WO2016125325A1 - Observation device - Google Patents

Observation device Download PDF

Info

Publication number
WO2016125325A1
WO2016125325A1 PCT/JP2015/070590 JP2015070590W WO2016125325A1 WO 2016125325 A1 WO2016125325 A1 WO 2016125325A1 JP 2015070590 W JP2015070590 W JP 2015070590W WO 2016125325 A1 WO2016125325 A1 WO 2016125325A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation apparatus
light receiving
axis
mirror
receiving surface
Prior art date
Application number
PCT/JP2015/070590
Other languages
French (fr)
Japanese (ja)
Inventor
上原 誠
Original Assignee
株式会社目白ゲノッセン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015121630A external-priority patent/JP2016148829A/en
Application filed by 株式会社目白ゲノッセン filed Critical 株式会社目白ゲノッセン
Priority to US15/549,096 priority Critical patent/US20180024335A1/en
Priority to EP15881142.2A priority patent/EP3255474A1/en
Priority to CN201580075384.6A priority patent/CN107209354A/en
Publication of WO2016125325A1 publication Critical patent/WO2016125325A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to an observation apparatus.
  • the near side and the far side are out of focus.
  • the image plane and the object plane are arranged perpendicular to the optical axis.
  • the present inventor has already proposed an invention of a measuring apparatus capable of measuring an object plane from an oblique direction (see Patent Document 1).
  • This measuring device uses a 1 ⁇ reflection type imaging optical system.
  • the entire object surface observed obliquely can be imaged on the light receiving surface.
  • Most of the conventional optical observation apparatuses using the Scheinproof principle use a refractive lens system.
  • the performance of a conventional optical observation apparatus using a refractive lens system is, for example, as shown in Table 1 below.
  • An object of the present invention is to provide an observation apparatus capable of observing, for example, an object surface of about 24.6 ⁇ 24.6 mm with a resolution of 10 microns or less and a large tilt angle exceeding 45 degrees. It is another object of the present invention to provide an observation apparatus in which the wavelength of light used for observing an object surface is not limited.
  • An observation apparatus comprising: a light receiving surface that receives light from an object surface; and an imaging optical system that forms an image of light from the object surface on the light receiving surface;
  • the imaging optical system includes a concave primary mirror, a convex secondary mirror, and an extraction flat mirror, and reflects a light beam from the object surface in the order of the concave primary mirror, the convex secondary mirror, and the concave primary mirror.
  • First tilting means capable of changing an angle ⁇ formed by an optical axis of light directed from the object plane toward the concave primary mirror and a perpendicular to the object plane;
  • An observation apparatus comprising: a second tilting unit capable of changing an angle ⁇ formed by an optical axis of light directed from the extraction flat mirror toward the light receiving surface and a perpendicular to the light receiving surface.
  • the first tilting means can change the angle ⁇ in the range of 0 degrees to 70 degrees
  • observation apparatus is a microscope, a spectroscopic ellipsometer, a defect detection apparatus, or a reflectance measurement apparatus.
  • an observation apparatus capable of observing an object surface of about 24.6 ⁇ 24.6 mm with a resolution of 10 microns or less and a large tilt angle exceeding 45 degrees can be provided.
  • the wavelength of light used for observing the object plane is not limited.
  • FIG. 1 It is the front view, top view, and side view of an observation apparatus which make a X axis a rotating shaft. It is the front view, top view, and side view of an observation apparatus which make a Y-axis a rotating shaft. It is a top view of the observation apparatus rotated by 0 ° around the X axis. It is a side view of the observation apparatus rotated by 0 ° around the X axis. It is a front view of the observation apparatus rotated by 0 ° around the X axis. It is a front view of the observation apparatus rotated by 30 degrees around the X axis. It is a front view of the observation apparatus rotated by 60 ° around the X axis.
  • FIG. 1 It is the front view, top view, and side view of an observation apparatus which make a X axis a rotating shaft. It is the front view, top view, and side view of an observation apparatus which make a Y-axis a rotating shaft. It is a
  • FIG. 6 is a front view of the observation apparatus rotated by ⁇ 60 ° about the X axis. It is a top view of the observation apparatus rotated by 0 ° around the Y axis. It is a side view of the observation apparatus rotated by 0 ° around the Y axis. It is a front view of the observation apparatus rotated by 0 ° around the Y axis. It is a front view of the observation apparatus rotated by 30 ° around the Y axis. It is a front view of the observation apparatus rotated by 60 ° around the Y axis.
  • FIG. 6 is a front view of the observation apparatus rotated by ⁇ 30 ° about the Y axis.
  • FIG. 4 is a front view of the observation apparatus rotated by ⁇ 45 ° about the Y axis. It is a side view of an observation apparatus.
  • the calculation result of the resolution (MTF) when the observation apparatus is rotated by 0 ° about the X axis is shown.
  • the calculation result of the resolution (MTF) when the observation apparatus is rotated ⁇ 30 ° around the X axis is shown.
  • the calculation result of the resolution (MTF) when the observation apparatus is rotated by ⁇ 60 ° about the X axis is shown.
  • the calculation result of the resolution (MTF) when the observation apparatus is rotated by 0 ° about the Y axis is shown.
  • the calculation result of the resolution (MTF) when the observation apparatus is rotated ⁇ 30 ° around the Y axis is shown.
  • the calculation result of the resolution (MTF) when the observation apparatus is rotated by ⁇ 60 ° about the Y axis is shown.
  • FIG. 1 is a front view, a top view, and a side view of an observation apparatus having an X axis as a rotation axis.
  • FIG. 2 is a front view, a top view, and a side view of the observation apparatus with the Y axis as the rotation axis.
  • the observation apparatus 10 of the present embodiment forms a light receiving surface 20 for receiving light from the object surface S and an image of light from the object surface S on the light receiving surface 20.
  • the imaging optical system 30 is provided.
  • the imaging optical system 30 is configured by an Offner optical system that is one of the equal-magnification reflective imaging optical systems.
  • the imaging optical system 30 is configured by a telecentric optical system.
  • the observation apparatus 10 of this embodiment may include an illumination optical system (not shown) for irradiating the object surface S with light.
  • the illumination optical system may be configured by a telecentric optical system in accordance with the imaging optical system 30.
  • As the illumination optical system for example, a Kohler illumination system disclosed in JP2013-174844A can be used.
  • the imaging optical system 30 configured by an Offner optical system includes a primary mirror 32 configured by a concave mirror, a secondary mirror 34 configured by a convex mirror, and a lead plane mirror 36. Yes.
  • the light beam from the object surface S is reflected in the order of the primary mirror 32, the secondary mirror 34, the primary mirror 32, and the extraction plane mirror 36, and then forms an image on the light receiving surface 20.
  • the object surface S and the light receiving surface 20 are in a conjugate relationship of equal magnification in the Offner optical system.
  • the object plane S is the surface of an object to be observed, for example, the surface of a printed board.
  • the light receiving surface 20 is a surface on which light from the object surface S forms an image, and is, for example, a light receiving surface of an imaging element such as a two-dimensional CCD.
  • the secondary mirror 34 is a pupil of the optical system.
  • the two-dimensional CCD used for the light receiving surface 20 is preferably a type in which a micro lens or a thick color filter is not incorporated.
  • the light flux from the object surface S toward the concave primary mirror 32 is telecentric.
  • the light reflected by the primary mirror 32 is reflected by the convex secondary mirror 34 that also serves as a stop.
  • the light reflected by the secondary mirror 34 is reflected again by the concave primary mirror 32 and becomes telecentric.
  • the light that has become telecentric after being reflected by the main mirror 32 is reflected by the extraction plane mirror 36 and forms an image on the light receiving surface 20 at the same magnification.
  • FIG. 3 is a top view of the observation apparatus 10 rotated by 0 ° around the X axis.
  • FIG. 4 is a side view of the observation apparatus 10 rotated by 0 ° around the X axis.
  • FIG. 5 is a front view of the observation apparatus 10 rotated by 0 ° around the X axis.
  • FIG. 6 is a front view of the observation apparatus 10 rotated by 30 ° about the X axis.
  • FIG. 7 is a front view of the observation apparatus 10 rotated by 60 ° about the X axis.
  • the perpendicular line N1 of the object plane S is the optical axis L1 of light traveling from the object plane S toward the main mirror 32 in the YZ plane.
  • FIG. 8 is a front view of the observation apparatus 10 rotated by ⁇ 60 ° about the X axis.
  • FIG. 9 is a top view of the observation apparatus 10 rotated by 0 ° about the Y axis.
  • FIG. 10 is a side view of the observation apparatus 10 rotated by 0 ° around the Y axis.
  • FIG. 11 is a front view of the observation apparatus 10 rotated by 0 ° around the Y axis.
  • FIG. 12 is a front view of the observation apparatus 10 rotated by 30 ° about the Y axis.
  • FIG. 13 is a front view of the observation apparatus 10 rotated 60 ° around the Y axis.
  • the perpendicular line N1 of the object plane S is the optical axis L1 of light traveling from the object plane S toward the main mirror 32 in the XZ plane.
  • FIG. 14 is a front view of the observation apparatus 10 rotated by ⁇ 30 ° about the Y axis.
  • the observation apparatus 10 of the present embodiment can rotate around both the X axis and the Y axis. That is, when the object surface S to be observed is located in the XY two-dimensional plane, the lens barrel body that accommodates the primary mirror 32, the secondary mirror 34, and the extraction planar mirror 36 is placed on both the X axis and the Y axis. It can be driven to rotate around the center.
  • the light receiving surface 20 made of, for example, a CCD image sensor can be freely rotated in accordance with the rotation angle of the lens barrel body. Thereby, it is possible to rotationally drive the barrel main body of the observation apparatus 10 and the light receiving surface 20 so that the object surface S and the light receiving surface 20 satisfy the Scheinproof condition. As a result, even when the object plane S is observed from an oblique direction, it is possible to focus on the entire surface of the object plane S.
  • FIG. 15 is a front view showing a more specific appearance of the observation apparatus 10.
  • FIG. 17 is a side view of the observation apparatus 10.
  • FIG. 16 is a front view of the observation apparatus 10 rotated by ⁇ 45 ° about the Y axis.
  • the observation apparatus 10 includes a barrel main body 12 that integrally accommodates a primary mirror 32, a secondary mirror 34, and a drawer plane mirror 36 therein.
  • the observation apparatus 10 also includes means for rotationally driving the lens barrel body 12 about the X axis and the Y axis.
  • This driving means is constituted by, for example, a stepping motor or a servo motor.
  • the means for rotationally driving the lens barrel body 12 is not particularly limited, and may be means other than the stepping motor or the servo motor.
  • the means for rotationally driving the lens barrel body 12 corresponds to the “first tilting means” of the present invention.
  • the observation apparatus 10 includes means for rotationally driving the light receiving surface 20 constituted by, for example, a CCD image sensor.
  • This driving means is constituted by, for example, a stepping motor or a servo motor.
  • the means for rotationally driving the light receiving surface 20 is not particularly limited, and may be means other than a stepping motor or a servo motor.
  • the means for rotationally driving the light receiving surface 20 corresponds to the “second tilting means” of the present invention.
  • the observation apparatus 10 controls the means for rotating the lens barrel body 12 (first tilting means) and the means for rotating the light receiving surface 20 (second tilting means), respectively.
  • the control means is provided.
  • the control means can control the rotation angles of the lens barrel body 12 and the light receiving surface 20 by controlling the first tilting means and the second tilting means, respectively.
  • This control means is constituted by, for example, a personal computer.
  • the first tilting means and the control means are electrically connected.
  • the second tilting means and the control means are electrically connected. It is preferable that software for controlling each of the first tilting means and the second control means is installed in the control means.
  • the first tilting means changes the angle ⁇ formed by the optical axis L1 of the light from the object plane S toward the concave primary mirror 32 and the perpendicular N1 of the object plane S by rotating the lens barrel body 12. Is possible.
  • the first tilting means can preferably change the angle ⁇ in the range of 0 ° to 70 °.
  • the second tilting means can change the angle ⁇ formed by the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20 and the perpendicular N2 of the light receiving surface 20 by rotating the light receiving surface 20. It is.
  • the second tilting means can preferably change the angle ⁇ in the range of 0 ° to 70 °.
  • the control means can control the first tilting means and the second tilting means so that the angle ⁇ and the angle ⁇ are equal. That is, the inclination angles of the object surface S and the light receiving surface 20 with respect to the optical axis can be controlled so that the object surface S and the light receiving surface 20 satisfy the Scheimpflug condition. Thereby, even when the object surface S is observed from a direction inclined by 60 °, for example, the entire surface of the object surface S can be focused.
  • the imaging optical system for imaging light from the object surface S on the light receiving surface 20 is constituted by an Offner optical system which is one of the equal-magnification reflection type imaging optical systems.
  • Such a reflective optical system has an advantage that the wavelength of light used for observation of the object plane S is not limited, unlike a refractive lens. For this reason, since the wavelength of the light used for observation is not restrict
  • the observation apparatus 10 of this embodiment can be applied to a microscope for observing an object plane, for example.
  • the observation apparatus 10 of this embodiment can be applied to, for example, a spectroscopic ellipsometer, a defect detection apparatus, or a reflectance measurement apparatus.
  • the observation device of the present embodiment has a possibility of being applicable to general optical observation devices.
  • FIG. 18 shows a calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated by 0 ° about the X axis.
  • FIG. 19 shows the calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated ⁇ 30 ° about the X axis.
  • FIG. 20 shows the calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated ⁇ 60 ° about the X axis.
  • FIG. 21 shows the calculation result of the resolution (MTF) when the observation apparatus of the present embodiment is rotated by 0 ° about the Y axis.
  • FIG. 22 shows the calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated ⁇ 30 ° around the Y axis.
  • the resolution (MTF) was calculated in a wavelength region from 250 nm (Weight 1.0) to 800 nm (Weight 1.0), assuming that the dominant wavelength is 550 nm (Weight 1.0).
  • the resolution (MTF) was calculated up to 100 LP / mm (5 ⁇ m ⁇ L & S).
  • the object plane and the light receiving plane are symmetric (line symmetric) with respect to the Y axis in the XY projection plane. Not relevant for X axis.
  • the MTFs at the center of the light receiving surface and the four corners substantially overlap with the theoretical values.
  • the object plane and the light receiving plane are symmetric (line symmetric) with respect to the Y axis and asymmetric with respect to the X axis within the XY projection plane.
  • the object surface and the light receiving surface are asymmetric with respect to both the X axis and the Y axis in the XY projection plane.
  • the observation apparatus of the present embodiment can achieve a resolution of almost the theoretical value when the observation apparatus is rotated around the X axis in the YZ plane.
  • the observation apparatus of the present embodiment can achieve a substantially theoretical resolution even when the observation apparatus is rotated around the Y axis in the XZ plane.
  • an observation apparatus shown in FIG. 1 that can tilt the observation apparatus placed in the Z-axis direction perpendicular to the object plane in the X-axis direction is also conceivable.
  • an observation apparatus shown in FIG. 2 that can tilt the observation apparatus placed in the Z-axis direction perpendicular to the object plane in the Y-axis direction is also conceivable.
  • the observation apparatus of this embodiment can observe the object surface from almost all directions.
  • the observation apparatus of the present embodiment can realize a resolution of almost theoretical value even when the object plane is observed from an oblique direction.
  • the object plane of the microscope on which the sample is placed moves in the XY directions.
  • the objective lens that requires focusing moves in the Z-axis direction perpendicular to the object plane. That is, the microscope has three drive shafts.
  • the observation apparatus according to the present embodiment further includes a drive shaft for rotating the observation apparatus about the X axis and a drive shaft for rotating the observation apparatus about the Y axis. That is, the observation apparatus of this embodiment can include five drive shafts. In this case, the observation apparatus of this embodiment may be realized by incorporating a 5-axis robot.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Provided is an observation device with which it is possible to observe an object surface of, for example, roughly 24.6x24.6mm, at a resolution of no more than 10 microns and at a large inclination angle which exceeds 45 degrees. An observation device 10 is provided with a light receiving surface 20 and an image forming optical system 30 for forming light from an object surface S into an image on the light receiving surface 20. The image forming optical system 30 includes a concave-surface primary mirror 32, a sub-mirror 34, and a flat extraction mirror 36. The beams of the light from the object surface S are reflected by the concave-surface primary mirror 32, the convex-surface sub-mirror 34, and the concave-surface primary mirror 32, in that order, and thereafter form an image on the light receiving surface 20 via the flat extraction mirror 36. The observation device 10 is provided with the following: a first tilting means which can change the angle α formed by the optical axis L1 of the light traveling from the object surface S towards the concave-surface primary mirror 32 and the perpendicular line N1 of the object surface S; and a second tilting means which can change the angle β formed by the optical axis L2 of the light traveling from the flat extraction mirror 36 towards the light receiving surface 20 and the perpendicular line N2 of the light receiving surface 20.

Description

観察装置Observation device
 本発明は、観察装置に関する。 The present invention relates to an observation apparatus.
 例えばプリント基板の欠陥検査のために、プリント基板表面の2次元形状だけでなく、プリント基板表面の3次元形状を観察したいという要求がある。すなわち、プリント基板の表面の2次元形状(XY面形状)を観察しながら、その表面の凹凸形状の高さ(=Z軸方向高さ)を観察したいという要求がある。 For example, there is a demand for observing not only the two-dimensional shape of the surface of the printed circuit board but also the three-dimensional shape of the surface of the printed circuit board for defect inspection of the printed circuit board. That is, there is a demand for observing the height of the concavo-convex shape (= the height in the Z-axis direction) on the surface while observing the two-dimensional shape (XY plane shape) of the surface of the printed circuit board.
 プリント基板の表面を真上から観察することによって、その基板表面の2次元形状を測定することは可能である。しかし、Z軸方向の高さの情報を得るためには、基板表面の凹凸形状を斜めから観察する必要がある。例えば、基板表面を斜めから観察すると、観察される画像の手前側は幅が広くなり、奥側は幅が狭くなる。ここで、観察される画像の中央にピントを合わせると、手前側と奥側にはピントが合わなくなるため、中央以外の部分では鮮明な画像が得られない。手前側と奥側にピントが合わなくなるのは、通常の光学系においては、像面と物体面が光軸に対して垂直に配置されることに起因している。手前側と奥側を含めた全面にピントを合わせるためには、像面を光軸に対して傾けるとともに、像面と物体面がシャインプルーフの条件を満たす必要がある。また、手前側と奥側を同じ幅で観察するためには、物体側と像側がともにテレセントリックとなる光学系を用いる必要がある。 It is possible to measure the two-dimensional shape of the surface of the printed circuit board by observing the surface of the printed circuit board from directly above. However, in order to obtain information on the height in the Z-axis direction, it is necessary to observe the uneven shape of the substrate surface from an oblique direction. For example, when the substrate surface is observed obliquely, the width of the near side of the observed image is widened and the width of the far side is narrowed. Here, if the center of the observed image is focused, the near side and the far side are not focused, and a clear image cannot be obtained in a portion other than the center. The reason why the near side and the far side are out of focus is that, in a normal optical system, the image plane and the object plane are arranged perpendicular to the optical axis. In order to focus on the entire surface including the near side and the far side, it is necessary to incline the image plane with respect to the optical axis and to satisfy the Scheinproof condition for the image plane and the object plane. Further, in order to observe the near side and the far side with the same width, it is necessary to use an optical system in which both the object side and the image side are telecentric.
 本発明者は、物体面を斜め方向から計測することのできる計測装置の発明を既に提案している(特許文献1を参照)。この計測装置は、等倍反射型結像光学系を利用している。 The present inventor has already proposed an invention of a measuring apparatus capable of measuring an object plane from an oblique direction (see Patent Document 1). This measuring device uses a 1 × reflection type imaging optical system.
特開2013-174844号公報JP 2013-174844 A
 シャインプルーフの原理を利用することによって、斜めから観察した物体面の全面を、受光面に結像させることができる。シャインプルーフの原理を利用した従来の光学観察装置の大半は、屈折レンズ系を用いている。屈折レンズ系を用いた従来の光学観察装置の性能は、例えば、以下の表1の通りである。 By using the Scheinproof principle, the entire object surface observed obliquely can be imaged on the light receiving surface. Most of the conventional optical observation apparatuses using the Scheinproof principle use a refractive lens system. The performance of a conventional optical observation apparatus using a refractive lens system is, for example, as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、45度を超える大きな傾き角で、かつ、10ミクロン以下の分解能で、物体面を斜めから観察可能な光学観察装置は存在しない。 As shown in Table 1, there is no optical observation apparatus capable of observing the object surface obliquely with a large inclination angle exceeding 45 degrees and a resolution of 10 microns or less.
 また、観察装置の結像光学系に屈折レンズ系を用いた場合、屈折レンズに使用されるガラス材料を透過することのできる光の波長帯が制限されるという問題がある。この場合、観察装置を半導体やバイオ分野へ適用することが困難になるという問題がある。 Also, when a refractive lens system is used as the imaging optical system of the observation apparatus, there is a problem that the wavelength band of light that can be transmitted through the glass material used for the refractive lens is limited. In this case, there is a problem that it is difficult to apply the observation apparatus to the semiconductor and bio fields.
 本発明は、例えば、24.6x24.6mm程度の物体面を、10ミクロン以下の分解能で、かつ、45度を超える大きな傾き角で観察することが可能な観察装置を提供することを目的とする。また、物体面の観察に使用される光の波長が制限されない観察装置を提供することを目的とする。 An object of the present invention is to provide an observation apparatus capable of observing, for example, an object surface of about 24.6 × 24.6 mm with a resolution of 10 microns or less and a large tilt angle exceeding 45 degrees. It is another object of the present invention to provide an observation apparatus in which the wavelength of light used for observing an object surface is not limited.
 上記課題を解決するための手段は、以下の発明である。
(1)物体面からの光を受光する受光面と、前記受光面に前記物体面からの光を結像させる結像光学系と、を備える観察装置であって、
 前記結像光学系は、凹面主鏡、凸面副鏡、及び引き出し平面ミラーを含み、前記物体面からの光の光束を、前記凹面主鏡、前記凸面副鏡、前記凹面主鏡の順番で反射させた後、前記引き出し平面ミラーを介して、前記受光面に結像させることのできる等倍反射型結像光学系で構成されており、
 前記物体面から前記凹面主鏡に向かう光の光軸と前記物体面の垂線とがなす角度αを変化させることのできる第1の傾動手段と、
 前記引き出し平面ミラーから前記受光面に向かう光の光軸と前記受光面の垂線とがなす角度βを変化させることのできる第2の傾動手段と、を備えることを特徴とする観察装置。
Means for solving the above problems are the following inventions.
(1) An observation apparatus comprising: a light receiving surface that receives light from an object surface; and an imaging optical system that forms an image of light from the object surface on the light receiving surface;
The imaging optical system includes a concave primary mirror, a convex secondary mirror, and an extraction flat mirror, and reflects a light beam from the object surface in the order of the concave primary mirror, the convex secondary mirror, and the concave primary mirror. After that, it is composed of an equal-magnification reflection type imaging optical system that can form an image on the light receiving surface through the extraction flat mirror,
First tilting means capable of changing an angle α formed by an optical axis of light directed from the object plane toward the concave primary mirror and a perpendicular to the object plane;
An observation apparatus comprising: a second tilting unit capable of changing an angle β formed by an optical axis of light directed from the extraction flat mirror toward the light receiving surface and a perpendicular to the light receiving surface.
(2)前記第1の傾動手段及び前記第2の傾動手段を制御する制御手段を備え、
 前記制御手段は、前記角度αと前記角度βが等しくなるように、前記第1の傾動手段及び第2の傾動手段を制御する、上記(1)に記載の観察装置。
(2) comprising control means for controlling the first tilting means and the second tilting means;
The observation device according to (1), wherein the control unit controls the first tilting unit and the second tilting unit so that the angle α and the angle β are equal.
(3)前記第1の傾動手段は、前記角度αを0度~70度の範囲で変化させることが可能であり、
 前記第2の傾動手段は、前記角度βを0度~70度の範囲で変化させることが可能である、上記(1)または(2)に記載の観察装置。
(3) The first tilting means can change the angle α in the range of 0 degrees to 70 degrees,
The observation apparatus according to (1) or (2), wherein the second tilting unit is capable of changing the angle β in a range of 0 degrees to 70 degrees.
(4)顕微鏡、分光エリプソメータ、欠陥検出装置、または反射率測定装置である、上記(1)から(3)のうちいずれかに記載の観察装置。 (4) The observation apparatus according to any one of (1) to (3), wherein the observation apparatus is a microscope, a spectroscopic ellipsometer, a defect detection apparatus, or a reflectance measurement apparatus.
 本発明によれば、例えば、24.6x24.6mm程度の物体面を、10ミクロン以下の分解能で、かつ、45度を超える大きな傾き角で観察することが可能な観察装置を提供することができる。また、物体面の観察に使用される光の波長が制限されない観察装置を提供することができる。 According to the present invention, for example, an observation apparatus capable of observing an object surface of about 24.6 × 24.6 mm with a resolution of 10 microns or less and a large tilt angle exceeding 45 degrees can be provided. In addition, it is possible to provide an observation apparatus in which the wavelength of light used for observing the object plane is not limited.
X軸を回転軸とする、観察装置の正面図、上面図、及び側面図である。It is the front view, top view, and side view of an observation apparatus which make a X axis a rotating shaft. Y軸を回転軸とする、観察装置の正面図、上面図、及び側面図である。It is the front view, top view, and side view of an observation apparatus which make a Y-axis a rotating shaft. X軸を中心に0°回転した、観察装置の上面図である。It is a top view of the observation apparatus rotated by 0 ° around the X axis. X軸を中心に0°回転した、観察装置の側面図である。It is a side view of the observation apparatus rotated by 0 ° around the X axis. X軸を中心に0°回転した、観察装置の正面図である。It is a front view of the observation apparatus rotated by 0 ° around the X axis. X軸を中心に30°回転した、観察装置の正面図である。It is a front view of the observation apparatus rotated by 30 degrees around the X axis. X軸を中心に60°回転した、観察装置の正面図である。It is a front view of the observation apparatus rotated by 60 ° around the X axis. X軸を中心に-60°回転した、観察装置の正面図である。FIG. 6 is a front view of the observation apparatus rotated by −60 ° about the X axis. Y軸を中心に0°回転した、観察装置の上面図である。It is a top view of the observation apparatus rotated by 0 ° around the Y axis. Y軸を中心に0°回転した、観察装置の側面図である。It is a side view of the observation apparatus rotated by 0 ° around the Y axis. Y軸を中心に0°回転した、観察装置の正面図である。It is a front view of the observation apparatus rotated by 0 ° around the Y axis. Y軸を中心に30°回転した、観察装置の正面図である。It is a front view of the observation apparatus rotated by 30 ° around the Y axis. Y軸を中心に60°回転した、観察装置の正面図である。It is a front view of the observation apparatus rotated by 60 ° around the Y axis. Y軸を中心に-30°回転した、観察装置の正面図である。FIG. 6 is a front view of the observation apparatus rotated by −30 ° about the Y axis. さらに具体的な観察装置の外観を示す正面図である。Furthermore, it is a front view which shows the external appearance of a specific observation apparatus. Y軸を中心に-45°回転した、観察装置の正面図である。FIG. 4 is a front view of the observation apparatus rotated by −45 ° about the Y axis. 観察装置の側面図である。It is a side view of an observation apparatus. 観察装置がX軸を中心に0°回転した場合における、分解能(MTF)の計算結果を示している。The calculation result of the resolution (MTF) when the observation apparatus is rotated by 0 ° about the X axis is shown. 観察装置がX軸を中心に±30°回転した場合における、分解能(MTF)の計算結果を示している。The calculation result of the resolution (MTF) when the observation apparatus is rotated ± 30 ° around the X axis is shown. 観察装置がX軸を中心に±60°回転した場合における、分解能(MTF)の計算結果を示している。The calculation result of the resolution (MTF) when the observation apparatus is rotated by ± 60 ° about the X axis is shown. 観察装置がY軸を中心に0°回転した場合における、分解能(MTF)の計算結果を示している。The calculation result of the resolution (MTF) when the observation apparatus is rotated by 0 ° about the Y axis is shown. 観察装置がY軸を中心に±30°回転した場合における、分解能(MTF)の計算結果を示している。The calculation result of the resolution (MTF) when the observation apparatus is rotated ± 30 ° around the Y axis is shown. 観察装置がY軸を中心に±60°回転した場合における、分解能(MTF)の計算結果を示している。The calculation result of the resolution (MTF) when the observation apparatus is rotated by ± 60 ° about the Y axis is shown.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。
 図1は、X軸を回転軸とする、観察装置の正面図、上面図、及び側面図である。図2は、Y軸を回転軸とする、観察装置の正面図、上面図、及び側面図である。
 図1、図2に示すように、本実施形態の観察装置10は、物体面Sからの光を受光するための受光面20と、物体面Sからの光を受光面20に結像させるための結像光学系30と、を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view, a top view, and a side view of an observation apparatus having an X axis as a rotation axis. FIG. 2 is a front view, a top view, and a side view of the observation apparatus with the Y axis as the rotation axis.
As shown in FIGS. 1 and 2, the observation apparatus 10 of the present embodiment forms a light receiving surface 20 for receiving light from the object surface S and an image of light from the object surface S on the light receiving surface 20. The imaging optical system 30 is provided.
 本実施形態の観察装置10は、結像光学系30が、等倍反射型結像光学系の一つであるオフナー光学系によって構成されている。結像光学系30は、テレセントリック光学系によって構成されている。 In the observation apparatus 10 of the present embodiment, the imaging optical system 30 is configured by an Offner optical system that is one of the equal-magnification reflective imaging optical systems. The imaging optical system 30 is configured by a telecentric optical system.
 本実施形態の観察装置10は、物体面Sに光を照射するための図示しない照明光学系を備えていてもよい。照明光学系は、結像光学系30に合わせて、テレセントリック光学系によって構成されていてもよい。照明光学系としては、例えば、特開2013-174844号公報に開示されたケーラー照明系を用いることが可能である。 The observation apparatus 10 of this embodiment may include an illumination optical system (not shown) for irradiating the object surface S with light. The illumination optical system may be configured by a telecentric optical system in accordance with the imaging optical system 30. As the illumination optical system, for example, a Kohler illumination system disclosed in JP2013-174844A can be used.
 図1、図2に示すように、オフナー光学系によって構成された結像光学系30は、凹面鏡で構成された主鏡32、凸面鏡で構成された副鏡34、及び引き出し平面ミラー36を備えている。物体面Sからの光の光束は、主鏡32、副鏡34、主鏡32、引き出し平面ミラー36の順番で反射された後、受光面20に結像するようになっている。 As shown in FIGS. 1 and 2, the imaging optical system 30 configured by an Offner optical system includes a primary mirror 32 configured by a concave mirror, a secondary mirror 34 configured by a convex mirror, and a lead plane mirror 36. Yes. The light beam from the object surface S is reflected in the order of the primary mirror 32, the secondary mirror 34, the primary mirror 32, and the extraction plane mirror 36, and then forms an image on the light receiving surface 20.
 物体面Sと受光面20とは、オフナー光学系において、等倍の共役の関係となっている。
 物体面Sは、観察対象となる物体の表面であり、例えば、プリント基板の表面である。
 受光面20は、物体面Sからの光が結像する面であり、例えば、2次元CCD等の撮像素子の受光面である。
 副鏡34は、光学系の瞳となっている。
The object surface S and the light receiving surface 20 are in a conjugate relationship of equal magnification in the Offner optical system.
The object plane S is the surface of an object to be observed, for example, the surface of a printed board.
The light receiving surface 20 is a surface on which light from the object surface S forms an image, and is, for example, a light receiving surface of an imaging element such as a two-dimensional CCD.
The secondary mirror 34 is a pupil of the optical system.
 なお、一般に使われるCCDは、受光効率を上げるために、各素子の前面にマイクロ・レンズと呼ばれる集光レンズや、厚さのあるカラーフィルタが組み込まれている。しかし、大きな傾きを持つ光束は、CCDの受光面に至らないため、マイクロ・レンズで集光することが難しい。したがって、受光面20に使用する2次元CCDは、マイクロ・レンズや、厚さのあるカラーフィルタが組み込まれていないタイプであることが好ましい。 Note that a commonly used CCD incorporates a condenser lens called a micro lens and a thick color filter in front of each element in order to increase the light receiving efficiency. However, since a light beam having a large inclination does not reach the light receiving surface of the CCD, it is difficult to collect the light with a micro lens. Therefore, the two-dimensional CCD used for the light receiving surface 20 is preferably a type in which a micro lens or a thick color filter is not incorporated.
 図1、図2に示すように、物体面Sから凹面主鏡32に向かう光の光束は、テレセントリックとなっている。主鏡32で反射した光は、絞りを兼ねる凸面副鏡34で反射する。副鏡34で反射した光は、再び凹面主鏡32で反射してテレセントリックとなる。主鏡32で反射してテレセントリックとなった光は、引出し平面ミラー36で反射して、等倍で受光面20に結像する。 As shown in FIGS. 1 and 2, the light flux from the object surface S toward the concave primary mirror 32 is telecentric. The light reflected by the primary mirror 32 is reflected by the convex secondary mirror 34 that also serves as a stop. The light reflected by the secondary mirror 34 is reflected again by the concave primary mirror 32 and becomes telecentric. The light that has become telecentric after being reflected by the main mirror 32 is reflected by the extraction plane mirror 36 and forms an image on the light receiving surface 20 at the same magnification.
 物体面Sの視野は、例えば、24.6x24.6mm でNA=0.04である。
 物体面Sからの光が等倍で結像する受光面20の視野も、例えば、24.6x24.6mmでNA=0.04 である。
The field of view of the object plane S is, for example, 24.6 × 24.6 mm and NA = 0.04.
The field of view of the light receiving surface 20 on which the light from the object surface S forms an equal magnification is, for example, 24.6 × 24.6 mm and NA = 0.04.
 図3は、X軸を中心に0°回転した、観察装置10の上面図である。図4は、X軸を中心に0°回転した、観察装置10の側面図である。図5は、X軸を中心に0°回転した、観察装置10の正面図である。
 図5に示すように、観察装置10がX軸を中心に0°回転した状態では、YZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して0°傾斜している(α=0°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して0°傾斜している(β=0°)。
FIG. 3 is a top view of the observation apparatus 10 rotated by 0 ° around the X axis. FIG. 4 is a side view of the observation apparatus 10 rotated by 0 ° around the X axis. FIG. 5 is a front view of the observation apparatus 10 rotated by 0 ° around the X axis.
As shown in FIG. 5, in a state where the observation apparatus 10 is rotated by 0 ° about the X axis, the perpendicular line N1 of the object plane S is the optical axis L1 of light from the object plane S toward the main mirror 32 in the YZ plane. Is inclined by 0 ° with respect to (α = 0 °). Further, the perpendicular N2 of the light receiving surface 20 is inclined by 0 ° (β = 0 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 図6は、X軸を中心に30°回転した、観察装置10の正面図である。
 図6に示すように、観察装置10がX軸を中心に30°回転した状態では、YZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して30°傾斜している(α=30°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して30°傾斜している(β=30°)。
FIG. 6 is a front view of the observation apparatus 10 rotated by 30 ° about the X axis.
As shown in FIG. 6, in a state where the observation apparatus 10 is rotated by 30 ° about the X axis, the perpendicular line N1 of the object plane S is the optical axis L1 of light traveling from the object plane S toward the main mirror 32 in the YZ plane. Is inclined by 30 ° with respect to (α = 30 °). Further, the perpendicular line N2 of the light receiving surface 20 is inclined by 30 ° (β = 30 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 図7は、X軸を中心に60°回転した、観察装置10の正面図である。
 図7に示すように、観察装置10がX軸を中心に60°回転した状態では、YZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して60°傾斜している(α=60°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して60°傾斜している(β=60°)。
FIG. 7 is a front view of the observation apparatus 10 rotated by 60 ° about the X axis.
As shown in FIG. 7, in a state where the observation apparatus 10 is rotated by 60 ° about the X axis, the perpendicular line N1 of the object plane S is the optical axis L1 of light traveling from the object plane S toward the main mirror 32 in the YZ plane. With respect to the angle (α = 60 °). Further, the perpendicular line N2 of the light receiving surface 20 is inclined by 60 ° (β = 60 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 図8は、X軸を中心に-60°回転した、観察装置10の正面図である。
 図8に示すように、観察装置10がX軸を中心に-60°回転した状態では、YZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して-60°傾斜している(α=-60°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して-60°傾斜している(β=-60°)。
FIG. 8 is a front view of the observation apparatus 10 rotated by −60 ° about the X axis.
As shown in FIG. 8, when the observation apparatus 10 is rotated by −60 ° about the X axis, the perpendicular line N1 of the object plane S is the optical axis of the light from the object plane S toward the main mirror 32 in the YZ plane. It is inclined by −60 ° with respect to L1 (α = −60 °). The perpendicular line N2 of the light receiving surface 20 is inclined by −60 ° (β = −60 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 図9は、Y軸を中心に0°回転した、観察装置10の上面図である。図10は、Y軸を中心に0°回転した、観察装置10の側面図である。図11は、Y軸を中心に0°回転した、観察装置10の正面図である。
 図11に示すように、観察装置10がY軸を中心に0°回転した状態では、XZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して0°傾斜している(α=0°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して0°傾斜している(β=0°)。
FIG. 9 is a top view of the observation apparatus 10 rotated by 0 ° about the Y axis. FIG. 10 is a side view of the observation apparatus 10 rotated by 0 ° around the Y axis. FIG. 11 is a front view of the observation apparatus 10 rotated by 0 ° around the Y axis.
As shown in FIG. 11, in a state where the observation apparatus 10 is rotated by 0 ° about the Y axis, the perpendicular line N1 of the object plane S is the optical axis L1 of light traveling from the object plane S toward the main mirror 32 in the XZ plane. Is inclined by 0 ° with respect to (α = 0 °). Further, the perpendicular N2 of the light receiving surface 20 is inclined by 0 ° (β = 0 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 図12は、Y軸を中心に30°回転した、観察装置10の正面図である。
 図12に示すように、観察装置10がY軸を中心に30°回転した状態では、XZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して30°傾斜している(α=30°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して30°傾斜している(β=30°)。
FIG. 12 is a front view of the observation apparatus 10 rotated by 30 ° about the Y axis.
As shown in FIG. 12, in a state where the observation apparatus 10 is rotated by 30 ° about the Y axis, the perpendicular line N1 of the object plane S is the optical axis L1 of light traveling from the object plane S toward the main mirror 32 in the XZ plane. Is inclined by 30 ° with respect to (α = 30 °). Further, the perpendicular line N2 of the light receiving surface 20 is inclined by 30 ° (β = 30 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 図13は、Y軸を中心に60°回転した、観察装置10の正面図である。
 図13に示すように、観察装置10がY軸を中心に60°回転した状態では、XZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して60°傾斜している(α=60°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して60°傾斜している(β=60°)。
FIG. 13 is a front view of the observation apparatus 10 rotated 60 ° around the Y axis.
As shown in FIG. 13, in a state where the observation apparatus 10 is rotated by 60 ° about the Y axis, the perpendicular line N1 of the object plane S is the optical axis L1 of light traveling from the object plane S toward the main mirror 32 in the XZ plane. With respect to the angle (α = 60 °). Further, the perpendicular line N2 of the light receiving surface 20 is inclined by 60 ° (β = 60 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 図14は、Y軸を中心に-30°回転した、観察装置10の正面図である。
 図14に示すように、観察装置10がY軸を中心に-30°回転した状態では、XZ平面内において、物体面Sの垂線N1は、物体面Sから主鏡32に向かう光の光軸L1に対して-30°傾斜している(α=-30°)。また、受光面20の垂線N2は、引き出し平面ミラー36から受光面20に向かう光の光軸L2に対して-30°傾斜している(β=-30°)。
FIG. 14 is a front view of the observation apparatus 10 rotated by −30 ° about the Y axis.
As shown in FIG. 14, when the observation apparatus 10 is rotated by −30 ° about the Y axis, the perpendicular line N1 of the object plane S is the optical axis of the light from the object plane S toward the main mirror 32 in the XZ plane. It is inclined by −30 ° with respect to L1 (α = −30 °). Further, the perpendicular N2 of the light receiving surface 20 is inclined by −30 ° (β = −30 °) with respect to the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20.
 以上説明したように、本実施形態の観察装置10は、X軸及びY軸の両方を中心に回転することが可能である。すなわち、観察対象となる物体面SがXY2次元平面内に位置しているとき、主鏡32、副鏡34、及び引き出し平面ミラー36を収容する鏡筒本体を、X軸及びY軸の両方を中心に回転駆動することが可能である。また、鏡筒本体の回転角度に合わせて、例えばCCD撮像素子からなる受光面20を自在に回転駆動することが可能である。これにより、物体面S及び受光面20がシャインプルーフの条件を満たすように、観察装置10の鏡筒本体、及び、受光面20を回転駆動することが可能である。その結果、物体面Sを斜めから観察した場合であっても、物体面Sの全面にピントを合わせることが可能となる。 As described above, the observation apparatus 10 of the present embodiment can rotate around both the X axis and the Y axis. That is, when the object surface S to be observed is located in the XY two-dimensional plane, the lens barrel body that accommodates the primary mirror 32, the secondary mirror 34, and the extraction planar mirror 36 is placed on both the X axis and the Y axis. It can be driven to rotate around the center. In addition, the light receiving surface 20 made of, for example, a CCD image sensor can be freely rotated in accordance with the rotation angle of the lens barrel body. Thereby, it is possible to rotationally drive the barrel main body of the observation apparatus 10 and the light receiving surface 20 so that the object surface S and the light receiving surface 20 satisfy the Scheinproof condition. As a result, even when the object plane S is observed from an oblique direction, it is possible to focus on the entire surface of the object plane S.
 図15は、さらに具体的な観察装置10の外観を示す正面図である。図17は、観察装置10の側面図である。図16は、Y軸を中心に-45°回転した、観察装置10の正面図である。
 図15~図17に示すように、観察装置10は、主鏡32、副鏡34、及び引き出し平面ミラー36を内部に一体に収容する鏡筒本体12を備えている。また、観察装置10は、鏡筒本体12をX軸及びY軸を中心に回転駆動するための手段を備えている。この駆動手段は、例えば、ステッピングモータあるいはサーボモータによって構成されている。鏡筒本体12を回転駆動するための手段は、特に制限されるものではなく、ステッピングモータあるいはサーボモータ以外の手段であってもよい。鏡筒本体12を回転駆動するための手段が、本発明の「第1の傾動手段」に対応する。
FIG. 15 is a front view showing a more specific appearance of the observation apparatus 10. FIG. 17 is a side view of the observation apparatus 10. FIG. 16 is a front view of the observation apparatus 10 rotated by −45 ° about the Y axis.
As shown in FIGS. 15 to 17, the observation apparatus 10 includes a barrel main body 12 that integrally accommodates a primary mirror 32, a secondary mirror 34, and a drawer plane mirror 36 therein. The observation apparatus 10 also includes means for rotationally driving the lens barrel body 12 about the X axis and the Y axis. This driving means is constituted by, for example, a stepping motor or a servo motor. The means for rotationally driving the lens barrel body 12 is not particularly limited, and may be means other than the stepping motor or the servo motor. The means for rotationally driving the lens barrel body 12 corresponds to the “first tilting means” of the present invention.
 観察装置10は、例えばCCD撮像素子によって構成される受光面20を回転駆動するための手段を備えている。この駆動手段は、例えば、ステッピングモータあるいはサーボモータによって構成されている。受光面20を回転駆動するための手段は、特に制限されるものではなく、ステッピングモータあるいはサーボモータ以外の手段であってもよい。受光面20を回転駆動するための手段が、本発明の「第2の傾動手段」に対応する。 The observation apparatus 10 includes means for rotationally driving the light receiving surface 20 constituted by, for example, a CCD image sensor. This driving means is constituted by, for example, a stepping motor or a servo motor. The means for rotationally driving the light receiving surface 20 is not particularly limited, and may be means other than a stepping motor or a servo motor. The means for rotationally driving the light receiving surface 20 corresponds to the “second tilting means” of the present invention.
 また、観察装置10は、鏡筒本体12を回転駆動するための手段(第1の傾動手段)、及び、受光面20を回転駆動するための手段(第2の傾動手段)をそれぞれ制御するための制御手段を備えている。この制御手段は、第1の傾動手段及び第2の傾動手段をそれぞれ制御することによって、鏡筒本体12及び受光面20の回転角度をそれぞれ制御することができる。この制御手段は、例えばパーソナルコンピュータによって構成されている。第1の傾動手段と制御手段は、電気的に接続されている。第2の傾動手段と制御手段は、電気的に接続されている。制御手段には、第1の傾動手段及び第2の制御手段をそれぞれ制御するためのソフトウェアがインストールされていることが好ましい。 In addition, the observation apparatus 10 controls the means for rotating the lens barrel body 12 (first tilting means) and the means for rotating the light receiving surface 20 (second tilting means), respectively. The control means is provided. The control means can control the rotation angles of the lens barrel body 12 and the light receiving surface 20 by controlling the first tilting means and the second tilting means, respectively. This control means is constituted by, for example, a personal computer. The first tilting means and the control means are electrically connected. The second tilting means and the control means are electrically connected. It is preferable that software for controlling each of the first tilting means and the second control means is installed in the control means.
 第1の傾動手段は、鏡筒本体12を回転させることによって、物体面Sから凹面主鏡32に向かう光の光軸L1と、物体面Sの垂線N1とがなす角度αを変化させることが可能である。第1の傾動手段は、好ましくは、角度αを0°~70°の範囲で変化させることが可能である。 The first tilting means changes the angle α formed by the optical axis L1 of the light from the object plane S toward the concave primary mirror 32 and the perpendicular N1 of the object plane S by rotating the lens barrel body 12. Is possible. The first tilting means can preferably change the angle α in the range of 0 ° to 70 °.
 第2の傾動手段は、受光面20を回転させることによって、引き出し平面ミラー36から受光面20に向かう光の光軸L2と、受光面20の垂線N2とがなす角度βを変化させることが可能である。第2の傾動手段は、好ましくは、角度βを0°~70°の範囲で変化させることが可能である。 The second tilting means can change the angle β formed by the optical axis L2 of the light traveling from the extraction flat mirror 36 toward the light receiving surface 20 and the perpendicular N2 of the light receiving surface 20 by rotating the light receiving surface 20. It is. The second tilting means can preferably change the angle β in the range of 0 ° to 70 °.
 制御手段は、角度αと角度βが等しくなるように、第1の傾動手段及び第2の傾動手段をそれぞれ制御することができる。すなわち、物体面Sと受光面20がシャインプルーフの条件を満たすように、物体面S及び受光面20の光軸に対する傾斜角度をそれぞれ制御することができる。これにより、物体面Sを例えば60°傾斜した方向から観察した場合であっても、物体面Sの全面にピントを合わせることが可能となる。 The control means can control the first tilting means and the second tilting means so that the angle α and the angle β are equal. That is, the inclination angles of the object surface S and the light receiving surface 20 with respect to the optical axis can be controlled so that the object surface S and the light receiving surface 20 satisfy the Scheimpflug condition. Thereby, even when the object surface S is observed from a direction inclined by 60 °, for example, the entire surface of the object surface S can be focused.
 上述したように、物体面Sからの光を受光面20に結像させるための結像光学系は、等倍反射型結像光学系の一つであるオフナー光学系によって構成されている。このような反射光学系は、屈折レンズと異なり、物体面Sの観察に用いる光の波長が制限されないという利点を有している。このため、本実施形態の観察装置10は、観察に用いる光の波長が制限されないため、半導体、バイオ等の様々な分野に適用することができる。 As described above, the imaging optical system for imaging light from the object surface S on the light receiving surface 20 is constituted by an Offner optical system which is one of the equal-magnification reflection type imaging optical systems. Such a reflective optical system has an advantage that the wavelength of light used for observation of the object plane S is not limited, unlike a refractive lens. For this reason, since the wavelength of the light used for observation is not restrict | limited, the observation apparatus 10 of this embodiment can be applied to various fields, such as a semiconductor and biotechnology.
 本実施形態の観察装置10は、例えば、物体面を観察するための顕微鏡に適用することができる。
 本実施形態の観察装置10は、例えば、分光エリプソメータ、欠陥検出装置、または反射率測定装置に適用することが可能である。
 本実施形態の観察装置は、これらの装置以外にも、光学観察装置全般に適用できる可能性を有している。
The observation apparatus 10 of this embodiment can be applied to a microscope for observing an object plane, for example.
The observation apparatus 10 of this embodiment can be applied to, for example, a spectroscopic ellipsometer, a defect detection apparatus, or a reflectance measurement apparatus.
In addition to these devices, the observation device of the present embodiment has a possibility of being applicable to general optical observation devices.
 図18は、本実施形態の観察装置がX軸を中心に0°回転した場合における、分解能(MTF)の計算結果を示している。図19は、本実施形態の観察装置がX軸を中心に±30°回転した場合における、分解能(MTF)の計算結果を示している。図20は、本実施形態の観察装置がX軸を中心に±60°回転した場合における、分解能(MTF)の計算結果を示している。図21は、本実施形態の観察装置がY軸を中心に0°回転した場合における、分解能(MTF)の計算結果を示している。図22は、本実施形態の観察装置がY軸を中心に±30°回転した場合における、分解能(MTF)の計算結果を示している。図23は、本実施形態の観察装置がY軸を中心に±60°回転した場合における、分解能(MTF)の計算結果を示している。分解能(MTF)は、主波長を550nm(Weight 1.0)として、250nm(Weight 1.0)から800nm(Weight 1.0)までの波長域で計算した。また、分解能(MTF)は、100LP/mm(5μm L&S)まで計算した。 FIG. 18 shows a calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated by 0 ° about the X axis. FIG. 19 shows the calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated ± 30 ° about the X axis. FIG. 20 shows the calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated ± 60 ° about the X axis. FIG. 21 shows the calculation result of the resolution (MTF) when the observation apparatus of the present embodiment is rotated by 0 ° about the Y axis. FIG. 22 shows the calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated ± 30 ° around the Y axis. FIG. 23 shows the calculation result of resolution (MTF) when the observation apparatus of the present embodiment is rotated by ± 60 ° about the Y axis. The resolution (MTF) was calculated in a wavelength region from 250 nm (Weight 1.0) to 800 nm (Weight 1.0), assuming that the dominant wavelength is 550 nm (Weight 1.0). The resolution (MTF) was calculated up to 100 LP / mm (5 μmμL & S).
 観察装置がXY平面に対して垂直(X軸中心及びY軸中心の回転角=0°)である場合、XY投影面内において、物体面と受光面がY軸に関して対称(線対称)となり、X軸に関して非対象となる。この場合、図18及び図21に示すように、受光面中心と4つのコーナーにおけるMTFは、ほぼ理論値と重なっている。 When the observation apparatus is perpendicular to the XY plane (X axis center and Y axis center rotation angle = 0 °), the object plane and the light receiving plane are symmetric (line symmetric) with respect to the Y axis in the XY projection plane. Not relevant for X axis. In this case, as shown in FIGS. 18 and 21, the MTFs at the center of the light receiving surface and the four corners substantially overlap with the theoretical values.
 観察装置がX軸を中心に±30°及び±60°回転した場合、XY投影面内において、物体面と受光面がY軸に関して対称(線対称)となり、X軸に関して非対称となる。この場合、図19及び図20に示すように、受光面のX方向におけるMTFは、回転角=0°の場合とほとんど変わらない。受光面のY方向におけるMTFは、回転角30°の場合はcos30°=0.866低くなり、回転角60°の場合はcos60°=0.5低くなり、ほぼ理論値と重なる。 When the observation apparatus is rotated ± 30 ° and ± 60 ° around the X axis, the object plane and the light receiving plane are symmetric (line symmetric) with respect to the Y axis and asymmetric with respect to the X axis within the XY projection plane. In this case, as shown in FIG. 19 and FIG. 20, the MTF in the X direction of the light receiving surface is almost the same as the rotation angle = 0 °. The MTF in the Y direction of the light receiving surface is cos30 ° = 0.866 lower when the rotation angle is 30 °, and cos60 ° = 0.5 lower when the rotation angle is 60 °, which almost overlaps the theoretical value.
 観察装置がY軸を中心に±30°及び±60°回転した場合、XY投影面内において、物体面と受光面がX軸及びY軸の両方に関して非対称となる。この場合、図22及び図23に示すように、受光面のX方向におけるMTFは、回転角=0°の場合とほとんど変わらない。受光面のY方向におけるMTFは、回転角30°の場合はcos30°=0.866低くなり、回転角60°の場合はcos60°=0.5低くなり、ほぼ理論値と重なる。 When the observation apparatus is rotated ± 30 ° and ± 60 ° around the Y axis, the object surface and the light receiving surface are asymmetric with respect to both the X axis and the Y axis in the XY projection plane. In this case, as shown in FIGS. 22 and 23, the MTF in the X direction of the light receiving surface is almost the same as the rotation angle = 0 °. The MTF in the Y direction of the light receiving surface is cos30 ° = 0.866 lower when the rotation angle is 30 °, and cos60 ° = 0.5 lower when the rotation angle is 60 °, which almost overlaps the theoretical value.
 本実施形態の観察装置は、図1に示すように、観察装置をYZ平面内でX軸を中心に回転させた場合に、ほぼ理論値の分解能を実現することができる。また、本実施形態の観察装置は、図2に示すように、観察装置をXZ平面内でY軸を中心に回転させた場合にも、ほぼ理論値の分解能を実現することができる。 As shown in FIG. 1, the observation apparatus of the present embodiment can achieve a resolution of almost the theoretical value when the observation apparatus is rotated around the X axis in the YZ plane. In addition, as shown in FIG. 2, the observation apparatus of the present embodiment can achieve a substantially theoretical resolution even when the observation apparatus is rotated around the Y axis in the XZ plane.
 物体面がXY平面に置かれている場合において、物体面に垂直なZ軸方向に置かれた観察装置をX軸方向に傾斜させることのできる、図1に示す観察装置も考えられる。
 物体面がXY平面に置かれている場合において、物体面に垂直なZ軸方向に置かれた観察装置をY軸方向に傾斜させることのできる、図2に示す観察装置も考えられる。
 本実施形態の観察装置は、物体面をほぼすべての方向から観察することができる。
 本実施形態の観察装置は、物体面を斜め方向から観察した場合であっても、ほぼ理論値の分解能を実現することができる。
In the case where the object plane is placed on the XY plane, an observation apparatus shown in FIG. 1 that can tilt the observation apparatus placed in the Z-axis direction perpendicular to the object plane in the X-axis direction is also conceivable.
When the object plane is placed on the XY plane, an observation apparatus shown in FIG. 2 that can tilt the observation apparatus placed in the Z-axis direction perpendicular to the object plane in the Y-axis direction is also conceivable.
The observation apparatus of this embodiment can observe the object surface from almost all directions.
The observation apparatus of the present embodiment can realize a resolution of almost theoretical value even when the object plane is observed from an oblique direction.
 一般に、試料の置かれた顕微鏡の物体面は、XY方向に動く。焦点合わせが必要な対物レンズは、物体面に垂直なZ軸方向に動く。つまり、顕微鏡は、3つの駆動軸を備えている。
 本実施形態の観察装置は、さらに、観察装置をX軸を中心に回転させるための駆動軸と、観察装置をY軸を中心に回転させるための駆動軸を備えている。つまり、本実施形態の観察装置は、5つの駆動軸を備えることができる。この場合、5軸ロボットを組み込むことによって、本実施形態の観察装置を実現してもよい。
In general, the object plane of the microscope on which the sample is placed moves in the XY directions. The objective lens that requires focusing moves in the Z-axis direction perpendicular to the object plane. That is, the microscope has three drive shafts.
The observation apparatus according to the present embodiment further includes a drive shaft for rotating the observation apparatus about the X axis and a drive shaft for rotating the observation apparatus about the Y axis. That is, the observation apparatus of this embodiment can include five drive shafts. In this case, the observation apparatus of this embodiment may be realized by incorporating a 5-axis robot.
10  観察装置
12  鏡筒本体
20  受光面
30  結像光学系
32  主鏡
34  副鏡
36  引き出し平面ミラー
L1、L2  光軸
N1、N2  垂線
S  物体面
DESCRIPTION OF SYMBOLS 10 Observation apparatus 12 Lens barrel main body 20 Light-receiving surface 30 Imaging optical system 32 Primary mirror 34 Secondary mirror 36 Draw plane mirror L1, L2 Optical axis N1, N2 Perpendicular S Object surface

Claims (4)

  1.  物体面からの光を受光する受光面と、前記受光面に前記物体面からの光を結像させる結像光学系と、を備える観察装置であって、
     前記結像光学系は、凹面主鏡、凸面副鏡、及び引き出し平面ミラーを含み、前記物体面からの光の光束を、前記凹面主鏡、前記凸面副鏡、前記凹面主鏡の順番で反射させた後、前記引き出し平面ミラーを介して、前記受光面に結像させることのできる等倍反射型結像光学系で構成されており、
     前記物体面から前記凹面主鏡に向かう光の光軸と前記物体面の垂線とがなす角度αを変化させることのできる第1の傾動手段と、
     前記引き出し平面ミラーから前記受光面に向かう光の光軸と前記受光面の垂線とがなす角度βを変化させることのできる第2の傾動手段と、を備えることを特徴とする観察装置。
    An observation apparatus comprising: a light receiving surface that receives light from an object surface; and an imaging optical system that forms an image of light from the object surface on the light receiving surface;
    The imaging optical system includes a concave primary mirror, a convex secondary mirror, and an extraction flat mirror, and reflects a light beam from the object surface in the order of the concave primary mirror, the convex secondary mirror, and the concave primary mirror. After that, it is composed of an equal-magnification reflection type imaging optical system that can form an image on the light receiving surface through the extraction flat mirror,
    First tilting means capable of changing an angle α formed by an optical axis of light directed from the object plane toward the concave primary mirror and a perpendicular to the object plane;
    An observation apparatus comprising: a second tilting unit capable of changing an angle β formed by an optical axis of light directed from the extraction flat mirror toward the light receiving surface and a perpendicular to the light receiving surface.
  2.  前記第1の傾動手段及び前記第2の傾動手段を制御する制御手段を備え、
     前記制御手段は、前記角度αと前記角度βが等しくなるように、前記第1の傾動手段及び第2の傾動手段を制御する、請求項1に記載の観察装置。
    Control means for controlling the first tilting means and the second tilting means;
    The observation apparatus according to claim 1, wherein the control unit controls the first tilting unit and the second tilting unit so that the angle α and the angle β are equal.
  3.  前記第1の傾動手段は、前記角度αを0度~70度の範囲で変化させることが可能であり、
     前記第2の傾動手段は、前記角度βを0度~70度の範囲で変化させることが可能である、請求項1または請求項2に記載の観察装置。
    The first tilting means can change the angle α in a range of 0 degrees to 70 degrees,
    The observation apparatus according to claim 1 or 2, wherein the second tilting means is capable of changing the angle β in a range of 0 degrees to 70 degrees.
  4.  顕微鏡、分光エリプソメータ、欠陥検出装置、または反射率測定装置である、請求項1から請求項3のうちいずれか1項に記載の観察装置。 The observation apparatus according to any one of claims 1 to 3, wherein the observation apparatus is a microscope, a spectroscopic ellipsometer, a defect detection apparatus, or a reflectance measurement apparatus.
PCT/JP2015/070590 2015-02-05 2015-07-17 Observation device WO2016125325A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/549,096 US20180024335A1 (en) 2015-02-05 2015-07-17 Observation device
EP15881142.2A EP3255474A1 (en) 2015-02-05 2015-07-17 Observation device
CN201580075384.6A CN107209354A (en) 2015-02-05 2015-07-17 Observe device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015021165 2015-02-05
JP2015-021165 2015-02-05
JP2015121630A JP2016148829A (en) 2015-02-05 2015-06-17 Observation device
JP2015-121630 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016125325A1 true WO2016125325A1 (en) 2016-08-11

Family

ID=56563685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070590 WO2016125325A1 (en) 2015-02-05 2015-07-17 Observation device

Country Status (1)

Country Link
WO (1) WO2016125325A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088169A (en) * 1994-06-23 1996-01-12 Nikon Corp Exposure system
JPH09230412A (en) * 1996-02-28 1997-09-05 Nikon Corp Exposure device
JP2001194803A (en) * 2000-12-05 2001-07-19 Nikon Corp Device and method for illumination
WO2005022614A1 (en) * 2003-08-28 2005-03-10 Nikon Corporation Exposure method and apparatus, and device manufacturing method
JP2006196559A (en) * 2005-01-12 2006-07-27 Nikon Corp Method of manufacturing aligner and micro device
JP2013174844A (en) * 2012-01-27 2013-09-05 Mejiro Genossen:Kk Equal-magnification reflection-type imaging optical system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088169A (en) * 1994-06-23 1996-01-12 Nikon Corp Exposure system
JPH09230412A (en) * 1996-02-28 1997-09-05 Nikon Corp Exposure device
JP2001194803A (en) * 2000-12-05 2001-07-19 Nikon Corp Device and method for illumination
WO2005022614A1 (en) * 2003-08-28 2005-03-10 Nikon Corporation Exposure method and apparatus, and device manufacturing method
JP2006196559A (en) * 2005-01-12 2006-07-27 Nikon Corp Method of manufacturing aligner and micro device
JP2013174844A (en) * 2012-01-27 2013-09-05 Mejiro Genossen:Kk Equal-magnification reflection-type imaging optical system

Similar Documents

Publication Publication Date Title
US9360665B2 (en) Confocal optical scanner
US7982950B2 (en) Measuring system for structures on a substrate for semiconductor manufacture
JP5367126B2 (en) Compact ultra-high aperture ratio catadioptric objective
WO2002023248A1 (en) Confocal point microscope and height measuring method using this
JP6787135B2 (en) Irradiation optics and projector
US20170139193A1 (en) Light sheet microscope and sheet illumination method
JP2011504143A (en) Laser optical machining
JP2016148829A (en) Observation device
JP5733539B2 (en) Scanning microscope
JP6090607B2 (en) Confocal scanner, confocal microscope
JP5973756B2 (en) Focus position changing device and confocal optical device using the same
WO2016056622A1 (en) Pair of phase modulation elements for image-forming optical system, image-forming optical system, illumination device, and microscope device
JP2010002216A (en) Observation device of edge surface
JP5929204B2 (en) Scanning microscope
US20200341379A1 (en) Pattern drawing device
WO2016125325A1 (en) Observation device
WO2018020678A1 (en) Projection optical system and head-up display device
JP2010257585A (en) Lighting system and optical device equipped with this lighting system
JP2010008458A (en) Optical measuring instrument and pattern formed on projection plate
JP2021081664A (en) Optical device, imaging apparatus and imaging system equipped with the same
JP6332327B2 (en) Scanning microscope
JP2019066691A (en) Inspection device
JP6685202B2 (en) Seat lighting device
JP2022138071A (en) Image capturing optical system
JP2011013589A (en) Illumination optical system and illuminating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549096

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015881142

Country of ref document: EP