WO2016121523A1 - Solid-state image pickup element and control method, and electronic equipment - Google Patents

Solid-state image pickup element and control method, and electronic equipment Download PDF

Info

Publication number
WO2016121523A1
WO2016121523A1 PCT/JP2016/051082 JP2016051082W WO2016121523A1 WO 2016121523 A1 WO2016121523 A1 WO 2016121523A1 JP 2016051082 W JP2016051082 W JP 2016051082W WO 2016121523 A1 WO2016121523 A1 WO 2016121523A1
Authority
WO
WIPO (PCT)
Prior art keywords
ramp
current source
line
ramp signal
signal
Prior art date
Application number
PCT/JP2016/051082
Other languages
French (fr)
Japanese (ja)
Inventor
裕治 源代
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016121523A1 publication Critical patent/WO2016121523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to a solid-state imaging device, a control method, and an electronic device, and more particularly, to a solid-state imaging device, a control method, and an electronic device that can sufficiently shorten a ramp signal settling time.
  • SS-ADC Single slope column ADC
  • CMOS Complementary Metal-Oxide Semiconductor
  • a comparator is arranged for each column, and in each comparator, the voltage of the pixel signal supplied from the pixel is compared with the voltage of the ramp signal common to all the comparators. . Since the time until the comparison result is inverted differs depending on the voltage of the pixel signal, the digital value can be obtained by counting the time.
  • a ramp generator that generates a ramp signal used in such an SS-ADC and supplies it to all the comparators via the ramp line needs to drive a large number of capacitive loads distributed throughout the ramp line. . Therefore, the waveform becomes dull at the start of ramp signal generation, and a large settling time is required until a constant slew rate is reached.
  • the settling time and the settling level are different between a position (near end) near the lamp generating portion of the lamp line and a position far from the lamp generating portion (far end).
  • the present disclosure has been made in view of such a situation, and makes it possible to sufficiently shorten the ramp signal settling time.
  • a solid-state imaging device includes a plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels, a ramp signal, and a plurality of A / D conversion units.
  • a ramp generator that outputs to each, a ramp line that is connected to each of the plurality of A / D converters from the ramp generator, and is connected to a far end of the ramp line from the ramp generator And a first current source that can be turned on and off.
  • a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, and a ramp signal are generated and output to each of the plurality of A / D conversion units
  • a ramp generator that is connected to each of the plurality of A / D converters in parallel from the ramp generator, and an on / off connected to a far end of the ramp line from the ramp generator.
  • a possible first current source is provided.
  • a control method includes a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, a ramp signal, and each of the plurality of A / D conversion units Connected to the far end of the ramp line from the ramp generation unit, the ramp line that is output from the ramp generation unit, the lamp line is connected to each of the plurality of A / D conversion units in parallel,
  • a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, and a ramp signal are generated and output to each of the plurality of A / D conversion units
  • a ramp generator that is connected to each of the plurality of A / D converters in parallel from the ramp generator, and an on / off connected to a far end of the ramp line from the ramp generator.
  • An electronic apparatus includes a plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels, a ramp signal, and each of the plurality of A / D conversion units. Connected to the far end of the ramp line from the ramp generation unit, the ramp line that is output from the ramp generation unit, the lamp line is connected to each of the plurality of A / D conversion units in parallel, And a first current source that can be turned on and off.
  • a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, and a ramp signal are generated and output to each of the plurality of A / D conversion units
  • a ramp generator that is connected to each of the plurality of A / D converters in parallel from the ramp generator, and an on / off connected to a far end of the ramp line from the ramp generator.
  • a possible first current source is provided.
  • imaging can be performed. According to the first aspect of the present disclosure, it is possible to sufficiently shorten the ramp signal settling time.
  • the solid-state imaging device can be controlled. According to the second aspect of the present disclosure, the solid-state imaging device can be controlled so as to sufficiently shorten the ramp signal settling time.
  • FIG. 7 is a graph obtained by enlarging a voltage waveform in the vicinity of the start of ramp signal generation in the graphs of FIGS. 4 and 6. It is an image figure explaining control of the control part at the time of return from P phase offset.
  • FIG. 2 is a graph showing a voltage waveform example of a simulation result of a ramp signal when two current sources are not connected to a ramp line and a return from a P-phase offset of the CMOS image sensor of FIG. 1. It is a figure which shows the 2nd detailed structural example of the column process part of FIG. It is a figure which shows the 3rd detailed structural example of the column process part of FIG. It is a figure which shows the structural example of 2nd Embodiment of the CMOS image sensor as a solid-state image sensor to which this indication is applied. It is a figure which shows the structural example of the A / D process part of FIG. It is a block diagram showing an example of composition of an embodiment of an imaging device as electronic equipment to which this indication is applied.
  • FIG. 1 is a diagram illustrating an outline of the configuration of a first embodiment of a CMOS image sensor as a solid-state imaging device to which the present disclosure is applied.
  • the CMOS image sensor 10 includes a pixel region 11, a pixel driving line 12, a vertical signal line 13, a vertical driving unit 14, a column processing unit 15, a horizontal driving unit 17, a signal processing unit 18, and the like, which are not shown in a semiconductor substrate such as a silicon substrate. It is formed on a substrate (chip).
  • pixels 11 ⁇ / b> A having photoelectric conversion elements that generate and store charges corresponding to the amount of incident light are two-dimensionally arranged in a matrix to perform imaging.
  • pixel drive lines 12 are formed for each row with respect to the matrix-like pixels 11A, and vertical signal lines 13 are formed for each column.
  • the vertical drive unit 14 includes a shift register, an address decoder, and the like, and drives each pixel 11A in the pixel area 11 in units of rows. One end of the pixel drive line 12 is connected to an output end (not shown) corresponding to each row of the vertical drive unit 14. Although a specific configuration of the vertical driving unit 14 is not illustrated, the vertical driving unit 14 has two scanning systems, a reading scanning system and a sweeping scanning system.
  • the readout scanning system sequentially selects each row so that pixel signals obtained as a result of imaging by each pixel 11A are sequentially read in units of rows, and outputs a selection signal or the like from an output terminal connected to the pixel drive line 12 of the selected row.
  • the pixels 11 ⁇ / b> A in the row selected by the readout scanning system read out the electrical signals of the charges accumulated in the photoelectric conversion elements as pixel signals and supply them to the vertical signal lines 13.
  • the sweep scanning system sweeps (resets) unnecessary charges from the photoelectric conversion elements, and resets from the output terminal connected to the pixel drive line 12 of each row prior to the scanning of the readout system by the time of the shutter speed. Output a signal.
  • electronic shutter operation refers to an operation in which the charge of the photoelectric conversion element is discarded and exposure is newly started (charge accumulation is started).
  • the column processing unit 15 is an SS-ADC, and includes a ramp generation unit 15A, an ADC (Analog Digital Converter) 15B for each column of the pixels 11A in the pixel region 11, and the like.
  • the ramp generation unit 15A is a DAC (Digital Analog Converter), for example, and generates a ramp signal and outputs it to each ADC 15B.
  • DAC Digital Analog Converter
  • the ADC 15B includes a comparator 31 and a counter latch 32.
  • the ADC 15B first performs A / D conversion on the reset level signal (P phase) output from the pixel 11A in the selected row of the corresponding column through the vertical signal line 13, and then, from the pixel 11A to the vertical signal line 13 A / D conversion is performed on the pixel signal (D-phase) output through.
  • the ADC 15B performs correlated double sampling by subtracting the P-phase digital data from the D-phase digital data obtained as a result of the A / D conversion.
  • the comparator 31 of the ADC 15B first compares the ramp signal generated by the ramp generator 15A with the reset level signal.
  • the counter latch 32 counts the comparison time of the comparator 31 until the comparison result is switched, and holds the count result as digital data after A / D conversion of the reset level signal.
  • the comparator 31 compares the ramp signal with the pixel signal.
  • the counter latch 32 subtracts the comparison time of the comparator 31 until the comparison result is switched from the digital data of the held reset level signal.
  • the counter latch 32 sets the count result of the comparison time of the comparator 31 until the comparison result is switched as digital data after A / D conversion of the pixel signal, and subtracts it from the digital data of the reset level signal.
  • the counter latch 32 holds the subtraction result as a correlated double sampling result.
  • the horizontal drive unit 17 includes a shift register, an address decoder, and the like, and selects the ADC 15B of the column processing unit 15 in order. By the selective scanning by the horizontal driving unit 17, the correlated double sampling results held by the counter latches 32 of the column processing unit 15 are sequentially output to the signal processing unit 18.
  • the signal processing unit 18 performs various signal processing such as addition processing on the correlated double sampling result output from the counter latch 32.
  • the signal processing unit 18 outputs digital data of the pixel signal after signal processing.
  • FIG. 2 is a diagram illustrating a first detailed configuration example of the column processing unit 15 of FIG.
  • the ramp generator 15A includes a ramp signal generating current source 51 and a resistor 52.
  • the ramp generation unit 15A generates a ramp signal by controlling the current flowing through the resistor 52 using the ramp signal generation current source 51 according to the control of the control unit 63.
  • the ramp signal generation current source 51 of the ramp generation unit 15 ⁇ / b> A is connected to a power supply, and supplies the current of the current value I ramp set by the control unit 63 to the resistor 52.
  • Resistor 52 is the resistance of the resistance value R o, electric current supplied from the ramp signal generator for the current source 51 to GND.
  • the current value I ramp is set so as to gradually decrease from a predetermined value, for example, when the ramp signal is generated. As a result, the voltage at the contact point P between the ramp signal generating current source 51 and the resistor 52 becomes a voltage having a ramp waveform that gradually decreases.
  • the lamp generator 15A outputs the ramp signal at the contact point P between the ramp signal generating current source 51 and the resistor 52 to all the ADCs 15B via the ramp line (output wiring) 60.
  • the lamp wire 60 connects the contact P and the current source 61 (first current source). That is, the ramp line 60 exits from the ramp generator 15A. Further, the current source 61 is connected to a position Q of an end portion (far end) opposite to the end portion (near end) connected to the contact P of the lamp wire 60.
  • the current source 61 switches the operation of whether or not to pass a DC current having a preset current value Ife between the lamp line 60 and GND according to the control of the control unit 63.
  • the current source 61 is configured to be turned on / off using a current mirror circuit or the like.
  • the current value I fe is positive in the direction of flowing into the lamp line 60. Therefore, when the current value I fe is negative, direct current flows out from the lamp line 60.
  • Each ADC 15B is connected to the ramp line 60 in parallel.
  • a current source 62 (second current source) is connected to a position (near-end side position) R between the ADC 15B and the contact P connected to the lamp line 60 at a position closest to the contact P of the lamp line 60. Is done.
  • the current source 62 switches the operation of whether or not to pass a DC current having a preset current value Ine between the lamp line 60 and the power source according to the control of the control unit 63.
  • the current source 62 is configured to be turned on / off using a current mirror circuit or the like. The direction in which the current value I ne flows into the lamp line 60 is positive. Therefore, when the current value Ine is negative, the direct current flows out from the lamp line.
  • the controller 63 controls the ramp signal generating current source 51, the current source 61, and the current source 62. Specifically, the control unit 63 sets the current value I ramp of the ramp signal generating current source 51. In addition, the control unit 63 controls on and off of the operations of the current source 61 and the current source 62.
  • the current source 61 is connected to the ramp generator 15A of the lamp line 60 at the position Q farthest from the ADC 15B farthest from the ADC 15B, and the current source 61 is positioned at the position R closer to the ADC 15B closest to the lamp generator 15A. 62 is connected.
  • the current value I fe and the current value Ine are determined based on characteristics unique to the lamp line 60, such as the wiring resistance and parasitic capacitance of the lamp line 60, and the resistance value Ro , for example, unique to the lamp line 60. This is a value that minimizes the settling time (optimizes the settling characteristic inherent to the ramp line 60).
  • the current value I fe and the current value I ne during ramp signal generation, wiring resistance and parasitic capacitance of the lamp line 60 is determined based such as the resistance value R o, proportional to the slew rate of the ramp signal
  • the value to be The current value I fe (current value I ne ) at the time of recovery from the P-phase offset is a value unique to the lamp line 60 determined based on the wiring resistance, parasitic capacitance, resistance value Ro, etc. of the lamp line 60.
  • the coefficient determined by the period during which the current source 61 (current source 62) is off is multiplied by the transition potential difference of the lamp line 60.
  • the current source 61 is connected to the position Q of the lamp line 60 that is the farthest from the ADC 15B to the ramp generating unit 15A, but the connecting position of the current source 61 is the ADC 15B that is the farthest from the ramp generating unit 15A. If it is near, it may be a little away. Similarly, the connection position of the current source 62 may be slightly away from the ADC 15B as long as it is in the vicinity of the ADC 15B closest to the lamp generating unit 15A.
  • the current source 62 may be incorporated in the lamp generator 15A. Further, the CMOS image sensor 10 may include only one of the current source 61 and the current source 62.
  • FIG. 3 is an image diagram for explaining the control of the control unit 63 of FIG. 2 when generating a ramp signal.
  • the horizontal axis represents time
  • the vertical axis represents the current value.
  • the thick solid line, the alternate long and short dash line, and the thin solid line represent the current value I ramp , the current value of the current source 62, and the current value of the current source 61, respectively.
  • the control unit 63 starts to gradually reduce the current value I ramp from the predetermined value I ramp, max . Thereby, the generation of the ramp signal is started.
  • the control unit 63 ends the reduction of the current value I' ramp. Thereby, the generation of the ramp signal is completed.
  • the control unit 63 turns on the current source 61 from the time t 1 that is the start time of the ramp signal generation to the time t 2 that is the end time of the ramp signal generation, and turns the current source 62 on. Turn off.
  • the current value of the current source 62 changes from a preset positive current value Ine at the on time to a current value 0 at the off time. That is, there is no current flowing into the lamp line 60 from the current source 62 when the current source 62 is turned on.
  • the current value of the current source 62 changes in the minus direction, that is, in the direction of drawing from the lamp line 60, the voltage at the contact P changes in the minus direction.
  • the current value of the current source 61 changes from the current value 0 at the off time to the negative current value I fe that is set at the on time in advance. That is, current is drawn from the lamp line 60 to the current source 61.
  • the current value of the current source 61 changes in the minus direction, that is, in the direction of drawing from the lamp line 60, the voltage at the contact P changes in the minus direction.
  • the control unit 63 turns off the current source 61 and turns on the current source 62.
  • the current value of the current source 62 returns from the current value 0 at the off time to the positive current value Ine at the on time.
  • the current value of the current source 61 returns from the negative current value Ife when the current source 61 is on to the current value 0 when it is off.
  • the current is supplied from the current source 62 to the resistor 52 before the start of the generation of the ramp signal. Good.
  • the current source 62 is connected to GND, and the current value Ine is a negative value. Then, from time t 1 to time t 2 , the current source 62 is turned on, and current is drawn from the lamp line 60 to the current source 62.
  • the current is not supplied from the current source 61 to the resistor 52 before the start of the ramp signal generation.
  • the ramp generator 15A is configured by a DAC in which an output resistor is connected to GND.
  • a current may be supplied.
  • the current source 61 is connected to the power source, and the current value Ife is a positive value. Then, the current source 61 is turned off from the time t 1 to the time t 2 , and the current flowing into the lamp line 60 when the current source 61 is turned on disappears.
  • the factor of the effect of reducing the settling time of the ramp signal is the amount of change in current due to the on / off of the current source 61 and the current source 62. Therefore, the current value of the current source 61 and the current value of the current source 62 are the time t 1. Any value can be used as long as the current changes from the ramp line 60 in the direction from which the current is drawn from the time t 2 to the time t 2 .
  • FIG. 4 is a graph showing a voltage waveform example of a simulation result of a ramp signal when generating a ramp signal of a CMOS image sensor in which the current source 61 and the current source 62 are not connected to the ramp line 60.
  • FIG. 5 is a graph showing an example of a voltage waveform of a simulation result of a ramp signal when generating a ramp signal of a CMOS image sensor in which only the current source 62 is connected to the lamp line 60.
  • FIG. 6 is a graph showing an example of a voltage waveform of a simulation result of the ramp signal when the ramp signal of the CMOS image sensor 10 is generated
  • FIG. 7 is a start of generation of the ramp signal of the graphs of FIGS. 4 and 6. It is the graph which expanded the voltage waveform near the hour.
  • the horizontal axis represents time
  • the vertical axis represents the voltage of the ramp signal.
  • the solid line represents the waveform of the ramp signal near the position R of the ramp line 60
  • the rough dotted line represents the waveform of the ramp signal near the position Q
  • the fine dotted line represents the position R and the position.
  • the waveform of the ramp signal near the middle of Q is shown.
  • a thin solid line, a thin coarse dotted line, and a thin fine dotted line are a solid line, a coarse dotted line, and a fine dotted line near the start of ramp signal generation in FIG. 4, respectively, and are a thick solid line, a thick coarse dotted line, and a thick dotted line.
  • the fine dotted lines are a solid line, a rough dotted line, and a fine dotted line near the start of ramp signal generation in FIG.
  • the total load capacitance C of the lamp line 60 is set to 500 pF
  • the total wiring resistance R is set to 200 ⁇
  • the resistance value R o of the resistor 52 was 100 ⁇
  • the slew rate k of the ramp signal was 500 kV / s.
  • the wiring length is not necessary as a simulation parameter, and the waveform of the ramp signal is determined by the total load capacitance C and the total wiring resistance R of the lamp line 60. Note that the total load capacitance C includes not only the actual load but also the parasitic capacitance.
  • the ramp signal settling time T 1 is longer than the ramp signal settling time T 1 ′ in the vicinity of the position R close to the ramp generating unit 15A.
  • a current value I ne is -200Myuei, when the current source 62 is turned off at the time of generation of the ramp signal, as shown in FIG. 5
  • the settling time T 2 of the ramp signal in the vicinity of the position Q far from the ramp generating unit 15A is 100 ns to 200 ns, which is shorter than the settling time T 1 .
  • the current value I ne of ⁇ 200 ⁇ A is the value described in Japanese Patent Application Laid-Open No. 2011-259407. However, when the current value I ne is ⁇ 200 ⁇ A, current flows from the lamp line 60 after settling. .
  • the absolute value of the current value I ne that minimizes the settling time is greater than 200 ⁇ A.
  • the voltage waveform of the ramp signal near the position between the position R and the position Q is linear, and the voltage waveform of the ramp signal near the position R and the voltage waveform of the ramp signal near the position Q are the position R And the voltage waveform of the ramp signal in the vicinity of the intermediate position between the position Q and the position close to the vertical symmetry.
  • a current value I fe is -121Myuei, the current value I ne -141 ⁇ A, when the current source 61 when generating the ramp signal is turned on, the current source 62 is turned off, FIGS. 6 and As shown in FIG. 7, the settling time T 3 of the ramp signal near the position R, the position Q, and the position between the position R and the position Q of the ramp line 60 is significantly shorter than the settling time T 1. 10ns or less.
  • the current is drawn from the ramp line 60 by the current source 61 and the current is drawn from the ramp line 60 by the current source 62.
  • the delay of the voltage change of the ramp signal near the position Q far from the lamp generator 15A and near the middle between the position R and the position Q is further shortened.
  • the voltage of the ramp signal at each position converges immediately, the voltage waveform does not shift back. Accordingly, the ramp signal settling time T 3 is shorter than the settling time T 2 .
  • the voltage waveforms of the ramp signals near the position R near the lamp generating unit 15A and the position near the position Q are almost overlapped. Furthermore, the voltage of the ramp signal near the intermediate position between the position R and the position Q is the highest, which is ideal.
  • the current source 61 and the current source 62 provide both the current source 61 and the current source 62 with a potential difference in the ramp line 60 after settling. Compared to a CMOS image sensor that does not, it is roughly 1/4 size. This increases the voltage range (P-phase margin) of the ramp signal that can be used for P-phase A / D conversion.
  • the settling time of the ramp signal can be sufficiently shortened. That is, the settling of the ramp signal can be sufficiently accelerated only by turning on / off the current source 61 and the current source 62.
  • the delay of the voltage change of the ramp signal near the position Q far from the ramp generating unit 15A and near the intermediate position between the position R and the position Q is shortened, the voltage at the end of the generation of the ramp signal is expressed in FIG. Compared to FIG.
  • the operation start voltage of the ramp signal increases due to the shortening of the settling time. Accordingly, the operating range of the ramp signal is increased.
  • FIG. 8 is an image diagram for explaining the control of the control unit 63 in FIG. 2 when returning from the P-phase offset.
  • the horizontal axis represents time
  • the vertical axis represents the current value
  • a thick solid line and a thin solid line represent the current value I ramp and the current value of the current source 61, respectively.
  • the comparator 31 when a reset level signal is input from each pixel 11A of the selected row, the comparator 31 is in auto-zero operation.
  • the ramp generator 15A needs to transition the voltage of the ramp signal from the voltage at the time of auto zero to the voltage at the start of ramp signal generation (at the time of step response).
  • the control unit 63 increases the current value I ramp of the ramp signal generating current source 51 to a predetermined value I ramp, start . .
  • the control unit 63 is also so turned off current source 61 for a predetermined finite time period T w, to generate a step current. This shortens the settling time when returning from the P-phase offset.
  • ON / OFF of the current source 61 when returning from the P-phase offset differs depending on the voltage of the ramp signal during auto zero.
  • the current source 61 is turned on for a finite period T w when returning from the P-phase offset, and current flows out from the ramp line 70.
  • the current source 61 may be connected to a power supply instead of GND. In this case, the current source 61 is turned on / off in the reverse manner when connected to the GND.
  • the finite period T w is determined in consideration of this trade-off.
  • the current source 61 is described here, only the current source 62 may be used, or both the current source 61 and the current source 62 may be used.
  • FIG. 9 illustrates a CMOS image sensor in which the current source 61 and the current source 62 are not connected to the lamp line 60, and a CMOS image sensor 10 in which the current source 61 and the current source 62 are connected to the lamp line 60. It is a graph which shows the voltage waveform example of the simulation result of the ramp signal at the time of a return.
  • the horizontal axis represents time
  • the vertical axis represents the voltage of the ramp signal.
  • a thin solid line, a thin coarse dotted line, and a thin fine dotted line indicate a position near the position R, a position Q, and a position Q when the current source 61 and the current source 62 are not connected to the lamp line 60, respectively.
  • the waveform of the ramp signal in the vicinity of the middle position between R and R.
  • a thick solid line, a thick coarse dotted line, and a thick fine dotted line represent the waveform of the ramp signal near the position R, near the position Q, and between the position Q and the position R of the ramp line 60 of the CMOS image sensor 10, respectively.
  • the total load capacitance C of the lamp line 60 is set to 500 pF
  • the total wiring resistance R is set to 200 ⁇
  • approximation is performed with a 100-stage RC ladder.
  • the resistance value R o of the resistor 52 was 100 ⁇ .
  • the voltage of the ramp signal at auto zero was set to 0.9V
  • the voltage at the start of the ramp signal generation was set to 1.0V. That is, the voltage change V step when returning from the P-phase offset is 0.1V.
  • the settling time T 11 of the ramp signal near the position R is from 300 ns, which is three times the time constant 100 ns of the ramp line 60. long.
  • Position Q and the position settling time of the intermediate position and near the position Q near the ramp signal R is integer longer than constant-time T 11.
  • a current value I fe is 51.7Myuei, when a finite time period T w is 200 ns, as shown in FIG. 9, near the position Q, near the position R, and the position Q to the position R settling time T 12 of the ramp signal near the middle position is shorter 200ns about than the settling time T 11.
  • the time of restoration starts from P-phase offset (1.0 ⁇ 10- 7 seconds after the start of the simulation)
  • the current source 61 and the current source 62 are substantially the same regardless of the presence or absence.
  • the CMOS image sensor 10 having a current source 61 and current source 62 then rapidly approaches the 1.0 V, and after a finite time period T w, reaches approximately 1.0 V.
  • the voltage waveform of the ramp signal at a position Q far from the ramp generator 15A overshoot occurs due to the current of the current source 61, but immediately after the current source 61 is turned on, it is set to 1.0V.
  • the CMOS image sensor 10 not only the settling acceleration at the time of generating the ramp signal but also the settling acceleration at the time of returning from the P-phase offset (step) only by changing the control of the current source 61 by the control unit 63. Speeding up the settling). That is, the CMOS image sensor 10 can shorten the settling time at the time of generating the ramp signal or returning from the P-phase offset only by switching the current source 62 on / off.
  • the frame rate of the captured image can be improved.
  • the settling time is in an allowable range, so that the width of the lamp line 60 can be reduced.
  • the CMOS image sensor 10 can further shorten the settling time by using not only the current source 61 but also the current source 62.
  • the acceleration of the settling time since the resistance value R 0 of the resistor 52 is less dependent, it is possible to increase the resistance value R 0. As a result, the power consumption of the lamp generator 15A can be reduced.
  • the ratio of the power consumption of the lamp generation unit 15A to the power consumption of the entire CMOS image sensor 10 is large, the effect of reducing the power consumption of the lamp generation unit 15A is large.
  • the CMOS image sensor 10 can suppress an increase in power consumption because it is not necessary to pass a current unnecessarily in order to generate a ramp signal as compared with a case where a DAC is connected to the position R and the position Q. . Further, since the voltage driving unit is only the ramp generating unit 15A, the output of the DAC does not batt unlike the case where the DAC is connected to the position R and the position Q.
  • FIG. 10 is a diagram illustrating a second detailed configuration example of the column processing unit 15 in FIG.
  • the configuration of the column processing unit 15 in FIG. 10 is different from the configuration in FIG. 2 in that a step power source 81 is provided instead of the current source 62 and a control unit 82 is provided instead of the control unit 63.
  • the configuration in FIG. 10 is obtained by transforming the current drive of the contact P in the configuration in FIG. 2 into a voltage drive using Thevenin's theorem.
  • a step power supply 81 is connected between the resistor 52 and GND.
  • the step power supply 81 is, for example, a resistor that generates a voltage V ne and is short-circuited when a ramp signal is generated according to the control of the control unit 82. Further, the step power supply 81 inserts a resistor for a predetermined finite period (turns the short switch off) when returning from the P-phase offset according to the control of the control unit 82. As a result, the voltage of the ramp signal at the contact P changes in the negative direction.
  • the control unit 82 controls the ramp signal generating current source 51, the current source 61, and the step power source 81. Specifically, the control unit 82 sets the current value I ramp of the ramp signal generating current source 51 as in the control unit 63 of FIG. The control unit 82 controls the operation of the current source 61 on and off as with the control unit 63. Further, control unit 82 controls step power supply 81 to be short-circuited during a predetermined finite period when the ramp signal is generated and when the phase signal is restored from the P-phase offset.
  • the step power supply 81 is driven by the voltage during the predetermined finite period at the time of generating the ramp signal and returning from the P-phase offset.
  • the voltage of the ramp signal is changed in the negative direction. If the resistance R o of the resistor 52 is zero, but can not perform the current driving, it is possible to sufficiently shorten the settling time of the ramp signal by the voltage driving.
  • FIG. 11 is a diagram illustrating a third detailed configuration example of the column processing unit 15 in FIG. 1.
  • FIG. 11 differs from the configuration of FIG. 10 in that an operational amplifier 101 and a resistor 102 are provided instead of the resistor 52, and a power supply 103 is provided.
  • the column processing unit 15 in FIG. A ramp signal is generated using the operational amplifier 101 and the resistor 102 instead of the resistor 52.
  • the other end of the ramp signal generating current source 51 is connected to the inverting input terminal of the operational amplifier 101 and one end of the resistor 102 having the resistance value Rf. Connected.
  • the output terminal of the operational amplifier 101 and the other end of the resistor 102 are connected to the lamp line 60, respectively.
  • the non-inverting input terminal of the operational amplifier 101 is connected to one end of the step power supply 81, and the other end of the step power supply 81 is connected to the power supply 103 having the voltage V ped .
  • the controller 82 sets the current value I ramp of the ramp signal generating current source 51 so as to gradually increase from a predetermined value.
  • the voltage of the ramp signal output from the output terminal of the operational amplifier 101 to the ramp line 60 becomes a voltage having a ramp waveform that gradually decreases.
  • the output resistance of the operational amplifier 101 is very small. Therefore, even if a current flows into the lamp line 60 from the capacitive load of the lamp line 60, the lamp signal instantaneously settles on the side of the lamp line 60 close to the lamp generator 15A. Therefore, it is meaningless to draw the current on the side close to the lamp generator 15A as in the invention of Patent Document 1.
  • the settling time of the ramp signal is determined according to the time constant of the ramp line 60 on the side far from the ramp generating unit 15A, the settling time is relatively long.
  • the column processing unit 15 of FIG. 11 includes the current source 61, the settling time of the ramp signal far from the ramp generation unit 15A can be sufficiently shortened. In addition, since the column processing unit 15 of FIG. 11 includes not only the current source 61 but also the step power supply 81, the settling time of the ramp signal can be further shortened.
  • a step current may be supplied to the resistor 102.
  • the column processing unit 15 of FIG. 11 including the step power supply 81 instead of the current source 62 is more desirable than the column processing unit 15 of FIG.
  • FIG. 12 is a diagram illustrating a configuration example of a second embodiment of a CMOS image sensor as a solid-state imaging device to which the present disclosure is applied.
  • the CMOS image sensor 120 in FIG. 12 is configured by stacking three semiconductor substrates 121 to 123.
  • the pixel region 11 is provided on the semiconductor substrate 121, the A / D processing unit 141 is provided on the semiconductor substrate 122, and the circuit unit 142 is provided on the semiconductor substrate 123.
  • the A / D processing unit 141 is provided for each pixel group including one or more pixels 11A in the pixel region 11, and the ADC 15B and the ramp generation unit 15A perform A / D conversion on the pixel signal of each pixel in the pixel group.
  • the circuit unit 142 includes the vertical drive unit 14 in FIG. 1, a horizontal drive unit that sequentially selects the ADC 15 ⁇ / b> B of each pixel in the selected row, and the signal processing unit 18.
  • CMOS image sensor 120 Like the CMOS image sensor 120, a CMOS image sensor in which the ADC and the pixel region are provided on different semiconductor substrates and the ADC is two-dimensionally arranged for each pixel is, for example, K. Kiyoyama, Y. Ohara, K.-W. Lee, Y. Yang, T. Fukushima, T. Tanaka, and M. Koyanagi, “A parallel ADC for high-speed CMOS image processing system with 3D structure” IEEE International Conference on 3D System Integration, pp. 1--4, Sep. , 2009.
  • FIG. 13 is a diagram illustrating a configuration example of the A / D processing unit 141 in FIG.
  • the ADC 15B is arranged in a matrix corresponding to the pixel group.
  • the ramp line 161 is two-dimensionally (mesh) arranged in a region corresponding to the pixel region 11 and is connected to the contact P of the ramp generation unit 15A.
  • the ramp line 161 includes a ramp line 161A provided for each row of the ADC 15B and a ramp line 161B provided for each column.
  • the ramp line 161A may be provided for each of a plurality of rows, and the ramp line 161B may be provided for each of a plurality of columns.
  • a plurality of ADCs 15B in the corresponding row are connected in parallel to the ramp line 161A, and a plurality of ADCs 15B in the corresponding column are connected in parallel to the ramp line 161B.
  • Current sources 162, 164, and 165 are connected to the far ends of the lamp lines 161A and 161B.
  • a current source 163 (second current source) is connected to a position between the ADC 15B in the column closest to the lamp generating unit 15A of each lamp line 161A and the contact P.
  • the A / D processing unit 141 is also provided with a control unit 166.
  • the control unit 166 sets the current value I ramp of the ramp signal generating current source 51, similarly to the control unit 63 of FIG.
  • the control unit 166 controls on / off of the operation of the current sources 162 to 165.
  • the control method of the current source 162, the current source 164, and the current source 165 is the same as the control method of the current source 61, and the control method of the current source 163 is the same as the control method of the current source 62. That is, the current value I 2 of the current source 162, the current value I 1 of the current source 163, the current value I 3 of the current source 164, and the current during a predetermined finite period when the ramp signal is generated and returned from the P-phase offset
  • the current value I 4 of the source 165 changes in the direction of drawing from the lamp line 60 or the direction of flowing in.
  • the ADCs 15B are arranged in a matrix, so that the comparator 31 of the ADC 15B serving as the load of the ramp generation unit 15A spreads two-dimensionally.
  • the number of the comparators 31 in the A / D processing unit 141 generally increases by one digit or more as compared with the column processing unit 15.
  • the number of comparators 31 in the column processing unit 15 is 4000.
  • the number of comparators 31 in the A / D processing unit 141 varies depending on the number of pixels 11A corresponding to one ADC 15B, the number of comparators 31 when provided for each pixel 11A greater than 10 ⁇ 10 is Less.
  • the ADC 15B is arranged corresponding not only to the column of the pixel 11A but also to the row, the number of ADCs 15B basically increases as compared with the case where the ADC 15B is arranged corresponding to only the column. The number of 31 also increases.
  • the A / D processing unit 141 is provided with the current sources 162 to 165, the settling time of the ramp signal can be sufficiently shortened.
  • the current sources 162 to 165 are arranged at the four corners of the lamp line 161 arranged two-dimensionally, but the current is at a position far from the contact point P on the lamp line 161A or the lamp line 161B. If a source is provided, the number and position of the current sources are not limited to this. Further, the position of the ramp generator 15A is not limited to the example of FIG.
  • the lamp generator 15A and the current sources 162 to 165 may be arranged at the center of the lamp line 161A or the lamp line 161B. Further, the current source 162 and the current source 164 may not be provided.
  • FIG. 14 is a block diagram illustrating a configuration example of an embodiment of an imaging apparatus as an electronic apparatus to which the present disclosure is applied.
  • the imaging apparatus 1000 includes a lens group 1001, a solid-state imaging device 1002, a DSP circuit 1003, a frame memory 1004, a display unit 1005, a recording unit 1006, an operation unit 1007, and a power supply unit 1008.
  • the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, the operation unit 1007, and the power supply unit 1008 are connected to each other via a bus line 1009.
  • the lens group 1001 takes in incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 1002.
  • the solid-state image sensor 1002 includes the CMOS image sensor 10 or the CMOS image sensor 120 described above.
  • the solid-state imaging device 1002 converts the amount of incident light imaged on the imaging surface by the lens group 1001 into an electrical signal in units of pixels and supplies the electrical signal to the DSP circuit 1003 as a pixel signal.
  • the DSP circuit 1003 performs predetermined image processing on the pixel signal supplied from the solid-state imaging device 1002, supplies the image signal after the image processing to the frame memory 1004 in units of frames, and temporarily stores them.
  • the display unit 1005 includes, for example, a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on a pixel signal in a frame unit temporarily stored in the frame memory 1004.
  • a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on a pixel signal in a frame unit temporarily stored in the frame memory 1004.
  • the recording unit 1006 includes a DVD (Digital Versatile Disk), a flash memory, and the like, and reads and records pixel signals in units of frames temporarily stored in the frame memory 1004.
  • DVD Digital Versatile Disk
  • flash memory and the like, and reads and records pixel signals in units of frames temporarily stored in the frame memory 1004.
  • the operation unit 1007 issues operation commands for various functions of the imaging apparatus 1000 under operation by the user.
  • the power supply unit 1008 appropriately supplies power to the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, and the operation unit 1007.
  • An electronic device to which the present technology is applied may be a device that uses a CMOS image sensor for an image capturing unit (photoelectric conversion unit).
  • CMOS image sensor for an image capturing unit (photoelectric conversion unit).
  • a portable terminal device having an imaging function, and a CMOS image for an image reading unit.
  • copiers that use sensors.
  • a mechanism for correcting a difference in settling time due to manufacturing variation may be provided.
  • the ramp generator 15A of the second embodiment may be the ramp generator 15A of FIG. 10 or FIG.
  • the current value I ramp when the ramp signal is generated, the current value I ramp may be set to gradually increase from a predetermined value.
  • the voltage at the contact point P between the ramp signal generating current source 51 and the resistor 52 becomes a voltage having a ramp waveform that gradually increases.
  • the current value of the current source 61 changes in the direction of flowing into the ramp line 60 when the ramp signal is generated and returned from the P-phase offset.
  • the present disclosure can have the following configurations.
  • a plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels;
  • a ramp generator that generates a ramp signal and outputs the ramp signal to each of the plurality of A / D converters;
  • a ramp line connected in parallel to each of the plurality of A / D conversion units from the ramp generation unit,
  • a solid-state imaging device comprising: a first current source capable of being turned on / off connected to a far end of the lamp line from the lamp generating unit.
  • the current value of the first current source is determined according to the slew rate of the ramp signal, and is configured to optimize the settling characteristic specific to the lamp line.
  • the solid according to (1) Image sensor.
  • the solid-state imaging device further including: a second current source that can be turned on / off at a near end of the ramp line from the ramp generation unit.
  • a second current source that can be turned on / off at a near end of the ramp line from the ramp generation unit.
  • a target current source that is both a source and the second current source is configured to be turned on or off.
  • the current value of the target current source is determined according to an ON period of the target current source and a voltage transition amount of the ramp line, and is configured to optimize a settling characteristic unique to the ramp line.
  • the solid-state image sensor as described.
  • a plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels, a ramp generation unit that generates a ramp signal and outputs it to each of the plurality of A / D conversion units, and the ramp generation unit A ramp line connected in parallel to each of the plurality of A / D converters, and a first current source that can be turned on / off connected to a far end of the ramp line from the ramp generation unit.
  • a control device for controlling the solid-state image sensor A control method comprising: turning on or off the first current source only for a predetermined period when the voltage of the ramp line transits from a predetermined voltage to another predetermined voltage.
  • a plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels;
  • a ramp generator that generates a ramp signal and outputs the ramp signal to each of the plurality of A / D converters;
  • a ramp line connected in parallel to each of the plurality of A / D conversion units from the ramp generation unit,
  • An electronic device comprising: a first current source capable of being turned on / off connected to a far end of the lamp line from the lamp generating unit.
  • CMOS image sensor 11A pixel, 15A lamp generation unit, 15B ADC, 51 current source for lamp signal generation, 52 resistance, 60 ramp lines, 61 current source, 62 current source, 63 control unit, 81 step power supply, 101 operational amplifier, 121,122 semiconductor substrate, 1000 imaging device

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

The present disclosure relates to a solid-state image pickup element and control method, and electronic equipment that make it possible to sufficiently shorten the stabilization time of a ramp signal. An ADC performs A/D conversion on a pixel signal of a pixel. A ramp generation unit generates a ramp signal, and outputs the ramp signal to a plurality of ADCs individually. A ramp line extends from the ramp generation unit. A plurality of A/D conversion units are individually connected in parallel to the ramp line. A current source is connected to the far end of the ramp line from the ramp generation unit and capable of being switched on and off. The present disclosure is applicable to, for example, a CMOS image sensor or the like.

Description

固体撮像素子および制御方法、並びに電子機器Solid-state imaging device, control method, and electronic apparatus
 本開示は、固体撮像素子および制御方法、並びに電子機器に関し、特に、ランプ信号の整定時間を十分に短縮することができるようにした固体撮像素子および制御方法、並びに電子機器に関する。 The present disclosure relates to a solid-state imaging device, a control method, and an electronic device, and more particularly, to a solid-state imaging device, a control method, and an electronic device that can sufficiently shorten a ramp signal settling time.
 CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサでは、シングルスロープ型カラムADC(SS-ADC)が広く用いられている。このSS-ADCは、カラム(列)毎に比較器を配置し、それぞれの比較器において、画素から供給される画素信号の電圧を、全比較器共通のランプ信号の電圧と比較するものである。画素信号の電圧によって比較結果が反転するまでの時間が異なるため、その時間をカウントすることにより、デジタル値を得ることができる。 Single slope column ADC (SS-ADC) is widely used in CMOS (Complementary Metal-Oxide Semiconductor) image sensors. In this SS-ADC, a comparator is arranged for each column, and in each comparator, the voltage of the pixel signal supplied from the pixel is compared with the voltage of the ramp signal common to all the comparators. . Since the time until the comparison result is inverted differs depending on the voltage of the pixel signal, the digital value can be obtained by counting the time.
 このようなSS-ADCで用いられるランプ信号を生成し、ランプ線を介して全比較器に供給するランプ発生部は、ランプ線全体に分散している多数の容量性負荷を駆動する必要がある。そのためランプ信号の生成開始時に波形が鈍り、一定スルーレートになるまでに大きな整定時間が必要になる。また、ランプ線のランプ発生部に近い位置(近端)とランプ発生部から遠い位置(遠端)では、整定時間および整定レベルが異なる。 A ramp generator that generates a ramp signal used in such an SS-ADC and supplies it to all the comparators via the ramp line needs to drive a large number of capacitive loads distributed throughout the ramp line. . Therefore, the waveform becomes dull at the start of ramp signal generation, and a large settling time is required until a constant slew rate is reached. In addition, the settling time and the settling level are different between a position (near end) near the lamp generating portion of the lamp line and a position far from the lamp generating portion (far end).
 SS-ADCでは、ランプ信号が整定されないと、A/D変換を正しく行うことができないため、整定の遅れは、A/D変換時間の増大につながる。また、ランプ信号の整定時間の増大は、ランプ信号の動作レンジを狭める原因になる。 In SS-ADC, if the ramp signal is not settled, A / D conversion cannot be performed correctly, so the delay in settling leads to an increase in A / D conversion time. In addition, an increase in the ramp signal settling time causes the operating range of the ramp signal to be narrowed.
 そこで、ランプ線の容量性負荷が所定の箇所に集中しているものとして、その容量性負荷からランプ信号の整定後に流れ込む電流分を、ランプ信号の生成開始直後から強制的に引き抜くことで、ランプ信号の整定時間を短縮することが考案されている(例えば、特許文献1参照)。 Therefore, assuming that the capacitive load of the lamp wire is concentrated at a predetermined location, the current flowing from the capacitive load after the ramp signal is settled is forcibly extracted immediately after the start of the ramp signal generation. It has been devised to shorten the signal settling time (see, for example, Patent Document 1).
特開2011-259407号公報JP 2011-259407 A
 しかしながら、実際には、ランプ線の容量性負荷はランプ線全体に分散しているため、特許文献1に記載されている発明では、ランプ線内のランプ信号の電圧分布が変化し、その変化が落ち着くまで、ランプ信号は整定されない。従って、ランプ信号の整定時間を十分に短縮することはできない。 However, in practice, since the capacitive load of the lamp line is distributed over the entire lamp line, in the invention described in Patent Document 1, the voltage distribution of the lamp signal in the lamp line changes, and the change is The ramp signal will not settle until it settles. Therefore, the settling time of the ramp signal cannot be shortened sufficiently.
 本開示は、このような状況に鑑みてなされたものであり、ランプ信号の整定時間を十分に短縮することができるようにするものである。 The present disclosure has been made in view of such a situation, and makes it possible to sufficiently shorten the ramp signal settling time.
 本開示の第1の側面の固体撮像素子は、画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とを備える固体撮像素子である。 A solid-state imaging device according to the first aspect of the present disclosure includes a plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels, a ramp signal, and a plurality of A / D conversion units. A ramp generator that outputs to each, a ramp line that is connected to each of the plurality of A / D converters from the ramp generator, and is connected to a far end of the ramp line from the ramp generator And a first current source that can be turned on and off.
 本開示の第1の側面においては、画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とが備えられる。 In the first aspect of the present disclosure, a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, and a ramp signal are generated and output to each of the plurality of A / D conversion units A ramp generator that is connected to each of the plurality of A / D converters in parallel from the ramp generator, and an on / off connected to a far end of the ramp line from the ramp generator. A possible first current source is provided.
 本開示の第2の側面の制御方法は、画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とを備える固体撮像素子を制御する制御装置が、前記ランプ線の電圧が、所定の電圧から、別の所定の電圧に遷移する場合、所定の期間だけ前記第1の電流源をオンまたはオフにするステップを含む制御方法である。 A control method according to a second aspect of the present disclosure includes a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, a ramp signal, and each of the plurality of A / D conversion units Connected to the far end of the ramp line from the ramp generation unit, the ramp line that is output from the ramp generation unit, the lamp line is connected to each of the plurality of A / D conversion units in parallel, A control device for controlling a solid-state imaging device including a first current source that can be turned on / off, when the voltage of the lamp line transits from a predetermined voltage to another predetermined voltage, the control device controls the solid-state imaging device only for a predetermined period. 1 is a control method including a step of turning on or off one current source.
 本開示の第2の側面においては、画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とを備える固体撮像素子の前記ランプ線の電圧が、所定の電圧から、別の所定の電圧に遷移する場合、所定の期間だけ前記第1の電流源がオンまたはオフにされる。 In the second aspect of the present disclosure, a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, and a ramp signal are generated and output to each of the plurality of A / D conversion units A ramp generator that is connected to each of the plurality of A / D converters in parallel from the ramp generator, and an on / off connected to a far end of the ramp line from the ramp generator. When the voltage of the lamp line of the solid-state imaging device including the first current source that can be changed from a predetermined voltage to another predetermined voltage, the first current source is turned on or off for a predetermined period. To be.
 本開示の第3の側面の電子機器は、画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とを備える電子機器である。 An electronic apparatus according to a third aspect of the present disclosure includes a plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels, a ramp signal, and each of the plurality of A / D conversion units. Connected to the far end of the ramp line from the ramp generation unit, the ramp line that is output from the ramp generation unit, the lamp line is connected to each of the plurality of A / D conversion units in parallel, And a first current source that can be turned on and off.
 本開示の第3の側面においては、画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とが備えられる。 In the third aspect of the present disclosure, a plurality of A / D conversion units that perform A / D conversion on a pixel signal of a pixel, and a ramp signal are generated and output to each of the plurality of A / D conversion units A ramp generator that is connected to each of the plurality of A / D converters in parallel from the ramp generator, and an on / off connected to a far end of the ramp line from the ramp generator. A possible first current source is provided.
 本開示の第1および第3の側面によれば、撮像を行うことができる。本開示の第1の側面によれば、ランプ信号の整定時間を十分に短縮することができる。 According to the first and third aspects of the present disclosure, imaging can be performed. According to the first aspect of the present disclosure, it is possible to sufficiently shorten the ramp signal settling time.
 また、本開示の第2の側面によれば、固体撮像素子を制御することができる。本開示の第2の側面によれば、ランプ信号の整定時間を十分に短縮するように、固体撮像素子を制御することができる。 Moreover, according to the second aspect of the present disclosure, the solid-state imaging device can be controlled. According to the second aspect of the present disclosure, the solid-state imaging device can be controlled so as to sufficiently shorten the ramp signal settling time.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本開示を適用した固体撮像素子としてのCMOSイメージセンサの第1実施の形態の構成の概略を示す図である。It is a figure which shows the outline of a structure of 1st Embodiment of the CMOS image sensor as a solid-state image sensor to which this indication is applied. 図1のカラム処理部の第1の詳細構成例を示す図である。It is a figure which shows the 1st detailed structural example of the column process part of FIG. ランプ信号生成時の制御部の制御を説明するイメージ図である。It is an image figure explaining control of the control part at the time of a ramp signal production | generation. 2つの電流源がランプ線に接続されていないCMOSイメージセンサのランプ信号の生成時のランプ信号のシミュレーション結果の電圧波形例を示すグラフである。It is a graph which shows the voltage waveform example of the simulation result of the ramp signal at the time of the production | generation of the ramp signal of a CMOS image sensor in which two current sources are not connected to the lamp line. 1つの電流源のみがランプ線に接続されるCMOSイメージセンサのランプ信号の生成時のランプ信号のシミュレーション結果の電圧波形例を示すグラフである。It is a graph which shows the voltage waveform example of the simulation result of the ramp signal at the time of the production | generation of the ramp signal of the CMOS image sensor by which only one current source is connected to a lamp line. 図1のCMOSイメージセンサのランプ信号の生成時のランプ信号のシミュレーション結果の電圧波形例を示すグラフである。2 is a graph illustrating an example of a voltage waveform of a simulation result of a ramp signal when the ramp signal is generated by the CMOS image sensor of FIG. 1. 図4と図6のグラフのランプ信号の生成の開始時付近の電圧波形を拡大したグラフである。FIG. 7 is a graph obtained by enlarging a voltage waveform in the vicinity of the start of ramp signal generation in the graphs of FIGS. 4 and 6. P相オフセットからの復帰時の制御部の制御を説明するイメージ図である。It is an image figure explaining control of the control part at the time of return from P phase offset. 2つの電流源がランプ線に接続されていないCMOSイメージセンサと、図1のCMOSイメージセンサのP相オフセットからの復帰時のランプ信号のシミュレーション結果の電圧波形例を示すグラフである。2 is a graph showing a voltage waveform example of a simulation result of a ramp signal when two current sources are not connected to a ramp line and a return from a P-phase offset of the CMOS image sensor of FIG. 1. 図1のカラム処理部の第2の詳細構成例を示す図である。It is a figure which shows the 2nd detailed structural example of the column process part of FIG. 図1のカラム処理部の第3の詳細構成例を示す図である。It is a figure which shows the 3rd detailed structural example of the column process part of FIG. 本開示を適用した固体撮像素子としてのCMOSイメージセンサの第2実施の形態の構成例を示す図である。It is a figure which shows the structural example of 2nd Embodiment of the CMOS image sensor as a solid-state image sensor to which this indication is applied. 図12のA/D処理部の構成例を示す図である。It is a figure which shows the structural example of the A / D process part of FIG. 本開示を適用した電子機器としての撮像装置の一実施の形態の構成例を示すブロック図である。It is a block diagram showing an example of composition of an embodiment of an imaging device as electronic equipment to which this indication is applied.
 以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
 1.第1実施の形態:固体撮像素子(図1乃至図11)
 2.第2実施の形態:固体撮像素子(図12および図13)
 3.第3実施の形態:電子機器(図14)
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. 1st Embodiment: Solid-state image sensor (FIGS. 1 to 11)
2. Second Embodiment: Solid-State Image Sensor (FIGS. 12 and 13)
3. Third Embodiment: Electronic Device (FIG. 14)
 <第1実施の形態>
 (CMOSイメージセンサの第1実施の形態の構成例)
 図1は、本開示を適用した固体撮像素子としてのCMOSイメージセンサの第1実施の形態の構成の概略を示す図である。
<First embodiment>
(Configuration example of the first embodiment of the CMOS image sensor)
FIG. 1 is a diagram illustrating an outline of the configuration of a first embodiment of a CMOS image sensor as a solid-state imaging device to which the present disclosure is applied.
 CMOSイメージセンサ10は、画素領域11、画素駆動線12、垂直信号線13、垂直駆動部14、カラム処理部15、水平駆動部17、信号処理部18等が、図示せぬシリコン基板等の半導体基板(チップ)に形成されたものである。 The CMOS image sensor 10 includes a pixel region 11, a pixel driving line 12, a vertical signal line 13, a vertical driving unit 14, a column processing unit 15, a horizontal driving unit 17, a signal processing unit 18, and the like, which are not shown in a semiconductor substrate such as a silicon substrate. It is formed on a substrate (chip).
 CMOSイメージセンサ10の画素領域11には、入射光の光量に応じた電荷量の電荷を発生して内部に蓄積する光電変換素子を有する画素11Aが行列状に2次元配置され、撮像を行う。また、画素領域11には、行列状の画素11Aに対して行ごとに画素駆動線12が形成され、列ごとに垂直信号線13が形成される。 In the pixel region 11 of the CMOS image sensor 10, pixels 11 </ b> A having photoelectric conversion elements that generate and store charges corresponding to the amount of incident light are two-dimensionally arranged in a matrix to perform imaging. In the pixel region 11, pixel drive lines 12 are formed for each row with respect to the matrix-like pixels 11A, and vertical signal lines 13 are formed for each column.
  垂直駆動部14は、シフトレジスタやアドレスデコーダなどによって構成され、画素領域11の各画素11Aを行単位等で駆動する。垂直駆動部14の各行に対応した図示せぬ出力端には、画素駆動線12の一端が接続されている。垂直駆動部14の具体的な構成について図示は省略するが、垂直駆動部14は、読み出し走査系および掃き出し走査系の2つの走査系を有する構成となっている。 The vertical drive unit 14 includes a shift register, an address decoder, and the like, and drives each pixel 11A in the pixel area 11 in units of rows. One end of the pixel drive line 12 is connected to an output end (not shown) corresponding to each row of the vertical drive unit 14. Although a specific configuration of the vertical driving unit 14 is not illustrated, the vertical driving unit 14 has two scanning systems, a reading scanning system and a sweeping scanning system.
 読み出し走査系は、各画素11Aによる撮像の結果得られる画素信号を行単位で順に読み出すように、各行を順に選択し、選択行の画素駆動線12と接続する出力端から選択信号等を出力する。これにより、読み出し走査系により選択された行の画素11Aは、光電変換素子に蓄積された電荷の電気信号を画素信号として読み出し、垂直信号線13に供給する。 The readout scanning system sequentially selects each row so that pixel signals obtained as a result of imaging by each pixel 11A are sequentially read in units of rows, and outputs a selection signal or the like from an output terminal connected to the pixel drive line 12 of the selected row. . As a result, the pixels 11 </ b> A in the row selected by the readout scanning system read out the electrical signals of the charges accumulated in the photoelectric conversion elements as pixel signals and supply them to the vertical signal lines 13.
 掃き出し走査系は、光電変換素子から不要な電荷を掃き出す(リセットする)ために、読み出し系の走査よりもシャッタスピードの時間分だけ先行して、各行の画素駆動線12と接続する出力端からリセット信号を出力する。この掃き出し走査系による走査により、いわゆる電子シャッタ動作が行ごとに順に行われる。ここで、電子シャッタ動作とは、光電変換素子の電荷を捨てて、新たに露光を開始する(電荷の蓄積を開始する)動作のことをいう。 The sweep scanning system sweeps (resets) unnecessary charges from the photoelectric conversion elements, and resets from the output terminal connected to the pixel drive line 12 of each row prior to the scanning of the readout system by the time of the shutter speed. Output a signal. By the scanning by the sweep-out scanning system, so-called electronic shutter operation is sequentially performed for each row. Here, the electronic shutter operation refers to an operation in which the charge of the photoelectric conversion element is discarded and exposure is newly started (charge accumulation is started).
 カラム処理部15は、SS-ADCであり、ランプ発生部15A、画素領域11内の画素11Aの列ごとのADC(Analog Digital Converter)15B等により構成される。 The column processing unit 15 is an SS-ADC, and includes a ramp generation unit 15A, an ADC (Analog Digital Converter) 15B for each column of the pixels 11A in the pixel region 11, and the like.
 ランプ発生部15Aは、例えばDAC(Digital Analog Converter)であり、ランプ信号を生成して、ADC15Bのそれぞれに出力する。 The ramp generation unit 15A is a DAC (Digital Analog Converter), for example, and generates a ramp signal and outputs it to each ADC 15B.
 ADC15Bは、比較器31とカウンタラッチ32により構成される。 The ADC 15B includes a comparator 31 and a counter latch 32.
 ADC15Bは、まず、対応する列の選択行の画素11Aから垂直信号線13を通して出力されるリセットレベル信号(P相)に対してA/D変換を行い、その後、その画素11Aから垂直信号線13を通して出力される画素信号(D相)に対してA/D変換を行う。そして、ADC15Bは、A/D変換の結果得られるD相のデジタルデータからP相のデジタルデータを減算することにより、相関二重サンプリングを行う。 The ADC 15B first performs A / D conversion on the reset level signal (P phase) output from the pixel 11A in the selected row of the corresponding column through the vertical signal line 13, and then, from the pixel 11A to the vertical signal line 13 A / D conversion is performed on the pixel signal (D-phase) output through. The ADC 15B performs correlated double sampling by subtracting the P-phase digital data from the D-phase digital data obtained as a result of the A / D conversion.
 具体的には、ADC15Bの比較器31は、まず、ランプ発生部15Aにより生成されるランプ信号とリセットレベル信号とを比較する。カウンタラッチ32は、比較結果が切り替わるまでの比較器31の比較時間をカウントし、そのカウント結果を、リセットレベル信号のA/D変換後のデジタルデータとして保持する。 Specifically, the comparator 31 of the ADC 15B first compares the ramp signal generated by the ramp generator 15A with the reset level signal. The counter latch 32 counts the comparison time of the comparator 31 until the comparison result is switched, and holds the count result as digital data after A / D conversion of the reset level signal.
 次に、比較器31は、ランプ信号と画素信号とを比較する。カウンタラッチ32は、比較結果が切り替わるまでの比較器31の比較時間を、保持しているリセットレベル信号のデジタルデータから減算する。即ち、カウンタラッチ32は、比較結果が切り替わるまでの比較器31の比較時間のカウント結果を、画素信号のA/D変換後のデジタルデータとし、リセットレベル信号のデジタルデータから減算する。カウンタラッチ32は、減算結果を相関二重サンプリング結果として保持する。 Next, the comparator 31 compares the ramp signal with the pixel signal. The counter latch 32 subtracts the comparison time of the comparator 31 until the comparison result is switched from the digital data of the held reset level signal. In other words, the counter latch 32 sets the count result of the comparison time of the comparator 31 until the comparison result is switched as digital data after A / D conversion of the pixel signal, and subtracts it from the digital data of the reset level signal. The counter latch 32 holds the subtraction result as a correlated double sampling result.
 水平駆動部17は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部15のADC15Bを順番に選択する。この水平駆動部17による選択走査により、カラム処理部15の各カウンタラッチ32で保持されている相関二重サンプリング結果が順番に信号処理部18に出力される。 The horizontal drive unit 17 includes a shift register, an address decoder, and the like, and selects the ADC 15B of the column processing unit 15 in order. By the selective scanning by the horizontal driving unit 17, the correlated double sampling results held by the counter latches 32 of the column processing unit 15 are sequentially output to the signal processing unit 18.
 信号処理部18は、カウンタラッチ32から出力される相関二重サンプリング結果に対して加算処理等の種々の信号処理を行う。信号処理部18は、信号処理後の画素信号のデジタルデータを出力する。 The signal processing unit 18 performs various signal processing such as addition processing on the correlated double sampling result output from the counter latch 32. The signal processing unit 18 outputs digital data of the pixel signal after signal processing.
 (カラム処理部の第1の詳細構成例)
 図2は、図1のカラム処理部15の第1の詳細構成例を示す図である。
(First detailed configuration example of the column processing unit)
FIG. 2 is a diagram illustrating a first detailed configuration example of the column processing unit 15 of FIG.
 図2に示すように、ランプ発生部15Aは、ランプ信号発生用電流源51と抵抗52からなる。ランプ発生部15Aは、制御部63の制御にしたがって、ランプ信号発生用電流源51を用いて、抵抗52に流す電流を制御することにより、ランプ信号を生成する。 As shown in FIG. 2, the ramp generator 15A includes a ramp signal generating current source 51 and a resistor 52. The ramp generation unit 15A generates a ramp signal by controlling the current flowing through the resistor 52 using the ramp signal generation current source 51 according to the control of the control unit 63.
 具体的には、ランプ発生部15Aのランプ信号発生用電流源51は、電源と接続され、制御部63により設定された電流値Irampの電流を抵抗52に供給する。抵抗52は、抵抗値Roの抵抗であり、ランプ信号発生用電流源51から供給された電流をGNDに流す。電流値Irampは、ランプ信号の生成時、例えば所定値から徐々に下げるように設定される。これにより、ランプ信号発生用電流源51と抵抗52の接点Pの電圧は、徐々に下がるランプ波形の電圧となる。 Specifically, the ramp signal generation current source 51 of the ramp generation unit 15 </ b> A is connected to a power supply, and supplies the current of the current value I ramp set by the control unit 63 to the resistor 52. Resistor 52 is the resistance of the resistance value R o, electric current supplied from the ramp signal generator for the current source 51 to GND. The current value I ramp is set so as to gradually decrease from a predetermined value, for example, when the ramp signal is generated. As a result, the voltage at the contact point P between the ramp signal generating current source 51 and the resistor 52 becomes a voltage having a ramp waveform that gradually decreases.
 ランプ発生部15Aは、ランプ信号発生用電流源51と抵抗52の接点Pのランプ信号を、ランプ線(出力配線)60を介して全てのADC15Bに出力する。 The lamp generator 15A outputs the ramp signal at the contact point P between the ramp signal generating current source 51 and the resistor 52 to all the ADCs 15B via the ramp line (output wiring) 60.
 ランプ線60は、接点Pと電流源61(第1の電流源)を接続する。即ち、ランプ線60は、ランプ発生部15Aから出る。また、電流源61は、ランプ線60の接点Pと接続する端部(近端)とは反対側の端部(遠端)の位置Qに接続する。 The lamp wire 60 connects the contact P and the current source 61 (first current source). That is, the ramp line 60 exits from the ramp generator 15A. Further, the current source 61 is connected to a position Q of an end portion (far end) opposite to the end portion (near end) connected to the contact P of the lamp wire 60.
 電流源61は、制御部63の制御にしたがって、ランプ線60とGNDの間に、予め設定された電流値Ifeの直流電流を流すか、流さないかの動作を切り換える。電流源61は、カレントミラー回路などを用いてオンオフ可能に構成される。電流値Ifeは、ランプ線60に流し込む向きを正とする。従って、電流値Ifeが負である場合、直流電流はランプ線60から流れ出す。 The current source 61 switches the operation of whether or not to pass a DC current having a preset current value Ife between the lamp line 60 and GND according to the control of the control unit 63. The current source 61 is configured to be turned on / off using a current mirror circuit or the like. The current value I fe is positive in the direction of flowing into the lamp line 60. Therefore, when the current value I fe is negative, direct current flows out from the lamp line 60.
 各ADC15Bは、ランプ線60に対して並列に接続される。ランプ線60の接点Pに最も近い位置でランプ線60に接続されたADC15Bと接点Pとの間の位置(近端側の位置)Rには、電流源62(第2の電流源)が接続される。 Each ADC 15B is connected to the ramp line 60 in parallel. A current source 62 (second current source) is connected to a position (near-end side position) R between the ADC 15B and the contact P connected to the lamp line 60 at a position closest to the contact P of the lamp line 60. Is done.
 電流源62は、制御部63の制御にしたがって、ランプ線60と電源の間に、予め設定された電流値Ineの直流電流を流すか、流さないかの動作を切り換える。電流源62は、カレントミラー回路などを用いてオンオフ可能に構成される。電流値Ineは、ランプ線60に流し込む向きを正とする。従って、電流値Ineが負である場合、直流電流はランプ線から流れ出す。 The current source 62 switches the operation of whether or not to pass a DC current having a preset current value Ine between the lamp line 60 and the power source according to the control of the control unit 63. The current source 62 is configured to be turned on / off using a current mirror circuit or the like. The direction in which the current value I ne flows into the lamp line 60 is positive. Therefore, when the current value Ine is negative, the direct current flows out from the lamp line.
 制御部63は、ランプ信号発生用電流源51、電流源61、および電流源62を制御する。具体的には、制御部63は、ランプ信号発生用電流源51の電流値Irampを設定する。また、制御部63は、電流源61および電流源62の動作のオンおよびオフを制御する。 The controller 63 controls the ramp signal generating current source 51, the current source 61, and the current source 62. Specifically, the control unit 63 sets the current value I ramp of the ramp signal generating current source 51. In addition, the control unit 63 controls on and off of the operations of the current source 61 and the current source 62.
 以上のように、CMOSイメージセンサ10では、ランプ線60のランプ発生部15Aに最も遠いADC15Bより遠い位置Qに電流源61が接続され、ランプ発生部15Aに最も近いADC15Bより近い位置Rに電流源62が接続される。 As described above, in the CMOS image sensor 10, the current source 61 is connected to the ramp generator 15A of the lamp line 60 at the position Q farthest from the ADC 15B farthest from the ADC 15B, and the current source 61 is positioned at the position R closer to the ADC 15B closest to the lamp generator 15A. 62 is connected.
 なお、電流値Ifeと電流値Ineは、ランプ線60の配線抵抗や寄生容量、抵抗値Roなどのランプ線60に固有の特性に基づいて決定される、例えばランプ線60に固有の整定時間を最小にする(ランプ線60に固有の整定特性を最適化する)値である。具体的には、ランプ信号生成時の電流値Ifeと電流値Ineは、ランプ線60の配線抵抗や寄生容量、抵抗値Roなどに基づいて決定される、ランプ信号のスルーレートに比例する値である。また、P相オフセットからの復帰時の電流値Ife(電流値Ine)は、ランプ線60の配線抵抗や寄生容量、抵抗値Roなどに基づいて決定されるランプ線60に固有の値と、電流源61(電流源62)がオフしている期間によって決定される係数に、ランプ線60の遷移電位差を乗算した値である。 The current value I fe and the current value Ine are determined based on characteristics unique to the lamp line 60, such as the wiring resistance and parasitic capacitance of the lamp line 60, and the resistance value Ro , for example, unique to the lamp line 60. This is a value that minimizes the settling time (optimizes the settling characteristic inherent to the ramp line 60). Specifically, the current value I fe and the current value I ne during ramp signal generation, wiring resistance and parasitic capacitance of the lamp line 60, is determined based such as the resistance value R o, proportional to the slew rate of the ramp signal The value to be The current value I fe (current value I ne ) at the time of recovery from the P-phase offset is a value unique to the lamp line 60 determined based on the wiring resistance, parasitic capacitance, resistance value Ro, etc. of the lamp line 60. And the coefficient determined by the period during which the current source 61 (current source 62) is off is multiplied by the transition potential difference of the lamp line 60.
 また、ここでは、ランプ線60のランプ発生部15Aに最も遠いADC15Bに近い位置Qに電流源61が接続されるものとするが、電流源61の接続位置は、ランプ発生部15Aに最も遠いADC15B付近であれば、多少離れてもよい。同様に、電流源62の接続位置は、ランプ発生部15Aに最も近いADC15B付近であれば、そのADC15Bより多少離れてもよい。 Here, it is assumed that the current source 61 is connected to the position Q of the lamp line 60 that is the farthest from the ADC 15B to the ramp generating unit 15A, but the connecting position of the current source 61 is the ADC 15B that is the farthest from the ramp generating unit 15A. If it is near, it may be a little away. Similarly, the connection position of the current source 62 may be slightly away from the ADC 15B as long as it is in the vicinity of the ADC 15B closest to the lamp generating unit 15A.
 また、電流源62は、ランプ発生部15Aに内蔵されるようにしてもよい。さらに、CMOSイメージセンサ10は、電流源61と電流源62のいずれか一方のみを備えてもよい。 Further, the current source 62 may be incorporated in the lamp generator 15A. Further, the CMOS image sensor 10 may include only one of the current source 61 and the current source 62.
 (ランプ信号生成時の制御部の制御の説明)
 図3は、ランプ信号生成時の図2の制御部63の制御を説明するイメージ図である。
(Explanation of control of the control unit at the time of ramp signal generation)
FIG. 3 is an image diagram for explaining the control of the control unit 63 of FIG. 2 when generating a ramp signal.
 なお、図3のグラフにおいて、横軸は、時刻を表し、縦軸は、電流値を表す。また、太い実線、一点鎖線、細い実線は、それぞれ、電流値Iramp、電流源62の電流値、電流源61の電流値を表す。 In the graph of FIG. 3, the horizontal axis represents time, and the vertical axis represents the current value. The thick solid line, the alternate long and short dash line, and the thin solid line represent the current value I ramp , the current value of the current source 62, and the current value of the current source 61, respectively.
 図3の例では、時刻t1において、制御部63が、電流値Irampを所定値Iramp,maxから徐々に削減することを開始する。これにより、ランプ信号の生成が開始する。そして、時刻t2において、電流値Irampが0になったとき、制御部63は、電流値Irampの削減を終了する。これにより、ランプ信号の生成が終了する。 In the example of FIG. 3, at time t 1 , the control unit 63 starts to gradually reduce the current value I ramp from the predetermined value I ramp, max . Thereby, the generation of the ramp signal is started. At time t 2, the when the current value I 'ramp becomes 0, the control unit 63 ends the reduction of the current value I' ramp. Thereby, the generation of the ramp signal is completed.
 この場合、制御部63は、ランプ信号の生成の開始時刻である時刻t1から、ランプ信号の生成の終了時刻である時刻t2までの間、電流源61をオンにさせ、電流源62をオフにさせる。これにより、電流源62の電流値は、予め設定されたオン時の正の電流値Ineから、オフ時の電流値0に変化する。即ち、電流源62のオン時に電流源62からランプ線60に流し込まれていた電流がなくなる。このように、電流源62の電流値が、マイナス方向、即ちランプ線60から引き出す方向に変化することにより、接点Pの電圧はマイナス方向に変化する。 In this case, the control unit 63 turns on the current source 61 from the time t 1 that is the start time of the ramp signal generation to the time t 2 that is the end time of the ramp signal generation, and turns the current source 62 on. Turn off. As a result, the current value of the current source 62 changes from a preset positive current value Ine at the on time to a current value 0 at the off time. That is, there is no current flowing into the lamp line 60 from the current source 62 when the current source 62 is turned on. As described above, when the current value of the current source 62 changes in the minus direction, that is, in the direction of drawing from the lamp line 60, the voltage at the contact P changes in the minus direction.
 また、電流源61の電流値は、オフ時の電流値0から、予め設定されたオン時の負の電流値Ifeに変化する。即ち、ランプ線60から電流源61に電流が引き抜かれる。このように、電流源61の電流値が、マイナス方向、即ちランプ線60から引き出す方向に変化することにより、接点Pの電圧はマイナス方向に変化する。 Further, the current value of the current source 61 changes from the current value 0 at the off time to the negative current value I fe that is set at the on time in advance. That is, current is drawn from the lamp line 60 to the current source 61. As described above, when the current value of the current source 61 changes in the minus direction, that is, in the direction of drawing from the lamp line 60, the voltage at the contact P changes in the minus direction.
 時刻t2において、制御部63は、電流源61をオフにさせ、電流源62をオンにさせる。これにより、電流源62の電流値は、オフ時の電流値0から、オン時の正の電流値Ineに戻る。 At time t 2 , the control unit 63 turns off the current source 61 and turns on the current source 62. As a result, the current value of the current source 62 returns from the current value 0 at the off time to the positive current value Ine at the on time.
 また、電流源61の電流値は、電流源61のオン時の負の電流値Ifeからオフ時の電流値0に戻る。 The current value of the current source 61 returns from the negative current value Ife when the current source 61 is on to the current value 0 when it is off.
 なお、ここでは、最終的なランプ信号の電圧をGNDより高くするために、ランプ信号の生成の開始前に、電流源62から抵抗52に電流を流し込むようにするが、電流を流し込まなくてもよい。この場合、電流源62はGNDと接続され、電流値Ineは負の値となる。そして、時刻t1から時刻t2までの間、電流源62がオンにされ、ランプ線60から電流源62に電流が引き抜かれる。 Here, in order to make the final ramp signal voltage higher than GND, the current is supplied from the current source 62 to the resistor 52 before the start of the generation of the ramp signal. Good. In this case, the current source 62 is connected to GND, and the current value Ine is a negative value. Then, from time t 1 to time t 2 , the current source 62 is turned on, and current is drawn from the lamp line 60 to the current source 62.
 同様に、ここでは、ランプ信号の生成の開始前に、電流源61から抵抗52に電流を流し込まないようにするが、例えば、ランプ発生部15Aが出力抵抗をGNDに繋いだDACにより構成され、最終的なランプ信号の電圧がGNDである場合、電流を流し込むようにしてもよい。この場合、電流源61は電源と接続され、電流値Ifeは正の値となる。そして、時刻t1から時刻t2までの間、電流源61がオフにされ、電流源61のオン時にランプ線60に流し込まれていた電流がなくなる。 Similarly, here, the current is not supplied from the current source 61 to the resistor 52 before the start of the ramp signal generation. For example, the ramp generator 15A is configured by a DAC in which an output resistor is connected to GND. When the final ramp signal voltage is GND, a current may be supplied. In this case, the current source 61 is connected to the power source, and the current value Ife is a positive value. Then, the current source 61 is turned off from the time t 1 to the time t 2 , and the current flowing into the lamp line 60 when the current source 61 is turned on disappears.
 ランプ信号の整定時間の削減効果の要因は、電流源61および電流源62のオン/オフによる電流の変化量であるため、電流源61の電流値および電流源62の電流値は、時刻t1から時刻t2までの間ランプ線60から電流を引き出す方向に変化すれば、どのような値であってもよい。 The factor of the effect of reducing the settling time of the ramp signal is the amount of change in current due to the on / off of the current source 61 and the current source 62. Therefore, the current value of the current source 61 and the current value of the current source 62 are the time t 1. Any value can be used as long as the current changes from the ramp line 60 in the direction from which the current is drawn from the time t 2 to the time t 2 .
 (本開示のランプ信号の生成時の効果の説明)
 図4は、電流源61および電流源62がランプ線60に接続されていないCMOSイメージセンサのランプ信号の生成時のランプ信号のシミュレーション結果の電圧波形例を示すグラフである。また、図5は、電流源62のみがランプ線60に接続されるCMOSイメージセンサのランプ信号の生成時のランプ信号のシミュレーション結果の電圧波形例を示すグラフである。
(Explanation of effect when generating ramp signal of the present disclosure)
FIG. 4 is a graph showing a voltage waveform example of a simulation result of a ramp signal when generating a ramp signal of a CMOS image sensor in which the current source 61 and the current source 62 are not connected to the ramp line 60. FIG. 5 is a graph showing an example of a voltage waveform of a simulation result of a ramp signal when generating a ramp signal of a CMOS image sensor in which only the current source 62 is connected to the lamp line 60.
 さらに、図6は、CMOSイメージセンサ10のランプ信号の生成時のランプ信号のシミュレーション結果の電圧波形例を示すグラフであり、図7は、図4と図6のグラフのランプ信号の生成の開始時付近の電圧波形を拡大したグラフである。 Further, FIG. 6 is a graph showing an example of a voltage waveform of a simulation result of the ramp signal when the ramp signal of the CMOS image sensor 10 is generated, and FIG. 7 is a start of generation of the ramp signal of the graphs of FIGS. 4 and 6. It is the graph which expanded the voltage waveform near the hour.
 なお、図4乃至図7において、横軸は、時刻を表し、縦軸は、ランプ信号の電圧を表す。また、図4乃至図6では、実線が、ランプ線60の位置R付近のランプ信号の波形を表し、粗い点線が、位置Q付近のランプ信号の波形を表し、細かい点線が、位置Rと位置Qの中間付近のランプ信号の波形を表す。図7では、細い実線、細い粗い点線、および細い細かい点線が、それぞれ、図4のランプ信号の生成の開始時付近の実線、粗い点線、細かい点線であり、太い実線、太い粗い点線、および太い細かい点線が、それぞれ、図6のランプ信号の生成の開始時付近の実線、粗い点線、細かい点線である。 4 to 7, the horizontal axis represents time, and the vertical axis represents the voltage of the ramp signal. 4 to 6, the solid line represents the waveform of the ramp signal near the position R of the ramp line 60, the rough dotted line represents the waveform of the ramp signal near the position Q, and the fine dotted line represents the position R and the position. The waveform of the ramp signal near the middle of Q is shown. In FIG. 7, a thin solid line, a thin coarse dotted line, and a thin fine dotted line are a solid line, a coarse dotted line, and a fine dotted line near the start of ramp signal generation in FIG. 4, respectively, and are a thick solid line, a thick coarse dotted line, and a thick dotted line. The fine dotted lines are a solid line, a rough dotted line, and a fine dotted line near the start of ramp signal generation in FIG.
 図4乃至図6のシミュレーションでは、ランプ線60の全負荷容量Cを500pFとし、全配線抵抗Rを200Ωとし、100段のRCラダーで近似した。従って、ランプ線60の時定数τ(=RC)は、100nsである。また、抵抗52の抵抗値Roは100Ωとし、ランプ信号のスルーレートkは500kV/sとした。 In the simulations of FIGS. 4 to 6, the total load capacitance C of the lamp line 60 is set to 500 pF, the total wiring resistance R is set to 200Ω, and approximated by a 100-stage RC ladder. Therefore, the time constant τ (= RC) of the ramp line 60 is 100 ns. The resistance value R o of the resistor 52 was 100Ω, and the slew rate k of the ramp signal was 500 kV / s.
 配線長はシミュレーションのパラメータとしては不要であり、ランプ線60の全負荷容量Cと全配線抵抗Rによってランプ信号の波形が決まる。なお、全負荷容量Cには、実負荷だけでなく寄生容量も含まれている。 The wiring length is not necessary as a simulation parameter, and the waveform of the ramp signal is determined by the total load capacitance C and the total wiring resistance R of the lamp line 60. Note that the total load capacitance C includes not only the actual load but also the parasitic capacitance.
 以上のようなシミュレーションにおいて、電流源61および電流源62がランプ線60に接続されないCMOSイメージセンサでは、図4および図7に示すように、ランプ発生部15Aから遠い位置Q付近のランプ信号の整定時間T1は、200ns以上になる。 In the simulation as described above, in the CMOS image sensor in which the current source 61 and the current source 62 are not connected to the lamp line 60, as shown in FIGS. 4 and 7, the ramp signal near the position Q far from the lamp generator 15A is settled. The time T 1 becomes 200 ns or more.
 図4に示すように、ランプ発生部15Aから遠い位置Q付近および位置Rと位置Qの中間の位置付近では、ランプ信号の生成の開始時(シミュレーション開始から2.0×10-7秒後)、ランプ信号の電圧変化が遅れて開始する。従って、ランプ信号の整定時間T1は、ランプ発生部15Aから近い位置R付近のランプ信号の整定時間T1´に比べて長い。 As shown in FIG. 4, in the vicinity of the intermediate position distant position Q near and position R and position Q from the ramp generator 15A, at the start of the generation of the ramp signal (2.0 × 10- 7 seconds after the start of the simulation), lamp The signal voltage change starts with a delay. Therefore, the ramp signal settling time T 1 is longer than the ramp signal settling time T 1 ′ in the vicinity of the position R close to the ramp generating unit 15A.
 一方、電流源62のみがランプ線60に接続されるCMOSイメージセンサにおいて、電流値Ineが-200μAであり、ランプ信号の生成時に電流源62がオフにされる場合、図5に示すように、ランプ発生部15Aから遠い位置Q付近のランプ信号の整定時間T2は、整定時間T1に比べて短い100ns~200nsになる。 On the other hand, in the CMOS image sensor in which only the current source 62 is connected to the lamp line 60, a current value I ne is -200Myuei, when the current source 62 is turned off at the time of generation of the ramp signal, as shown in FIG. 5 The settling time T 2 of the ramp signal in the vicinity of the position Q far from the ramp generating unit 15A is 100 ns to 200 ns, which is shorter than the settling time T 1 .
 電流値Ineとしての-200μAは、特開2011-259407号に記載されている値であるが、電流値Ineが-200μAである場合、整定後にランプ線60からの電流の流れ込みが発生する。整定時間を最小化する電流値Ineの絶対値は、200μAより大きい。この場合、位置Rと位置Qの中間の位置付近のランプ信号の電圧波形は、直線的になり、位置R付近のランプ信号の電圧波形と、位置Q付近のランプ信号の電圧波形は、位置Rと位置Qの中間の位置付近のランプ信号の電圧波形を挟んで上下対称に近くなる。 The current value I ne of −200 μA is the value described in Japanese Patent Application Laid-Open No. 2011-259407. However, when the current value I ne is −200 μA, current flows from the lamp line 60 after settling. . The absolute value of the current value I ne that minimizes the settling time is greater than 200 μA. In this case, the voltage waveform of the ramp signal near the position between the position R and the position Q is linear, and the voltage waveform of the ramp signal near the position R and the voltage waveform of the ramp signal near the position Q are the position R And the voltage waveform of the ramp signal in the vicinity of the intermediate position between the position Q and the position close to the vertical symmetry.
 なお、図4および図5のグラフでは、位置R付近、位置Q付近、および位置Rと位置Qの中間の位置付近のランプ信号の電圧波形のみを図示したが、それ以外の位置の電圧波形は、位置R付近の電圧波形と位置Q付近の電圧波形の間に存在する。 4 and 5, only the voltage waveform of the ramp signal in the vicinity of the position R, in the vicinity of the position Q, and in the vicinity of the intermediate position between the position R and the position Q is illustrated, but the voltage waveform in the other positions is illustrated. , Between the voltage waveform near position R and the voltage waveform near position Q.
 CMOSイメージセンサ10において、電流値Ifeが-121μA、電流値Ineが-141μAであり、ランプ信号の生成時に電流源61がオンにされ、電流源62がオフにされる場合、図6および図7に示すように、ランプ線60の位置R付近、位置Q付近、および位置Rと位置Qの中間の位置付近のランプ信号の整定時間T3は、整定時間T1に比べて大幅に短い10ns以下になる。 In the CMOS image sensor 10, a current value I fe is -121Myuei, the current value I ne -141μA, when the current source 61 when generating the ramp signal is turned on, the current source 62 is turned off, FIGS. 6 and As shown in FIG. 7, the settling time T 3 of the ramp signal near the position R, the position Q, and the position between the position R and the position Q of the ramp line 60 is significantly shorter than the settling time T 1. 10ns or less.
 即ち、図6のシミュレーションでは、電流源61によりランプ線60から電流が引き出されるとともに、電流源62によりランプ線60から電流が引き出される。これにより、ランプ発生部15Aから遠い位置Q付近および位置Rと位置Qの中間付近のランプ信号の電圧変化の遅れがより短縮される。また、各位置のランプ信号の電圧が即座に収束するため、電圧波形の寄り戻しが発生しない。従って、ランプ信号の整定時間T3は、整定時間T2に比べて短くなる。 That is, in the simulation of FIG. 6, the current is drawn from the ramp line 60 by the current source 61 and the current is drawn from the ramp line 60 by the current source 62. Thereby, the delay of the voltage change of the ramp signal near the position Q far from the lamp generator 15A and near the middle between the position R and the position Q is further shortened. In addition, since the voltage of the ramp signal at each position converges immediately, the voltage waveform does not shift back. Accordingly, the ramp signal settling time T 3 is shorter than the settling time T 2 .
 また、図6および図7に示すように、ランプ発生部15Aに近い位置R付近と遠い位置Q付近のランプ信号の電圧波形は、ほぼ重なっている。さらに、位置Rと位置Qの中間の位置付近のランプ信号の電圧が最も高くなるため、理想的である。 Further, as shown in FIGS. 6 and 7, the voltage waveforms of the ramp signals near the position R near the lamp generating unit 15A and the position near the position Q are almost overlapped. Furthermore, the voltage of the ramp signal near the intermediate position between the position R and the position Q is the highest, which is ideal.
 さらに、図6および図7に示すように、CMOSイメージセンサ10では、電流源61と電流源62により、整定後のランプ線60内の電位差が、電流源61と電流源62の両方が備えられないCMOSイメージセンサに比べて、概ね1/4の大きさになる。これにより、P相のA/D変換に使用可能なランプ信号の電圧範囲(P相マージン)が増加する。 Further, as shown in FIGS. 6 and 7, in the CMOS image sensor 10, the current source 61 and the current source 62 provide both the current source 61 and the current source 62 with a potential difference in the ramp line 60 after settling. Compared to a CMOS image sensor that does not, it is roughly 1/4 size. This increases the voltage range (P-phase margin) of the ramp signal that can be used for P-phase A / D conversion.
 なお、図6のグラフでは、位置R付近、位置Q付近、および位置Rと位置Qの中間の位置付近のランプ信号の電圧波形のみを図示したが、それ以外の位置の電圧波形は、位置R付近および位置Q付近の電圧波形と、位置Rと位置Qの中間の位置付近の電圧波形の間に存在する。 In the graph of FIG. 6, only the voltage waveform of the ramp signal in the vicinity of the position R, in the vicinity of the position Q, and in the vicinity of the intermediate position between the position R and the position Q is illustrated. It exists between the voltage waveform near and near position Q and the voltage waveform near the position between position R and position Q.
 以上のように、電流源61と電流源62の両方を備えるCMOSイメージセンサ10では、ランプ線60内の全位置のランプ信号が即座に収束するため、電流値を時間変化させる制御を行う必要なく、ランプ信号の整定時間を十分に短縮することができる。即ち、電流源61と電流源62をオン/オフするだけで、ランプ信号の整定を十分に加速することができる。 As described above, in the CMOS image sensor 10 including both the current source 61 and the current source 62, since the ramp signals at all positions in the ramp line 60 converge immediately, there is no need to perform control for changing the current value over time. The settling time of the ramp signal can be sufficiently shortened. That is, the settling of the ramp signal can be sufficiently accelerated only by turning on / off the current source 61 and the current source 62.
 さらに、ランプ発生部15Aから遠い位置Q付近および位置Rと位置Qの中間の位置付近のランプ信号の電圧変化の遅れが短縮されるため、ランプ信号の生成の終了時の電圧を、図4および図5に比べて低下させることができる。また、整定時間の短縮によって、ランプ信号の動作開始電圧も上昇する。従って、ランプ信号の動作レンジは増加する。 Further, since the delay of the voltage change of the ramp signal near the position Q far from the ramp generating unit 15A and near the intermediate position between the position R and the position Q is shortened, the voltage at the end of the generation of the ramp signal is expressed in FIG. Compared to FIG. In addition, the operation start voltage of the ramp signal increases due to the shortening of the settling time. Accordingly, the operating range of the ramp signal is increased.
 なお、電流源61のみがランプ線60に接続される場合も、電流源61と電流源62の両方が接続される場合と同様に、ランプ信号の整定時間を十分に短縮する効果を得られるが、その効果は両方接続される場合に比べて小さくなる。 Even when only the current source 61 is connected to the lamp line 60, the effect of sufficiently shortening the ramp signal settling time can be obtained as in the case where both the current source 61 and the current source 62 are connected. The effect is smaller than when both are connected.
 (P相オフセットからの復帰時の制御部の制御の説明)
 図8は、P相オフセットからの復帰時の図2の制御部63の制御を説明するイメージ図である。
(Explanation of the control of the control unit when returning from the P-phase offset)
FIG. 8 is an image diagram for explaining the control of the control unit 63 in FIG. 2 when returning from the P-phase offset.
 なお、図8のグラフにおいて、横軸は、時刻を表し、縦軸は、電流値を表す。また、太い実線、細い実線は、それぞれ、電流値Iramp、電流源61の電流値を表す。 In the graph of FIG. 8, the horizontal axis represents time, and the vertical axis represents the current value. A thick solid line and a thin solid line represent the current value I ramp and the current value of the current source 61, respectively.
 CMOSイメージセンサ10のADC15Bでは、選択行の各画素11Aからリセットレベル信号が入力されるとき、比較器31はオートゼロ動作になっている。ランプ発生部15Aは、P相オフセットからの復帰時、ランプ信号の電圧を、オートゼロ時の電圧から、ランプ信号の生成の開始時の電圧に遷移させる必要がある(ステップ応答時)。 In the ADC 15B of the CMOS image sensor 10, when a reset level signal is input from each pixel 11A of the selected row, the comparator 31 is in auto-zero operation. When returning from the P-phase offset, the ramp generator 15A needs to transition the voltage of the ramp signal from the voltage at the time of auto zero to the voltage at the start of ramp signal generation (at the time of step response).
 よって、図8に示すように、P相オフセットからの復帰を開始する時刻t11において、制御部63は、ランプ信号発生用電流源51の電流値Irampを所定値Iramp,startに上昇させる。このとき、制御部63はまた、電流源61を所定の有限期間Twだけオフになるように、ステップ電流を発生させる。これにより、P相オフセットからの復帰時の整定時間が短縮される。 Therefore, as shown in FIG. 8, at time t 11 when the recovery from the P-phase offset is started, the control unit 63 increases the current value I ramp of the ramp signal generating current source 51 to a predetermined value I ramp, start . . At this time, the control unit 63 is also so turned off current source 61 for a predetermined finite time period T w, to generate a step current. This shortens the settling time when returning from the P-phase offset.
 なお、P相オフセットからの復帰時の電流源61のオン/オフは、オートゼロ時のランプ信号の電圧によって異なる。P相オフセットからの復帰時にランプ信号の電圧が下がる場合には、P相オフセットからの復帰時に有限期間Twだけ電流源61がオンにされ、ランプ線70から電流が流れ出す。また、P相オフセットからの復帰時、電流源61は、GNDではなく、電源に接続されてもよい。この場合、電流源61のオン/オフは、GNDに接続される場合の逆になる。 It should be noted that ON / OFF of the current source 61 when returning from the P-phase offset differs depending on the voltage of the ramp signal during auto zero. When the voltage of the ramp signal decreases when returning from the P-phase offset, the current source 61 is turned on for a finite period T w when returning from the P-phase offset, and current flows out from the ramp line 70. Further, when returning from the P-phase offset, the current source 61 may be connected to a power supply instead of GND. In this case, the current source 61 is turned on / off in the reverse manner when connected to the GND.
 また、一般的に、有限期間Twが長いほど、電流値Ifeが小さくて済むが、整定時間の加速度合は小さくなる。従って、このトレードオフを考慮して、有限期間Twは決められる。また、ここでは、電流源61のみを使用する場合について説明するが、電流源62のみを使用するようにしてもよいし、電流源61と電流源62の両方を使用するようにしてもよい。 Also, in general, the more finite period T w is long, but only a small current value I fe, acceleration degree of settling time decreases. Therefore, the finite period T w is determined in consideration of this trade-off. Although only the current source 61 is described here, only the current source 62 may be used, or both the current source 61 and the current source 62 may be used.
 (本開示のP相オフセットからの復帰時の効果の説明)
 図9は、電流源61および電流源62がランプ線60に接続されていないCMOSイメージセンサと、電流源61および電流源62がランプ線60に接続されるCMOSイメージセンサ10のP相オフセットからの復帰時のランプ信号のシミュレーション結果の電圧波形例を示すグラフである。
(Description of the effect at the time of return from P phase offset of this indication)
FIG. 9 illustrates a CMOS image sensor in which the current source 61 and the current source 62 are not connected to the lamp line 60, and a CMOS image sensor 10 in which the current source 61 and the current source 62 are connected to the lamp line 60. It is a graph which shows the voltage waveform example of the simulation result of the ramp signal at the time of a return.
 なお、図9において、横軸は、時刻を表し、縦軸は、ランプ信号の電圧を表す。また、図9では、細い実線、細い粗い点線、細い細かい点線が、それぞれ、電流源61および電流源62がランプ線60に接続されない場合のランプ線60の位置R付近、位置Q付近、位置Qと位置Rの中間の位置付近のランプ信号の波形を表す。 In FIG. 9, the horizontal axis represents time, and the vertical axis represents the voltage of the ramp signal. In FIG. 9, a thin solid line, a thin coarse dotted line, and a thin fine dotted line indicate a position near the position R, a position Q, and a position Q when the current source 61 and the current source 62 are not connected to the lamp line 60, respectively. And the waveform of the ramp signal in the vicinity of the middle position between R and R.
 また、太い実線、太い粗い点線、太い細かい点線が、それぞれ、CMOSイメージセンサ10のランプ線60の位置R付近、位置Q付近、位置Qと位置Rの中間の位置付近のランプ信号の波形を表す。 In addition, a thick solid line, a thick coarse dotted line, and a thick fine dotted line represent the waveform of the ramp signal near the position R, near the position Q, and between the position Q and the position R of the ramp line 60 of the CMOS image sensor 10, respectively. .
 図9のシミュレーションでは、図4乃至図6の場合と同様に、ランプ線60の全負荷容量Cを500pFとし、全配線抵抗Rを200Ωとし、100段のRCラダーで近似した。また、抵抗52の抵抗値Roは100Ωとした。さらに、オートゼロ時のランプ信号の電圧を0.9Vとし、ランプ信号の生成の開始時の電圧を1.0Vした。即ち、P相オフセットからの復帰時の電圧変化Vstepは0.1Vである。 In the simulation of FIG. 9, similar to the case of FIGS. 4 to 6, the total load capacitance C of the lamp line 60 is set to 500 pF, the total wiring resistance R is set to 200Ω, and approximation is performed with a 100-stage RC ladder. The resistance value R o of the resistor 52 was 100Ω. Furthermore, the voltage of the ramp signal at auto zero was set to 0.9V, and the voltage at the start of the ramp signal generation was set to 1.0V. That is, the voltage change V step when returning from the P-phase offset is 0.1V.
 図9に示すように、電流源61および電流源62がランプ線60に接続されない場合、位置R付近のランプ信号の整定時間T11は、ランプ線60の時定数100nsの3倍である300nsより長い。位置Qと位置Rの中間の位置付近および位置Q付近のランプ信号の整定時間は、整定時間T11よりもさらに長い。 As shown in FIG. 9, when the current source 61 and the current source 62 are not connected to the ramp line 60, the settling time T 11 of the ramp signal near the position R is from 300 ns, which is three times the time constant 100 ns of the ramp line 60. long. Position Q and the position settling time of the intermediate position and near the position Q near the ramp signal R is integer longer than constant-time T 11.
 一方、CMOSイメージセンサ10において、電流値Ifeが51.7μAであり、有限期間Twが200nsである場合、図9に示すように、位置Q付近、位置R付近、および位置Qと位置Rの中間の位置付近のランプ信号の整定時間T12は、整定時間T11よりも短い200ns程度である。 On the other hand, in the CMOS image sensor 10, a current value I fe is 51.7Myuei, when a finite time period T w is 200 ns, as shown in FIG. 9, near the position Q, near the position R, and the position Q to the position R settling time T 12 of the ramp signal near the middle position is shorter 200ns about than the settling time T 11.
 即ち、位置Q付近、位置R付近、および位置Qと位置Rの中間の位置付近のランプ信号の電圧波形は、P相オフセットからの復帰開始時(シミュレーション開始から1.0×10-7秒後)、電流源61および電流源62の有無によらず略同一である。しかしながら、電流源61および電流源62を有するCMOSイメージセンサ10では、その後、1.0Vに急速に接近し、有限期間Tw後には、略1.0Vに到達する。ランプ発生部15Aに遠い位置Qのランプ信号の電圧波形では、電流源61の電流によるオーバーシュートが発生するが、電流源61のオン後、即座に1.0Vに整定される。 That is, near the position Q, near the position R, and the voltage waveform of the ramp signal near an intermediate position of the position Q and the position R, the time of restoration starts from P-phase offset (1.0 × 10- 7 seconds after the start of the simulation), The current source 61 and the current source 62 are substantially the same regardless of the presence or absence. However, the CMOS image sensor 10 having a current source 61 and current source 62, then rapidly approaches the 1.0 V, and after a finite time period T w, reaches approximately 1.0 V. In the voltage waveform of the ramp signal at a position Q far from the ramp generator 15A, overshoot occurs due to the current of the current source 61, but immediately after the current source 61 is turned on, it is set to 1.0V.
 なお、図示は省略するが、位置Q付近、位置R付近、および位置Qと位置Rの中間の位置付近以外の位置のランプ信号の電圧波形も、これらの位置と同様に、有限期間Tw後に略1.0Vに到達する。 Although not shown, the vicinity of the position Q, near the position R, and the voltage waveform of the position Q and the position ramp signal location other than near the middle position of the R, like the these positions, after a finite time period T w It reaches about 1.0V.
 以上のように、CMOSイメージセンサ10では、制御部63による電流源61に対する制御を変更するだけで、ランプ信号の生成時の整定加速だけでなく、P相オフセットからの復帰時の整定加速(ステップ整定の高速化)も行うことができる。即ち、CMOSイメージセンサ10は、電流源62のオン/オフを切り替えるだけで、ランプ信号の生成時やP相オフセットからの復帰時の整定時間を短縮することができる。 As described above, in the CMOS image sensor 10, not only the settling acceleration at the time of generating the ramp signal but also the settling acceleration at the time of returning from the P-phase offset (step) only by changing the control of the current source 61 by the control unit 63. Speeding up the settling). That is, the CMOS image sensor 10 can shorten the settling time at the time of generating the ramp signal or returning from the P-phase offset only by switching the current source 62 on / off.
 その結果、撮像画像のフレームレートを向上させることができる。また、ランプ線60の時定数が大きい場合であっても整定時間が許容可能な範囲になるため、ランプ線60の幅を削減することができる。 As a result, the frame rate of the captured image can be improved. In addition, even if the time constant of the lamp line 60 is large, the settling time is in an allowable range, so that the width of the lamp line 60 can be reduced.
 また、CMOSイメージセンサ10は、電流源61だけでなく、電流源62も用いることにより、さらに整定時間を短縮することができる。 Further, the CMOS image sensor 10 can further shorten the settling time by using not only the current source 61 but also the current source 62.
 さらに、電流源61の位置が位置Qからずれた場合や、電流源61の電流値がばらついた場合であっても、効果が薄れるだけであり、急激な破綻は発生しない。従って、本技術は、ロバストな技術である。 Furthermore, even when the position of the current source 61 is deviated from the position Q or when the current value of the current source 61 varies, the effect is only diminished and no sudden failure occurs. Therefore, this technique is a robust technique.
 また、整定時間の加速は、抵抗52の抵抗値R0にあまり依存しないため、抵抗値R0を大きくすることができる。その結果、ランプ発生部15Aの消費電力を削減することができる。一般的に、CMOSイメージセンサ10全体の消費電力に対するランプ発生部15Aの消費電力の割合は大きいため、ランプ発生部15Aの消費電力の削減効果は大きい。 Further, the acceleration of the settling time, since the resistance value R 0 of the resistor 52 is less dependent, it is possible to increase the resistance value R 0. As a result, the power consumption of the lamp generator 15A can be reduced. In general, since the ratio of the power consumption of the lamp generation unit 15A to the power consumption of the entire CMOS image sensor 10 is large, the effect of reducing the power consumption of the lamp generation unit 15A is large.
 さらに、CMOSイメージセンサ10は、位置Rと位置QにDACを接続する場合に比べて、ランプ信号を生成するために無駄に電流を流す必要がないため、消費電力の増加を抑制することができる。また、電圧駆動部は、ランプ発生部15Aだけであるため、位置Rと位置QにDACを接続する場合のように、DACの出力がバッティングすることはない。 Furthermore, the CMOS image sensor 10 can suppress an increase in power consumption because it is not necessary to pass a current unnecessarily in order to generate a ramp signal as compared with a case where a DAC is connected to the position R and the position Q. . Further, since the voltage driving unit is only the ramp generating unit 15A, the output of the DAC does not batt unlike the case where the DAC is connected to the position R and the position Q.
 (カラム処理部の第2の詳細構成例)
 図10は、図1のカラム処理部15の第2の詳細構成例を示す図である。
(Second detailed configuration example of the column processing unit)
FIG. 10 is a diagram illustrating a second detailed configuration example of the column processing unit 15 in FIG.
 図10に示す構成のうち、図2の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 10, the same reference numerals are given to the same components as those in FIG. 2. The overlapping description will be omitted as appropriate.
 図10のカラム処理部15の構成は、電流源62の代わりにステップ電源81が設けられる点、および、制御部63の代わりに制御部82が設けられる点が、図2の構成と異なる。図10の構成は、テブナンの定理を用いて、図2の構成の接点Pの電流駆動を電圧駆動に変形したものである。 The configuration of the column processing unit 15 in FIG. 10 is different from the configuration in FIG. 2 in that a step power source 81 is provided instead of the current source 62 and a control unit 82 is provided instead of the control unit 63. The configuration in FIG. 10 is obtained by transforming the current drive of the contact P in the configuration in FIG. 2 into a voltage drive using Thevenin's theorem.
 具体的には、図10のランプ発生部15Aでは、抵抗52とGNDの間にステップ電源81が接続される。ステップ電源81は、例えば、電圧Vneを発生する抵抗であり、制御部82の制御にしたがって、ランプ信号の生成時にショートされる。また、ステップ電源81は、制御部82の制御にしたがって、P相オフセットからの復帰時に所定の有限期間、抵抗を挿入する(ショートスイッチをオフにする)。これにより、接点Pのランプ信号の電圧がマイナス方向に変化する。 Specifically, in the ramp generator 15A of FIG. 10, a step power supply 81 is connected between the resistor 52 and GND. The step power supply 81 is, for example, a resistor that generates a voltage V ne and is short-circuited when a ramp signal is generated according to the control of the control unit 82. Further, the step power supply 81 inserts a resistor for a predetermined finite period (turns the short switch off) when returning from the P-phase offset according to the control of the control unit 82. As a result, the voltage of the ramp signal at the contact P changes in the negative direction.
 制御部82は、ランプ信号発生用電流源51、電流源61、およびステップ電源81を制御する。具体的には、制御部82は、図2の制御部63と同様に、ランプ信号発生用電流源51の電流値Irampを設定する。また、制御部82は、制御部63と同様に、電流源61の動作のオンおよびオフを制御する。さらに、制御部82は、ランプ信号の生成時およびP相オフセットからの復帰時の所定の有限期間に、ステップ電源81をショートさせるように制御する。 The control unit 82 controls the ramp signal generating current source 51, the current source 61, and the step power source 81. Specifically, the control unit 82 sets the current value I ramp of the ramp signal generating current source 51 as in the control unit 63 of FIG. The control unit 82 controls the operation of the current source 61 on and off as with the control unit 63. Further, control unit 82 controls step power supply 81 to be short-circuited during a predetermined finite period when the ramp signal is generated and when the phase signal is restored from the P-phase offset.
 以上のように、図10のランプ発生部15Aでは、ステップ電源81が、電圧駆動により、ランプ信号の生成時およびP相オフセットからの復帰時の所定の有限期間に、ランプ線60の接点Pのランプ信号の電圧をマイナス方向に変化させる。抵抗52の抵抗値Roが0である場合、電流駆動を行うことはできないが、電圧駆動によりランプ信号の整定時間を十分に短縮することは可能である。 As described above, in the lamp generating unit 15A of FIG. 10, the step power supply 81 is driven by the voltage during the predetermined finite period at the time of generating the ramp signal and returning from the P-phase offset. The voltage of the ramp signal is changed in the negative direction. If the resistance R o of the resistor 52 is zero, but can not perform the current driving, it is possible to sufficiently shorten the settling time of the ramp signal by the voltage driving.
 (カラム処理部の第3の詳細構成例)
 図11は、図1のカラム処理部15の第3の詳細構成例を示す図である。
(Third detailed configuration example of the column processing unit)
FIG. 11 is a diagram illustrating a third detailed configuration example of the column processing unit 15 in FIG. 1.
 図11に示す構成のうち、図10の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 11, the same components as those in FIG. 10 are denoted by the same reference numerals. The overlapping description will be omitted as appropriate.
 図11のカラム処理部15の構成は、抵抗52の代わりにオペアンプ101および抵抗102が設けられる点、および電源103が設けられる点が、図10の構成と異なる。 11 differs from the configuration of FIG. 10 in that an operational amplifier 101 and a resistor 102 are provided instead of the resistor 52, and a power supply 103 is provided.
 上述したように、ステップ電源81により電圧駆動を行う場合、抵抗値Roが0である場合にもランプ信号の整定時間を十分に短縮することができるため、図11のカラム処理部15は、抵抗52の代わりにオペアンプ101および抵抗102を用いて、ランプ信号を生成する。 As described above, when the voltage is driven by the step power supply 81, the settling time of the ramp signal can be sufficiently shortened even when the resistance value Ro is 0. Therefore, the column processing unit 15 in FIG. A ramp signal is generated using the operational amplifier 101 and the resistor 102 instead of the resistor 52.
 具体的には、図11のランプ発生部15Aでは、一端が電源に接続されたランプ信号発生用電流源51の他端が、オペアンプ101の反転入力端子と抵抗値Rfの抵抗102の一端に接続される。オペアンプ101の出力端子と抵抗102の他端は、それぞれ、ランプ線60と接続する。オペアンプ101の非反転入力端子は、ステップ電源81の一端に接続され、ステップ電源81の他端は、電圧Vpedの電源103と接続される。 Specifically, in the ramp generator 15A of FIG. 11, the other end of the ramp signal generating current source 51, one end of which is connected to the power source, is connected to the inverting input terminal of the operational amplifier 101 and one end of the resistor 102 having the resistance value Rf. Connected. The output terminal of the operational amplifier 101 and the other end of the resistor 102 are connected to the lamp line 60, respectively. The non-inverting input terminal of the operational amplifier 101 is connected to one end of the step power supply 81, and the other end of the step power supply 81 is connected to the power supply 103 having the voltage V ped .
 ランプ信号の生成時、制御部82により、ランプ信号発生用電流源51の電流値Irampは所定値から徐々に上げるように設定される。これにより、オペアンプ101の出力端子からランプ線60に出力されるランプ信号の電圧は、徐々に下がるランプ波形の電圧となる。 When the ramp signal is generated, the controller 82 sets the current value I ramp of the ramp signal generating current source 51 so as to gradually increase from a predetermined value. As a result, the voltage of the ramp signal output from the output terminal of the operational amplifier 101 to the ramp line 60 becomes a voltage having a ramp waveform that gradually decreases.
 図11のランプ発生部15Aのように、ランプ信号をオペアンプ101により生成する場合、オペアンプ101の出力抵抗は非常に小さい。従って、ランプ線60の容量性負荷からランプ線60に電流が流れ込んだとしても、ランプ線60のランプ発生部15Aに近い側では、瞬時にランプ信号が整定する。従って、ランプ発生部15Aに近い側の電流を、特許文献1の発明のように引き抜く意味はない。しかしながら、ランプ発生部15Aに遠い側では、ランプ線60の時定数に応じてランプ信号の整定時間が決定されるため、その整定時間は比較的長い。 When the ramp signal is generated by the operational amplifier 101 as in the ramp generator 15A of FIG. 11, the output resistance of the operational amplifier 101 is very small. Therefore, even if a current flows into the lamp line 60 from the capacitive load of the lamp line 60, the lamp signal instantaneously settles on the side of the lamp line 60 close to the lamp generator 15A. Therefore, it is meaningless to draw the current on the side close to the lamp generator 15A as in the invention of Patent Document 1. However, since the settling time of the ramp signal is determined according to the time constant of the ramp line 60 on the side far from the ramp generating unit 15A, the settling time is relatively long.
 図11のカラム処理部15は、電流源61を備えるので、ランプ発生部15Aに遠い側のランプ信号の整定時間を十分に短縮することができる。また、図11のカラム処理部15は、電流源61だけでなく、ステップ電源81も備えるので、よりランプ信号の整定時間を短縮することができる。 Since the column processing unit 15 of FIG. 11 includes the current source 61, the settling time of the ramp signal far from the ramp generation unit 15A can be sufficiently shortened. In addition, since the column processing unit 15 of FIG. 11 includes not only the current source 61 but also the step power supply 81, the settling time of the ramp signal can be further shortened.
 なお、ステップ電源81を設ける代わりに、抵抗102にステップ電流を流し込むようにしてもよい。また、ランプ発生部15Aのインピーダンスが小さい場合、図2のカラム処理部15に比べて、電流源62の代わりにステップ電源81を備える図11のカラム処理部15の方が望ましい。 Note that, instead of providing the step power supply 81, a step current may be supplied to the resistor 102. In addition, when the impedance of the lamp generating unit 15A is small, the column processing unit 15 of FIG. 11 including the step power supply 81 instead of the current source 62 is more desirable than the column processing unit 15 of FIG.
 <第2実施の形態>
 (CMOSイメージセンサの第2実施の形態の構成例)
 図12は、本開示を適用した固体撮像素子としてのCMOSイメージセンサの第2実施の形態の構成例を示す図である。
<Second Embodiment>
(Configuration example of the second embodiment of the CMOS image sensor)
FIG. 12 is a diagram illustrating a configuration example of a second embodiment of a CMOS image sensor as a solid-state imaging device to which the present disclosure is applied.
 図12に示す構成のうち、図1の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 12, the same reference numerals are given to the same components as those in FIG. 1. The overlapping description will be omitted as appropriate.
 図12のCMOSイメージセンサ120は、3つの半導体基板121乃至123が積層されることにより構成される。 The CMOS image sensor 120 in FIG. 12 is configured by stacking three semiconductor substrates 121 to 123.
 半導体基板121には、画素領域11が設けられ、半導体基板122には、A/D処理部141が設けられ、半導体基板123には、回路部142が設けられる。A/D処理部141は、画素領域11の1以上の画素11Aからなる画素群ごとに設けられ、その画素群の各画素の画素信号に対してA/D変換を行うADC15B、ランプ発生部15A等により構成される。回路部142は、図1の垂直駆動部14、選択行の各画素のADC15Bを順番に選択する水平駆動部、および信号処理部18により構成される。 The pixel region 11 is provided on the semiconductor substrate 121, the A / D processing unit 141 is provided on the semiconductor substrate 122, and the circuit unit 142 is provided on the semiconductor substrate 123. The A / D processing unit 141 is provided for each pixel group including one or more pixels 11A in the pixel region 11, and the ADC 15B and the ramp generation unit 15A perform A / D conversion on the pixel signal of each pixel in the pixel group. Etc. The circuit unit 142 includes the vertical drive unit 14 in FIG. 1, a horizontal drive unit that sequentially selects the ADC 15 </ b> B of each pixel in the selected row, and the signal processing unit 18.
 CMOSイメージセンサ120のように、ADCと画素領域を異なる半導体基板に設け、ADCを画素ごとに2次元配置するCMOSイメージセンサは、例えば、K. Kiyoyama, Y. Ohara, K.-W. Lee, Y. Yang, T. Fukushima, T. Tanaka, and M. Koyanagi, “A parallel ADC for high-speed CMOS image processing system with 3D structure” IEEE International Conference on 3D System Integration, pp. 1--4, Sep., 2009.に記載されている。 Like the CMOS image sensor 120, a CMOS image sensor in which the ADC and the pixel region are provided on different semiconductor substrates and the ADC is two-dimensionally arranged for each pixel is, for example, K. Kiyoyama, Y. Ohara, K.-W. Lee, Y. Yang, T. Fukushima, T. Tanaka, and M. Koyanagi, “A parallel ADC for high-speed CMOS image processing system with 3D structure” IEEE International Conference on 3D System Integration, pp. 1--4, Sep. , 2009.
 (A/D処理部の構成例)
 図13は、図12のA/D処理部141の構成例を示す図である。
(Configuration example of A / D processing unit)
FIG. 13 is a diagram illustrating a configuration example of the A / D processing unit 141 in FIG.
 図13に示す構成のうち、図2の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 13, the same components as those in FIG. 2 are denoted by the same reference numerals. The overlapping description will be omitted as appropriate.
 図13に示すように、A/D処理部141では、ADC15Bが画素群に対応して行列状に配置される。また、ランプ線161は、画素領域11と対応する領域に2次元(メッシュ)配置され、ランプ発生部15Aの接点Pと接続する。図13の例では、ランプ線161は、ADC15Bの行ごとに設けられたランプ線161Aと、列ごとに設けられたランプ線161Bとにより構成される。なお、ランプ線161Aは複数行ごとに設けられてもよいし、ランプ線161Bは、複数列ごとに設けられてもよい。 As shown in FIG. 13, in the A / D processing unit 141, the ADC 15B is arranged in a matrix corresponding to the pixel group. The ramp line 161 is two-dimensionally (mesh) arranged in a region corresponding to the pixel region 11 and is connected to the contact P of the ramp generation unit 15A. In the example of FIG. 13, the ramp line 161 includes a ramp line 161A provided for each row of the ADC 15B and a ramp line 161B provided for each column. The ramp line 161A may be provided for each of a plurality of rows, and the ramp line 161B may be provided for each of a plurality of columns.
 ランプ線161Aとランプ線161Bは、ランプ発生部15Aの接点Pから出る。ランプ線161Aには、対応する行の複数のADC15Bが並列に接続され、ランプ線161Bには、対応する列の複数のADC15Bが並列に接続される。ランプ線161Aとランプ線161Bの遠端には、電流源162,164、および165(第1の電流源)が接続される。 The lamp line 161A and the lamp line 161B exit from the contact point P of the lamp generating unit 15A. A plurality of ADCs 15B in the corresponding row are connected in parallel to the ramp line 161A, and a plurality of ADCs 15B in the corresponding column are connected in parallel to the ramp line 161B. Current sources 162, 164, and 165 (first current source) are connected to the far ends of the lamp lines 161A and 161B.
 また、各ランプ線161Aのランプ発生部15Aに最も近い列のADC15Bと、接点Pとの間の位置には、電流源163(第2の電流源)が接続される。 Further, a current source 163 (second current source) is connected to a position between the ADC 15B in the column closest to the lamp generating unit 15A of each lamp line 161A and the contact P.
 A/D処理部141にはまた、制御部166が設けられる。制御部166は、図2の制御部63と同様に、ランプ信号発生用電流源51の電流値Irampを設定する。また、制御部166は、電流源162乃至165の動作のオンおよびオフを制御する。 The A / D processing unit 141 is also provided with a control unit 166. The control unit 166 sets the current value I ramp of the ramp signal generating current source 51, similarly to the control unit 63 of FIG. The control unit 166 controls on / off of the operation of the current sources 162 to 165.
 電流源162、電流源164、および電流源165の制御方法は、電流源61の制御方法と同様であり、電流源163の制御方法は、電流源62の制御方法と同様である。即ち、ランプ信号の生成時およびP相オフセットからの復帰時の所定の有限期間、電流源162の電流値I2、電流源163の電流値I1、電流源164の電流値I3、および電流源165の電流値I4は、ランプ線60から引き出す方向または流し込む方向に変化する。 The control method of the current source 162, the current source 164, and the current source 165 is the same as the control method of the current source 61, and the control method of the current source 163 is the same as the control method of the current source 62. That is, the current value I 2 of the current source 162, the current value I 1 of the current source 163, the current value I 3 of the current source 164, and the current during a predetermined finite period when the ramp signal is generated and returned from the P-phase offset The current value I 4 of the source 165 changes in the direction of drawing from the lamp line 60 or the direction of flowing in.
 以上のように、CMOSイメージセンサ120では、ADC15Bが行列状に配置されるので、ランプ発生部15Aの負荷となるADC15Bの比較器31が2次元的に広がる。また、ADC15Bは、1以上の画素11Aごとに設けられるため、A/D処理部141内の比較器31の数は、一般的に、カラム処理部15に比べて1桁以上増加する。 As described above, in the CMOS image sensor 120, the ADCs 15B are arranged in a matrix, so that the comparator 31 of the ADC 15B serving as the load of the ramp generation unit 15A spreads two-dimensionally. In addition, since the ADC 15B is provided for each of the one or more pixels 11A, the number of the comparators 31 in the A / D processing unit 141 generally increases by one digit or more as compared with the column processing unit 15.
 例えば、画素11Aが垂直方向に2000個並び、水平方向に4000個並ぶ場合、カラム処理部15の比較器31の数は4000個である。これに対して、A/D処理部141のADC15Bが10×10の画素11Aごとに設けられる場合、A/D処理部141の比較器31の数は、80000(=200×400)個であり、カラム処理部15の場合の20倍である。 For example, when 2000 pixels 11A are arranged in the vertical direction and 4000 pixels are arranged in the horizontal direction, the number of comparators 31 in the column processing unit 15 is 4000. On the other hand, when the ADC 15B of the A / D processing unit 141 is provided for each 10 × 10 pixel 11A, the number of the comparators 31 of the A / D processing unit 141 is 80000 (= 200 × 400). This is 20 times that of the column processing unit 15.
 A/D処理部141の比較器31の数は、1つのADC15Bに対応する画素11Aの数に応じて異なるため、10×10より多い画素11Aごとに設けられた場合、比較器31の数は少なくなる。しかしながら、ADC15Bが画素11Aの列だけでなく行にも対応して配置される場合、列のみに対応して配置される場合に比べて、ADC15Bの数は、基本的に多くなるため、比較器31の数も多くなる。 Since the number of comparators 31 in the A / D processing unit 141 varies depending on the number of pixels 11A corresponding to one ADC 15B, the number of comparators 31 when provided for each pixel 11A greater than 10 × 10 is Less. However, when the ADC 15B is arranged corresponding not only to the column of the pixel 11A but also to the row, the number of ADCs 15B basically increases as compared with the case where the ADC 15B is arranged corresponding to only the column. The number of 31 also increases.
 このような場合であっても、A/D処理部141は、電流源162乃至165を設けるので、ランプ信号の整定時間を十分に短縮することができる。 Even in such a case, since the A / D processing unit 141 is provided with the current sources 162 to 165, the settling time of the ramp signal can be sufficiently shortened.
 図13の例では、2次元配置されるランプ線161の4つの角に電流源162乃至165がそれぞれ配置されるようにしたが、ランプ線161Aまたはランプ線161B上の接点Pから遠い位置に電流源が設けられれば、電流源の数や位置はこれに限定されない。また、ランプ発生部15Aの位置も、図13の例に限定されない。 In the example of FIG. 13, the current sources 162 to 165 are arranged at the four corners of the lamp line 161 arranged two-dimensionally, but the current is at a position far from the contact point P on the lamp line 161A or the lamp line 161B. If a source is provided, the number and position of the current sources are not limited to this. Further, the position of the ramp generator 15A is not limited to the example of FIG.
 例えば、ランプ発生部15Aおよび電流源162乃至165は、ランプ線161Aまたはランプ線161Bの中央に配置されるようにしてもよい。また、電流源162よび電流源164は設けられなくてもよい。 For example, the lamp generator 15A and the current sources 162 to 165 may be arranged at the center of the lamp line 161A or the lamp line 161B. Further, the current source 162 and the current source 164 may not be provided.
 <第3実施の形態>
 (撮像装置の一実施の形態の構成例)
 図14は、本開示を適用した電子機器としての撮像装置の一実施の形態の構成例を示すブロック図である。
<Third Embodiment>
(Configuration example of one embodiment of imaging device)
FIG. 14 is a block diagram illustrating a configuration example of an embodiment of an imaging apparatus as an electronic apparatus to which the present disclosure is applied.
 図14の撮像装置1000は、ビデオカメラやデジタルスチルカメラ等である。撮像装置1000は、レンズ群1001、固体撮像素子1002、DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、操作部1007、および電源部1008からなる。DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、操作部1007、および電源部1008は、バスライン1009を介して相互に接続されている。 14 is a video camera, a digital still camera, or the like. The imaging apparatus 1000 includes a lens group 1001, a solid-state imaging device 1002, a DSP circuit 1003, a frame memory 1004, a display unit 1005, a recording unit 1006, an operation unit 1007, and a power supply unit 1008. The DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, the operation unit 1007, and the power supply unit 1008 are connected to each other via a bus line 1009.
 レンズ群1001は、被写体からの入射光(像光)を取り込んで固体撮像素子1002の撮像面上に結像する。固体撮像素子1002は、上述したCMOSイメージセンサ10またはCMOSイメージセンサ120からなる。固体撮像素子1002は、レンズ群1001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP回路1003に供給する。 The lens group 1001 takes in incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 1002. The solid-state image sensor 1002 includes the CMOS image sensor 10 or the CMOS image sensor 120 described above. The solid-state imaging device 1002 converts the amount of incident light imaged on the imaging surface by the lens group 1001 into an electrical signal in units of pixels and supplies the electrical signal to the DSP circuit 1003 as a pixel signal.
 DSP回路1003は、固体撮像素子1002から供給される画素信号に対して所定の画像処理を行い、画像処理後の画像信号をフレーム単位でフレームメモリ1004に供給し、一時的に記憶させる。 The DSP circuit 1003 performs predetermined image processing on the pixel signal supplied from the solid-state imaging device 1002, supplies the image signal after the image processing to the frame memory 1004 in units of frames, and temporarily stores them.
 表示部1005は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号に基づいて、画像を表示する。 The display unit 1005 includes, for example, a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on a pixel signal in a frame unit temporarily stored in the frame memory 1004.
 記録部1006は、DVD(Digital Versatile Disk)、フラッシュメモリ等からなり、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号を読み出し、記録する。 The recording unit 1006 includes a DVD (Digital Versatile Disk), a flash memory, and the like, and reads and records pixel signals in units of frames temporarily stored in the frame memory 1004.
 操作部1007は、ユーザによる操作の下に、撮像装置1000が持つ様々な機能について操作指令を発する。電源部1008は、電源を、DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、および操作部1007に対して適宜供給する。 The operation unit 1007 issues operation commands for various functions of the imaging apparatus 1000 under operation by the user. The power supply unit 1008 appropriately supplies power to the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, and the operation unit 1007.
 本技術を適用する電子機器は、画像取込部(光電変換部)にCMOSイメージセンサを用いる装置であればよく、撮像装置1000のほか、撮像機能を有する携帯端末装置、画像読取部にCMOSイメージセンサを用いる複写機などがある。 An electronic device to which the present technology is applied may be a device that uses a CMOS image sensor for an image capturing unit (photoelectric conversion unit). In addition to the imaging device 1000, a portable terminal device having an imaging function, and a CMOS image for an image reading unit. There are copiers that use sensors.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, There may exist another effect.
 また、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiments of the present disclosure are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present disclosure.
 例えば、第1および第2実施の形態において、製造バラツキによる整定時間の差を補正する機構が設けられるようにしてもよい。また、第2実施の形態のランプ発生部15Aは、図10や図11のランプ発生部15Aであってもよい。 For example, in the first and second embodiments, a mechanism for correcting a difference in settling time due to manufacturing variation may be provided. Further, the ramp generator 15A of the second embodiment may be the ramp generator 15A of FIG. 10 or FIG.
 また、第1および第2実施の形態において、ランプ信号の生成時、電流値Irampは、所定値から徐々に上げるように設定されるようにしてもよい。これにより、ランプ信号発生用電流源51と抵抗52の接点Pの電圧は、徐々に上がるランプ波形の電圧となる。この場合、ランプ信号の生成期間およびP相オフセットからの復帰時、電流源61の電流値は、ランプ線60に流し込む方向に変化する。 In the first and second embodiments, when the ramp signal is generated, the current value I ramp may be set to gradually increase from a predetermined value. As a result, the voltage at the contact point P between the ramp signal generating current source 51 and the resistor 52 becomes a voltage having a ramp waveform that gradually increases. In this case, the current value of the current source 61 changes in the direction of flowing into the ramp line 60 when the ramp signal is generated and returned from the P-phase offset.
 また、本開示は、以下のような構成もとることができる。 Further, the present disclosure can have the following configurations.
 (1)
 画素の画素信号に対してA/D変換を行う複数のA/D変換部と、
 ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、
 前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、
 前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源と
 を備える固体撮像素子。
 (2)
 前記第1の電流源の電流値は、前記ランプ信号のスルーレートに応じて決定され、前記ランプ線固有の整定特性を最適化する値である
 ように構成された
 前記(1)に記載の固体撮像素子。
 (3)
 前記ランプ発生部からの前記ランプ線の近端にオンオフ可能な第2の電流源
 をさらに備える
 前記(1)または(2)に記載の固体撮像素子。
 (4)
 前記ランプ線の電圧が、所定の電圧から、別の所定の電圧に遷移する場合、所定の期間だけ前記第1の電流源または前記第2の電流源のいずれか、もしくは、前記第1の電流源と前記第2の電流源の両方である対象電流源が、オンまたはオフにされる
 ように構成された
 前記(3)に記載の固体撮像素子。
 (5)
 前記対象電流源の電流値は、前記対象電流源のオン期間と前記ランプ線の電圧遷移量に応じて決定され、前記ランプ線固有の整定特性を最適化する値である
 ように構成された
 前記(4)に記載の固体撮像素子。
 (6)
 画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とを備える固体撮像素子を制御する制御装置が、
 前記ランプ線の電圧が、所定の電圧から、別の所定の電圧に遷移する場合、所定の期間だけ前記第1の電流源をオンまたはオフにするステップ
 を含む制御方法。
 (7)
 画素の画素信号に対してA/D変換を行う複数のA/D変換部と、
 ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、
 前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、
 前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源と
 を備える電子機器。
(1)
A plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels;
A ramp generator that generates a ramp signal and outputs the ramp signal to each of the plurality of A / D converters;
A ramp line connected in parallel to each of the plurality of A / D conversion units from the ramp generation unit,
A solid-state imaging device comprising: a first current source capable of being turned on / off connected to a far end of the lamp line from the lamp generating unit.
(2)
The current value of the first current source is determined according to the slew rate of the ramp signal, and is configured to optimize the settling characteristic specific to the lamp line. The solid according to (1) Image sensor.
(3)
The solid-state imaging device according to (1) or (2), further including: a second current source that can be turned on / off at a near end of the ramp line from the ramp generation unit.
(4)
When the voltage of the ramp line transits from a predetermined voltage to another predetermined voltage, either the first current source or the second current source or the first current for a predetermined period only. The solid-state imaging device according to (3), wherein a target current source that is both a source and the second current source is configured to be turned on or off.
(5)
The current value of the target current source is determined according to an ON period of the target current source and a voltage transition amount of the ramp line, and is configured to optimize a settling characteristic unique to the ramp line. (4) The solid-state image sensor as described.
(6)
A plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels, a ramp generation unit that generates a ramp signal and outputs it to each of the plurality of A / D conversion units, and the ramp generation unit A ramp line connected in parallel to each of the plurality of A / D converters, and a first current source that can be turned on / off connected to a far end of the ramp line from the ramp generation unit. A control device for controlling the solid-state image sensor,
A control method comprising: turning on or off the first current source only for a predetermined period when the voltage of the ramp line transits from a predetermined voltage to another predetermined voltage.
(7)
A plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels;
A ramp generator that generates a ramp signal and outputs the ramp signal to each of the plurality of A / D converters;
A ramp line connected in parallel to each of the plurality of A / D conversion units from the ramp generation unit,
An electronic device comprising: a first current source capable of being turned on / off connected to a far end of the lamp line from the lamp generating unit.
 10 CMOSイメージセンサ, 11A 画素, 15A ランプ発生部, 15B ADC, 51 ランプ信号発生用電流源, 52 抵抗, 60 ランプ線, 61 電流源, 62 電流源, 63 制御部, 81 ステップ電源, 101 オペアンプ, 121,122 半導体基板, 1000 撮像装置 10 CMOS image sensor, 11A pixel, 15A lamp generation unit, 15B ADC, 51 current source for lamp signal generation, 52 resistance, 60 ramp lines, 61 current source, 62 current source, 63 control unit, 81 step power supply, 101 operational amplifier, 121,122 semiconductor substrate, 1000 imaging device

Claims (7)

  1.  画素の画素信号に対してA/D変換を行う複数のA/D変換部と、
     ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、
     前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、
     前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源と
     を備える固体撮像素子。
    A plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels;
    A ramp generator that generates a ramp signal and outputs the ramp signal to each of the plurality of A / D converters;
    A ramp line connected in parallel to each of the plurality of A / D conversion units from the ramp generation unit,
    A solid-state imaging device comprising: a first current source capable of being turned on / off connected to a far end of the lamp line from the lamp generating unit.
  2.  前記第1の電流源の電流値は、前記ランプ信号のスルーレートに応じて決定され、前記ランプ線固有の整定特性を最適化する値である
     ように構成された
     請求項1に記載の固体撮像素子。
    The solid-state imaging according to claim 1, wherein the current value of the first current source is determined in accordance with a slew rate of the ramp signal, and is a value that optimizes a settling characteristic specific to the ramp line. element.
  3.  前記ランプ発生部からの前記ランプ線の近端にオンオフ可能な第2の電流源
     をさらに備える
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, further comprising a second current source that can be turned on and off at a near end of the ramp line from the ramp generation unit.
  4.  前記ランプ線の電圧が、所定の電圧から、別の所定の電圧に遷移する場合、所定の期間だけ前記第1の電流源または前記第2の電流源のいずれか、もしくは、前記第1の電流源と前記第2の電流源の両方である対象電流源が、オンまたはオフにされる
     ように構成された
     請求項3に記載の固体撮像素子。
    When the voltage of the ramp line transits from a predetermined voltage to another predetermined voltage, either the first current source or the second current source or the first current for a predetermined period only. The solid-state imaging device according to claim 3, wherein a target current source that is both a source and the second current source is configured to be turned on or off.
  5.  前記対象電流源の電流値は、前記対象電流源のオン期間と前記ランプ線の電圧遷移量に応じて決定され、前記ランプ線固有の整定特性を最適化する値である
     ように構成された
     請求項4に記載の固体撮像素子。
    The current value of the target current source is determined according to an ON period of the target current source and a voltage transition amount of the ramp line, and is configured to optimize a settling characteristic specific to the ramp line. Item 5. The solid-state imaging device according to Item 4.
  6.  画素の画素信号に対してA/D変換を行う複数のA/D変換部と、ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源とを備える固体撮像素子を制御する制御装置が、
     前記ランプ線の電圧が、所定の電圧から、別の所定の電圧に遷移する場合、所定の期間だけ前記第1の電流源をオンまたはオフにするステップ
     を含む制御方法。
    A plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels, a ramp generation unit that generates a ramp signal and outputs it to each of the plurality of A / D conversion units, and the ramp generation unit A ramp line connected in parallel to each of the plurality of A / D converters, and a first current source that can be turned on / off connected to a far end of the ramp line from the ramp generation unit. A control device for controlling the solid-state image sensor,
    A control method comprising: turning on or off the first current source only for a predetermined period when the voltage of the ramp line transits from a predetermined voltage to another predetermined voltage.
  7.  画素の画素信号に対してA/D変換を行う複数のA/D変換部と、
     ランプ信号を生成し、前記複数のA/D変換部のそれぞれに出力するランプ発生部と、
     前記ランプ発生部から出て前記複数のA/D変換部のそれぞれが並列に接続されるランプ線と、
     前記ランプ発生部からの前記ランプ線の遠端に接続されたオンオフ可能な第1の電流源と
     を備える電子機器。
    A plurality of A / D conversion units that perform A / D conversion on pixel signals of pixels;
    A ramp generator that generates a ramp signal and outputs the ramp signal to each of the plurality of A / D converters;
    A ramp line connected in parallel to each of the plurality of A / D conversion units from the ramp generation unit,
    An electronic device comprising: a first current source capable of being turned on / off connected to a far end of the lamp line from the lamp generating unit.
PCT/JP2016/051082 2015-01-30 2016-01-15 Solid-state image pickup element and control method, and electronic equipment WO2016121523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-016478 2015-01-30
JP2015016478 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121523A1 true WO2016121523A1 (en) 2016-08-04

Family

ID=56543142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051082 WO2016121523A1 (en) 2015-01-30 2016-01-15 Solid-state image pickup element and control method, and electronic equipment

Country Status (1)

Country Link
WO (1) WO2016121523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11037968B2 (en) 2019-04-05 2021-06-15 Waymo Llc Image sensor architecture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259407A (en) * 2010-05-13 2011-12-22 Sony Corp Signal processing circuit, solid state image sensor, and camera system
WO2013073585A1 (en) * 2011-11-16 2013-05-23 国立大学法人静岡大学 Lamp signal generation circuit and cmos image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259407A (en) * 2010-05-13 2011-12-22 Sony Corp Signal processing circuit, solid state image sensor, and camera system
WO2013073585A1 (en) * 2011-11-16 2013-05-23 国立大学法人静岡大学 Lamp signal generation circuit and cmos image sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11037968B2 (en) 2019-04-05 2021-06-15 Waymo Llc Image sensor architecture
TWI788652B (en) * 2019-04-05 2023-01-01 美商威摩有限責任公司 Image sensor architecture
US11972342B2 (en) 2019-04-05 2024-04-30 Waymo Llc Image sensor architecture

Similar Documents

Publication Publication Date Title
US9838654B2 (en) Solid-state imaging device, driving method, and electronic device
EP2552105B1 (en) Solid-state imaging apparatus
JP6164869B2 (en) Imaging device, imaging system, and driving method of imaging device
US7755686B2 (en) Physical quantity distribution detecting apparatus and imaging apparatus
US9729807B2 (en) Image sensor, driving method, and electronic apparatus
TWI495341B (en) Solid state camera device
US7616146B2 (en) A/D conversion circuit, control method thereof, solid-state imaging device, and imaging apparatus
US20130214127A1 (en) Photoelectric conversion apparatus, method for driving the same, and photoelectric conversion system
JP2009296423A (en) Solid-state imaging apparatus, imaging apparatus, electronic device, ad converter, and ad conversion method
KR101411369B1 (en) Imaging system and imaging device
JP6589868B2 (en) Solid-state imaging device and electronic device
TW201511564A (en) Conversion device, imaging device, electronic device, and conversion method
CN104660923A (en) Comparator circuit, imaging apparatus using the same, and method of controlling comparator circuit
US10250836B2 (en) Solid-state image sensing apparatus, control method, and electronic device
US9497398B2 (en) Solid-state imaging device and camera for reducing random row noise
WO2016136500A1 (en) Image capture element, processing method, and electronic device
US20150189203A1 (en) Solid state imaging device and method of driving solid state imaging device
WO2016121523A1 (en) Solid-state image pickup element and control method, and electronic equipment
WO2017014070A1 (en) Imaging element and electronic device
JP2007306348A (en) Solid state imaging apparatus
JP2021048588A (en) Voltage supply circuit
WO2017110163A1 (en) Solid-state imaging element, driving method for solid-state imaging element, and electronic device
JP6796776B2 (en) Voltage supply circuit
JP2013141144A (en) A/d conversion circuit, imaging device, and electronic apparatus
JP6410882B2 (en) Imaging device, imaging system, and driving method of imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16743127

Country of ref document: EP

Kind code of ref document: A1