WO2016124079A1 - 双向dc-dc变换器 - Google Patents

双向dc-dc变换器 Download PDF

Info

Publication number
WO2016124079A1
WO2016124079A1 PCT/CN2016/071551 CN2016071551W WO2016124079A1 WO 2016124079 A1 WO2016124079 A1 WO 2016124079A1 CN 2016071551 W CN2016071551 W CN 2016071551W WO 2016124079 A1 WO2016124079 A1 WO 2016124079A1
Authority
WO
WIPO (PCT)
Prior art keywords
bidirectional
switch tube
storage capacitor
diode
rechargeable battery
Prior art date
Application number
PCT/CN2016/071551
Other languages
English (en)
French (fr)
Inventor
郑大为
徐忠勇
廖志伟
丁玉松
王志武
Original Assignee
山特电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山特电子(深圳)有限公司 filed Critical 山特电子(深圳)有限公司
Priority to EP16746074.0A priority Critical patent/EP3255771B1/en
Priority to US15/546,787 priority patent/US10243455B2/en
Publication of WO2016124079A1 publication Critical patent/WO2016124079A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Definitions

  • the present invention relates to a DC-DC converter, and more particularly to a bidirectional DC-DC converter.
  • the bidirectional DC-DC converter is an electrical device widely used in uninterruptible power supplies.
  • the input of the bidirectional DC-DC converter is connected to a rechargeable battery, and the output is connected to the positive and negative DC bus in the uninterruptible power supply.
  • the bidirectional DC-DC converter can boost the DC power of the rechargeable battery to the positive and negative DC bus; or use the DC power on the positive and negative DC bus to charge the rechargeable battery.
  • the voltage between the positive and negative DC busbars in the commonly used uninterruptible power supply is about 700 volts.
  • the output voltage of the high voltage battery box is 320V to 550V, and the output of the low voltage battery box.
  • the voltage is 140V ⁇ 320V.
  • the boost ratio of the bidirectional DC-DC converter is between 1.273 and 2.188 (less than 2.5), thus having a high conversion efficiency.
  • the boost ratio of the bidirectional DC-DC converter is between 2.188 and 5, resulting in a decrease in conversion efficiency.
  • a two-stage boost is required, and another bidirectional DC-DC converter is usually connected between the output of the bidirectional DC-DC converter and the positive and negative DC bus.
  • bidirectional DC-DC converter increases the cost of the uninterruptible power supply.
  • the added bidirectional DC-DC converter will become redundant.
  • the technical problem to be solved by the present invention is to provide a bidirectional DC-DC converter which can select a rechargeable battery having a large output voltage range.
  • the anode of the first diode and the cathode of the second diode are connected to form a first section Point
  • the anode of the second diode is connected to a cathode of the third diode
  • the anode of the third diode is connected to the cathode of the fourth diode to form a second node
  • One ends of the first inductor and the second inductor are connected to the first node and the second node, respectively.
  • the bidirectional DC-DC converter further includes a rechargeable battery connected between the other end of the first inductor and the other end of the second inductor.
  • the bidirectional DC-DC converter further includes a filter capacitor in parallel with the rechargeable battery.
  • the bidirectional DC-DC converter further includes a first storage capacitor and a second storage capacitor, and one end of the first storage capacitor and one end of the second storage capacitor are connected to the neutral Point, the other end of the first storage capacitor is connected to the cathode of the first diode, and the other end of the second storage capacitor is connected to the anode of the fourth diode.
  • the bidirectional DC-DC converter further includes a pulse width modulation controller for controlling the first switch tube and the fourth switch tube to be turned off, and controlling the second switch tube and the third switch tube to alternate The following two steps:
  • the bidirectional DC-DC converter further includes a pulse width modulation controller for controlling the second switch tube and the third switch tube to be turned off, and controlling the first switch tube and the fourth switch tube to be the same
  • the pulse width modulation mode works to simultaneously discharge the first storage capacitor and the second storage capacitor, and charge the rechargeable battery.
  • the bidirectional DC-DC converter further includes a pulse width modulation controller for controlling the first switch tube, the second switch tube, the third switch tube and the fourth switch tube to perform the following two steps alternately:
  • the bidirectional DC-DC converter further includes a pulse width modulation controller for controlling The first switch tube and the fourth switch tube are turned off, and the second switch tube and the third switch tube are controlled to operate in the same pulse width modulation manner, so that the rechargeable battery is discharged and the first storage capacitor is And the second storage capacitor is charged at the same time.
  • a pulse width modulation controller for controlling The first switch tube and the fourth switch tube are turned off, and the second switch tube and the third switch tube are controlled to operate in the same pulse width modulation manner, so that the rechargeable battery is discharged and the first storage capacitor is And the second storage capacitor is charged at the same time.
  • the bidirectional DC-DC converter further includes a fifth switch tube that is connected in anti-parallel with the fifth diode, and the cathode and the anode of the fifth diode are respectively connected to the first node and the second node .
  • the bidirectional DC-DC converter further includes a pulse width modulation controller for controlling the first switch tube and the fourth switch tube to be turned off, and controlling the fifth switch tube to operate in a pulse width modulation manner, and Controlling the second switch tube and the third switch tube alternately perform the following two steps:
  • the bidirectional DC-DC converter further includes a pulse width modulation controller for controlling the second switch tube, the third switch tube and the fifth switch tube to be turned off, and controlling the first switch tube and the fourth switch
  • the switch tube operates in the same pulse width modulation mode, and the first storage capacitor and the second storage capacitor are simultaneously discharged, and the rechargeable battery is charged.
  • the bidirectional DC-DC converter further includes a pulse width modulation controller, configured to control the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube to be turned off, and control the fifth
  • the switch tube operates in a pulse width modulation manner to discharge the rechargeable battery and simultaneously charge the first storage capacitor and the second storage capacitor.
  • the bidirectional DC-DC converter of the present invention is capable of boosting a DC voltage in a different range provided by a rechargeable battery to a desired DC voltage.
  • FIG. 1 is a circuit diagram of a prior art Boost circuit.
  • FIG. 2 is a circuit diagram of a Buck circuit in the prior art.
  • FIG. 3 is a circuit diagram of a bidirectional DC-DC converter connected to a storage capacitor between a rechargeable battery and a positive and negative DC bus in accordance with a first embodiment of the present invention.
  • FIG. 4 and 5 are equivalent circuit diagrams of the bidirectional DC-DC converter shown in Fig. 3 in the first discharge mode.
  • Figure 6 is an equivalent circuit diagram of the two-way DC-DC converter of Figure 3 in a first charging mode.
  • FIG. 7 and 8 are equivalent circuit diagrams of the two-way DC-DC converter shown in Fig. 3 in the second charging mode.
  • Figure 9 is an equivalent circuit diagram of the bidirectional DC-DC converter of Figure 3 in a second discharge mode.
  • Figure 10 is a circuit diagram showing the connection of a storage capacitor between a rechargeable battery and a positive and negative DC bus in accordance with a second embodiment of the present invention.
  • FIG. 11 and 12 are equivalent circuit diagrams of the bidirectional DC-DC converter shown in Fig. 10 in the first discharge mode.
  • Figure 13 is an equivalent circuit diagram of the bidirectional DC-DC converter shown in Figure 10 in a charging mode.
  • Figure 14 is an equivalent circuit diagram of the bidirectional DC-DC converter of Figure 10 in a second discharge mode.
  • FIG. 1 is a circuit diagram of a Boost circuit in the prior art, which operates in a pulse width modulation mode by controlling a switching transistor Q1 in a Boost circuit (ie, the switching transistor Q1 is alternately turned on and off at a high frequency), thereby realizing the required The output voltage is higher than the input voltage.
  • FIG. 2 is a circuit diagram of a Buck circuit in the prior art, which operates in a pulse width modulation mode by controlling a switching transistor Q2 in a Buck circuit (ie, the switching transistor Q2 is alternately turned on and off at a high frequency), thereby achieving a desired The output voltage is lower than the input voltage.
  • the bidirectional DC-DC converter 10 includes a filter capacitor C, an inductor L1, an inductor L2, and insulated gate bipolar transistors T1, T2, and T3 that are connected in anti-parallel with the diodes D1, D2, D3, and D4, respectively. And T4.
  • the anode of diode D1 and the cathode of diode D2 are connected to form node N1
  • the anode of diode D2 and the cathode of diode D3 are connected to neutral point N
  • the anode of diode D3 is connected to the cathode of diode D4 to form node N2.
  • One ends of the inductors L1 and L2 are respectively connected to the nodes N1 and N2
  • the other ends of the inductors L1, L2 are connected to both ends of the filter capacitor C.
  • the rechargeable battery BAT is connected in parallel with the filter capacitor C.
  • One end of the storage capacitors C1, C2 is connected to the neutral point N, and the other end is connected to the cathode of the diode D1 and the anode of the diode D4, respectively.
  • the bidirectional DC-DC converter 10 further includes a pulse width modulation controller (not shown in FIG. 3).
  • a pulse width modulation controller (not shown in FIG. 3).
  • existing pulse generation controllers eg, MCS-51 microcontrollers
  • existing generation methods eg, software generation methods. Modulated signal.
  • the discharge mode of the rechargeable battery BAT is: controlling the insulated gate bipolar transistors T1, T4 to be turned off, and controlling the insulated gate bipolar transistors T2, T3 to
  • the predetermined period for example, 0.02 seconds
  • the insulated gate bipolar transistor T3 is controlled to be turned on, and the insulated gate bipolar transistor T2 operates in a pulse width modulation mode.
  • the equivalent circuit diagram is shown in FIG. 4, and the insulated gate bipolar transistor T2 in FIG. 4 is equivalent to the switch tube Q1 in the Boost circuit, thereby realizing the BAT discharge of the rechargeable battery and charging the storage capacitor C1, and rising The pressure ratio is 1.09 to 2.5, so the conversion efficiency is high.
  • the above-mentioned "predetermined period” may be the same as the period of the alternating current output from the uninterruptible power supply, and is not limited to 0.02 second.
  • the first charging mode of the rechargeable battery BAT is:
  • the insulated gate bipolar transistors T2 and T3 are controlled to be turned off, and the insulated gate bipolar transistors T1 and T4 are controlled to operate in the same pulse width modulation mode.
  • the equivalent circuit diagram is shown in Fig. 6.
  • the insulated gate bipolar transistors T1 and T4 in Fig. 6 are equivalent to the switching transistor Q2 in the Buck circuit, so that the storage capacitors C1 and C2 are simultaneously discharged and charged. Battery BAT is charged.
  • the second charging mode of the rechargeable battery BAT When the voltage of the rechargeable battery BAT is between 140 volts and 320 volts, the second charging mode of the rechargeable battery BAT:
  • Control the IGBT bipolar transistors T1, T2, T3 and T4 at a predetermined period alternately follows the following two steps:
  • the insulated gate bipolar transistors T2 and T4 are turned off, the insulated gate bipolar transistor T3 is turned on or off, and the insulated gate bipolar transistor T1 operates in a pulse width modulation mode.
  • the equivalent circuit diagram is shown in Fig. 7.
  • the insulated gate bipolar transistor T1 in Fig. 7 is equivalent to the switching transistor Q2 in the Buck circuit. Thereby, the storage capacitor C1 is discharged and the rechargeable battery BAT is charged.
  • the insulated gate bipolar transistors T1 and T3 are turned off, the insulated gate bipolar transistor T2 is turned on or off, and the insulated gate bipolar transistor T4 operates in a pulse width modulation mode.
  • the equivalent circuit diagram is shown in Fig. 8.
  • the insulated gate bipolar transistor T4 in Fig. 8 is equivalent to the switching transistor Q2 in the Buck circuit. Thereby, the storage capacitor C2 is discharged and the rechargeable battery BAT is charged.
  • the above-mentioned "predetermined period” may be the same as the period of the alternating current output from the uninterruptible power supply, and is not limited to 0.02 second.
  • the discharge mode of the rechargeable battery BAT is:
  • the insulated gate bipolar transistors T1 and T4 are controlled to be turned off, and the insulated gate bipolar transistors T2 and T3 are operated in the same pulse width modulation mode.
  • the equivalent circuit formed is as shown in FIG. 9.
  • the insulated gate bipolar transistors T2 and T3 in FIG. 9 are equivalent to the switching transistor Q1 in the Boost circuit.
  • the charging mode of the rechargeable battery BAT when the DC bus is charged to the rechargeable battery BAT and the rechargeable battery BAT is between 140 volts and 320 volts
  • the first charging mode is the same and will not be described here.
  • the boost ratio of the bidirectional DC-DC converter 10 is smaller than 2.5, and only a first-order DC-DC conversion is used.
  • FIG. 10 is a circuit diagram showing the connection of a storage capacitor between a rechargeable battery and a positive and negative DC bus in accordance with a second embodiment of the present invention.
  • the bidirectional DC-DC converter 20 is substantially identical to the bidirectional DC-DC converter 10 shown in FIG. 3, except that it also includes an insulated gate bipolar transistor T5 that is connected in anti-parallel with the diode D5. Diode D5 cathode and anode respectively Connect to nodes N1, N2.
  • the bidirectional DC-DC converter 20 further includes a pulse width modulation controller (not shown in FIG. 10).
  • a pulse width modulation controller (not shown in FIG. 10).
  • existing pulse generation controllers eg, MCS-51 microcontrollers
  • existing generation methods eg, software generation methods. Modulated signal.
  • the discharge mode of the rechargeable battery BAT is: controlling the insulated gate bipolar transistors T1 and T4 to be turned off, and the insulated gate bipolar transistor T5 is pulse width modulating.
  • Working, and controlling the insulated gate bipolar transistors T2, T3 alternately perform the following two steps in a predetermined cycle (for example, 0.02 seconds):
  • the insulated gate bipolar transistor T2 is turned off, and the insulated gate bipolar transistor T3 is turned on.
  • the equivalent circuit diagram is shown in FIG. 11.
  • the insulated gate bipolar transistor T5 in FIG. 11 is equivalent to the switching transistor Q1 in the Boost circuit, thereby discharging the rechargeable battery BAT and charging the storage capacitor C1.
  • the boost ratio is 1.09 to 2.5, so the conversion efficiency is high.
  • the above-mentioned "predetermined period” may be the same as the period of the alternating current output from the uninterruptible power supply, and is not limited to 0.02 second.
  • the conductive loop is "positive battery of the rechargeable battery BAT - the inductor L1 - the insulated gate bipolar transistor T5 - the inductor L2 - the rechargeable battery BAT negative electrode".
  • the conductive loop is "positive battery of the rechargeable battery BAT-inductor L1-insulated gate bipolar transistor T2-insulated gate bipolar transistor" T3-inductor L2- negative electrode of rechargeable battery BAT”.
  • the impedance of the insulated gate bipolar transistor T5 is smaller than the sum of the impedances of the insulated gate bipolar transistors T2 and T3, the discharge modes of FIGS. 11 and 12 improve the conversion efficiency compared to the discharge modes of FIGS. 4 and 5.
  • the parasitic inductance on the conductive loop is reduced relative to the insulated gate bipolar transistors T2 and T3, and the insulated gate bipolar transistor T2 or T3 is turned on at a power frequency. Or cutoff, thereby reducing the spike voltage, thereby effectively protecting the bidirectional DC-DC converter 20.
  • the charging mode of the rechargeable battery BAT When the voltage of the rechargeable battery BAT is between 140 volts and 320 volts, the charging mode of the rechargeable battery BAT:
  • the insulated gate bipolar transistors T2, T3 and T5 are controlled to be turned off, and the insulated gate bipolar transistors T1 and T4 operate in the same pulse width modulation mode.
  • the equivalent circuit diagram formed is as shown in FIG. 13, and the insulated gate bipolar transistors T1 and T4 in FIG. 13 are equivalent to the switching transistor Q2 in the Buck circuit. Thereby, the storage capacitors C1 and C2 are discharged, and the rechargeable battery BAT is charged.
  • the discharge mode of the rechargeable battery BAT When the voltage of the rechargeable battery BAT is between 320 volts and 550 volts, the discharge mode of the rechargeable battery BAT:
  • the insulated gate bipolar transistors T1, T2, T3 and T4 are turned off, and the insulated gate bipolar transistor T5 operates in a pulse width modulation mode.
  • the equivalent circuit diagram formed is shown in FIG. 14, and the insulated gate bipolar transistor T5 in FIG. 14 is equivalent to the switching transistor Q1 in the Boost circuit.
  • the rechargeable battery BAT is discharged, and the storage capacitors C1 and C2 are simultaneously charged. Since the boost ratio of the bidirectional DC-DC converter 20 is 1.27 to 2.19, the conversion efficiency is high.
  • the charging mode of the rechargeable battery BAT is the same as the charging mode of the rechargeable battery BAT between 140 volts and 320 volts, and details are not described herein. .
  • the boost ratio of the bidirectional DC-DC converter 20 is smaller than 2.5, and only a first-order DC-DC conversion is used.
  • the output voltage range of the rechargeable battery selected by the bidirectional DC-DC converter of the present invention is not limited to 140 volts to 320 volts or 320 volts to 550 volts.
  • the output voltage range of the rechargeable battery selected by the bidirectional DC-DC converter of the present invention is not limited to 140 volts to 320 volts or 320 volts to 550 volts.
  • it may be 140 volts to 350 volts or 350 volts to 550 volts. It can also be 160 volts to 275 volts or 320 volts to 550 volts.
  • DC bus voltages not equal to 700 volts, other output voltage ranges can be selected.
  • the bidirectional DC-DC converter of the present invention can be connected in parallel for realizing mutual conversion of the voltage of the rechargeable battery and the voltage on the DC bus.
  • MOSFET metal oxide half field effect transistor
  • the diodes D1-D5 of the present invention may be antiparallel parasitic diodes of respective switching transistors. It can also be an extra reverse parallel diode.
  • the filter capacitor C of the present invention is used to filter the high frequency switching ripple current, thereby protecting the rechargeable battery BAT.
  • the bidirectional DC-DC converters 10, 20 of the present invention require only a single cell device and do not require a dual battery configuration, i.e., only one rechargeable battery device connected between the inductors L1 and L2 is required, thereby saving cost.
  • the number of switching tubes is reduced and the transformer is not present, thereby saving cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供了一种双向DC-DC变换器,该双向DC-DC变换器包括与第一二极管反向并联的第一开关管;与第二二极管反向并联的第二开关管;与第三二极管反向并联的第三开关管;与第四二极管反向并联的第四开关管;以及第一电感和第二电感;其中,所述第一二极管的阳极和第二二极管的阴极连接形成第一节点,所述第二二极管的阳极与第三二极管的阴极连接至中性点,所述第三二极管的阳极和第四二极管的阴极连接形成第二节点,所述第一电感和第二电感的一端分别连接至所述第一节点和第二节点。本发明的双向DC-DC变换器的转换效率高。

Description

双向DC-DC变换器 技术领域
本发明涉及DC-DC变换器,具体涉及一种双向DC-DC变换器。
背景技术
双向DC-DC变换器是一种广泛应用于不间断电源中的电气装置。双向DC-DC变换器的输入端连接至可充电电池,输出端连接至不间断电源中的正负直流母线上。双向DC-DC变换器可以将可充电电池的直流电升压后提供至正负直流母线上;也可以利用正负直流母线上的直流电对可充电电池进行充电。
目前常用的不间断电源中的正负直流母线之间的电压为700伏左右,目前市场上具有高压电池箱和低压电池箱,例如高压电池箱的输出电压为320V~550V,低压电池箱的输出电压为140V~320V。当选用高压电池箱时,双向DC-DC变换器的升压比在1.273~2.188之间(小于2.5),因而具有较高的转换效率。然而当选用低压电池箱时,双向DC-DC变换器的升压比在2.188~5之间,从而导致转换效率降低。为了解决升压比过大问题,需要采用两级升压,通常在双向DC-DC变换器的输出端和正负直流母线之间连接另一个双向DC-DC变换器。
一方面,另一个双向DC-DC变换器增加了不间断电源的成本。另一方面,当选用高压电池箱时,增加的双向DC-DC变换器将变得多余。
发明内容
因此,本发明要解决的技术问题是提供一种可选用输出电压范围大的可充电电池的双向DC-DC变换器。
本发明的一个实施例提供了一种双向DC-DC变换器,包括:
与第一二极管反向并联的第一开关管;
与第二二极管反向并联的第二开关管;
与第三二极管反向并联的第三开关管;
与第四二极管反向并联的第四开关管;以及
第一电感和第二电感;
其中,所述第一二极管的阳极和第二二极管的阴极连接形成第一节 点,所述第二二极管的阳极与第三二极管的阴极连接至中性点,所述第三二极管的阳极和第四二极管的阴极连接形成第二节点,所述第一电感和第二电感的一端分别连接至所述第一节点和第二节点。
优选的,所述双向DC-DC变换器还包括连接在所述第一电感的另一端和所述第二电感的另一端之间的可充电电池。
优选的,所述双向DC-DC变换器还包括与所述可充电电池并联的滤波电容。
优选的,所述双向DC-DC变换器还包括第一储能电容和第二储能电容,所述第一储能电容的一端与所述第二储能电容的一端连接至所述中性点,所述第一储能电容的另一端连接至所述第一二极管的阴极,所述第二储能电容的另一端连接至所述第四二极管的阳极。
优选的,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管和第四开关管截止,并控制所述第二开关管和第三开关管交替进行如下两个步骤:
1)控制所述第三开关管导通,第二开关管以脉宽调制方式工作,实现所述可充电电池放电并对所述第一储能电容充电;
2)控制所述第二开关管导通,第三开关管以脉宽调制方式工作,实现所述可充电电池放电并对所述第二储能电容充电。
优选的,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第二开关管和第三开关管截止,且控制所述第一开关管和第四开关管以相同的脉宽调制方式工作,实现所述第一储能电容和第二储能电容同时放电,并对所述可充电电池充电。
优选的,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管、第二开关管、第三开关管和第四开关管交替进行如下两个步骤:
1)控制所述第二开关管和第四开关管截止,控制所述第一开关管以脉宽调制方式工作,实现所述第一储能电容放电并对所述可充电电池充电;
2)控制所述第一开关管和第三开关管截止,控制所述第四开关管以脉宽调制方式工作,实现所述第二储能电容放电并对所述可充电电池充电。
优选的,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制 所述第一开关管和第四开关管截止,且控制所述第二开关管和第三开关管以相同脉宽调制方式工作,实现所述可充电电池放电并对所述第一储能电容和第二储能电容同时充电。
优选的,所述双向DC-DC变换器还包括与第五二极管反向并联的第五开关管,所述第五二极管的阴极和阳极分别连接所述第一节点和第二节点。
优选的,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管和第四开关管截止,控制所述第五开关管以脉宽调制方式工作,并控制所述第二开关管和第三开关管交替进行如下两个步骤:
1)控制所述第二开关管截止、第三开关管导通,实现所述可充电电池放电并对所述第一储能电容充电;
2)控制所述第二开关管导通、第三开关管截止,实现所述可充电电池放电并对所述第二储能电容充电。
优选的,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第二开关管、第三开关管和第五开关管截止,控制所述第一开关管和第四开关管以相同的脉宽调制方式工作,实现所述第一储能电容和第二储能电容同时放电,并对所述可充电电池充电。
优选的,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管、第二开关管、第三开关管和第四开关管截止,控制所述第五开关管以脉宽调制方式工作,实现所述可充电电池放电并对所述第一储能电容和第二储能电容同时充电。
本发明的双向DC-DC变换器能够将可充电电池提供的不同范围内的直流电压升压为所需的直流电压。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是现有技术中的Boost电路的电路图。
图2是现有技术中的Buck电路的电路图。
图3是根据本发明第一个实施例的双向DC-DC变换器与可充电电池和正负直流母线之间的储能电容相连接的电路图。
图4和图5是图3所示的双向DC-DC变换器在第一种放电模式的等效电路图。
图6是图3所示的双向DC-DC变换器在第一种充电模式的等效电路图。
图7和图8是图3所示的双向DC-DC变换器在第二种充电模式的等效电路图。
图9是图3所示的双向DC-DC变换器在第二种放电模式的等效电路图。
图10是根据本发明第二个实施例的双向DC-DC变换器与可充电电池和正负直流母线之间的储能电容相连接的电路图。
图11和图12是图10所示的双向DC-DC变换器在第一种放电模式下的等效电路图。
图13是图10所示的双向DC-DC变换器在充电模式下的等效电路图。
图14是图10所示的双向DC-DC变换器在第二种放电模式下的等效电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。
为了便于理解本发明的双向DC-DC变换器实现升压和降压的原理,首先简单介绍现有技术中经典的Boost电路和Buck电路的工作原理。
图1是现有技术中的Boost电路的电路图,通过控制Boost电路中的开关管Q1以脉宽调制方式工作(即开关管Q1在高频下交替地导通和截止),从而实现所需的输出电压高于输入电压。
图2是现有技术中的Buck电路的电路图,通过控制Buck电路中的开关管Q2以脉宽调制方式工作(即开关管Q2在高频下交替地导通和截止),从而实现所需的输出电压低于输入电压。
图3是根据本发明较佳实施例的双向DC-DC变换器与可充电电池和正负直流母线之间的储能电容相连接的电路图。如图3所示,双向DC-DC变换器10包括滤波电容C、电感L1、电感L2,以及与二极管D1、D2、D3和D4分别反向并联的绝缘栅双极型晶体管T1、T2、T3和T4。
二极管D1的阳极和二极管D2的阴极连接形成节点N1,二极管D2的阳极和二极管D3的阴极连接至中性点N,二极管D3的阳极和二极管D4的阴极连接形成节点N2。电感L1、L2的一端分别连接至节点N1、N2, 电感L1、L2的另一端连接至滤波电容C的两端。
可充电电池BAT与滤波电容C并联连接。储能电容C1、C2的一端连接至中性点N,且另一端分别连接至二极管D1的阴极和二极管D4的阳极。
在本发明的另一个实施例中,双向DC-DC变换器10还包括脉宽调制控制器(图3未示出)。对于本领域的技术人员来说,可以基于现有的脉宽调制控制器(例如MCS-51单片机)采用现有的生成方法(例如软件生成法)给开关管提供所需占空比的脉宽调制信号。
下面将结合双向DC-DC变换器10的工作模式和等效电路来说明其优点。假定储能电容C1、C2两端所需的电压都为350伏。
当可充电电池BAT的电压在140伏~320伏之间时,可充电电池BAT的放电模式为:控制绝缘栅双极型晶体管T1、T4截止,并控制绝缘栅双极型晶体管T2、T3以预定周期(例如0.02秒)交替进行如下两个步骤:
(1)控制绝缘栅双极型晶体管T3导通,绝缘栅双极型晶体管T2以脉宽调制方式工作。形成的等效电路图如图4所示,图4中的绝缘栅双极型晶体管T2等效为Boost电路中的开关管Q1,从而实现可充电电池BAT放电并对储能电容C1充电,且升压比为1.09~2.5,因此转换效率高。
(2)控制绝缘栅双极型晶体管T2导通,绝缘栅双极型晶体管T3以脉宽调制方式工作。形成的等效电路图如图5所示,图5中的绝缘栅双极型晶体管T3等效为Boost电路中的开关管Q1,从而实现可充电电池BAT放电并对储能电容C2充电,且升压比为1.09~2.5,因此转换效率高。
当双向DC-DC变换器10用于不间断电源中时,上述“预定周期”可以与不间断电源输出的交流电的周期相同,在此并不限定为0.02秒。
当可充电电池BAT的电压在140伏~320伏之间时,可充电电池BAT的第1种充电模式为:
控制绝缘栅双极型晶体管T2、T3截止,控制绝缘栅双极型晶体管T1、T4以相同脉宽调制方式工作。形成的等效电路图如图6所示,图6中的绝缘栅双极型晶体管T1、T4等效为Buck电路中的开关管Q2,从而实现储能电容C1、C2同时放电,并对可充电电池BAT充电。
当可充电电池BAT的电压在140伏~320伏之间时,可充电电池BAT的第2种充电模式:
控制绝缘栅双极型晶体管T1、T2、T3和T4以预定周期(例如0.02 秒)交替进行如下两个步骤:
(1)控制绝缘栅双极型晶体管T2、T4截止,绝缘栅双极型晶体管T3导通或截止,绝缘栅双极型晶体管T1以脉宽调制方式工作。形成的等效电路图如图7所示,图7中的绝缘栅双极型晶体管T1等效为Buck电路中的开关管Q2。从而实现储能电容C1放电并对可充电电池BAT进行充电。
(2)控制绝缘栅双极型晶体管T1、T3截止,绝缘栅双极型晶体管T2导通或截止,绝缘栅双极型晶体管T4以脉宽调制方式工作。形成的等效电路图如图8所示,图8中的绝缘栅双极型晶体管T4等效为Buck电路中的开关管Q2。从而实现储能电容C2放电并对可充电电池BAT进行充电。
当双向DC-DC变换器10用于不间断电源中时,上述“预定周期”可以与不间断电源输出的交流电的周期相同,在此并不限定为0.02秒。
当可充电电池BAT的电压在320伏~550伏之间时,可充电电池BAT的放电模式为:
控制绝缘栅双极型晶体管T1、T4截止,绝缘栅双极型晶体管T2、T3以相同脉宽调制方式工作。形成的等效电路如图9所示,图9中的绝缘栅双极型晶体管T2和T3等效为Boost电路中的开关管Q1。从而实现可充电电池BAT放电,并对储能电容C1、C2同时充电,双向DC-DC变换器10的升压比为1.27~2.19,因此转换效率高。
当可充电电池BAT的电压在320伏~550伏之间时,可充电电池BAT的充电模式:直流母线对可充电电池BAT充电方式与可充电电池BAT的电压在140伏~320伏之间时的第1种充电模式相同,在此不再赘述。
根据双向DC-DC变换器10的上述工作方式可知,当可充电电池BAT的电压在140伏~320伏或320伏~550伏之间时,双向DC-DC变换器10的升压比都小于2.5,且只采用了一级DC-DC变换。
图10是根据本发明第二个实施例的双向DC-DC变换器与可充电电池和正负直流母线之间的储能电容相连接的电路图。双向DC-DC变换器20与图3所示的双向DC-DC变换器10基本相同,区别在于,还包括与二极管D5反向并联的绝缘栅双极型晶体管T5。二极管D5的阴极和阳极分别 连接至节点N1、N2。
在本发明的另一个实施例中,双向DC-DC变换器20还包括脉宽调制控制器(图10未示出)。对于本领域的技术人员来说,可以基于现有的脉宽调制控制器(例如MCS-51单片机)采用现有的生成方法(例如软件生成法)给开关管提供所需占空比的脉宽调制信号。
以下将结合双向DC-DC变换器20的工作模式和等效电路来说明其优点。同样假定储能电容C1、C2两端所需的电压都为350伏。
当可充电电池BAT的电压在140伏~320伏之间时,可充电电池BAT的放电模式为:控制绝缘栅双极型晶体管T1、T4截止,绝缘栅双极型晶体管T5以脉宽调制方式工作,并控制绝缘栅双极型晶体管T2、T3以预定的周期(例如0.02秒)交替进行如下两个步骤:
(1)控制绝缘栅双极型晶体管T2截止,绝缘栅双极型晶体管T3导通。形成的等效电路图如图11所示,图11中的绝缘栅双极型晶体管T5等效为Boost电路中的开关管Q1,从而实现可充电电池BAT放电,并对储能电容C1充电。升压比为1.09~2.5,因此转换效率高。
(2)控制绝缘栅双极型晶体管T2导通,绝缘栅双极型晶体管T3截止。形成的等效电路图如图12所示,图12中的绝缘栅双极型晶体管T5等效为Boost电路中的开关管Q1,从而实现可充电电池BAT放电,并对储能电容C2充电。升压比为1.09~2.5,因此转换效率高。
当双向DC-DC变换器20用于不间断电源中时,上述“预定周期”可以与不间断电源输出的交流电的周期相同,在此并不限定为0.02秒。
参考图11和图12可知,当绝缘栅双极型晶体管T5导通时,导电回路为“可充电电池BAT的正极-电感L1-绝缘栅双极型晶体管T5-电感L2-可充电电池BAT的负极”。另外参考图4和图5可知,绝缘栅双极型晶体管T2或T3导通时,导电回路为“可充电电池BAT的正极-电感L1-绝缘栅双极型晶体管T2-绝缘栅双极型晶体管T3-电感L2-可充电电池BAT的负极”。由于绝缘栅双极型晶体管T5的阻抗小于绝缘栅双极型晶体管T2和T3的阻抗之和,因此图11和图12的放电方式相比于图4和图5的放电方式提高了转换效率。另外,由于绝缘栅双极型晶体管T5的存在,使得导电回路上的寄生电感相对于绝缘栅双极型晶体管T2和T3有所减少,且绝缘栅双极型晶体管T2或T3以工频导通或截止,从而减小了尖峰电压,从而有效保护双向DC-DC变换器20。
当可充电电池BAT的电压在140伏~320伏之间时,对可充电电池BAT的充电模式:
控制绝缘栅双极型晶体管T2、T3和T5截止,绝缘栅双极型晶体管T1、T4以相同脉宽调制方式工作。形成的等效电路图如图13所示,图13中的绝缘栅双极型晶体管T1、T4等效为Buck电路中的开关管Q2。从而实现储能电容C1、C2放电,并对可充电电池BAT充电。
当可充电电池BAT的电压在320伏~550伏之间时,可充电电池BAT的放电模式:
控制绝缘栅双极型晶体管T1、T2、T3和T4截止,绝缘栅双极型晶体管T5以脉宽调制方式工作。形成的等效电路图如图14所示,图14中的绝缘栅双极型晶体管T5等效为Boost电路中的开关管Q1。实现可充电电池BAT放电,并对储能电容C1、C2同时充电。双向DC-DC变换器20的升压比为1.27~2.19,因此转换效率高。
当可充电电池BAT的电压在320伏~550伏之间时,对可充电电池BAT的充电模式与可充电电池BAT的电压在140伏~320伏之间的充电模式相同,在此不再赘述。
根据双向DC-DC变换器20的上述工作方式可知,当可充电电池BAT的电压在140伏~320伏或320伏~550伏之间时,双向DC-DC变换器20的升压比都小于2.5,且只采用了一级DC-DC变换。
采用本发明的双向DC-DC变换器,可以选用输出电压范围较大的可充电电池BAT。本领域的技术人员可知,本发明的双向DC-DC变换器选取的可充电电池的输出电压范围并不限于140伏~320伏或320伏~550伏。例如可以是140伏~350伏或350伏~550伏。还可以是160伏~275伏或320伏~550伏。对于直流母线电压不等于700伏的情况,还可以选取其他输出电压范围。
在实际应用中,可以将本发明的双向DC-DC变换器并联起来,用于实现可充电电池电压和直流母线上电压的相互变换。
在本发明的其他实施例中,还可以采用金氧半场效晶体管(MOSFET)代替上述实施例中的绝缘栅双极型晶体管。
本发明的二极管D1-D5可以是相应开关管的反向并联的寄生二极管。也可以是额外反向并联的二极管。
本发明的滤波电容C用于过滤高频开关纹波电流,从而保护可充电电池BAT。
本发明的双向DC-DC变换器10、20仅需要单电池装置,无需双电池配置,即只需要连接在电感L1和L2之间的一个可充电电池装置,因而节约了成本。另外与由两级逆变器构成的双向DC-DC变换器相比,减少了开关管的数量、且不存在变压器,因此节约了成本。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。

Claims (12)

  1. 一种双向DC-DC变换器,其特征在于,包括:
    与第一二极管反向并联的第一开关管;
    与第二二极管反向并联的第二开关管;
    与第三二极管反向并联的第三开关管;
    与第四二极管反向并联的第四开关管;以及
    第一电感和第二电感;
    其中,所述第一二极管的阳极和第二二极管的阴极连接形成第一节点,所述第二二极管的阳极与第三二极管的阴极连接至中性点,所述第三二极管的阳极和第四二极管的阴极连接形成第二节点,所述第一电感和第二电感的一端分别连接至所述第一节点和第二节点。
  2. 根据权利要求1所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括连接在所述第一电感的另一端和所述第二电感的另一端之间的可充电电池。
  3. 根据权利要求2所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括与所述可充电电池并联的滤波电容。
  4. 根据权利要求2所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括第一储能电容和第二储能电容,所述第一储能电容的一端与所述第二储能电容的一端连接至所述中性点,所述第一储能电容的另一端连接至所述第一二极管的阴极,所述第二储能电容的另一端连接至所述第四二极管的阳极。
  5. 根据权利要求4所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管和第四开关管截止,并控制所述第二开关管和第三开关管交替进行如下两个步骤:
    1)控制所述第三开关管导通,第二开关管以脉宽调制方式工作,实现所述可充电电池放电并对所述第一储能电容充电;
    2)控制所述第二开关管导通,第三开关管以脉宽调制方式工作,实现所述可充电电池放电并对所述第二储能电容充电。
  6. 根据权利要求4所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第二开关管和第 三开关管截止,且控制所述第一开关管和第四开关管以相同的脉宽调制方式工作,实现所述第一储能电容和第二储能电容同时放电,并对所述可充电电池充电。
  7. 根据权利要求4所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管、第二开关管、第三开关管和第四开关管交替进行如下两个步骤:
    1)控制所述第二开关管和第四开关管截止,控制所述第一开关管以脉宽调制方式工作,实现所述第一储能电容放电并对所述可充电电池充电;
    2)控制所述第一开关管和第三开关管截止,控制所述第四开关管以脉宽调制方式工作,实现所述第二储能电容放电并对所述可充电电池充电。
  8. 根据权利要求4所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管和第四开关管截止,且控制所述第二开关管和第三开关管以相同脉宽调制方式工作,实现所述可充电电池放电并对所述第一储能电容和第二储能电容同时充电。
  9. 根据权利要求4所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括与第五二极管反向并联的第五开关管,所述第五二极管的阴极和阳极分别连接所述第一节点和第二节点。
  10. 根据权利要求9所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管和第四开关管截止,控制所述第五开关管以脉宽调制方式工作,并控制所述第二开关管和第三开关管交替进行如下两个步骤:
    1)控制所述第二开关管截止、第三开关管导通,实现所述可充电电池放电并对所述第一储能电容充电;
    2)控制所述第二开关管导通、第三开关管截止,实现所述可充电电池放电并对所述第二储能电容充电。
  11. 根据权利要求9所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第二开关管、第三开关管和第五开关管截止,控制所述第一开关管和第四开关管以相同的脉宽调制方式工作,实现所述第一储能电容和第二储能电容同时放电, 并对所述可充电电池充电。
  12. 根据权利要求9所述的双向DC-DC变换器,其特征在于,所述双向DC-DC变换器还包括脉宽调制控制器,用于控制所述第一开关管、第二开关管、第三开关管和第四开关管截止,控制所述第五开关管以脉宽调制方式工作,实现所述可充电电池放电并对所述第一储能电容和第二储能电容同时充电。
PCT/CN2016/071551 2015-02-02 2016-01-21 双向dc-dc变换器 WO2016124079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16746074.0A EP3255771B1 (en) 2015-02-02 2016-01-21 Bidirectional dc-dc convertor
US15/546,787 US10243455B2 (en) 2015-02-02 2016-01-21 Bidirectional DC-DC converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510053870X 2015-02-02
CN201510053870.XA CN105991021B (zh) 2015-02-02 2015-02-02 双向dc-dc变换器

Publications (1)

Publication Number Publication Date
WO2016124079A1 true WO2016124079A1 (zh) 2016-08-11

Family

ID=56563433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071551 WO2016124079A1 (zh) 2015-02-02 2016-01-21 双向dc-dc变换器

Country Status (4)

Country Link
US (1) US10243455B2 (zh)
EP (1) EP3255771B1 (zh)
CN (1) CN105991021B (zh)
WO (1) WO2016124079A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327194B (zh) * 2018-12-13 2021-08-06 台达电子工业股份有限公司 共直流电源的电源转换器及供电装置
US11205916B2 (en) * 2019-03-20 2021-12-21 Richard H. Sherratt and Susan B. Sherratt Revocable Trust Fund High-energy capacitive transform device using multifilar inductor
EP3846329A1 (en) * 2019-12-31 2021-07-07 Solaredge Technologies Ltd. Dc balancer circuit with zvs
TWI703803B (zh) * 2020-03-04 2020-09-01 崑山科技大學 高電壓增益轉換器
CN112583267B (zh) * 2020-12-15 2022-06-07 山特电子(深圳)有限公司 双向dc-dc变换器及包括其的不间断电源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249111A1 (en) * 2011-03-30 2012-10-04 Shenzhen China Star Optoelectronics Technology Co. Ltd. Cascade-Connected Boost Circuit
CN103414338A (zh) * 2013-07-22 2013-11-27 华为技术有限公司 双向dcdc变换电路和变换装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141871A (ja) * 2006-12-01 2008-06-19 Honda Motor Co Ltd 電力変換器
US8482154B2 (en) * 2009-03-05 2013-07-09 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus
JP5359637B2 (ja) * 2009-07-17 2013-12-04 富士電機株式会社 電力変換装置
US9030857B2 (en) * 2010-04-19 2015-05-12 Power-One Italy S.P.A. Five-stage neutral point clamped inverter
EP2456059B1 (en) * 2010-11-17 2018-05-23 ABB Schweiz AG Switching branch modul for a three-level converter and method for controlling that switching branch
US8513928B2 (en) * 2011-01-05 2013-08-20 Eaton Corporation Bidirectional buck-boost converter
JP5800130B2 (ja) * 2011-06-20 2015-10-28 富士電機株式会社 直流電源システム
CN103151937A (zh) 2011-12-06 2013-06-12 上海雷诺尔科技股份有限公司 一种变频单元超级电容器组件充放电控制回路
JP2013223274A (ja) * 2012-04-13 2013-10-28 Fuji Electric Co Ltd マルチレベル電力変換装置
US9077255B2 (en) * 2013-01-11 2015-07-07 Futurewei Technologies, Inc. Resonant converters and methods
WO2014152948A2 (en) * 2013-03-14 2014-09-25 Engineered Electric Company Bidirectional power converter
CA2847979C (en) 2013-04-02 2021-10-19 Damien FROST Dc/dc converters
CN105337521A (zh) * 2014-08-11 2016-02-17 通用电气能源电能变换科技有限公司 多电平转换器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249111A1 (en) * 2011-03-30 2012-10-04 Shenzhen China Star Optoelectronics Technology Co. Ltd. Cascade-Connected Boost Circuit
CN103414338A (zh) * 2013-07-22 2013-11-27 华为技术有限公司 双向dcdc变换电路和变换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255771A4 *

Also Published As

Publication number Publication date
CN105991021B (zh) 2020-07-07
EP3255771A1 (en) 2017-12-13
US20180278158A1 (en) 2018-09-27
EP3255771A4 (en) 2018-09-26
US10243455B2 (en) 2019-03-26
CN105991021A (zh) 2016-10-05
EP3255771B1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
Hillers et al. Design of a highly efficient bidirectional isolated LLC resonant converter
Lee et al. Zero-current-switching switched-capacitor bidirectional DC–DC converter
US10128756B2 (en) DC-DC converter with high transformer ratio
EP2884646B1 (en) Multiple-output DC/DC converter and power supply having the same
WO2016124079A1 (zh) 双向dc-dc变换器
TWI672898B (zh) 雙向dc-dc轉換器
Averberg et al. Current-fed full bridge converter for fuel cell systems
US20170187296A1 (en) Bidirectional dc/dc converter and cotnrol method thereof
WO2008020629A1 (fr) Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation
JPWO2011161729A1 (ja) Dc−dcコンバータ
US10020660B2 (en) Bidirectional DC-DC converter
JP2008072856A (ja) Dc/dc電力変換装置
TW201725844A (zh) 單向隔離式多階直流-直流電能轉換裝置及其方法
KR101140336B1 (ko) 절연형 벅 부스트 dc?dc 컨버터
CN116054590A (zh) 一种功率变换电路及其控制方法、电池包及储能系统
KR102005880B1 (ko) Dc-dc 변환 시스템
Choi et al. Cascaded dc-to-dc converter employing a tapped-inductor for high voltage boosting ratio
TWI501527B (zh) 單輔助開關之交錯式高升壓比柔切式轉換器
US11817795B2 (en) Switching power supply circuit
CN109510464A (zh) 一种具备高增益升压能力的Buck-Boost DC-DC变换器
Roggia et al. Comparison between full-bridge-forward converter and DAB converter
TWI755290B (zh) 功率因數校正電路之操作方法與不斷電電源供應裝置之操作方法
CN209184488U (zh) 一种具备高增益升压能力的Buck-Boost DC-DC变换器
CN113131742A (zh) 宽电压输入四管Buck-Boost电路
KR101813778B1 (ko) 하이브리드 방식 led 전원장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016746074

Country of ref document: EP