WO2016123835A1 - 基于螺旋电阻器的尺寸测量装置和方法 - Google Patents

基于螺旋电阻器的尺寸测量装置和方法 Download PDF

Info

Publication number
WO2016123835A1
WO2016123835A1 PCT/CN2015/073831 CN2015073831W WO2016123835A1 WO 2016123835 A1 WO2016123835 A1 WO 2016123835A1 CN 2015073831 W CN2015073831 W CN 2015073831W WO 2016123835 A1 WO2016123835 A1 WO 2016123835A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
resistor
size
sensing
spiral
Prior art date
Application number
PCT/CN2015/073831
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
张少鹏
方静芳
高伟明
梁艳妮
周荣
梁昊原
周亮
Original Assignee
深圳市前海安测信息技术有限公司
深圳市易特科信息技术有限公司
深圳市贝沃德克生物技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海安测信息技术有限公司, 深圳市易特科信息技术有限公司, 深圳市贝沃德克生物技术研究院有限公司 filed Critical 深圳市前海安测信息技术有限公司
Publication of WO2016123835A1 publication Critical patent/WO2016123835A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to the field of life health technologies, and in particular, to a size measuring device and method based on a spiral resistor.
  • variable resistors have been widely used, such as changing the characteristics of a signal generator, dimming a light, starting a motor or controlling its rotational speed, etc., which typically include a resistor body, a movable contact, and three pins. Two fixed pins are connected to the two ends of the resistor body, and the other pin (center tap) is connected to the movable contact, and the movable contact moves linearly along the resistor body to change the resistance of the resistor body.
  • the existing variable resistors are difficult to meet the accuracy requirements; and for the measurement of the size of the object to be measured, the commonly used method is only an intuitive measurement method, or measured by a caliper or the like. Tools to measure, but some measurement methods do not meet the high-precision measurement requirements in the field of precision control and precision measurement.
  • the main object of the present invention is to provide a size measuring device based on a spiral resistor, which is capable of Achieve high-precision measurement requirements in the field of precision control and precision measurement.
  • the present invention provides a spiral resistor-based size measuring device including a size sensing module, a control module, a driving module, and a spiral track resistance:
  • the size sensing module is connected to the control module and the driving module, and is configured to move to the measured object and sense the measured object under the driving of the driving module, and when the sensing object is sensed,
  • the control module sends a sensing signal
  • the spiral track resistance is connected to the driving module and the control module, and is driven by the driving module to change an output resistance value
  • the control module is connected to the driving module, and is configured to control the driving module to drive the size sensing module and the spiral track resistance movement; and when receiving the sensing signal, according to the output resistance of the spiral track resistance
  • the change in value calculates the size of the object under test.
  • the size sensing module includes a fixed end and an inductive end, and the fixed end is engaged with one end of the object to be tested, and the sensing end is connected to the driving module, and is driven by the driving module to be The other end of the object is snapped.
  • the spiral track resistance comprises a resistor body, a resistor complex and a resistance pointer:
  • the surface of the resistor body is provided with a first thread; the resistor mating body is sleeved on the resistor body, and the resistor mating body is provided with a second thread adapted to the first thread; The first end is fixed on the resistance matching body, and the second end of the resistance pointer is in contact with the surface of the first thread;
  • the resistor body is connected to the driving module, and the resistor body is driven to move under the driving of the driving module, and the resistor matching body drives the resistor pointer to move along the surface of the first thread to change The output resistance value of the spiral track resistance;
  • the sensing end of the size sensing module is coupled to the resistor mating body, and the resistor body drives the resistor mating body to drive the sensing end of the size sensing module to drive the sensing end of the size sensing module.
  • control module is specifically configured to:
  • the size sensing module includes a fixed end and an inductive end, and the fixed end is engaged with one end of the object to be tested, and the sensing end is connected to the driving module, and is driven by the driving module to be The other end of the object is snapped.
  • the spiral track resistance comprises a resistor body, a resistor complex and a resistance pointer:
  • the surface of the resistor body is provided with a first thread; the resistor mating body is sleeved on the resistor body, and the resistor mating body is provided with a second thread adapted to the first thread; The first end is fixed on the resistance matching body, and the second end of the resistance pointer is in contact with the surface of the first thread;
  • the resistor body is connected to the driving module, and the resistor body is driven to move under the driving of the driving module, and the resistor matching body drives the resistor pointer to move along the surface of the first thread to change The output resistance value of the spiral track resistance;
  • the sensing end of the size sensing module is coupled to the resistor mating body, and the resistor body drives the resistor mating body to drive the sensing end of the size sensing module to drive the sensing end of the size sensing module.
  • the spiral resistor-based size measuring device further includes a pressure sensor disposed on a side of the fixed end and the sensing end of the size sensing module that is in contact with the object to be measured, for sensing the Measuring a pressure value fed back by the object, and transmitting the pressure value to the control module;
  • the control module is further configured to control the driving module to stop working when the pressure value is within a preset pressure value range.
  • the spiral resistor-based displacement measuring device further includes a deceleration module connected to the driving module, and the deceleration module is configured to reduce a rotation speed of the driving module.
  • the spiral resistor-based displacement measuring device further includes a signal processing module, an output end of the spiral track resistance is electrically connected to an input end of the signal processing module, an output end of the signal processing module is The control module is electrically connected, and the signal processing module is configured to perform signal conversion, signal amplification, and A/D conversion on the output resistance value.
  • the present invention also provides a size measuring method using a spiral resistor-based size measuring device, the size measuring method comprising the following steps:
  • the control module controls the driving module to drive the size sensing module and the spiral track resistance movement
  • the size sensing module moves under the driving of the driving module and senses the measured object, and sends a sensing signal to the control module when sensing the measured object;
  • the size of the measured object is calculated according to a change in an output resistance value of the spiral track resistance.
  • the spiral resistor based size measuring method further comprises the steps of:
  • the pressure sensor senses a pressure value fed back by the measured object, and sends the pressure value to the control module;
  • the control module compares the pressure value with a preset pressure value, and when the pressure value is within a preset pressure value range, controls the driving module to stop working.
  • the step of calculating the size of the measured object according to the change of the output resistance value of the spiral track resistance comprises:
  • the control module obtains an initial position value of the size sensing module and a corresponding initial resistance value, and determines a current position value of the size sensing module according to a correspondence between an output resistance value of the spiral track resistance and a position value of the size sensing module;
  • the control module determines the size of the measured object according to the current position value of the size sensing module and the initial position value of the size sensing module.
  • the spiral resistor based size measuring method further comprises the steps of:
  • the pressure sensor senses a pressure value fed back by the measured object, and sends the pressure value to the control module;
  • the control module compares the pressure value with a preset pressure value, and when the pressure value is within a preset pressure value range, controls the driving module to stop working.
  • the invention controls the driving module to drive the size sensing module through the control module to sense the size of the object to be measured, and simultaneously drives the spiral track resistance movement to change the output resistance value, and the size sensing module sends an induction signal to the control module when sensing the object to be measured, and controls The module determines the current position value of the size sensing module according to the correspondence between the output resistance value of the spiral track resistance and the position value of the size sensing module, and then calculates the measured object according to the current position value and the initial position value of the size sensing module. size.
  • the size of the object to be measured is determined, and the high-precision measurement of the size of the object to be measured is realized, and the high precision in the field of precision control and precision measurement can be achieved. Precision measurement requirements.
  • FIG. 1 is a schematic structural view of a first embodiment of a size measuring device based on a spiral resistor according to the present invention
  • FIG. 2 is a schematic structural view of the spiral track resistance of FIG. 1;
  • FIG. 3 is a schematic structural view of a preferred embodiment of the resistor main body and the resistor matching body of the spiral track resistance in FIG. 2;
  • FIG. 4 is a schematic structural view of a first embodiment of a first embodiment of a spiral resistor based size measuring device according to the present invention.
  • FIG. 5 is a schematic structural view of a second embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • FIG. 6 is a schematic structural view of a third embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • FIG. 7 is a schematic structural view of a fourth embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • FIG. 8 is a schematic flow chart of a first embodiment of a method for measuring a dimension based on a spiral resistor according to the present invention
  • step S30 in FIG. 8 is a schematic diagram of a refinement process of step S30 in FIG. 8.
  • FIG. 10 is a schematic flow chart of a second embodiment of a method for measuring a dimension based on a spiral resistor according to the present invention.
  • the present invention provides a size measuring device based on a spiral resistor, which determines the size of an object to be measured by the output resistance value of the spiral track resistance to achieve high-precision measurement of the size of the object to be measured.
  • FIG. 1 is a schematic structural view of a first embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • the spiral resistance based size measuring device comprises: a size sensing module 10, a control module 20, a driving module 30 and a spiral track resistance 40, wherein:
  • the size sensing module 10 is connected to the control module 20 and the driving module 30 for moving to the object to be measured and sensing the object to be measured under the driving of the driving module 30, and sending a sensing signal to the control module 30 when the object to be measured is sensed. ;
  • the spiral track resistance 40 is connected to the driving module 30 and the control module 20, and is driven by the driving module 30 to change the output resistance value;
  • the control module 20 is connected to the driving module 30 for controlling the driving module 30 to drive the resistance sensing of the size sensing module 10 and the spiral track 40; and when receiving the sensing signal, calculating the measured value according to the change of the output resistance value of the spiral track resistance 40 The size of the object.
  • the size sensing module 10 is configured to sense the object to be measured. When measuring the size of the object to be measured, the size sensing module 10 moves to the object to be tested under the driving of the driving module 30, and fixes the object to be measured after sensing the object to be measured. And converting the sensing signal corresponding to the size into a corresponding electrical signal, and then transmitting the converted electrical signal to the control module 20, the size sensing module 10 capable of measuring high precision and sensing the size of the small object.
  • the driving module 30 is configured to drive the spiral track resistance 40 to move.
  • the driving module 30 can be selected as a motor.
  • the stepping motor is preferred. The smaller the step size of the stepping motor, the higher the measurement accuracy. The design measurement accuracy should be considered comprehensively.
  • the stepping motor can be selected to have a step size of 0.5 or 0.75 to ensure accurate measurement of the size of a small object to be measured.
  • the initial position value of the size sensing module 10 is first marked, and the output resistance value of the corresponding spiral track resistance 40 is the initial resistance value.
  • the control module 20 When measuring the size of the object to be measured, the control module 20 generates a control signal, controls the operation of the driving module 30, and drives the size sensing module 10 to move to the object to be measured to fix the object to be measured and sense the size of the object to be measured, while driving the module 30.
  • the spiral track resistance 40 is driven to change the resistance of the spiral track resistance 40.
  • the output resistance value of the spiral track resistance 40 changes during the movement, and the output resistance value of the spiral track resistance 40 has a certain correspondence with the position value of the size sensing module 10.
  • the size sensing module 10 senses the object to be measured, it is fixed, and the sensing signal corresponding to the size of the object to be measured is converted into an electrical signal and sent to the control module 20, and the control module 20 controls the driving module 30 to stop according to the spiral track.
  • the output resistance value of the resistor 40 and the corresponding relationship between the output resistance value and the position value of the size sensing module 10 determine the current position value of the size sensing module 10, and then according to the current position value of the size sensing module 10 and the size sensing module 10
  • the initial position value can be used to calculate the size of the measured object.
  • the control module 20 acquires the initial position value of the size sensing module 10 and the initial resistance value output by the corresponding spiral track resistance 40, according to the output resistance value of the spiral track resistance 40.
  • the relationship is a linear relationship, since the current output resistance value of the spiral track resistance 40 is known, the current position value of the size sensing module 10 can be determined; The difference between the current position value of the module 10 and the initial position value of the sensing module 10 can be used to calculate the size of the object to be measured.
  • control module 20 controls the driving module 30 to drive the size sensing module 10 to sense the size of the object to be measured, and simultaneously drives the spiral track resistance 40 to change the output resistance value, and the size sensing module 10 controls the object to be measured.
  • the module 30 sends a sensing signal, and the control module 20 determines the current position value of the size sensing module 10 according to the corresponding relationship between the output resistance value of the spiral track resistance 40 and the position value of the size sensing module 10, and then according to the current position of the size sensing module 10.
  • the value and the initial position value are used to calculate the size of the measured object.
  • the size of the object to be measured is determined according to the correspondence between the output resistance value of the spiral track resistance 40 and the position value of the size sensing module 10, realizing high-precision measurement of the size of the object to be measured, and achieving precision control and precision measurement. High precision measurement requirements.
  • the size sensing module 10 includes a fixed end and a sensing end.
  • the fixed end is engaged with one end of the object to be tested, and the sensing end is connected to the driving module 30, and is driven by the driving module 30 to be tested.
  • the other end of the object is engaged.
  • the fixed end is fixed at one end of the object to be measured, and the sensing end is the active end.
  • the initial position value of the sensing end is marked, and the initial between the sensing end and the fixed end can be known.
  • the output resistance of the spiral track resistance 40 is the initial resistance value at this time; the control module 20 generates a control signal to control the driving module 30 to drive the sensing end to the object to be measured, and is driven by the driving module 30 to the other end of the object to be tested.
  • the sensing end contacts the other end of the object to be tested, the object to be tested is engaged.
  • a sensing signal can be generated, and the sensing end sends the sensing signal to the control module 20, and the control module 20 controls the driving module 30 to stop.
  • the sensing module 10 and the spiral track resistor 40 stop moving; the control module 20 can determine the current position value of the sensing end according to the linear correspondence between the current output resistance value of the spiral track resistance 40 and the position value of the sensing end, so that the sensing end can be known.
  • the current distance from the fixed end, the control module 20 further according to the initial distance between the sensing end and the fixed end and the sensing end and the solid The difference between the current distance between the ends, you can determine the size of the object to be measured.
  • FIG. 2 is a schematic structural view of the spiral track resistance of FIG. 1;
  • FIG. 3 is a schematic structural view of a preferred embodiment of the resistance body of the middle spiral track resistance and the resistor matching body.
  • the spiral track resistance 40 includes a resistance body 401, a resistance partner 402, and a resistance pointer 403, wherein:
  • the surface of the resistor body 401 is provided with a first thread 4011; the resistor mating body 402 is sleeved on the resistor body 401, and the resistor mating body 402 is provided with a second thread 4021 adapted to the first thread 4011; the first end 4031 of the resistor pointer 403 Fixed to the resistor mating body 402, the second end 4032 of the resistive pointer 403 is in contact with the surface of the first thread 4011.
  • the resistor body 401 and the resistor body 402 are coupled to each other.
  • the resistor body 402 is sleeved on the resistor body 401.
  • the resistor body 401 is configured as a screw structure.
  • the surface of the resistor body 401 is provided with a first thread 4011.
  • the resistor body 402 is provided as a nut.
  • the inner surface of the resistor mating body 402 is provided with a second thread 4021 adapted to the first thread 4011.
  • the first thread 4011 is engaged with the second thread 4021; the first end 4031 of the resistive pointer 403 and the first end of the resistor body 401
  • the surface of the thread 4011 is in contact with the second end 4032 of the resistor pointer 403, which is fixed to the resistor mating body 402, and specifically can be disposed on the second thread 4021.
  • FIG. 4 is a schematic structural view of a preferred embodiment of a first embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • the resistor body 401 is connected to the driving module 30.
  • the driving body 30 drives the resistor body 401 to rotate, and the rotation of the resistor body 401 can drive the resistor.
  • the body 402 moves in the horizontal direction, thereby causing the resistance pointer 403 to move along the surface of the first thread 4011 to change the output resistance value of the spiral track resistance 40.
  • the resistor mating body 402 can be connected to the driving module 30.
  • the driving module 30 directly drives the resistor mating body 402 to rotate and move in the horizontal direction to drive the resistor body.
  • the 401 is rotated to move the resistance pointer 403 along the surface of the first thread 4011 to change the output resistance value of the spiral track resistance 40.
  • a first thread 4011 and a second thread 4021 are provided on the resistor body 401 and the resistor mating body 402 of the spiral track resistor 40, so that the resistor partner 402 drives the resistor pointer 403 to move along the surface of the first thread 4011.
  • the output resistance value of the spiral track resistance 40 is changed, and the resistance pointer is moved in the linear direction of the resistance body in comparison with the prior art.
  • the embodiment of the present invention improves the accuracy of the output resistance value of the spiral track resistance 40, and further satisfies the precision control and The requirements for system accuracy in the field of precision measurement.
  • FIG. 5 is a schematic structural view of a second embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • the size measuring device based on the spiral resistor further includes:
  • the pressure sensor 50 is disposed on the side of the fixed end and the sensing end of the size sensing module 10 that is in contact with the object to be measured, and is used for sensing the pressure value fed back by the object to be measured, and sends the pressure value to the control module 20.
  • a pressure sensor 50 is disposed on a side where the fixed end and the sensing end of the size sensing module 10 are in contact with the object to be measured, and the fixed end of the size sensing module 10 is engaged when measuring the size of the object to be measured.
  • the pressure value fed back by the object is sensed by the pressure sensor 50, and the sensed pressure value is sent to Control module 20.
  • the control module 20 compares the pressure value with the preset pressure value. Since the measured object size is relatively small, the magnitude of the pressure applied by the fixed end and the sensing end to the object to be tested is highly likely to affect the size.
  • a preset pressure value is set to ensure that the pressure applied by the fixed end and the sensing end to the object under test does not affect the result of the dimension measurement within the preset pressure value range; when the control module 20 When it is determined that the pressure value sent by the pressure sensor 50 is within a preset pressure value range, the control driving module 30 stops working, and the initial distance between the sensing end and the fixed end calculated at this time and between the sensing end and the fixed end are The difference between the current distances as the true size value of the measured object.
  • the sensing end of the size sensing module 10 contacts the object to be measured, the pressure value of the measured object is sensed by the pressure sensor 50, and when the pressure value is within the preset pressure value range, the driving module 30 is driven to stop the movement of the sensing end.
  • the size of the object to be measured is measured, and the influence of the pressure on the accuracy of the measurement result is avoided, thereby further realizing high-precision measurement of the size of the object to be measured.
  • FIG. 6 is a schematic structural view of a third embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • the size measuring device based on the spiral resistor further includes:
  • the deceleration module 60 is connected to the driving module 30 for reducing the rotation speed of the rotation of the driving module 30.
  • the deceleration module 60 can be disposed at the output end of the driving module 30, and can be a one-stage or multi-stage reducer; when the driving module 30 is in operation, the rotation speed of the driving module 30 is reduced by the deceleration module 60, thereby reducing the driving.
  • the torque of the module 30 increases the measurement accuracy, thereby meeting the measurement requirements of a measurement system that requires higher measurement accuracy.
  • FIG. 7 is a schematic structural view of a fourth embodiment of a size measuring device based on a spiral resistor according to the present invention.
  • the spiral resistor-based size measuring apparatus further includes:
  • the signal processing module 70, the output end of the spiral track resistance 40 is electrically connected to the input end of the signal processing module 70, the output end of the signal processing module 70 is electrically connected to the control module 20, and the signal processing module 70 is used for outputting the spiral track resistance 40.
  • the resistance value is used for signal conversion, signal amplification, and A/D conversion.
  • the signal processing module 70 specifically includes a resistance voltage signal conversion unit, a signal amplification unit, and an A/D conversion unit: the resistance voltage signal conversion unit is configured to convert the output resistance value of the spiral track resistance 40 into a corresponding voltage value;
  • the signal amplifying unit is used for amplifying the converted voltage value, and the amplification factor determines the accuracy of the whole system, and the amplification factor of the amplifier in the signal amplifying unit is more than 500 times, designed as multi-stage filtering and amplification, which is used in the embodiment.
  • the linear range of the amplifier is 0.7v ⁇ 3.6v; the A/D conversion unit uses a digital-to-analog converter for analog-to-digital conversion of the amplified voltage value.
  • the present invention also provides a method of measuring a dimension based on a spiral resistor.
  • FIG. 8 is a schematic flow chart of a first embodiment of a method for measuring a dimension based on a spiral resistor according to the present invention.
  • the method of measuring the size based on the spiral resistor comprises:
  • Step S10 the control module controls the driving module to drive the size sensing module and the spiral track resistance movement
  • the object to be measured is sensed by the size sensing module.
  • the size sensing module moves to the object to be measured under the driving of the driving module, and the object to be measured is detected after sensing the object to be measured. Fixed, and the sensing signal corresponding to its size is converted into a corresponding electrical signal, and then the converted electrical signal is sent to the control module, the size sensing module can measure high precision and can sense the size of the tiny object.
  • Step S20 the size sensing module moves under the driving of the driving module and senses the measured object, and sends a sensing signal to the control module when sensing the measured object;
  • step S30 when the control module receives the sensing signal, the size of the object to be measured is calculated according to the change of the output resistance value of the spiral track resistance.
  • the initial position value of the size sensing module is marked, and the output resistance value of the corresponding spiral track resistance is the initial resistance value.
  • the control module When measuring the size of the measured object, the control module generates a control signal to control the operation of the driving module, and drives the size sensing module to move to the measured object to fix the measured object and sense the size of the measured object, and simultaneously drive the module to drive the spiral track resistance.
  • the output resistance value of the spiral track resistance changes during the movement, and the output resistance value of the spiral track resistance has a certain correspondence with the position value of the size sensing module; when the size sensing module senses After the object is measured, it is fixed, and the sensing signal corresponding to the size of the object to be measured is converted into an electrical signal and sent to the control module, and the control module controls the driving module to stop, according to the output resistance value of the spiral track resistance, and the output resistance value and size sensing.
  • the corresponding position of the position value of the module determines the current position value of the size sensing module, and then the size of the measured object can be calculated according to the current position value of the size sensing module and the initial position value of the size sensing module.
  • control module controls the driving module to drive the size sensing module to sense the size of the measured object, and simultaneously drives the spiral track resistance movement to change the output resistance value, and the size sensing module sends an induction signal to the control module when sensing the measured object.
  • the control module determines the current position value of the size sensing module according to the correspondence between the output resistance value of the spiral track resistance and the position value of the size sensing module, and then calculates the measured object according to the current position value and the initial position value of the size sensing module. size of.
  • the size of the object to be measured is determined, and the high-precision measurement of the size of the object to be measured is realized, and the high precision in the field of precision control and precision measurement can be achieved. Precision measurement requirements.
  • the size sensing module includes a fixed end and a sensing end.
  • the fixed end is engaged with one end of the object to be tested, and the sensing end is connected to the driving module, and is driven by the driving module to move to the object to be tested. One end is engaged.
  • the fixed end is fixed at one end of the object to be measured, and the sensing end is the active end.
  • the initial position value of the sensing end is marked, and the initial between the sensing end and the fixed end can be known.
  • the output resistance of the spiral track resistance 40 is the initial resistance value at this time; the control module 20 generates a control signal to control the driving module 30 to drive the sensing end to the object to be measured, and is driven by the driving module 30 to the other end of the object to be tested.
  • the sensing end contacts the other end of the object to be tested, the object to be tested is engaged.
  • a sensing signal can be generated, and the sensing end sends the sensing signal to the control module 20, and the control module 20 controls the driving module 30 to stop.
  • the sensing module 10 and the spiral track resistor 40 stop moving; the control module 20 can determine the current position value of the sensing end according to the linear correspondence between the current output resistance value of the spiral track resistance 40 and the position value of the sensing end, so that the sensing end can be known.
  • the current distance from the fixed end, the control module 20 further according to the initial distance between the sensing end and the fixed end and the sensing end and the solid The difference between the current distance between the ends, you can determine the size of the object to be measured.
  • FIG. 9 is a schematic diagram of the refinement process of step S30 in FIG.
  • step S30 specifically includes:
  • Step S301 the control module acquires an initial position value of the size sensing module and a corresponding initial resistance value, and determines a current position value of the size sensing module according to a correspondence relationship between an output resistance value of the spiral track resistance and a position value of the size sensing module;
  • Step S302 the control module determines the size of the object to be tested according to the current position value of the size sensing module and the initial position value of the size sensing module.
  • the control module After the size sensing module senses the measured object and sends the sensing signal to the control module, the control module acquires the initial position value of the size sensing module and the initial resistance value of the corresponding spiral track resistance output, and according to the output resistance value of the spiral track resistance Corresponding relationship between the position values of the size sensing module, the relationship is a linear relationship, since the current output resistance value of the spiral track resistance is known, the current position value of the size sensing module can be determined; and then, according to the size sensing module The difference between the current position value and the initial position value of the size sensing module calculates the size of the measured object.
  • FIG. 10 is a schematic flow chart of a second embodiment of a method for measuring a dimension based on a spiral resistor according to the present invention.
  • the method further includes:
  • Step S40 the pressure sensor senses the pressure value fed back by the measured object, and sends the pressure value to the control module;
  • step S41 the control module compares the pressure value with the preset pressure value, and when the pressure value is within the preset pressure value range, the control driving module stops working.
  • the pressure sensor is disposed on the fixed end of the size sensing module and the side of the sensing end that is in contact with the object to be tested, and is used to sense the pressure value fed back by the measured object, and send the pressure value to the control module.
  • a pressure sensor is respectively disposed on the fixed end of the size sensing module and the side of the sensing end that is in contact with the object to be measured.
  • the fixed end of the size sensing module is engaged at one end of the object to be tested.
  • the sensing end of the size sensing module moves to contact the other end of the object to be measured, the pressure value sensed by the measured object is sensed by the pressure sensor, and the sensed pressure value is sent to the control module.
  • the control module compares the pressure value with the preset pressure value. Since the measured object size is relatively small, the magnitude of the pressure applied to the object to be measured by the fixed end and the sensing end is highly likely to affect the size measurement.
  • a preset pressure value is set to ensure that the pressure applied by the fixed end and the sensing end to the measured object does not affect the result of the dimensional measurement within the preset pressure value range; when the control module determines the pressure When the pressure value sent by the sensor is within the preset pressure value range, the control driving module stops working, and the difference between the initial distance between the sensing end and the fixed end calculated at this time and the current distance between the sensing end and the fixed end is , as the true size value of the measured object.
  • the pressure sensor senses the pressure value fed back by the object to be measured, and when the pressure value is within the preset pressure value range, the driving module drives the sensing end to stop moving. In the case of measuring the size of the object to be measured, the influence of the pressure on the accuracy of the measurement result is avoided, thereby further realizing the high-precision measurement of the size of the object to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种基于螺旋电阻器的尺寸测量装置和方法,装置包括:尺寸感应模块(10),与控制模块(20)和驱动模块(30)连接,用于在驱动模块(30)的带动下运动至被测对象并感应被测对象,并在感应到被测对象时向控制模块(20)发送感应信号;螺旋轨道电阻(40),与驱动模块(30)和控制模块(20)连接,在驱动模块(30)的驱动下运动以改变输出电阻值;控制模块(20),与驱动模块(30)连接,用于控制驱动模块(30)带动尺寸感应模块(10)和螺旋轨道电阻(40)运动;以及在接收到感应信号时,根据螺旋轨道电阻(40)的输出电阻值的变化计算被测对象的尺寸。测量时,根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系确定被测对象的尺寸,实现了对被测对象的尺寸的高精度测量。

Description

基于螺旋电阻器的尺寸测量装置和方法
技术领域
本发明涉及生命健康技术领域,尤其涉及一种基于螺旋电阻器的尺寸测量装置和方法。
背景技术
目前,可变电阻器的应用已经非常广泛,例如可以改变信号发生器的特性、使灯光变暗、启动电动机或控制它的转速等,其通常包括电阻体、活动触片和三个引脚。其中两个固定引脚接电阻体两端,另一个引脚(中心抽头)接活动触片,活动触片沿电阻体直线运动,以改变电阻体两端的电阻。在精密控制和精密测量领域,现有的可变电阻器很难满足其精度的需求;而对于被测对象的尺寸的测量,通常所采用的方法也只是直观的测量方法,或通过卡尺等测量工具来测量,但是些测量方法达不到精密控制和精密测量领域中的高精度的测量要求。
发明内容
本发明的主要目的在于提供一种基于螺旋电阻器的尺寸测量装置,能够 达到精密控制和精密测量领域中的高精度的测量要求。
为实现上述目的,本发明提供了一种基于螺旋电阻器的尺寸测量装置,所述基于螺旋电阻器的尺寸测量装置包括尺寸感应模块、控制模块、驱动模块和螺旋轨道电阻:
所述尺寸感应模块,与所述控制模块和驱动模块连接,用于在所述驱动模块的带动下运动至被测对象并感应被测对象,并在感应到所述被测对象时向所述控制模块发送感应信号;
所述螺旋轨道电阻,与所述驱动模块和控制模块连接,在所述驱动模块的驱动下运动以改变输出电阻值;
所述控制模块,与所述驱动模块连接,用于控制所述驱动模块带动所述尺寸感应模块和螺旋轨道电阻运动;以及在接收到所述感应信号时,根据所述螺旋轨道电阻的输出电阻值的变化计算所述被测对象的尺寸。
优选地,所述尺寸感应模块包括固定端和感应端,所述固定端卡合在所述被测对象的一端,所述感应端与所述驱动模块连接,在驱动模块的带动下运动至被测对象的另一端并卡合。
优选地,所述螺旋轨道电阻包括电阻本体、电阻配合体和电阻指针:
所述电阻本体表面设置有第一螺纹;所述电阻配合体套设在所述电阻本体上,所述电阻配合体设置有与所述第一螺纹适配的第二螺纹;所述电阻指针的第一端固定于所述电阻配合体上,所述电阻指针的第二端与所述第一螺纹的表面接触;
所述电阻本体与所述驱动模块连接,在所述驱动模块的驱动下带动所述电阻配合体运动,所述电阻配合体带动所述电阻指针沿所述第一螺纹的表面移动,以改变所述螺旋轨道电阻的输出电阻值;
所述尺寸感应模块的感应端与所述电阻配合体连接,所述电阻本体在所述驱动模块的驱动下带动所述电阻配合体运动,以带动所述尺寸感应模块的感应端运动。
优选地,所述控制模块具体用于:
获取所述尺寸感应模块的初始位置值及对应的初始电阻值,根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系,确定所述尺寸感应模块的当前位置值;
根据所述尺寸感应模块的当前位置值以及尺寸感应模块的初始位置值,确定所述被测对象的尺寸。
优选地,所述尺寸感应模块包括固定端和感应端,所述固定端卡合在所述被测对象的一端,所述感应端与所述驱动模块连接,在驱动模块的带动下运动至被测对象的另一端并卡合。
优选地,所述螺旋轨道电阻包括电阻本体、电阻配合体和电阻指针:
所述电阻本体表面设置有第一螺纹;所述电阻配合体套设在所述电阻本体上,所述电阻配合体设置有与所述第一螺纹适配的第二螺纹;所述电阻指针的第一端固定于所述电阻配合体上,所述电阻指针的第二端与所述第一螺纹的表面接触;
所述电阻本体与所述驱动模块连接,在所述驱动模块的驱动下带动所述电阻配合体运动,所述电阻配合体带动所述电阻指针沿所述第一螺纹的表面移动,以改变所述螺旋轨道电阻的输出电阻值;
所述尺寸感应模块的感应端与所述电阻配合体连接,所述电阻本体在所述驱动模块的驱动下带动所述电阻配合体运动,以带动所述尺寸感应模块的感应端运动。
优选地,所述基于螺旋电阻器的尺寸测量装置还包括压力传感器,所述压力传感器设置在所述尺寸感应模块的固定端和感应端与被测对象接触的一侧,用于感应所述被测对象反馈的压力值,并将所述压力值发送至所述控制模块;
所述控制模块还用于当所述压力值在预设的压力值范围内时,控制所述驱动模块停止工作。
优选地,所述基于螺旋电阻器的位移测量装置还包括与所述驱动模块连接的减速模块,所述减速模块用于减小所述驱动模块转动的转速。
优选地,所述基于螺旋电阻器的位移测量装置还包括信号处理模块,所述螺旋轨道电阻的输出端与所述信号处理模块的输入端电连接,所述信号处理模块的输出端与所述控制模块电连接,所述信号处理模块用于对所述输出电阻值进行信号转换、信号放大和A/D转换。
此外,为实现上述目的,本发明还提供一种使用基于螺旋电阻器的尺寸测量装置的尺寸测量方法,所述尺寸测量方法包括如下步骤:
控制模块控制驱动模块带动尺寸感应模块和螺旋轨道电阻运动;
尺寸感应模块在驱动模块的带动下运动并感应被测对象,并在感应到所述被测对象时向控制模块发送感应信号;
控制模块接收到所述感应信号时,根据所述螺旋轨道电阻的输出电阻值的变化计算所述被测对象的尺寸。
优选地,所述基于螺旋电阻器的尺寸测量方法还包括步骤:
压力传感器感应被测对象反馈的压力值,并将所述压力值发送至所述控制模块;
控制模块对比所述压力值与预设的压力值,当所述压力值在预设的压力值范围内时,控制所述驱动模块停止工作。
优选地,所述控制模块接收到所述感应信号时,根据所述螺旋轨道电阻的输出电阻值的变化计算所述被测对象的尺寸的步骤包括:
控制模块获取所述尺寸感应模块的初始位置值及对应的初始电阻值,根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系,确定所述尺寸感应模块的当前位置值;
控制模块根据所述尺寸感应模块的当前位置值以及尺寸感应模块的初始位置值,确定所述被测对象的尺寸。
优选地,所述基于螺旋电阻器的尺寸测量方法还包括步骤:
压力传感器感应被测对象反馈的压力值,并将所述压力值发送至所述控制模块;
控制模块对比所述压力值与预设的压力值,当所述压力值在预设的压力值范围内时,控制所述驱动模块停止工作。
本发明通过控制模块控制驱动模块驱动尺寸感应模块以感应被测对象的尺寸,同时驱动螺旋轨道电阻运动以改变输出电阻值,尺寸感应模块在感应到被测对象时向控制模块发送感应信号,控制模块根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的位置的对应关系确定尺寸感应模块的当前位置值,然后根据尺寸感应模块的当前位置值和初始位置值,计算出被测对象的尺寸。根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系确定被测对象的尺寸,实现了对被测对象的尺寸的高精度测量,并且能够达到精密控制和精密测量领域中的高精度的测量要求。
附图说明
图1为本发明基于螺旋电阻器的尺寸测量装置第一实施例的结构示意图;
图2为图1中螺旋轨道电阻的结构示意图;
图3为图2为中螺旋轨道电阻的电阻本体和电阻配合体配合的优选实施方式的结构示意图;
图4为本发明基于螺旋电阻器的尺寸测量装置第一实施例的优选实施方式的结构示意图;
图5为本发明基于螺旋电阻器的尺寸测量装置第二实施例的结构示意图;
图6为本发明基于螺旋电阻器的尺寸测量装置第三实施例的结构示意图;
图7为本发明基于螺旋电阻器的尺寸测量装置第四实施例的结构示意图;
图8为本发明基于螺旋电阻器的尺寸测量方法第一实施例的流程示意图;
图9为图8中步骤S30的细化流程示意图;
图10为本发明基于螺旋电阻器的尺寸测量方法第二实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种基于螺旋电阻器的尺寸测量装置,通过螺旋轨道电阻的输出电阻值确定被测对象的尺寸,以实现对被测对象的尺寸的高精度测量。
参照图1,图1为本发明基于螺旋电阻器的尺寸测量装置第一实施例的结构示意图。
在一实施例中,如图1所示,基于螺旋电阻器的尺寸测量装置包括:尺寸感应模块10、控制模块20、驱动模块30和螺旋轨道电阻40,其中:
尺寸感应模块10,与控制模块20和驱动模块30连接,用于在驱动模块30的带动下运动至被测对象并感应被测对象,并在感应到被测对象时向控制模块30发送感应信号;
螺旋轨道电阻40,与驱动模块30和控制模块20连接,在驱动模块30的驱动下运动以改变输出电阻值;
控制模块20,与驱动模块30连接,用于控制驱动模块30带动尺寸感应模块10和螺旋轨道40电阻运动;以及在接收到感应信号时,根据螺旋轨道电阻40的输出电阻值的变化计算被测对象的尺寸。
尺寸感应模块10用于感应被测对象,在测量被测对象的尺寸时,尺寸感应模块10在驱动模块30的驱动下向被测对象运动,在感应到被测对象后将该被测对象固定,并将其尺寸对应的感应信号转化为相应的电信号,然后将转化后的电信号发送至控制模块20,该尺寸感应模块10能够测量的精度较高,可感应微小物体的尺寸。
驱动模块30用于驱动螺旋轨道电阻40运动,该驱动模块30可选择为电机,本实施例中优选为步进电机,该步进电机的步长越小,测量精度越高。在设计时应综合考虑系统测量精度的要求。在本实施例中,可选择步进电机的步长为0.5°或0.75°,以保证对微小的被测对象的尺寸的精密测量。
本实施例中,首先标记尺寸感应模块10的初始位置值,此时对应的螺旋轨道电阻40的输出电阻值为初始电阻值。在测量被测对象的尺寸时,控制模块20生成控制信号,控制驱动模块30工作,驱动尺寸感应模块10向被测对象运动,以固定被测对象并感应被测对象的尺寸,同时驱动模块30驱动螺旋轨道电阻40运动以改变螺旋轨道电阻40的电阻,螺旋轨道电阻40在运动时其输出电阻值会发生变化,螺旋轨道电阻40的输出电阻值与尺寸感应模块10的位置值具有一定的对应关系;当尺寸感应模块10感应到被测对象后将其固定,并将被测对象的尺寸对应的感应信号转化为电信号发送至控制模块20,控制模块20控制驱动模块30停止,根据螺旋轨道电阻40的输出电阻值,以及输出电阻值与尺寸感应模块10的位置值的位置的对应关系,确定尺寸感应模块10的当前位置值,然后根据尺寸感应模块10的当前位置值以及尺寸感应模块10的初始位置值,即可计算出被测对象的尺寸。
具体地,在尺寸感应模块10感应到被测对象后,控制模块20获取尺寸感应模块10的初始位置值以及对应的螺旋轨道电阻40输出的初始电阻值,根据螺旋轨道电阻40的输出电阻值与尺寸感应模块的位置值的对应关系,该关系为一线性关系,由于螺旋轨道电阻40的当前的输出电阻值是已知的,因而可确定尺寸感应模块10的当前位置值;然后,根据尺寸感应模块10的当前位置值尺寸和感应模块10的初始位置值之间的差值,即可计算得到被测对象的尺寸。
本实施例通过控制模块20控制驱动模块30驱动尺寸感应模块10以感应被测对象的尺寸,同时驱动螺旋轨道电阻40运动以改变输出电阻值,尺寸感应模块10在感应到被测对象时向控制模块30发送感应信号,控制模块20根据螺旋轨道电阻40的输出电阻值与尺寸感应模块10的位置值的位置的对应关系确定尺寸感应模块10的当前位置值,然后根据尺寸感应模块10的当前位置值和初始位置值,计算出被测对象的尺寸。根据螺旋轨道电阻40的输出电阻值与尺寸感应模块10的位置值的对应关系确定被测对象的尺寸,实现了对被测对象的尺寸的高精度测量,并且能够达到精密控制和精密测量领域中的高精度的测量要求。
在本发明一优选实施例中,尺寸感应模块10包括固定端和感应端,固定端卡合在被测对象的一端,感应端与驱动模块30连接,在驱动模块30的带动下运动至被测对象的另一端并卡合。
在测量被测对象的尺寸时,将固定端固定在待测量的被测对象的一端,感应端为活动端,首先标记感应端的初始位置值,即可得知感应端与固定端之间的初始距离,此时螺旋轨道电阻40的输出电阻为初始电阻值;控制模块20生成控制信号控制驱动模块30驱动感应端向被测对象运动,在驱动模块30的带动下运动至被测对象的另一端,当感应端接触到被测对象的另一端时将被测对象卡合,此时可生成一感应信号,感应端将该感应信号发送至控制模块20,控制模块20控制驱动模块30停止,尺寸感应模块10和螺旋轨道电阻40停止运动;控制模块20根据螺旋轨道电阻40的当前的输出电阻值与感应端的位置值的线性对应关系,便可确定感应端的当前位置值,从而可得知感应端与固定端之间的当前距离,控制模块20进一步根据感应端与固定端之间的初始距离和感应端与固定端之间的当前距离之差,即可确定出被测对象的尺寸。
参照图2和图3,图2为图1中螺旋轨道电阻的结构示意图;图3为图2为中螺旋轨道电阻的电阻本体和电阻配合体配合的优选实施方式的结构示意图。
在上述实施例中,螺旋轨道电阻40包括电阻本体401、电阻配合体402和电阻指针403,其中:
电阻本体401表面设置有第一螺纹4011;电阻配合体402套设在电阻本体401上,电阻配合体402设置有与第一螺纹4011适配的第二螺纹4021;电阻指针403的第一端4031固定于电阻配合体402上,电阻指针403的第二端4032与第一螺纹4011的表面接触。
电阻本体401和电阻配合体402相互配合,电阻配合体402套设在电阻本体401上,电阻本体401设置为螺杆结构,电阻本体401表面设置有第一螺纹4011,电阻配合体402设置为螺帽结构,电阻配合体402的内表面设置有与第一螺纹4011适配的第二螺纹4021,第一螺纹4011与第二螺纹4021啮合;电阻指针403的第一端4031与电阻本体401的第一螺纹4011的表面接触,电阻指针403的第二端4032固定于电阻配合体402上,具体可设置在第二螺纹4021上。
进一步参照图4,图4为本发明基于螺旋电阻器的尺寸测量装置第一实施例的优选实施方式的结构示意图。
如图4所示,在本发明一优选实施例中,电阻本体401与驱动模块30连接,螺旋轨道电阻40工作时,通过驱动模块30驱动电阻本体401转动,电阻本体401的转动可带动电阻配合体402沿水平方向移动,从而带动电阻指针403沿第一螺纹4011的表面移动,以改变螺旋轨道电阻40的输出电阻值。在本发明的其他实施例中,还可将电阻配合体402与驱动模块30连接,螺旋轨道电阻40工作时,通过驱动模块30直接驱动电阻配合体402转动并沿水平方向移动,以带动电阻本体401转动,从而带动电阻指针403沿第一螺纹4011的表面移动,以改变螺旋轨道电阻40的输出电阻值。
在螺旋轨道电阻40的电阻本体401和电阻配合体402上设置相互配合的第一螺纹4011和第二螺纹4021,使电阻配合体402带动电阻指针403在电阻沿第一螺纹4011的表面移动,从而改变螺旋轨道电阻40的输出电阻值,对比于现有技术中的电阻指针沿电阻本体直线方向移动,本发明实施例提高了螺旋轨道电阻40的输出电阻值的精度,进一步满足了在精密控制和精密测量领域对系统精度的要求。
参照图5,图5为本发明基于螺旋电阻器的尺寸测量装置第二实施例的结构示意图。
基于上述本发明第一实施例,在第二实施例中,基于螺旋电阻器的尺寸测量装置还包括:
压力传感器50,该压力传感器50设置在尺寸感应模块10的固定端和感应端与被测对象接触的一侧,用于感应被测对象反馈的压力值,并将压力值发送至控制模块20。
本实施例中,在尺寸感应模块10的固定端和感应端与被测对象接触的一侧,分别设置有压力传感器50,在测量被测对象的尺寸时,尺寸感应模块10的固定端卡合在被测对象的一端,当尺寸感应模块10的感应端运动至接触到被测对象的另一端时,通过压力传感器50感应被测对象反馈的压力值,并将感测到的压力值发送至控制模块20。控制模块20比较该压力值与预设的压力值的大小,由于所测量的被测对象的尺寸较为微小,而固定端和感应端对被测对象所施加的压力的大小极有可能影响到尺寸测量的结果,因此设置一预设的压力值,以保证固定端和感应端对被测对象所施加的压力在该预设的压力值范围内不会影响到尺寸测量的结果;当控制模块20判定压力传感器50发送的压力值在预设的压力值范围内时,控制驱动模块30停止工作,将此时计算得到的感应端与固定端之间的初始距离和感应端与固定端之间的当前距离之差,作为被测对象的真实尺寸值。
在尺寸感应模块10的感应端接触到被测对象时,通过压力传感器50感应被测对象反馈的压力值,当压力值在预设的压力值范围内时控制驱动模块30驱动感应端停止运动,在这种情况下测量被测对象的尺寸,避免了压力对测量结果的准确度的影响,从而进一步实现了对被测对象的尺寸的高精度测量。
参照图6,图6为本发明基于螺旋电阻器的尺寸测量装置第三实施例的结构示意图。
基于上述本发明第一实施例,在第三实施例中,基于螺旋电阻器的尺寸测量装置还包括:
减速模块60,该减速模块60与驱动模块30连接,用于减小驱动模块30转动的转速。
本实施例中,减速模块60可设置在驱动模块30的输出端,可为一级或多级减速器;在驱动模块30工作时,通过减速模块60降低驱动模块30的转速,从而减小驱动模块30的转矩,使得测量精度提高,从而满足对测量精度要求更高的测量系统的测量需求。
参照图7,图7为本发明基于螺旋电阻器的尺寸测量装置第四实施例的结构示意图。
基于上述本发明第一实施例,在第四实施例中,基于螺旋电阻器的尺寸测量装置还包括:
信号处理模块70,螺旋轨道电阻40的输出端与信号处理模块70的输入端电连接,信号处理模块70的输出端与控制模块20电连接,信号处理模块70用于对螺旋轨道电阻40的输出电阻值进行信号转换、信号放大和A/D转换。
本实施例中,信号处理模块70具体包括电阻电压信号转换单元、信号放大单元以及A/D转换单元:电阻电压信号转换单元用于将螺旋轨道电阻40的输出电阻值转换为对应的电压值;信号放大单元用于对转换后的电压值进行放大,放大倍数决定了整个系统的精度,信号放大单元中放大器的放大倍数要500倍以上,设计为多级滤波及放大,本实施例中采用的放大器线性区间为0.7v~3.6v;A/D转换单元采用数模转换器,用于对放大后的电压值进行模数转化,其中数模转换器的位数越高,测量精度越高,本实施例选用24位的数模转换器。具体的电路连接关系,本领域技术人员通过对本部分的描述,再结合所掌握的电路知识即可得出,在此不赘述。
本发明还提供一种基于螺旋电阻器的尺寸测量方法。
参照图8,图8为本发明基于螺旋电阻器的尺寸测量方法第一实施例的流程示意图。
在一实施例中,基于螺旋电阻器的尺寸测量方法包括:
步骤S10,控制模块控制驱动模块带动尺寸感应模块和螺旋轨道电阻运动;
本实施例中,通过尺寸感应模块感应被测对象,在测量被测对象的尺寸时,尺寸感应模块在驱动模块的驱动下向被测对象运动,在感应到被测对象后将该被测对象固定,并将其尺寸对应的感应信号转化为相应的电信号,然后将转化后的电信号发送至控制模块,该尺寸感应模块能够测量的精度较高,可感应微小物体的尺寸。
步骤S20,尺寸感应模块在驱动模块的带动下运动并感应被测对象,并在感应到被测对象时向控制模块发送感应信号;
步骤S30,控制模块接收到感应信号时,根据螺旋轨道电阻的输出电阻值的变化计算被测对象的尺寸。
首先标记尺寸感应模块的初始位置值,此时对应的螺旋轨道电阻的输出电阻值为初始电阻值。在测量被测对象的尺寸时,控制模块生成控制信号,控制驱动模块工作,驱动尺寸感应模块向被测对象运动,以固定被测对象并感应被测对象的尺寸,同时驱动模块驱动螺旋轨道电阻运动以改变螺旋轨道电阻的电阻,螺旋轨道电阻在运动时其输出电阻值会发生变化,螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值具有一定的对应关系;当尺寸感应模块感应到被测对象后将其固定,并将被测对象的尺寸对应的感应信号转化为电信号发送至控制模块,控制模块控制驱动模块停止,根据螺旋轨道电阻的输出电阻值,以及输出电阻值与尺寸感应模块的位置值的位置的对应关系,确定尺寸感应模块的当前位置值,然后根据尺寸感应模块的当前位置值以及尺寸感应模块的初始位置值,即可计算出被测对象的尺寸。
本实施例通过控制模块控制驱动模块驱动尺寸感应模块以感应被测对象的尺寸,同时驱动螺旋轨道电阻运动以改变输出电阻值,尺寸感应模块在感应到被测对象时向控制模块发送感应信号,控制模块根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的位置的对应关系确定尺寸感应模块的当前位置值,然后根据尺寸感应模块的当前位置值和初始位置值,计算出被测对象的尺寸。根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系确定被测对象的尺寸,实现了对被测对象的尺寸的高精度测量,并且能够达到精密控制和精密测量领域中的高精度的测量要求。
在本发明一优选实施例中,尺寸感应模块包括固定端和感应端,固定端卡合在被测对象的一端,感应端与驱动模块连接,在驱动模块的带动下运动至被测对象的另一端并卡合。
在测量被测对象的尺寸时,将固定端固定在待测量的被测对象的一端,感应端为活动端,首先标记感应端的初始位置值,即可得知感应端与固定端之间的初始距离,此时螺旋轨道电阻40的输出电阻为初始电阻值;控制模块20生成控制信号控制驱动模块30驱动感应端向被测对象运动,在驱动模块30的带动下运动至被测对象的另一端,当感应端接触到被测对象的另一端时将被测对象卡合,此时可生成一感应信号,感应端将该感应信号发送至控制模块20,控制模块20控制驱动模块30停止,尺寸感应模块10和螺旋轨道电阻40停止运动;控制模块20根据螺旋轨道电阻40的当前的输出电阻值与感应端的位置值的线性对应关系,便可确定感应端的当前位置值,从而可得知感应端与固定端之间的当前距离,控制模块20进一步根据感应端与固定端之间的初始距离和感应端与固定端之间的当前距离之差,即可确定出被测对象的尺寸。
参照图9,图9为图8中步骤S30的细化流程示意图。
在上述本发明第一实施例中,步骤S30具体包括:
步骤S301,控制模块获取尺寸感应模块的初始位置值及对应的初始电阻值,根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系,确定尺寸感应模块的当前位置值;
步骤S302,控制模块根据尺寸感应模块的当前位置值以及尺寸感应模块的初始位置值,确定被测对象的尺寸。
在尺寸感应模块感应到被测对象并向控制模块发送感应信号后,控制模块获取尺寸感应模块的初始位置值以及对应的螺旋轨道电阻输出的初始电阻值,并根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系,该关系为一线性关系,由于螺旋轨道电阻的当前的输出电阻值是已知的,因而可确定尺寸感应模块的当前位置值;然后,根据尺寸感应模块的当前位置值和尺寸感应模块的初始位置值之间的差值,即可计算得到被测对象的尺寸。
参照图10,图10为本发明基于螺旋电阻器的尺寸测量方法第二实施例的流程示意图。
基于上述本发明基于螺旋电阻器的尺寸测量方法第一实施例,在第二实施例中,执行上述步骤S30之前,该方法还包括:
步骤S40,压力传感器感应被测对象反馈的压力值,并将压力值发送至控制模块;
步骤S41,控制模块对比压力值与预设的压力值,当压力值在预设的压力值范围内时,控制驱动模块停止工作。
本实施例中,压力传感器设置在尺寸感应模块的固定端和感应端与被测对象接触的一侧,用于感应被测对象反馈的压力值,并将压力值发送至控制模块。
在尺寸感应模块的固定端和感应端与被测对象接触的一侧,分别设置有压力传感器,在测量被测对象的尺寸时,尺寸感应模块的固定端卡合在被测对象的一端,当尺寸感应模块的感应端运动至接触到被测对象的另一端时,通过压力传感器感应被测对象反馈的压力值,并将感测到的压力值发送至控制模块。控制模块比较该压力值与预设的压力值的大小,由于所测量的被测对象的尺寸较为微小,而固定端和感应端对被测对象所施加的压力的大小极有可能影响到尺寸测量的结果,因此设置一预设的压力值,以保证固定端和感应端对被测对象所施加的压力在该预设的压力值范围内不会影响到尺寸测量的结果;当控制模块判定压力传感器发送的压力值在预设的压力值范围内时,控制驱动模块停止工作,将此时计算得到的感应端与固定端之间的初始距离和感应端与固定端之间的当前距离之差,作为被测对象的真实尺寸值。
在尺寸感应模块的感应端接触到被测对象时,通过压力传感器感应被测对象反馈的压力值,当压力值在预设的压力值范围内时控制驱动模块驱动感应端停止运动,在这种情况下测量被测对象的尺寸,避免了压力对测量结果的准确度的影响,从而进一步实现了对被测对象的尺寸的高精度测量。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种基于螺旋电阻器的尺寸测量装置,其特征在于,所述基于螺旋电阻器的尺寸测量装置包括尺寸感应模块、控制模块、驱动模块和螺旋轨道电阻:
    所述尺寸感应模块,与所述控制模块和驱动模块连接,用于在所述驱动模块的带动下运动至被测对象并感应被测对象,并在感应到所述被测对象时向所述控制模块发送感应信号;
    所述螺旋轨道电阻,与所述驱动模块和控制模块连接,在所述驱动模块的驱动下运动以改变输出电阻值;
    所述控制模块,与所述驱动模块连接,用于控制所述驱动模块带动所述尺寸感应模块和螺旋轨道电阻运动;以及在接收到所述感应信号时,根据所述螺旋轨道电阻的输出电阻值的变化计算所述被测对象的尺寸。
  2. 如权利要求1所述的基于螺旋电阻器的尺寸测量装置,其特征在于,所述尺寸感应模块包括固定端和感应端,所述固定端卡合在所述被测对象的一端,所述感应端与所述驱动模块连接,在驱动模块的带动下运动至被测对象的另一端并卡合。
  3. 如权利要求1所述的基于螺旋电阻器的尺寸测量装置,其特征在于,所述螺旋轨道电阻包括电阻本体、电阻配合体和电阻指针:
    所述电阻本体表面设置有第一螺纹;所述电阻配合体套设在所述电阻本体上,所述电阻配合体设置有与所述第一螺纹适配的第二螺纹;所述电阻指针的第一端固定于所述电阻配合体上,所述电阻指针的第二端与所述第一螺纹的表面接触;
    所述电阻本体与所述驱动模块连接,在所述驱动模块的驱动下带动所述电阻配合体运动,所述电阻配合体带动所述电阻指针沿所述第一螺纹的表面移动,以改变所述螺旋轨道电阻的输出电阻值;
    所述尺寸感应模块的感应端与所述电阻配合体连接,所述电阻本体在所述驱动模块的驱动下带动所述电阻配合体运动,以带动所述尺寸感应模块的感应端运动。
  4. 如权利要求1所述的基于螺旋电阻器的尺寸测量装置,其特征在于,所述控制模块具体用于:
    获取所述尺寸感应模块的初始位置值及对应的初始电阻值,根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系,确定所述尺寸感应模块的当前位置值;
    根据所述尺寸感应模块的当前位置值以及尺寸感应模块的初始位置值,确定所述被测对象的尺寸。
  5. 如权利要求4所述的基于螺旋电阻器的尺寸测量装置,其特征在于,所述尺寸感应模块包括固定端和感应端,所述固定端卡合在所述被测对象的一端,所述感应端与所述驱动模块连接,在驱动模块的带动下运动至被测对象的另一端并卡合。
  6. 如权利要求4所述的基于螺旋电阻器的尺寸测量装置,其特征在于,所述螺旋轨道电阻包括电阻本体、电阻配合体和电阻指针:
    所述电阻本体表面设置有第一螺纹;所述电阻配合体套设在所述电阻本体上,所述电阻配合体设置有与所述第一螺纹适配的第二螺纹;所述电阻指针的第一端固定于所述电阻配合体上,所述电阻指针的第二端与所述第一螺纹的表面接触;
    所述电阻本体与所述驱动模块连接,在所述驱动模块的驱动下带动所述电阻配合体运动,所述电阻配合体带动所述电阻指针沿所述第一螺纹的表面移动,以改变所述螺旋轨道电阻的输出电阻值;
    所述尺寸感应模块的感应端与所述电阻配合体连接,所述电阻本体在所述驱动模块的驱动下带动所述电阻配合体运动,以带动所述尺寸感应模块的感应端运动。
  7. 如权利要求1所述的基于螺旋电阻器的尺寸测量装置,其特征在于,所述基于螺旋电阻器的尺寸测量装置还包括压力传感器,所述压力传感器设置在所述尺寸感应模块的固定端和感应端与被测对象接触的一侧,用于感应所述被测对象反馈的压力值,并将所述压力值发送至所述控制模块;
    所述控制模块还用于当所述压力值在预设的压力值范围内时,控制所述驱动模块停止工作。
  8. 如权利要求1所述的基于螺旋电阻器的尺寸测量装置,其特征在于,
    所述基于螺旋电阻器的位移测量装置还包括与所述驱动模块连接的减速模块,所述减速模块用于减小所述驱动模块转动的转速。
  9. 如权利要求1所述的基于螺旋电阻器的尺寸测量装置,其特征在于,所述基于螺旋电阻器的位移测量装置还包括信号处理模块,所述螺旋轨道电阻的输出端与所述信号处理模块的输入端电连接,所述信号处理模块的输出端与所述控制模块电连接,所述信号处理模块用于对所述输出电阻值进行信号转换、信号放大和A/D转换。
  10. 一种使用如权利要求1所述的基于螺旋电阻器的尺寸测量装置的尺寸测量方法,其特征在于,所述尺寸测量方法包括如下步骤:
    控制模块控制驱动模块带动尺寸感应模块和螺旋轨道电阻运动;
    尺寸感应模块在驱动模块的带动下运动并感应被测对象,并在感应到所述被测对象时向控制模块发送感应信号;
    控制模块接收到所述感应信号时,根据所述螺旋轨道电阻的输出电阻值的变化计算所述被测对象的尺寸。
  11. 如权利要求10所述的基于螺旋电阻器的尺寸测量方法,其特征在于,所述基于螺旋电阻器的尺寸测量方法还包括步骤:
    压力传感器感应被测对象反馈的压力值,并将所述压力值发送至所述控制模块;
    控制模块对比所述压力值与预设的压力值,当所述压力值在预设的压力值范围内时,控制所述驱动模块停止工作。
  12. 如权利要求10所述的基于螺旋电阻器的尺寸测量方法,其特征在于,所述控制模块接收到所述感应信号时,根据所述螺旋轨道电阻的输出电阻值的变化计算所述被测对象的尺寸的步骤包括:
    控制模块获取所述尺寸感应模块的初始位置值及对应的初始电阻值,根据螺旋轨道电阻的输出电阻值与尺寸感应模块的位置值的对应关系,确定所述尺寸感应模块的当前位置值;
    控制模块根据所述尺寸感应模块的当前位置值以及尺寸感应模块的初始位置值,确定所述被测对象的尺寸。
  13. 如权利要求12所述的基于螺旋电阻器的尺寸测量方法,其特征在于,所述基于螺旋电阻器的尺寸测量方法还包括步骤:
    压力传感器感应被测对象反馈的压力值,并将所述压力值发送至所述控制模块;
    控制模块对比所述压力值与预设的压力值,当所述压力值在预设的压力值范围内时,控制所述驱动模块停止工作。
PCT/CN2015/073831 2015-02-06 2015-03-07 基于螺旋电阻器的尺寸测量装置和方法 WO2016123835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510066207.3A CN104634236A (zh) 2015-02-06 2015-02-06 基于螺旋电阻器的尺寸测量装置和方法
CN201510066207.3 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016123835A1 true WO2016123835A1 (zh) 2016-08-11

Family

ID=53213261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073831 WO2016123835A1 (zh) 2015-02-06 2015-03-07 基于螺旋电阻器的尺寸测量装置和方法

Country Status (2)

Country Link
CN (1) CN104634236A (zh)
WO (1) WO2016123835A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783632A (zh) * 2015-12-26 2016-07-20 深圳市易特科信息技术有限公司 电阻螺杆测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432602A (en) * 1987-07-29 1989-02-02 Tamagawa Seiki Co Ltd Multi-revolution type potentiometer
JP2000304505A (ja) * 1999-04-23 2000-11-02 Tatsumo Kk ポテンショメータ
CN101063602A (zh) * 2006-04-29 2007-10-31 胡敬礼 一种拉线绕线电阻式位移传感器
CN201476756U (zh) * 2009-08-21 2010-05-19 宜科(天津)电子有限公司 长度位移测量装置
CN203537280U (zh) * 2013-10-23 2014-04-09 国家电网公司 位置检测装置
CN204421825U (zh) * 2015-02-06 2015-06-24 深圳市易特科信息技术有限公司 纳米级尺寸测量装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1605866A (en) * 1926-11-02 hew yoek
US2774853A (en) * 1954-04-19 1956-12-18 Bendix Aviat Corp Variable resistance instrument
US3193785A (en) * 1961-09-20 1965-07-06 Sperry Rand Corp Electrical contact
CN2047439U (zh) * 1988-07-26 1989-11-08 蒋小钢 线绕无级变阻器
CN103851993A (zh) * 2012-11-29 2014-06-11 西安博康中瑞船舶设备有限公司 一种新型位移传感器
CN103851992A (zh) * 2012-11-29 2014-06-11 西安博康中瑞船舶设备有限公司 一种新型位移传感器的机械结构
CN103598887B (zh) * 2013-11-30 2015-12-16 北京华健恒创技术有限公司 一种生物体骨骼接触式测距装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432602A (en) * 1987-07-29 1989-02-02 Tamagawa Seiki Co Ltd Multi-revolution type potentiometer
JP2000304505A (ja) * 1999-04-23 2000-11-02 Tatsumo Kk ポテンショメータ
CN101063602A (zh) * 2006-04-29 2007-10-31 胡敬礼 一种拉线绕线电阻式位移传感器
CN201476756U (zh) * 2009-08-21 2010-05-19 宜科(天津)电子有限公司 长度位移测量装置
CN203537280U (zh) * 2013-10-23 2014-04-09 国家电网公司 位置检测装置
CN204421825U (zh) * 2015-02-06 2015-06-24 深圳市易特科信息技术有限公司 纳米级尺寸测量装置

Also Published As

Publication number Publication date
CN104634236A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2017215187A1 (zh) 遥控方法及遥控器
WO2015046753A1 (en) Impedance matching method and impedance matching system
WO2019085116A1 (zh) 电磁炉测温方法、测温装置及可读储存介质
WO2017171352A2 (ko) 공작기계의 열변위 보정 파라메터 자동 변환 장치 및 변환 방법
WO2018223418A1 (zh) 一种显示面板检测方法、装置及系统
WO2017041337A1 (zh) 空调器的控制方法、终端及系统
WO2015021756A1 (zh) 电磁遥控器及电磁遥控器的控制方法
WO2016123837A1 (zh) 基于螺旋电阻器的位移测量装置和方法
WO2018090446A1 (zh) 投影仪调试安装方法及装置
WO2017014336A1 (ko) 비선형 성분이 보상된 온도 센서 회로 및 온도 센서 회로의 보상 방법
WO2015180012A1 (zh) 一种钳口平移的板钳
WO2016123835A1 (zh) 基于螺旋电阻器的尺寸测量装置和方法
WO2015156635A1 (ko) 상태 변분 원리를 이용한 진동 변위 측정 방법
WO2019062113A1 (zh) 家电设备的控制方法、装置、家电设备及可读存储介质
WO2018082186A1 (zh) 电视机的emi定位方法及装置
WO2019051900A1 (zh) 智能家居设备的控制方法、装置及可读存储介质
WO2013159421A1 (zh) 液晶显示模组差分信号接收终端异常的检测方法及装置
CN107430410A (zh) 车内气压调节方法及装置
WO2017088429A1 (zh) 移动终端控制显示终端上触屏应用程序的方法及系统
WO2014089801A1 (zh) 检测方法及检测装置
WO2017219612A1 (zh) 空调飞行器的控制方法及装置
WO2016123838A1 (zh) 获取特征光谱位置的系统和方法
WO2016155026A1 (zh) 重心调整装置及其调整重心的方法
WO2015167164A1 (en) Radiographic system and control method thereof
WO2015093826A1 (ko) 볼로미터의 불균일도를 보정할 수 있는 신호취득회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880790

Country of ref document: EP

Kind code of ref document: A1