CN103151937A - 一种变频单元超级电容器组件充放电控制回路 - Google Patents

一种变频单元超级电容器组件充放电控制回路 Download PDF

Info

Publication number
CN103151937A
CN103151937A CN2011104014245A CN201110401424A CN103151937A CN 103151937 A CN103151937 A CN 103151937A CN 2011104014245 A CN2011104014245 A CN 2011104014245A CN 201110401424 A CN201110401424 A CN 201110401424A CN 103151937 A CN103151937 A CN 103151937A
Authority
CN
China
Prior art keywords
circuit
factor correction
control loop
power factor
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104014245A
Other languages
English (en)
Inventor
陈国成
刘海珊
曾国辉
陈国祥
刘国鹰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Renle Science & Technology Co Ltd
Original Assignee
Shanghai Renle Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Renle Science & Technology Co Ltd filed Critical Shanghai Renle Science & Technology Co Ltd
Priority to CN2011104014245A priority Critical patent/CN103151937A/zh
Publication of CN103151937A publication Critical patent/CN103151937A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明涉及一种带功率因数校正的变频单元超级电容器组件充放电控制回路。该回路采用超级电容构成的超级电容器组件作为储能电容器件,储能量大且充放电更快速,能满足变频单元快速制动和加速的更高要求。采用交叉并联双Boost功率因数校正电路可以减少开关损耗同时提高电能质量。采用多级双向DC-DC变换器作为储能元件与直流母线之间的接口能减少开关损耗、减小滤波电感并提高变换器效率。

Description

一种变频单元超级电容器组件充放电控制回路
技术领域
本发明涉及电力电子技术领域,尤其是涉及一种带功率因数校正的变频单元超级电容器组件充放电控制回路。
背景技术
在工业界大力提倡节能减排构建低碳社会的氛围中,高压变频器得到越来越广泛的应用。许多行业要求高压变频器组成的电机拖动系统能在四象限内运行,并希望能达到快速制动或者迅速加速的能力以提高生产力。然而在现有技术条件下却往往受制于直流母线的充放电能力,这其中涉及到2个方面主要问题,一是在电机变频拖动系统制动时机械能转变的电能如何快速消耗或者转化掉,另一个是在电机拖动系统加速时如何突破现有变频器技术的限制迅速补充能量进行加速而不对电网产生过大的冲击。
现有变频技术在制动时常采用能耗制动或者回馈制动方案。能耗制动时主要采用能耗电阻来消耗掉制动时机械能转换的电能,这种方案虽然实现起来简单,但浪费了大量的能量,降低系统的效率,常常使得电阻发热严重,电阻容易烧坏且要求很大的散热空间,影响系统的其他部分正常工作,更有甚者,简单的能耗制动有时不能及时抑制快速制动产生的泵升电压,限制了制动性能的提高,不能提供足够大的制动力矩,导致调速范围不宽,动态性能差。回馈制动则是将制动过程中产生的再生能通过逆变器回送到电网中,理论上虽然比较完美,但由于PWM逆变器回馈的能量中其电流谐波畸变率约在5%~7%之间。这些高次谐波对电网及其它用电设备都有不可忽视的影响,会产生对电源、环境的电磁干扰。因此在实用中受到种种限制,比如常常得不到配电网的允许接入电网。而在起动加速时为了满足系统更高加速能力,则往往通过提高变频器及拖动电机的功率配置来实现,这样既增加设备成本又降低系统运行效率。
也有技术采用蓄电池吸收回馈能量,通过双向DC-DC与变频器的直流母线连接,当电机处于电动状态时,蓄电池进行恒流放电;当电机处于发电状态并且直流母线电压超过一定预设值时,蓄电池开始充电并且充电电流可以根据回馈功率进行控制。但该方案可回收能量有限,并且蓄电池需要经常频繁深度充放电,将严重影响化学电池的寿命,蓄电池需要按期更换,因此应用并不广泛。另外,电机加速时需求的峰值功率需要由电池提供一部分,而蓄电池的比功率有限往往无法满足。
超级电容器作为一种理想的新型能源器件,具有内阻小,功率密度大,充放电电流大,充放电效率可高达90%~95%、循环寿命长可达几万甚至十万次、以及能实现彻底免维护、无污染等诸多独特优点。因此超级电容在需要短时提供大功率缓冲、混合动力等系统中有着越来越多的应用,在低压小功率变频器中也开始得到应用。但现有应用案例中大都是采用普通双向DC-DC变换器作为超级电容与变频器直流母线之间的接口,依然无法避免会有电能质量低、电磁兼容性不达标等缺点,且超级电容单体本身耐压较低、需要串联起来才能用到小功率低压变频器中,所以现在超级电容作为储能元件还无法应用到高压变频器中满足其快速制动或加速的要求。
鉴于上述问题,本发明开发了一种采用超级电容器组件构成的具有功率因数校正功能的适用于高压变频单元模块在系统加减速过程中回收制动能量或者增加瞬时驱动能量的充放电控制回路。
发明内容
本发明为实现上述技术问题,在于提供一种采用交叉并联双Boost功率因数校正电路,进而可以减少开关损耗同时提高电能质量,并利用多级双向DC-DC变换器作为储能元件与直流母线之间的接口,可以减少开关损耗和滤波电感,能大大提高变换器效率的变频单元超级电容器组件充放电控制回路。
本发明所解决的技术问题采用以下技术方案来实现:
一种变频单元超级电容器组件充放电控制回路,包括功率因数校正电路、多级双向DC-DC变换器及其接口电路、超级电容器组件及与之相对应的控制电路,其特征在于:所述功率因数校正电路采用交叉并联双功率因数校正电路结构接于直流母线上;
所述多级双向DC-DC变换器由两个输入滤波电容器C1和C2、一个滤波电感L3、以及四个双向电流开关SW1A、SW1B、SW2A、SW2B所组成;
所述超级电容器组件由众多超级电容串并联而构成,并接于所述多级双向DC-DC变换器接口电路上。
其中,所述交叉并联双功率因数校正电路还包括两个Boost功率因数校正电路,一个作为主功率因数校正电路,由电阻L1、双向开关SW1和二极管D1所组成,另一个作为从功率因数校正电路,由电阻L2、双向开关SW2和二极管D2组成,并采用如下控制策略:所述两个Boost功率因数校正电路采用不同的开关频率;所述主功率因数校正电路工作在高工作电流低开关频率状态,所述从功率因数校正电路工作在低工作电流高开关频率状态下,以减少开关损耗,并可控制所述从功率因数校正电路对所述主功率因数校正电路进行有源滤波。
所述四个双向电流开关SW1A、SW1B、SW2A、SW2B均可以是由IGBT或者MOSFET和续流二极管组成,所述四个双向电流开关SW1A、SW1B、SW2A、SW2B顺次串联构成一条支路接在所述直流母线之间。
所述输入滤波电容器C1和C2相互串联构成另一条支路也接于所述直流母线之间,所述输入滤波电容器C1、C2的中间点分别连接到由所述四个双向电流开关SW1A、SW1B、SW2A、SW2B顺次串联所构成的支路的中间点上,可以起到自动平分直流母线电压的作用。
所述滤波电感L3和超级电容器组串联后接在SW1A、SW1B中间的节点和SW2A、SW2B中间的节点上。
所述双向电流开关SW1A和SW1B由开关函数fs1及其互补函数所控制,所述双向电流开关SW2A和SW2B由开关函数fs2及其互补函数所控制,其中所述开关函数fs1和fs2是由所述控制电路中的脉宽调制器PWM1和PWM2所产生,其调制信号d1和d2是由控制电路生成的占空比,用以控制所述超级电容器组件充放电电流iCU和滤波电容器电压Uc1和Uc2,所述开关函数fs1和fs2具体值由下式(1)和式(2)计算决定:
fs 1 ( t ) = 1 kT sw < t &le; T sw ( k + d 1 2 ) and T sw ( k + 1 - d 1 2 ) < t &le; ( k + 1 ) T sw 0 T sw ( k + d 1 2 ) < t &le; T sw ( k + 1 - d 1 2 ) - - - ( 1 )
fs 2 ( t ) = 1 kT sw < t - T sw 2 &le; T sw ( k + d 2 2 ) and T sw ( k + 1 - d 2 2 ) < t - T sw 2 &le; ( k + 1 ) T sw 0 T sw ( k + d 2 2 ) < t - T sw 2 &le; T sw ( k + 1 - d 1 2 ) - - - ( 2 )
式中k为大于0的整数,Tsw为开关周期。
多级双向DC-DC变换器相较于其它常用的DC-DC变换器而言主要有以下优点:对应同样大小纹波电流,其滤波电感L3取值可以是普通DC-DC变换器的1/4;其开关额定电压值是普通DC-DC变换器的1/2,减少总开关损耗达25%-50%;滤波电容器无需采用电阻来平衡电容器电压,可以自动取得平衡,减小体积并节能;输出电压脉动幅值为直流母线电压的1/2,可以减少传导和辐射电磁波,提高电磁兼容性。
本发明具有的有益效果是;采用交叉并联双Boost功率因数校正电路可以减少开关损耗同时提高电能质量;采用多级双向DC-DC变换器作为储能元件与直流母线之间的接口能减少开关损耗、减小滤波电感并提高变换器效率。
附图说明
图1为本发明:一种变频单元超级电容器组件充放电控制回路的结构示意图;
图2为本发明:交叉并联双Boost功率因数校正电路的结构示意图;
图3为本发明:多级双向DC-DC变换器的结构示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
实施例:参照图1-3所示,一种变频单元超级电容器组件充放电控制回路,包括交叉并联双Boost功率因数校正电路1、多级双向DC-DC变换器2和超级电容器组件Cu三部分。
交叉并联双Boost功率因数校正电路1工作在连续导电模式。为了减少开关损耗,采用以下控制策略:两个Boost功率因数校正电路一个作为主功率因数校正电路,一个作为从功率因数校正电路,两个功率因数校正电路采用不同的开关频率;主功率因数校正电路工作在高工作电流低开关频率状态,从功率因数校正电路工作在低工作电流高开关频率状态下,以减少开关损耗,并可控制从功率因数校正电路对主功率因数校正电路进行有源滤波。
多级双向DC-DC变换器2主要由两个输入滤波电容器C1、C2,滤波电感L3,和四个双向电流开关SW1A、SW1B、SW2A、SW2B组成。四个双向电流开关均可以是由IGBT或者MOSFET和续流二极管组成。四个双向电流开关SW1A、SW1B、SW2A、SW2B顺次串联构成一条支路接在直流母线之间,如附图3所示。输入滤波电容器C1、C2中间点连接到四个双向电流开关SW1A、SW1B、SW2A、SW2B顺次串联构成的支路的中间点,如附图3所示,可以起到自动平分直流母线电压的作用。
开关SW1A和开关SW1B由开关函数fs1及其互补函数控制,开关SW2A和开关SW2B由开关函数fs2及其互补函数控制。开关函数fs1和开关函数fs2由脉宽调制器PWM1和PWM2产生,其调制信号d1和d2是由控制回路生成的占空比,用以控制超级电容器组件充放电电流iCU和滤波电容器电压Uc1和Uc2。开关函数fs1和开关函数fs2具体由下式(1)和式(2)决定:
fs 1 ( t ) = 1 kT sw < t &le; T sw ( k + d 1 2 ) and T sw ( k + 1 - d 1 2 ) < t &le; ( k + 1 ) T sw 0 T sw ( k + d 1 2 ) < t &le; T sw ( k + 1 - d 1 2 ) - - - ( 1 )
fs 2 ( t ) = 1 kT sw < t - T sw 2 &le; T sw ( k + d 2 2 ) and T sw ( k + 1 - d 2 2 ) < t - T sw 2 &le; ( k + 1 ) T sw 0 T sw ( k + d 2 2 ) < t - T sw 2 &le; T sw ( k + 1 - d 1 2 ) - - - ( 2 )
式中k为大于0的整数,Tsw为开关周期。
占空比d1和d2分别是PWM1和PWM2的调制信号,分别由非线性控制器根据下式(3)和式(4)产生:
d 1 = u 0 + u C 0 u BUS + &Delta;d - - - ( 3 )
d 2 = u 0 + u C 0 u BUS - &Delta;d - - - ( 4 )
式中uC0是超级电容电压值,uBUS是直流母线电压值,u0是主控制变量由电流控制器产生,而Δd是平衡占空比作为辅助控制变量由电压误差控制器产生。
多级双向DC-DC变换器相较于其它常用的DC-DC变换器而言主要有以下优点:对应同样大小纹波电流,其滤波电感L3取值可以是普通DC-DC变换器的1/4;其开关额定电压值是普通DC-DC变换器的1/2,减少总开关损耗达25%-50%;滤波电容器由2个电解电容C1和C2串联而成,且无需采用电阻来平衡电容器电压,可以自动取得平衡,减小体积并节能;输出电压脉动幅值为直流母线电压的1/2,可以减少传导和辐射电磁波,提高电磁兼容性。
超级电容器组件Cu由超级电容串并混联而成,每个电容器均指定一个电阻及相应的均压均流电路控制其充放电过程的电压,并有检测保护电路和显示电路。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种变频单元超级电容器组件充放电控制回路,包括功率因数校正电路、多级双向DC-DC变换器及其接口电路、超级电容器组件及与之相对应的控制电路,其特征在于:所述功率因数校正电路采用交叉并联双功率因数校正电路结构接于直流母线上;
所述多级双向DC-DC变换器由两个输入滤波电容器C1和C2、一个滤波电感L3、以及四个双向电流开关SW1A、SW1B、SW2A、SW2B所组成;
所述超级电容器组件由众多超级电容串并联而构成,并接于所述多级双向DC-DC变换器接口电路上。
2.根据权利要求1所述的一种变频单元超级电容器组件充放电控制回路,其特征在于:所述交叉并联双功率因数校正电路包括两个Boost功率因数校正电路,一个作为主功率因数校正电路,另一个作为从功率因数校正电路。
3.根据权利要求1所述的一种变频单元超级电容器组件充放电控制回路,其特征在于:所述四个双向电流开关SW1A、SW1B、SW2A、SW2B均可以是由IGBT或者MOSFET和续流二极管组成;
所述四个双向电流开关SW1A、SW1B、SW2A、SW2B顺次串联构成一条支路接在所述直流母线之间。
4.根据权利要求1所述的一种变频单元超级电容器组件充放电控制回路,其特征在于:所述输入滤波电容器C1和C2相互串联构成另一条支路也接于所述直流母线之间;
所述输入滤波电容器C1、C2的中间点分别连接到由所述四个双向电流开关SW1A、SW1B、SW2A、SW2B顺次串联所构成的支路的中间点上。
5.根据权利要求1所述的一种变频单元超级电容器组件充放电控制回路,其特征在于:所述双向电流开关SW1A和SW1B由开关函数fs1及其互补函数所控制,所述双向电流开关SW2A和SW2B由开关函数fs2及其互补函数所控制。
6.根据权利要求5所述的一种变频单元超级电容器组件充放电控制回路,其特征在于:所述开关函数fs1和fs2是由所述控制电路中的脉宽调制器PWM1和PWM2所产生。
7.根据权利要求1所述的一种变频单元超级电容器组件充放电控制回路,其特征在于:所述滤波电感L3和超级电容器组件串联后接在SW1A、SW1B中间的节点和SW2A、SW2B中间的节点上。
CN2011104014245A 2011-12-06 2011-12-06 一种变频单元超级电容器组件充放电控制回路 Pending CN103151937A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104014245A CN103151937A (zh) 2011-12-06 2011-12-06 一种变频单元超级电容器组件充放电控制回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104014245A CN103151937A (zh) 2011-12-06 2011-12-06 一种变频单元超级电容器组件充放电控制回路

Publications (1)

Publication Number Publication Date
CN103151937A true CN103151937A (zh) 2013-06-12

Family

ID=48549854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104014245A Pending CN103151937A (zh) 2011-12-06 2011-12-06 一种变频单元超级电容器组件充放电控制回路

Country Status (1)

Country Link
CN (1) CN103151937A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595231A (zh) * 2013-11-28 2014-02-19 哈尔滨工业大学 基于交错并联Boost型APFC电路的12脉波整流系统的直流侧谐波抑制系统及方法
CN103818329A (zh) * 2014-03-06 2014-05-28 成都芝田高分子材料有限公司 基于超级电容器的汽车电子助力转向系统供电方法
CN105099161A (zh) * 2014-05-15 2015-11-25 广东美的暖通设备有限公司 Pfc电路及具有其的整流装置
CN105656321A (zh) * 2016-03-11 2016-06-08 广东明阳龙源电力电子有限公司 一种直流母线两单元串联式的风电变流器主电路拓扑结构
CN108521848A (zh) * 2015-10-30 2018-09-11 施密徳豪泽股份公司 网络反馈单元和电驱动系统
EP3255771A4 (en) * 2015-02-02 2018-09-26 Santak Electronic (Shenzhen) Co., Ltd. Bidirectional dc-dc convertor
CN113162020A (zh) * 2021-04-20 2021-07-23 核工业西南物理研究院 一种大量电容并联连接的均流电路结构及球马克装置电源
CN114026441A (zh) * 2019-06-27 2022-02-08 依必安派特穆尔芬根有限两合公司 电路和用于监控直流母线电容器的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428922A (zh) * 2001-12-28 2003-07-09 深圳市中兴通讯股份有限公司上海第二研究所 功率因数校正的方法及其装置
CN1625032A (zh) * 2004-12-16 2005-06-08 西安交通大学 五电平高频直流变换装置
US7116087B2 (en) * 2003-08-11 2006-10-03 Delta Electronics Inc. Current sharing method and apparatus for alternately controlling parallel connected boost PFC circuits
CN201122908Y (zh) * 2007-09-29 2008-09-24 山东新风光电子科技发展有限公司 一种单相双向spwm变频装置
CN101609970A (zh) * 2008-06-18 2009-12-23 Abb股份有限公司 具有极宽ac输入电压范围的ac-dc中间电路转换器
CN101950974A (zh) * 2010-08-03 2011-01-19 大连理工大学 基于超级电容器储能的电能质量调节系统
CN201726182U (zh) * 2010-07-05 2011-01-26 上海新华电子设备有限公司 高电压超级电容动力电池充电器
US7944188B1 (en) * 2007-11-08 2011-05-17 Ernest H. Wittenbreder, Jr Power converter circuits having bipolar outputs and bipolar inputs

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428922A (zh) * 2001-12-28 2003-07-09 深圳市中兴通讯股份有限公司上海第二研究所 功率因数校正的方法及其装置
US7116087B2 (en) * 2003-08-11 2006-10-03 Delta Electronics Inc. Current sharing method and apparatus for alternately controlling parallel connected boost PFC circuits
CN1625032A (zh) * 2004-12-16 2005-06-08 西安交通大学 五电平高频直流变换装置
CN201122908Y (zh) * 2007-09-29 2008-09-24 山东新风光电子科技发展有限公司 一种单相双向spwm变频装置
US7944188B1 (en) * 2007-11-08 2011-05-17 Ernest H. Wittenbreder, Jr Power converter circuits having bipolar outputs and bipolar inputs
CN101609970A (zh) * 2008-06-18 2009-12-23 Abb股份有限公司 具有极宽ac输入电压范围的ac-dc中间电路转换器
CN201726182U (zh) * 2010-07-05 2011-01-26 上海新华电子设备有限公司 高电压超级电容动力电池充电器
CN101950974A (zh) * 2010-08-03 2011-01-19 大连理工大学 基于超级电容器储能的电能质量调节系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595231A (zh) * 2013-11-28 2014-02-19 哈尔滨工业大学 基于交错并联Boost型APFC电路的12脉波整流系统的直流侧谐波抑制系统及方法
CN103818329A (zh) * 2014-03-06 2014-05-28 成都芝田高分子材料有限公司 基于超级电容器的汽车电子助力转向系统供电方法
CN105099161A (zh) * 2014-05-15 2015-11-25 广东美的暖通设备有限公司 Pfc电路及具有其的整流装置
EP3255771A4 (en) * 2015-02-02 2018-09-26 Santak Electronic (Shenzhen) Co., Ltd. Bidirectional dc-dc convertor
US10243455B2 (en) 2015-02-02 2019-03-26 Santak Electronic (Shenzhen) Co., Ltd. Bidirectional DC-DC converter
CN108521848A (zh) * 2015-10-30 2018-09-11 施密徳豪泽股份公司 网络反馈单元和电驱动系统
US10630204B2 (en) 2015-10-30 2020-04-21 Schmidhauser Ag Network feedback unit to feed energy into a three-phase network and electrical drive system
CN108521848B (zh) * 2015-10-30 2020-07-07 施密徳豪泽股份公司 网络反馈单元和电驱动系统
CN105656321A (zh) * 2016-03-11 2016-06-08 广东明阳龙源电力电子有限公司 一种直流母线两单元串联式的风电变流器主电路拓扑结构
CN114026441A (zh) * 2019-06-27 2022-02-08 依必安派特穆尔芬根有限两合公司 电路和用于监控直流母线电容器的方法
CN113162020A (zh) * 2021-04-20 2021-07-23 核工业西南物理研究院 一种大量电容并联连接的均流电路结构及球马克装置电源

Similar Documents

Publication Publication Date Title
CN103151937A (zh) 一种变频单元超级电容器组件充放电控制回路
Pany et al. Bidirectional DC-DC converter fed drive for electric vehicle system
CN101976894B (zh) 一种电能双向流动的储能系统及其控制方法
CN103312020B (zh) 基于改进型滤波器功率分流控制混合动力汽车用复合电源
CN102510215B (zh) 一种三电平双向直流变换器及其脉冲宽度控制方法
CN104218798A (zh) 基于开关电容和耦合电感的高电压增益双向dc-dc变换器
CN107612325A (zh) 一种开关准z源宽增益双向直流变换器
CN103053105A (zh) 双向电流双升压平方dc/dc转换器
CN104734547A (zh) 一种升压单元z源逆变器
CN104935064A (zh) 矩阵式v2g快速充放电方法
CN107968471A (zh) Lclc谐振电路、宽范围恒功率输出直流充电机及控制方法
CN204376517U (zh) 一种用于直流电网储能的双向dc-dc变换器
CN108400709A (zh) 一种交错并联磁集成双极性三电平双向dc/dc变换器
CN102570488B (zh) 基于锂电池储能的功率转换系统及其控制方法
CN103929065A (zh) 基于三绕组变压器的双向隔离dc/dc变换器
CN103904736B (zh) 电压均衡型超级电容储能装置
CN203827175U (zh) 一种新型软开关双向dc-dc变换器
CN202513629U (zh) 一种电动汽车用电容充放电控制装置
Wu et al. Research on zero voltage switching non-inductive current circulation control of bidirectional DC/DC converter for hybrid energy source system of electric vehicle
CN105811766A (zh) 一种燃料电池汽车升降压型dc-dc变换器
Zhang et al. ZH converter
Dung et al. A DSP based digital control strategy for ZVS bidirectional Buck+ Boost converter
CN203457048U (zh) 一种低纹波四开关升降压直流变换器
CN110198124A (zh) 开关电容型三相交错并联双向宽增益直流变换器
CN211670790U (zh) 一种轨道列车应急通风逆变器电源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130612