WO2016095589A1 - 半导体制冷冰箱 - Google Patents

半导体制冷冰箱 Download PDF

Info

Publication number
WO2016095589A1
WO2016095589A1 PCT/CN2015/090987 CN2015090987W WO2016095589A1 WO 2016095589 A1 WO2016095589 A1 WO 2016095589A1 CN 2015090987 W CN2015090987 W CN 2015090987W WO 2016095589 A1 WO2016095589 A1 WO 2016095589A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
heat exchange
end heat
refrigerant
semiconductor refrigerating
Prior art date
Application number
PCT/CN2015/090987
Other languages
English (en)
French (fr)
Inventor
陶海波
于冬
李鹏
刘建如
王定远
李春阳
戚斐斐
姬立胜
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Priority to US15/536,536 priority Critical patent/US10222114B2/en
Priority to EP15869100.6A priority patent/EP3220081B1/en
Publication of WO2016095589A1 publication Critical patent/WO2016095589A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • F25D23/066Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a semiconductor refrigeration refrigerator.
  • thermoelectric refrigerators also known as thermoelectric refrigerators.
  • the utility model utilizes the semiconductor refrigeration sheet to realize the refrigeration through the high-efficiency annular double-layer heat pipe heat dissipation and conduction technology and the automatic variable pressure variable flow control technology, and eliminates the need of the refrigerant working medium and the mechanical moving parts, and solves the application problems of the traditional mechanical refrigeration refrigerator such as the medium pollution and the mechanical vibration. .
  • the semiconductor refrigeration refrigerator needs to effectively conduct the temperature of the cold end of the semiconductor refrigerating sheet to the storage compartment of the refrigerator.
  • the prior art generally uses a heat sink to force convection, and the heat sink is in direct contact with the cold end of the semiconductor refrigerating sheet, and is connected to the storage room.
  • the heat exchange between the solids is low, which is not conducive to the best performance of the semiconductor, and the heat radiating fins are large in size and occupy the space of the refrigerator.
  • the fan is matched, the noise is increased and the fan is continuous. Work, poor reliability.
  • An object of the present invention is to overcome at least one of the drawbacks of the conventional semiconductor refrigerating refrigerator and to provide a semiconductor refrigerating refrigerator having high heat exchange efficiency.
  • a further object of the present invention is to maximize the reliability of the noise generated by the semiconductor refrigeration refrigerator.
  • the semiconductor refrigeration refrigerator includes:
  • At least one semiconductor refrigeration sheet disposed at a rear of the rear wall of the bladder.
  • each of the cold-end heat exchange devices configured to allow a refrigerant to flow therein and phase change heat to transfer the cold end of the at least one semiconductor refrigeration fin to the a storage compartment of the inner bladder;
  • Each of the cold-end heat exchange devices has three refrigerant pipes, each of the refrigerant pipes having: an evaporation section extending downward in a vertical plane and having an end closed, each of the cold ends
  • the evaporation sections of the three refrigerant lines of the heat exchange device are thermally coupled to the rear wall and the two side walls of the inner tank, respectively.
  • each of the cold-end heat exchange devices further has a cold-end heat exchange portion defining a cavity or a pipe for accommodating the refrigerant in which the gas-liquid two phases coexist; and each of the refrigerant pipes further A connecting section extending from the beginning end of the evaporation section thereof and extending to the inner cavity or the pipe of the corresponding cold end heat exchange portion is included.
  • the cold-end heat exchange portion of each of the cold-end heat exchange devices has a flat rectangular parallelepiped shape, and an area of the front surface and the rear surface disposed opposite to each other is larger than an area of the other surface, and each of the cold end heat exchanges
  • the rear surface of the portion is disposed in parallel with the rear wall of the bladder and serves as a heat exchange surface that is thermally coupled to the cold source.
  • the number of the at least one semiconductor refrigerating sheet is plural, and the cold ends of the plurality of the semiconductor refrigerating sheets are respectively thermally connected to a rear surface of a cold end heat exchange portion of the corresponding cold end heat exchange device.
  • the cold end heat exchange portions of the plurality of cold end heat exchange devices are spaced apart in a vertical direction.
  • the number of the plurality of cold-end heat exchange devices is two; and the evaporation segments of the two refrigerant pipes of one of the two cold-end heat exchange devices are respectively The front half of the outer surfaces of the two side walls of the inner tank are thermally connected; the evaporation sections of the two refrigerant lines of the other cold end heat exchange device are respectively opposite to the outer surfaces of the two side walls of the inner tank The second half is thermally connected.
  • the number of the plurality of cold-end heat exchange devices is two; and an evaporation section of a refrigerant pipe of one of the two cold-end heat exchange devices
  • the left half of the outer surface of the rear wall of the inner tank is thermally connected; the evaporation section of one refrigerant line of the other cold end heat exchange device is thermally connected to the right half of the outer surface of the rear wall of the inner tank .
  • the evaporation sections of the three refrigerant lines of each of the cold-end heat exchange devices are respectively thermally connected to the rear wall and the two side walls of the inner tank through each of the cold-end heat exchange devices.
  • the evaporation sections of the three refrigerant lines are respectively abutted against the rear wall of the inner casing and the outer surfaces of the two side walls.
  • the projection length of the evaporation section of each of the refrigerant lines on a horizontal plane is less than 1/2 of a width of a corresponding back wall or side wall of the liner and greater than a corresponding back wall of the liner or 1/4 of the width of the side wall.
  • the evaporation section of each of the refrigerant pipelines comprises: a plurality of vertically spaced straight pipe sections, each of the straight pipe sections being inclined at an angle of 10° to 70° with respect to a horizontal plane; And a bent section connecting each of the two adjacent straight pipe sections.
  • the semiconductor refrigerating refrigerator further includes: a plurality of retaining wires disposed in a vertical direction; and the wall of the outer apex of each of the bent sections on the same side of each of the refrigerant pipes is welded to One of the retention wires.
  • each of the refrigerant lines are in the same horizontal position.
  • the semiconductor refrigerating refrigerator of the present invention has a plurality of cold-end heat exchange devices, the effective heat exchange area for thermal connection with the refrigerator inner liner is remarkably improved, and the energy efficiency of the semiconductor refrigerating refrigerator is remarkably improved. It is also possible to use a plurality of semiconductor refrigerating sheets for cooling at the same time, which further improves the energy efficiency of the semiconductor refrigerating refrigerator.
  • each cold-end heat exchange device is thermally connected to the rear wall and the two side walls of the inner tank, so that each cold-end heat exchange device is replaced. Thermal efficiency is roughly equal to better protect semiconductor refrigeration refrigerators.
  • one end of the refrigerant line is connected to the corresponding cold end heat exchange portion, and is bent and extended downward, and the refrigerant is used in the cold end heat exchange portion and the plurality of refrigerant tubes.
  • the variable circulation heat exchange effectively conducts the cold end temperature of the semiconductor refrigeration sheet, and utilizes a plurality of independent refrigerant tubes to make the processing process simpler and contributes to the cooperation with the refrigerator structure.
  • the use of a cooling fan is also omitted, which reduces the noise of the semiconductor refrigeration refrigerator and improves the reliability of the semiconductor refrigerator.
  • the outer surface of the rear wall of the cold-end heat exchange portion is in thermal contact with the cold end of the semiconductor refrigerating sheet by contact or otherwise, and each of the refrigerant tubes is At least a part of the outer surface of the inner liner is abutted against the outer surface of the inner liner, and the heat is transmitted by the inner tank, and the refrigerator structure is fully utilized, and the occupied space is small.
  • FIG. 1 is a schematic rear view of a partial structure of a semiconductor refrigeration refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic right side view showing a partial structure of a semiconductor refrigerating refrigerator according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view showing a partial structure of a semiconductor refrigerating refrigerator according to an embodiment of the present invention
  • Figure 4 is a schematic partial enlarged view of A in Figure 1;
  • Figure 5 is a schematic structural view of a hot end heat exchange device of a semiconductor refrigeration refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic rear view of a partial structure of a semiconductor refrigerating refrigerator showing a liner 100 of a semiconductor refrigerating refrigerator and a plurality of cold end heat exchange devices 200, in accordance with one embodiment of the present invention.
  • an embodiment of the present invention provides a semiconductor refrigeration refrigerator.
  • the semiconductor refrigeration refrigerator generally includes a liner 100, a semiconductor refrigerating sheet, a cold end heat exchange device 200, a hot end heat exchange device 600, a casing, a tank door, and a heat insulating layer.
  • a storage compartment is defined within the liner 100.
  • the number of semiconductor refrigerating sheets is at least one, and the number of cold-end heat exchange devices 200 is plural.
  • Each of the cold-end heat exchange devices 200 is configured to allow a refrigerant to flow therein and undergo phase change heat to transfer the cold amount of the cold end of the at least one semiconductor cooling fin to the storage compartment of the inner liner 100.
  • Each of the cold-end heat exchangers 200 has three refrigerant lines 20, and each of the refrigerant lines 20 has an evaporation section 21 that is bent downward in a vertical plane and that is closed at the ends.
  • the evaporation sections 21 of the three refrigerant tubes 20 of each of the cold-end heat exchangers 200 are thermally connected to the rear wall and the two side walls of the liner 100, respectively, to improve the refrigeration efficiency of the semiconductor refrigeration refrigerator.
  • the number of the semiconductor refrigerating sheets may be one, disposed at the rear of the rear wall of the inner liner 100, and the cold ends thereof are thermally connected to the plurality of cold end heat exchange devices 200 respectively by the heat conducting device; the number of the semiconductor refrigerating sheets There may be a plurality of, which are disposed behind the rear wall of the inner tank 100, and the cold ends of the plurality of semiconductor refrigeration sheets are respectively thermally connected to a corresponding cold end heat exchange device 200 to further improve the energy efficiency ratio of the semiconductor refrigeration refrigerator.
  • each cold end heat exchange device 200 also has a cold end heat exchange portion 30 defining a lumen or conduit for containing a refrigerant in which both gas and liquid phases coexist.
  • Each refrigerant line 20 also includes a connecting section 22 that extends upwardly from the beginning end of its evaporation section 21 and communicates to the interior or conduit of the respective cold end heat exchange portion 30. Cooling in the cold end heat exchange portion 30 and the refrigerant line 20
  • the agent can be carbon dioxide or other refrigerant, and the amount of refrigerant can be determined by passing the test.
  • the structure in which each refrigerant line 20 is bent downwardly needs to ensure that the liquid refrigerant can flow freely in the line by gravity.
  • the cold-end heat exchange portion 30 of each of the cold-end heat exchange devices 200 may have a flat rectangular parallelepiped shape and may be disposed between the rear wall of the inner liner 100 and the rear wall of the outer casing. For example, a distance may be preferably set between the front surface of the cold-end heat exchange portion 30 and the rear wall of the inner liner 100 to ensure that heat is not conducted to the inner liner 100 in the event of a power failure or operational failure, causing temperature anomalies.
  • the area of the opposite front and rear surfaces of each of the cold-end heat exchange portions 30 is larger than the area of the other surfaces, and the rear surface of each of the cold-end heat exchange portions 30 is disposed in parallel with the rear wall of the inner liner 100, and is used as a cold
  • the heat exchange surface of the source (for example, the cold end of the semiconductor refrigerating sheet) is thermally connected, and the method of thermally connecting may include the outer surface directly contacting the cold source or contacting through the heat conductive layer, wherein the heat conductive layer may be coated on the outer surface Thermal silica or graphite between the cold source and the like.
  • the "thermal connection" or “thermal contact” in this embodiment may be a direct heat transfer by means of heat conduction. If a thermal grease (graphite or other medium) is applied against the contact surface, it can be considered to be a part of the contact surface as a thermally conductive layer that improves the thermal connection (or thermal contact).
  • the number of the semiconductor refrigerating sheets is plural, and the plurality of cold ends are respectively thermally connected to the rear surface of the cold-end heat exchange portion 30 of one cold-end heat exchange device 200, for example, a plurality of semiconductor refrigerating sheets can be selected. It is disposed in the installation space defined by the outer side of the rear wall of the inner liner 100 and the rear wall of the outer casing, and the cold ends thereof can respectively abut against the rear surface of the cold end heat exchange portion 30 of the cold end heat exchange device 200.
  • the working process of the semiconductor refrigerating refrigerator of the embodiment of the present invention is: when each semiconductor refrigerating piece is energized, the temperature of the cold end is lowered, and by conduction, the temperature of the cold end heat exchange portion 30 is correspondingly decreased, and the refrigerant in the gaseous state occurs when it is cold.
  • the phase change condenses and changes into a low temperature liquid refrigerant.
  • the liquid refrigerant flows down the lumen of the refrigerant line 20 by gravity, and the condensed downstream refrigerant is heated in the refrigerant line 20 due to absorption of heat inside the refrigerator. It evaporates and changes into a gaseous state.
  • the gaseous vapor rises under the pressure of the heat source, and the gaseous refrigerant rises to the cold-end heat exchange portion 30 to continue the condensation, thereby circulating the refrigeration, so that the temperature of the storage chamber is lowered to achieve the temperature drop.
  • the number of plurality of cold end heat exchange devices 200 is two.
  • the evaporation sections 21 of the two refrigerant tubes 20 of one of the two cold-end heat exchangers 200 are thermally connected to the front half of the outer surfaces of the two side walls of the liner 100; the other cold end The evaporation sections 21 of the two refrigerant tubes 20 of the heat exchange device 200 and the outer surfaces of the two side walls of the liner 100, respectively The second half is thermally connected.
  • the evaporation section 21 of one refrigerant line 20 of one of the two cold-end heat exchangers 200 is thermally connected to the left half of the outer surface of the rear wall of the liner 100; the other cold-end heat exchange The evaporation section 21 of one refrigerant line 20 of the apparatus 200 is thermally coupled to the right half of the outer surface of the rear wall of the liner 100.
  • the evaporation sections 21 of the three refrigerant lines 20 of each of the cold-end heat exchangers 200 are respectively opposite to the rear wall of the liner 100 and two The side wall thermal connection is achieved by the evaporation sections 21 of the three refrigerant lines 20 of each cold end heat exchange device 200 abutting against the rear wall of the inner liner 100 and the outer surfaces of the two side walls, respectively.
  • each of the evaporation sections 21 can abut against a corresponding heat-conducting plate, and the heat-conducting plate abuts against the rear wall and the two side walls of the liner 100 to make the refrigerator liner 100 The inside is more evenly cooled.
  • the projection length of the evaporation section 21 of each refrigerant line 20 on the horizontal plane is less than 1/2 of the width of the corresponding rear wall or side wall of the liner 100 and larger than that of the liner 100. 1/4 of the width of the corresponding rear wall or side wall.
  • each of the refrigerant lines 20 may be a copper tube, a stainless steel tube, an aluminum tube, or the like, preferably a copper tube.
  • the connecting section 22 of each refrigerant unit 20 of the cold-end heat exchange device 200 whose heat-dissipating section 21 is thermally connected to the side wall of the inner tank 100 may include a first section 221 and a second section. 222, wherein the first section 221 is in communication with the inner cavity or the duct of the cold-end heat exchange portion 30 and extends to the outside of the cold-end heat exchange portion 30, and the second section 222 is connected to the first section 221 and is in contact with the inner tank 100.
  • the rear wall extends laterally and obliquely downwardly and is bent forwardly and obliquely downwardly to the side wall of the liner 100 to connect the evaporation section 21 of the corresponding refrigerant line 20.
  • the connecting section 22 of the refrigerant line 20 of each of the cold-end heat exchange devices 200 whose evaporation section 21 is thermally connected to the rear wall of the inner liner 100 may include only the first section 221.
  • the evaporation section 21 of each refrigerant line 20 may include a plurality of vertically spaced straight pipe sections 211 and a bent section 212 connecting each two adjacent straight pipe sections 211, wherein each straight pipe section 211 is The angle is inclined at an angle of 10° to 70° with respect to the horizontal plane to ensure that the liquid refrigerant flows freely by gravity therein, and the bending section 212 is preferably set to a “C” shape, or an arc segment, thereby making the evaporation section 21 generally presents a slanted "Z" shaped structure.
  • the semiconductor refrigeration refrigerator of the embodiment of the present invention further includes a plurality of retention wires 40.
  • Each of the retaining wires 40 is disposed in a vertical direction.
  • the outer vertices (also referred to as apexes) of each of the bent sections 212 on the same side of each refrigerant line 20 are welded to a respective retaining wire 40.
  • the two retaining wires 40 can be divided They are not fixed to both sides of the evaporation section 21 of a corresponding refrigerant pipe 20, and each of the retaining wires 40 is sequentially fixed at the top of each bending section of the corresponding side of the corresponding evaporation section at different portions along the length thereof. Convex. Further, other portions of each refrigerant line 20 that are in contact with the respective retention wires 40 may be welded to the retention wires 40.
  • each cold-end heat exchange portion 30 of each cold-end heat exchange device 200 may be a heat exchange copper block, and three stepped blind holes 31 extending in a vertical direction are provided inside and each step is connected.
  • the horizontal pipe hole 32 in the upper portion of the hole 31 forms a pipe inside the cold end heat exchange portion 30.
  • the upper end of each refrigerant line 20 can be inserted into the corresponding step blind hole 31.
  • Each of the cold-end heat exchange devices 200 further includes a refrigerant infusion tube 50 having one end in communication with the corresponding horizontal tube hole 32 and the other end being a normally closed end configured to be operatively opened to receive the refrigerant injected from the outside. To inject refrigerant into each of the refrigerant lines 20.
  • the cold-end heat exchange portion 30 of each of the cold-end heat exchange devices 200 may be a cold-end heat exchange tank in which a refrigerant for accommodating gas-liquid two-phase coexistence is defined.
  • the inner chamber is configured to allow the refrigerant to undergo phase change heat therein.
  • the connecting section 22 of each refrigerant line 20 communicates to the lower portion of the inner chamber.
  • the cold-end heat exchange device 200 may also be provided with a three-way device for the perfusion of the refrigerant.
  • the three-way device is disposed on the connecting section 22 of a refrigerant line 20, the first end of which is configured to communicate with the corresponding two sections of the connecting section 22, and the third end is configured to be operatively opened to receive the injection from the outside.
  • the normally closed end of the refrigerant reduces the difficulty of injecting the refrigerant process and provides a means of maintenance.
  • the cold end heat exchange portion 30 of each of the cold end heat exchange devices 200 may be a heat exchange copper block.
  • Each refrigerant line 20 is closed at both ends, and is internally filled with a refrigerant, and an upper end of each refrigerant line 20 is inserted into a corresponding heat exchange copper block.
  • Each of the refrigerant lines 20 may have a valve for injecting a refrigerant.
  • the cold end heat exchange portions 30 of the plurality of cold end heat exchange devices 200 are spaced apart in the vertical direction, and the lower ends of each of the refrigerant lines 20 may be at the same horizontal position.
  • the semiconductor refrigeration refrigerator of the present embodiment may further include: a plurality of hot-end heat exchange devices 600 respectively thermally connected to the hot ends of the plurality of semiconductor refrigerating sheets for generating the hot end. Heat is released to the surrounding environment.
  • the hot end heat exchange device 600 includes a hot end heat exchange box 610, a plurality of heat dissipating tubes 620, heat dissipating fins 630, and a fan 640.
  • the hot-end heat exchange tank 610 defines a lumen for containing a refrigerant in which gas-liquid two phases coexist, and is configured to allow a refrigerant to undergo phase change heat therein.
  • a plurality of heat dissipation lines 620 are configured to allow refrigerant therein Flowing and phase-changing heat occurs, and each of the heat-dissipating pipes is formed such that the first end of the open end communicates with the upper portion of the inner cavity of the hot-end heat exchange tank 610, and each of the heat-dissipating pipes is inclined from the first end thereof The bend extends to terminate at a second end that is formed as a closed end.
  • the heat dissipating fins 630 are disposed on the plurality of heat dissipating conduits 620.
  • the fan 640 is fixed to the heat dissipating fins 630 by a fastening mechanism to perform forced convection heat dissipation of heat transferred from the plurality of heat dissipating conduits 620 to the heat dissipating fins 630.
  • those skilled in the art may also employ other forms of hot end heat exchange devices, for example, using hot end heat exchange devices including heat pipes, fins, and fans.
  • a person skilled in the art can also invert the cold-end heat exchange device in any of the above embodiments of the present invention (the cold-end heat exchange portion is located below the evaporation portion thereof) as a hot-end heat exchange device, when installed.
  • the cold-end heat exchange portion can be thermally connected to the hot end of the semiconductor refrigerating sheet, and the evaporation portion thereof abuts against the inner surface of the outer casing to realize heat dissipation of the semiconductor refrigerating refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种半导体制冷冰箱,其包括:内胆(100),至少一个半导体制冷片和多个冷端换热装置(200),每个冷端换热装置(200)配置成允许制冷剂在其内流动且发生相变换热,以将至少一个半导体制冷片的冷端的冷量传至内胆(100)的储物间室;每个冷端换热装置(200)具有三根制冷剂管路(20),每根制冷剂管路(20)具有:在一竖直平面中向下弯折延伸且末端封闭的蒸发段(21),每个冷端换热装置(200)的三根制冷剂管路(20)的蒸发段(21)分别与内胆(100)的后壁和两个侧壁热连接。因为具有多个冷端换热装置(200),显著地提高了与冰箱内胆(100)进行热连接的有效换热面积,进而显著提高了半导体制冷冰箱的能效。

Description

半导体制冷冰箱 技术领域
本发明涉及制冷设备,特别是涉及一种半导体制冷冰箱。
背景技术
半导体制冷冰箱,也称之为热电冰箱。其利用半导体制冷片通过高效环形双层热管散热及传导技术和自动变压变流控制技术实现制冷,无需制冷工质和机械运动部件,解决了介质污染和机械振动等传统机械制冷冰箱的应用问题。
然而,半导体制冷冰箱需要有效地将半导体制冷片冷端的温度传导至冰箱储物间室内,现有技术一般采用散热片强制对流,散热片通过与半导体制冷片冷端直接接触,并与储物间室进行热交换,这种固体之间的导热换热效率低,不利于半导体最佳性能的发挥,而且散热翅片体积较大,占用冰箱空间,配合风扇后,会引起噪音增加,且风扇连续工作,可靠性较差。
发明内容
本发明的一个目的旨在克服现有的半导体制冷冰箱的至少一个缺陷,提供一种换热效率高的半导体制冷冰箱。
本发明一个进一步的目的是要尽量半导体制冷冰箱产生的噪音,提高其可靠性。
为了实现上述至少一个目的,本发明提供了一种半导体制冷冰箱。该半导体制冷冰箱包括:
内胆,其内限定有储物间室;
至少一个半导体制冷片,设置于所述内胆后壁的后方;和
多个冷端换热装置,每个所述冷端换热装置配置成允许制冷剂在其内流动且发生相变换热,以将所述至少一个半导体制冷片的冷端的冷量传至所述内胆的储物间室;而且
每个所述冷端换热装置具有三根制冷剂管路,每根所述制冷剂管路具有:在一竖直平面中向下弯折延伸且末端封闭的蒸发段,每个所述冷端换热装置的三根制冷剂管路的蒸发段分别与所述内胆的后壁和两个侧壁热连接。
可选地,每个所述冷端换热装置还具有冷端换热部,限定有用于容装气液两相共存的制冷剂的内腔或管道;且每根所述制冷剂管路还包括从其蒸发段的起始端向上弯折延伸并连通至相应所述冷端换热部的内腔或管道的连接段。
可选地,每个所述冷端换热装置的冷端换热部为扁平长方体状,其相对设置的前表面与后表面的面积大于其他表面的面积,且每个所述冷端换热部的后表面与所述内胆后壁平行设置,并用作与冷源热连接的换热面。
可选地,所述至少一个半导体制冷片的数量为多个,多个所述半导体制冷片的冷端分别与一个相应所述冷端换热装置的冷端换热部的后表面热连接。
可选地,多个所述冷端换热装置的冷端换热部沿竖直方向间隔设置。
可选地,所述多个冷端换热装置的数量为两个;且两个所述冷端换热装置中一个所述冷端换热装置的两根制冷剂管路的蒸发段分别与所述内胆的两个侧壁外表面的前半部分热连接;另一所述冷端换热装置的两根制冷剂管路的蒸发段分别与所述内胆的两个侧壁外表面的后半部分热连接。
可选地,所述多个冷端换热装置的数量为两个;且两个所述冷端换热装置中一个所述冷端换热装置的一根制冷剂管路的蒸发段与所述内胆的后壁外表面的左半部分热连接;另一所述冷端换热装置的一根制冷剂管路的蒸发段与所述内胆的后壁外表面的右半部分热连接。
可选地,每个所述冷端换热装置的三根制冷剂管路的蒸发段分别与所述内胆的后壁和两个侧壁热连接是通过每个所述冷端换热装置的三根制冷剂管路的蒸发段分别贴靠于所述内胆的后壁和两个侧壁外表面实现的。
可选地,每根所述制冷剂管路的蒸发段在水平面上的投影长度小于所述内胆的相应后壁或侧壁的宽度的1/2且大于所述内胆的相应后壁或侧壁的宽度的1/4。
可选地,每根所述制冷剂管路的蒸发段包括:多个竖向间隔设置的直管区段,每个所述直管区段以相对于水平面呈10°至70°的角度倾斜设置;和弯折区段,连接每两个相邻所述直管区段。
可选地,所述半导体制冷冰箱进一步包括:多个固位钢丝,沿竖直方向设置;而且每根所述制冷剂管路同侧的各个弯折区段的外顶点处管壁均焊接于一个所述固位钢丝。
可选地,每根所述制冷剂管路的下端处于同一水平位置。
本发明的半导体制冷冰箱中因为具有多个冷端换热装置,显著地提高了与冰箱内胆进行热连接的有效换热面积,进而显著提高了半导体制冷冰箱的能效。也可同时使用多个半导体制冷片进行制冷,进一步提高了半导体制冷冰箱的能效。
进一步地,本发明的半导体制冷冰箱中每个冷端换热装置的三根制冷剂管路均分别与内胆的后壁和两个侧壁进行热连接,使每个冷端换热装置的换热效率大致上相等,以更好地保护半导体制冷冰箱。
进一步地,本发明的半导体制冷冰箱中制冷剂管路一端连通至相应冷端换热部,并倾斜向下弯折延伸,利用制冷剂在冷端换热部和多根制冷剂管路中相变循环换热,有效地传导半导体制冷片的冷端温度,而且利用多根相互独立的制冷剂管路,加工工艺更加简便,有助于与冰箱结构的配合。同时也省略使用散冷风机,降低半导体制冷冰箱的噪音,提高半导体冰箱的可靠性。
进一步地,本发明的半导体制冷冰箱中,冷端换热部的后壁的外表面与半导体制冷片的冷端以接触贴靠或其他方式进行热连接,而且使其每根制冷剂管路的至少一部分与内胆的外表面贴靠,利用内胆进行热量传导,充分利用冰箱结构,占用空间小。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性后视图;
图2是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性右视图;
图3是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性结构图;
图4是图1中A处的示意性局部放大图;
图5是根据本发明一个实施例的半导体制冷冰箱的热端换热装置的示意性结构图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。在本发明的描述中,术语“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
图1是根据本发明一个实施例的半导体制冷冰箱的局部结构的示意性后视图,其中示出了半导体制冷冰箱的内胆100和多个冷端换热装置200。如图1所示,并参考图2和图3,本发明实施例提供了一种半导体制冷冰箱。半导体制冷冰箱一般可包括:内胆100、半导体制冷片、冷端换热装置200、热端换热装置600、外壳、箱门和绝热层。内胆100内限定有储物间室。特别地,本发明实施例中半导体制冷冰箱中,半导体制冷片的数量为至少一个,冷端换热装置200的数量为多个。每个冷端换热装置200配置成允许制冷剂在其内流动且发生相变换热,以将至少一个半导体制冷片的冷端的冷量传至内胆100的储物间室。每个冷端换热装置200具有三根制冷剂管路20,且每根制冷剂管路20具有:在一竖直平面中向下弯折延伸且末端封闭的蒸发段21。每个冷端换热装置200的三根制冷剂管路20的蒸发段21分别与内胆100的后壁和两个侧壁热连接,以提高半导体制冷冰箱的制冷效率。
在本发明实施例中,半导体制冷片的数量可为一个,设置于内胆100后壁的后方,其冷端通过导热装置分别与多个冷端换热装置200热连接;半导体制冷片的数量也可为多个,均设置于内胆100后壁的后方,多个半导体制冷片的冷端分别与一个相应冷端换热装置200热连接,以进一步提高半导体制冷冰箱的能效比。
在本发明的一些实施例中,每个冷端换热装置200还具有冷端换热部30,限定有用于容装气液两相共存的制冷剂的内腔或管道。每根制冷剂管路20还包括从其蒸发段21的起始端向上弯折延伸并连通至相应冷端换热部30的内腔或管道的连接段22。冷端换热部30和制冷剂管路20中灌注的制冷 剂可以为二氧化碳或其他制冷工质,且制冷剂的灌注量可以由通过试验测试得出。每根制冷剂管路20向下地弯折延伸的结构需要保证液态的制冷剂可以依靠重力自由的在管路中流动。本实施例的冷端换热装置200工作时,制冷剂在冷端换热部30和制冷剂管路20中进行气液相变,进行热循环。
每个冷端换热装置200的冷端换热部30可为扁平长方体状,可设置在内胆100后壁与外壳后壁之间。例如,冷端换热部30的前表面与内胆100的后壁之间可以优选设置一定的距离,以保证在停电或运行故障时热量不会传导至内胆100,引起温度异常。
每个冷端换热部30的相对设置的前表面与后表面的面积大于其他表面的面积,且每个冷端换热部30的后表面与内胆100后壁平行设置,并用作与冷源(例如半导体制冷片的冷端)热连接的换热面,热连接的方式可以包括该外表面直接与该冷源接触贴靠或者通过导热层接触,其中导热层可以为涂覆于外表面和冷源之间的导热硅胶或石墨等。本实施例中的“热连接”或“热接触”,本可以是是直接抵靠接触,采用热传导的方式进行传热。若抵靠接触面涂覆导热硅脂(石墨或其他介质),可将其认为是抵靠接触面上的一部分,作为改善热连接(或热接触)的导热层。
在本发明实施例中,半导体制冷片的数量为多个,多个冷端分别与一个冷端换热装置200的冷端换热部30的后表面热连接,例如多个半导体制冷片可以选择布置于内胆100的后壁外侧与外壳后壁限定的安装空间内,且其冷端可分别贴靠于一个冷端换热装置200的冷端换热部30的后表面。
本发明实施例的半导体制冷冰箱的工作过程为:每个半导体制冷片通电工作时,冷端温度下降,通过传导,冷端换热部30温度相应下降,其内气态的制冷剂遇冷时发生相变冷凝,变化成为低温的液态制冷剂,液态的制冷剂会靠重力沿着制冷剂管路20管腔下流,冷凝下流的制冷剂在制冷剂管路20中由于吸收冰箱内部的热量受热相变蒸发,变化成为气态。气态蒸汽在热源压力的推动下会上升,气态制冷剂上升到冷端换热部30处继续冷凝,由此循环制冷,致使导致储物间室的温度下降实现降温。
在本发明的一些实施例中,多个冷端换热装置200的数量为两个。两个冷端换热装置200中一个冷端换热装置200的两根制冷剂管路20的蒸发段21分别与内胆100的两个侧壁外表面的前半部分热连接;另一冷端换热装置200的两根制冷剂管路20的蒸发段21分别与内胆100的两个侧壁外表面 的后半部分热连接。两个冷端换热装置200中一个冷端换热装置200的一根制冷剂管路20的蒸发段21与内胆100的后壁外表面的左半部分热连接;另一冷端换热装置200的一根制冷剂管路20的蒸发段21与内胆100的后壁外表面的右半部分热连接。
为了更好地使每个蒸发段21的冷量传递至冰箱内胆100,每个冷端换热装置200的三根制冷剂管路20的蒸发段21分别与内胆100的后壁和两个侧壁热连接是通过每个冷端换热装置200的三根制冷剂管路20的蒸发段21分别贴靠于内胆100的后壁和两个侧壁外表面实现的。在本发明的一些替代性实施例中,每个蒸发段21可贴靠于一个相应导热平板上,导热平板在与内胆100的后壁和两个侧壁贴靠,以使冰箱内胆100内受冷更加均匀。
为了尽可能地提高有效换热面积,每根制冷剂管路20的蒸发段21在水平面上的投影长度小于内胆100的相应后壁或侧壁的宽度的1/2且大于内胆100的相应后壁或侧壁的宽度的1/4。
在本发明的一些实施例中,每个制冷剂管路20可以选用铜管、不锈钢管、铝管等,优选为铜管。如图4所示,每个冷端换热装置200的其蒸发段21与内胆100的侧壁热连接的制冷剂管路20的连接段22可包括第一区段221和第二区段222,其中第一区段221与冷端换热部30的内腔或管道连通且延伸至冷端换热部30外部,第二区段222与第一区段221连接且在与内胆100的后壁上横向地且倾斜向下地延伸后,并向前且倾斜向下地弯折至与内胆100侧壁以连接相应的制冷剂管路20的蒸发段21。每个冷端换热装置200的其蒸发段21与内胆100的后壁热连接的制冷剂管路20的连接段22可仅包括第一区段221。
每根制冷剂管路20的蒸发段21可包括多个竖向间隔设置的直管区段211和连接每两个相邻直管区段211的弯折区段212,其中每个直管区段211以相对于水平面呈10°至70°的角度倾斜设置以保证液态制冷剂在其内依靠重力自由流动,而弯折区段212优选设置为“C”字形,或为弧形管段,从而使得蒸发段21总体上呈现一种倾斜的“Z”字形结构。
为了防止每根制冷剂管路20的蒸发段21发生弹性变形,本发明实施例的半导体制冷冰箱还包括多个固位钢丝40。每个固位钢丝40沿竖直方向设置。每根制冷剂管路20同侧的各个弯折区段212的外顶点处(也可称为顶凸处)管壁均焊接于一个相应固位钢丝40。具体地,两个固位钢丝40可分 别固定于一个相应制冷剂管路20的蒸发段21的两侧,且每个固位钢丝40在沿其长度的不同部位处依次固定于相应蒸发段的相应侧的各个弯折区段的顶凸处。进一步地,每根制冷剂管路20的其它与相应固位钢丝40接触的部分均可焊接于该固位钢丝40。
在本发明实施例中,每个冷端换热装置200的冷端换热部30可为换热铜块,其内部设置有三个沿竖直方向延伸的阶梯盲孔31和连通每个阶梯盲孔31上部的水平管孔32,以形成冷端换热部30内部的管道。每根制冷剂管路20的上端可插接于相应阶梯盲孔31内。每个冷端换热装置200还包括一根制冷剂灌注管50,其一端与相应水平管孔32连通,另一端为配置成可操作地打开以接收从外部注入的制冷剂的常闭端,以向每根制冷剂管路20内灌注制冷剂。
在本发明的一些替代性实施例中,每个冷端换热装置200的冷端换热部30可为冷端换热箱,其内限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热。每根制冷剂管路20的连接段22连通至内腔的下部。冷端换热装置200还可以设置三通装置用于制冷剂的灌注。该三通装置设置于一根制冷剂管路20的连接段22上,其第一端用于连通连接段22的相应两区段,第三端为配置成可操作地打开以接收从外部注入的制冷剂的常闭端。利用三通装置降低了灌注制冷剂工艺的难度,并为维修提供了手段。
在本发明的一些替代性实施例中,每个冷端换热装置200的冷端换热部30可为换热铜块。每根制冷剂管路20的两端均封闭,内部灌注有制冷剂,且每根制冷剂管路20的上端插设于相应换热铜块内。每根制冷剂管路20上均可具有灌注制冷剂的阀门。
在本发明的一些实施例中,多个冷端换热装置200的冷端换热部30沿竖直方向间隔设置,且每根制冷剂管路20的下端可处于同一水平位置。
为解决半导体制冷片热端的散热问题,本实施例的半导体制冷冰箱还可以包括:多个热端换热装置600,分别与多个半导体制冷片的热端热连接,用于将热端产生的热量散发至周围环境。例如,如图5所示,该热端换热装置600包括:热端换热箱610、多根散热管路620、散热翅片630和风机640。热端换热箱610限定有用于容装气液两相共存的制冷剂的内腔,且配置成允许制冷剂在其内发生相变换热。多根散热管路620配置成允许制冷剂在其内 流动且发生相变换热,而且每根散热管路的形成为开口端的第一端连通至热端换热箱610的内腔的上部,每根散热管路的从其第一端倾斜向上地弯折延伸,终结于其形成为封闭端的第二端。散热翅片630设置于多根散热管路620上。风机640通过紧固机构固定在散热翅片630上,以对从多根散热管路620传至散热翅片630的热量进行强制对流散热。在本发明的一些替代性实施例中,本领域的技术人员也可采用其它形式的热端换热装置,例如,采用包括热管、翅片和风机的热端换热装置。本领域的技术人员也可将本发明上述任一实施例中的冷端换热装置倒置(使其冷端换热部位于其蒸发段的下方)后的装置作为热端换热装置,安装时,可使其冷端换热部与半导体制冷片的热端热连接,其蒸发段贴靠于外壳的内表面上,实现半导体制冷冰箱的散热。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (12)

  1. 一种半导体制冷冰箱,包括:
    内胆,其内限定有储物间室;
    至少一个半导体制冷片,设置于所述内胆后壁的后方;和
    多个冷端换热装置,每个所述冷端换热装置配置成允许制冷剂在其内流动且发生相变换热,以将所述至少一个半导体制冷片的冷端的冷量传至所述内胆的储物间室;而且
    每个所述冷端换热装置具有三根制冷剂管路,每根所述制冷剂管路具有:在一竖直平面中向下弯折延伸且末端封闭的蒸发段,每个所述冷端换热装置的三根制冷剂管路的蒸发段分别与所述内胆的后壁和两个侧壁热连接。
  2. 根据权利要求1所述的半导体制冷冰箱,其中
    每个所述冷端换热装置还具有冷端换热部,限定有用于容装气液两相共存的制冷剂的内腔或管道;且
    每根所述制冷剂管路还包括从其蒸发段的起始端向上弯折延伸并连通至相应所述冷端换热部的内腔或管道的连接段。
  3. 根据权利要求2所述的半导体制冷冰箱,其中
    每个所述冷端换热装置的冷端换热部为扁平长方体状,其相对设置的前表面与后表面的面积大于其他表面的面积,且每个所述冷端换热部的后表面与所述内胆后壁平行设置,并用作与冷源热连接的换热面。
  4. 根据权利要求3所述的半导体制冷冰箱,其中
    所述至少一个半导体制冷片的数量为多个,多个所述半导体制冷片的冷端分别与一个相应所述冷端换热装置的冷端换热部的后表面热连接。
  5. 根据权利要求4所述的半导体制冷冰箱,其中
    多个所述冷端换热装置的冷端换热部沿竖直方向间隔设置。
  6. 根据权利要求1所述的半导体制冷冰箱,其中
    所述多个冷端换热装置的数量为两个;且
    两个所述冷端换热装置中一个所述冷端换热装置的两根制冷剂管路的蒸发段分别与所述内胆的两个侧壁外表面的前半部分热连接;另一所述冷端换热装置的两根制冷剂管路的蒸发段分别与所述内胆的两个侧壁外表面的后半部分热连接。
  7. 根据权利要求1所述的半导体制冷冰箱,其中
    所述多个冷端换热装置的数量为两个;且
    两个所述冷端换热装置中一个所述冷端换热装置的一根制冷剂管路的蒸发段与所述内胆的后壁外表面的左半部分热连接;另一所述冷端换热装置的一根制冷剂管路的蒸发段与所述内胆的后壁外表面的右半部分热连接。
  8. 根据权利要求1所述的半导体制冷冰箱,其中
    每个所述冷端换热装置的三根制冷剂管路的蒸发段分别与所述内胆的后壁和两个侧壁热连接是通过每个所述冷端换热装置的三根制冷剂管路的蒸发段分别贴靠于所述内胆的后壁和两个侧壁外表面实现的。
  9. 根据权利要求1所述的半导体制冷冰箱,其中
    每根所述制冷剂管路的蒸发段在水平面上的投影长度小于所述内胆的相应后壁或侧壁的宽度的1/2且大于所述内胆的相应后壁或侧壁的宽度的1/4。
  10. 根据权利要求1所述的半导体制冷冰箱,其中,每根所述制冷剂管路的蒸发段包括:
    多个竖向间隔设置的直管区段,每个所述直管区段以相对于水平面呈10°至70°的角度倾斜设置;和
    弯折区段,连接每两个相邻所述直管区段。
  11. 根据权利要求10所述的半导体制冷冰箱,进一步包括:
    多个固位钢丝,沿竖直方向设置;而且
    每根所述制冷剂管路同侧的各个弯折区段的外顶点处管壁均焊接于一个所述固位钢丝。
  12. 根据权利要求10所述的半导体制冷冰箱,其中
    每根所述制冷剂管路的下端处于同一水平位置。
PCT/CN2015/090987 2014-12-15 2015-09-28 半导体制冷冰箱 WO2016095589A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/536,536 US10222114B2 (en) 2014-12-15 2015-09-28 Semiconductor refrigerator
EP15869100.6A EP3220081B1 (en) 2014-12-15 2015-09-28 Semiconductor refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410778449.0 2014-12-15
CN201410778449.0A CN104567175B (zh) 2014-12-15 2014-12-15 半导体制冷冰箱

Publications (1)

Publication Number Publication Date
WO2016095589A1 true WO2016095589A1 (zh) 2016-06-23

Family

ID=53083819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090987 WO2016095589A1 (zh) 2014-12-15 2015-09-28 半导体制冷冰箱

Country Status (4)

Country Link
US (1) US10222114B2 (zh)
EP (1) EP3220081B1 (zh)
CN (1) CN104567175B (zh)
WO (1) WO2016095589A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190178558A1 (en) * 2017-12-11 2019-06-13 Global Cooling, Inc. Independent Auxiliary Thermosiphon For Inexpensively Extending Active Cooling To Additional Freezer Interior Walls
US10408545B2 (en) * 2013-12-25 2019-09-10 Nec Platforms, Ltd. Cooling system and electronic equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567175B (zh) * 2014-12-15 2016-11-23 青岛海尔股份有限公司 半导体制冷冰箱
CN106288592A (zh) * 2015-05-14 2017-01-04 青岛海尔智能技术研发有限公司 冰箱
US10260819B2 (en) * 2016-07-26 2019-04-16 Tokitae Llc Thermosiphons for use with temperature-regulated storage devices
WO2018183731A1 (en) * 2017-03-29 2018-10-04 Rockwell Collins, Inc. Liquid chilled galley bar unit
CN114475407B (zh) * 2022-04-01 2022-07-22 济南锦润技术开发有限公司 储能式恒温冷链箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2842324Y (zh) * 2005-02-25 2006-11-29 海尔集团公司 电冰箱
CN202229500U (zh) * 2011-09-15 2012-05-23 陈志明 无压缩机式电冰箱
CN203810826U (zh) * 2014-03-28 2014-09-03 海尔集团公司 冰箱
CN104567175A (zh) * 2014-12-15 2015-04-29 青岛海尔股份有限公司 半导体制冷冰箱

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181310A (en) * 1963-09-03 1965-05-04 Walter D Ammons Refrigerating apparatus with holdover means
US4258554A (en) * 1977-06-22 1981-03-31 U.S. Philips Corporation Refrigerator
JPH06159894A (ja) * 1992-11-30 1994-06-07 Showa Alum Corp 温冷蔵庫
US5653111A (en) * 1993-07-07 1997-08-05 Hydrocool Pty. Ltd. Thermoelectric refrigeration with liquid heat exchange
US6776220B1 (en) * 1999-08-19 2004-08-17 Space Systems/Loral, Inc Spacecraft radiator system using crossing heat pipes
US6272867B1 (en) * 1999-09-22 2001-08-14 The Coca-Cola Company Apparatus using stirling cooler system and methods of use
US20010023762A1 (en) * 2000-01-11 2001-09-27 Sagal E. Mikhail Heat pipe spreader construction
KR20040052214A (ko) * 2001-07-20 2004-06-22 주식회사 알마 열교환기 어셈블리와 열교환기 매니폴드
US6658857B1 (en) * 2003-02-20 2003-12-09 Hatho M. George Portable thermoelectric cooling and heating appliance device and method of using
CN100404977C (zh) * 2006-06-08 2008-07-23 杭州神锋机电有限公司 电子热能转换制冷系统
CN201289264Y (zh) * 2008-10-23 2009-08-12 王志平 热电双温双控电冰箱
US20100154452A1 (en) * 2008-11-30 2010-06-24 Mccann Kevin Portable electric cooler
US20120047917A1 (en) * 2010-08-27 2012-03-01 Alexander Rafalovich MODULAR REFRIGERATOR and ICEMAKER
WO2013169774A2 (en) * 2012-05-07 2013-11-14 Phononic Devices, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US20130291555A1 (en) * 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
CN103199316B (zh) 2013-04-19 2015-12-02 安科智慧城市技术(中国)有限公司 电池组及其散热结构
WO2015039022A2 (en) * 2013-09-16 2015-03-19 Phononic Devices, Inc. Enhanced heat transport systems for cooling chambers and surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2842324Y (zh) * 2005-02-25 2006-11-29 海尔集团公司 电冰箱
CN202229500U (zh) * 2011-09-15 2012-05-23 陈志明 无压缩机式电冰箱
CN203810826U (zh) * 2014-03-28 2014-09-03 海尔集团公司 冰箱
CN104567175A (zh) * 2014-12-15 2015-04-29 青岛海尔股份有限公司 半导体制冷冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220081A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408545B2 (en) * 2013-12-25 2019-09-10 Nec Platforms, Ltd. Cooling system and electronic equipment
US20190178558A1 (en) * 2017-12-11 2019-06-13 Global Cooling, Inc. Independent Auxiliary Thermosiphon For Inexpensively Extending Active Cooling To Additional Freezer Interior Walls
US10718558B2 (en) * 2017-12-11 2020-07-21 Global Cooling, Inc. Independent auxiliary thermosiphon for inexpensively extending active cooling to additional freezer interior walls

Also Published As

Publication number Publication date
US10222114B2 (en) 2019-03-05
EP3220081A4 (en) 2017-10-04
EP3220081A1 (en) 2017-09-20
EP3220081B1 (en) 2019-04-10
US20170350636A1 (en) 2017-12-07
CN104567175A (zh) 2015-04-29
CN104567175B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016095589A1 (zh) 半导体制冷冰箱
WO2016095587A1 (zh) 冷端换热装置及半导体制冷冰箱
CN104329871B (zh) 半导体制冷冰箱及其冷端换热装置
CN104329850B (zh) 半导体制冷冰箱及其热端换热装置
CN203810826U (zh) 冰箱
CN104329857B (zh) 冰箱
CN104329828B (zh) 半导体制冷冰箱及其热端换热装置
CN104344642A (zh) 半导体制冷冰箱及其热端换热装置
WO2016095588A1 (zh) 热端换热装置及半导体制冷冰箱
CN201527207U (zh) 一种基于热管原理的气液换热器
CN205537254U (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN204574623U (zh) 微通道换热器及具有该微通道换热器的无水地板采暖系统
CN104329866B (zh) 半导体制冷冰箱及其冷端换热装置
CN203893485U (zh) 一种热管式高效半导体制冷装置
CN105466261A (zh) 换热装置及具有该换热装置的半导体制冷冰箱
WO2016095590A1 (zh) 弯折管件及具有该弯折管件的半导体制冷冰箱
CN104344641A (zh) 半导体制冷冰箱及其热端换热装置
CN104329829A (zh) 半导体制冷冰箱及其热端换热装置
CN105485969B (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN104329827A (zh) 一种热交换装置及半导体冰箱
CN204421417U (zh) 换热装置及半导体制冷冰箱
CN202494363U (zh) 平行式毛细热管换热装置
CN215336705U (zh) 空调器
CN104329869B (zh) 热交换装置及具有该热交换装置的半导体冰箱
CN105466260B (zh) 换热装置及具有该换热装置的半导体制冷冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869100

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015869100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15536536

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE