WO2016123995A1 - 半导体制冷冰箱 - Google Patents

半导体制冷冰箱 Download PDF

Info

Publication number
WO2016123995A1
WO2016123995A1 PCT/CN2015/091094 CN2015091094W WO2016123995A1 WO 2016123995 A1 WO2016123995 A1 WO 2016123995A1 CN 2015091094 W CN2015091094 W CN 2015091094W WO 2016123995 A1 WO2016123995 A1 WO 2016123995A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
pipe
pipes
semiconductor refrigerating
tube
Prior art date
Application number
PCT/CN2015/091094
Other languages
English (en)
French (fr)
Inventor
陶海波
张奎
刘建如
李鹏
李春阳
戚斐斐
姬立胜
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Priority to US15/533,638 priority Critical patent/US20170328610A1/en
Priority to EP15880937.6A priority patent/EP3255362B1/en
Publication of WO2016123995A1 publication Critical patent/WO2016123995A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Definitions

  • the present invention relates to a refrigerator, and more particularly to a semiconductor refrigeration refrigerator.
  • the semiconductor refrigeration refrigerator also known as the thermoelectric refrigerator, utilizes the semiconductor refrigeration sheet to achieve refrigeration through high-efficiency annular double-layer heat pipe heat dissipation and conduction technology and automatic variable pressure flow control technology, eliminating the need for refrigerant and mechanical moving parts, and solving the medium pollution. And the application of traditional mechanical refrigeration refrigerators such as mechanical vibration.
  • Hot-end heat dissipation generally uses heat pipes and heat sinks to exchange heat with the surrounding environment.
  • Existing sintered heat pipes extend from one end along a single path to the other end.
  • the liquid in the wicking core evaporates and vaporizes, and the steam flows to the other end under a slight pressure difference to release heat to condense into a liquid, and the liquid flows back to the evaporation section along the porous material by the capillary force.
  • This cycle does not allow heat to pass from one end of the sintered heat pipe to the other end.
  • the existing sintered heat pipe does not achieve an ideal heat dissipation effect.
  • An object of the present invention is to overcome at least one of the drawbacks of the conventional semiconductor refrigerating refrigerator and to provide a semiconductor refrigerating refrigerator having high heat dissipation efficiency.
  • the present invention provides a semiconductor refrigerating refrigerator including a semiconductor refrigerating sheet and a hot end heat dissipating device, wherein the hot end heat dissipating device includes a plurality of sintering heat pipes, each of which has a closed end Supervisor, and each of the supervisors has:
  • a second tube section above the first tube section, extends a branching tube at one or more locations thereof to dissipate heat from the hot end of the semiconductor refrigerating sheet to the surrounding environment.
  • the first pipe segment of each of the main pipes is formed by extending a predetermined length vertically upward from the lower end of the main pipe; and the first pipe segments of the plurality of main pipes are located in the same plane in parallel intervals, The plane is parallel to the rear wall of the inner casing of the semiconductor refrigeration refrigerator.
  • the hot end heat sink further comprises: a fixed bottom plate, the front surface of which is thermally connected to the hot end of the semiconductor refrigerating sheet, the rear surface has one or more grooves; and the fixed cover plate, the front side thereof a surface having one or more grooves configured to cooperate with the fixed bottom plate to sandwich a first tube segment of each of the main tubes between a groove of the fixed cover plate and a groove of the fixed bottom plate .
  • the second pipe section of each of the main pipes is formed by extending a predetermined length vertically downward from the upper end of the main pipe; and the second pipe segments of the plurality of main pipes are located in the same plane in parallel intervals.
  • the plane is parallel to a rear wall of the inner casing of the semiconductor refrigeration refrigerator; or
  • a second pipe section of each of the main pipes is formed by extending horizontally longitudinally forward from the upper end of the main pipe by a predetermined length and then extending vertically downward by a predetermined length; and a plurality of the second pipe sections of the main pipe
  • the vertical portions are spaced apart in parallel in the same plane, the plane being parallel to the rear wall of the inner casing of the semiconductor refrigeration refrigerator; the starting end of the furcation tube of each of the sintered heat pipes is located at the vertical of the corresponding second pipe segment section.
  • each furcation tube of each of the sintered heat pipes is perpendicular to the rear wall of the inner casing.
  • the furcation tubes of each of the sintered heat pipes are located on the same side of the corresponding main tubes; or the furcation tubes of each of the sintered heat pipes are respectively located on opposite sides of the corresponding main tubes.
  • the hot end heat sink further comprises: one or two fin sets, each of the fin sets comprising a plurality of corresponding parallel spaced plate fins and passing each of the respective plate fins
  • the through-holes of the sheets are mounted to the furcation tubes on the respective sides of each of the main tubes.
  • the hot end heat dissipating device further includes: a fan disposed on a lateral side or above of the plurality of furcation tubes, configured to: draw airflow from the air inlet region thereof and to each two adjacent plate fins The gap between the sheets is blown, or the airflow is drawn from the gap between each two adjacent plate fins and blown to the air supply area thereof.
  • a fan disposed on a lateral side or above of the plurality of furcation tubes, configured to: draw airflow from the air inlet region thereof and to each two adjacent plate fins The gap between the sheets is blown, or the airflow is drawn from the gap between each two adjacent plate fins and blown to the air supply area thereof.
  • each of the plate fins is provided with a receiving through hole, so that each of the fin groups defines an receiving space extending along an axis of the receiving through hole; the hot end heat sink further Included in one or two fans, disposed in the receiving space of the respective fin group, configured to draw airflow from the air inlet region thereof and to a gap between each two adjacent plate fins of the corresponding fin group Blowing.
  • the hot end heat sink further includes: a plurality of spiral fins respectively rotatably mounted to a corresponding one of the furcation tubes; and a fan disposed on a lateral side or above the plurality of the furcation tubes So that the furcation tubes of each of the sintered heat pipes are located in the air supply area or the suction air area of the fan.
  • the semiconductor refrigerating refrigerator of the present invention since a plurality of branching tubes for heat dissipation or cooling are extended on the second pipe section of the main pipe of each sintering heat pipe, the heat dissipation or cooling efficiency is remarkably improved, so that the sintering heat pipe is particularly It is suitable for heat dissipation of a heat source having a high heat flux density such as a semiconductor refrigerating sheet, thereby further improving the energy efficiency of the semiconductor refrigerating refrigerator of the present invention.
  • FIG. 1 is a schematic right side view of a semiconductor refrigerating refrigerator in accordance with one embodiment of the present invention
  • FIG. 2 is a schematic structural view of a sintered heat pipe in a semiconductor refrigeration refrigerator according to an embodiment of the present invention
  • FIG. 3 is a schematic rear view of a semiconductor refrigerating refrigerator in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic right side view of a semiconductor refrigerating refrigerator in accordance with one embodiment of the present invention.
  • Figure 5 is a schematic right side view of a semiconductor refrigerating refrigerator in accordance with one embodiment of the present invention.
  • Figure 6 is a schematic left side view of a semiconductor refrigeration refrigerator in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic right side view of a semiconductor refrigerating refrigerator in accordance with one embodiment of the present invention.
  • an embodiment of the present invention provides a semiconductor refrigeration refrigerator.
  • the semiconductor refrigeration refrigerator may generally include a liner 100, a semiconductor refrigerating sheet 150, a cold end cooling device 180, and a hot end heat sink and an outer casing.
  • the semiconductor refrigerating sheet 150 may be installed between the rear wall of the inner liner 100 and the rear wall of the outer casing.
  • the cold-end cold transfer device 180 is configured to transfer the cold amount from the cold end of the semiconductor refrigerating sheet 150 to the storage compartment of the inner liner 100.
  • the cold-end cooling device 180 may include a cooling block, a cooling fin, and a cooling fan.
  • the rear surface of the cooling block is thermally connected to the cold end of the semiconductor refrigerating sheet 150, and the front surface of the cooling block is mounted on the front surface.
  • a cold fin, a cold fin and a cooling fan are installed in the air duct of the semiconductor refrigeration refrigerator to pass the cold to the storage room.
  • the hot end heat sink is configured to dissipate heat from the hot end of the semiconductor fin 25 to ambient air.
  • the hot end heat sink can include a plurality of sintered heat pipes 200, each having a main tube 210 that is closed at both ends.
  • Each main pipe 210 can have a first pipe section 211 and a second pipe section 212 located above the first pipe section 211.
  • the first tube segment 211 is thermally coupled to the hot end of the semiconductor refrigerating sheet 150.
  • a furcation tube 220 is extended at one or more portions of the second tube section 212 to dissipate heat from the hot end of the semiconductor refrigerating sheet 150 to the surrounding environment, which significantly improves the heat dissipation efficiency of the semiconductor refrigerating refrigerator.
  • each furcation tube 220 can be in communication with the working chamber of the respective main tube 210 to facilitate the flow of steam within the sintered heat pipe 200.
  • the wick in each furcation tube 220 is connected to the wick in the main tube 210.
  • the wick in each furcation tube 220 and the wick in the main tube 210 are in close contact with the inner wall of the corresponding tube to facilitate the flow of the working liquid.
  • the diameter of each furcation tube 220 may be equal to the diameter of the main tube 210. In some alternative embodiments of the invention, each furcation tube The diameter of 220 can also be less than the diameter of the main tube 210.
  • the first pipe section 211 of each main pipe 210 is formed by extending a predetermined length vertically upward from the lower end of the main pipe 210; and the first pipe sections 211 of the plurality of main pipes 210 are located at the same interval in parallel In the plane, the plane is parallel to the rear wall of the inner liner 100 of the semiconductor refrigeration refrigerator.
  • the hot end heat sink of the semiconductor refrigerating sheet 150 further includes a fixed bottom plate 310 and a fixed cover plate 320.
  • the fixed bottom plate 310 has one or more recesses on the rear surface thereof; its front surface can abut against the hot end of the semiconductor refrigerating sheet 150 to be thermally connected to the hot end of the semiconductor refrigerating sheet 150, or through the heat transfer block and the semiconductor cooling The hot end of the sheet 150 is thermally connected.
  • the front cover 320 also has one or more recesses on the front surface thereof, configured to cooperate with the fixed bottom plate 310 to sandwich the first pipe section 211 of each main pipe 210 to the recess of the fixed cover plate 320 and the fixed bottom plate 310. Between the grooves. After the fixed bottom plate 310 and the fixed cover plate 320 are clamped to the sintering heat pipe 200, the three are firmly fixed together by a welding process or a mechanical extrusion process for effective heat transfer, usually in the sintering heat pipe 200 and the fixed bottom plate 310/fixed cover plate 320. Apply thermal grease or the like to the contact surface.
  • the second pipe section 212 of each main pipe 210 is formed by extending horizontally longitudinally forward from the upper end of the main pipe 210 by a predetermined length and then extending vertically downward by a predetermined length; and
  • the vertical portions 2121 of the second tube section 212 are spaced apart in parallel in the same plane that is parallel to the rear wall of the inner liner 100 of the semiconductor refrigeration refrigerator. That is, the second pipe section 212 of each main pipe 210 may include a vertical portion 2121 whose lower end is in communication with the corresponding first pipe section 211 and an end extending from the upper end of the vertical portion 2121 in a direction perpendicular to the vertical portion 2121.
  • a closed horizontal portion 2122 is formed by extending horizontally longitudinally forward from the upper end of the main pipe 210 by a predetermined length and then extending vertically downward by a predetermined length; and
  • the vertical portions 2121 of the second tube section 212 are spaced apart in parallel in the same plane that is parallel to the rear wall of the inner liner 100 of the semiconductor
  • the starting end of the furcation tube 220 of each of the sintered heat pipes 200 is located at the vertical portion 2121. of the respective second pipe section 212.
  • the projection of the furcation tube 220 of each sintering heat pipe 200 in a plane perpendicular to the corresponding vertical portion 2121 coincides with the projection of the corresponding horizontal portion 2122 in the plane, which can also be understood as the meaning of each sintering heat pipe 200.
  • the furcation tubes 220 are all located on the same side of the respective main tube 210.
  • each main pipe 210 further includes a connecting pipe section connected between the first pipe section 211 and the second pipe section 212. 213, which is disposed at an angle of 100 to 170 with both the first pipe section 211 and the vertical portion 2121 of the second pipe section 212.
  • the hot-end heat dissipating device of the embodiment of the present invention may include four sintering heat pipes 200.
  • the main pipes 210 of the four sintering heat pipes 200 are symmetrically in the same plane with respect to a geometric symmetry plane, and one sintering heat pipe 200 located on the same side of the geometric symmetry plane.
  • the length of the connecting pipe section 213 is smaller than the length of the connecting pipe section 213 of the other sintering heat pipe 200 to facilitate the rational layout of the four sintering heat pipes 200.
  • the number of the branching tubes 220 of each of the sintered heat pipes 200 may be one.
  • each of the furcation tubes 220 of each of the sintered heat pipes 200 is perpendicular to the rear wall of the inner liner 100.
  • the hot end heat sink further includes a fin set 400, the fin set 400 includes a plurality of corresponding parallel fins arranged in parallel, and is mounted to each of the main tubes 210 through the through holes of each of the plate fins.
  • the fin set 400 can also be mounted to the horizontal portion 2122 of the second tube section 212 of each main tube 210 through the through-hole of each plate fin.
  • the central portion of each of the plate fins is provided with a receiving through hole such that each of the fin sets 400 defines an accommodation space extending along an axis of the receiving through hole.
  • the hot end heat sink further includes a fan 500 disposed in the receiving space of the respective fin set 400, configured to draw airflow from its inlet region and to a gap between each two adjacent plate fins of the respective fin set 400 Blowing.
  • the fan 500 may be a centrifugal fan whose axis of rotation coincides with the axis of each of the receiving through holes to draw airflow from the axial direction of the centrifugal fan and use centrifugal force to direct the airflow to each of the two adjacent plate fins.
  • Each plate fin can be rectangular.
  • each main pipe 210 is formed by extending a predetermined length vertically downward from the upper end of the main pipe 210; and the second pipe sections 212 of the plurality of main pipes 210 are parallel to each other in the same plane. This plane is parallel to the rear wall of the inner liner 100 of the semiconductor refrigeration refrigerator.
  • the furcation tubes 220 of each of the sintered heat pipes 200 are respectively located on opposite sides of the respective main pipes 210.
  • the hot end heat sink further includes two fin sets 400 and a fan 500, each fin set 400 including a plurality of corresponding parallel spaced plate fins and mounted through the perforation holes of each of the plate fins
  • the furcation tube 220 on the corresponding side of each main tube 210.
  • the fan 500 may be disposed on one side or above the lateral side of the plurality of furcation tubes 220, configured to: draw airflow from the air inlet region thereof and to each The gap between two adjacent plate fins is blown, or the airflow is drawn from the gap between each two adjacent plate fins and blown to the air supply area thereof.
  • the fan 500 is an axial fan that is fixed to the two fin sets 400 and is located above the two fin sets 400.
  • FIG. 5 is a schematic right side view of a semiconductor refrigeration refrigerator in accordance with one embodiment of the present invention.
  • each of the furcation tubes 220 of each of the sintered heat pipes 200 is perpendicular to the rear wall of the inner liner 100.
  • the furcation pipes 220 of each of the sintering heat pipes 200 are located on the same side of the respective main pipes 210; or the furcation pipes 220 of each of the sintering heat pipes 200 are respectively located on opposite sides of the respective main pipes 210.
  • the hot end heat sink further includes a plurality of spiral fins 450 and a fan 500. A plurality of spiral fins 450 are spirally mounted to a respective furcation tube 220, respectively.
  • the fan 500 is disposed on one side or above the lateral side of the plurality of furcation tubes 220 such that the furcation tubes 220 of each of the sintering heat pipes 200 are located in the air supply area or the suction air area of the fan 500.
  • the fan 500 can be an axial fan located on a lateral side of the plurality of furcation tubes 220.
  • each of the branching tubes 220 of each of the sintering heat pipes 200 and the branching tubes 220 of the other sintering heat pipes 200 are independent from each other, in order to avoid deformation of the sintering heat pipes 200 and the spiral fins 450, transportation is avoided.
  • the hot end heat sink further comprising one and/or two retaining members 600, one of which is retained The pieces 600 may be sequentially secured to the ends of the second tube section 212 of a respective main tube 210 that are remote from the respective first tube section 211 at different locations along its length.
  • the other retaining members 600 may be sequentially secured to the ends of the second tubular section 212 of a respective main tube 210 adjacent the respective first tubular section 211 at different locations along its length.
  • the retaining member 600 can be a retaining steel strip, a retaining steel wire, a retaining tubular member, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种半导体制冷冰箱,包括半导体制冷片(150)和热端散热装置。该热端散热装置可包括多个烧结热管(200),每个烧结热管(200)具有两端均封闭的主管(210);每个主管(210)具有:第一管段(211),与半导体制冷片(150)的热端热连接,和第二管段(212),处于第一管段(211)的上方,在第二管段(212)的一个或多个部位处分别延伸出一个分叉管(220),以将来自半导体制冷片(150)的热端的热量散发至周围环境。半导体制冷冰箱中因为每个烧结热管(200)的主管(210)的第二管段(212)上延伸出多个用于散热或传冷的分叉管(220),显著提高了其散热或传冷效率,以使该烧结热管特别适用于对半导体制冷片等高热流密度的热源进行散热,进而使半导体制冷冰箱具有较高的能效。

Description

半导体制冷冰箱
本申请要求了申请日为2015年02月03日,申请号为201510055838.5,发明名称为“半导体制冷冰箱”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冰箱,特别是涉及一种半导体制冷冰箱。
背景技术
半导体制冷冰箱,也称之为热电冰箱,其利用半导体制冷片通过高效环形双层热管散热及传导技术和自动变压变流控制技术实现制冷,无需制冷工质和机械运动部件,解决了介质污染和机械振动等传统机械制冷冰箱的应用问题。
半导体制冷片的冷端在制冷的同时,会在其热端产生大量的热量,为保证半导体制冷片可靠持续地进行工作,需要及时对热端进行散热,然而现有技术中针对半导体制冷片的热端散热一般使用热管和散热片的方式与周边环境进行热交换。
现有的烧结热管从其一端沿唯一路径延伸至其另一端。当烧结热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由烧结热管的一端传至另一端。然而,对于半导体制冷片等高热流密度的热源进行散热,现有的烧结热管达不到理想的散热效果。
发明内容
本发明的一个目的旨在克服现有的半导体制冷冰箱的至少一个缺陷,提供一种散热效率高的半导体制冷冰箱。
为了实现上述目的,本发明提供了一种半导体制冷冰箱,包括半导体制冷片和热端散热装置,其中,所述热端散热装置包括多个烧结热管,每个所述烧结热管具有两端均封闭的主管,且每个所述主管具有:
第一管段,与所述半导体制冷片的热端热连接;和
第二管段,处于所述第一管段的上方,在其一个或多个部位处分别延伸出一个分叉管,以将来自所述半导体制冷片的热端的热量散发至周围环境。
可选地,每个所述主管的第一管段是从所述主管的下端竖直向上延伸一预设长度形成的;且多个所述主管的第一管段平行间隔地位于同一平面内,该平面平行于所述半导体制冷冰箱的内胆的后壁。
可选地,所述热端散热装置还包括:固定底板,其前表面与所述半导体制冷片的热端热连接,其后表面上具有一个或多个凹槽;和固定盖板,其前表面上具有一个或多个凹槽,配置成与所述固定底板配合以将每个所述主管的第一管段夹置在所述固定盖板的凹槽和所述固定底板的凹槽之间。
可选地,每个所述主管的第二管段是从所述主管的上端竖直向下延伸一预设长度形成的;且多个所述主管的第二管段平行间隔地位于同一平面内,该平面平行于所述半导体制冷冰箱的内胆的后壁;或
每个所述主管的第二管段是从所述主管的上端水平纵向向前延伸一预设长度后再竖直向下延伸一预设长度形成的;且多个所述主管的第二管段的竖直部分平行间隔地位于同一平面内,该平面平行于所述半导体制冷冰箱的内胆的后壁;每个所述烧结热管的分叉管的起始端位于相应所述第二管段的竖直部分。
可选地,每个所述烧结热管的每个分叉管均垂直于所述内胆的后壁。
可选地,每个所述烧结热管的分叉管均位于相应所述主管的同一侧;或每个所述烧结热管的分叉管分别位于相应所述主管的相对两侧。
可选地,所述热端散热装置还包括:一个或两个翅片组,每个所述翅片组包括多个相对应的平行间隔设置的板式翅片,并通过各自的每个板式翅片的穿管孔安装于每个所述主管相应一侧的分叉管。
可选地,所述热端散热装置还包括:风机,设置在多个所述分叉管的横向一侧或上方,配置成:从其进风区吸入气流并向每两个相邻板式翅片之间的间隙吹送,或从每两个相邻板式翅片之间的间隙吸入气流并向其送风区吹送。
可选地,每个所述板式翅片的中部开设有容纳通孔,以使每个所述翅片组限定出沿所述容纳通孔的轴线延伸的容纳空间;所述热端散热装置还包括一个或两个风机,设置于相应所述翅片组的容纳空间内,配置成从其进风区吸入气流并向相应所述翅片组的每两个相邻板式翅片之间的间隙吹送。
可选地,所述热端散热装置还包括:多个螺旋翅片,分别盘旋地安装于一个相应所述分叉管;和风机,设置在多个所述分叉管的横向一侧或上方,以使每个所述烧结热管的分叉管均位于所述风机的送风区或吸风区内。
本发明的半导体制冷冰箱中因为每个烧结热管的主管的第二管段上延伸出多个用于散热或传冷的分叉管,显著提高了其散热或传冷效率,以使该烧结热管特别适用于半导体制冷片等高热流密度的热源进行散热,进而使本发明的半导体制冷冰箱具有较高的能效。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的半导体制冷冰箱的示意性右视图;
图2是根据本发明一个实施例的半导体制冷冰箱中烧结热管的示意性结构图;
图3是根据本发明一个实施例的半导体制冷冰箱的示意性后视图;
图4是根据本发明一个实施例的半导体制冷冰箱的示意性右视图;
图5是根据本发明一个实施例的半导体制冷冰箱是示意性右视图;
图6是根据本发明一个实施例的半导体制冷冰箱是示意性左视图。
具体实施方式
图1是根据本发明一个实施例的半导体制冷冰箱的示意性右视图。如图1所示,并参考图2和图3,本发明实施例提供了一种半导体制冷冰箱。半导体制冷冰箱一般性可包括内胆100、半导体制冷片150、冷端传冷装置180和热端散热装置以及外壳。半导体制冷片150可安装于内胆100的后壁与外壳的后壁之间。
冷端传冷装置180配置成将来自半导体制冷片150的冷端的冷量传递至内胆100的储物间室。例如,冷端传冷装置180可包括传冷块、传冷翅片和传冷风机,传冷块的后表面与半导体制冷片150的冷端热连接,传冷块的前表面上安装有多个传冷翅片,传冷翅片和传冷风机安装于半导体制冷冰箱的风道内,以向储物间室内传冷。
热端散热装置配置成将来自半导体制冷片150的热端的热量散发到环境空气中。热端散热装置可包括多个烧结热管200,每个烧结热管200具有两端均封闭的主管210。每个主管210可具有第一管段211和位于第一管段211上方的第二管段212。第一管段211与半导体制冷片150的热端热连接。特别地,在第二管段212的一个或多个部位处分别延伸出一个分叉管220,以将来自半导体制冷片150的热端的热量散发至周围环境,显著提高了半导体制冷冰箱的散热效率。
每个分叉管220的工作腔可与相应主管210的工作腔相连通,以便于烧结热管200内的蒸汽流动。每个分叉管220内的吸液芯与主管210内的吸液芯相连接。每个分叉管220内的吸液芯与主管210内的吸液芯均紧贴相应管内壁,以便于工作液体的流动。进一步地,每个分叉管220的直径可等于主管210的直径。在本发明的一些替代性实施例中,每个分叉管 220的直径也可小于主管210的直径。
在本发明的一些实施例中,每个主管210的第一管段211是从主管210的下端竖直向上延伸一预设长度形成的;且多个主管210的第一管段211平行间隔地位于同一平面内,该平面平行于半导体制冷冰箱的内胆100的后壁。
为了便于烧结热管200与半导体制冷片150的热连接,以及烧结热管200的固定,半导体制冷片150的热端散热装置还包括固定底板310和固定盖板320。固定底板310的后表面上具有一个或多个凹槽;其前表面可贴靠在半导体制冷片150的热端,以与半导体制冷片150的热端热连接,或通过传热块与半导体制冷片150的热端热连接。固定盖板320的前表面上也具有一个或多个凹槽,配置成与固定底板310配合以将每个主管210的第一管段211夹置在固定盖板320的凹槽和固定底板310的凹槽之间。固定底板310和固定盖板320夹住烧结热管200后采用焊接工艺或者机械挤压工艺将三者牢靠的固定在一起,为有效传热,通常在烧结热管200与固定底板310/固定盖板320的接触面上涂抹导热硅脂等。
如图2所示,每个主管210的第二管段212是从主管210的上端水平纵向向前延伸一预设长度后再竖直向下延伸一预设长度形成的;且多个主管210的第二管段212的竖直部分2121平行间隔地位于同一平面内,该平面平行于半导体制冷冰箱的内胆100的后壁。也就是说,每个主管210的第二管段212可包括下端与相应第一管段211连通的竖直部分2121和沿垂直于竖直部分2121的方向从竖直部分2121的上端延伸出的、末端封闭的水平部分2122。每个烧结热管200的分叉管220的起始端位于相应第二管段212的竖直部分2121。优选地,每个烧结热管200的分叉管220在一垂直于相应竖直部分2121的平面内的投影与相应水平部分2122在该平面内的投影重合,也可以理解为每个烧结热管200的分叉管220均位于相应主管210的同一侧。
如图3所示,每个主管210还包括连接在第一管段211和第二管段212之间的连接管段 213,其与第一管段211和第二管段212的竖直部分2121均呈100°至170°的角度设置。本发明实施例的热端散热装置可包括4个烧结热管200,4个烧结热管200的主管210关于一几何对称面对称地处于同一平面内,位于该几何对称面同一侧的一个烧结热管200的连接管段213的长度小于另一烧结热管200的连接管段213的长度,以便于4个烧结热管200的合理布局。每个烧结热管200的分叉管220的数量可为1个。
在本发明实施例中,每个烧结热管200的每个分叉管220均垂直于内胆100的后壁。进一步地,热端散热装置还包括一个翅片组400,翅片组400包括多个相对应的平行间隔设置的板式翅片,并通过每个板式翅片的穿管孔安装于每个主管210的分叉管220。翅片组400还可通过每个板式翅片的穿管孔安装于每个主管210的第二管段212的水平部分2122。优选地,每个板式翅片的中部开设有容纳通孔,以使每个翅片组400限定出沿容纳通孔的轴线延伸的容纳空间。热端散热装置还包括风机500,设置于相应翅片组400的容纳空间内,配置成从其进风区吸入气流并向相应翅片组400的每两个相邻板式翅片之间的间隙吹送。例如,风机500可为离心式风扇,其扇叶的旋转轴线与每个容纳通孔的轴线重合,以从离心式风扇的轴向吸入气流并利用离心力将气流向每两个相邻板式翅片之间的间隙吹送。每个板式翅片可为矩形。
图4是根据本发明一个实施例的半导体制冷冰箱的示意性右视图。在本发明实施例中,每个主管210的第二管段212是从主管210的上端竖直向下延伸一预设长度形成的;且多个主管210的第二管段212平行间隔地位于同一平面内,该平面平行于半导体制冷冰箱的内胆100的后壁。每个烧结热管200的分叉管220分别位于相应主管210的相对两侧。热端散热装置还包括两个翅片组400和风机500,每个翅片组400包括多个相对应的平行间隔设置的板式翅片,并通过各自的每个板式翅片的穿管孔安装于每个主管210相应一侧的分叉管220。风机500可设置在多个分叉管220的横向一侧或上方,配置成:从其进风区吸入气流并向每 两个相邻板式翅片之间的间隙吹送,或从每两个相邻板式翅片之间的间隙吸入气流并向其送风区吹送。例如,风机500为轴流风机,固定于两个翅片组400,且位于两个翅片组400的上方。
图5是根据本发明一个实施例的半导体制冷冰箱是示意性右视图。如图5所示,并参考图6,每个烧结热管200的每个分叉管220均垂直于内胆100的后壁。每个烧结热管200的分叉管220均位于相应主管210的同一侧;或每个烧结热管200的分叉管220分别位于相应主管210的相对两侧。热端散热装置还包括多个螺旋翅片450和风机500。多个螺旋翅片450分别盘旋地安装于一个相应分叉管220。风机500设置在多个分叉管220的横向一侧或上方,以使每个烧结热管200的分叉管220均位于风机500的送风区或吸风区内。例如,风机500可为轴流风机,位于多个分叉管220的横向一侧。
在本发明实施例中,由于每个烧结热管200的各个分叉管220与其它烧结热管200的分叉管220之间相互独立,为避免各烧结热管200及螺旋翅片450变形,避免因运输或安装等引起的分叉管220和螺旋翅片450不必要的变形以至于影响热端散热装置的性能,该热端散热装置还包括一个和/或两个固位件600,其中一个固位件600可在沿其长度方向的不同部位处依次固定于一个相应主管210的第二管段212的远离相应第一管段211的端部。另一固位件600可在沿其长度方向的不同部位处依次固定于一个相应主管210的第二管段212的邻近相应第一管段211的端部。例如,固位件600可以为固位钢条、固位钢丝、固位管件等。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种半导体制冷冰箱,包括半导体制冷片和热端散热装置,其中
    所述热端散热装置包括多个烧结热管,每个所述烧结热管具有两端均封闭的主管,且每个所述主管具有:
    第一管段,与所述半导体制冷片的热端热连接;和
    第二管段,处于所述第一管段的上方,在其一个或多个部位处分别延伸出一个分叉管,以将来自所述半导体制冷片的热端的热量散发至周围环境。
  2. 根据权利要求1所述的半导体制冷冰箱,其中
    每个所述主管的第一管段是从所述主管的下端竖直向上延伸一预设长度形成的;且
    多个所述主管的第一管段平行间隔地位于同一平面内,该平面平行于所述半导体制冷冰箱的内胆的后壁。
  3. 根据权利要求1所述的半导体制冷冰箱,其中,所述热端散热装置还包括:
    固定底板,其前表面与所述半导体制冷片的热端热连接,其后表面上具有一个或多个凹槽;和
    固定盖板,其前表面上具有一个或多个凹槽,配置成与所述固定底板配合以将每个所述主管的第一管段夹置在所述固定盖板的凹槽和所述固定底板的凹槽之间。
  4. 根据权利要求1所述的半导体制冷冰箱,其中
    每个所述主管的第二管段是从所述主管的上端竖直向下延伸一预设长度形成的;且多个所述主管的第二管段平行间隔地位于同一平面内,该平面平行于所述半导体制冷冰箱的内胆的后壁;或
    每个所述主管的第二管段是从所述主管的上端水平纵向向前延伸一预设长度后再竖直向下延伸一预设长度形成的;且
    多个所述主管的第二管段的竖直部分平行间隔地位于同一平面内,该平面平行于所述半导体制冷冰箱的内胆的后壁;
    每个所述烧结热管的分叉管的起始端位于相应所述第二管段的竖直部分。
  5. 根据权利要求1所述的半导体制冷冰箱,其中
    每个所述烧结热管的每个分叉管均垂直于所述内胆的后壁。
  6. 根据权利要求1所述的半导体制冷冰箱,其中
    每个所述烧结热管的分叉管均位于相应所述主管的同一侧;或
    每个所述烧结热管的分叉管分别位于相应所述主管的相对两侧。
  7. 根据权利要求6所述的半导体制冷冰箱,其中,所述热端散热装置还包括:
    一个或两个翅片组,每个所述翅片组包括多个相对应的平行间隔设置的板式翅片,并通过各自的每个板式翅片的穿管孔安装于每个所述主管相应一侧的分叉管。
  8. 根据权利要求7所述的半导体制冷冰箱,其中,所述热端散热装置还包括:
    风机,设置在多个所述分叉管的横向一侧或上方,配置成:从其进风区吸入气流并向每两个相邻板式翅片之间的间隙吹送,或从每两个相邻板式翅片之间的间隙吸入气流并向其送风区吹送。
  9. 根据权利要求7所述的半导体制冷冰箱,其中
    每个所述板式翅片的中部开设有容纳通孔,以使每个所述翅片组限定出沿所述容纳通孔的轴线延伸的容纳空间;
    所述热端散热装置还包括一个或两个风机,设置于相应所述翅片组的容纳空间内,配置成从其进风区吸入气流并向相应所述翅片组的每两个相邻板式翅片之间的间隙吹送。
  10. 根据权利要求5所述的半导体制冷冰箱,其中,所述热端散热装置还包括:
    多个螺旋翅片,分别盘旋地安装于一个相应所述分叉管;和
    风机,设置在多个所述分叉管的横向一侧或上方,以使每个所述烧结热管的分叉管均位于所述风机的送风区或吸风区内。
PCT/CN2015/091094 2015-02-03 2015-09-29 半导体制冷冰箱 WO2016123995A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/533,638 US20170328610A1 (en) 2015-02-03 2015-09-29 Semiconductor refrigerator
EP15880937.6A EP3255362B1 (en) 2015-02-03 2015-09-29 Semiconductor cooling refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510055838.5A CN104729182B (zh) 2015-02-03 2015-02-03 半导体制冷冰箱
CN201510055838.5 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016123995A1 true WO2016123995A1 (zh) 2016-08-11

Family

ID=53453320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091094 WO2016123995A1 (zh) 2015-02-03 2015-09-29 半导体制冷冰箱

Country Status (4)

Country Link
US (1) US20170328610A1 (zh)
EP (1) EP3255362B1 (zh)
CN (1) CN104729182B (zh)
WO (1) WO2016123995A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729182B (zh) * 2015-02-03 2016-11-23 青岛海尔股份有限公司 半导体制冷冰箱
WO2018183731A1 (en) * 2017-03-29 2018-10-04 Rockwell Collins, Inc. Liquid chilled galley bar unit
JP6640401B1 (ja) * 2019-04-18 2020-02-05 古河電気工業株式会社 ヒートシンク
CN112856615B (zh) * 2021-01-07 2022-06-24 施斌卿 除湿机防结冰控制方法及除湿机
CN115164493A (zh) * 2022-07-15 2022-10-11 青岛海容商用冷链股份有限公司 风冷式半导体冷冻柜及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257882A (ja) * 1998-03-12 1999-09-24 Sharp Corp ヒートパイプ及び集熱装置
CN201281563Y (zh) * 2008-10-21 2009-07-29 顺德职业技术学院 以环保制冷剂-纳米铝为工质的多环路立管式热管
CN101941072A (zh) * 2009-07-08 2011-01-12 富准精密工业(深圳)有限公司 平板式热管的制造方法
CN102510990A (zh) * 2009-07-17 2012-06-20 史泰克公司 热管以及热电冷却装置
CN104729182A (zh) * 2015-02-03 2015-06-24 青岛海尔股份有限公司 半导体制冷冰箱
CN204612291U (zh) * 2015-02-03 2015-09-02 青岛海尔股份有限公司 半导体制冷冰箱

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253702A (en) * 1992-01-14 1993-10-19 Sun Microsystems, Inc. Integral heat pipe, heat exchanger, and clamping plate
JP3451107B2 (ja) * 1992-10-05 2003-09-29 株式会社エコ・トゥエンティーワン 電子冷却装置
CN1188643C (zh) * 1999-02-26 2005-02-09 坦普拉技术公司 相变热沉物料的制备方法
US6664673B2 (en) * 2001-08-27 2003-12-16 Advanced Rotary Systems Llc Cooler for electronic devices
JP2004125381A (ja) * 2002-08-02 2004-04-22 Mitsubishi Alum Co Ltd ヒートパイプユニット及びヒートパイプ冷却器
CN2681057Y (zh) * 2003-12-10 2005-02-23 来学恩 热管散热式微型电子冰箱
CN2720383Y (zh) * 2004-07-21 2005-08-24 侯祺 集束型热管散热器
CN2797986Y (zh) * 2005-04-29 2006-07-19 王龙岩 半导体冰箱的制冷散热结构
JP5773976B2 (ja) * 2012-12-27 2015-09-02 三菱電機株式会社 冷蔵庫

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257882A (ja) * 1998-03-12 1999-09-24 Sharp Corp ヒートパイプ及び集熱装置
CN201281563Y (zh) * 2008-10-21 2009-07-29 顺德职业技术学院 以环保制冷剂-纳米铝为工质的多环路立管式热管
CN101941072A (zh) * 2009-07-08 2011-01-12 富准精密工业(深圳)有限公司 平板式热管的制造方法
CN102510990A (zh) * 2009-07-17 2012-06-20 史泰克公司 热管以及热电冷却装置
CN104729182A (zh) * 2015-02-03 2015-06-24 青岛海尔股份有限公司 半导体制冷冰箱
CN204612291U (zh) * 2015-02-03 2015-09-02 青岛海尔股份有限公司 半导体制冷冰箱

Also Published As

Publication number Publication date
EP3255362A4 (en) 2018-08-29
CN104729182A (zh) 2015-06-24
EP3255362A1 (en) 2017-12-13
US20170328610A1 (en) 2017-11-16
EP3255362B1 (en) 2019-11-13
CN104729182B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016123994A1 (zh) 换热装置及具有其的半导体制冷冰箱
WO2016123993A1 (zh) 换热装置及具有其的半导体制冷冰箱
WO2016123995A1 (zh) 半导体制冷冰箱
WO2017036282A1 (zh) 一种用于循环冷却系统的风冷半导体制冷装置
JP6138093B2 (ja) サーバ冷却システム及びその冷却方法
WO2016095589A1 (zh) 半导体制冷冰箱
CN105258382A (zh) 换热装置及具有该换热装置的半导体制冷冰箱
WO2016095587A1 (zh) 冷端换热装置及半导体制冷冰箱
CN107076483B (zh) 制冷器具
WO2016123996A1 (zh) 烧结热管及具有其的半导体制冷冰箱
WO2016173231A1 (zh) 换热装置及具有该换热装置的半导体制冷设备
KR100709060B1 (ko) 히트파이프형 히트펌프시스템
WO2016192298A1 (zh) 传冷装置及具有该传冷装置的半导体制冷箱
WO2016123992A1 (zh) 换热装置及具有其的半导体制冷冰箱
CN204612291U (zh) 半导体制冷冰箱
WO2016123997A1 (zh) 烧结热管及具有其的半导体制冷冰箱
JP5864030B1 (ja) 熱交換器、及び、この熱交換器を備えた冷凍サイクル装置
TWM522328U (zh) 製冷裝置
CN205192050U (zh) 蒸发皿组件及具有该蒸发皿组件的冰箱
CN105466100B (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN204612257U (zh) 换热装置及具有其的半导体制冷冰箱
JP2012220069A (ja) 熱交換器、冷凍サイクル装置、冷蔵庫、および空気調和機
KR20080012515A (ko) 열교환기 핀
TWI596309B (zh) Evaporator coil structure
JP2017053518A (ja) 空気調和装置の室外機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880937

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015880937

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15533638

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE