quality is excellent. And since both hemispherical and quadrangular pyramid features can be obtained, a shape in which a hemispherical shape and a quadrangular pyramid shape are mixed is also preferable. When the hemispherical shape and the quadrangular pyramid shape are mixed, the ratio of each may be arbitrarily determined according to which feature is to be obtained. Particularly preferably, all are hemispherical patterns.
 本発明の封止材シートは、独立した突起を有する面に、さらに高さ1~15μmの突起を有していることが好ましい。このような微小な突起を有していることにより、シートの滑り性が向上しハンドリングしやすくなる。また、微小な突起により光が散乱し、シートの白色性が向上するため、付着異物等の検査が容易となる。 The sealing material sheet of the present invention preferably further has a protrusion having a height of 1 to 15 μm on the surface having an independent protrusion. By having such a minute protrusion, the slipperiness of the sheet is improved and the handling becomes easy. In addition, light is scattered by the minute protrusions, and the whiteness of the sheet is improved, so that it is easy to inspect adhered foreign matter and the like.
 このような微小な突起は、アニール工程に次いで、エンボス加工を実施する本発明の製造方法によって達成することができる。エンボス加工を実施した後に、加熱によるアニール処理を実施する従来の方法においては、高さ数10μm以上の大きな突起は加熱処理後もシートに残存することはあるが、高さ数μm程度の微小な突起は熱処理に伴って消失してしまう。 Such fine protrusions can be achieved by the manufacturing method of the present invention in which embossing is performed after the annealing step. In the conventional method in which annealing is performed by heating after embossing, large protrusions with a height of several tens of μm may remain on the sheet even after the heat treatment, but they are very small with a height of several μm. The protrusion disappears with the heat treatment.
 なお、微小な突起の高さは、次のようにして測定した数値である。シートの表面を、JIS B0601(2001)に準拠し、周知のレーザー顕微鏡、例えば株式会社キーエンス製レーザー顕微鏡VK-X100等を用いてシート表面を倍率400で撮影する。得られた画像の粗さ曲線において、カットオフ値0.080mmとしたときのRz値を微小な突起の高さとする。 The height of the minute protrusion is a numerical value measured as follows. The surface of the sheet is photographed at a magnification of 400 using a well-known laser microscope such as a laser microscope VK-X100 manufactured by Keyence Corporation in accordance with JIS B0601 (2001). In the roughness curve of the obtained image, the Rz value when the cutoff value is 0.080 mm is defined as the height of the minute protrusion.
 本願においては、太陽電池のセル割れを抑制するための封止材シートのクッション性を評価する指標として、封止材シートの突起を有する面を厚み方向に100μm圧縮した際のシートの反発応力を採用する。太陽電池のセル割れ性と封止材シートのクッション性の関係について鋭意検討した結果、セルの割れが抑制される反発応力は、70kPa以下であることが好ましいことを見出した。なお、上記の反発応力は、圧縮変位として5μm以下、圧縮加重として100Pa以下の分解能を有する圧縮試験装置を用い、扁平な加圧端子を0.02mm/sの加圧速度で、封止材シートの突起を有する面を厚み方向に100μm加圧した際の、シートの反発応力(kPa)を測定することにより得られる。封止材シートの反発応力が70kPa以下であると、突起を有する面を太陽電池セルと接するように積層し、真空ラミネートを行うことで太陽電池セルの割れを抑制することができる。なお、封止材シートの突起を有する面とは反対側の面の形状は特に限定されないが、太陽電池モジュール製造時の封止材シートの粘着防止などの点から、高さ2~10μm程度の微小な突起を有することが好ましい。 In the present application, as an index for evaluating the cushioning property of the encapsulant sheet for suppressing cell cracking of the solar battery, the repulsive stress of the sheet when the surface having the projection of the encapsulant sheet is compressed 100 μm in the thickness direction is used. adopt. As a result of intensive studies on the relationship between the cell cracking property of the solar battery and the cushioning property of the sealing material sheet, it was found that the repulsive stress at which cell cracking is suppressed is preferably 70 kPa or less. The above repulsive stress is a sealing material sheet using a compression test apparatus having a resolution of 5 μm or less as a compression displacement and 100 Pa or less as a compression load, and a flat pressure terminal at a pressure rate of 0.02 mm / s. It is obtained by measuring the repulsive stress (kPa) of the sheet when the surface having the protrusions is pressed 100 μm in the thickness direction. When the repulsive stress of the encapsulant sheet is 70 kPa or less, the solar cell can be prevented from cracking by laminating the surface having the protrusion so as to be in contact with the solar cell and performing vacuum lamination. The shape of the surface opposite to the surface having the projection of the encapsulant sheet is not particularly limited, but it is about 2 to 10 μm in height from the viewpoint of preventing adhesion of the encapsulant sheet when manufacturing the solar cell module. It is preferable to have minute protrusions.
 封止材シートの厚みは50~1500μmが好ましい。より好ましくは100~1000μm、特に好ましくは200~800μmである。50μm未満では太陽電池封止材シートのクッション性が乏しくなったり、作業性の観点で問題が生ずる場合がある。また1500μmを越えると生産性の低下や密着性の低下が問題となる場合がある。なお、封止材シートの厚みは、封止材シートの片面のみに突起が形成されている場合は、突起の頂点から、突起を有する面とは反対側の面までの距離である。封止材シートの両面に突起が形成されている場合は、一方の面の突起の頂点から、反対面の突起の頂点までの距離である。 The thickness of the sealing material sheet is preferably 50 to 1500 μm. More preferably, it is 100 to 1000 μm, particularly preferably 200 to 800 μm. If it is less than 50 μm, the cushioning property of the solar cell encapsulant sheet may be poor, or a problem may occur from the viewpoint of workability. On the other hand, if the thickness exceeds 1500 μm, a decrease in productivity and a decrease in adhesion may be a problem. In addition, the thickness of a sealing material sheet is the distance from the vertex of a processus | protrusion to the surface on the opposite side to the surface which has a processus | protrusion, when the processus | protrusion is formed only in the single side | surface of the encapsulant sheet. When protrusions are formed on both surfaces of the encapsulant sheet, the distance is from the top of the protrusion on one surface to the top of the protrusion on the opposite surface.
 このように、封止材シートの表面に独立した突起を正確に形成したり、封止材シートの加熱収縮率を特定の範囲内に抑えるには、本発明の製造方法で封止材シートを製造することが好ましい。 Thus, in order to accurately form independent protrusions on the surface of the encapsulant sheet, or to suppress the heat shrinkage rate of the encapsulant sheet within a specific range, the encapsulant sheet is used in the production method of the present invention. It is preferable to manufacture.
 [太陽電池封止材シートを構成する原料]
 次に封止材シートを構成する樹脂組成物について説明する。なお、少なくとも突起が形成される側の表面部分を構成する樹脂組成物が、以下に説明する樹脂組成物の組成等を満たすことが好ましい。もちろん、工程シートを構成する全ての樹脂組成物が、以下に説明する樹脂組成物の組成等を満たしていることがより好ましい。
[Raw material constituting solar cell encapsulant sheet]
Next, the resin composition which comprises a sealing material sheet is demonstrated. In addition, it is preferable that the resin composition which comprises the surface part by the side in which a processus | protrusion is formed satisfy | fills the composition etc. of the resin composition demonstrated below. Of course, it is more preferable that all resin compositions constituting the process sheet satisfy the composition of the resin composition described below.
 封止材シートを構成する樹脂組成物は、ポリオレフィン系樹脂を含んでいることが好ましい。ポリオレフィン系樹脂としては、ホモポリプロピレン、プロピレンを主成分とする他のモノマーとの共重合体、エチレン-プロピレン-ブテン三元共重合体等のポリプロピレン系樹脂、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレンを主成分とする他のモノマーとの共重合体等のポリエチレン系樹脂、ポリオレフィン系熱可塑性エラストマー等が挙げられる。エチレンを主成分とする他のモノマーとの共重合体としては、エチレン-α-オレフィン共重合体、エチレン-不飽和モノマー共重合体を挙げることができる。α-オレフィンとしては、α-オレフィンが、エチレン、プロピレン、1-ブテン、イソブチレン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、1-ヘプタン、1-オクテン、1-ノネン、1-デセンなどが挙げられる。不飽和モノマーとしては、酢酸ビニル、アクリル酸、メタクリル酸、メチルアクリレ-ト、メチルメタクリレ-ト、エチルアクリレ-ト、または、ビニルアルコ-ルなどが挙げられる。またこれらのポリオレフィン系樹脂に、必要に応じて、シラン化合物や、カルボン酸、グリシジル化合物などを用いて、少量共重合させたり、変性させたりすることは好ましい態様の一つである。 It is preferable that the resin composition which comprises a sealing material sheet contains polyolefin resin. Polyolefin resins include homopolypropylene, copolymers with other monomers based on propylene, polypropylene resins such as ethylene-propylene-butene terpolymers, low density polyethylene, ultra low density polyethylene, straight Examples thereof include chain-type low-density polyethylene, medium-density polyethylene, high-density polyethylene, polyethylene resins such as copolymers with other monomers mainly composed of ethylene, and polyolefin-based thermoplastic elastomers. Examples of the copolymer with other monomers mainly composed of ethylene include an ethylene-α-olefin copolymer and an ethylene-unsaturated monomer copolymer. As the α-olefin, α-olefin is ethylene, propylene, 1-butene, isobutylene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 1-heptane, 1 -Octene, 1-nonene, 1-decene and the like. Examples of the unsaturated monomer include vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, and vinyl alcohol. In addition, it is one of preferred embodiments that these polyolefin resins are copolymerized or modified in a small amount using a silane compound, a carboxylic acid, a glycidyl compound, or the like, if necessary.
 これらのポリオレフィン系樹脂の中でも、太陽電池封止材として重要な透明性や、太陽電池セルとの接着性等の観点から、エチレン酢酸ビニル共重合体、エチレンメチルメタクリレート共重合体、低密度ポリエチレンをエチレン性不飽和シラン化合物で変性したものなどを用いることが好ましい。エチレン酢酸ビニル共重合体や、エチレンメタクリレート共重合体を用いる場合は、共重合成分の含有量は、15~40質量%の範囲であることが好ましい。 Among these polyolefin-based resins, ethylene vinyl acetate copolymer, ethylene methyl methacrylate copolymer, and low density polyethylene are used from the viewpoint of transparency that is important as a solar cell encapsulant and adhesion to solar cells. It is preferable to use one modified with an ethylenically unsaturated silane compound. When an ethylene vinyl acetate copolymer or an ethylene methacrylate copolymer is used, the content of the copolymer component is preferably in the range of 15 to 40% by mass.
 また、封止材シートを構成する樹脂組成物は、有機過酸化物を含んでいることが好ましい。有機過酸化物は、100℃以上の温度で分解してラジカルを発生するものであれば、どのようなものでも使用することができ、太陽電池封止材シートを製造する時の温度、太陽電池モジュールを作成するときの加熱・貼り合わせ温度、および架橋剤自身の貯蔵安定性などを考慮して選択すればよい。特に、半減期10時間の分解温度が70℃以上のものが好ましい。この様な有機過酸化物の例としては、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレレート、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、ジーt-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジスクシン酸パーオキサイド、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシー2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシノルマルオクトエート、t-アミルパ-オキシイソノナノエート、t-アミルパーオキシ-2-エチルヘキシルカーボネート、ジ-t-アミルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、エチル3,3-ジ(t-ブチルパーオキシ)ブチレート、1,1-ジ(t-アミルパーオキシ)シクロヘキサンなどを挙げることができる。これらの有機過酸化物は二種以上組み合わせて用いてもよい。これらの有機過酸化物の含有量は、ポリオレフィン系樹脂100質量部に対して0.1~5質量部が好ましい。より好ましくは0.1~3質量部、特に好ましくは0.2~2質量部である。有機過酸化物の含有量が0.1質量部未満であるとポリオレフィン系樹脂を架橋させることが出来ない場合がある。5質量部を超えて含有してもその含有効果が低いことに加え、未分解の有機過酸化物が封止材シート中に残存し、経年劣化の原因となる可能性がある。 Moreover, it is preferable that the resin composition constituting the sealing material sheet contains an organic peroxide. Any organic peroxide can be used as long as it decomposes at a temperature of 100 ° C. or higher to generate radicals. The temperature at which the solar cell encapsulant sheet is produced, the solar cell What is necessary is just to select in consideration of the heating and laminating temperature at the time of producing a module, the storage stability of the crosslinking agent itself, and the like. In particular, those having a decomposition temperature of 70 hours or more with a half-life of 10 hours are preferred. Examples of such organic peroxides include 1,1-di (t-hexylperoxy) cyclohexane, n-butyl 4,4-di- (t-butylperoxy) valerate, 2,5-dimethyl- 2,5-di (t-butylperoxy) hexane, di-t-butyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 Disuccinic acid peroxide, di (4-t-butylcyclohexyl) peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexa Noate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropyl monocarbonate, di (4-t-butylcyclohexyl) Syl) peroxydicarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxy-2-ethylhexyl monocarbonate, t-butylperoxy- 2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxyacetate, t-butylperoxyisononanoate, t-amylperoxy-2-ethylhexanoate, t-amylperoxy Normal octoate, t-amylperoxyoxynononanoate, t-amylperoxy-2-ethylhexyl carbonate, di-t-amyl peroxide, 1,1-di (t-butylperoxy) cyclohexane, ethyl 3,3 -Di (t-butylperoxy) butyrate, 1,1-di (t-amyl) Peroxy) cyclohexane and the like. These organic peroxides may be used in combination of two or more. The content of these organic peroxides is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin. The amount is more preferably 0.1 to 3 parts by mass, particularly preferably 0.2 to 2 parts by mass. If the content of the organic peroxide is less than 0.1 part by mass, the polyolefin resin may not be crosslinked. Even if the content exceeds 5 parts by mass, the content effect is low, and undecomposed organic peroxide may remain in the encapsulant sheet, which may cause deterioration over time.
 封止材シートを構成する樹脂組成物は、さらに架橋助剤、シラン系カップリング剤、光安定剤、紫外線吸収剤、酸化防止剤などを含んでいてもよい。 The resin composition constituting the encapsulant sheet may further contain a crosslinking aid, a silane coupling agent, a light stabilizer, an ultraviolet absorber, an antioxidant, and the like.
 架橋助剤は、分子内に複数個の不飽和結合を有する多官能性モノマーであり、有機過酸化物の分解によって発生した活性ラジカル化合物と反応し、ポリオレフィン系樹脂を均一に、効率よく架橋させるために用いられる。これらの架橋助剤の例としては、トリアリルイソシアヌレート、トリアリルシアヌレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス[(メタ)アクリロイキシエチル]イソシアヌレート、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート、ジビニルベンゼンなどが挙げられる。これらの架橋助剤は、それぞれ単独で用いてもよいし、2種類以上を併用してもよい。なお、本発明において、「(メタ)アクリレート」は「アクリレートまたはメタクリレート」を意味する。 The crosslinking aid is a polyfunctional monomer having a plurality of unsaturated bonds in the molecule and reacts with the active radical compound generated by the decomposition of the organic peroxide to uniformly and efficiently crosslink the polyolefin resin. Used for. Examples of these crosslinking aids include triallyl isocyanurate, triallyl cyanurate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris [(meth) acryloyloxyethyl] isocyanurate, Dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerystol penta (meth) acrylate, dipentaerystol hexa (meth) acrylate, divinylbenzene, etc. Can be mentioned. These crosslinking aids may be used alone or in combination of two or more. In the present invention, “(meth) acrylate” means “acrylate or methacrylate”.
 これらの架橋助剤の中でも、トリアリルイソシアヌレート、トリメチロールプロパントリ(メタ)アクリレートが特に好ましい。これらの架橋助剤を添加する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0~5質量部が好ましい。より好ましくは0.1~3質量部、特に好ましくは0.3~3質量部である。5質量部を超えて含有しても、効果の向上はわずかであり、コストアップ要因となる。 Among these crosslinking aids, triallyl isocyanurate and trimethylolpropane tri (meth) acrylate are particularly preferable. The content in the case of adding these crosslinking aids is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin. The amount is more preferably 0.1 to 3 parts by mass, particularly preferably 0.3 to 3 parts by mass. Even if the content exceeds 5 parts by mass, the effect is only slightly improved, which causes a cost increase.
 シラン系カップリング剤は、太陽電池封止材シートと、太陽電池セル、バックシート、ガラスなどの各種部材との接着性を向上させるために使用することが好ましい。シラン系カップリング剤を添加する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0.05~2質量部の範囲であることが好ましい。0.05質量部未満であると含有効果が少ない。2質量部を超えて含有しても接着性の向上効果は少ない。シラン系カップリング剤としては特に限定されるものではないが、例えばメタクリロキシ基、アクリロキシ基、エポキシ基、メルカプト基、ウレイド基、イソシアネート基、アミノ基、水酸基、の中から選ばれた少なくとも1種の官能基を有するアルコキシシラン化合物が挙げられる。その具体例としては、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシランなどのメタクリロキシ基含有アルコキシシラン化合物、γ-アクリロキシプロピルトリメトキシシランなどのアクリロキシ基含有アルコキシシラン化合物、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシシラン、などのウレイド基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、などのイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などが挙げられる。中でも、ポリオレフィン系樹脂との相溶性の観点からメタクリロキシ基含有アルコキシシラン化合物が好ましく、γ-メタクリロキシプロピルトリメトキシシランがさらに好ましい。 The silane coupling agent is preferably used for improving the adhesion between the solar cell encapsulant sheet and various members such as solar cells, a back sheet, and glass. The content in the case of adding the silane coupling agent is preferably in the range of 0.05 to 2 parts by mass with respect to 100 parts by mass of the polyolefin resin. When the amount is less than 0.05 parts by mass, the content effect is small. Even if it contains more than 2 parts by mass, the effect of improving adhesiveness is small. Although it does not specifically limit as a silane coupling agent, For example, at least 1 sort (s) chosen from methacryloxy group, acryloxy group, an epoxy group, a mercapto group, a ureido group, an isocyanate group, an amino group, and a hydroxyl group. Examples include alkoxysilane compounds having a functional group. Specific examples thereof include methacryloxy group-containing alkoxysilane compounds such as γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, and γ-methacryloxypropyltrimethoxysilane. , Acryloxy group-containing alkoxysilane compounds such as γ-acryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyl Epoxy group-containing alkoxysilane compounds such as trimethoxysilane, mercapto group-containing alkoxysilane compounds such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane Ureido group-containing alkoxysilane compounds such as γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyl Isocyanato group-containing alkoxysilane compounds such as dimethoxysilane, amino such as γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane Examples thereof include a hydroxyl group-containing alkoxysilane compound such as a group-containing alkoxysilane compound, γ-hydroxypropyltrimethoxysilane, and γ-hydroxypropyltriethoxysilane. Among these, a methacryloxy group-containing alkoxysilane compound is preferable from the viewpoint of compatibility with a polyolefin resin, and γ-methacryloxypropyltrimethoxysilane is more preferable.
 封止材シートを構成する樹脂組成物は、さらに紫外線吸収剤を含むことが好ましい。紫外線吸収剤は、照射光中の有害な紫外線を吸収して、分子内で無害な熱エネルギーへと変換し、高分子中の光劣化開始の活性種が励起されるのを防止するものである。紫外線吸収剤としては、既知のものを用いることができる。例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸系、シアノアクリレート系などを使用することができる。これらの1種を用いてもよいし、2種以上を組み合わせ使用してもよい。 It is preferable that the resin composition constituting the encapsulant sheet further contains an ultraviolet absorber. The UV absorber absorbs harmful UV rays in the irradiated light and converts them into innocuous heat energy within the molecule, preventing the active species that initiate photodegradation in the polymer from being excited. . Known ultraviolet absorbers can be used. For example, benzophenone series, benzotriazole series, triazine series, salicylic acid series, cyanoacrylate series, etc. can be used. One of these may be used, or two or more may be used in combination.
 ベンゾフェノン系紫外線吸収剤としては、例えば、2,2’-ジヒドロキシ-4,4’-ジ(ヒドロキシメチル)ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジ(2-ヒドロキシエチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジメトキシ-5,5’-ジ(ヒドロキシメチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジメトキシ-5,5’-ジ(2-ヒドロキシエチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジ(ヒドロキシメチル)-5,5’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジ(2-ヒドロキシエチル)-5,5’-ジメトキシベンゾフェノン、2,2-ジヒドロキシ-4,4-ジメトキシベンゾフェノン等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,2′-dihydroxy-4,4′-di (hydroxymethyl) benzophenone, 2,2′-dihydroxy-4,4′-di (2-hydroxyethyl) benzophenone, 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-di (hydroxymethyl) benzophenone, 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-di (2-hydroxy Ethyl) benzophenone, 2,2′-dihydroxy-3,3′-di (hydroxymethyl) -5,5′-dimethoxybenzophenone, 2,2′-dihydroxy-3,3′-di (2-hydroxyethyl)- Examples include 5,5′-dimethoxybenzophenone and 2,2-dihydroxy-4,4-dimethoxybenzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-〔2’-ヒドロキシ-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-メチル-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-メチル-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-メチル-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-ブチル-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-ブチル-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-オクチル-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-オクチル-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-オクチル-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール等、あるいは2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(ヒドロキシメチル)フェノール〕、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(3-ヒドロキシプロピル)フェノール〕、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(4-ヒドロキシブチル)フェノール〕、3,3-{2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-1-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕}プロパン、2,2-{2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-1-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕}ブタン、2,2’-オキシビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕、2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕アミン等が挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- [2′-hydroxy-5 ′-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(2-hydroxyethyl). ) Phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-methyl-5'- (Hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-3′-methyl-5 ′-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy- 3′-methyl-5 ′-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy- '-T-butyl-5'-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-t-butyl-5 '-(2-hydroxyethyl) phenyl] -2H- Benzotriazole, 2- [2'-hydroxy-3'-t-octyl-5 '-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-t-octyl-5' -(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-t-octyl-5 '-(3-hydroxypropyl) phenyl] -2H-benzotriazole, etc., or 2 , 2'-methylenebis [6- (2H-benzotriazoly-2-yl) -4- (hydroxymethyl) phenol], 2,2'-methylenebis [6 (2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol], 2,2′-methylenebis [6- (2H-benzotriazoly-2-yl) -4- (3-hydroxypropyl) phenol] 2,2′-methylenebis [6- (2H-benzotriazoly-2-yl) -4- (4-hydroxybutyl) phenol], 3,3- {2,2′-bis [6- (2H-benzotriazoly 2-yl) -1-hydroxy-4- (2-hydroxyethyl) phenyl]} propane, 2,2- {2,2′-bis [6- (2H-benzotriazoly-2-yl) -1-hydroxy- 4- (2-hydroxyethyl) phenyl]} butane, 2,2′-oxybis [6- (2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol 2,2'-bis [6- (2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol] amine and the like.
 トリアジン系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロポキシ)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロポキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブチル)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブチル)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブトキシ)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブトキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロピル)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロポキシ)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、等が挙げられる。 Examples of triazine ultraviolet absorbers include 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4, 6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-diphenyl-s-triazine, 2- [2-hydroxy -4- (2-hydroxyethyl) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4, 6-diphenyl-s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -S-triazine, 2- [2-hydroxy-4- (3-hydroxypropoxy) phenyl] -4,6-diphenyl-s-triazine, 2- [2-hydroxy-4- (3-hydroxypropoxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (4-hydroxybutyl) phenyl] -4,6-diphenyl-s-triazine, 2- [ 2-hydroxy-4- (4-hydroxybutyl) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (4-hydroxybutoxy) phenyl] -4,6-diphenyl-s-triazine, 2- [2-hydroxy-4- (4-hydroxybutoxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -S-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-bis (2-hydroxy-4-methylphenyl) -s-triazine, 2- [2-hydroxy-4- (2 -Hydroxyethyl) phenyl] -4,6-bis (2-hydroxy-4-methylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4,6-bis (2-hydroxy-4-methylphenyl) -s-triazine, 2- [2-hydroxy-4- (3-hydroxypropyl) phenyl] -4,6-bis (2-hydroxy-4-methylphenyl) -s -Triazine, 2- [2-hydroxy-4- (3-hydroxypropoxy) phenyl] -4,6-bis (2-hydroxy-4-methylphenyl) -s-triazine , Etc.
 サリチル酸系紫外線吸収剤としては、フェニルサリシレート、p-tert-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート等が挙げられる。 Examples of the salicylic acid ultraviolet absorber include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate and the like.
 シアノアクリレート系紫外線吸収剤としては、2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレート、エチル-2-シアノ-3,3’-ジフェニルアクリレート等が挙げられる。 Examples of the cyanoacrylate ultraviolet absorber include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and the like.
 これらの紫外線吸収剤の中でもベンゾフェノン系の紫外線吸収剤が紫外線吸収効果と、紫外線吸収剤そのものの着色の観点から最も好ましい。 Of these ultraviolet absorbers, benzophenone-based ultraviolet absorbers are most preferable from the viewpoints of the ultraviolet absorption effect and coloring of the ultraviolet absorber itself.
 上記の紫外線吸収剤を添加する場合は、ポリオレフィン系樹脂100質量部に対して0.05~3質量部が好ましい。より好ましくは0.05~2.0質量部である。含有量が0.05質量部未満であると含有効果が低く、3質量部を超えると着色傾向となる。 In the case of adding the above ultraviolet absorber, 0.05 to 3 parts by mass is preferable with respect to 100 parts by mass of the polyolefin resin. More preferably, it is 0.05 to 2.0 parts by mass. When the content is less than 0.05 parts by mass, the content effect is low, and when it exceeds 3 parts by mass, a coloring tendency occurs.
 封止材シートを構成する樹脂組成物は、さらに光安定剤を含むことが好ましい。光安定剤は、ポリマーに対して有害なラジカル種を補足し、新たなラジカルを発生しないようにするものである。光安定剤としては、ヒンダードアミン系光安定剤が好ましく用いられる。 It is preferable that the resin composition which comprises a sealing material sheet contains a light stabilizer further. The light stabilizer captures radical species that are harmful to the polymer and prevents the generation of new radicals. As the light stabilizer, a hindered amine light stabilizer is preferably used.
 ヒンダードアミン系光安定剤としては、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル、1,1-ジメチルエチルヒドロパーオキサイドおよびオクタンの反応生成物70質量%とポリプロピレン30質量%からなるもの、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートおよびメチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート混合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、2,2,6,6-テトラメチル-4-ピペリジル-1,2,3,4-ブタンテトラカルボキシレートとトリデシル-1,2,3,4-ブタンテトラカルボキシレートの混合物、1,2,2,6,6-ペンタメチル-4-ピペリジル-1,2,3,4-ブタンテトラカルボキシレートとトリデシル-1,2,3,4-ブタンテトラカルボキシレートの混合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、N,N’,N”,N”’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミンと上記コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物の混合物、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物などが挙げられる。上述したヒンダードアミン系光安定剤は、一種単独で用いられてもよく、二種以上を混合して用いてもよい。 Hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroperoxide and octane produced by reaction with decanedioic acid 70% by mass of a product and 30% by mass of polypropylene, bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxy Phenyl] methyl] butyl malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate mixture, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl ) -1,2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 2,2 , 6,6-Tetramethyl-4-piperidyl-1,2,3,4-butanetetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate, 1,2,2,6 A mixture of 6-pentamethyl-4-piperidyl-1,2,3,4-butanetetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate, poly [{6- (1,1,3, 3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6 6-tetramethyl-4-piperidyl) imino}], dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, N, N ′, N ″, N ″ '-Tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane 1,10-diamine, dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol polymer mixture, dibutylamine, 1,3,5-triazine, N, Polycondensation of N'-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine Thing And so on. The above-mentioned hindered amine light stabilizers may be used alone or in combination of two or more.
 これらの中でも、ヒンダードアミン系光安定剤としては、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートおよびメチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物、並びにメチル-4-ピペリジルセバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケートを用いるのが好ましい。また、ヒンダードアミン系光安定剤は、融点が、60℃以上であるものを用いるのが好ましい。 Among these, hindered amine light stabilizers include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl seba. It is preferred to use a mixture of ketates, as well as methyl-4-piperidyl sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate. Moreover, it is preferable to use a hindered amine light stabilizer having a melting point of 60 ° C. or higher.
 ヒンダードアミン系光安定剤を添加する場合の含有量は、ポリオレフィン系樹脂100質量部に対して、0.05~3.0質量部が好ましい。より好ましくは0.05~1.0質量部である。含有量が、0.05質量部未満では、安定化効果が不十分であり、3.0質量部を超えて含有しても着色やコストアップの要因となる。 When the hindered amine light stabilizer is added, the content is preferably 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the polyolefin resin. More preferably, it is 0.05 to 1.0 part by mass. If the content is less than 0.05 parts by mass, the stabilizing effect is insufficient, and even if the content exceeds 3.0 parts by mass, coloring and cost increase are caused.
 その他、本発明の効果を阻害しない範囲内で、既知の添加剤として、酸化防止剤、難燃剤、難燃助剤、可塑剤、滑剤、着色剤などを必要に応じて含有してもよい。 In addition, an antioxidant, a flame retardant, a flame retardant aid, a plasticizer, a lubricant, a colorant, and the like may be included as necessary within the range not impairing the effects of the present invention.
  [太陽電池モジュール]
 太陽電池モジュールは、受光面保護材と、裏面保護材と、この受光面保護剤と裏面保護材との間に配置され、封止材シートにより太陽電池セルが封止された層と、で構成されている。ここで使用される封止材シートとしては、本発明の製造方法により得られた封止材シートを使用してもよいし、前述した表面に独立した突起を有する封止材シートを使用してもよい。
[Solar cell module]
The solar cell module is composed of a light-receiving surface protective material, a back surface protective material, and a layer in which the solar cells are sealed with a sealing material sheet disposed between the light-receiving surface protective agent and the back surface protective material. Has been. As a sealing material sheet used here, you may use the sealing material sheet obtained by the manufacturing method of this invention, and use the sealing material sheet which has the processus | protrusion independent on the surface mentioned above. Also good.
 本発明の製造方法により得られた封止材シートは、上記構成の材料を積層一体化するときの加熱収縮が小さい。そのため、太陽電池セルと封止材シートとの間、受光面保護材と封止材シートの間、裏面保護材と封止材シートとの間の成形時の残留応力が小さく、長期にわたる耐久性が優れた太陽電池モジュールとなる。 The encapsulant sheet obtained by the production method of the present invention has small heat shrinkage when the above-structured materials are laminated and integrated. Therefore, the residual stress at the time of molding between the solar battery cell and the encapsulant sheet, between the light-receiving surface protective material and the encapsulant sheet, and between the back surface protector and the encapsulant sheet is small, and long-term durability Becomes an excellent solar cell module.
 また、前述の表面に独立した突起を有する封止材シートは、上記構成の材料を積層一体化するときの太陽電池セルへの押し圧力を分散させることができるので、太陽電池セルと封止材シートとの間の残留応力が小さくできる。また、封止材中の気泡の残存もない。そのため、長期間にわたる耐久性が優れた太陽電池モジュールとなる。 Moreover, since the sealing material sheet having independent protrusions on the surface described above can disperse the pressing force to the solar battery cells when the materials having the above-mentioned configuration are laminated and integrated, the solar battery cells and the sealing material Residual stress between the sheet and the sheet can be reduced. In addition, no bubbles remain in the sealing material. Therefore, the solar cell module is excellent in durability over a long period of time.
 本実施例で用いた測定法を下記に示す。特に断らない限り、測定n数は5とし、平均値を採用した。 The measurement method used in this example is shown below. Unless otherwise specified, the number of measurement n was 5, and the average value was adopted.
 (1)シートの厚み
 成形した封止材シートを、幅方向で任意の20点の厚みを測定し、平均厚みを求めた。測定器は、ミツトヨ社製 シックネスゲージ(547-301型)を使用した。封止材シートの厚みは、封止材シートの片面のみに突起が形成されている場合は、突起の頂点から、突起を有する面とは反対側の面までの距離を測定した。封止材シートの両面に突起が形成されている場合は、一方の面の突起の頂点から、反対面の突起の頂点までの距離を測定した。
(1) Thickness of sheet The 20-point thickness of the molded encapsulant sheet was measured in the width direction to obtain an average thickness. As a measuring instrument, a thickness gauge (type 547-301) manufactured by Mitutoyo Corporation was used. The thickness of the sealing material sheet was measured by measuring the distance from the top of the protrusion to the surface opposite to the surface having the protrusion when the protrusion was formed only on one side of the sealing material sheet. When protrusions were formed on both surfaces of the encapsulant sheet, the distance from the top of the protrusion on one surface to the top of the protrusion on the opposite surface was measured.
 (2)突起高さ
 製造時のシートの走行方向(以下、MD方向と略する)とは直角の方向(幅方向)に、突起の頂部を通過するよう封止材シートを切断した。切断した封止材シートの厚み方向断面を実体顕微鏡でシートの全幅に渡って観察した。
封止材シートの片面に突起がある場合、封止材シートの突起のある側の面をA面、突起のない側の面をB面とする。図3に示すように、A面の突起の頂点からB面までの距離をTmax、A面の突起のない部分からB面までの距離をTminとする。そして、突起の高さTを式(i)で計算した。
・T(μm)=Tmax-Tmin ・・・(i)
 封止材シートの両面に突起がある場合、封止材シートの一方の面をA面、もう一方の面をB面とする。図4に示すように、A面の突起の頂点からB面の突起のない部分までの距離をTAmax、B面の突起の頂点からA面の突起のない部分までの距離をTBmax、A面の突起のない部分からB面の突起のない部分までの距離をTminとする。そして、A面の突起の高さTAを式(ii)で、B面の突起の高さTBを式(iii)で計算した。
・TA(μm)=TAmax-Tmin ・・・(ii)
・TB(μm)=TBmax-Tmin ・・・(iii)。 
(2) Protrusion height The sealing material sheet was cut so as to pass the top of the protrusion in a direction (width direction) perpendicular to the traveling direction of the sheet at the time of manufacture (hereinafter abbreviated as MD direction). A cross section in the thickness direction of the cut sealing material sheet was observed over the entire width of the sheet with a stereomicroscope.
When there is a projection on one side of the encapsulant sheet, the side of the encapsulant sheet with the projection is A side, and the side without the projection is B side. As shown in FIG. 3, the distance from the apex of the protrusion on the A surface to the B surface is Tmax, and the distance from the portion having no protrusion on the A surface to the B surface is Tmin. Then, the height T of the protrusion was calculated by the formula (i).
T (μm) = Tmax−Tmin (i)
When there are protrusions on both sides of the encapsulant sheet, one side of the encapsulant sheet is A side and the other side is B side. As shown in FIG. 4, the distance from the apex of the protrusion on the A surface to the portion without the protrusion on the B surface is TAmax, the distance from the apex of the protrusion on the B surface to the portion without the protrusion on the A surface is TBmax, The distance from the portion having no protrusion to the portion having no protrusion on the B surface is defined as Tmin. Then, the height TA of the projection on the A surface was calculated by the equation (ii), and the height TB of the projection on the B surface was calculated by the equation (iii).
TA (μm) = TAmax−Tmin (ii)
TB (μm) = TBmax−Tmin (iii).
 (3)エンボスローラーの模様深さ
 エンボスローラーの表面を、JIS B0601(2001)に準拠し、基準長さ20mm、荷重0.75mN、測定速度0.3mm/sの測定条件で測定した。測定は、ミツトヨ社製 小形表面粗さ測定器 SJ401を用い、円錐60°、先端曲率半径2μmのダイヤモンド触針を用いて測定した。この測定値を、エンボスローラーの模様深さPz値(μm)とした。
(3) Pattern depth of embossing roller The surface of the embossing roller was measured under the measurement conditions of a standard length of 20 mm, a load of 0.75 mN, and a measurement speed of 0.3 mm / s in accordance with JIS B0601 (2001). The measurement was performed by using a small surface roughness measuring device SJ401 manufactured by Mitutoyo Corporation and a diamond stylus having a cone of 60 ° and a tip curvature radius of 2 μm. This measured value was taken as the pattern depth Pz value (μm) of the embossing roller.
 (4)エンボス転写率
 上記(2)で測定した突起高さT(μm)(または、突起高さTA(μm)若しくは突起高さTB(μm))を、上記(3)で測定したエンボスローラーの模様深さPzで除した値をエンボス転写率とした。
・エンボス転写率(%)=T/Pz×100。
(4) Embossing transfer rate Embossing roller in which the protrusion height T (μm) (or protrusion height TA (μm) or protrusion height TB (μm)) measured in (2) above is measured in (3) above. The value divided by the pattern depth Pz was used as the emboss transfer rate.
Emboss transfer rate (%) = T / Pz × 100.
 (5)加熱収縮率
 封止材シートから一辺が120mmの平面正方形状の試験片を切り出した。この試験片上に、製造時のTD方向中央部に、100mmの間隔をあけて二本の平行なTD方向の直線(5cm)を引いた。そして、各直線を6等分する位置(それぞれ5カ所)に印を付した。
次に、試験片を80℃に加熱した温水中に60秒間放置した。封止材シートの比重が小さく、封止材シートが温水の表面に浮ぶ場合は、その浮かんだままの状態で放置した。封止材シートの比重が大きく、封止材シートが温水の中に沈む場合は、その沈んだままの状態で放置した。60秒経過してから、試験片を温水から取り出し、20℃の常温水中に10秒間浸漬させ冷却した後、シート表面の水分を取り除いた。
試験片上に引いた一方の直線に付した5カ所の各印から、もう一方の直線に付した対向する各印までの間隔A(mm)をノギスで測定し、下記式に基づいて加熱収縮率を算出し、5カ所の平均値を求めた。
・加熱収縮率(%)=(100-A)/100×100。
(5) Heat shrinkage rate A flat square test piece having a side of 120 mm was cut out from the encapsulant sheet. On this test piece, two parallel straight lines (5 cm) in the TD direction were drawn at a distance of 100 mm at the center in the TD direction during production. And the mark was attached | subjected to the position (each 5 places) which divides each straight line into 6 equal parts.
Next, the test piece was left in warm water heated to 80 ° C. for 60 seconds. When the specific gravity of the encapsulant sheet was small and the encapsulant sheet floated on the surface of the hot water, the encapsulant sheet was left in the floated state. When the specific gravity of the encapsulant sheet was large and the encapsulant sheet sank in warm water, the encapsulant sheet was left as it was. After 60 seconds, the test piece was taken out from the warm water, immersed in room temperature water at 20 ° C. for 10 seconds and cooled, and then moisture on the sheet surface was removed.
The distance A (mm) from each of the five marks attached to one straight line drawn on the test piece to the opposing marks attached to the other straight line was measured with a caliper, and the heat shrinkage rate based on the following formula Was calculated, and the average value of 5 locations was obtained.
Heat shrinkage rate (%) = (100−A) / 100 × 100
 (6)封止材シートを構成する樹脂組成物のメルトフローレイト
 樹脂組成物を、JIS K7210(1999)「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)およびメルトボリュームフローレイト(MVR)の試験方法」に準拠し、温度190℃、加重2.16kgの試験条件で測定した。
(6) Melt flow rate of resin composition constituting sealing material sheet The resin composition was tested in accordance with JIS K7210 (1999) “Plastic-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR)”. According to “Method”, the measurement was performed under the test conditions of a temperature of 190 ° C. and a load of 2.16 kg.
 (7)突起の底辺長さ(D)
 シートの突起を有する面を実体顕微鏡で観察し、底辺長さ(D)を測定する。突起の底面の形状が三角形や六角形などの多角形や、楕円形である場合は、前記の形状を包含する最小真円の直径を測定した。
(7) Bottom length of protrusion (D)
The surface having the protrusions on the sheet is observed with a stereomicroscope, and the base length (D) is measured. When the shape of the bottom surface of the protrusion is a polygon such as a triangle or a hexagon, or an ellipse, the diameter of the smallest perfect circle including the shape was measured.
 (8)セル割れ性
 封止材シートから一辺が180mmの平面正方形状の試験片を2枚切り出した。多結晶太陽電池セル(3バスバー、サイズ156mm角、厚み200μm)に、インターコネクタ(厚み280μm、幅2mm)を半田付けし、インターコネクタ付きの太陽電池セルを作成した。ガラス板(サイズ180mm角、厚み3mm)と、ポリエステル製太陽電池バックシート(サイズ180mm角、厚み240μm)を用意した。ガラス板の上に、封止材シート、太陽電池セル、封止材シート、バックシートの順で積層した。この際、封止材シートの突起を有する面が太陽電池セルに接するようにして積層した。この積層体を、温度145℃、真空引き30秒、プレス1分、圧力保持10分の条件で真空ラミネートを行い、太陽電池モジュールを製作した。得られた太陽電池モジュールを太陽電池EL画像検査装置によって、発光画像を撮影し、セル割れ部の総クラックの長さ(mm)を測定した。この試験を3回繰り返し総クラック長さの平均値を求めた。
(8) Cell cracking property Two plane square test pieces having a side of 180 mm were cut out from the encapsulant sheet. An interconnector (thickness: 280 μm, width: 2 mm) was soldered to a polycrystalline solar cell (3 bus bars, size: 156 mm square, thickness: 200 μm) to produce a solar cell with an interconnector. A glass plate (size 180 mm square, thickness 3 mm) and a polyester solar cell backsheet (size 180 mm square, thickness 240 μm) were prepared. On the glass plate, it laminated | stacked in order of the sealing material sheet | seat, the photovoltaic cell, the sealing material sheet | seat, and the back sheet | seat. At this time, the sealing material sheet was laminated so that the surface having the protrusions was in contact with the solar battery cell. This laminate was vacuum laminated under the conditions of a temperature of 145 ° C., evacuation for 30 seconds, pressing for 1 minute, and pressure holding for 10 minutes to produce a solar cell module. The obtained solar cell module was photographed with a solar cell EL image inspection device, and a light emission image was taken, and the total crack length (mm) of the cell crack portion was measured. This test was repeated three times to obtain the average value of the total crack length.
 (9)気泡個数
 上記(8)で製作した太陽電池モジュール中の気泡個数を目視により数えた。3回分の試験の平均値を求めた。
(9) Number of bubbles The number of bubbles in the solar cell module produced in (8) above was counted visually. The average of three tests was determined.
 (10)反発応力
 封止材シートから一辺が120mmの平面正方形状の試験片を切り出した。次いで、カトーテック社製 圧縮試験機 KES FB-3を用い、試験片の突起を有する面から、直径16mmの扁平加圧端子により、速度20μm/秒で封止材シートを加圧し、厚み方向に100μm加圧した際のシートの反発応力(kPa)を測定した。この試験を3回繰り返し反発応力の平均値を求めた。
(10) Repulsive stress A flat square test piece having a side of 120 mm was cut out from the encapsulant sheet. Next, using a compression tester KES FB-3 manufactured by Kato Tech Co., Ltd., the sealing material sheet was pressed at a speed of 20 μm / second from the surface having the protrusion of the test piece with a flat pressure terminal having a diameter of 16 mm in the thickness direction. The repulsive stress (kPa) of the sheet when pressed by 100 μm was measured. This test was repeated three times, and the average value of the rebound stress was determined.
 (実施例1)
 図1に示した製造方法に従って太陽電池封止材シートを作成した
 工程(a):製膜工程
 押出機11として2軸押出機を用い、EVA(酢酸ビニル含有量:28質量%、メルトフローレイト:15g/10分、融点:71℃)100質量部、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(1時間半減期温度:119℃)0.7質量部、トリアリルイソシアヌレート0.3質量部、γ-メタクリロキシプロピルトリメトキシシラン0.2質量部、2-ヒドロキシ-4-メトキシベンゾフェノン0.3質量部、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート0.1質量部からなる樹脂組成物を80℃に設定した押出機11に供給して溶融混練した。混練した樹脂組成物を押出機11に接続された105℃に保持されたTダイ12から押出した。なお用いたTダイのリップ幅は1300mm、リップ間隙は0.8mmであった。
このように押出した樹脂組成物を20℃に保持されたポリシングローラー13a、13b、13cによって冷却固化し、シート状にした。なお、Tダイから吐出された時点の工程シートの温度は107℃であった。またこのときの工程シートの幅は1150mm、厚みは450μm、搬送速度は10m/分であった。
Example 1
A solar cell encapsulant sheet was prepared according to the production method shown in FIG. 1. Step (a): Film-forming step EVA (vinyl acetate content: 28% by mass, melt flow rate) using a twin-screw extruder as the extruder 11 : 15 g / 10 min, melting point: 71 ° C.) 100 parts by mass, t-butylperoxy-2-ethylhexyl monocarbonate (1 hour half-life temperature: 119 ° C.) 0.7 parts by mass, triallyl isocyanurate 0.3 parts by mass Parts, 0.2 parts by weight of γ-methacryloxypropyltrimethoxysilane, 0.3 parts by weight of 2-hydroxy-4-methoxybenzophenone, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate 0 The resin composition consisting of 1 part by mass was supplied to the extruder 11 set at 80 ° C. and melt-kneaded. The kneaded resin composition was extruded from a T-die 12 connected to an extruder 11 and maintained at 105 ° C. The T die used had a lip width of 1300 mm and a lip gap of 0.8 mm.
The resin composition thus extruded was cooled and solidified by polishing rollers 13a, 13b, and 13c maintained at 20 ° C. to form a sheet. In addition, the temperature of the process sheet | seat at the time of discharging from T die was 107 degreeC. At this time, the width of the process sheet was 1150 mm, the thickness was 450 μm, and the conveyance speed was 10 m / min.
 工程(b):アニール処理工程
 次に、アニール処理を表1に記載の条件にて実施した。
加熱にはセラミックヒータ16を用い、搬送ローラー17には直径150mmで表面に“テフロン(登録商標)”コーティングした金属ローラーを、ローラーの中心間距離が200mmとなるような間隔で設置したものを用いた。アニール炉15は、SUS製の筐体に断熱材を巻きつけたものを用いた。また、アニール炉15の入り口下部と出口下部より、風速1m/secで、熱風を吹き込んだ。
Step (b): Annealing Step Next, annealing was performed under the conditions shown in Table 1.
A ceramic heater 16 is used for heating, and a metal roller whose surface is coated with “Teflon (registered trademark)” and having a diameter of 150 mm is used as the transport roller 17 at intervals such that the distance between the centers of the rollers is 200 mm. It was. The annealing furnace 15 used was a SUS casing wrapped with a heat insulating material. Hot air was blown from the lower part of the entrance and the lower part of the outlet of the annealing furnace 15 at a wind speed of 1 m / sec.
 工程(c):エンボス加工工程
 表1に記載の条件に従い、エンボス加工をアニール処理に連続して実施した。
エンボス加工は、アニール炉から搬送された工程シートを、模様深さが120μmのエンボスローラー20と、硬度75°のシリコンゴムを厚み10mm巻きつけたエンボス対向ローラー19との間を通すことで実施した。
Step (c): Embossing step In accordance with the conditions described in Table 1, embossing was performed continuously with the annealing treatment.
The embossing was carried out by passing the process sheet conveyed from the annealing furnace between the embossing roller 20 with a pattern depth of 120 μm and the embossing counter roller 19 wound with silicon rubber having a hardness of 75 ° with a thickness of 10 mm. .
 得られた太陽電池封止材シートの加熱収縮率と、エンボス転写率を評価した。結果を表1に示す。表1に示すとおり、加熱収縮率が非常に小さく、かつエンボス模様が明瞭に転写された太陽電池封止材シートが得られた。 The heat shrinkage rate and emboss transfer rate of the obtained solar cell encapsulant sheet were evaluated. The results are shown in Table 1. As shown in Table 1, a solar cell encapsulant sheet having a very small heat shrinkage and an embossed pattern clearly transferred was obtained.
 (実施例2)
 工程(b)における熱風の温度を87℃、ヒータ温度を320℃、炉内滞留時間を29秒とした以外は、実施例1と同じ方法で封止材シートを作成した。工程シートの表面温度が下がったため、加熱収縮率が少し大きくなり、またエンボス転写率が少し低くなったが、実施例1と同様に加熱収縮率が非常に小さく、かつエンボス模様が明瞭に転写された太陽電池封止材シートが得られた。
(Example 2)
A sealing material sheet was prepared in the same manner as in Example 1 except that the hot air temperature in the step (b) was 87 ° C., the heater temperature was 320 ° C., and the residence time in the furnace was 29 seconds. Since the surface temperature of the process sheet was lowered, the heat shrinkage rate was slightly increased and the emboss transfer rate was slightly lowered, but the heat shrinkage rate was very small as in Example 1 and the embossed pattern was clearly transferred. A solar cell encapsulant sheet was obtained.
 (実施例3)
 工程(b)における熱風の温度を80℃、ヒータ温度を300℃、炉内滞留時間を30秒、線圧力を450N/cmとした以外は、実施例1と同じ方法で封止材シートを作成した。工程シートの表面温度がさらに下がったため、加熱収縮率が少し大きくなり、またエンボス転写率が少し低くなったが、実施例1と同様に加熱収縮率が非常に小さく、かつエンボス模様が明瞭に転写された太陽電池封止材シートが得られた。
(Example 3)
A sealing material sheet was prepared in the same manner as in Example 1 except that the hot air temperature in step (b) was 80 ° C., the heater temperature was 300 ° C., the residence time in the furnace was 30 seconds, and the linear pressure was 450 N / cm. did. Since the surface temperature of the process sheet was further lowered, the heat shrinkage rate was slightly increased and the emboss transfer rate was slightly lowered, but the heat shrinkage rate was very small as in Example 1 and the embossed pattern was clearly transferred. A solar cell encapsulant sheet was obtained.
 (実施例4)
 工程(c)における線圧力を200N/cmとした以外は実施例3と同じ方法で封止材シートを作成した。エンボス転写率が少し低くなったが、実施例3と同様にエンボス模様が明瞭に転写された太陽電池封止材シートが得られた。
Example 4
A sealing material sheet was prepared in the same manner as in Example 3 except that the linear pressure in the step (c) was 200 N / cm. Although the emboss transfer rate was slightly low, a solar cell encapsulant sheet in which the emboss pattern was clearly transferred as in Example 3 was obtained.
 (実施例5)
 工程(b)における熱風温度を110℃、炉内滞留時間を27秒とし、工程(c)における線圧力を200N/cmとした以外は実施例1と同様の方法でシートを作成した。工程シートの表面温度が上がったため、加熱収縮率が非常に小さくなり、エンボス転写率も明瞭な太陽電池封止材シートが得られた。
(Example 5)
A sheet was prepared in the same manner as in Example 1 except that the hot air temperature in the step (b) was 110 ° C., the residence time in the furnace was 27 seconds, and the linear pressure in the step (c) was 200 N / cm. Since the surface temperature of the process sheet increased, the solar cell encapsulant sheet with a very small heating shrinkage and a clear emboss transfer rate was obtained.
 (実施例6)
 工程(c)におけるエンボスローラーへの抱き付け角を45°とした以外は、実施例5と同じ方法で封止材シートを作成した。抱き付け角が浅くなったことにより、エンボス転写率が若干浅くなったが、良好な外観を有するシートであった。
(Example 6)
A sealing material sheet was prepared in the same manner as in Example 5 except that the hugging angle to the embossing roller in the step (c) was 45 °. The embossing transfer rate was slightly shallow due to the shallow hugging angle, but the sheet had a good appearance.
 (実施例7)
 工程(b)における工程シートの搬送速度を7m/min、熱風温度を110℃、ヒータ温度を300℃、炉内滞留時間を39秒とし、工程(c)における線圧力を120N/cmとした以外は実施例1と同様の方法で封止材シートを作成した。工程シートの加熱時間が長くなり、表面温度が高くなったため、加熱収縮率が大きく低減し、線圧力が低くても明瞭なエンボス形状のシートを作成することができた。
(Example 7)
The process sheet conveyance speed in step (b) is 7 m / min, the hot air temperature is 110 ° C., the heater temperature is 300 ° C., the residence time in the furnace is 39 seconds, and the linear pressure in step (c) is 120 N / cm. Produced a sealing material sheet in the same manner as in Example 1. Since the heating time of the process sheet became longer and the surface temperature increased, the heat shrinkage ratio was greatly reduced, and a clear embossed sheet could be produced even when the linear pressure was low.
 (比較例1~5)
 表2に示した条件を適用した以外は、実施例1と同様の方法で太陽電池封止材シートを作成した。
(Comparative Examples 1 to 5)
A solar cell encapsulant sheet was prepared in the same manner as in Example 1 except that the conditions shown in Table 2 were applied.
 (比較例6,7)
 図2に示す従来の製造方法にてTダイから押し出した直後にエンボス加工を実施し、次いでアニール処理を行った。アニール処理装置は実施例1と同様のものとし、Tダイ直後のエンボスローラー13b’に模様深さが120μmのローラーを用いた。
(Comparative Examples 6 and 7)
Immediately after extrusion from the T die by the conventional manufacturing method shown in FIG. 2, embossing was performed, followed by annealing. The annealing apparatus was the same as in Example 1, and a roller having a pattern depth of 120 μm was used as the embossing roller 13b ′ immediately after the T die.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (結果)
 表1に示すとおり、実施例1~7で作成した太陽電池封止材シートは、加熱収縮率が小さく、しかもエンボス転写率が高く、エンボス形状が明確に転写されていた。
これらの太陽電池封止材シートを用いて、太陽電池モジュールを従来公知の方法で作成したところ、モジュール作成時に、セルがずれたり、セルが割れたり、気泡が混入してしまうような不具合は発生しなかった。
(result)
As shown in Table 1, the solar cell encapsulant sheets prepared in Examples 1 to 7 had a low heat shrinkage rate and a high emboss transfer rate, and the emboss shape was clearly transferred.
Using these solar cell encapsulant sheets, a solar cell module was created by a conventionally known method. At the time of module creation, problems such as cell displacement, cell cracking, and air bubbles were introduced. I did not.
 比較例1では、アニール処理時の温度、エンボスローラー20入り口でのシート温度がともに低いため、加熱収縮率も大きく、エンボス転写率も低いシートであった。比較例3では、アニール炉出口とエンボスローラー入り口のとの間を広げたために、シートの温度が低下し、エンボス転写率が低下した。比較例4では、アニール炉内のシート表面温度が低いために、加熱収縮率を十分低減させることができなかった。
比較例2では、エンボスローラーに工程シートが巻き付き、サンプルを得ることができなかった。
比較例5では、アニール処理時間が短いため、太陽電池封止材シートの加熱収縮を十分低減することができなかった。
比較例6,7では、ポリシングローラーでエンボス形状を付与したためエンボス形状は明瞭であったが、加熱収縮を低減しようとすると、エンボス形状が崩れてしまい、エンボス形状を保持しようとすると加熱収縮が低減できなかった。
In Comparative Example 1, since the temperature during annealing and the sheet temperature at the entrance of the embossing roller 20 were both low, the heat shrinkage rate was large and the embossing transfer rate was low. In Comparative Example 3, since the space between the annealing furnace outlet and the embossing roller inlet was widened, the sheet temperature was lowered and the embossing transfer rate was lowered. In Comparative Example 4, since the sheet surface temperature in the annealing furnace was low, the heat shrinkage rate could not be sufficiently reduced.
In Comparative Example 2, the process sheet was wound around the embossing roller, and a sample could not be obtained.
In Comparative Example 5, since the annealing treatment time was short, the heat shrinkage of the solar cell encapsulant sheet could not be sufficiently reduced.
In Comparative Examples 6 and 7, the embossed shape was given by the polishing roller, so the embossed shape was clear. However, when trying to reduce the heat shrinkage, the embossed shape collapsed, and when trying to maintain the embossed shape, the heat shrinkage was reduced. could not.
 (実施例8)
 工程(a):製膜工程
 EVA(酢酸ビニル含有量:28質量%、メルトフローレイト:15g/10分(190℃)、融点:71℃)100質量部、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(1時間半減期温度:119℃)0.7質量部、トリアリルイソシアヌレート0.3質量部、γ-メタクリロキシプロピルトリメトキシシラン0.2質量部、2-ヒドロキシ-4-メトキシベンゾフェノン0.3質量部、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート0.1質量部からなる樹脂組成物を80℃に設定した2軸押出機に供給して溶融混練した。混練した樹脂組成物を、2軸押出機に接続され105℃に保持されたTダイからを押出した。なおTダイのリップ幅は1300mm、リップ間隙は0.8mmであった。
(Example 8)
Step (a): Film-forming step EVA (vinyl acetate content: 28% by mass, melt flow rate: 15 g / 10 min (190 ° C.), melting point: 71 ° C.) 100 parts by mass, t-butylperoxy-2-ethylhexyl Monocarbonate (1 hour half-life temperature: 119 ° C) 0.7 parts by mass, triallyl isocyanurate 0.3 parts by mass, γ-methacryloxypropyltrimethoxysilane 0.2 parts by mass, 2-hydroxy-4-methoxybenzophenone A resin composition comprising 0.3 part by mass and 0.1 part by mass of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate is supplied to a twin screw extruder set at 80 ° C. and melted. Kneaded. The kneaded resin composition was extruded from a T die connected to a twin screw extruder and held at 105 ° C. The lip width of the T die was 1300 mm, and the lip gap was 0.8 mm.
 このEVAシートを20℃に保持されたポリシングロールによって冷却固化した。なお、EVAシートがTダイから吐出された時点のシート温度は107℃であった。またこのときのシート幅は1150mm、シートの厚みは450μm、シート搬送速度は10m/分であった。次に、アニール処理、エンボス加工を連続して実施した。 The EVA sheet was cooled and solidified by a polishing roll maintained at 20 ° C. The sheet temperature when the EVA sheet was discharged from the T die was 107 ° C. At this time, the sheet width was 1150 mm, the sheet thickness was 450 μm, and the sheet conveyance speed was 10 m / min. Next, annealing treatment and embossing were continuously performed.
 工程(b):アニール処理工程
 アニール処理は、表面温度を350℃に設定したセラミックヒータを設置し、直径150mmで表面に“テフロン(登録商標)”コーティングした金属ローラーを、ローラーの中心間距離が250mmとなるような間隔で設置した、SUS製の筐体に断熱材を巻きつけたアニール炉内を通すことで行った。また、炉の入り口下部と出口下部より、風速1m/secで、熱風を吹き込んだ。
Step (b): Annealing treatment step An annealing treatment is performed by installing a ceramic heater with a surface temperature set at 350 ° C., a metal roller having a diameter of 150 mm and coated with “Teflon (registered trademark)” on the surface, and the distance between the centers of the rollers is It was performed by passing through an annealing furnace in which a heat insulating material was wound around a SUS casing, which was installed at intervals of 250 mm. Hot air was blown from the lower part of the entrance and the lower part of the furnace at a wind speed of 1 m / sec.
 工程(c):エンボス加工工程
 エンボス加工は、アニール炉から取り出したシートを、模様深さが180μm、直径460μmで半球形状の凹型の彫刻模様を450個/cm有するエンボスローラーと、硬度75°のシリコンゴムを厚み10mm巻きつけた対向ローラーとの間を通すことで実施した。
Process (c): Embossing process The embossing process is performed by embossing the sheet taken out of the annealing furnace with an embossing roller having a pattern depth of 180 μm, a diameter of 460 μm and 450 hemispherical concave engraving patterns / cm 2, and a hardness of 75 °. This was carried out by passing it between opposed rollers wound with a thickness of 10 mm.
 なお、上記製造条件の詳細は以下の通りである。
アニール炉入り口でのシート表面温度:23℃
熱風温度:93℃
アニール炉内でのシート表面の最高温度:90℃
アニール炉出口でのシート表面温度:90℃
アニール炉内のシート滞留時間:28秒
アニール炉15出口でのシート速度:9.6m/min
エンボスローラー入り口でのシート表面温度:78℃
エンボスローラー温度:15℃
エンボスローラーの線圧力:350N/cm
エンボスローラーへの抱き付け角:120°。
The details of the manufacturing conditions are as follows.
Sheet surface temperature at the annealing furnace entrance: 23 ° C
Hot air temperature: 93 ° C
Maximum temperature of sheet surface in annealing furnace: 90 ° C
Sheet surface temperature at annealing furnace outlet: 90 ° C
Sheet residence time in the annealing furnace: 28 seconds Sheet speed at the outlet of the annealing furnace 15: 9.6 m / min
Sheet surface temperature at the embossing roller entrance: 78 ° C
Embossing roller temperature: 15 ° C
Embossed roller linear pressure: 350 N / cm
Hang angle to emboss roller: 120 °.
 得られた封止材シートの加熱収縮率と、反発応力、モジュール製造時のセル割れ性、気泡個数を評価した。結果を表3に示す。表3に示すとおり、シート加熱収縮率が小さく、モジュール製造時のセル割れ、気泡の少ない封止材シートであった。 The heat shrinkage rate, rebound stress, cell cracking property during module production, and the number of bubbles of the obtained encapsulant sheet were evaluated. The results are shown in Table 3. As shown in Table 3, the sheet was a sealing material sheet having a small sheet heat shrinkage ratio and having few cell cracks and bubbles during module production.
 (実施例9)
 工程(c)におけるエンボスローラーを、模様深さが120μm、直径460μmで半球形状の凹型の彫刻模様を450個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表3に示すとおり、シート加熱収縮率が小さく、モジュール製造時のセル割れ、気泡の少ない封止材シートであった。
Example 9
The embossing roller in step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 120 μm, a diameter of 460 μm, and 450 hemispherical concave engraving patterns / cm 2. A material sheet was created.
As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage ratio and few cell cracks and bubbles during module production.
 (実施例10)
 工程(c)におけるエンボスローラーを、模様深さが300μm、直径460μmで半球形状の凹型の彫刻模様を450個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表3に示すとおり、シート加熱収縮率が小さく、モジュール製造時のセル割れ、気泡の少ない封止材シートであった。
(Example 10)
The embossing roller in the step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 300 μm, a diameter of 460 μm, and 450 hemispherical concave engraving patterns / cm 2. A material sheet was created.
As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage ratio and few cell cracks and bubbles during module production.
 (実施例11)
 工程(c)におけるエンボスローラーを、模様深さが300μm、直径330μmで半球形状の凹型の彫刻模様を980個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表3に示すとおり、シート加熱収縮率が小さく、モジュール製造時のセル割れ、気泡の少ない封止材シートであった。
(Example 11)
The embossing roller in the step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 300 μm and a diameter of 330 μm and a hemispherical concave engraving pattern of 980 pieces / cm 2. A material sheet was created.
As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage ratio and few cell cracks and bubbles during module production.
 (実施例12)
 工程(c)におけるエンボスローラーを、模様深さが180μm、外周直径460μmで四角錐形状の凹型の彫刻模様を840個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表3に示すとおり、モジュール製造時のセル割れは若干発生するものの、シート加熱収縮率が小さく、気泡の少ない封止材シートであった。
(Example 12)
In the same manner as in Example 8, except that the embossing roller in the step (c) was changed to an embossing roller having a pattern depth of 180 μm, an outer diameter of 460 μm and a rectangular pyramid-shaped concave engraving pattern of 840 pieces / cm 2. A sealing material sheet was prepared.
As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and few bubbles, although some cell cracking during module production occurred.
 (実施例13)
 アニール処理を実施せず、赤外線ヒータによりシート表面温度を90℃に加熱し、エンボス加工を実施した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表3に示すとおり、シートの加熱収縮率が大きく、モジュール製造時のセル割れは若干発生するものの、気泡の少ない封止材シートであった。
(Example 13)
A sealing material sheet was prepared in the same manner as in Example 8 except that the annealing was not performed and the sheet surface temperature was heated to 90 ° C. with an infrared heater and embossing was performed.
As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet with a small number of bubbles, although the sheet had a large heat shrinkage rate and cell cracking occurred slightly during module production.
 (実施例14)
 EVA樹脂をメルトフローレイト10g/10分のEVA樹脂に変更した以外は、実施例8と同様の方法で封止材シートを作成した。得られた封止材シートは表3に示すとおり、モジュール製造時のセル割れは若干発生するものの、シート加熱収縮率が小さく、気泡の少ない封止材シートであった。
(Example 14)
A sealing material sheet was prepared in the same manner as in Example 8 except that the EVA resin was changed to an EVA resin having a melt flow rate of 10 g / 10 min. As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and few bubbles, although some cell cracking during module production occurred.
 (実施例15)
 工程(c)におけるエンボスローラーを、模様深さが180μm、外周直径2000μmで四角錐形状の凹型の彫刻模様を45個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表3に示すとおり、シート加熱収縮率が小さく、モジュール製造時のセル割れは若干発生するものの、気泡の少ない封止材シートであった。
(Example 15)
In the same manner as in Example 8, except that the embossing roller in the step (c) was changed to an embossing roller having a pattern depth of 180 μm, an outer peripheral diameter of 2000 μm, and 45 pyramidal concave engraving patterns / cm 2. A sealing material sheet was prepared.
As shown in Table 3, the obtained encapsulant sheet was a encapsulant sheet with a small number of bubbles, although the sheet heat shrinkage rate was small and cell cracking during module production was slightly generated.
 (参考例1)
 エンボス加工を実施しない他は、実施例8と同様の方法でアニール処理まで実施した封止材シートを作成し評価に供した。
得られた封止材シートは表4に示すとおり、シートの加熱収縮率は小さいが、モジュール製造時のセル割れ、気泡が大量に発生する封止材シートであった。
(Reference Example 1)
Except not embossing, the sealing material sheet which implemented by annealing method by the method similar to Example 8 was created, and it used for evaluation.
As shown in Table 4, the obtained encapsulant sheet was a encapsulant sheet in which the heat shrinkage rate of the sheet was small, but a large number of cell cracks and bubbles were generated during module production.
 (参考例2)
 工程(c)におけるエンボスローラーを、模様深さが180μmで、ロールの回転方向に連続した半円形状の溝(溝幅460μm)の彫刻模様を有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表4に示すとおり、シート加熱収縮率が小さく、モジュール製造時のセル割れは少ないが、気泡の多い封止材シートであった。
(Reference Example 2)
Example 8 except that the embossing roller in the step (c) was changed to an embossing roller having a pattern depth of 180 μm and an engraving pattern of a semicircular groove (groove width 460 μm) continuous in the rotation direction of the roll. A sealing material sheet was prepared in the same manner.
As shown in Table 4, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and few cell cracks during module production, but having many bubbles.
 (参考例3)
 工程(c)におけるエンボスローラーを、模様深さが50μm、直径460μmで半球形状の凹型の彫刻模様を450個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表4に示すとおり、シート加熱収縮率は小さいが、モジュール製造時のセル割れ、気泡の多い封止材シートであった。
(Reference Example 3)
The embossing roller in the step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 50 μm, a diameter of 460 μm, and 450 hemispherical concave engraving patterns / cm 2. A material sheet was created.
As shown in Table 4, the obtained encapsulant sheet had a small sheet heat shrinkage rate, but was a encapsulant sheet having many cell cracks and bubbles during module production.
 (参考例4)
 工程(c)におけるエンボスローラーを、模様深さが180μm、直径150μmで半球形状の凹型の彫刻模様を4500個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表4に示すとおり、シート加熱収縮率は小さく、気泡は少ないが、モジュール製造時のセル割れの多い封止材シートであった。
(Reference Example 4)
The embossing roller in the step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 180 μm and a diameter of 150 μm and a hemispherical concave engraving pattern of 4500 pieces / cm 2. A material sheet was created.
As shown in Table 4, the obtained encapsulant sheet was a encapsulant sheet having a small sheet heat shrinkage rate and a small number of bubbles, but many cell cracks during module production.
 (参考例5)
 工程(c)におけるエンボスローラーを、模様深さが180μm、直径3800μmで半球形状の凹型の彫刻模様を7個/cm有するエンボスローラーに変更した以外は、実施例8と同様の方法で封止材シートを作成した。
得られた封止材シートは表4に示すとおり、シート加熱収縮率は小さいが、モジュール製造時のセル割れ、および気泡の多い封止材シートであった。
(Reference Example 5)
The embossing roller in step (c) was sealed in the same manner as in Example 8 except that the embossing roller was changed to an embossing roller having a pattern depth of 180 μm, a diameter of 3800 μm, and 7 hemispherical concave engraving patterns / cm 2. A material sheet was created.
As shown in Table 4, the obtained encapsulant sheet had a small sheet heat shrinkage rate, but was a encapsulant sheet with many cell cracks and bubbles during module production.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、太陽電池封止材シートの製造方法に非常に好適に用いることができる。特に、加熱収縮を低減し、明瞭なエンボス模様を有しているため、モジュール製造時のセルの位置ズレ、モジュール内への気泡混入などを防止でき、モジュールの生産性を著しく向上させることができる。 The present invention can be used very suitably for a method for producing a solar cell encapsulant sheet. In particular, it has reduced heat shrinkage and has a clear embossed pattern, so it can prevent cell misalignment and air bubbles in the module during module manufacturing, and can significantly improve module productivity. .
 1  工程シート
11  2軸押出機
12  ダイ
13a ポリシングローラー(表面に彫刻加工なし)
13b ポリシングローラー(表面に彫刻なし)
13b’エンボスローラー(表面に彫刻加工あり)
13c ポリシングローラー(表面に彫刻加工なし)
14  ニップローラー
15  アニール炉
16  ヒータ
17  搬送ローラー
18  シート取り出しローラー
19  エンボス対向ローラー
20  エンボスローラー
21  冷却ローラー
31  ギヤポンプ
32  シート搬送方向
33  非接触式赤外線温度計
1 process sheet 11 twin screw extruder 12 die 13a polishing roller (no engraving on the surface)
13b Polishing roller (no engraving on the surface)
13b 'Embossed roller (with engraving on the surface)
13c Polishing roller (no engraving on the surface)
14 Nip roller 15 Annealing furnace 16 Heater 17 Conveying roller 18 Sheet take-out roller 19 Embossed opposed roller 20 Embossed roller 21 Cooling roller 31 Gear pump 32 Sheet conveying direction 33 Non-contact infrared thermometer

Claims (11)

  1.  下記の工程(a)、工程(b)および工程(c)をこの順番に行う、太陽電池封止材シートの製造方法。
    工程(a): 加熱により溶融した樹脂組成物をシート状に成形し、次いで冷却することで工程シートを得る工程
    工程(b): 前記工程(a)で得られた工程シートの少なくとも一方の表面を22~55秒間加熱し、この加熱中にこの表面の温度を、この表面部分を構成する樹脂組成物の融点以上の温度に到達させる工程
    工程(c): 前記工程(b)において加熱された工程シートの表面を、(前記表面部分を構成する樹脂組成物の融点-10℃)~(前記表面部分を構成する樹脂組成物の融点+20℃)の温度にし、次いでこの表面にエンボスローラーを押し当て、この表面にエンボス形状を形成する工程
    The manufacturing method of the solar cell sealing material sheet which performs the following process (a), a process (b), and a process (c) in this order.
    Step (a): Forming a resin composition melted by heating into a sheet shape, and then cooling to obtain a step sheet Step (b): At least one surface of the step sheet obtained in the step (a) Is heated for 22 to 55 seconds, and during this heating, the temperature of the surface reaches a temperature not lower than the melting point of the resin composition constituting the surface portion. Step (c): Heated in the step (b) The surface of the process sheet is brought to a temperature of (the melting point of the resin composition constituting the surface portion−10 ° C.) to (the melting point of the resin composition constituting the surface portion + 20 ° C.), and then an embossing roller is pressed against the surface Bumping and forming an embossed shape on this surface
  2.  前記工程(c)において、前記エンボスローラーで前記工程シートの表面を押し当てる際に、この表面にかかる線圧力を150~500N/cmにする、請求項1の太陽電池封止材シートの製造方法。 The method for producing a solar cell encapsulant sheet according to claim 1, wherein, in the step (c), when the surface of the process sheet is pressed by the embossing roller, a linear pressure applied to the surface is set to 150 to 500 N / cm. .
  3.  前記工程(c)において、前記エンボスローラーで前記工程シートの表面を押し当てる際に、このエンボスローラーの表面温度を(前記表面部分を構成する樹脂組成物の融点-20℃)以下にする、請求項1または2の太陽電池封止材シートの製造方法。 In the step (c), when the surface of the process sheet is pressed with the embossing roller, the surface temperature of the embossing roller is set to (the melting point of the resin composition constituting the surface portion −20 ° C.) or less. The manufacturing method of the solar cell sealing material sheet of claim | item 1 or 2.
  4.  前記工程(a)において、単軸または2軸押出機を用いて前記加熱により溶融した樹脂組成物をダイから押し出してシート状に成形する、請求項1~3のいずれかの太陽電池封止材シートの製造方法。 The solar cell encapsulant according to any one of claims 1 to 3, wherein in the step (a), the resin composition melted by the heating is extruded from a die using a single-screw or twin-screw extruder and formed into a sheet shape. Sheet manufacturing method.
  5.  前記表面部分を構成する樹脂組成物が、ポリオレフィン系樹脂と有機過酸化物を含む、請求項1~4のいずれかの太陽電池封止材シートの製造方法。 The method for producing a solar cell encapsulant sheet according to any one of claims 1 to 4, wherein the resin composition constituting the surface portion contains a polyolefin resin and an organic peroxide.
  6.  請求項1~5のいずれかの製造方法によって得られた太陽電池封止材シートであって、
     前記表面部分を構成する樹脂組成物がポリオレフィン系樹脂を含み、
     前記エンボス形状が形成された表面が、高さ60~300μmの独立した突起を40~2300個/cm有し、かつ、この独立した突起の高さ(T)と底辺長さ(D)との比(T/D)が0.05~0.80である、太陽電池封止材シート。
    A solar cell encapsulant sheet obtained by the production method according to any one of claims 1 to 5,
    The resin composition constituting the surface portion includes a polyolefin resin,
    Surface wherein the embossed shape is formed, a separate high protrusions 60 ~ 300μm 40 ~ 2300 pieces / cm 2 has, and the height of the independent projections (T) and bottom lengths (D) and A solar cell encapsulant sheet having a ratio (T / D) of 0.05 to 0.80.
  7.  前記太陽電池封止材シートを80℃の温水中に1分間放置した際に、この封止材シートのシート流れ方向の加熱収縮率が30%以下である、請求項6の太陽電池封止材シート。 The solar cell sealing material according to claim 6, wherein when the solar cell sealing material sheet is left in warm water at 80 ° C for 1 minute, the heat shrinkage rate of the sealing material sheet in the sheet flow direction is 30% or less. Sheet.
  8.  前記独立した突起の形状が、半球状および/または四角錐状である、請求項6または7の太陽電池封止材シート。 The solar cell encapsulant sheet according to claim 6 or 7, wherein the independent protrusion has a hemispherical shape and / or a quadrangular pyramid shape.
  9.  前記太陽電池封止材シートの前記突起を有する面を、この封止材シートの厚み方向に100μm圧縮した際に、シートの反発応力が70kPa以下である、請求項6~8のいずれかの太陽電池封止材シート。 The solar cell according to any one of claims 6 to 8, wherein when the surface having the protrusions of the solar cell encapsulant sheet is compressed by 100 µm in the thickness direction of the encapsulant sheet, the repulsive stress of the sheet is 70 kPa or less. Battery encapsulant sheet.
  10.  前記太陽電池封止材シートの突起を有する面が、さらに、高さ1~15μmの突起を有する、請求項6~9のいずれかの太陽電池封止材シート。 10. The solar cell encapsulant sheet according to claim 6, wherein the surface of the solar cell encapsulant sheet having a protrusion further has a protrusion having a height of 1 to 15 μm.
  11.  受光面保護材と、
     裏面保護材と、
     この受光面保護材と裏面保護材との間に配置され、請求項6~10のいずれかの太陽電池封止材シートにより太陽電池セルが封止された層と、
    で構成された、太陽電池モジュール。
    A light-receiving surface protective material;
    Back surface protection material,
    A layer disposed between the light-receiving surface protective material and the back surface protective material, wherein the solar cells are sealed with the solar cell sealing material sheet according to any one of claims 6 to 10,
    A solar cell module composed of
PCT/JP2012/057531 2011-03-31 2012-03-23 Process for producing solar cell sealing sheet WO2012133196A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137024913A KR20140010961A (en) 2011-03-31 2012-03-23 Process for producing solar cell sealing sheet
CN201280014497.1A CN103442880B (en) 2011-03-31 2012-03-23 The manufacture method of solar cell sealing sheet material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-077719 2011-03-31
JP2011-077718 2011-03-31
JP2011077719 2011-03-31
JP2011077718 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133196A1 true WO2012133196A1 (en) 2012-10-04

Family

ID=46930919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057531 WO2012133196A1 (en) 2011-03-31 2012-03-23 Process for producing solar cell sealing sheet

Country Status (3)

Country Link
KR (1) KR20140010961A (en)
CN (1) CN103442880B (en)
WO (1) WO2012133196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645312A (en) * 2019-03-04 2020-09-11 世联株式会社 Embossing die, embossing device, and embossing method
CN113214556A (en) * 2021-05-20 2021-08-06 深圳市金露兴科技有限公司 Formula and production process of protective sealing film
US11167465B2 (en) 2017-09-26 2021-11-09 Davis-Standard, Llc Casting apparatus for manufacturing polymer film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103729A1 (en) * 2014-03-19 2015-09-24 Ensinger Gmbh Method for producing an insulating strip
CN107343383A (en) * 2015-02-04 2017-11-10 三井化学东赛璐株式会社 The manufacture method of solar cell sealing film, solar cell sealing film roll and solar module
CN105034346B (en) * 2015-06-19 2017-06-16 河北贵航鸿图汽车零部件有限公司 A kind of surface detail forming device of weather strip for automobile
CN108297490A (en) * 2017-01-13 2018-07-20 上海众邦制版科技有限公司 A kind of wallpaper dandy roll production method
CN108621353A (en) * 2017-03-24 2018-10-09 阿特斯阳光电力集团有限公司 Photovoltaic encapsulation glued membrane preparation facilities
JP7106416B2 (en) * 2018-10-01 2022-07-26 東レ株式会社 Silicone rubber roller for embossing, method and apparatus for producing plastic film using the same, and surface protective film
CN113910746B (en) * 2021-10-18 2023-10-27 江西弘德智信科创有限公司 Photovoltaic module lamination positioner based on industrial robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222545A (en) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp Method for producing resinous sealed sheet, and resinous sealed sheet
JP2010232311A (en) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd Sealing sheet for solar cell
JP2011020375A (en) * 2009-07-16 2011-02-03 C I Kasei Co Ltd Method of manufacturing low-shrinkable resin film
JP2011077256A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Method of manufacturing adhesive sheet for solar cell
JP2011116014A (en) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp Method for producing solar cell sealing sheet
JP2011151284A (en) * 2010-01-25 2011-08-04 C I Kasei Co Ltd Sealing film for solar cell module, and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006298297B2 (en) * 2005-09-30 2012-03-08 Toray Industries, Inc. Encapsulation film for photovoltaic module and photovoltaic module
CN101826568B (en) * 2009-03-03 2016-06-22 C.I.化成株式会社 Low elasticity resin film and manufacture method thereof and manufacture device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222545A (en) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp Method for producing resinous sealed sheet, and resinous sealed sheet
JP2010232311A (en) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd Sealing sheet for solar cell
JP2011020375A (en) * 2009-07-16 2011-02-03 C I Kasei Co Ltd Method of manufacturing low-shrinkable resin film
JP2011077256A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Method of manufacturing adhesive sheet for solar cell
JP2011116014A (en) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp Method for producing solar cell sealing sheet
JP2011151284A (en) * 2010-01-25 2011-08-04 C I Kasei Co Ltd Sealing film for solar cell module, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167465B2 (en) 2017-09-26 2021-11-09 Davis-Standard, Llc Casting apparatus for manufacturing polymer film
US11173644B2 (en) 2017-09-26 2021-11-16 Davis-Standard, Llc Casting apparatus for manufacturing polymer film
CN111645312A (en) * 2019-03-04 2020-09-11 世联株式会社 Embossing die, embossing device, and embossing method
CN113214556A (en) * 2021-05-20 2021-08-06 深圳市金露兴科技有限公司 Formula and production process of protective sealing film

Also Published As

Publication number Publication date
KR20140010961A (en) 2014-01-27
CN103442880B (en) 2016-04-27
CN103442880A (en) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2012133196A1 (en) Process for producing solar cell sealing sheet
JP2012214050A (en) Method for producing solar cell sealing sheet, and solar cell module
JP6501906B2 (en) Solar cell module
JP2010232311A (en) Sealing sheet for solar cell
JP2006303233A (en) Adhesive sheet for solar cell
JP2013035279A (en) Protective sheet for solar cell, method for producing the same, back sheet for solar cell, and solar cell module
JP2002185027A (en) Sealing film for solar battery
JP5421138B2 (en) Sealing film for solar cell module and manufacturing method thereof
JP5928092B2 (en) Solar cell encapsulant sheet and solar cell module
CN104619492B (en) Solar cell sealing sheet material and solar module
JP5176279B2 (en) Method for producing solar cell module filler sheet and method for producing solar cell module
JP5741775B2 (en) Sheet heat treatment method and sheet heat treatment apparatus
JP2012079988A (en) Sealing material sheet and solar cell module
JP2007299917A (en) Adhesive sheet for solar cell
JP6542782B2 (en) Sealing material for solar cell and solar cell module
JP5727319B2 (en) Polymer sheet, protective sheet for solar cell, and solar cell module
JP6136444B2 (en) Extruded sheet manufacturing method, solar cell encapsulating sheet and solar cell module
JP5517121B2 (en) Method for producing sealing material film for solar cell module
JP2013159777A (en) Resin for use in sealing material of solar cell
JP6050652B2 (en) Polymer sheet for solar cell and solar cell module
JP2008096499A (en) Functional thermoplastic resin sheet having uneven surface, its manufacturing method and transfer film
WO2012165351A1 (en) Copolymer and sealing material for use in solar cells which uses said copolymer
JP2017222805A (en) Adhesive sheet
TW201244915A (en) Process for producing solar cell sealing sheet
JP2011077256A (en) Method of manufacturing adhesive sheet for solar cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280014497.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137024913

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762942

Country of ref document: EP

Kind code of ref document: A1