WO2016124014A1 - 用于气体绝缘变电站的跨步电压和最大接触电压计算方法 - Google Patents

用于气体绝缘变电站的跨步电压和最大接触电压计算方法 Download PDF

Info

Publication number
WO2016124014A1
WO2016124014A1 PCT/CN2015/093106 CN2015093106W WO2016124014A1 WO 2016124014 A1 WO2016124014 A1 WO 2016124014A1 CN 2015093106 W CN2015093106 W CN 2015093106W WO 2016124014 A1 WO2016124014 A1 WO 2016124014A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
substation
grounding
busbar
housing
Prior art date
Application number
PCT/CN2015/093106
Other languages
English (en)
French (fr)
Inventor
钟建英
张一茗
孙银山
尹军华
王振
郝莎
宋亚凯
高群伟
李少华
张文涛
寇新民
刘逸凡
毛志宽
马东岭
Original Assignee
国家电网公司
河南平高电气股份有限公司
平高集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510060719.9A external-priority patent/CN104833835B/zh
Priority claimed from CN201510060736.2A external-priority patent/CN104678147B/zh
Application filed by 国家电网公司, 河南平高电气股份有限公司, 平高集团有限公司 filed Critical 国家电网公司
Publication of WO2016124014A1 publication Critical patent/WO2016124014A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/20AC or DC potentiometric measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the invention relates to a calculation method for a step voltage in a gas insulated substation and a maximum contact voltage calculation method, and belongs to the field of power system operation analysis and safety control.
  • the ground fault current flows through the grounding device to form a distributed potential on the surface of the earth.
  • the potential difference between two points on the ground with a horizontal distance of 0.8 m is called the step potential difference, and the two feet of the human body touch the two points.
  • the voltage that is subjected to the voltage is called the step voltage.
  • a layer of gravel pavement with a thickness of 5-20 cm is often laid in a substation.
  • This high soil resistivity pavement improves the allowable contact potential difference and stride potential difference of the human body.
  • the calculation method used in China exaggerates the gravel layer. Function, so that the calculation results are biased to the unsafe side.
  • the object of the present invention is to provide a step voltage calculation method for a gas insulated substation and a calculation method for a maximum contact voltage in a gas insulated substation to solve the problem that the existing calculation method is not accurate enough.
  • the solution of the present invention includes:
  • a step voltage calculation method for a gas insulated substation the steps are as follows:
  • the finite element analysis method is used to analyze the grounding network model of the substation, and the three-dimensional potential analysis model of the grounding model of the gas insulated substation is established, and the short-circuit current values in each grounding loop are calculated. Determine where the maximum step voltage occurs and how large it is.
  • the step 1) includes: obtaining the impedance value of each bus bar according to the three-phase bus current value and the frequency value of the gas insulated substation to be tested, including the resistance value of the bus bar, the capacitance value and the inductance value, and calculating each bus bar.
  • the step 3) includes: determining the location of the maximum short-circuit current into the location and the magnitude of the maximum short-circuit grounding current according to the calculated result of the grounding condition of the entire substation; according to the soil condition of the substation and the distribution of the ground network, the application
  • the finite element analysis method is used to analyze the grounding network model of the substation, and the three-dimensional potential analysis model of the grounding model of the gas insulated substation is established.
  • the position of the maximum stepping voltage is determined by the location of the maximum short-circuit current into the location and the potential distribution of the soil surface.
  • the invention also provides a calculation method for the maximum contact voltage in a gas insulated substation, the steps are as follows:
  • the step 1) includes: obtaining the impedance value of each bus bar according to the three-phase bus current value and the frequency value of the gas insulated substation to be tested, including the resistance value of the bus bar, the capacitance value and the inductance value, and calculating each bus bar.
  • the step 3) comprises: determining the position of the maximum potential difference of the casing to the ground and the value of the value according to the potentials on the outer casing of the gas insulated composite appliance, determining the grounding line of the maximum voltage, and determining the possession In the longitudinal section of the ground wire of the maximum voltage, the potential difference between the ground and the two points at a distance of 1.8 m from the ground is calculated as the contact voltage.
  • the main idea of the step voltage calculation method is in the case of gas-insulated substation failure, in the full Under the premise of accurate calculation of the casing circulation condition and grounding condition of the closed combination electric appliance, the three-dimensional electric field model under the finite element analysis is established for the soil condition and grounding system in the substation. Furthermore, the potential distribution of the soil surface is obtained, thereby obtaining the distribution of the step voltage in the substation.
  • the method of the invention not only greatly improves the calculation precision, but also can more accurately calculate the problem in the substation, and may also have Targeted prevention and maintenance of problems in the case of faults in substations. The method also has certain economics, and reduces unnecessary economic losses under targeted prevention.
  • the calculation method of the maximum contact voltage is calculated and analyzed intuitively and accurately for the short-circuit fault condition in the substation, and the potential distribution around the outer casing of the closed-type combined electrical appliance is obtained, which furthermore provides a more intuitive representation of the contact voltage in the substation. .
  • the method has the characteristics of simple and intuitive, high precision, and clear representation of the overall situation of the substation.
  • 1 is a flow chart of an embodiment for calculating a step voltage
  • FIG. 2 is a layout view of a substation fully enclosed gas insulated combination electric appliance of an embodiment
  • FIG. 3 (a) is a simple loop three-phase GIS model diagram; (b) is an equivalent circuit diagram of (a);
  • Figure 4 is an equivalent circuit diagram of the housing circulation and the calculation of the potential of the housing
  • Figure 5 is a soil structure model diagram
  • Figure 6 is a map of potential distribution of soil surface
  • Figure 7 is a potential distribution diagram near the maximum stride voltage of the soil surface
  • Figure 8 is a flow chart for calculating a contact voltage
  • Fig. 9 is a view showing the position of the contact voltage in the longitudinal section of the maximum potential difference.
  • the method for calculating the step voltage for a gas insulated substation is as follows:
  • the finite element analysis method is used to analyze the grounding network model of the substation, and the three-dimensional potential analysis model of the grounding model of the gas insulated substation is established, and the short-circuit current values in each grounding loop are calculated. Determine where the maximum step voltage occurs and how large it is.
  • the impedance value of each bus bar is obtained, including the resistance value, capacitance value and inductance value of the bus bar.
  • the impedance value Z M of each busbar is as follows:
  • r M is the busbar resistance
  • Z M is the busbar equivalent impedance
  • is the angular frequency
  • L M is the busbar equivalent inductance
  • C M is the busbar equivalent capacitance
  • j is the imaginary part
  • M is the busbar.
  • Z kA represents the impedance of the A-phase housing
  • Z kC represents the impedance of the C-phase housing
  • R k represents the resistance of the housing
  • is the angular frequency
  • L kA represents the inductance of the A-phase housing
  • Z kB represents the B-phase
  • L kB represents the inductance of the B-phase housing
  • k represents the housing.
  • the value of the mutual impedance between the three-phase housing and the three-phase busbar is as follows:
  • Z MkA represents the mutual impedance value between the A-phase housing and the three-phase bus
  • M A represents the mutual inductance between the A-phase housing and the three-phase bus
  • Z MkB represents the between the B-phase housing and the three-phase bus.
  • M B represents the mutual inductance value between the B-phase housing and the three-phase bus
  • Z MkC represents the mutual impedance value between the C-phase housing and the three-phase bus
  • M C represents the C-phase housing and the three-phase
  • s 1 is the distance between adjacent two-phase shells
  • s 2 is the distance between non-adjacent two-phase shells
  • l k is the shell length
  • a is the shell radius
  • h is the shell Body height
  • ⁇ 0 is the vacuum permeability
  • is the angular frequency
  • j is the imaginary part.
  • the shorting plate is regarded as a thin short conductor, and the pair of round conductors constitute a pair, and the mutual inductance is calculated.
  • grounding wire is equivalent to a concentrated inductor and can be expressed as:
  • I k is the shell circulation value
  • I M is the bus current
  • Z h is the mutual impedance between the housing and the bus
  • Z M is the bus equivalent impedance
  • M is the bus.
  • I k represents the shell circulation value
  • Z Mk represents the mutual impedance between the housing and the bus bar
  • Z j represents the impedance value of the ground line
  • Z w represents the impedance value of the ground grid
  • w represents the ground grid
  • j represents the imaginary part.
  • Figure 3 is a loop composed of a three-phase GIS and a short-circuit grounding wire, (a) is a schematic diagram of a three-phase GIS loop, and (b) is a schematic diagram of each branch in the calculation.
  • I d1 , I d2 represent the circulating current value on the short wiring
  • I jdA , I JdB , I JdC represents the circulating current value on the ground line
  • U n1 , U n2 , U n3 , U n4 represent the voltage values of the respective nodes. The solution of each value can be obtained by writing the node voltage equation.
  • Figure 4 is a circuit diagram for calculating the position and magnitude of the short-circuit ground current after simplification.
  • the circuit is divided into two parts, one part is the above-ground part, and the current consists of the equivalent three-phase housing circulating current.
  • the parameters of each part are calculated by the above two steps and simplified.
  • the other part is the ground part, mainly considering the grounding current.
  • the absorption is so equivalent to the resistance of different resistance values.
  • FIG. 5 is a model diagram of the substation ground network.
  • the substation ground network is generally divided into two layers. The surface of the soil layer is covered with a certain thick concrete layer. The following is the soil layer.
  • the substation ground network uses a certain section of copper mesh, located 2.5m below the soil layer. Different soil layers have different resistivities and the ability to absorb short-circuit currents is not the same.
  • the finite element analysis formula of the electromagnetic field is derived from Maxwell's equations.
  • the electric field characteristics in the electrostatic field are described by the electric field strength as:
  • represents the potential and ⁇ represents the differential operator.
  • the substation model is meshed and the most commonly used tetrahedral element is used. Let the total number of discrete nodes be N 0 and the total amount of cells be G 0 .
  • the interpolation function in the defined unit g is:
  • c 1 , c 2 , c 3 , c 4 represent coefficients of unknowns; x, y, v represent unknowns; It is the basis function of the linear interpolation on the unit g, which depends on the shape of the unit and the configuration of the corresponding node.
  • the boundary surface condition is given, that is, the value on the boundary surface is constant and the number of normal guides is zero.
  • the currents of the corresponding sizes are respectively calculated and charged at the respective short-circuited ground currents to determine the distribution of the soil surface potential.
  • Figure 6 shows the calculated distribution of potentials across the surface of the soil. Different colors represent different sizes of potentials, and it can be seen that the potential distribution of the soil surface in the substation is irregular.
  • the value of the maximum short-circuit ground current calculated in the above step is analyzed.
  • a calculation method for the maximum contact voltage in a gas-insulated substation is as follows: 1) reading the basic data of each node in the substation, combining the collected three-phase bus current value and frequency value to determine the substation The circulating current value of the internal grounding grid of the gas insulated combined electrical appliance; 2) According to the determined circulating current value of the grounding grid and the entire electrical arrangement in the substation, establish the loop current relationship, and determine the grounding loop in each grounding body when the substation has a short circuit fault The current value in the current and the potential value of the gas insulated combination housing; 3) The position and value of the maximum contact voltage are determined according to the potentials of the gas insulated composite housing.
  • the impedance value of each bus bar is obtained, including the resistance value, capacitance value and inductance value of the bus bar.
  • the impedance value Z M of each busbar is as follows:
  • r M is the busbar resistance
  • Z M is the busbar equivalent impedance
  • is the angular frequency
  • L M is the busbar equivalent inductance
  • C M is the busbar equivalent capacitance
  • j is the imaginary part
  • M is the busbar.
  • Z kA represents the impedance of the A-phase housing
  • Z kC represents the impedance of the C-phase housing
  • R k represents the resistance of the housing
  • is the angular frequency
  • L kA represents the inductance of the A-phase housing
  • Z kB represents the B-phase
  • L kB represents the inductance of the B-phase housing
  • k represents the housing.
  • the value of the mutual impedance between the three-phase housing and the three-phase busbar is as follows:
  • Z MkA represents the mutual impedance value between the A-phase housing and the three-phase bus
  • M A represents the mutual inductance between the A-phase housing and the three-phase bus
  • Z MkB represents the relationship between the B-phase housing and the three-phase bus.
  • M B represents the mutual inductance value between the B-phase housing and the three-phase bus
  • Z MkC represents the mutual impedance value between the C-phase housing and the three-phase bus
  • M C represents the C-phase housing and the three-phase
  • s 1 is the distance between adjacent two-phase shells
  • s 2 is the distance between non-adjacent two-phase shells
  • l k is the shell length
  • a is the shell radius
  • h is the shell Body height
  • ⁇ 0 is the vacuum permeability
  • is the angular frequency
  • j is the imaginary part.
  • the shorting plate is regarded as a thin short conductor, and the pair of round conductors constitute a pair, and the mutual inductance is calculated.
  • grounding wire is equivalent to a concentrated inductor and can be expressed as:
  • I k is the shell circulation value
  • I M is the bus current
  • Z h is the mutual impedance between the housing and the bus
  • Z M is the bus equivalent impedance
  • M is the bus.
  • I k represents the shell circulation value
  • Z Mk represents the mutual impedance between the housing and the bus bar
  • Z j represents the impedance value of the ground line
  • Z w represents the impedance value of the ground grid
  • w represents the ground grid
  • j represents the imaginary part.
  • Figure 3 is a loop composed of a three-phase GIS and a short-circuit grounding wire, (a) is a schematic diagram of a three-phase GIS loop, and (b) is a schematic diagram of each branch in the calculation.
  • I d1 , I d2 represent the circulating current value on the short wiring
  • I jdA , I JdB , I JdC represents the circulating current value on the ground line
  • U n1 , U n2 , U n3 , U n4 , etc. represent the voltage values of the respective nodes. The solution of each value can be obtained by writing the node voltage equation.
  • the distribution parameter model of the air medium of the substation is established by using the dielectric constant of the air medium of the substation.

Abstract

一种用于气体绝缘变电站的跨步电压和最大接触电压计算方法,在对全封闭式组合电器的外壳环流情况、接地情况,以及壳体电位分布情况进行精确计算的前提下,得到土壤表面的电位分布情况,从而在此基础上得到变电站内跨步电压和最大接触电压的分布情况,该方法不仅计算精度大大提高,可以对变电站中的问题进行更为精确的计算,还可以有针对性的对变电站中故障情况下的问题进行有效的预防和维护。该方法还具有一定的经济性,在有针对性的预防下,减少不必要的经济损失。

Description

用于气体绝缘变电站的跨步电压和最大接触电压计算方法 技术领域
本发明涉及一种用于气体绝缘变电站内跨步电压的计算方法和最大接触电压计算方法,属于电力系统运行分析和安全控制领域。
背景技术
电力设备发生接地故障时,接地故障电流流过接地装置,在大地表面形成分布电位,地面上水平距离0.8m的两点间的电位差,称为跨步电位差,人体两脚接触该两点时所承受的电压,称为跨步电压。
随着电力系统电压等级的不断提高,气体绝缘变电站中,由于全封闭组合电器的应用,各种电力设备被封装在金属外壳中,电力设备发生接地故障时,外壳上会产生巨大的故障电流,该故障电流经过接地装置流入土壤中,造成变电站内跨步电压升高,严重威胁变电站的正常稳定运行,以及操作人员的人身安全。因此,准确的计算和预测变电站中跨步电压的值的大小是变电站安全稳定运行的必要前提。
通常变电站中常铺设一层厚度为5~20cm的砾石路面,这层高土壤电阻率的路面提高了人体允许的接触电位差和跨步电位差,但是目前我国所用的计算方法,夸大了砾石层的作用,从而使计算结果偏于不安全侧。
发明内容
本发明的目的是提供用于气体绝缘变电站的跨步电压计算方法,以及一种用于气体绝缘变电站内最大接触电压的计算方法,用以解决现有计算方法不够准确的问题。
为实现上述目的,本发明的方案包括:
一种用于气体绝缘变电站的跨步电压计算方法,步骤如下:
1)根据母线、三相壳体和母线的电气参数,以及接地网回路电流关系,确定接地网环流值;
2)根据所确定的接地网整体的环流值和变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及气体绝缘组合电器外壳上各处的电位值;
3)根据变电站土壤情况和地网分布情况,应用有限元分析法对变电站地网模型进行分析,建立气体绝缘变电站地网模型的三维电位分析模型,计算得到的各个接地回路中的短路电流值,确定最大跨步电压发生地点以及其值的大小。
进一步的,所述步骤1)包括:根据被测的气体绝缘变电站的三相母线电流值和频率值获得每个母线的阻抗值,包括母线的电阻值,电容值和电感值计算每个母线的阻抗值、每个壳体的阻抗值、母线与壳体之间的互感值;利用气体绝缘变电站中三相壳体之间的电气联系,获得每个壳体的阻抗值;根据母线壳体的半径,每条母线与每个壳体之间的距离,母线和壳体的长度,二者的介电常数电气参数,确定母线与壳体之间的互感值;根据测得变电站内的电气参数,确定全封闭组合开关的短接线和接地线的阻抗值;根据母线电流,三相壳体和母线的电气参数,获得三相壳体的环流值;接地网环流值Iw公式为
Figure PCTCN2015093106-appb-000001
Ik表示壳体环流值,ZMk表示壳体与母线间的互阻抗,Zj表示接地线的阻抗值,Zw表示接地网的阻抗值,w表示接地网,j表示虚部。
进一步的,所述步骤3)包括:根据计算得到的整个变电站接地情况的结果,确定最大短路电流入地点的位置和最大短路入地电流值的大小;根据变电站土壤情况和地网分布情况,应用有限元分析法对变电站地网模型进行分析,建立气体绝缘变电站地网模型的三维电位分析模型;由最大短路电流入地点的位置,以及土壤表面的电位分布情况,确定最大跨步电压的位置。
本发明还提供了一种用于气体绝缘变电站内最大接触电压的计算方法,步骤如下:
1)读取变电站中各个节点的基础数据,结合采集的三相母线电流值和频率值,确定变电站气体绝缘组合电器内部接地网的环流值;
2)根据所确定的接地网的环流值,以及变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及气体绝缘组合电器外壳上各处的电位值;
3)根据气体绝缘组合电器外壳上各处的电位,确定最大接触电压的位置和值的大小。
进一步的,所述步骤1)包括:根据被测的气体绝缘变电站的三相母线电流值和频率值获得每个母线的阻抗值,包括母线的电阻值,电容值和电感值计算每个母线的阻抗值、每个壳体的阻抗值、母线与壳体之间的互感值;利用气体绝缘变电站中三相壳体之间的电气联系,获得每个壳体的阻抗值;根据母线壳体的半径,每条母线与每个壳体之间的距离,母线和壳体的长度,二者的介电常数电气参数,确定母线与壳体之间的互感值;根据测得变电站内的电气参数,确定全封闭组合开关的短接线和接地线的阻抗值;根据母线电流,三相壳体和母线的电气参数,获得三相壳体的环流值;接地网环流值Iw公式为
Figure PCTCN2015093106-appb-000002
Ik表示壳体环流值,ZMk表示壳体与母线间的互阻抗,Zj表示接地线的阻抗值,Zw表示接地网的阻抗值,w表示接地网,j表示虚部。
进一步的,所述步骤3)包括:根据气体绝缘组合电器外壳上各处的电位,确定其壳体对地最大电位差的位置以及值的大小,确定最大电压的接地线,在所确定的拥有最大电压的接地线的纵截面内,计算沿设备外壳的垂直方向,地面与距离地面1.8m处的两点间的电位差为接触电压。
跨步电压计算方法的主要思路是在对气体绝缘变电站故障情况下,在对全 封闭式组合电器的外壳环流情况、接地情况,以及壳体电位分布情况进行精确计算的前提下,对变电站中的土壤情况和接地系统建立其有限元分析下的三维电场模型。进而得到土壤表面的电位分布情况,从而在此基础上得到变电站内跨步电压的分布情况,本发明的方法不仅计算精度大大提高,可以对变电站中的问题进行更为精确的计算,还可以有针对性的对变电站中故障情况下的问题进行有效的预防和维护。该方法还具有一定的经济性,在有针对性的预防下,减少不必要的经济损失。
最大接触电压计算方法直观和准确的对变电站中短路故障情况进行了计算和分析,得到封闭式组合电器外壳上各处的电位分布情况,进而对计算变电站中的接触电压情况有了更加直观的表述。该方法具有简单直观,精确度高,对变电站的整体情况表述清晰等明显特点。
附图说明
图1是计算跨步电压的实施例流程图;
图2是实施例的变电站全封闭气体绝缘组合电器的布置图;
图3中,(a)是简单回路三相GIS模型图;(b)是(a)的等效电路图;
图4是壳体环流以及壳体电位计算的等效电路图;
图5是土壤结构模型图;
图6是土壤表面电位分布图;
图7是土壤表面最大跨步电压附近电位分布图;
图8是接触电压计算流程图;
图9是最大电位差的纵截面内接触电压位置示意图。
具体实施方式
下面结合附图对本发明做进一步详细的说明。
跨步电压计算方法实施例
用于气体绝缘变电站的跨步电压计算方法,步骤如下:
1)根据母线、三相壳体和母线的电气参数,以及接地网回路电流关系,确定接地网环流值;
2)根据所确定的接地网整体的环流值和变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及气体绝缘组合电器外壳上各处的电位值;
3)根据变电站土壤情况和地网分布情况,应用有限元分析法对变电站地网模型进行分析,建立气体绝缘变电站地网模型的三维电位分析模型,计算得到的各个接地回路中的短路电流值,确定最大跨步电压发生地点以及其值的大小。
下面结合附图1-7,详细进行说明,包括步骤1)、2)、3)。
1、读取变电站中各个节点的基础数据,结合采集的三相母线电流值和频率值对变电站全封闭气体绝缘组合电器内部接地网的环流值进行预测。具体的,包括:
1.1、根据被测的气体绝缘变电站的三相母线电流值和频率值获得每个母线的阻抗值,包括母线的电阻值,电容值和电感值。每个母线的阻抗值ZM,公式如下:
Figure PCTCN2015093106-appb-000003
其中,rM为母线电阻,ZM为母线等效阻抗,ω为角频率,LM为母线等效电感,CM为母线等效电容,j表示虚部,M表示母线。
1.2、利用气体绝缘变电站中三相壳体之间的电气联系,获得每个壳体的阻抗值。其计算公式如下:
ZkA=ZkC=Rk+jωLkA            (5)
ZkB=Rk+jωLkB                 (6)
其中,ZkA表示A相壳体的阻抗,ZkC表示C相壳体的阻抗,Rk表示壳体的电阻,ω为角频率,LkA表示A相壳体的电感,ZkB表示B相壳体的阻抗,LkB表示B相壳体的电感,k表示壳体。
1.3、确定母线与壳体之间的互感值,具体如下:
三相壳体与三相母线之间的互阻抗值,公式如下:
ZMkA=jωMA          (7)
ZMkB=jωMB          (8)
ZMkC=jωMC          (9)
Figure PCTCN2015093106-appb-000004
Figure PCTCN2015093106-appb-000005
其中,ZMkA表示A相壳体与三相母线之间的互阻抗值,MA表示A相壳体与三相母线之间的互感值,ZMkB表示B相壳体与三相母线之间的互阻抗值,MB表示B相壳体与三相母线之间的互感值,ZMkC表示C相壳体与三相母线之间的互阻抗值,MC表示C相壳体与三相母线之间的互感值,s1为相邻两相壳体间的距离,s2为不相邻两相壳体间的距离,lk为壳体长度,a为壳体半径,h为壳体高度,μ0为真空磁导率,ω为角频率,j表示虚部。
1.4、确定全封闭组合开关的短接线和接地线的阻抗值。将短接板当作薄片形短导体,往返导体构成一对,计算二者互感。
接地线等效为集中电感,可表示为:
Figure PCTCN2015093106-appb-000006
式中,lj是接地线的长度;b是接地线的宽度;t为厚度。
1.5、根据母线电流,三相壳体和母线的电气参数,获得三相壳体的环流值,公式如下:
Figure PCTCN2015093106-appb-000007
其中,Ik为壳体环流值,IM为母线电流,Zh为壳体与母线间的互阻抗,ZM为母线等效阻抗,M表示母线。根据所确定的接地网整体的环流值和变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及封闭式组合电器的外壳上各处的电位值。确定接地网环流值Iw公式如下:
Figure PCTCN2015093106-appb-000008
其中,Ik表示壳体环流值,ZMk表示壳体与母线间的互阻抗,Zj表示接地线的阻抗值,Zw表示接地网的阻抗值,w表示接地网,j表示虚部。
2、根据所确定的接地网整体的环流值和变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及封闭式组合电器的外壳上各处的电位值。图3为一段三相GIS与短接线接地线构成的回路,(a)为三相GIS回路的模型示意图,(b)为计算中各个支路的示意图。
其中,Id1,Id2表示短接线上的环流值;IjdA,IJdB,IJdC表示接地线上的环流值;Un1,Un2,Un3,Un4…表示各节点电压值。列写节点电压方程即可得到各个数值的解。
3、根据计算得到的各个接地回路中的短路电流值,确定最大跨步电压发生 地点以及其值的大小。具体的,包括:
3.1、根据计算得到的整个变电站接地情况的结果,确定最大短路电流入地点的位置和最大短路入地电流值的大小。图4为化简后计算短路入地电流的位置及大小的电路图。电路分两部分,一部分为地上部分,有等效后的三相壳体环流的电流组成,各部分参数由上面两步骤计算并简化后得到;另一部分为地网部分,主要考虑地网对电流的吸收作用,故而将其等效为不同阻值的电阻。
3.2、根据变电站土壤情况和地网分布情况,应用有限元分析法对变电站地网模型进行分析,建立气体绝缘变电站地网模型的三维电位分析模型。图5为变电站地网建模图。变电站地网一般分为两层,土层表面以下覆有一定厚的混凝土层,以下为土壤层,变电站地网采用一定截面的铜网,位于土层以下2.5m处。不同的土壤层具有不同的电阻率,对短路电流的吸收能力也不尽相同。
电磁场的有限元分析公式由麦克斯韦方程组导出,在静电场中电场特性用电场强度来描述为:
2·φ=0                (14)
其中,φ表示电势,▽表示微分算子。
对变电站模型进行网格划分,采用最常用的四面体单元剖分。设剖分得离散节点总量为N0,单元总量为G0,定义单元g内的插值函数为:
Figure PCTCN2015093106-appb-000009
其中,c1,c2,c3,c4表示未知数的系数;x,y,v表示未知数;
Figure PCTCN2015093106-appb-000010
为单元g上的线性插值的基函数,它取决于单元的形状及相应的节点的配置。
设定模型的边界条件,构造等价变分问题,待求微分方程为:
Figure PCTCN2015093106-appb-000011
同时给定边界面条件,即边界面上的数值为常数且法向导数为零。
在各个短路入地电流处分别加载计算得到相应大小的电流,确定土壤表面电位的分布情况。图6为计算得到的土壤表面各处电位的分布情况。不同颜色代表电位的不同大小,可以看到变电站内的土壤表面的电位分布情况是不规则的。同时,结合上面步骤中计算得到的最大的短路入地电流的值进行分析。
3.3、由最大短路电流入地点的位置,以及土壤表面的电位分布情况,确定最大跨步电压的位置,由变电站土壤表面水平距离0.8m的两点间的电位差均为该变电站的跨步电位差的定义,得到相距0.8m电场线最为密集的区间,确定跨步电位差的最大值。图7为计算得到的最大跨步电压位置处的电位分布。图中1、2、……、8为距离最大短路入地电流点1.8m处8个不同位置的点,与中心点上电位差最大的点即为所求的跨步电压。
最大接触电压计算方法实施例(步骤、公式与跨步电压实施例分别进行编号)
如图8所示,一种用于气体绝缘变电站内最大接触电压的计算方法,步骤如下:1)读取变电站中各个节点的基础数据,结合采集的三相母线电流值和频率值,确定变电站气体绝缘组合电器内部接地网的环流值;2)根据所确定的接地网的环流值,以及变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及气体绝缘组合电器外壳上各处的电位值;3)根据气体绝缘组合电器外壳上各处的电位,确定最大接触电压的位置和值的大小。
具体的,下面给出一种具体实施方式,对上述步骤说涉及的技术手段进行详细说明。
1,读取变电站中各个节点的基础数据,结合采集的三相母线电流值和频率值对变电站全封闭气体绝缘组合电器内部接地网的环流值进行预测。其具体步骤如下:
1.1、根据被测的气体绝缘变电站的三相母线电流值和频率值获得每个母线的阻抗值,包括母线的电阻值,电容值和电感值。每个母线的阻抗值ZM,公式如下:
Figure PCTCN2015093106-appb-000012
其中,rM为母线电阻,ZM为母线等效阻抗,ω为角频率,LM为母线等效电感,CM为母线等效电容,j表示虚部,M表示母线。
1.2、利用气体绝缘变电站中三相壳体之间的电气联系,获得每个壳体的阻抗值。其计算公式如下:
ZkA=ZkC=Rk+jωLkA         (5)
ZkB=Rk+jωLkB              (6)
其中,ZkA表示A相壳体的阻抗,ZkC表示C相壳体的阻抗,Rk表示壳体的电阻,ω为角频率,LkA表示A相壳体的电感,ZkB表示B相壳体的阻抗,LkB表示B相壳体的电感,k表示壳体。
1.3、确定母线与壳体之间的互感值,具体如下:
三相壳体与三相母线之间的互阻抗值,公式如下:
ZMkA=jωMA          (7)
ZMkB=jωMB          (8)
ZMkC=jωMC          (9)
Figure PCTCN2015093106-appb-000013
Figure PCTCN2015093106-appb-000014
其中,ZMkA表示A相壳体与三相母线之间的互阻抗值,MA表示A相壳体与 三相母线之间的互感值,ZMkB表示B相壳体与三相母线之间的互阻抗值,MB表示B相壳体与三相母线之间的互感值,ZMkC表示C相壳体与三相母线之间的互阻抗值,MC表示C相壳体与三相母线之间的互感值,s1为相邻两相壳体间的距离,s2为不相邻两相壳体间的距离,lk为壳体长度,a为壳体半径,h为壳体高度,μ0为真空磁导率,ω为角频率,j表示虚部。
1.4、确定全封闭组合开关的短接线和接地线的阻抗值。将短接板当作薄片形短导体,往返导体构成一对,计算二者互感。
接地线等效为集中电感,可表示为:
Figure PCTCN2015093106-appb-000015
式中,lj是接地线的长度;b是接地线的宽度;t为厚度。
1.5、根据母线电流,三相壳体和母线的电气参数,获得三相壳体的环流值,公式如下:
Figure PCTCN2015093106-appb-000016
其中,Ik为壳体环流值,IM为母线电流,Zh为壳体与母线间的互阻抗,ZM为母线等效阻抗,M表示母线。根据所确定的接地网整体的环流值和变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及封闭式组合电器的外壳上各处的电位值。确定接地网环流值Iw公式如下:
Figure PCTCN2015093106-appb-000017
其中,Ik表示壳体环流值,ZMk表示壳体与母线间的互阻抗,Zj表示接地线的阻抗值,Zw表示接地网的阻抗值,w表示接地网,j表示虚部。
2,根据所确定的接地网整体的环流值和变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及封闭式组合电器的外壳上各处的电位值。图3为一段三相GIS与短接线接地线构成的回路,(a)为三相GIS回路的模型示意图,(b)为计算中各个支路的示意图。
其中,Id1,Id2表示短接线上的环流值;IjdA,IJdB,IJdC表示接地线上的环流值;Un1,Un2,Un3,Un4等表示各节点电压值。列写节点电压方程即可得到各个数值的解。
3,根据计算得到的气体绝缘变电站中封闭组合电器外壳上各处的电位,确定最大接触电压的位置和值的大小。具体步骤如下:
3.1、根据计算得到的整个变电站中封闭组合电器外壳上的电位分布情况,确定其壳体对地最大电位差的位置以及值的大小。
3.2、在封闭式组合电器外壳与地面最大电位差的纵截面内,利用变电站的空气介质的介电常数,建立其分布参数模型。
3.3、在所确定的拥有最大电压的接地线的纵截面内,计算沿设备外壳的垂直方向,地面与距离地面1.8m处的两点间的电位差为接触电压,如图9所示。
以上给出了具体的实施方式,但本发明不局限于所描述的实施方式;例如,上述实施方式中涉及的步骤中的具体实现,可以根据基本方案进行调整和变型,对本领域普通技术人员而言,根据本发明的教导,设计出各种变形的模型、公式、参数并不需要花费创造性劳动。在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (6)

  1. 一种用于气体绝缘变电站的跨步电压计算方法,其特征在于,步骤如下:
    1)根据母线、三相壳体和母线的电气参数,以及接地网回路电流关系,确定接地网环流值;
    2)根据所确定的接地网整体的环流值和变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及气体绝缘组合电器外壳上各处的电位值;
    3)根据变电站土壤情况和地网分布情况,应用有限元分析法对变电站地网模型进行分析,建立气体绝缘变电站地网模型的三维电位分析模型,计算得到的各个接地回路中的短路电流值,确定最大跨步电压发生地点以及其值的大小。
  2. 根据权利要求1所述的一种用于气体绝缘变电站的跨步电压计算方法,其特征在于,所述步骤1)包括:
    根据被测的气体绝缘变电站的三相母线电流值和频率值获得每个母线的阻抗值,包括母线的电阻值,电容值和电感值计算每个母线的阻抗值、每个壳体的阻抗值、母线与壳体之间的互感值;
    利用气体绝缘变电站中三相壳体之间的电气联系,获得每个壳体的阻抗值;
    根据母线壳体的半径,每条母线与每个壳体之间的距离,母线和壳体的长度,二者的介电常数电气参数,确定母线与壳体之间的互感值;
    根据测得变电站内的电气参数,确定全封闭组合开关的短接线和接地线的阻抗值;
    根据母线电流,三相壳体和母线的电气参数,获得三相壳体的环流值;
    接地网环流值Iw公式为
    Figure PCTCN2015093106-appb-100001
    Ik表示壳体环流值,ZMk表示壳体与母线间的互阻抗,Zj表示接地线的阻抗值,Zw表示接地网的阻抗值,w表示接地网,j表示虚部。
  3. 根据权利要求1所述的一种用于气体绝缘变电站的跨步电压计算方法,其特征在于,所述步骤3)包括:
    根据计算得到的整个变电站接地情况的结果,确定最大短路电流入地点的位置和最大短路入地电流值的大小;
    根据变电站土壤情况和地网分布情况,应用有限元分析法对变电站地网模型进行分析,建立气体绝缘变电站地网模型的三维电位分析模型;
    由最大短路电流入地点的位置,以及土壤表面的电位分布情况,确定最大跨步电压的位置。
  4. 一种用于气体绝缘变电站内最大接触电压的计算方法,其特征在于,步骤如下:
    1)读取变电站中各个节点的基础数据,结合采集的三相母线电流值和频率值,确定变电站气体绝缘组合电器内部接地网的环流值;
    2)根据所确定的接地网的环流值,以及变电站中整个的电气布置情况,建立回路电流关系,确定变电站发生短路故障时,各个接地体中接地回路中的电流值以及气体绝缘组合电器外壳上各处的电位值;
    3)根据气体绝缘组合电器外壳上各处的电位,确定最大接触电压的位置和值的大小。
  5. 根据权利要求4所述的一种用于气体绝缘变电站内最大接触电压的计算方法,其特征在于,所述步骤1)包括:
    根据被测的气体绝缘变电站的三相母线电流值和频率值获得每个母线的阻抗值,包括母线的电阻值,电容值和电感值计算每个母线的阻抗值、每个壳体的阻抗值、母线与壳体之间的互感值;
    利用气体绝缘变电站中三相壳体之间的电气联系,获得每个壳体的阻抗值;
    根据母线壳体的半径,每条母线与每个壳体之间的距离,母线和壳体的长度,二者的介电常数电气参数,确定母线与壳体之间的互感值;
    根据测得变电站内的电气参数,确定全封闭组合开关的短接线和接地线的阻抗值;
    根据母线电流,三相壳体和母线的电气参数,获得三相壳体的环流值;
    接地网环流值Iw公式为
    Figure PCTCN2015093106-appb-100002
    Ik表示壳体环流值,ZMk表示壳体与母线间的互阻抗,Zj表示接地线的阻抗值,Zw表示接地网的阻抗值,w表示接地网,j表示虚部。
  6. 根据权利要求4所述的一种用于气体绝缘变电站内最大接触电压的计算方法,其特征在于,所述步骤3)包括:根据气体绝缘组合电器外壳上各处的电位,确定其壳体对地最大电位差的位置以及值的大小,确定最大电压的接地线,在所确定的拥有最大电压的接地线的纵截面内,计算沿设备外壳的垂直方向,地面与距离地面1.8m处的两点间的电位差为接触电压。
PCT/CN2015/093106 2015-02-05 2015-10-28 用于气体绝缘变电站的跨步电压和最大接触电压计算方法 WO2016124014A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510060736.2 2015-02-05
CN201510060719.9A CN104833835B (zh) 2015-02-05 2015-02-05 一种用于气体绝缘变电站的跨步电压的计算方法
CN201510060736.2A CN104678147B (zh) 2015-02-05 2015-02-05 一种用于气体绝缘变电站内最大接触电压的计算方法
CN201510060719.9 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016124014A1 true WO2016124014A1 (zh) 2016-08-11

Family

ID=56563407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093106 WO2016124014A1 (zh) 2015-02-05 2015-10-28 用于气体绝缘变电站的跨步电压和最大接触电压计算方法

Country Status (1)

Country Link
WO (1) WO2016124014A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110929210A (zh) * 2019-11-20 2020-03-27 国网天津市电力公司电力科学研究院 一种交流输电线路下方对地绝缘金属导体感应电计算方法
CN112668212A (zh) * 2020-09-02 2021-04-16 国网内蒙古东部电力有限公司检修分公司 基于有限元的不同土壤模型下接地极溢流特性分析方法
CN112800506A (zh) * 2019-11-13 2021-05-14 北京博超时代软件有限公司 变电站安全净距校验方法和装置、设备及存储介质
CN113608006A (zh) * 2021-08-04 2021-11-05 余湘林 一种测试地网跨步电压和接触电势的方法
CN114062802A (zh) * 2021-10-27 2022-02-18 深圳供电局有限公司 直流系统接地方式确定方法、装置、设备和存储介质
CN114221327A (zh) * 2020-11-27 2022-03-22 国网山东省电力公司电力科学研究院 基于变电站偏磁的互联直流通路等值建模方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221644A (zh) * 2011-03-15 2011-10-19 珠海威瀚科技发展有限公司 发电厂、变电站接地网在线监测系统及监测方法
CN102495327A (zh) * 2011-12-13 2012-06-13 广东电网公司珠海供电局 一种变电站接地网设计检测方法及装置
CN103427354A (zh) * 2013-08-15 2013-12-04 国家电网公司 一种变电站接地网结构的早期确定方法
CN104111376A (zh) * 2014-07-28 2014-10-22 王涵宇 一种变电站接地网特性参数的数值计算与分析方法
CN104678147A (zh) * 2015-02-05 2015-06-03 河南平高电气股份有限公司 一种用于气体绝缘变电站内最大接触电压的计算方法
CN104833835A (zh) * 2015-02-05 2015-08-12 河南平高电气股份有限公司 一种用于气体绝缘变电站的跨步电压的计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221644A (zh) * 2011-03-15 2011-10-19 珠海威瀚科技发展有限公司 发电厂、变电站接地网在线监测系统及监测方法
CN102495327A (zh) * 2011-12-13 2012-06-13 广东电网公司珠海供电局 一种变电站接地网设计检测方法及装置
CN103427354A (zh) * 2013-08-15 2013-12-04 国家电网公司 一种变电站接地网结构的早期确定方法
CN104111376A (zh) * 2014-07-28 2014-10-22 王涵宇 一种变电站接地网特性参数的数值计算与分析方法
CN104678147A (zh) * 2015-02-05 2015-06-03 河南平高电气股份有限公司 一种用于气体绝缘变电站内最大接触电压的计算方法
CN104833835A (zh) * 2015-02-05 2015-08-12 河南平高电气股份有限公司 一种用于气体绝缘变电站的跨步电压的计算方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800506A (zh) * 2019-11-13 2021-05-14 北京博超时代软件有限公司 变电站安全净距校验方法和装置、设备及存储介质
CN112800506B (zh) * 2019-11-13 2023-09-08 北京博超时代软件有限公司 变电站安全净距校验方法和装置、设备及存储介质
CN110929210A (zh) * 2019-11-20 2020-03-27 国网天津市电力公司电力科学研究院 一种交流输电线路下方对地绝缘金属导体感应电计算方法
CN110929210B (zh) * 2019-11-20 2023-09-29 国网天津市电力公司电力科学研究院 一种交流输电线路下方对地绝缘金属导体感应电计算方法
CN112668212A (zh) * 2020-09-02 2021-04-16 国网内蒙古东部电力有限公司检修分公司 基于有限元的不同土壤模型下接地极溢流特性分析方法
CN114221327A (zh) * 2020-11-27 2022-03-22 国网山东省电力公司电力科学研究院 基于变电站偏磁的互联直流通路等值建模方法
CN114221327B (zh) * 2020-11-27 2023-09-22 国网山东省电力公司电力科学研究院 基于变电站偏磁的互联直流通路等值建模方法
CN113608006A (zh) * 2021-08-04 2021-11-05 余湘林 一种测试地网跨步电压和接触电势的方法
CN114062802A (zh) * 2021-10-27 2022-02-18 深圳供电局有限公司 直流系统接地方式确定方法、装置、设备和存储介质
CN114062802B (zh) * 2021-10-27 2023-07-07 深圳供电局有限公司 直流系统接地方式确定方法、装置、设备和存储介质

Similar Documents

Publication Publication Date Title
WO2016124014A1 (zh) 用于气体绝缘变电站的跨步电压和最大接触电压计算方法
Tatematsu et al. Three-dimensional FDTD calculation of lightning-induced voltages on a multiphase distribution line with the lightning arresters and an overhead shielding wire
Patel et al. MoM-SO: A complete method for computing the impedance of cable systems including skin, proximity, and ground return effects
CN105004907A (zh) 电力电缆交叉互联接地系统接地电流监测评价方法
Qi et al. Calculation of interference voltage on the nearby underground metal pipeline due to the grounding fault on overhead transmission lines
Pagnetti et al. An improved method for the calculation of the internal impedances of solid and hollow conductors with the inclusion of proximity effect
Tatematsu A technique for representing lossy thin wires and coaxial cables for FDTD-based surge simulations
Tatematsu A technique for representing coaxial cables for FDTD-based surge simulations
CN111123041A (zh) 一种基于温度特性的电缆护层故障定位方法
Brenna et al. Particular grounding systems analysis using FEM models
CN108445342B (zh) 一种电缆护套单点金属性故障接地感应电流计算方法
Mokhtari et al. The effect of soil ionization on transient grounding electrode resistance in non‐homogeneous soil conditions
Esmaeilian et al. Wind farm grounding systems design regarding the maximum permissible touch & step voltage
Martins-Britto et al. Inductive interferences between a 500 kV power line and a pipeline with a complex approximation layout and multilayered soil
CN104833835B (zh) 一种用于气体绝缘变电站的跨步电压的计算方法
Nor et al. Validation of the earth resistance formulae using computational and experimental methods for gas insulated sub-station (GIS)
CN104678147B (zh) 一种用于气体绝缘变电站内最大接触电压的计算方法
Chen et al. Analysis of the grounding for the substation under very fast transient using improved lossy thin-wire model for FDTD
Cheema et al. A comparison of ground grid mesh design and optimization for 500KV substation using IEEE 80-2000 and finite element methods
Aslam et al. Design analysis and optimization of ground grid mesh of extra high voltage substation using an intelligent software
CN108761167A (zh) 一种电缆金属护套多相多点接地下护层感应电流计算方法
de Araújo et al. Optimization of tower-footing grounding impedance for guyed-V transmission towers
CN114218817A (zh) 一种邻近三相电抗器的电缆接地线发热研究治理方法
Zhang et al. Experimental and numerical study of division factors of fault current and measuring current due to ground wires of transmission lines
CN104698340A (zh) 一种测试铜覆钢接地网设计合理性的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880956

Country of ref document: EP

Kind code of ref document: A1