WO2016121949A1 - 流体熱交換ミキシング移送装置 - Google Patents

流体熱交換ミキシング移送装置 Download PDF

Info

Publication number
WO2016121949A1
WO2016121949A1 PCT/JP2016/052718 JP2016052718W WO2016121949A1 WO 2016121949 A1 WO2016121949 A1 WO 2016121949A1 JP 2016052718 W JP2016052718 W JP 2016052718W WO 2016121949 A1 WO2016121949 A1 WO 2016121949A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
plate
mixing
fluid heat
central axis
Prior art date
Application number
PCT/JP2016/052718
Other languages
English (en)
French (fr)
Inventor
秀之 春山
Original Assignee
秀之 春山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015016275A external-priority patent/JP2016148459A/ja
Application filed by 秀之 春山 filed Critical 秀之 春山
Publication of WO2016121949A1 publication Critical patent/WO2016121949A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a fluid heat exchange mixing transfer device, and more particularly to a fluid heat exchange mixing transfer device that efficiently transfers heat to a fluid to be processed, or stirs, mixes and transfers the fluid to be processed.
  • reaction heat is also generated by the polymerization reaction in the polymer reactor. If this heat of reaction is not efficiently removed, that is, if it is not cooled, the operating conditions cannot be controlled, the physical properties of the polymerization reaction product change significantly, and the operation of the polymer reactor may be forced to stop.
  • a shell and tube heat exchanger may be set as a transfer means for transferring the polymer solvent mixed solution while cooling from the polymer reactor to a post-treatment device for pelletization or the like.
  • a part of the polymer contained in the coolant and the solvent is deposited, and a so-called fouling phenomenon occurs in which it is deposited on the inner wall of the metal tube or the inner wall of the polymer reactor.
  • the polymer deposit on which this polymer solvent mixed solution adheres and deposits has a thermal conductivity approximately two orders of magnitude lower than that of the metal tube, the polymer deposit significantly removes the heat of reaction, that is, the efficiency of cooling. Reduce.
  • the substantial pipe diameter is reduced, the load on the transport pump is increased, and there is an adverse effect that the transport pump is damaged or the production efficiency is reduced due to the reduced flow rate.
  • an antifouling agent containing a polyoxylene polymer having an average molecular weight represented by a specific general formula of 30000 or less is used as a solvent polymer solution in a polymerization apparatus or in a subsequent process. It has been proposed to add to internal components (see, for example, Patent Document 1).
  • Another prior art polymer fouling prevention method that is, an olefin polymerization method that prevents clogging of the catalyst slurry supply system to the polymerization reactor and enables continuous operation, is an olefin polymerization method, and is supported on a solid.
  • an olefin polymerization method that prevents clogging of the catalyst slurry supply system to the polymerization reactor and enables continuous operation
  • an olefin polymerization method is supported on a solid.
  • a heat transfer device for heating or cooling a process stream comprising: a tube formed of a steel alloy comprising X, Y and Z, wherein the tube is 40 microinches (1 A chromium-enriched oxide layer containing 10 to 40% by weight of chromium formed on at least one of the inner surface and the outer surface, a base layer made of a steel alloy having an arithmetic average surface roughness of less than .1 ⁇ m) , Formed on the surface of a heat transfer device or the like comprising three layers of said chromium-enriched oxide layer, comprising sulfide, oxide, oxysulfide or mixtures thereof It has been proposed to provide a surface protective layer which is (for example, see Patent Document 3).
  • the polymer transfer cooling device has a circular cross section with a diameter of 170 centimeters, an outer diameter of 25.4 millimeters, a wall thickness of 1.2 millimeters, and a length.
  • a cylindrical tube bundle is formed by fixing about 1500 SUS304 cylindrical tubes at a uniform pitch will be described below.
  • the entire cylindrical tube bundle is mounted in a pressure-resistant shell, and the refrigerant flows in between the cylindrical tube bundles by press-fitting the refrigerant from the lower inlet in the shell.
  • the refrigerant flows around each cylindrical tube to cool the mixed solution of the solvent and the polymer in each cylindrical tube.
  • the polymer that has become supersaturated by being cooled precipitates and separates from the solvent, and part of the polymer grows attached to the tube wall to form fouling.
  • the liquid-solid mixed solution flows in a cylindrical tube with a narrow flow path, the flow rate of the constant pressure pump is reduced, and steady operation cannot be performed.
  • the polymer solvent mixed solution transfer cooling device described above is normally operated continuously for 24 hours. In that case, after about six months to one year, the polymer deposit deposited on the inner wall of the cylindrical tube increases progressively, which significantly impedes the flow of the polymer solvent mixed solution. As a result, the discharge amount of the constant pressure pump decreases, and desired operating conditions cannot be ensured. As a result, the operation of the cooling device must be stopped to remove polymer deposits.
  • the removal of the polymer deposits in the transfer cooling apparatus for the polymer solvent mixed solution is carried out by high-pressure water washing in most cases in the industry.
  • high-pressure water washing high-pressure water pressurized by a reciprocating pump is jetted from a nozzle, and polymer deposits deposited by jet impact energy are peeled off from the tube wall, crushed, discharged and removed.
  • the value of the high pressure is, for example, a high pressure of 7 MPa or more and 30 MPa, an ultra high pressure of 30 MPa or more and 100 MPa, and an ultra-high pressure of 100 MPa or more is also performed at 250 MPa.
  • a high pressure of 7 MPa or more and 30 MPa an ultra high pressure of 30 MPa or more and 100 MPa
  • an ultra-high pressure of 100 MPa or more is also performed at 250 MPa.
  • high pressure water cleaning is performed by a worker who has received a specific certification, and a supervisor is assigned to make it sturdy. Must make a good scaffold.
  • the fluid heat exchange mixing transfer device has the following problems even in the field of conventional heat pump devices. That is, in recent years, the demand for heat pumps continues to rise due to increased environmental awareness.
  • the heat pump collects cold / hot heat from the ground, groundwater, air, etc. using the heat of evaporation and cohesion of the refrigerant substance.
  • the refrigerant has a temperature difference between the vicinity of the tube wall surface and the center of the tube inside the heat transfer tube, and heat cannot be efficiently exchanged during cold / hot sampling. As a result, temperature imbalance or non-uniformity occurs, and when heat is collected from the refrigerant, excessive cooling or heating occurs, generating impurities and bubbles.
  • a twisted flat plate is fixed inside the heat transfer tube provided in the heat exchanger, and the aqueous solution to which the surfactant is added is used as a heat transfer medium to flow in the heat transfer tube.
  • a system has been proposed in which shearing stress is applied to a heat transfer medium by a twisted flat plate to stir and heat exchange (for example, see Patent Document 7).
  • the fluid heat exchange mixing transfer device has the following problems even in the field of conventional vaporization and liquefaction devices. That is, the liquefaction of the gaseous fluid and the vaporization of the liquid fluid are generally performed in a tube-and-shell heat exchanger or other transfer pipe that conveys the fluid inside another heat exchanger. Is called.
  • the temperature of the fluid is different between the vicinity of the pipe wall and the center of the pipe, and cannot be cooled efficiently.
  • the temperature difference may cause excessive cooling, which may cause impurities to precipitate or adhere to the wall surface of the transfer pipe. These deposits are harmful to the flow of the fluid to be treated and hinder the operation of the compressor.
  • the adhered / deposited impurities are peeled off from the tube wall and mixed into the generated liquid / gas.
  • Non-Patent Document 1 the polymer fouling is physically passed at a high speed, the protective layer is formed on the contact surface, the retention is prevented, and the antistatic agent is chemically added. It is thought that it can be solved by.
  • none of the polymer fouling countermeasures of Patent Documents 1 to 3 is incomplete, the cooling efficiency is reduced due to the occurrence of polymer fouling, the flow path is narrowed due to polymer fouling, that is, Reduced flow remains a major obstacle for industry.
  • the thin film or resin film already formed on the inner wall may be dissolved or peeled off due to a change in operating conditions or the like, and may be mixed into the newly formed polymer. It is extremely expensive and contains unacceptable problems in quality control.
  • a twisted flat plate is fixed in a heat transfer tube.
  • the twisted flat plate is a tape-shaped flat plate member that is twisted at a predetermined pitch (Patent Document 7, paragraph 0017).
  • the twisting process must be performed by a special processing machine that spirals the flat plate member by permanent strain, and it is difficult to process the central axis line with the central axis line of the heat transfer tube. It is impossible to perform this operation with bare hands at least for rigid plate-like members that can be used industrially.
  • the flat plate has uniform rigidity over the entire surface, and therefore it is difficult to maintain the central axis of the twisted flat plate coincident with the central axis of the heat transfer tube.
  • the central axis of the twisted flat plate may deviate from the central axis of the heat transfer tube, and the cross-sectional areas on both sides of the twisted flat plate in the heat transfer tube may be different, or a spiral body with a well-shaped shape centering on the central axis may not be formed. is there. Obviously, these conditions are undesirable for heat exchange mixing and fluid transfer cooling.
  • the fluid agitation device in the heat pump system proposed by Patent Document 8 has a complicated device mechanism, and the contribution of the fluid agitation device to the heat exchange efficiency by the coil spring in which each winding can move up and down is low. Increasing the size is inevitable.
  • the internally grooved heat transfer tube proposed by Patent Document 9 is difficult to internally groove, and the entire length cannot be increased. In addition, the inner groove has a problem of reducing the pressure resistance of the heat transfer tube.
  • the static mixer for heat exchange proposed by Patent Document 10 generally has a structure in which straight short portions are connected. Therefore, it is difficult to realize a large amount of heat exchange for the installable region.
  • the present invention has been made in view of the above-mentioned problems of the fluid heat exchange mixing transfer device in a polymer production line or the like that has not been solved by any of the prior art, and efficiently transfers heat to a fluid to be treated.
  • Another object of the present invention is to provide a fluid heat exchange mixing / transferring device that can stir and mix the fluid to be treated and further significantly delay the accumulation of solids in the fluid heat exchange mixing / transferring device.
  • the present invention also forms a spiral member by “twisting” (twisting) a single plate-like member disposed inside the heat exchange tube.
  • the plate-like member which is the material of the spiral member, can obtain a symmetrical distribution of the amount of stretching around the central axis when partly or entirely longitudinally stretchable, that is, when a constant longitudinal load is applied. It has a nature that can.
  • An object of the present invention is to provide a fluid heat exchange mixing transfer device that can easily and accurately form a spiral body having a center axis as a rotation center by utilizing this characteristic.
  • the plate-like member when the plate-like member is partially or entirely longitudinally stretchable, that is, when a constant longitudinal load is applied, it is possible to obtain a symmetrical distribution of the stretching amount around the central axis.
  • a plate-like member having a spiral shape is arranged inside the heat exchange tube, and the heat exchange tube is bent.
  • a fluid heat exchange mixing and transferring device having a desired length and a desired bend is provided without substantially shifting a state where the center axis of the spiral plate-like member and the center axis of the heat exchange tube coincide with each other.
  • the present invention also allows a small number of on-site workers to pull out the helical member even when solids are accumulated in the fluid heat exchange mixing transfer device, with a very simple work facility compared to the prior art.
  • An object of the present invention is to provide a fluid heat exchange mixing transfer device capable of removing deposits due to fouling in a short time and without performing dangerous work such as high-pressure water washing.
  • Another object of the present invention is to provide a fluid heat exchange mixing / transferring device that is less likely to cause undesirable polymer deposits or the like from adhering to the produced fluid such as a liquid solid mixture.
  • 1st invention is the fluid heat exchange mixing transfer apparatus which has arrange
  • the second invention is a polymer production apparatus comprising a polymerization reaction apparatus and a cooling flow path section connected to a polymerization product outlet section of the polymerization reaction apparatus and having a heat exchange function
  • the cooling flow path section has a plurality of heat exchange tubes arranged in parallel to each other inside the refrigerant shell, and a plate-like member that divides the cross section of the heat exchange tubes into at least two equal parts inside the heat exchange tubes, Continuously disposed along the entire length of the central axis of the heat exchange tube,
  • the plate-like member has a plate-like member having at least a longitudinal stretchability in which at least both side edge regions are stretched with a constant longitudinal load, the longitudinal stretchability being symmetrical about the central axis.
  • a polymer production apparatus characterized by being formed in a spiral shape.
  • 3rd invention is the manufacturing method of the fluid heat exchange mixing transfer apparatus which has arrange
  • the inside of the heat exchange tube there is a step of continuously forming a plate-like member that divides the cross section of the heat exchange tube into at least two equal parts along the entire length of the central axis of the heat exchange tube,
  • the plate-like member has at least a longitudinal stretchability in which both side edge regions are stretched with a constant longitudinal load, and the longitudinal stretchability is symmetrical with respect to a central axis.
  • It is a manufacturing method of the fluid heat exchange mixing transfer device characterized by forming in a spiral shape.
  • the ease of stretching in the longitudinal direction of the plate-like member is a property of stretching due to a predetermined load in the longitudinal direction, and the flat plate portion does not have the ease of stretching in the longitudinal direction.
  • the material that can be easily stretched in the longitudinal direction include a wave shape in the longitudinal direction and no unevenness in the transverse direction, a partially cut portion, a mesh sheet, a portion having dimples, and the like.
  • Embodiments of the first invention are as follows.
  • the plate-like member is characterized in that the ease of stretching in the longitudinal direction of the central axis region is not smaller than the ease of stretching in the longitudinal direction of the side edge regions, and is not easily stretched.
  • the plate member is formed by spirally forming a plate member having a wave shape in the longitudinal direction and no irregularities in the transverse direction.
  • 1st invention WHEREIN The said plate-shaped member cut
  • the plate member is a mesh sheet, and the mesh sheet has an extension amount of both edge regions extending in the longitudinal direction larger than an extension amount of the central region extending in the longitudinal direction with respect to the same load. It is characterized by being knitted.
  • 1st invention WHEREIN The said plate-shaped member has a dimple in the both edge area
  • 1st invention WHEREIN The said plate-shaped member is manufactured by stainless steel, It is characterized by the above-mentioned.
  • 1st invention WHEREIN The said plate-shaped member is manufactured with the aluminum alloy, It is characterized by the above-mentioned.
  • 1st invention WHEREIN The said plate-shaped member is manufactured with the copper alloy, It is characterized by the above-mentioned.
  • 1st invention WHEREIN The said plate-shaped member is manufactured by the titanium alloy, It is characterized by the above-mentioned.
  • 1st invention WHEREIN The said plate-shaped member is manufactured with the nickel alloy, It is characterized by the above-mentioned.
  • 1st invention WHEREIN The said plate-shaped member has the edge part crimped to the said rigid solution outer cylinder, It is characterized by the above-mentioned.
  • the solution is a mixed solution of a solvent and a polymerization product.
  • Embodiments of the third invention are as follows.
  • the plate-like member is characterized in that the ease of stretching in the longitudinal direction of the central axis region is not smaller than the ease of stretching in the longitudinal direction of the side edge regions, and is not easily stretched.
  • the plate-like member is formed in a spiral shape with a wavy shape in the longitudinal direction and no unevenness in the transverse direction.
  • 3rd invention WHEREIN The said plate-shaped member cuts into the both edge area
  • the plate member using a mesh sheet knitted so that the stretch amount of both edge regions extending in the longitudinal direction is larger than the stretch amount of the central region extending in the longitudinal direction for the same load, It is characterized by being formed in a spiral shape.
  • the plate-like member is formed in a spiral shape by using plate-like members having dimples in both edge regions extending at least in the central axis direction of the heat exchange tube.
  • the fluid heat exchange mixing transfer device of the present invention heat exchange is efficiently performed on the fluid to be processed, the fluid to be processed is agitated and mixed, and further, solid deposition in the fluid heat exchange mixing transfer device is greatly delayed. Etc. can be obtained.
  • a single plate-like member disposed inside the heat exchange tube is “twisted” (twisted) into a spiral member, and the plate-like member is partially or
  • overall longitudinal stretchability that is, when a constant longitudinal load is applied, it has a characteristic that can obtain a symmetrical distribution of stretching amount around the central axis. It is possible to obtain an effect of easily and accurately forming a spiral body having the center of rotation.
  • the fluid heat exchange mixing / transferring apparatus of the present invention is further provided with a symmetric stretching around the central axis when a partial or overall longitudinal stretching property of the plate-like member, that is, a constant longitudinal load is applied.
  • a plate-like member having a spiral shape is arranged inside the heat exchange tube, and the heat exchange tube is bent.
  • a fluid heat exchange mixing and transferring device having a desired length and a desired bend is provided without substantially shifting a state where the center axis of the spiral plate-like member and the center axis of the heat exchange tube coincide with each other.
  • the present invention also allows a small number of on-site workers to pull out the helical member even when solids are accumulated in the fluid heat exchange mixing transfer device, with a very simple work facility compared to the prior art. It is possible to obtain an effect that the solid content accumulated in the pipe can be removed in a short time and without performing dangerous work such as high-pressure water washing.
  • the fluid heat exchange mixing transfer device of the present invention it is also possible to obtain an effect of reducing the possibility that undesirable deposits such as polymers are mixed into the generated fluid such as the liquid solid mixture. .
  • the fluid heat exchange mixing transfer device of the present invention it is possible to obtain an effect that the amount of industrial waste discharged is extremely small compared to the amount of industrial waste generated by the high pressure water cleaning of the prior art.
  • the solution in the process of physical operation such as chemical operation such as polymerization reaction, cross-linking reaction, desolvation, mixing, etc., in the production of the polymer, as the heat exchange mixing and fluid transfer heat transfer device of the present invention can be suitably implemented Transfer. Further, the present invention can also be applied to solution transfer during physical operation processes such as mixing of a polymer and other components in the production of a composition mainly composed of a polymer such as paint and adhesive, and other solvents.
  • the present invention includes, for example, poly (meth) acrylates, poly (meth) ethyl acrylate, poly (meth) acrylate polymers such as poly (meth) acrylate, urethane polymers, vinyl chloride heavy polymers.
  • polymer transfer such as polymer, vinylidene chloride polymer, SBR, vinyl acetate polymer, etc., or monomers and copolymer polymers constituting them, such as urethane emulsion, acrylic emulsion, etc.
  • the present invention is preferably applicable to solution transfer in a marjon.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is sectional drawing of the heat exchange tube of the fluid heat exchange mixing transfer apparatus of 1st Embodiment. It is manufacture explanatory drawing of the helical member of the fluid heat exchange mixing transfer apparatus of 1st Embodiment. It is explanatory drawing of the calculation point of the cooling effect of a solution. It is a graph of the calculation result of the cooling effect of a solution. It is a graph of the estimation result of the cooling effect of a solution. It is a temperature distribution figure of the calculation result of the cooling effect of a solution.
  • FIG. 1 It is a perspective view of the bending member which is a modification of the helical member of the fluid heat exchange mixing transfer apparatus of 1st Embodiment. It is a perspective view of the notch member which is a modification of the helical member of the fluid heat exchange mixing transfer apparatus of 1st Embodiment. It is a perspective view of the embossing member which is a modification of the helical member of the fluid heat exchange mixing transfer apparatus of 1st Embodiment. It is a perspective view which shows the manufacturing method of the mesh member which is a modification of the helical member of the fluid heat exchange mixing transfer apparatus of 1st Embodiment. It is sectional drawing of the fluid heat exchange mixing transfer apparatus of 2nd Embodiment. FIG.
  • FIG. 14 is an enlarged end view of a region indicated by a dotted line XIV in FIG. 13. It is sectional explanatory drawing of the rigid mixed solution outer cylinder of the fluid heat exchange mixing transfer apparatus of 2nd Embodiment. It is explanatory reference drawing for the principle description of the fluid heat exchange mixing transfer apparatus of 2nd Embodiment.
  • the fluid heat exchange mixing transfer device 1 is a shell and tube type device having a heat exchange function and used for a pressure vessel for carrying out a low pressure polymerization method in polyethylene.
  • Three types of shell-and-tube heat exchangers are known: a fixed tube plate type, a floating head type, and a U-shaped tube type.
  • the fluid heat exchange mixing transfer device 1 is a floating head type, and absorbs expansion and contraction of a long heat exchange tube due to high temperature and high pressure of the heat exchange fluid by movement of the floating skull.
  • the fluid heat exchange mixing transfer apparatus 1 forms a heat exchange fluid chamber, that is, a solution chamber 14 and a refrigerant chamber 16 by dividing the body, that is, the refrigerant shell 10 by a heat exchange tube support plate 12. ing.
  • the solution chamber 14 that stores the heat exchange fluid, that is, the solution R, is formed by closing the end of the refrigerant shell 10 with the shell cover 20.
  • a solution inlet 22 is disposed on the lower side, and a solution outlet 24 is formed on the upper side.
  • the solution chamber 14 is divided into a lower solution chamber high temperature portion 14 a and a lower solution chamber low temperature portion 14 b by a partition plate 40.
  • Examples of the solution R include a mixed solution of normal hexane and a polymer.
  • the coolant chamber 16 that stores the coolant W such as cooling water is closed at the end of the shell 10 by a coolant chamber lid 30.
  • the coolant chamber 16 that stores the coolant W such as cooling water is closed at the end of the shell 10 by a coolant chamber lid 30.
  • the coolant chamber 16 that stores the coolant W such as cooling water is closed at the end of the shell 10 by a coolant chamber lid 30.
  • about 2000 heat exchange tubes 102 are arranged in parallel in the refrigerant shell 10.
  • an idle skull 34 is disposed on the opposite side of the tube sheet 12.
  • a baffle plate 36 for agitating the refrigerant W is disposed in the refrigerant chamber 16.
  • the heat exchange tube 102 has a refrigerant circulation portion length of 10 meters, an outer diameter of 25.4 millimeters, a wall thickness of 2.0 millimeters, and an inner diameter of 21.4 millimeters.
  • the heat exchange tube 102 is fixed by welding 106 to the heat exchange tube support plate 12 fixed in the vicinity of both ends of the refrigerant shell 10.
  • a spiral member 202 c is disposed inside each heat exchange tube 102.
  • the width of the spiral member 202c is 21.30 millimeters.
  • at least one end of the spiral member 202c is caulked to adhere to the end of the heat exchange tube.
  • the spiral member 202c is manufactured by a flat plate member 202a made of stainless steel such as SUS300, aluminum alloy, copper alloy, titanium alloy, nickel alloy or the like.
  • the flat plate member 202a is subjected to corrugated processing in which, for example, a concavo-convex pattern that forms a sine curve is provided in the longitudinal direction, that is, the direction extending in the central axis O direction. 202b.
  • the corrugated plate member 202b is twisted around a central axis O extending in the longitudinal direction to form a spiral member 202c.
  • the portion 202m on the central axis O hardly extends in the direction of the central axis O, and both edge regions 202n extending in the direction of the central axis O extend to form a spiral spiral that extends linearly as a whole.
  • the shaped member 202c is obtained.
  • a spiral member 202c that is, a metal plate-like member that divides the cross section of the heat exchange tube 102 into at least two equal parts along the entire length of the central axis O of the heat exchange tube 102.
  • the shear rate in the heat exchange tube is calculated when the spiral member 202c is disposed in the heat exchange tube 102, that is, when the spiral member is present, and when there is no spiral member, that is, when the spiral member 202c is not disposed.
  • the calculation conditions are as follows: a known heat exchanger tube is used, the inner diameter of the heat exchange tube is 21.4 mm, the total length is 400 mm, the solution to be cooled is n-hexan, the inlet temperature is 70 ° C., the flow rate is 0.6 m / s, and the cooling is performed. The water temperature is 18 ° C., and the spiral member 202c is SUS304 having a thickness of 1 mm. The solution R is released freely into the heat exchange tube 102.
  • the measurement points of the shear rate are the five points 1 to 5 shown in FIG. Table 1 shows the position coordinates (mm) of the measurement points.
  • Table 1 shows the position coordinates (mm) of the measurement points.
  • Point X Y Z Point 1 1.10 37.5 Point 2 2.675 0 37.5 Point 3 5.35 0 37.5 Point 4 8.025 0 37.5 Point 5 10.6 0 37.5
  • X represents the horizontal and horizontal coordinate values from the center of the heat exchange tube 102
  • Y represents the vertical and vertical coordinate values from the center of the heat exchange tube 102
  • Z represents the solution flow direction in the heat exchange tube 102. Indicates the coordinate value from the entrance.
  • the area sandwiched between the graph with the spiral member and the horizontal axis in FIG. 6 is 1.53 of the area between the graph without the spiral member and the horizontal axis (indicated by the diagonally downward sloping line). Doubled.
  • the solution in the heat exchange tube 102 has a region near the inner surface of the heat exchange tube 102 and the surface of the spiral member. It can be estimated that the accumulation of the solution on the inner wall of the heat exchange tube 102 is further reduced by the occurrence of the action of the replacement of nearby solutions.
  • FIG. 8A shows the case with a spiral member
  • FIG. 8B shows the case without a spiral member.
  • the helical member in FIG. 8A was calculated as 18 ° C.
  • the average temperature of a solution is compared about the cooling effect of a solution.
  • the temperature of the refrigerant is 18.0 ° C.
  • the inlet temperature of the solution is 70 ° C.
  • the structure with the spiral member of the present invention is more efficient in cooling the solution in the heat exchange tube 102 than the conventional structure without the spiral member, and the production efficiency is increased. It can be estimated that the deposition of the solution on the inner wall of the heat exchange tube 102 is further reduced.
  • the energy of this pressure difference is estimated to act on solution disturbance, that is, solution disturbance and solution cooling.
  • solution disturbance that is, solution disturbance and solution cooling.
  • the length of the heat exchange tube 102 is 62/131 with or without the helical member, or about half the length with the helical member. This can greatly reduce the capital investment.
  • the flat plate member 202 a can be replaced with a cut flat plate member 214 in which cuts 212 are made in both edge regions 210 extending in the direction of the central axis O of the flat plate member 202 a.
  • the flat plate member 202a is a first dimple flat plate member 220 in which a plurality of dimples 211 are provided by embossing on the entire surface of the flat plate member 202a, or as shown in FIG. 11B.
  • the second dimple flat plate member 222 can be replaced with a plurality of dimples 211 by embossing at both edge regions 226 extending in the direction of the central axis O in both side regions of the central axis O.
  • the portion 224 on the central axis O does not deform the dimple 211 and hardly extends in the direction of the central axis O.
  • both edge regions 226 extending in the direction of the central axis O become a spiral dimple spiral member that extends linearly as a whole by deforming and extending the dimple 211.
  • the flat plate member 202a can also be replaced with a mesh flat plate member 230 as shown in FIG.
  • a mesh flat plate member 230 As the mesh flat plate member 230, a flat mesh plate is used as shown in FIG.
  • the mesh flat plate member 230 is subjected to corrugated processing in which unevenness is repeatedly provided in the longitudinal direction, that is, the direction extending in the central axis O direction, to obtain a mesh corrugated plate member 232.
  • the mesh corrugated plate member 232 is twisted about a central axis O extending in the longitudinal direction to be a spiral shape, thereby forming a mesh spiral plate.
  • the portion 234 on the central axis O extends in the direction of the central axis O with little change in the stitches of the portion, while the stitches of both edge regions 236 extending in the direction of the central axis O extend and extend straight. It becomes a spiral extending in a shape.
  • the heat exchange tube 302 of the fluid heat exchange mixing transfer device includes a product in a solvent inside an iron rigid refrigerant outer cylinder 300 for circulating the refrigerant.
  • a rigid mixed solution outer cylinder 302 made of SUS304 for circulating the mixed solution is arranged in parallel with each other.
  • the length of the mixed solution flow portion of the rigid mixed solution outer cylinder 302 is 10 meters, and as shown in FIG. 14, the outer diameter is 25.4 millimeters, the wall thickness is 2.0 millimeters, and the inner diameter is 21.4 millimeters. Mm.
  • the rigid mixed solution outer cylinder 302 is fixed to the rigid mixed solution outer cylinder support plate 304 fixed to the inside in the vicinity of both ends of the rigid mixed solution outer cylinder 302 by welding 306.
  • a thin inner cylinder 310 is disposed inside each of the rigid mixed solution outer cylinders 302.
  • the thin inner cylinder 310 has an inner diameter of 21.30 millimeters and a wall thickness of 0.04 millimeters.
  • both ends of the thin inner cylinder 310 are caulked and fixed on the ends of the rigid mixed solution outer cylinder 302.
  • the thin inner cylinder 310 extends at the temperature and pressure of the solution to be transferred, for example, the mixed solution of the polymerization product and the solvent, contacts the inner surface of the rigid mixed solution outer cylinder 302 without breaking, and further releases the pressure.
  • the thin-walled inner cylinder 310 contracts to return to its original diameter, and when it is stretched by the temperature and pressure of the solution to be transferred, that is, the liquid-solid mixed solution, the thin-walled inner cylinder 310 becomes the rigid mixed solution.
  • the fact that the thin inner cylinder 310 is backed up by the outer cylinder 302, that is, the periphery thereof is supported by the rigid mixed solution outer cylinder 302 will be described by calculation.
  • the temperature of the heat exchange fluid chamber high temperature portion 14a is 70 ° C. and 1.20 megapascals
  • the temperature of the heat exchange fluid chamber low temperature portion 14b is 57 ° C. and 1.14 megapascals, which is often seen in industry.
  • the wall thickness of the rigid mixed solution outer cylinder 102 is 2.0 millimeters.
  • the inner diameter of the rigid mixed solution outer cylinder 102 is 21.40 millimeters.
  • the thin inner cylinder 110 has an outer diameter of 21.37 millimeters.
  • the wall thickness of the thin inner cylinder 110 is 0.04 mm.
  • the internal pressure of the thin inner cylinder 110 is 1.20 megapascals.
  • the Young's modulus of SUS304 which is the material of the rigid mixed solution outer cylinder 102 and the thin inner cylinder 110, is 200 gigapascals.
  • the clearance that is, the distance between the inner surface of the rigid mixed solution outer cylinder 102 and the outer surface of the thin inner cylinder 110 is 0.015 mm, which is half of 0.03 mm.
  • the thin inner tube 310 is in close contact with the rigid mixed solution outer tube 302 and backed up by the rigid mixed solution outer tube 302. , Recovers to full size after decompression.
  • a spiral member 400 having the same configuration as that of the spiral member 202 used in the first embodiment is arranged inside the thin inner cylinder 310.
  • the thin inner cylinder 310 is inserted into the rigid mixed solution outer cylinder 302.
  • the thin inner cylinder 310 is light, for example, 514 grams, and there is a space between the inner surface of the rigid mixed solution outer cylinder 302 and the outer surface of the thin inner cylinder 310, for example, a long one extending for 10 meters. But it can be easily inserted.
  • the inserted thin inner cylinder 310 may be used as it is, but preferably, both ends of the thin inner cylinder 310 are fixed to both ends of the rigid mixed solution outer cylinder 302 by caulking or the like.
  • the thin inner cylinder 310 is expanded by the pressure of the mixed solution, and the entire outer peripheral surface of the thin inner cylinder 310 is outside the rigid mixed solution. It contacts the inner peripheral surface of the cylinder 302. As a result, the entire outer peripheral surface of the thin inner cylinder 310 is supported by the inner peripheral surface of the rigid mixed solution outer cylinder 302. Further, since the entire outer peripheral surface of the thin inner cylinder 310 is in contact with the inner peripheral surface of the rigid mixed solution outer cylinder 302, the mixed solution transferred through the thin inner cylinder 310 is mixed with the rigid mixed solution outer cylinder 302 and the rigid refrigerant outer cylinder. It can cool efficiently by the refrigerant
  • the flow of the mixed solution to the fluid heat exchange mixing transfer device is stopped.
  • the spiral member 400 is pulled out from the thin inner cylinder 310.
  • the inside of the thin inner cylinder 310 returns to normal pressure, and the thin inner cylinder 310 shrinks and returns to the original diameter.
  • a space is formed between the inner peripheral surface of the rigid mixed solution outer cylinder 302 and the outer peripheral surface of the thin inner cylinder 310, and the thin inner cylinder 310 can be easily taken out from the rigid mixed solution outer cylinder 302.
  • the extracted spiral member 400 and the thin inner cylinder 310 remove polymer deposits at a place where it is easy to work, such as a factory.
  • the thin inner cylinder 110 from which the polymer deposit has been removed is put into the rigid mixed solution outer cylinder 302 by the method described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 被処理物に効率的に伝熱しかつ被処理物を攪拌混合し、流体移送伝熱装置内の固形分の堆積を大幅に遅らせること等の効果を得ることができる熱交換ミキシング及び流体移送伝熱装置を提供すること。 冷媒シェルの内部に、複数の熱交換チューブを互いに平行に配置した熱交換ミキシング及び流体移送伝熱装置であって、前記熱交換チューブの内部に、前記熱交換チューブの断面を少なくとも2等分割する板状部材が、前記熱交換チューブの中心軸線全長に沿って連続して螺旋状に形成され、前記板状部材は、少なくとも両側縁部領域が一定の長手方向の負荷で伸長する長手方向延伸容易性を有し、該長手方向延伸容易性は中心軸線を中心として対称的である。

Description

流体熱交換ミキシング移送装置
 本発明は、流体熱交換ミキシング移送装置、さらに詳しくは、被処理流体に効率的に伝熱し、あるいは被処理流体を攪拌混合・移送する流体熱交換ミキシング移送装置に関する。
 被処理流体物を熱伝導率の高い材料でできたパイプ内を流動させ、該パイプの周囲に冷媒や高温流体を接触させることによって、被処理流体を冷却・加熱することは、広く行われている。加工処理を効率的に行うために、被処理流体を予めそれに適した温度になるよう冷却・加熱することも一般に行われている。
(背景技術1)
 例えば、ポリエチレン、ポリプロピレン等の重合体製品を製造する際、例えばノルマルヘキサン等の溶媒の中で触媒とエチレンとを反応させてポリエチレンをつくる重合体反応器の内壁へ、重合体が付着する。また、重合体反応器からペレット化等への後処理装置において、溶剤と重合生成物混合溶液を冷却しながら移送するための移送手段の内壁へ、重合体が析出付着する、いわゆる重合体ファウリングが発生する。
 ポリエチレン等の重合ではまた、重合体反応器内での重合反応によって反応熱が発生する。この反応熱を効率的に除去するすなわち冷却しないと、運転条件のコントロールができず、重合反応物の物性が著しく変化し、重合体反応器の運転停止を余儀なくされる場合もある。
 他方、重合体反応器からペレット化等のための後処理装置へ冷却しながら重合体溶媒混合溶液を移送するための移送手段として、シェルアンドチューブ熱交換器を設定する場合がある。この場合、冷却剤と溶媒中に含まれる重合体の一部が析出し、金属管内壁や重合体反応器の内壁に付着堆積してしまう、いわゆるファウリング現象を発現する。
 この重合体溶媒混合溶液が付着堆積した重合体堆積物は、熱伝導率が金属管に比し約二桁低いことから、前記重合体堆積物が、前記反応熱の除去すなわち冷却の効率を著しく低下させる。同時に、実質的管径が細くなることにより、輸送ポンプの負荷が増加し、輸送ポンプの損傷や、流量低減による生産効率の低下という弊害が発生する。
 この重合体ファウリングの発生増大を防止するために、
(1)反応器内及び移送管内の流速を上げること
(2)反応器内及び移送管内表面の凹凸をできるだけ小さくすること
(3)重合体ファウリングの起点が触媒及び重合体粒子の静電付着であるという技術分析に基いて、静電除去剤を添加すること
(4)エチレンフィードノズルの構造を改良すること
(5)フランジのギャップ等にポリマーが対流しないように構造を改良すること
が提案されている(例えば、非特許文献1参照)。
 従来技術の重合体ファウリング防止方法として、特定の一般式で表される平均分子量が、30000以下のポリオキシレン系重合体を含むファウリング防止剤を、重合装置内又は後行程の溶剤重合物溶液内成分に添加することが提案されている(例えば、特許文献1参照)。
 他の従来技術の重合体ファウリング防止方法、すなわち重合反応器への触媒スラリー供給系の閉塞を防止し、連続運転を可能とするオレフィン重合方法として、オレフィン重合方法であって、固体に担持した予備重合触媒を含む触媒スラリーを、オレフィンの本重合を行う気相反応器に供給するに際して、該予備重合触媒1gに対して、0.3~3.0mgの有機アルミニウム化合物を同伴させることが提案されている(例えば、特許文献2参照)。
 他の従来技術の重合体ファウリング防止方法として、高温のプロセスストリームに曝される金属チューブ熱交換装置に腐蝕および腐蝕に誘導されるファウリングに対する抵抗性を賦与するために、内側表面および外側表面を有するプロセスストリームを加熱又は冷却するための伝熱装置であって、前記伝熱装置は、X、YおよびZを含むスチール合金で形成されるチューブであり、前記チューブは、40マイクロインチ(1.1μm)未満の算術平均表面粗さを有するスチール合金からなる基材層、内側表面および外側表面の少なくとも一方の上に形成された10~40重量%のクロムを含有するクロム富化酸化物層、硫化物、酸化物、酸硫化物またはそれらの混合物を含む前記クロム富化酸化物層、の3層を含む伝熱装置等の表面上に形成された表面保護層を設けることが提案されている(例えば、特許文献3参照)。
 上述した技術によっても重合体ファウリングの発生は、産業上の要求を満たす程度に有効に防止も抑制もさせることができないため、さらに他の方法、技術が提案されている。すなわち、金属配管の内壁に、薬液又は所要のガスにより除去され得る薄膜を被着形成することが提案されている(例えば、特許文献4参照)。
 他の重合体ファウリング発生防止技術として、内壁に樹脂皮膜を形成させた容器を用いて化学的操作又は物理的操作を行い、該操作の工程中に容器内壁に生成したスケールを前記樹脂皮膜と共に除去するスケール除去方法が提案されている(例えば、特許文献5参照)。
 さらに他の重合体ファウリング発生防止技術として、液体又はペースト状の流動物を送液する配管内に配設するチューブにおいて、チューブを配管内に貫通して載置し、一方の端辺を封鎖した該チューブの他端から該チューブ内に送気して該チューブを膨らませて管路内に密着させた後に,該チューブの両端をチューブの内側から配管の端部に密着固定する配管用インナーチューブの設置方法が提案されている(例えば、特許文献6参照)。
 本発明者が確認した重合体ファウリングが発生する実際の例として、重合体移送冷却装置は、直径170センチメートルの円形断面に、外直径25.4ミリメートル、肉厚1.2ミリメートル、長さ10メートルのSUS304製円筒管を約1500本を均等ピッチで固定して円柱管束を形成している場合について以下に説明する。
 この円柱管束は、全体を耐圧シェル内に取付け、シェル内下部入口から冷媒を圧入することによって、冷媒が円柱管束の間に流入する。冷媒は、各円筒管の周囲を流れて各円筒管内の溶媒と重合物の混合溶液を冷却する。
 冷却されることによって過飽和状態となった重合体は、溶媒から析出分離し、一部は管壁に付着して成長し、ファウリングを形成する。その結果、液体固体の混合液は、流路が細った円筒管内を流動するようになり、定圧ポンプの流量が低下し、定常運転ができなくなってしまう。
 すなわち、前述した重合体溶媒混合溶液移送冷却装置は、通常24時間連続運転される。その場合、約6ヶ月~1年経過後には、円柱管内壁に析出堆積した重合体堆積物が累乗的に増加し、重合体溶媒混合溶液の流動を著しく妨げるようになる。その結果、定圧ポンプの吐出量が低下し、所望の運転条件が確保できなくなる。その結果、冷却装置の作動を停止して重合体堆積物の除去をしなければならない。
 一方、定量ポンプを使用した場合には、吐出圧が上昇し、ポンプモーターが過負荷になり、急停止する恐れがある。
 このような従来技術では避けることができない重合体溶媒混合溶液の移送冷却装置の重合体堆積物の除去作業は、産業上ほとんどの場合、高圧水洗浄によって行なわれている。
 高圧水洗浄は、往復動ポンプにより加圧した高圧水をノズルから噴射させ、噴射衝撃エネルギーにより堆積した重合体堆積物を管壁から剥離し、粉砕し、排出・除去する。
 該高圧の値は、例えば高圧7MPa以上30MPa、超高圧30MPa以上100MPaであり、超超高圧100MPa以上の250MPaでも行われている。公益社団法人日本洗浄技術技能開発協会発行の「産業洗浄(高圧洗浄作業)安全衛生管理指針」によれば、高圧水洗浄は、特定の検定を受けた作業者が行い、監視者を置き、頑丈な足場を作らなければならない。
 一つの重合体移送冷却装置の洗浄には、足場設置等から検査終了までに二週間以上を要する場合がある。その上、高圧水洗浄を行っている間は、重合体製造を停止しなければならないのであるから、不稼働損を生じ、産業活動上きわめて影響の大きな障害である。
(背景技術2)
 流体熱交換ミキシング移送装置に関し、従来のヒートポンプ装置の分野でも以下の問題がある。すなわち、近年、環境意識の高まりからヒートポンプの需要は上がり続けている。ヒートポンプは、原則的に冷媒物質の蒸発熱、凝集熱を利用して冷温熱を、地中、地下水、空気中等から採取するものである。しかし、冷媒は、伝熱管内部において管壁面付近と管中心部で温度差が生じ、冷温熱採取の際に効率良く熱交換することができない。この結果、温度の不均衡性や不均一性が発生し、冷媒から採熱する際、過度の冷却あるいは加熱が生じて、不純物や気泡が発生する。また、冷媒内の不純物が析出して伝熱管壁面に付着・堆積され、移送管を閉塞させ、または熱交換効率を低下させる。上述した付着物・堆積物が管壁から剥がれ、流体内に混入する等の弊害もある。
 また、冷媒移送管内に気泡が発生することがある。気泡は、その熱伝達性の低さから熱交換効率を低下させる。
 上述した熱交換効率の低下を防止するために、熱交換器に備えられた伝熱管の内側にねじり平板を固定し、界面活性剤を添加した水溶液を熱搬送媒体として前記伝熱管内を流動させ、ねじり平板により熱搬送媒体に剪断応力を加えて攪拌し、熱交換を行うシステムが提案されている(例えば、特許文献7参照)。
(背景技術3)
 流体熱交換ミキシング移送装置に関し、従来の気化・液化装置の分野でも以下の問題がある。すなわち、気体状の流体の液化、及び液体状の流体の気化は、一般的に、チューブアンドシェル式熱交換器、またはその他の熱交換器の内部において流体を搬送する途次の移送管内で行われる。
 しかし、熱交換器移送管内部において流体は管壁面付近と管中心部で温度差が生じ、効率良く冷却することができない。前記温度差は、過度の冷却が生じ、不純物を析出させたり、該不純物が移送管壁面に付着する場合がある。これらの付着物は被処理流体の流通の弊害となり、コンプレッサーの作動を妨げる。付着・堆積した不純物が管壁から剥がれ、生成された液体・気体に混入する等の弊害もある。
 ヒートポンプシステムにおいては、冷媒と冷凍機油の相溶性を高めるために、冷媒が通過する胴体の内周面上に、各巻線が上下動可能なコイルスプリングを配置する構成が提案されている(例えば、特許文献8参照)。
 また、CO2冷媒を用いたヒートポンプ機器が低熱流束条件で使用され、ポリアルキレングリコール系冷凍機油が冷媒中に混入した場合においても優れた蒸発性能を有し、オイル戻りを改善することにより圧縮機が故障するリスクを軽減することができる内面溝付伝熱管ヒートポンプが提案されている(例えば、特許文献9参照)。
 さらに、冷媒が通過する胴体が直線状である場合に限られる構造であるが、熱交換ミキシング及び流体移送伝熱のためにスタティックミキサ構造を採用することも提案されている(例えば、特許文献10参照)。
「ポリエチレン技術読本」松浦一雄・三上尚孝編著、株式会社工業調査会2001年7月1日発行
特許第5399478号公報 特開2010-006988号公報 特開2013-011437号公報 特開平10-204668号公報 特開平05-093001号公報 特開2012-232512号公報 特開2000-121284号公報 特開2015-212601号公報 特開2012-122692号公報 特開平10-309451号公報
 重合体ファウリングは、非特許文献1に示されるように、物理的には高速で通過させること、接触面での保護層の形成、滞留発生阻止、化学的には静電気防止剤を添加すること等のよって解消できるように考えられている。
 しかし、現実的には、前記特許文献1~3の重合体ファウリング対策のいずれも不完全で、重合体ファウリングの発生による冷却効率の低下や、重合体ファウリングによる流路の狭隘化すなわち流量の減少が、産業界の大きな障害となったままである。
 一方、特許文献4及び5によって提案された技術は、既に内壁に形成された薄膜や樹脂皮膜が運転条件変更等により溶解したり剥離したりして、新しく生成した重合体中に混入する恐れが極めて高く、品質管理上受け入れられない問題を含んでいる。
 特許文献6によって提案された技術は、柔軟でかつ巻き状態で保管されたインナーチューブは、円柱筒を束ねた移送装置の各円柱筒、例えば、約10メートルのものの全長に装着することが極めて困難であり、工業上の実施が実質上不可能であると判断される。
 特許文献7によって提案された技術は、伝熱管内にねじり平板を固定している。該ねじり平板は、テープ状の平板部材にねじり加工を施し、所定ピッチでねじられたものである(特許文献7段落0017)。
 しかし、ねじり加工は平板部材に永久ひずみによって螺旋状にする特殊な加工機で行わなければならず、中心軸線が伝熱管の中心軸線に一致するように加工することは困難である。少なくとも、産業上利用可能な剛性の板状部材について、この作業を素手で行うことは不可能である。また、伝熱管を曲げた場合、平板は全面に亘って均一な剛性を有することから、ねじり平板の中心軸線は伝熱管の中心軸線と一致した状態を維持することが困難である。すなわち、ねじり平板の中心軸線は伝熱管の中心軸線からずれて、伝熱管内のねじり平板の両側の断面積が異なったり、また中心軸線を回転中心とした整った形状の螺旋体を作れないことがある。これらの状態が熱交換ミキシング及び流体移送冷却に好ましくないことは明らかである。
 特許文献8によって提案されたヒートポンプシステムにおける流体攪拌装置は、装置機構が複雑であることに加えて、各巻線が上下動可能なコイルスプリングによる熱交換効率への寄与度は低く、流体攪拌装置が大型化することが避けられない。
 特許文献9によって提案された内面溝付伝熱管は、内面溝加工が困難であり、その全長を長くすることができない。また、内面溝は、伝熱管の耐圧性を低下させる問題もある。
 特許文献10によって提案された熱交換用スタティックミキサは、一般的に、直線状の短い部分を連結する構造である。従って、設置可能な領域に対し大きな熱交換量が実現することが困難である。
(発明の目的)
 本発明は、従来技術のいずれによっても解決されていない重合体製造ライン等における流体熱交換ミキシング移送装置の上述した問題点に鑑みてなされたものであって、被処理流体に効率的に伝熱しかつ被処理流体を攪拌混合し、さらに流体熱交換ミキシング移送装置内の固形分の堆積を大幅に遅らせること等が可能な流体熱交換ミキシング移送装置を提供することを目的とする。
 本発明はまた、熱交換チューブの内部に配置する一枚の板状部材を、「ひねる」(捻る)ことによって螺旋状部材を形成する。この螺旋状部材の材料である板状部材は部分的あるいは全体的に長手方向延伸性すなわち一定の長手方向負荷を与えた場合に、中心軸線を中心とする対称的な延伸量の分布を得ることができる性質をもっている。この特性を活用し、中心軸線を回転中心とする螺旋体を容易にかつ高精度に形成することができる流体熱交換ミキシング移送装置を提供することを目的とする。
 本発明は、さらに、前記板状部材の部分的あるいは全体的な長手方向延伸性すなわち一定の長手方向負荷を与えた場合に、中心軸線を中心とする対称的な延伸量の分布を得ることができる性質を活用し、熱交換チューブの内部に螺旋状になった板状部材を配置し、該熱交換チューブを曲げる。その時、螺旋状になった板状部材の中心軸線と熱交換チューブの中心軸線の一致した状態がほぼずれることなく、所望の長さのしかも所望の曲がりを有する流体熱交換ミキシング移送装置を提供することを目的とする。
 本発明はまた、流体熱交換ミキシング移送装置内に固形分が堆積した場合にも、螺旋状部材を引き抜くことによって、従来技術に比較して極めて簡易な作業設備により、少数の現場作業者によって、短時間にしかも高圧水洗浄等の危険作業を行うことなく、ファウリングによる堆積物を除去することができる流体熱交換ミキシング移送装置を提供することを目的とする。
 本発明はまた、生成された液体固体混合物等の流体に、望ましくない重合物等の管付着物が混入する恐れの少ない流体熱交換ミキシング移送装置を提供することを目的とする。
 本発明はさらに、従来技術の高圧水洗浄によって発生する産業廃棄物の排出量に比較して極めて少ない産業廃棄物の排出量である流体熱交換ミキシング移送装置を提供することを目的とする。
 第1発明は、冷媒シェルの内部に、複数の熱交換チューブを互いに平行に配置した流体熱交換ミキシング移送装置において、
 前記熱交換チューブの内部に、前記熱交換チューブの断面を少なくとも2等分割する板状部材が、前記熱交換チューブの中心軸線全長に沿って連続して螺旋状に形成され、
 前記板状部材が、少なくとも両側縁部領域が一定の長手方向の負荷で伸長する長手方向延伸容易性を有し、該長手方向延伸容易性は中心軸線を中心として対称的である板状部材であることを特徴とする流体熱交換ミキシング移送装置である。
 第2発明は、重合反応装置と、該重合反応装置の重合生成物出口部に連結されて熱交換機能を有する冷却流路部とを有する重合体製造装置であって、
 前記冷却流路部は、冷媒シェルの内部に、複数の熱交換チューブを互いに平行に配置し、前記熱交換チューブの内部に、前記熱交換チューブの断面を少なくとも2等分割する板状部材が、前記熱交換チューブの中心軸線全長に沿って連続して螺旋状に配置され、
 前記板状部材が、少なくとも両側縁部領域が一定の長手方向の負荷で伸長する長手方向延伸容易性を有し、該長手方向延伸容易性は中心軸線を中心として対称的である板状部材を螺旋状に形成したものであることを特徴とする重合体製造装置である。
 第3発明は、冷媒シェルの内部に、複数の熱交換チューブを互いに平行に配置した流体熱交換ミキシング移送装置の製造方法において、
 前記熱交換チューブの内部に、前記熱交換チューブの断面を少なくとも2等分割する板状部材を、前記熱交換チューブの中心軸線全長に沿って連続して螺旋状に形成するステップを有し、
 前記板状部材を、少なくとも両側縁部領域が一定の長手方向の負荷で伸長する長手方向延伸容易性を有し、該長手方向延伸容易性は中心軸線を中心として対称的である板状部材を螺旋状に形成することを特徴とする流体熱交換ミキシング移送装置の製造方法である。
 本明細書において、板状部材の長手方向延伸容易性とは、所定の長手方向の負荷によって伸長する性質であって、平板部分には長手方向延伸容易性がないものとする。長手方向延伸容易性があるものとして、長手方向において波状であり横手方向において凹凸のない形状、部分的に切り込みを入れた部分、メッシュシート、ディンプルを有する部分等が例示される。
 第1発明の実施態様は、以下の通りである。
 第1発明において、前記板状部材が、中心軸線領域の長手方向延伸容易性が前記両側縁部領域の長手方向延伸容易性よりも小さくなく延伸し易くないことを特徴とする。
 第1発明において、前記板状部材が、長手方向において波状であり横手方向において凹凸のない板部材を螺旋状に形成されたものであることを特徴とする。
 第1発明において、前記板状部材が、前記熱交換チューブの中心軸線方向に延びた両縁領域に切り込みを入れていることを特徴とする。
 第1発明において、前記板部材が、メッシュシートであり、該メッシュシートは、同一負荷に対し長手方向に延びた中心領域の延伸量より長手方向へ延びた両縁領域の延伸量が大きくなるように編まれていることを特徴とする。
 第1発明において、前記板状部材が、少なくとも前記熱交換チューブの中心軸線方向に延びた両縁領域にディンプルを有することを特徴とする。
 第1発明において、前記板状部材が、ステンレス鋼によって製造されていることを特徴とする。
 第1発明において、前記板状部材が、アルミニュウム合金によって製造されていることを特徴とする。
 第1発明において、前記板状部材が、銅合金によって製造されていることを特徴とする。
 第1発明において、前記板状部材が、チタン合金によって製造されていることを特徴とする。
 第1発明において、前記板状部材が、ニッケル合金によって製造されていることを特徴とする。
 第1発明において、前記板状部材が,その端部を前記剛性溶液外筒にかしめられていることを特徴とする。
 第1発明において、前記溶液が、溶剤と重合生成物の混合溶液であることを特徴とする。
 第3発明の実施態様は、以下の通りである。
 第3発明において、前記板状部材が、中心軸線領域の長手方向延伸容易性が前記両側縁部領域の長手方向延伸容易性よりも小さくなく延伸し易くないことを特徴とする。
 第3発明において、前記板状部材を、長手方向において波状であり横手方向において凹凸のない板部材を、螺旋状に形成することを特徴とする。
 第3発明において、前記板状部材を、前記熱交換チューブの中心軸線方向に延びたる両縁領域に切り込みを入れて螺旋状に形成することを特徴とする。
 第3発明において、前記板部材を、同一負荷に対し長手方向に延びた中心領域の延伸量より長手方向へ延びた両縁領域の延伸量が大きくなるように編まれたメッシュシートを使用し、螺旋状に形成することを特徴とする。
 第3発明において、前記板状部材を、少なくとも前記熱交換チューブの中心軸線方向に延びた両縁領域にディンプルを有する板状部材を使用し、螺旋状に形成すること特徴とする。
 本発明の流体熱交換ミキシング移送装置によれば、被処理流体に効率的に熱交換しかつ被処理流体を攪拌混合し、さらに流体熱交換ミキシング移送装置内の固形分の堆積を大幅に遅らせること等の効果を得ることができる。
 本発明の流体熱交換ミキシング移送装置によればまた、熱交換チューブの内部に配置する一枚の板状部材を、「ひねる」(捻る)ことにより螺旋状部材にし、板状部材は部分的あるいは全体的に長手方向延伸性すなわち一定の長手方向負荷を与えた場合に、中心軸線を中心とする対称的な延伸量の分布を得ることができる特性を持たせ、この特性を活用し、中心軸線を回転中心とする螺旋体を容易にかつ高精度に形成することができる効果を得ることができる。
 本発明の流体熱交換ミキシング移送装置は、さらに、前記板状部材の部分的あるいは全体的な長手方向延伸性すなわち一定の長手方向負荷を与えた場合に、中心軸線を中心とする対称的な延伸量の分布を得ることができる性質を活用し、熱交換チューブの内部に螺旋状になった板状部材を配置し、該熱交換チューブを曲げる。その時、螺旋状になった板状部材の中心軸線と熱交換チューブの中心軸線の一致した状態がほぼずれることなく、所望の長さのしかも所望の曲がりを有する流体熱交換ミキシング移送装置を提供することを目的とする。
 本発明はまた、流体熱交換ミキシング移送装置内に固形分が堆積した場合にも、螺旋状部材を引き抜くことによって、従来技術に比較して極めて簡易な作業設備により、少数の現場作業者によって、短時間にしかも高圧水洗浄等の危険作業を行うことなく、管内に堆積した固形分を除去することができる効果を得ることができる。
 本発明の流体熱交換ミキシング移送装置によればまた、生成された液体固体混合物等の流体に、望ましくない重合物等の管付着物が混入する恐れを少なくすることができる効果を得ることができる。
 本発明の流体熱交換ミキシング移送装置によればさらに、従来技術の高圧水洗浄によって発生する産業廃棄物の排出量に比較して極めて少ない産業廃棄物の排出量である効果を得ることがでる。
 本発明の熱交換ミキシング及び流体移送伝熱装置を好適に実施できるものとして、重合体の製造における重合反応、架橋反応等の化学的操作、脱溶剤、混合等の物理的操作の工程中の溶液移送が挙げられる。また、塗料、接着剤等の重合体を主成分とする組成物の製造等における重合体と他の成分の混合、脱溶剤等の物理的操作の工程中の溶液移送等にも適用できる。
 本発明は、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル系重合体、ウレタン系重合体、塩化ビニル系重合体、塩化ビニリデン系重合体、SBR、酢酸ビニル系重合体等の重合体、或いはこれらを構成する単量体や共重合体重合物製造時の溶液移送に適用され、ウレタンエマルジョン、アクリルエマルジョン等のマルジョンにおける溶液移送にも好ましく適用できるものである。
実施形態の流体熱交換ミキシング移送装置の部分的に切り開いた正面図である。 図1の線II-IIに沿った断面図である。 第1実施形態の流体熱交換ミキシング移送装置の熱交換チューブの断面図である。 第1実施形態の流体熱交換ミキシング移送装置の螺旋状部材の製造説明図である。 溶液の冷却効果の演算ポイントの説明図である。 溶液の冷却効果の演算結果のグラフ図である。 溶液の冷却効果の推定結果のグラフ図である。 溶液の冷却効果の演算結果の温度分布図である。 第1実施形態の流体熱交換ミキシング移送装置の螺旋状部材の変形例である折り曲げ部材の斜視図である。 第1実施形態の流体熱交換ミキシング移送装置の螺旋状部材の変形例である切り込み部材の斜視図である。 第1実施形態の流体熱交換ミキシング移送装置の螺旋状部材の変形例であるエンボス部材の斜視図である。 第1実施形態の流体熱交換ミキシング移送装置の螺旋状部材の変形例であるメッシュ部材の製造方表を示す斜視図である。 第2実施形態の流体熱交換ミキシング移送装置の断面図である。 図13の点線XIVで示す領域の拡大端面図である。 第2実施形態の流体熱交換ミキシング移送装置の剛性混合溶液外筒の断面説明図である。 第2実施形態の流体熱交換ミキシング移送装置の原理説明のための説明参考図である。
(第1実施形態)
 本発明の第1実施形態の流体熱交換ミキシング移送装置を図に基づいて説明する。実施形態の説明における数値は、全て例示である。
 本発明の実施形態の流体熱交換ミキシング移送装置1は、熱交換機能を有し、ポリエチレン中低圧重合法を実施する圧力容器に使用するシェルアンドチューブ型の装置である。シェルアンドチューブ型の熱交換器としては、固定管板式、遊動頭式、U字管式の3タイプが知られている。流体熱交換ミキシング移送装置1は、遊動頭式であって、被熱交換流体の高温・高圧による長尺の熱交換チューブの伸縮を遊動頭蓋の移動によって吸収する。
 流体熱交換ミキシング移送装置1は、図1に示すように、胴体すなわち冷媒シェル10内を熱交換チューブ支持板12によって区切ることによって、被熱交換流体室すなわち溶液室14と冷媒室16を形成している。
 被熱交換流体すなわち溶液Rを収容する溶液室14は、冷媒シェル10の端部をシェルカバー20によって塞いで形成されている。冷媒シェル10の溶液室14のある部分において、下側に溶液入口22が配置され、上側に溶液出口24が形成されている。溶液室14は、区切り板40によって、下側の溶液室高温部14aと下側の溶液室低温部14bとに分けられている。
 溶液Rとして、ノルマルヘキサンと重合体の混合溶液が例示される。
 冷却水等の冷媒Wを収容する冷媒室16は、図1及び図2に示すように、シェル10の端部を冷媒室蓋30によって塞がれている。冷媒シェル10の内部には、例えば約2000本の熱交換チューブ102が互いに平行に配置されている。冷媒室16内において、チューブシート12の反対側には、遊動頭蓋34が配置されている。冷媒室16には、冷媒Wを攪拌するための邪魔板36が配置されている。
 熱交換チューブ102は、冷媒流通部分の長さは10メートルであり、外径が25.4ミリメートル、肉厚が2.0ミリメートルであり、内径が21.4ミリメートルである。
 熱交換チューブ102は、図3に示すように、冷媒シェル10の両端部近傍の内部に固着された熱交換チューブ支持板12に溶接106によって固着されている。
 熱交換チューブ102のそれぞれの内部には、図3に示すように、螺旋状部材202cが配置されている。螺旋状部材202cの幅は、21.30ミリメートルである。螺旋状部材202cの少なくとも一端部は、図3に示すように、熱交換チューブ102の端部に固着するためにかしめられている。
 螺旋状部材202cは、図4(a)に示すように、SUS300系等のステンレス鋼,アルミニュウム合金、銅合金、チタン合金、ニッケル合金等の平板部材202aによって製造される。
 平板部材202aは、図4(b)に示すように、長手方向すなわち中心軸線O方向に延びた方向に、例えばサインカーブをなすような繰り返し凹凸を設ける波板加工を施されて、波板部材202bになる。
 波板部材202bは、図4(c)に示すように、長手方向に延びる中心軸線Oを中心に捻って、螺旋状にして、螺旋状部材202cにする。このとき、中心軸線O上の部分202mは、中心軸線O方向にはほとんど伸びず、他方中心軸線O方向に延びた両縁領域202nは伸びて、全体的に直線状に延びた螺旋状の螺旋状部材202cになる。
 以下に、熱交換チューブ102の内部に、螺旋状部材202c、すなわち該熱交換チューブ102の断面を少なくとも2等分割する金属製の板状部材を、前記熱交換チューブ102の中心軸線O全長に沿って連続して螺旋状に形成したものを配置した場合における、溶液の攪拌状況及び冷却状況について演算によって説明する。
 熱交換チューブ102内に螺旋状部材202cを配置したすなわち螺旋状部材有りの場合と、螺旋状部材無しすなわち螺旋状部材202cを配置しない場合の熱交換チューブ内の剪断速度を演算する。演算の条件は、公知の熱交換器用チューブを使用し、該熱交換チューブの内径は21.4mm、全長400mm、被冷却溶液はn-hexan、入口温度70℃、流速0.6m/s、冷却水温度18℃、螺旋状部材202cは厚さ1mmのSUS304である。溶液Rは、熱交換チューブ102内に自由放出される。
 剪断速度の測定点は、図5に示す5個のポイント1ないし5である。測定点の位置座標(mm)は、表1に示される。
(表1)
 ポイント    X     Y    Z
 ポイント1  1.1    0   37.5
 ポイント2  2.675  0   37.5
 ポイント3  5.35   0   37.5
 ポイント4  8.025  0   37.5
 ポイント5 10.6    0   37.5
Xは熱交換チューブ102の中心からの水平横方向の座標値を示し、Yは熱交換チューブ102の中心からの垂直縦方向の座標値を示し、Zは熱交換チューブ102内の溶液流れ方向の入口からの座標値を示す。
 熱交換チューブ102に溶液を流し始めてから20秒後の各ポイントの剪断速度(1/sec)は、表2に示され、そのグラフは図6に示される。
(表2)
 ポイント   螺旋状部材無し   螺旋状部材有り
 ポイント1    109        0
 ポイント2     36        7
 ポイント3     19       12
 ポイント4     10       19
 ポイント5    228      193
 この場合の図6における螺旋状部材有りのグラフと横軸の挟む面積(左下がり斜線で示す)は、螺旋状部材なしのグラフと横軸の挟む面積(右下がり斜線で示す)の1.53倍となる。
 一方、螺旋状部材の有無の剪断速度(1/sec)に与える影響をさらに詳細に比較するため、螺旋状部材の厚さ1.0mmを考慮して、螺旋状部材の表面から0.1mm離れた位置(X=0.6、Y=0、Z=37.5)のポイントP を、図6のグラフから推定すると、図7に示すようになる。
 図7において、螺旋状部材有りのグラフと横軸の挟む面積(左下がり斜線で示す)は、螺旋状部材無しのグラフと横軸の挟む面積(右下がり斜線で示す)の2.0倍となると推定される。この結果から、本発明の螺旋状部材有りの構造は、従来の螺旋状部材無しの構造に比較して、熱交換チューブ102内の溶液は、熱交換チューブ102内面近くの領域と螺旋状部材表面近くの溶液が入れ替わる作用の発生により攪拌され、熱交換チューブ102内壁への溶液の堆積がより減少することが推定できる。
 次に、溶液の冷却効果に演算する。溶液を交換チューブ102に流入開始してから20秒後のZ=40.0(mm)の断面の温度分布は、図8に示される。図8(a)は螺旋状部材有りの場合を示し、図8(b)は螺旋状部材無しの場合を示す。図8(a)の螺旋状部材は、18℃であるとして演算した。
 次に、溶液の冷却効果について、溶液の平均温度を比較する。冷媒の温度は、18.0℃である。溶液の入口温度は、70℃である。熱交換チューブ102の出口位置すなわちZ=400mmにおける溶液の平均温度は、表3に示す通りである。
(表3)
       螺旋状部材有り    螺旋状部材無し
平均溶液温度  63.9℃      66.8℃
温度差           2.9℃
 この結果から、本発明の螺旋状部材有りの構造は、従来の螺旋状部材無しの構造に比較して、熱交換チューブ102内の溶液がより効率的に冷却され、生産効率が高くなり、かつ熱交換チューブ102内壁への溶液の堆積がより減少することが推定できる。
 次に、螺旋状部材による溶液圧力損失について演算する。熱交換チューブ102の入口から24.5mmの位置すなわちZ=24.5mmの第1位置と、熱交換チューブ102の入口から375mmの位置すなわちZ=375mmの第2位置の圧力は、表4に示す通りである。
(表4)
             螺旋状部材有り    螺旋状部材無し
第1位置の圧力      13530パスカル  3131パスカル
第2位置の圧力      13399パスカル  3069パスカル
第1及び第2位置の圧力差   131パスカル    62パスカル
 この圧力差のエネルギーは、溶液攪乱すなわち溶液攪乱及び溶液冷却に作用していると推定される。従って、同一の溶液攪乱及び溶液冷却を実現するために、熱交換チューブ102の長さは、螺旋状部材有りの場合は、螺旋状部材無しの場合の62/131すなわち約半分の長さにすることができ、設備投資を大きく抑制することができる。
(変形例)
 上述した波板部材202bは、図9に示すように、波板折り返し部分の折り返し曲率が、波板部材202bの波板折り返し部分の折り返し曲率よりも小さい、角張った形状の折り曲げ波板206に替えることもできる。
 平板部材202aは、図10に示すように、平板部材202aの中心軸線O方向に延びた両縁領域210に切り込み212を入れた切り込み平板部材214に替えることもできる。
 平板部材202aは、また、図11(a)に示すように、平板部材202aの全面にエンボス加工により複数のディンプル211を設けた第1ディンプル平板部材220、あるいは、図11(b)に示すように、少なくとも中心軸線Oの両側領域で中心軸線O方向に延びた両縁領域226にエンボス加工によって複数のディンプル211を施した第2ディンプル平板部材222に替えることもできる。
 これらの第1ディンプル平板部材220及び第2ディンプル平板部材222において、中心軸線O上の部分224は、ディンプル211が変形せず、中心軸線O方向にはほとんど伸びない。他方、中心軸線O方向に延びた両縁領域226は、ディンプル211が変形して伸び、全体的に直線状に延びた螺旋状のディンプル螺旋状部材になる。
 平板部材202aは、また、図12に示すように、メッシュ平板部材230に替えることもできる。メッシュ平板部材230は、図12(a)に示すように、平板状のメッシュ板を使用する。メッシュ平板部材230は、図12(b)に示すように、長手方向すなわち中心軸線O方向に延びた方向に繰り返し凹凸を設ける波板加工を施されて、メッシュ波板部材232にする。
 メッシュ波板部材232は、長手方向に延びる中心軸線Oを中心に捻って、螺旋状にして、メッシュ螺旋板にする。このとき、中心軸線O上の部分234は、中心軸線O方向にはその部分の編み目が変わらずほとんど伸びず、他方中心軸線O方向に延びた両縁領域236の編み目が拡大して延び、直線状に延びた螺旋状になる。
(第2実施形態)
 本発明の第2実施形態の流体熱交換ミキシング移送装置を図に基づいて説明する。
 第2実施形態の流体熱交換ミキシング移送装置の熱交換チューブ302は、図13に示すように、冷媒を流通させるための鉄製の剛性冷媒外筒300の内部に、溶媒の中に生成物を含む混合溶液を流通させるためのSUS304製の剛性混合溶液外筒302を互いに平行に配置して構成される。
 剛性混合溶液外筒302の混合溶液流通部分の長さは10メートルであり、図14に示すように、外径が25.4ミリメートル、肉厚が2.0ミリメートルであり、内径が21.4ミリメートルである。
 剛性混合溶液外筒302は、図15に示すように、剛性混合溶液外筒302の両端部近傍の内部に固着された剛性混合溶液外筒支持板304に溶接306によって固着されている。
 剛性混合溶液外筒302のそれぞれの内部には、図14及び図15に示すように、薄肉内筒310が配置されている。薄肉内筒310は、内径が21.30ミリメートルであり、肉厚が0.04ミリメートルである。薄肉内筒310の両端部は、図15に示すように、かしめられて、剛性混合溶液外筒302の端部の上に固着される。
 以下に、薄肉内筒310が、移送される溶液、例えば重合生成物と溶媒の混合溶液の温度及び圧力で伸張し、破断することなく剛性混合溶液外筒302の内面に接し、さらに除圧すなわち溶液を除去することにより薄肉内筒310が縮径して元の直径に戻ること、及び、移送される溶液すなわち液体固体混合溶液の温度及び圧力で伸張した時、薄肉内筒310が剛性混合溶液外筒302によりバックアップされるすなわち薄肉内筒310が剛性混合溶液外筒302によって周囲が支えられることを、演算によって説明する。
 薄肉円筒310のフープ力すなわち周方向の引っ張り応力σiN/m2は、図16に示すように、内径Dmm、肉厚tmm、長さlmm、内圧Pパスカルとするとき、
  σi=pDl/2tl=PD/2t ・・・(1)
である。例えば、株式会社技術評論社平成24年5月25日発行「入門材料力学」(有光隆著)第70頁第8行の「円周方向に発生する引張り応力」に記載されているとおりである。
 ここで、SUS304の許容引張り応力は、JISG4303によると、40℃において194メガパスカル、75℃において180メガパスカル、100℃において171メガパスカルである。
 工業上多く見られるような、被熱交換流体室高温部14aの温度が70℃、1.20メガパスカルであり、被熱交換流体室低温部14bの温度が57℃、1.14メガパスカルであることを考慮し、以下の値により演算する。
 剛性混合溶液外筒102の肉厚は、2.0ミリメートルである。剛性混合溶液外筒102の内径は、21.40ミリメートルである。薄肉内筒110は、外径が21.37ミリメートルである。薄肉内筒110の肉厚は、0.04ミリメートルである。薄肉内筒110の内圧は、1.20メガパスカルである。剛性混合溶液外筒102及び薄肉内筒110の材料であるSUS304のヤング率は、200ギガパスカルである。
  剛性混合溶液外筒102の内面と薄肉内筒110の外面のクリアランスすなわち間隔は、0.03ミリメートルの半分の0.015ミリメートルである。
(薄肉内筒が剛性混合溶液外筒に密着)
フープ力 σi=PD/2t
       =(1.2MPa×21.30mm)/(2×0.04mm)
       =319.5(メガパスカル)
フックの法則により
    歪みε=応力σi /ヤング率
       =319.5MPa/200GPa
       =0.0016(0.16%)
従って、薄肉内筒110の外径は、内圧によって
    21.37mm×0.0016=0.034mm
増加することになる。この値は、内圧によって薄肉内筒310が剛性混合溶液外筒302に密着する可能性を示す。
(剛性溶液外筒の薄肉内筒膨張のバックアップ)
 剛性溶液外筒102に、内圧1.20メガパスカルが負荷されたと仮定する。
フープ力 σi=PD/2t
       =(1.2MPa×23.40mm)/(2×2.0mm)
       =7.02MPa
フックの法則により
    歪みε=応力σi /ヤング率
       =7.02 MPa/200GPa
       =0.000
従って、剛性混合溶液外筒302に、内圧1.20メガパスカルが負荷されたとしても、剛性混合溶液外筒302はほとんど伸張せず、薄肉内筒310のバックアップが可能である。
(薄肉内筒の縮径)
 「東京都立産業技術研究センター研究報告、第5号、2010年」(第78頁)等に記載された「0.2%耐力」は、ある圧力を負荷して除圧した時の残留歪みが0.2%以内であることを示す。同論文によると、SUS304の0.2%耐力は、314MPaである。すなわち、314MPaは、SUS304においては、降伏値以上の値である。ただし、本実施形態において、剛性混合溶液外筒302と薄肉内筒310のクリアランスが0.2%以内であれば、クリープ現象や金属疲労によって残留歪みが発生したとしても0.2%以内に留まる。仮に、剛性混合溶液外筒302と薄肉内筒310のクリアランスが0.1%以内であれば、薄肉内筒310は、剛性混合溶液外筒302に密着し、剛性混合溶液外筒302にバックアップされ、除圧後回復して原寸に戻る。
 薄肉内筒310の内部には、図15に示すように、上述した第1実施形態で使用した 螺旋状部材202と同一の構成の螺旋状部材400が配置される。
 次に、本発明の流体熱交換ミキシング移送装置1の使用方法について説明する。最初に、剛性混合溶液外筒302に薄肉内筒310を挿入する。この際、薄肉内筒310が例えば 514グラムと軽いことに加えて、剛性混合溶液外筒302の内面と薄肉内筒310の外面との間に空間があることから、例えば10メートルに及ぶ長いものでも容易に挿入することができる。挿入された薄肉内筒310は、そのままでも良いが、好ましくは、かしめ加工等によって薄肉内筒310の両端部を剛性混合溶液外筒302の両端部に固着する。
 この状態で薄肉内筒310内に重合生成物と溶媒の混合溶液を流入させれば、混合溶液の圧力によって薄肉内筒310が伸張して、薄肉内筒310の全外周面が剛性混合溶液外筒302の内周面に接する。その結果、薄肉内筒310の全外周面が剛性混合溶液外筒302の内周面によって支えられる。さらに、薄肉内筒310の全外周面が剛性混合溶液外筒302の内周面に接することにより、薄肉内筒310内を移送される混合溶液は、剛性混合溶液外筒302と剛性冷媒外筒300の間を流動する冷媒によって効率的に冷却することができる。
 流体熱交換ミキシング移送装置の長期間の連続作動により、薄肉内筒310内に重合体ファウリングが形成された場合、流体熱交換ミキシング移送装置への混合溶液の流入を止める。次に、薄肉内筒310より螺旋状部材400を引き抜く。一方、重合生成物の流入を止めることにより薄肉内筒310内部は、常圧に戻り、薄肉内筒310が縮小し、元の直径に戻る。この結果、剛性混合溶液外筒302の内周面と薄肉内筒310の外周面の間に空間ができ、薄肉内筒310を剛性混合溶液外筒302から容易に取り出すことができる。
 取り出した螺旋状部材400及び薄肉内筒310は、工場等作業しやすい場所で重合体堆積物を除去する。重合体堆積物を除去された薄肉内筒110は、上述した方法によって剛性混合溶液外筒302に入れる。
 予備の螺旋状部材400及び薄肉内筒110を準備して、重合体堆積物が形成された螺旋状部材400及び薄肉内筒310を該予備の螺旋状部材400及び薄肉内筒110に置換することは、重合体堆積物の高所除去作業を安全に且つ短時間に行うことであり、重合体の生産効率を高めるために極めて有効である。
R     混合溶液
W     冷媒
1     流体熱交換ミキシング移送装置
10    冷媒シェル
12    熱交換チューブ支持板
14    溶液室
16    冷媒室
20    シェルカバー
22    溶液入口
24    溶液出口
30    冷媒室蓋
102   熱交換チューブ
202a  平板部材
202b  波板部材
202c  螺旋状部材
206   折り曲げ波板
220   第1ディンプル螺旋状部材
222   第2ディンプル螺旋状部材
230   メッシュ螺旋板
300   剛性冷媒外筒
302   剛性混合溶液外筒
304   剛性混合溶液外筒支持板
306   溶接
310   薄肉内筒

Claims (20)

  1.  冷媒シェルの内部に、複数の熱交換チューブを互いに平行に配置した流体熱交換ミキシング移送装置において、
     前記熱交換チューブの内部に、前記熱交換チューブの断面を少なくとも2等分割する板状部材が、前記熱交換チューブの中心軸線全長に沿って連続して螺旋状に形成され、
     前記板状部材が、少なくとも両側縁部領域が一定の長手方向の負荷で伸長する長手方向延伸容易性を有し、該長手方向延伸容易性は中心軸線を中心として対称的である板状部材であることを特徴とする流体熱交換ミキシング移送装置。
  2.  前記板状部材が、中心軸線領域の長手方向延伸容易性が前記両側縁部領域の長手方向延伸容易性よりも小さくなく延伸し易くないことを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  3.  前記板状部材が、長手方向において波状であり横手方向において凹凸のない板部材を螺旋状に形成されたものであることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  4.  前記板状部材が、前記熱交換チューブの中心軸線方向に延びた両縁領域に切り込みを入れていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  5.  前記板部材が、メッシュシートであり、該メッシュシートは、同一負荷に対し長手方向に延びた中心領域の延伸量より長手方向へ延びた両縁領域の延伸量が大きくなるように編まれていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  6.  前記板状部材が、少なくとも前記熱交換チューブの中心軸線方向に延びた両縁領域にディンプルを有することを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  7.  前記板状部材が、ステンレス鋼によって製造されていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  8.  前記板状部材が、アルミニュウム合金によって製造されていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  9.  前記板状部材が、銅合金によって製造されていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  10.  前記板状部材が、チタン合金によって製造されていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  11.  前記板状部材が、ニッケル合金によって製造されていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  12.  前記板状部材が,その端部を前記剛性溶液外筒にかしめられていることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  13.  前記溶液が、溶剤と重合生成物の混合溶液であることを特徴とする請求項1に記載の流体熱交換ミキシング移送装置。
  14.  重合反応装置と、該重合反応装置の重合生成物出口部に連結されて熱交換機能を有する冷却流路部とを有する重合体製造装置であって、
     前記冷却流路部は、冷媒シェルの内部に、複数の熱交換チューブを互いに平行に配置し、前記熱交換チューブの内部に、前記熱交換チューブの断面を少なくとも2等分割する板状部材が、前記熱交換チューブの中心軸線全長に沿って連続して螺旋状に配置され、
     前記板状部材が、少なくとも両側縁部領域が一定の長手方向の負荷で伸長する長手方向延伸容易性を有し、該長手方向延伸容易性は中心軸線を中心として対称的である板状部材を螺旋状に形成したものであることを特徴とする重合体製造装置。
  15.  冷媒シェルの内部に、複数の熱交換チューブを互いに平行に配置した流体熱交換ミキシング移送装置の製造方法において、
     前記熱交換チューブの内部に、前記熱交換チューブの断面を少なくとも2等分割する板状部材を、前記熱交換チューブの中心軸線全長に沿って連続して螺旋状に形成するステップを有し、
     前記板状部材を、少なくとも両側縁部領域が一定の長手方向の負荷で伸長する長手方向延伸容易性を有し、該長手方向延伸容易性は中心軸線を中心として対称的である板状部材を螺旋状に形成することを特徴とする流体熱交換ミキシング移送装置の製造方法。
  16.  前記板状部材が、中心軸線領域の長手方向延伸容易性が前記両側縁部領域の長手方向延伸容易性よりも小さくなく延伸し易くないことを特徴とする請求項15に記載の流体熱交換ミキシング移送装置の製造方法。
  17.  前記板状部材を、長手方向において波状であり横手方向において凹凸のない板部材を、螺旋状に形成することを特徴とする請求項15に記載の流体熱交換ミキシング移送装置の製造方法。
  18.  前記板状部材を、前記熱交換チューブの中心軸線方向に延びたる両縁領域に切り込みを入れて螺旋状に形成することを特徴とする請求項15に記載の流体熱交換ミキシング移送装置の製造方法。
  19.  前記板部材を、同一負荷に対し長手方向に延びた中心領域の延伸量より長手方向へ延びた両縁領域の延伸量が大きくなるように編まれたメッシュシートを使用し、螺旋状に形成することを特徴とする請求項15に記載の流体熱交換ミキシング移送装置。
  20.  前記板状部材を、少なくとも前記熱交換チューブの中心軸線方向に延びた両縁領域にディンプルを有する板状部材を使用し、螺旋状に形成すること特徴とする請求項15に記載の流体熱交換ミキシング移送装置。
PCT/JP2016/052718 2015-01-30 2016-01-29 流体熱交換ミキシング移送装置 WO2016121949A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-016275 2015-01-30
JP2015016275A JP2016148459A (ja) 2015-01-30 2015-01-30 溶液移送冷却装置及びその製造方法
JP2015227929 2015-11-20
JP2015-227929 2015-11-20
JP2015-227930 2015-11-20
JP2015227930 2015-11-20

Publications (1)

Publication Number Publication Date
WO2016121949A1 true WO2016121949A1 (ja) 2016-08-04

Family

ID=56543551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052718 WO2016121949A1 (ja) 2015-01-30 2016-01-29 流体熱交換ミキシング移送装置

Country Status (1)

Country Link
WO (1) WO2016121949A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150053390A1 (en) * 2013-08-20 2015-02-26 Ingersoll-Rand Company Compressor system with thermally active heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510029U (ja) * 1978-06-30 1980-01-22
JPS55100895U (ja) * 1978-12-28 1980-07-14
JPS59195388U (ja) * 1983-06-10 1984-12-25 信濃工業株式会社 熱交換管
JPS59231397A (ja) * 1983-06-10 1984-12-26 Matsushita Refrig Co タ−ビユレ−タ
JPS606994U (ja) * 1983-06-21 1985-01-18 シャープ株式会社 熱交換器
JPH02100075U (ja) * 1989-01-26 1990-08-09
JP2008179815A (ja) * 2006-12-28 2008-08-07 Mitsubishi Chemicals Corp 付着物失活処理方法
JP2010264348A (ja) * 2009-05-12 2010-11-25 Noritake Co Ltd スタティックミキサおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510029U (ja) * 1978-06-30 1980-01-22
JPS55100895U (ja) * 1978-12-28 1980-07-14
JPS59195388U (ja) * 1983-06-10 1984-12-25 信濃工業株式会社 熱交換管
JPS59231397A (ja) * 1983-06-10 1984-12-26 Matsushita Refrig Co タ−ビユレ−タ
JPS606994U (ja) * 1983-06-21 1985-01-18 シャープ株式会社 熱交換器
JPH02100075U (ja) * 1989-01-26 1990-08-09
JP2008179815A (ja) * 2006-12-28 2008-08-07 Mitsubishi Chemicals Corp 付着物失活処理方法
JP2010264348A (ja) * 2009-05-12 2010-11-25 Noritake Co Ltd スタティックミキサおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150053390A1 (en) * 2013-08-20 2015-02-26 Ingersoll-Rand Company Compressor system with thermally active heat exchanger
US10359240B2 (en) * 2013-08-20 2019-07-23 Ingersoll-Rand Company Compressor system with thermally active heat exchanger

Similar Documents

Publication Publication Date Title
JP5953619B2 (ja) 溶液移送冷却装置
US9605913B2 (en) Turbulence-inducing devices for tubular heat exchangers
US20090000775A1 (en) Shell and tube heat exchanger
JPH04227483A (ja) Hfアルキレーション法に用いられる熱交換器
JP3208713U (ja) 熱交換ミキシング装置及び溶液移送冷却装置
WO2018124980A2 (en) A heat exchanger for exchanging heat of fluids having different temperatures
WO2016121949A1 (ja) 流体熱交換ミキシング移送装置
US20120238779A1 (en) Optimized introduction of the starting materials for a process for preparing aromatic amines by hydrogenation of nitroaromatics
CN2864552Y (zh) 螺旋折流板高效换热器
EP4079398A1 (en) Flow reactor
JP6675132B2 (ja) 熱交換ミキシング装置及び溶液移送冷却装置
WO2017085944A1 (ja) 熱交換ミキシング装置及び溶液移送冷却装置
JP2016148459A (ja) 溶液移送冷却装置及びその製造方法
US20210187471A1 (en) High pressure strippers for use in urea plants
EP2991757A1 (en) Jacketed autoclave device for production of polyamides
US11992789B2 (en) High pressure strippers for use in urea plants
US20150126771A1 (en) Multi-phase reactor system with slinger liquid reflux distributor
JP7209874B2 (ja) ストリッパを備えた尿素プラント及びストリッピング方法
EP3811018B1 (en) Heat exchanger
CN110260692B (zh) 一种三角形截面放缩折流板管壳式换热器
EP4330227A1 (en) Chemical reactor with internal static mixers
EP3079805A1 (en) Tube in tube continuous glass-lined reactor
JP6171397B2 (ja) 酸性溶液の添加方法
EP4200573A1 (en) Baffles for heat exchangers
Nasr Identification and Application of the Benefit of Heat Transfer Enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743552

Country of ref document: EP

Kind code of ref document: A1