JP2013174844A - Equal-magnification reflection-type imaging optical system - Google Patents

Equal-magnification reflection-type imaging optical system Download PDF

Info

Publication number
JP2013174844A
JP2013174844A JP2012053702A JP2012053702A JP2013174844A JP 2013174844 A JP2013174844 A JP 2013174844A JP 2012053702 A JP2012053702 A JP 2012053702A JP 2012053702 A JP2012053702 A JP 2012053702A JP 2013174844 A JP2013174844 A JP 2013174844A
Authority
JP
Japan
Prior art keywords
light
optical system
light receiving
imaging optical
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012053702A
Other languages
Japanese (ja)
Other versions
JP5666496B2 (en
Inventor
Makoto Uehara
誠 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEJIRO GENOSSEN KK
Original Assignee
MEJIRO GENOSSEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEJIRO GENOSSEN KK filed Critical MEJIRO GENOSSEN KK
Priority to JP2012053702A priority Critical patent/JP5666496B2/en
Publication of JP2013174844A publication Critical patent/JP2013174844A/en
Application granted granted Critical
Publication of JP5666496B2 publication Critical patent/JP5666496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an equal-magnification reflection-type imaging optical system that enables reflection light from a measured thin film surface of a predetermined wavefront aberration and a broad frequency band to be imaged on a light receiving element (for example, two-dimensional CCD) over a wider area.SOLUTION: An imaging optical system 40 is composed of the equal-magnification reflection-type imaging optical system that causes a flux of light from an object surface to be reflected in order of a concave surface main mirror 44, a convex surface sub-mirror 46 and the concave surface main mirror 44 via an introduction plane surface mirror 42 and thereafter enables the flux of light to be imaged on a light receiving surface of a light receiving element 30 via a drawing plane surface mirror 48. The object surface and the light receiving surface are inclined with respect to an optical axis of light incident on the respective surfaces. A perpendicular line of the object surface is inclined at 45 to 70 degrees with respect to an optical axis of incident light from an illumination optical system. A perpendicular line of the light receiving surface is inclined at 45 to 70 degrees with respect to an optical axis of the reflection light from the object surface.

Description

本発明は、等倍反射型結像光学系に関する。   The present invention relates to an equal magnification reflection type imaging optical system.

半導体や液晶パネルの製造工程では、基板の表面に形成された薄膜に、フォトリソグラフィーによってパターンニングを行う。基板に形成された薄膜の厚みや、屈折率、消衰係数などの光学定数の計測には、エリプソ法が用いられる。   In the manufacturing process of a semiconductor or a liquid crystal panel, patterning is performed on a thin film formed on the surface of a substrate by photolithography. An ellipso method is used to measure the optical constants such as the thickness, refractive index, and extinction coefficient of the thin film formed on the substrate.

一般的なエリプソメータでは、被計測薄膜面に対して45−70度の入射角で光線を照射し、薄膜表面及び基板面からの反射光線を45−70度の反射角で受光素子に受け取る。例えばレーザなどの直線偏光を披計測薄膜面に入射させると、薄膜表面の反射光と基板面の反射光が、様々な形で干渉して位相の異なる反射光として、光路上に置かれた偏光素子を介して受光素子に至る。入射光と反射光の偏光状態(=ΨとΔ)の変化を測定することによって、薄膜の厚さや、薄膜の屈折率、消衰係数等の光学定数を計算によって求めることができる。   In a general ellipsometer, light is irradiated with an incident angle of 45 to 70 degrees with respect to the thin film surface to be measured, and reflected light from the surface of the thin film and the substrate surface is received by the light receiving element with a reflection angle of 45 to 70 degrees. For example, when linearly polarized light such as a laser is incident on the measurement thin film surface, the reflected light on the surface of the thin film and the reflected light on the substrate surface interfere in various ways and are reflected on the optical path as reflected light having different phases. It reaches the light receiving element through the element. By measuring changes in the polarization states (= Ψ and Δ) of incident light and reflected light, optical constants such as the thickness of the thin film, the refractive index of the thin film, and the extinction coefficient can be obtained by calculation.

微細にパターンニングされた半導体や液晶パネルの2次元平面を多点で計測するエリプソメータは提案されていないようである。   An ellipsometer that measures a two-dimensional plane of a finely patterned semiconductor or liquid crystal panel at multiple points does not appear to have been proposed.

1点計測でもエリプソメータ或いは披計測薄膜面をXY2次元に動かせば、2次元平面での多点計測は可能になる。しかし膨大な時間を要し効率が悪く、動的な計測は不可能である。   Even at one point measurement, if the ellipsometer or the measurement thin film surface is moved in the XY two dimensions, multipoint measurement on a two-dimensional plane becomes possible. However, it takes an enormous amount of time, is inefficient, and cannot be measured dynamically.

エリプソメータは45−70度の入反射角結像光学系が条件になるが、大きな面積で所定の波面収差及び広い波長帯の被計測薄膜面からの反射光を受光素子(例えば2次元CCD)に結像させることが困難であるという問題があった。   The ellipsometer requires an incident-reflection angle imaging optical system of 45 to 70 degrees, but the reflected light from the thin film surface to be measured having a large area and a predetermined wavefront aberration and a wide wavelength band is applied to a light receiving element (for example, a two-dimensional CCD). There was a problem that it was difficult to form an image.

2次元受光素子を用い、一括面積を計測するエリプソメータはイメージング・エリプソメータと呼ばれる。しかし入反射角結像光学系の性能が小さな面積に限られるので、大きな面積を計測するためには、やはりイメージング・エリプソメータ或いは披計測薄膜面をXY2次元に動かす必要がある。   An ellipsometer that measures a collective area using a two-dimensional light receiving element is called an imaging ellipsometer. However, since the performance of the incident / reflecting angle imaging optical system is limited to a small area, it is necessary to move the imaging ellipsometer or the measuring thin film surface in XY two dimensions in order to measure a large area.

特開2009−92389号公報JP 2009-92389 A

本発明は上記のような事情に鑑みてなされたものであって、大きな面積で所定の波面収差及び広い波長帯の被計測薄膜面からの反射光を受光素子(例えば2次元CCD)に結像させることのできる等倍反射型結像光学系を提供することを目的とする。   The present invention has been made in view of the above circumstances, and forms an image of reflected light from a thin film surface to be measured having a predetermined wavefront aberration and a wide wavelength band in a large area on a light receiving element (for example, a two-dimensional CCD). An object of the present invention is to provide an equal-magnification reflective imaging optical system that can be used.

上記課題を解決するための手段は、以下の発明である。
物体面からの反射光の光束を、導入平面ミラーを介して、凹面主鏡、凸面副鏡、前記凹面主鏡の順番で反射させた後、引き出し平面ミラーを介して、受光素子の受光面に結像させることのできる等倍反射型結像光学系であって、
前記物体面及び前記受光面が、それぞれの面に入射する光の光軸に対して傾斜していることを特徴とする等倍反射型結像光学系。
Means for solving the above problems are the following inventions.
The reflected light beam from the object surface is reflected in the order of the concave primary mirror, the convex secondary mirror, and the concave primary mirror via the introduction plane mirror, and then reflected on the light receiving surface of the light receiving element via the extraction plane mirror. An equal-magnification reflective imaging optical system that can form an image,
An equal magnification reflection type imaging optical system, wherein the object surface and the light receiving surface are inclined with respect to an optical axis of light incident on each surface.

本発明の等倍反射型結像光学系において、前記物体面の垂線が、照明光学系からの入射光の光軸に対して45〜70度傾斜しており、前記受光面の垂線が、前記物体面からの反射光の光軸に対して45〜70度傾斜していることが好ましい。   In the equal-magnification reflective imaging optical system of the present invention, the normal of the object plane is inclined by 45 to 70 degrees with respect to the optical axis of incident light from the illumination optical system, and the normal of the light receiving surface is It is preferable to be inclined by 45 to 70 degrees with respect to the optical axis of the reflected light from the object surface.

本発明の等倍反射型結像光学系において、照明光学系は、ロッドとコンデンサレンズとアパーチャ絞りとコリメータレンズを有することが好ましい。   In the equal magnification reflection type imaging optical system of the present invention, the illumination optical system preferably includes a rod, a condenser lens, an aperture stop, and a collimator lens.

本発明によれば、大きな面積で所定の波面収差及び広い波長帯の被計測薄膜面からの反射光を受光素子(例えば2次元CCD)に結像させることのできる等倍反射型結像光学系を提供することができる。   According to the present invention, an equal magnification reflection type imaging optical system capable of forming an image of reflected light from a thin film surface to be measured having a predetermined wavefront aberration and a wide wavelength band in a large area on a light receiving element (for example, a two-dimensional CCD). Can be provided.

等倍反射型結像光学系を備えた分光エリプソメータの全体図である。1 is an overall view of a spectroscopic ellipsometer including an equal magnification reflection type imaging optical system. 結像光学系のYZ平面図である。It is a YZ plan view of an imaging optical system. 結像光学系のXZ平面図である。FIG. 3 is an XZ plan view of the imaging optical system. 基板表面の結像面内の波面収差の計算結果である。It is a calculation result of the wavefront aberration in the imaging surface of a substrate surface. 分解能(MTF)を、NA=0.04、波長:0.550nm(ウエイト=1.0)、0.250nm(ウエイト=1.0)、0.800nm(ウエイト=1.0)で計算した結果である。The resolution (MTF) is calculated with NA = 0.04, wavelength: 0.550 nm (weight = 1.0), 0.250 nm (weight = 1.0), 0.800 nm (weight = 1.0). . 照明光学系がオフナー光学系によって構成されている分光エリプソメータの全体図である。1 is an overall view of a spectroscopic ellipsometer in which an illumination optical system is configured by an Offner optical system.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1は、本発明の実施形態に係る等倍反射型結像光学系を備えた分光エリプソメータ10の全体図である。
図1に示すように、分光エリプソメータ10は、薄膜(単層膜でも多層膜でもよい。)が形成された基板Sに偏光した光(以下、「偏光光」という。)を入射させるための照明光学系20と、基板S(または薄膜)からの偏光光の反射光を受光するための受光素子30と、基板S(または薄膜)からの反射光を受光素子30の受光面に結像させるための結像光学系40と、を備えている。基板Sの表面が、本発明の「物体面」に対応している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall view of a spectroscopic ellipsometer 10 provided with an equal magnification reflection type imaging optical system according to an embodiment of the present invention.
As shown in FIG. 1, the spectroscopic ellipsometer 10 is an illumination for making polarized light (hereinafter referred to as “polarized light”) incident on a substrate S on which a thin film (either a single layer film or a multilayer film) is formed. Optical system 20, light receiving element 30 for receiving reflected light of polarized light from substrate S (or thin film), and light reflected from substrate S (or thin film) to form an image on the light receiving surface of light receiving element 30. The imaging optical system 40 is provided. The surface of the substrate S corresponds to the “object plane” of the present invention.

本実施形態に係る分光エリプソメータ10は、結像光学系40が、等倍反射型結像光学系の一つであるオフナー光学系によって構成されていることを特徴とする。   The spectroscopic ellipsometer 10 according to the present embodiment is characterized in that the imaging optical system 40 is configured by an Offner optical system which is one of the equal-magnification reflective imaging optical systems.

図2は、結像光学系40のYZ平面図である。図3は、結像光学系40のXZ平面図である。
図2、図3に示すように、オフナー光学系によって構成された結像光学系40は、導入平面ミラー42、凹面鏡で構成された主鏡44、凸面鏡で構成された副鏡46、及び引き出し平面ミラー48を備えている。基板S(または薄膜)の表面からの反射光は、導入平面ミラー42、主鏡44、副鏡46、再び主鏡44、及び引き出し平面ミラー48の順番で反射された後、受光素子30の受光面に結像するようになっている。
FIG. 2 is a YZ plan view of the imaging optical system 40. FIG. 3 is an XZ plan view of the imaging optical system 40.
As shown in FIGS. 2 and 3, the imaging optical system 40 constituted by an Offner optical system includes an introduction plane mirror 42, a primary mirror 44 constituted by a concave mirror, a secondary mirror 46 constituted by a convex mirror, and a lead plane. A mirror 48 is provided. Reflected light from the surface of the substrate S (or thin film) is reflected in the order of the introduction plane mirror 42, the main mirror 44, the sub mirror 46, the main mirror 44, and the extraction plane mirror 48, and then received by the light receiving element 30. An image is formed on the surface.

基板Sの表面と受光素子30の受光面とは、オフナー光学系において、等倍の共役の関係となっている。
副鏡46は、光学系の瞳となっている。
なお、受光素子30は、例えば2次元CCD等の撮像素子によって構成されている。
The surface of the substrate S and the light receiving surface of the light receiving element 30 are in a conjugate relationship of the same magnification in the Offner optical system.
The secondary mirror 46 is a pupil of the optical system.
The light receiving element 30 is configured by an image pickup element such as a two-dimensional CCD.

図2に示すように、基板Sの表面の垂線N1は、照明光学系20からの入射光の光軸L1に対して60度傾斜している。受光素子30の受光面の垂線N2も、基板Sからの反射光の光軸L2に対して60度傾斜している。   As shown in FIG. 2, the perpendicular line N <b> 1 on the surface of the substrate S is inclined by 60 degrees with respect to the optical axis L <b> 1 of incident light from the illumination optical system 20. The perpendicular line N2 of the light receiving surface of the light receiving element 30 is also inclined by 60 degrees with respect to the optical axis L2 of the reflected light from the substrate S.

図3に示すように、基板Sの表面に偏光光が照射される領域R1はほぼ長方形であり、24.6mmx18.5mmの寸法を有している。この領域R1の短辺が、照明光学系20からの入射光の光軸L1に対して90−60=30度傾斜している。また、この領域R1の長辺が、照明光学系20からの入射光の光軸L1に対して線対称となっている。   As shown in FIG. 3, the region R1 where the surface of the substrate S is irradiated with polarized light is substantially rectangular and has a size of 24.6 mm × 18.5 mm. The short side of the region R1 is inclined by 90-60 = 30 degrees with respect to the optical axis L1 of the incident light from the illumination optical system 20. Further, the long side of the region R1 is line symmetric with respect to the optical axis L1 of the incident light from the illumination optical system 20.

図3に示すように、基板Sからの反射光が受光素子30の受光面に照射される領域R2はほぼ長方形であり、24.6mmx18.5mmの寸法を有している。この領域R2の短辺が、基板Sからの反射光の光軸L2に対して90−60=30度傾斜している。また、この領域R2の長辺が、基板Sからの反射光の光軸L2に対して線対称となっている。   As shown in FIG. 3, the region R2 where the light reflected from the substrate S is irradiated onto the light receiving surface of the light receiving element 30 is substantially rectangular and has a size of 24.6 mm × 18.5 mm. The short side of the region R2 is inclined by 90-60 = 30 degrees with respect to the optical axis L2 of the reflected light from the substrate S. Further, the long side of the region R2 is line symmetric with respect to the optical axis L2 of the reflected light from the substrate S.

図1に示すように、照明光学系20は、ロッドレンズ22と、コンデンサレンズ24と、アパーチャ絞り26と、コリメータレンズ28とを備えている。   As shown in FIG. 1, the illumination optical system 20 includes a rod lens 22, a condenser lens 24, an aperture stop 26, and a collimator lens 28.

図示しない光源から出射された光は、ロッドレンズ22の入射端22aに入射する。ロッドレンズ22の入射端22aに入射した光は、ロッドレンズ22の内部で多重反射を繰り返すことで照度が均一化された後、ロッドレンズ22の出射端22bから出射する。   Light emitted from a light source (not shown) enters the incident end 22 a of the rod lens 22. The light incident on the incident end 22 a of the rod lens 22 is emitted from the exit end 22 b of the rod lens 22 after the illuminance is made uniform by repeating multiple reflections inside the rod lens 22.

ロッドレンズ22の出射端22bから出射した光は、アパーチャ絞り26及びコリメータレンズ28を通った後、基板Sの表面に入射角60度で入射する。   The light emitted from the exit end 22 b of the rod lens 22 passes through the aperture stop 26 and the collimator lens 28 and then enters the surface of the substrate S at an incident angle of 60 degrees.

本実施形態において、結像光学系40は、テレセントリック光学系によって構成されている。また、照明光学系20も、結像光学系40に合わせて、テレセントリック光学系によって構成されている。照明光学系20は、NA(開口数)=0.04のテレセントリック光束を基板Sに入射させることができるように設計されている。   In the present embodiment, the imaging optical system 40 is configured by a telecentric optical system. The illumination optical system 20 is also configured by a telecentric optical system in accordance with the imaging optical system 40. The illumination optical system 20 is designed so that a telecentric beam with NA (numerical aperture) = 0.04 can be incident on the substrate S.

基板Sの表面(物体面)とロッドレンズ22の出射端22bは、光学的に共役の関係となっている。   The surface (object surface) of the substrate S and the emission end 22b of the rod lens 22 have an optically conjugate relationship.

図1に示すように、基板Sの表面が入射光の光軸に対して傾いているため、共役となるロッドレンズ22の出射端22bも入射光の光軸に対して傾いている。   As shown in FIG. 1, since the surface of the substrate S is inclined with respect to the optical axis of the incident light, the exit end 22b of the conjugate rod lens 22 is also inclined with respect to the optical axis of the incident light.

基板Sの表面の結像面(つまり照明光学系20の結像面)の大きさは、ロッドレンズ22の出射端22bの大きさの5.5倍である。つまり、結像面からロッドレンズ22の出射端22bへの縮小倍率は1/5.5倍である。したがって、基板Sの表面への入射光の入射角が60度の場合、ロッドレンズ22の出射端22bの傾きが出射光の光軸に対して16度になる。   The size of the imaging surface on the surface of the substrate S (that is, the imaging surface of the illumination optical system 20) is 5.5 times the size of the exit end 22b of the rod lens 22. That is, the reduction magnification from the imaging surface to the exit end 22b of the rod lens 22 is 1 / 5.5. Therefore, when the incident angle of the incident light on the surface of the substrate S is 60 degrees, the inclination of the exit end 22b of the rod lens 22 is 16 degrees with respect to the optical axis of the emitted light.

ロッドレンズ22の出射端22bの大きさと出射角(=NA)は、結像面に対する倍率により決まる。出射端22bの座標X方向(長手方向)の長さは、24.6mm/5.5=4.5mmである。出射端22bの座標Y方向(短手方向)の長さは、18.5mm ×cos60度/5.5=1.7mmである。出射端22bに必要なNAは、長手方向、短手方向とも、0.04×5.5=0.22となる。   The size and exit angle (= NA) of the exit end 22b of the rod lens 22 are determined by the magnification with respect to the image plane. The length of the emission end 22b in the coordinate X direction (longitudinal direction) is 24.6 mm / 5.5 = 4.5 mm. The length of the output end 22b in the coordinate Y direction (short direction) is 18.5 mm × cos 60 degrees / 5.5 = 1.7 mm. The NA required for the emission end 22b is 0.04 × 5.5 = 0.22 in both the longitudinal direction and the lateral direction.

ここで、ロッドレンズ22の入射端22aに入射する光束が、図示しない分光器のスリットから出射する波長幅の狭い光束である場合を考える。
なお、分光器の光学特性は、f=320mm、F/4.1(NA=0.06)、グレーティング:1200本/mmであると仮定する。
Here, a case is considered where the light beam incident on the incident end 22a of the rod lens 22 is a light beam having a narrow wavelength width emitted from a slit of a spectrometer (not shown).
It is assumed that the optical characteristics of the spectroscope are f = 320 mm, F / 4.1 (NA = 0.06), and grating: 1200 lines / mm.

分光器の1mm幅のスリットから、波長幅5nmの光束が出射する。
分光器のスリットから出射する光束を、バンドルファイバ(光ファイバの束)で受光する。
バンドルファイバは、入射端の形状が1mm×20mmであり、出射端の形状が2.79mm×7.17mmである。
ロッドレンズ22の入射端の形状は、1.75mm×4.5mmである。
バンドルファイバの出射端の断面形状は、ロッドレンズ22の入射端22aの断面形状に相似している。
A light flux having a wavelength width of 5 nm is emitted from a 1 mm wide slit of the spectroscope.
The light beam emitted from the slit of the spectroscope is received by a bundle fiber (a bundle of optical fibers).
The bundle fiber has an incident end shape of 1 mm × 20 mm and an output end shape of 2.79 mm × 7.17 mm.
The shape of the incident end of the rod lens 22 is 1.75 mm × 4.5 mm.
The cross-sectional shape of the exit end of the bundle fiber is similar to the cross-sectional shape of the incident end 22 a of the rod lens 22.

バンドルファイバの出射端において、NA=0.06である。
レンズ系などを用いて、バンドルファイバの出射端から出射される光束を1/4に光学縮小して、NA=0.24に変換する。
バンドルファイバの出射端から出射される光束を、ロッドレンズ22の入射端22aに入射させる。入射端22aにおける入射光の照射面の大きさは、0.7mm×1.79mmである。
ロッドレンズ22に入射した光束は、ロッドレンズ22の内部で反射を繰り返す。これにより、ロッドレンズ22の出射端22bから出射される光の照度が均一化される。
ロッドレンズ22の出射端22bにおいて、NA=0.24である。
NA = 0.06 at the exit end of the bundle fiber.
Using a lens system or the like, the light beam emitted from the exit end of the bundle fiber is optically reduced to ¼ and converted to NA = 0.24.
The light beam emitted from the exit end of the bundle fiber is incident on the entrance end 22 a of the rod lens 22. The size of the incident light irradiation surface at the incident end 22a is 0.7 mm × 1.79 mm.
The light beam incident on the rod lens 22 is repeatedly reflected inside the rod lens 22. Thereby, the illuminance of the light emitted from the emission end 22b of the rod lens 22 is made uniform.
NA = 0.24 at the exit end 22 b of the rod lens 22.

(像共役)
ロッドレンズ22の出射端22bは、基板Sの表面(物体面)、及び、受光素子30の受光面と像共役である。共役関係にある基板Sの表面と受光素子30の受光面の照度は、均一に維持される。
(Image conjugate)
The exit end 22 b of the rod lens 22 is image conjugate with the surface (object surface) of the substrate S and the light receiving surface of the light receiving element 30. The illuminance between the surface of the substrate S in a conjugate relationship and the light receiving surface of the light receiving element 30 is kept uniform.

(瞳共役)
アパーチャ絞り26と副鏡46は、瞳共役である。
アパーチャ絞り26に置かれた絞りにより、照明光束は制限され、基板Sの表面に照射される光のNA(=0.04)が決定される。
基板Sの表面で反射した光束は、結像光学系40の副鏡46で再び制限され、受光素子30の受光面にNA(=0.04)となる角度で照射される。
(Pupil conjugate)
The aperture stop 26 and the secondary mirror 46 are pupil conjugates.
The illumination light flux is limited by the diaphragm placed on the aperture diaphragm 26, and the NA (= 0.04) of the light irradiated on the surface of the substrate S is determined.
The light beam reflected by the surface of the substrate S is again limited by the sub mirror 46 of the imaging optical system 40 and is irradiated on the light receiving surface of the light receiving element 30 at an angle of NA (= 0.04).

(像共役の意味)
基板Sの表面(物体面)での照度ムラが小さければ、被計側面の各点において、エリプソ法による計測に必要な薄膜情報を均一に得ることができる。
同様に、受光素子30の受光面での照度ムラが小さければ、受光光量幅が均一化され、薄膜情報の演算が容易になる。
(Meaning of image conjugation)
If the illuminance unevenness on the surface (object surface) of the substrate S is small, thin film information necessary for measurement by the ellipso method can be obtained uniformly at each point on the measured side.
Similarly, if the illuminance unevenness on the light receiving surface of the light receiving element 30 is small, the received light amount width becomes uniform and the calculation of the thin film information becomes easy.

(瞳共役の意味)
ロッドレンズ22の入射端22aに入射する光束には、結像に必要なNAを超える光束が含まれる。余分な光束は、結像光学系40(オフナー光学系)で反射を繰り返し、受光素子30の受光面に迷光として到達するため、受光素子のS/Nを悪化させる原因となる。瞳絞りは、このような余分な光束をカットする役割を有する。
(Meaning of pupil conjugate)
The light beam incident on the incident end 22a of the rod lens 22 includes a light beam exceeding NA necessary for image formation. The extra light beam is repeatedly reflected by the imaging optical system 40 (Offner optical system) and reaches the light receiving surface of the light receiving element 30 as stray light, which causes the S / N of the light receiving element to deteriorate. The pupil stop has a role of cutting such extra light flux.

図4は、基板Sの表面の結像面内の波面収差の計算結果である。面内の各点において、波面収差は0.01Wavesに収まっており、エリプソ法による計測が可能となっている。 FIG. 4 shows the calculation result of the wavefront aberration in the imaging plane of the surface of the substrate S. At each point in the plane, the wavefront aberration is within 0.01 Waves, and measurement by the ellipso method is possible.

図5は、分解能(MTF)を、NA=0.04、波長:0.550nm(ウエイト=1.0)、0.250nm(ウエイト=1.0)、0.800nm(ウエイト=1.0)で計算した結果である。
高い方の曲線は、座標X方向(長手方向)でのMTFであり、理論値に合致している。
低い方の曲線は、座標Y方向(短手方向)でのMTFであり、NAが小さくなる分だけMTF値が小さくなっているが、理論値に合致している。
In FIG. 5, the resolution (MTF) is calculated with NA = 0.04, wavelength: 0.550 nm (weight = 1.0), 0.250 nm (weight = 1.0), 0.800 nm (weight = 1.0). It is the result.
The higher curve is the MTF in the coordinate X direction (longitudinal direction), which matches the theoretical value.
The lower curve is the MTF in the coordinate Y direction (short direction), and the MTF value decreases as NA decreases, but it matches the theoretical value.

従来技術の1点でのエリプソ計測では、計測点のサイズが議論される事は少ない。
本発明のエリプソメータは、薄膜の面内の各点において、薄膜を微細に計測することを目的とする。したがって、計測される各点での分解能も良くなくてはならない。
In the conventional ellipso measurement at one point, the size of the measurement point is rarely discussed.
The ellipsometer of the present invention aims to finely measure a thin film at each point in the plane of the thin film. Therefore, the resolution at each point to be measured must be good.

本発明において、受光素子30の分解能は、10μm×10μm程度が好ましい。
等倍の共役関係にある被計測面(物体面)の各点の分解能も、10μmオーダーであることが望ましい。
NA=0.04において、座標X方向(長手方向)の10μm分解のMTF値は58%あるので充分であり、座標Y方向(短手方向)の10μm分解のMTF値は25%なので少し不足する。
In the present invention, the resolution of the light receiving element 30 is preferably about 10 μm × 10 μm.
It is desirable that the resolution of each point on the surface to be measured (object surface) having the same magnification conjugate relationship is also on the order of 10 μm.
At NA = 0.04, the MTF value of 10 μm decomposition in the coordinate X direction (longitudinal direction) is 58%, which is sufficient, and the MTF value of 10 μm decomposition in the coordinate Y direction (short direction) is 25%, which is a little short. .

ここで気を付けなければならないのは、基板S(物体面)への入射角である。
一般に、傾斜した結像面に置かれる2次元受光素子は、受光感度特性が大きなものを用いなければならない。
What should be noted here is the angle of incidence on the substrate S (object plane).
In general, a two-dimensional light receiving element placed on an inclined imaging surface must have a large light receiving sensitivity characteristic.

一般に使われるCCDは、受光効率を上げるために、各素子の前に、マイクロ・レンズと呼ばれる集光レンズが組み込まれている。
しかし、大きな傾きを持つ光束は、マイクロ・レンズで集光することは難しく、多くの光束は、CCDの受光面に至らない。
したがって、受光素子30として使用する2次元CCDは、マイクロ・レンズが組み込まれていないタイプであることが好ましい。
A commonly used CCD has a condensing lens called a micro lens incorporated in front of each element in order to increase the light receiving efficiency.
However, it is difficult to collect a light beam having a large inclination with a micro lens, and many light beams do not reach the light receiving surface of the CCD.
Therefore, the two-dimensional CCD used as the light receiving element 30 is preferably a type in which a micro lens is not incorporated.

分解能を上げるために、NAを約2倍の0.07まで大きくすることができる。
この場合、短手方向の10μm分解のMTFは50%になり、被計測面内の波面収差は0.2Waves以内になるため、エリプソ計測は可能である。
しかし、NAを大きくしすぎると、薄膜に当たる光束の角度幅が大きくなり、エリプソ計測に用いられる薄膜情報のS/Nが悪くなるおそれがある。
To increase the resolution, the NA can be increased by a factor of approximately 0.07.
In this case, the 10 μm resolution MTF in the short direction is 50%, and the wavefront aberration in the surface to be measured is within 0.2 Waves, so that the ellipso measurement is possible.
However, if NA is increased too much, the angular width of the light beam impinging on the thin film becomes large, and the S / N of the thin film information used for ellipso measurement may be deteriorated.

反射光学系は、波長に依存しないという特長を持つ。
本発明の結像光学系40も、等倍反射型結像光学系であるため、波長に依存しない特長を持つ。
Reflective optical systems have the feature of being independent of wavelength.
Since the imaging optical system 40 of the present invention is also an equal magnification reflection type imaging optical system, it has a feature that does not depend on the wavelength.

図4は、波長:0.550μm、0.250μm、0.800μmにおける波面収差を示している。図4に示すように、波面収差は、波長の逆数に比例して大きくなる。 FIG. 4 shows wavefront aberrations at wavelengths of 0.550 μm, 0.250 μm, and 0.800 μm. As shown in FIG. 4, the wavefront aberration increases in proportion to the reciprocal of the wavelength.

エリプソ計測では、波長の倍数ごとに明暗が生じるために、最低1サイクルの波長幅を使う事が望ましい。
波長幅を議論するに際して、光源波長の制約、被検査薄膜の透過率と消衰係数、受光素子の分光感度の何れもが、仕様を満たすことを考慮する必要がある。
1サイクルを前提にすると、波長幅は、250−500nm、あるいは、400−800nmなどに制限してもよい。
In the ellipso measurement, it is desirable to use a wavelength width of at least one cycle because light and dark occur for each multiple of wavelengths.
When discussing the wavelength width, it is necessary to consider that all of the constraints on the light source wavelength, the transmittance and extinction coefficient of the thin film to be inspected, and the spectral sensitivity of the light receiving element satisfy the specifications.
Assuming one cycle, the wavelength width may be limited to 250-500 nm or 400-800 nm.

図1に示す照明光学系20は、一般にケーラー照明系と呼ばれるものであり、共役関係のメリットを結像系に与える。
しかし、照明光学系20は、屈折系のレンズのみによって構成される必要はなく、例えば、図6に示すように、等倍反射型光学系の一つであるオフナー光学系によって構成されてもよい。
The illumination optical system 20 shown in FIG. 1 is generally called a Koehler illumination system, and gives the merit of the conjugate relationship to the imaging system.
However, the illumination optical system 20 does not need to be configured only by a refractive lens, and may be configured by, for example, an Offner optical system that is one of the equal-magnification reflective optical systems, as shown in FIG. .

上記実施形態では、光源に分光器を使った例を示したが、他の光源を用いてもよい。例えば、分光器の代わりに、白色光源に複数個の干渉フィルターを組み合わせた光源を用いてもよい。   In the embodiment described above, an example in which a spectroscope is used as a light source has been shown, but other light sources may be used. For example, instead of a spectroscope, a light source in which a plurality of interference filters are combined with a white light source may be used.

上記実施形態では、基板Sの表面の垂線N1が、入射光の光軸L1に対して60度傾斜している例を示したが、45度以上70度以下の範囲であればどのような傾斜角度であってもよい。   In the above embodiment, the normal line N1 on the surface of the substrate S is tilted by 60 degrees with respect to the optical axis L1 of the incident light. It may be an angle.

上記実施形態では、受光素子30の受光面の垂線N2が、基板Sからの反射光の光軸L2に対して60度傾斜している例を示したが、45度以上70度以下の範囲であればどのような傾斜角度であってもよい。 In the above embodiment, an example in which the perpendicular line N2 of the light receiving surface of the light receiving element 30 is tilted by 60 degrees with respect to the optical axis L2 of the reflected light from the substrate S has been shown. Any tilt angle may be used.

上記実施形態では、本発明の等倍反射型結像光学系を分光エリプソメータ10に適用する例について説明したが、物体に光を斜めに入射させる方式の欠陥検出装置や反射率測定器に本発明の等倍反射型結像光学系を適用することも可能である。   In the above-described embodiment, an example in which the equal-magnification reflective imaging optical system of the present invention is applied to the spectroscopic ellipsometer 10 has been described. It is also possible to apply the same magnification reflection type imaging optical system.

本発明は、以下のように構成してもよい。
分光エリプソメータであって、
薄膜が形成された基板に偏光光を入射させるための照明光学系と、
前記基板からの反射光を受光するための受光素子と、を備え、
前記基板からの反射光の光束を、導入平面ミラーを介して、凹面主鏡、凸面副鏡、前記凹面主鏡の順番で反射させた後、引き出し平面ミラーを介して、前記受光素子の受光面に結像させることのできる等倍反射型結像光学系を備えることを特徴とする分光エリプソメータ。
The present invention may be configured as follows.
A spectroscopic ellipsometer,
An illumination optical system for making polarized light incident on a substrate on which a thin film is formed;
A light receiving element for receiving reflected light from the substrate,
The reflected light beam from the substrate is reflected in the order of the concave primary mirror, the convex secondary mirror, and the concave primary mirror through the introduction plane mirror, and then the light receiving surface of the light receiving element through the extraction plane mirror A spectroscopic ellipsometer comprising an equal-magnification reflection-type imaging optical system capable of forming an image on a mirror.

10 分光エリプソメータ
20 照明光学系
22 ロッドレンズ
24 コンデンサレンズ
26 アパーチャ絞り
28 コリメータレンズ
30 受光素子
40 結像光学系(等倍反射型結像光学系)
42 導入平面ミラー
44 主鏡
46 副鏡
48 引き出し平面ミラー
DESCRIPTION OF SYMBOLS 10 Spectroscopic ellipsometer 20 Illumination optical system 22 Rod lens 24 Condenser lens 26 Aperture stop 28 Collimator lens 30 Light receiving element 40 Imaging optical system (equal magnification reflection type imaging optical system)
42 Introduction plane mirror 44 Primary mirror 46 Secondary mirror 48 Drawer plane mirror

Claims (3)

物体面からの反射光の光束を、導入平面ミラーを介して、凹面主鏡、凸面副鏡、前記凹面主鏡の順番で反射させた後、引き出し平面ミラーを介して、受光素子の受光面に結像させることのできる等倍反射型結像光学系であって、
前記物体面及び前記受光面が、それぞれの面に入射する光の光軸に対して傾斜していることを特徴とする等倍反射型結像光学系。
The reflected light beam from the object surface is reflected in the order of the concave primary mirror, the convex secondary mirror, and the concave primary mirror via the introduction plane mirror, and then reflected on the light receiving surface of the light receiving element via the extraction plane mirror. An equal-magnification reflective imaging optical system that can form an image,
An equal magnification reflection type imaging optical system, wherein the object surface and the light receiving surface are inclined with respect to an optical axis of light incident on each surface.
前記物体面の垂線が、照明光学系からの入射光の光軸に対して45〜70度傾斜しており、
前記受光面の垂線が、前記物体面からの反射光の光軸に対して45〜70度傾斜していることを特徴とする請求項1に記載の等倍反射型結像光学系。
The normal of the object plane is inclined by 45 to 70 degrees with respect to the optical axis of incident light from the illumination optical system,
2. The equal-magnification reflective imaging optical system according to claim 1, wherein a perpendicular of the light receiving surface is inclined by 45 to 70 degrees with respect to an optical axis of reflected light from the object surface.
前記照明光学系は、ロッドとコンデンサレンズとアパーチャ絞りとコリメータレンズを有することを特徴とする請求項2に記載の等倍反射型結像光学系。   3. The equal-magnification reflective imaging optical system according to claim 2, wherein the illumination optical system includes a rod, a condenser lens, an aperture stop, and a collimator lens.
JP2012053702A 2012-01-27 2012-03-09 Measuring device Active JP5666496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012053702A JP5666496B2 (en) 2012-01-27 2012-03-09 Measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012015501 2012-01-27
JP2012015501 2012-01-27
JP2012053702A JP5666496B2 (en) 2012-01-27 2012-03-09 Measuring device

Publications (2)

Publication Number Publication Date
JP2013174844A true JP2013174844A (en) 2013-09-05
JP5666496B2 JP5666496B2 (en) 2015-02-12

Family

ID=49267765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053702A Active JP5666496B2 (en) 2012-01-27 2012-03-09 Measuring device

Country Status (1)

Country Link
JP (1) JP5666496B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166686A (en) * 2014-03-03 2015-09-24 株式会社ミツトヨ photoelectric encoder
WO2016125325A1 (en) * 2015-02-05 2016-08-11 株式会社目白ゲノッセン Observation device
JP2016148829A (en) * 2015-02-05 2016-08-18 株式会社目白ゲノッセン Observation device
JP2017049438A (en) * 2015-09-02 2017-03-09 株式会社目白67 Observation device
WO2017110391A1 (en) * 2015-12-24 2017-06-29 株式会社目白67 Ellipsometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088169A (en) * 1994-06-23 1996-01-12 Nikon Corp Exposure system
JPH09230412A (en) * 1996-02-28 1997-09-05 Nikon Corp Exposure device
JP2001194803A (en) * 2000-12-05 2001-07-19 Nikon Corp Device and method for illumination
JP2002100561A (en) * 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
WO2005022614A1 (en) * 2003-08-28 2005-03-10 Nikon Corporation Exposure method and apparatus, and device manufacturing method
JP2006196559A (en) * 2005-01-12 2006-07-27 Nikon Corp Method of manufacturing aligner and micro device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088169A (en) * 1994-06-23 1996-01-12 Nikon Corp Exposure system
JPH09230412A (en) * 1996-02-28 1997-09-05 Nikon Corp Exposure device
JP2002100561A (en) * 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
JP2001194803A (en) * 2000-12-05 2001-07-19 Nikon Corp Device and method for illumination
WO2005022614A1 (en) * 2003-08-28 2005-03-10 Nikon Corporation Exposure method and apparatus, and device manufacturing method
JP2006196559A (en) * 2005-01-12 2006-07-27 Nikon Corp Method of manufacturing aligner and micro device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166686A (en) * 2014-03-03 2015-09-24 株式会社ミツトヨ photoelectric encoder
WO2016125325A1 (en) * 2015-02-05 2016-08-11 株式会社目白ゲノッセン Observation device
JP2016148829A (en) * 2015-02-05 2016-08-18 株式会社目白ゲノッセン Observation device
CN107209354A (en) * 2015-02-05 2017-09-26 株式会社目白67 Observe device
JP2017049438A (en) * 2015-09-02 2017-03-09 株式会社目白67 Observation device
WO2017038219A1 (en) * 2015-09-02 2017-03-09 株式会社目白67 Observation device
CN107924047A (en) * 2015-09-02 2018-04-17 株式会社目白67 Observe device
WO2017110391A1 (en) * 2015-12-24 2017-06-29 株式会社目白67 Ellipsometer
JP2017116370A (en) * 2015-12-24 2017-06-29 株式会社目白67 Ellipsometer
CN108431562A (en) * 2015-12-24 2018-08-21 株式会社目白67 Ellipsometer

Also Published As

Publication number Publication date
JP5666496B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
US20210044748A1 (en) Ultra-Wide Field-of-View Flat Optics
KR102013083B1 (en) Apparatus for euv imaging and methods of using same
JP5666496B2 (en) Measuring device
WO2002056062A9 (en) Catoptric and catadioptric imaging systems
CN111158158B (en) Spectrometer optical system and semiconductor inspection device
JP6546172B2 (en) Reflective optical element, in particular a measuring arrangement for measuring the optical properties of microlithography
JP2018081083A (en) Chromatic confocal point distance sensor
KR102542986B1 (en) catadioptric lenses and optical systems incorporating such lenses
US8908294B2 (en) Catadioptric optical system with high numerical aperture
JP6639716B2 (en) Optical system, imaging apparatus including the same, and imaging system
DK2929307T3 (en) SPECTROMETER FOR ANALYZING A SPECTRUM SPECTRUM
JP5198919B2 (en) Object side telecentric optics
JP2011085432A (en) Axial chromatic aberration optical system and three-dimensional shape measuring device
JP6097412B2 (en) Optical device
JP6639718B2 (en) Optical system, imaging apparatus including the same, and imaging system
KR20160010974A (en) Optical transformation module and optical measurement system
JP2007285761A (en) Half mirror, and microscopic spectrophotometer using the same
JP6448528B2 (en) Ellipsometer
JP5332192B2 (en) 3D shape measuring device
JP2002286408A (en) Optical system for oblique-incidence interferometer and device using the same
JP2019215520A (en) Optical system, image capturing device having the same, and image capturing system
CN107727233A (en) A kind of spectrograph
JP7297530B2 (en) OPTICAL SYSTEM, IMAGING DEVICE AND IMAGING SYSTEM INCLUDING THE SAME
TWI708040B (en) External reflection-type three dimensional surface profilometer
WO2022049986A1 (en) Pulse spectroscopy device and multi-fiber radiation unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140722

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141210

R150 Certificate of patent or registration of utility model

Ref document number: 5666496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250