WO2017110163A1 - Solid-state imaging element, driving method for solid-state imaging element, and electronic device - Google Patents

Solid-state imaging element, driving method for solid-state imaging element, and electronic device Download PDF

Info

Publication number
WO2017110163A1
WO2017110163A1 PCT/JP2016/076977 JP2016076977W WO2017110163A1 WO 2017110163 A1 WO2017110163 A1 WO 2017110163A1 JP 2016076977 W JP2016076977 W JP 2016076977W WO 2017110163 A1 WO2017110163 A1 WO 2017110163A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal line
current
vertical signal
pixel
Prior art date
Application number
PCT/JP2016/076977
Other languages
French (fr)
Japanese (ja)
Inventor
恭範 佃
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017110163A1 publication Critical patent/WO2017110163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to a solid-state imaging device, a driving method of the solid-state imaging device, and an electronic device.
  • Acceleration of pixel signal reading speed and high definition are desired for solid-state imaging devices.
  • increasing the number of pixels is desired to improve the resolution.
  • the number of pixels connected to the vertical signal line increases, and the parasitic capacitance of the vertical signal line increases. This increase in the parasitic capacitance of the vertical signal line hinders shortening of the settling (static / settling) time of the potential of the vertical signal line. Shortening the settling time is important for increasing the readout speed of pixel signals. That is, in a solid-state image sensor, there is a trade-off between increasing the pixel signal readout speed and increasing the number of pixels.
  • an additional current is supplied to the vertical signal line according to the potential fluctuation amount of the vertical signal line (for example, refer to Patent Document 1).
  • the slew rate of the vertical signal line is improved, so that the settling time can be shortened.
  • an additional current is applied to the vertical signal line at the timing of reading the pixel signal after the signal for changing the potential of the vertical signal line (reset control signal or transfer control signal).
  • reset control signal or transfer control signal For example, refer nonpatent literature 1.
  • the slew rate of the vertical signal line is improved, so that the settling time can be shortened.
  • Patent Document 1 The prior art described in Patent Document 1 is useful when the potential of the vertical signal line is large.
  • the settling after the potential of the floating diffusion FD charge voltage conversion unit / charge detection unit fluctuates when the supply of the additional current is stopped or due to the feedthrough generated in response to the transition of the potential of the pixel control line.
  • the effect of shortening the settling time is small.
  • Non-Patent Document 1 Even if the potential of the vertical signal line has once settled, the gate-source voltage V of the amplification transistor constituting the source follower is stopped along with the supply of the additional current. gs changes.
  • the gate-source voltage V gs changes, it is necessary to wait again for the settling time determined by the RC delay equation of the wiring resistance R and parasitic capacitance C of the vertical signal line.
  • the effect of shortening the settling time is limited to the case where the potential fluctuation of the vertical signal line due to the change in the potential of the floating diffusion FD is sufficiently larger than the potential fluctuation of the vertical signal line due to the supply stop of the additional current. .
  • the potential change of the floating diffusion FD is small, the settling time of the potential of the vertical signal line is extended.
  • the present disclosure provides a solid-state imaging device, a solid-state imaging device driving method, and the solid-state imaging device capable of more reliably reducing the settling time of the potential of the vertical signal line and increasing the pixel signal reading speed. It is an object to provide an electronic device having
  • a solid-state imaging device of the present disclosure including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage; A vertical signal line shared by one or more unit pixels, A pixel control line for controlling the unit pixel, A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line; The second current supply unit stops the supply of current to the vertical signal line in synchronization with the occurrence timing of the potential fluctuation of the charge detection unit.
  • an electronic apparatus for achieving the above object includes the solid-state imaging device having the above configuration.
  • a unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage;
  • a vertical signal line shared by one or more unit pixels, and It has a pixel control line that controls the unit pixel, Solid that supplies current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line, and supplies current to the vertical signal line corresponding to the potential fluctuation of the charge detection unit due to the potential transition of the pixel control line
  • the supply of current to the vertical signal line is stopped in synchronization with the occurrence timing of the potential fluctuation of the charge detection unit.
  • the potential of the charge detection unit fluctuates (changes) accordingly.
  • the potential of the vertical signal line varies. Therefore, when a current corresponding to the potential fluctuation of the charge detection unit accompanying the transition of the potential of the pixel control line is supplied to the vertical signal line and the supply is stopped in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit, Variation in the potential of the signal line can be suppressed.
  • the supply of the current corresponding to the potential variation of the charge detection unit to the vertical signal line is stopped in conjunction with the occurrence timing of the potential variation of the charge detection unit, so that the potential of the vertical signal line is reduced. Variation can be suppressed. Thereby, since the settling time of the potential of the vertical signal line can be more reliably shortened, the pixel signal reading speed can be increased.
  • FIG. 1 is a system configuration diagram illustrating an outline of a configuration of a solid-state imaging device of the present disclosure.
  • FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of a unit pixel.
  • FIG. 3 is a circuit diagram illustrating a circuit configuration of a main part of the solid-state imaging device according to the first embodiment.
  • 4A is a timing waveform diagram showing a timing relationship between the reset control signal RST, the transfer control signal TRG, the control signal ⁇ BST , and the control signal ⁇ SH
  • FIG. 4B is a diagram associated with the transition of the transfer control signal TRG.
  • FIG. 6 is a timing waveform diagram showing signal waveforms of respective parts of the circuit 3.
  • FIG. 5 is a circuit diagram showing a configuration example of the current generation circuit according to Example 1 of the second embodiment.
  • FIG. 6 is a circuit diagram illustrating a configuration example of a current generation circuit according to Example 2 of the second embodiment.
  • FIG. 7 is a circuit diagram illustrating a configuration example of a current generation circuit according to Example 3 of the second embodiment.
  • FIG. 8 is a circuit diagram of the circuit configuration of the main part of the solid-state imaging device according to the third embodiment.
  • FIG. 9A is a timing waveform diagram for explaining a procedure for determining an optimum value of the additional current
  • FIG. 9B is a waveform diagram showing an image of a change in voltage of the vertical signal line due to a change in the additional current.
  • FIG. 10 is a circuit diagram illustrating a circuit configuration of a main part of the solid-state imaging device according to the fourth embodiment.
  • FIG. 11 is a block diagram illustrating a configuration of an imaging apparatus that is an example of the electronic apparatus of the present disclosure.
  • Example 1 (example in which an additional current adjustment mechanism is mounted for each pixel column) 4-2.
  • Example 2 (example in which an adjustment mechanism for additional current is mounted in common for all pixel columns) 4-3.
  • Example 3 (example in which an adjustment mechanism for an additional current is mounted in common for all pixel columns) 5).
  • Third Embodiment (Example in which an optimum value of additional current is determined using an AD converter) 6).
  • Fourth Embodiment (Example in which an optimum value of additional current is determined using voltage measuring means) 7).
  • Modification 8 Electronic device of the present disclosure (example of imaging device)
  • the unit pixel has a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit, and the pixel control line A transfer control signal for driving the transfer transistor can be transmitted.
  • the second current supply unit can be configured to stop the supply of current to the vertical signal line in conjunction with the transition timing of the transfer control signal.
  • the unit pixel includes a reset transistor that resets the charge detection unit, and the pixel control line includes the reset transistor.
  • the reset control signal for driving the signal can be transmitted.
  • the second current supply unit can be configured to stop the supply of current to the vertical signal line in conjunction with the transition timing of the reset control signal.
  • the solid-state imaging device of the present disclosure including the above-described preferable configuration, the driving method thereof, and the electronic apparatus include an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line for each unit pixel. It can be configured.
  • the amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line.
  • the second current supply unit can be configured to generate an overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit by supplying a current to the vertical signal line. Further, the second current supply unit can be configured such that the current supplied to the vertical signal line is variable.
  • the potential fluctuation amount of the charge detection unit accompanying the transition of the potential of the pixel control line, and the second current An acquisition unit that acquires the amount of fluctuation in the overdrive voltage of the source follower accompanying the supply of current to the vertical signal line from the supply unit can be provided.
  • the second current supply unit can be configured to set the current supplied to the vertical signal line based on the acquisition result of the acquisition unit.
  • an acquisition means acquires as the variation
  • the second current supply unit includes the potential fluctuation amount of the charge detection unit and the fluctuation amount of the overdrive voltage.
  • the current that is closest to the pixel control line can be set as a current corresponding to the potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line.
  • the second current supply unit can be configured to sample a current amount adjustment signal for adjusting a current supplied to the vertical signal line.
  • the reading circuit unit can be configured to function as an acquisition unit.
  • the acquisition means may be configured by voltage measurement means provided outside or inside the solid-state imaging device.
  • the readout circuit portion can be configured to sample and hold the voltage of the vertical signal line.
  • the readout circuit unit can be configured using an analog-digital converter that converts an analog pixel signal read from a unit pixel into digital pixel data.
  • the fixed potential wiring of the first current supply unit and the fixed potential wiring of the second current supply unit are preferably separated.
  • CMOS image sensor which is a kind of XY address type solid-state imaging device will be described as an example of the solid-state imaging device of the present disclosure.
  • the solid-state imaging device may have a so-called flat structure or a so-called laminated structure.
  • the “flat structure” is a peripheral circuit of a pixel array unit in which unit pixels are arranged in a two-dimensional matrix, that is, a drive unit that drives each unit pixel of the pixel array unit, or a unit pixel.
  • a signal processing unit that performs predetermined signal processing on a signal to be transmitted is disposed on the same semiconductor substrate (semiconductor chip) as the pixel array unit.
  • the “stacked structure” is a structure in which a signal processing unit or the like is mounted on a semiconductor substrate different from the pixel array unit and these semiconductor substrates are stacked.
  • FIG. 1 is a system configuration diagram illustrating an outline of a configuration of a solid-state imaging device of the present disclosure.
  • the solid-state imaging device 10 of the present disclosure includes a pixel array unit 11, a peripheral driving system, and a signal processing system.
  • peripheral driving systems and signal processing systems for example, a row scanning unit (vertical scanning unit) 12, a reading circuit unit 13, a column scanning unit (horizontal scanning unit) 15, a horizontal output line 16, and a video signal processing unit. 17 and a timing control unit 18 are provided.
  • These drive system and signal processing system are integrated on the same semiconductor substrate (semiconductor chip) 30 as the pixel array unit 11.
  • the timing control unit 18 includes, for example, a row scanning unit 12, a readout circuit unit 13, and a column scanning unit based on an externally input vertical synchronization signal VD, horizontal synchronization signal HD, master clock MCK, and the like.
  • a clock signal, a control signal, and the like serving as a reference for operation such as 15 are generated.
  • Clock signals, control signals, and the like generated by the timing control unit 18 are given as drive signals to the row scanning unit 12, the readout circuit unit 13, the column scanning unit 15, and the like.
  • the pixel array unit 11 generates photoelectric charges according to the amount of received light, and unit pixels (hereinafter sometimes simply referred to as “pixels”) 20 each having a photoelectric conversion element to accumulate are arranged in a row direction and a column direction. That is, it is configured to be arranged in a matrix (two-dimensional matrix).
  • the row direction refers to the pixel arrangement direction in the pixel row
  • the column direction refers to the pixel arrangement direction in the pixel column.
  • the unit pixel 20 may be a back-illuminated pixel or a front-illuminated pixel.
  • the “back-illuminated pixel” refers to a pixel structure that takes incident light from the opposite side, that is, the back side when the side on which the wiring layer is disposed is the front side.
  • the “surface irradiation type pixel” refers to a pixel structure that takes in incident light from the surface side on which the wiring layer is disposed.
  • the pixel control line 31 in which the pixel control lines 31 ( 31_1 to 31_m ) are wired in the row direction for each pixel row with respect to the pixel array of m rows and n columns is a unit pixel.
  • a control signal for performing control when a signal is read from 20 is transmitted.
  • the pixel control line 31 is illustrated as one wiring, but the number is not limited to one.
  • One end of each of the pixel control lines 31 _ 1 to 31 _m is connected to each output end corresponding to each row of the row scanning unit 12.
  • vertical signal lines 32 ( 32_1 to 32_n ) are wired along the column direction for each pixel column with respect to the pixel array of m rows and n columns.
  • the vertical signal line 32 is shared by one or more unit pixels 20 for each pixel column.
  • the row scanning unit 12 includes a shift register, an address decoder, and the like, and drives each pixel 20 of the pixel array unit 11 at the same time or in units of rows.
  • the row scanning unit 12 generally has two scanning systems, a reading scanning system and a sweeping scanning system.
  • the readout scanning system In order to read out a signal from the unit pixel 20, the readout scanning system selectively scans the unit pixels 20 of the pixel array unit 11 in units of rows.
  • a signal read from the unit pixel 20 is an analog signal.
  • the sweep-out scanning system performs sweep-out scanning with respect to the readout row on which readout scanning is performed by the readout scanning system, preceding the readout scanning by a time corresponding to the shutter speed.
  • a so-called electronic shutter operation is performed by sweeping (resetting) unnecessary charges by the sweep scanning system.
  • the electronic shutter operation refers to an operation in which the photoelectric charge of the photoelectric conversion element is discarded and a new exposure is started (photocharge accumulation is started).
  • the signal read out by the readout operation by the readout scanning system corresponds to the amount of light received after the immediately preceding readout operation or electronic shutter operation.
  • a period from the read timing by the immediately preceding read operation or the sweep timing by the electronic shutter operation to the read timing by the current read operation is the photo charge exposure period in the unit pixel 20.
  • the readout circuit unit 13 is configured to sample and hold the voltage of the vertical signal lines 32 ( 32_1 to 32_n ).
  • the readout circuit unit 13 can be configured using, for example, an analog-digital converter that converts an analog pixel signal into digital pixel data.
  • An analog-digital converter having a configuration for performing correlated double sampling (CDS) processing for removing noise during reset operation of the unit pixel 20 during analog-digital conversion is used. Can do.
  • the column scanning unit 15 includes a shift register, an address decoder, and the like, and controls the column address and column scanning of the readout circuit unit 13. Under the control of the column scanning unit 15, the digital pixel data subjected to analog-digital conversion in the readout circuit unit 13 is sequentially read out to the horizontal output line 16 and supplied to the video signal processing unit 17.
  • the video signal processing unit 17 performs predetermined signal processing on the digital data (video signal) read from the reading circuit unit 13 and then outputs the data as imaging data from the output terminal 33 to the outside of the semiconductor substrate 30.
  • FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of the unit pixel 20.
  • the unit pixel 20 includes, for example, a photodiode PD as a photoelectric conversion element.
  • the unit pixel 20 includes, for example, a transfer transistor 21, a reset transistor 22, an amplification transistor 23, and a selection transistor 24.
  • N-type MOSFETs are used as the four transistors of the transfer transistor 21, the reset transistor 22, the amplification transistor 23, and the selection transistor 24.
  • the combination of the conductivity types of the four transistors 21 to 24 exemplified here is merely an example, and the combination is not limited to these combinations.
  • a plurality of control lines 311, 312, and 313 are wired in common to the pixels in the same pixel row as the above-described pixel control lines 31 (31 _ 1 to 31 _m ) for the unit pixel 20.
  • the plurality of control lines 311, 312, 313 are connected to the output end corresponding to each pixel row of the row scanning unit 12 in units of pixel rows.
  • the row scanning unit 12 appropriately outputs a transfer control signal TRG, a reset control signal RST, and a selection control signal SEL to the plurality of control lines 311, 312, and 313.
  • the photodiode PD has an anode electrode connected to a low-potential-side power source (for example, ground), and photoelectrically converts received light into photocharge (here, photoelectrons) having a charge amount corresponding to the amount of light. Accumulate charge.
  • the cathode electrode of the photodiode PD is electrically connected to the gate electrode of the amplification transistor 23 through the transfer transistor 21.
  • a region electrically connected to the gate electrode of the amplification transistor 23 is a floating diffusion (floating diffusion region / impurity diffusion region) FD.
  • the floating diffusion FD is a charge detection unit (charge voltage conversion unit) that converts a charge into a voltage.
  • the transfer transistor 21 is connected between the cathode electrode of the photodiode PD and the floating diffusion FD.
  • a transfer control signal TRG that activates a high level (for example, V DD level) is applied to the gate electrode of the transfer transistor 21 from the row scanning unit 12 through the control line 311.
  • a transfer control signal TRG that activates a high level (for example, V DD level) is applied to the gate electrode of the transfer transistor 21 from the row scanning unit 12 through the control line 311.
  • the transfer transistor 21 is turned on in response to the transfer control signal TRG, it is photoelectrically converted by the photodiode PD and transfers the accumulated photocharge to the floating diffusion FD.
  • the reset transistor 22 has a drain electrode connected to a node (power supply line) of the voltage V DD and a source electrode connected to the floating diffusion FD.
  • a reset control signal RST that activates a high level is applied to the gate electrode of the reset transistor 22 from the row scanning unit 12 through the control line 312.
  • the reset transistor 22 becomes conductive in response to the reset control signal RST, and resets the floating diffusion FD by discarding the charge of the floating diffusion FD to the node of the voltage V DD .
  • the amplification transistor 23 has a gate electrode connected to the floating diffusion FD and a drain electrode connected to the node of the voltage V DD .
  • the amplification transistor 23 serves as an input part of a source follower that reads a signal obtained by photoelectric conversion in the photodiode PD. That is, the source electrode of the amplification transistor 23 is connected to the vertical signal line 32 via the selection transistor 24.
  • the amplification transistor 23 and the current source 34 connected to one end of the vertical signal line 32 constitute a source follower that converts the voltage of the floating diffusion FD into the potential of the vertical signal line 32.
  • the selection transistor 24 has a drain electrode connected to the source electrode of the amplification transistor 23 and a source electrode connected to the vertical signal line 32.
  • a selection control signal SEL that activates a high level is applied to the gate electrode of the selection transistor 24 from the row scanning unit 12 through the control line 313.
  • the selection transistor 24 becomes conductive in response to the selection control signal SEL, and transmits the signal output from the amplification transistor 23 to the vertical signal line 32 with the unit pixel 20 selected.
  • the selection transistor 24 may have a circuit configuration connected between the node of the voltage V DD and the drain electrode of the amplification transistor 23.
  • a 4Tr configuration including the transfer transistor 21, the reset transistor 22, the amplification transistor 23, and the selection transistor 24, that is, four transistors (Tr) is given as an example.
  • the selection transistor 24 may be omitted, and a 3Tr configuration in which the amplification transistor 23 has the function of the selection transistor 24 may be used, or a configuration in which the number of transistors is increased as necessary.
  • Reading of the reset potential V rst of the floating diffusion FD is performed as follows. 1) When the reset control signal RST transitions from a low level to a high level, the reset transistor 22 becomes conductive, and a reset voltage of, for example, the voltage V DD is applied to the floating diffusion FD. 2) After this reset operation, the potential of the floating diffusion FD changes due to the feedthrough of the reset transistor 22 when the reset control signal RST transitions from a high level to a low level. 3) As the potential of the floating diffusion FD changes, the potential of the vertical signal line 32 also changes.
  • VSL settling settling until the potential of the vertical signal line (VSL) 32 is stabilized (stabilized / settled) due to RC delay caused by the wiring resistance R and the parasitic capacitance C of the vertical signal line 32 (hereinafter referred to as “VSL settling”). Time may be required).
  • Reading of the signal potential V sig of the floating diffusion FD is performed as follows. 1) The transfer control signal TRG transits from a low level to a high level, the transfer transistor 21 becomes conductive, and the photocharge obtained by the photodiode PD is transferred to the floating diffusion FD. 2) In the floating diffusion FD, the photocharge transferred from the photodiode PD is converted into a voltage. 3) The potential of the floating diffusion FD changes due to the feedthrough of the transfer transistor 21 when the transfer control signal TRG transitions from the high level to the low level when the transfer of the photocharge is completed. 4) When reading the signal potential V sig , RC delay settling is required as in the case of reading the reset potential V rst .
  • be the time constant of RC delay due to the resistor R and the parasitic capacitance C.
  • V (t) of the vertical signal line 32 is given by the following equation (1).
  • the VSL settling time can be shortened by reducing the potential variation ⁇ V FT of the vertical signal line 32 due to the feedthrough of the reset transistor 22 and the transfer transistor 21.
  • the time T settle for settling the 0.1DerutaV FT becomes 2.3 ⁇ the following equation (4). Since the settling time is shortened from 6.9 ⁇ ⁇ (6.9-2.3) ⁇ due to the difference in the initial value, the improvement effect of VSL settling time is 2.3 / 6.9, that is, 33.3%. Become.
  • the potential variation ⁇ V FT of the vertical signal line 32 due to the feedthrough of the reset transistor 22 and the transfer transistor 21 is reduced . It is characterized by reducing the VSL settling time.
  • the technique of the present disclosure for reducing the potential fluctuation ⁇ V FT of the vertical signal line 32 due to the feedthrough of the reset transistor 22 and the transfer transistor 21 will be specifically described below.
  • the circuit configuration of the main part of the solid-state imaging device according to the first embodiment is shown in the circuit diagram of FIG.
  • the circuit of the main part according to the first embodiment is a circuit common to a part of the circuit (hereinafter referred to as “in-column circuit”) 13A in the readout circuit unit (column circuit unit) 13 and the readout circuit unit 13. (Hereinafter referred to as “column common circuit”) 13B.
  • the in-column circuit 13A may be provided in common for each pixel column of the pixel array unit 11, or may be provided for each unit of a plurality of pixel columns, or the pixel column. It may be provided for each.
  • the current source 34 also illustrated in FIG. 2 is a first current supply unit (hereinafter referred to as “current supply unit”) that supplies a current I 0 to the vertical signal line 32 when a pixel signal is read from the unit pixel 20 to the vertical signal line 32. , Described as “first current supply unit 34”).
  • the first current supply unit 34 includes a MOS transistor 51, a MOS transistor 52, and a current source 53.
  • the MOS transistor 51 is connected in series to the end of the vertical signal line 32.
  • the MOS transistor 52 has a diode connection configuration in which a gate electrode and a drain electrode are connected in common.
  • the MOS transistor 51 and the MOS transistor 52 have a gate electrode connected in common to form a current mirror circuit.
  • the current source 53 is connected in series to the MOS transistor 52 and supplies a predetermined reference current to the MOS transistor 52. As a result, a current I 0 corresponding to the reference current supplied from the current source 53 to the MOS transistor 52 flows through the vertical signal line 32.
  • the MOS transistor 51 belongs to the intra-column circuit 13A, and the MOS transistor 52 and the current source 53 belong to the common circuit 13B for the column.
  • a second current supply unit 60 that supplies a current corresponding to the potential fluctuation of the floating diffusion FD accompanying the potential transition of the pixel control line 31 to the vertical signal line 32 is provided. It has been.
  • the second current supply unit 60 is characterized in that the supply of current to the vertical signal line 32 is stopped in synchronization with the occurrence timing of the potential fluctuation of the floating diffusion FD.
  • the floating diffusion FD is a charge detection unit (charge voltage conversion unit) that converts the charge transferred from the photodiode PD into a voltage.
  • the second current supply unit 60 includes a switch element 61, a MOS transistor 62, a capacitor element 63, a switch element 64, a MOS transistor 65, and a current source 66.
  • One end of the switch element 61 is connected to the end of the vertical signal line 32.
  • the other end of the switch element 61 is connected to the drain electrode of the MOS transistor 62. That is, the MOS transistor 62 is connected to the end of the vertical signal line 32 via the switch element 61.
  • the capacitive element 63 is connected between the gate electrode and the source electrode of the MOS transistor 62.
  • One end of the switch element 64 is connected to the gate electrode of the MOS transistor 62.
  • the capacitive element 63 and the switch element 64 constitute a circuit that samples a current amount adjustment signal (bias voltage of the MOS transistor 62) for adjusting an additional current ⁇ I 0 described later.
  • the other end of the switch element 64 is connected to the gate electrode of the MOS transistor 65.
  • the MOS transistor 65 has a diode connection configuration in which a gate electrode and a drain electrode are connected in common.
  • the MOS transistor 62 and the MOS transistor 65 constitute a current mirror circuit by selectively connecting the gate electrodes via the switch element 64.
  • the current source 66 is connected in series to the MOS transistor 52 and supplies a predetermined reference current to the MOS transistor 65.
  • the switch element 61 is controlled to be turned on (closed) / off (opened) by a control signal ⁇ BST applied from the OR gate circuit 67 through the variable delay circuit 68.
  • the OR gate circuit 67 has a drive signal for changing the potential of the floating diffusion FD, for example, a reset control signal RST and a transfer control signal TRG as two inputs. Thereby, the control signal ⁇ BST is generated based on the reset control signal RST and the transfer control signal TRG.
  • the variable delay circuit 68 may be appropriately adjusts the output timing of the control signals [Phi BST. Switching element 64, the on / off control performed by the control signal [Phi SH.
  • Control signal [Phi SH, in the circuit unit (not shown) is generated at a timing earlier by a predetermined time T than the generation timing of the control signals [Phi BST.
  • the switch element 64 and the control signal [Phi SH is not a requirement.
  • the timing relationship of the reset control signal RST, the transfer control signal TRG, the control signal ⁇ BST , and the control signal ⁇ SH is shown in the timing waveform diagram of FIG. 4A.
  • the first current supply unit 34 uses the vertical signal line 32 to output the current I 0 determined by the reference current of the current source 53 when reading the pixel signal from the unit pixel 20 to the vertical signal line 32.
  • the current I 0 is about 4 ⁇ A.
  • the second current supply unit 60 supplies an additional current ⁇ I 0 to the vertical signal line 32 in addition to the current I 0 .
  • the additional current ⁇ I 0 is a current corresponding to the potential change of the floating diffusion FD caused by the transition of the potential of the pixel control line 31, that is, the feedthrough accompanying the transition of the reset control signal RST and the transfer control signal TRG. It is determined by the reference current supplied from the current source 66 to the MOS transistor 65.
  • the second current supply unit 60 stops the supply of the additional current ⁇ I 0 to the vertical signal line 32 in conjunction with the occurrence timing of the fluctuation of the floating diffusion FD.
  • “linked to the generation timing” is not limited to the same timing as the generation timing, in other words, may be a timing that is before or after the generation timing.
  • the stop timing of the additional current ⁇ I 0 may be small enough to ignore the RC delay of the vertical signal line 32 with respect to the potential transition timing of the pixel control line 31.
  • Control of the supply start / supply stop of the additional current ⁇ I 0 to the vertical signal line 32 is based on a drive signal that changes the potential of the floating diffusion FD, in this example, the reset control signal RST and the transfer control signal TRG. Done.
  • the overdrive voltage V od of the source follower including the amplification transistor 23 changes in proportion to the following equation (5).
  • the overdrive voltage V od V gs ⁇ V th .
  • is a gain of the source follower
  • V od0 is an overdrive voltage when the additional current ⁇ I 0 is not supplied to the vertical signal line 32.
  • the potential change ⁇ V FD of the floating diffusion FD caused by the feedthrough accompanying the transition of the potential of the pixel control line 31 the potential change ⁇ V cnt of the pixel control line 31 and the pixel control line 31 -floating diffusion It can be expressed by the following equation (6) by the parasitic capacitance C 1 between the FDs and the total parasitic capacitance C 2 of the floating diffusion FD-fixed potential wiring.
  • the potential fluctuation of the vertical signal line 32 occurs according to the gain ⁇ of the source follower.
  • VSL settling time T settle can be expressed by the following equation (7), where ⁇ V VSL is the difference between the voltage at the start of settling and the final settling voltage.
  • the source follower including the amplification transistor 23 becomes a cutoff region in the initial stage of settling, and the slew rate of the potential of the vertical signal line 32 is (1 + ⁇ ) Determined by I 0 / C VSL . Therefore, as a secondary matter , the VSL settling time T settle can be shortened.
  • C VSL is a parasitic capacitance of the vertical signal line 32.
  • a signal waveform of each part of the circuit of FIG. 3 accompanying the transition of the transfer control signal TRG is shown in the timing waveform diagram of FIG. 4B.
  • the timing waveform diagram of FIG. 4B shows the transfer control signal TRG, the potential of the vertical signal line 32 without the additional current ⁇ I 0 , the current of the vertical signal line 32, the overdrive voltage V od of the source follower, and the additional current ⁇ I.
  • Each waveform of the potential of the vertical signal line 32 when 0 is present is shown.
  • the first embodiment is an example in which the additional current ⁇ I 0 is fixed, that is, an example in which the current value is determined by a fixed reference current of the current source 66.
  • the second embodiment is an example in which the additional current ⁇ I 0 is variable in accordance with the potential variation ⁇ V FT of the vertical signal line 32 for each semiconductor chip (each solid-state imaging device).
  • the adjustment mechanism that adjusts the additional current ⁇ I 0 in accordance with the potential variation ⁇ V FT of the vertical signal line 32 may be mounted in the current generation circuit for each pixel column of the pixel array unit 11, or the current common to all the pixel columns. You may mount in a production
  • a specific embodiment of the adjustment mechanism of the additional current ⁇ I 0 will be described.
  • the first embodiment is an example in which the adjustment mechanism for the additional current ⁇ I 0 is mounted on the current generation circuit for each pixel column.
  • FIG. 5 shows a configuration example of the current generation circuit according to the first embodiment.
  • the number of fingers (number of fingers) of the MOS transistor 62 of the in-column circuit constituting the current mirror circuit can be selected.
  • an adjustment mechanism for the additional current ⁇ I 0 is realized by selecting the number of fingers to be used from the number of fingers p of the MOS transistor 62. Yes.
  • the second embodiment is an example (No. 1) in which the adjustment mechanism for the additional current ⁇ I 0 is mounted on the current generation circuit in common to all the pixel columns.
  • FIG. 6 shows a configuration example of the current generation circuit according to the second embodiment.
  • the second current source 2 can select the number of fingers of the MOS transistor 65 of the column common circuit that forms the current mirror circuit. Then, by switching the switch elements 69 1 to 69 p based on the finger number selection control signal, an adjustment mechanism for the additional current ⁇ I 0 is realized by selecting the number of fingers to be used from the number of fingers p of the MOS transistor 65. Yes.
  • the third embodiment is an example (No. 2) in which the adjustment mechanism for the additional current ⁇ I 0 is mounted on the current generation circuit in common to all the pixel columns.
  • FIG. 7 shows a configuration example of a current generation circuit according to the third embodiment.
  • the reference current itself of the current source 66 that is input to the current mirror circuit or output from the current mirror circuit is based on the current amount adjustment signal.
  • an adjustment mechanism for the additional current ⁇ I 0 is realized.
  • the difference ⁇ V VSL between the voltage at the start of settling and the final settling voltage and the variation ⁇ V od of the overdrive voltage V od of the source follower including the amplification transistor 23 are Detection (measurement) is performed during imaging (non-imaging) without image output, at startup, or during manufacturing (manufacturing process) of a solid-state imaging device.
  • Detection is performed during imaging (non-imaging) without image output, at startup, or during manufacturing (manufacturing process) of a solid-state imaging device.
  • the measurement result is stored in a non-volatile memory and used to set an additional current ⁇ I 0 in an arbitrary analog-digital converter (hereinafter referred to as “AD converter”). It is preferable to make it.
  • AD converter arbitrary analog-digital converter
  • the third embodiment is an example in which the optimum value of the additional current ⁇ I 0 is determined in the readout circuit 13 by using the AD converter 40 arranged for each pixel column.
  • the AD converter 40 transmits the potential variation ⁇ V FT of the floating diffusion FD accompanying the transition of the potential of the pixel control line 31 and the vertical signal line 32 from the second current supply unit 60. It functions as an acquisition means for acquiring the variation ⁇ V od of the overdrive voltage V od of the source follower accompanying the supply of the current.
  • the potential variation ⁇ V FT of the floating diffusion FD and the variation ⁇ V od of the overdrive voltage V od it may be obtained as a variation of a specific pixel column, or a plurality of pixel columns ( You may make it acquire as an average fluctuation part (including all the pixel columns). Moreover, the acquisition result of 1 time may be sufficient and the average of the acquisition result of multiple times may be sufficient. The same applies to the fourth embodiment.
  • FIG. 8 shows a circuit configuration of a main part of the solid-state imaging device according to the third embodiment.
  • the main circuit according to the third embodiment includes an intra-column circuit 13A and a column common circuit 13B (that is, a current generation circuit), and an additional current determination circuit 70 that determines an optimum value of the additional current ⁇ I 0 .
  • the additional current determination circuit 70 includes a memory 71, a memory 72, a comparator 73, and a current selection circuit 74.
  • the additional current determination circuit 70 has a potential variation ⁇ V FT and a variation ⁇ V od of the overdrive voltage V od of the floating diffusion FD.
  • the AD converter 40 is used to determine the optimum value of the additional current ⁇ I 0 .
  • the memory 71 sets the reset control signal RST to a high level, and sets the AD conversion result (1) of the voltage of the vertical signal line 32 when a sufficient settling time has elapsed and the reset control signal RST once to a high level. Later, it is set to a low level, and the difference from the AD conversion result (2) of the voltage of the vertical signal line 32 when a sufficient settling time has elapsed is stored.
  • the difference between the AD conversion result (1) and AD conversion result (2) is equal to the potential variation [Delta] V FD of the floating diffusion FD to those AD conversion.
  • the memory 72 sets the reset control signal RST to a high level once, supplies an additional current ⁇ I 0 to the vertical signal line 32, and then the AD conversion result of the voltage of the vertical signal line 32 when a sufficient settling time has elapsed ( The difference between 3) and the above AD conversion result (1) is stored.
  • the difference between the AD conversion result (3) and the AD conversion result (1) is equal to the AD conversion of the variation ⁇ V od of the overdrive voltage V od of the source follower.
  • the comparator 73 compares the stored value in the memory 71 with the stored value in the memory 72.
  • the current selection circuit 74 determines the optimum value of the additional current ⁇ I 0 by controlling the current of the variable current source 66 based on the comparison result of the comparator 73, for example.
  • the reset control signal RST is set to a high level, and the AD converter 40 converts the voltage of the vertical signal line 32 when a sufficient settling time has elapsed. Thereby, the AD conversion result (1) is obtained.
  • the reset control signal RST is once set to a high level and then set to a low level, and the AD converter 40 AD converts the voltage of the vertical signal line 32 when a sufficient settling time has elapsed. Thereby, an AD conversion result (2) is obtained.
  • the reset control signal RST is once set to a high level and the additional current ⁇ I 0 is supplied to the vertical signal line 32, the voltage of the vertical signal line 32 when a sufficient settling time has elapsed is converted into an AD converter.
  • a / D conversion is performed at 40. Thereby, an AD conversion result (3) is obtained.
  • the additional current ⁇ I 0 is swept by controlling the current of the variable current source 66, and the comparison result of the comparator 73, that is, the potential change ⁇ V FD of the floating diffusion FD and the overdrive voltage of the source follower a variation [Delta] V od of V od determines the additional current .alpha. I 0 which is closest as the optimum value.
  • the fluctuation amount and the fluctuation amount of the overdrive voltage of the source follower accompanying the supply of current from the second current supply unit 60 to the vertical signal line 32 can be acquired. Since the optimum value of the additional current ⁇ I 0 supplied to the vertical signal line 32 can be determined based on these acquisition results, the setting of the additional current ⁇ I 0 can be realized without adding a circuit, and each pixel column or two or more columns can be realized. There is an advantage that control can be performed in units of two or more pixel columns using the average value of the pixel columns.
  • the fourth embodiment is an example in which the optimum value of the additional current ⁇ I 0 is determined using voltage measuring means such as a voltmeter.
  • the voltage measuring unit is configured to detect the potential variation ⁇ V FT of the floating diffusion FD accompanying the potential transition of the pixel control line 31 and the vertical signal line 32 from the second current supply unit 60. It functions as an acquisition means for acquiring the variation ⁇ V od of the overdrive voltage V od of the source follower accompanying the current supply.
  • the voltage measuring means may be a measuring device outside the solid-state image sensor, or may be an AD converter different from the AD converter 40 mounted on the solid-state image sensor.
  • a measuring device outside the solid-state image sensor When a measuring device outside the solid-state image sensor is used as the voltage measuring means, it has a mechanism for outputting a signal obtained by short-circuiting a specific vertical signal line 32 or a plurality of vertical signal lines 32 to the outside of the solid-state image sensor. .
  • FIG. 10 shows a circuit configuration of a main part of the solid-state imaging device according to the fourth embodiment.
  • the AD converter 40 basically, as a means for obtaining a variation [Delta] V od of the floating diffusion FD potential variation [Delta] V FT and the overdrive voltage V od, the AD converter 40 Instead, the configuration other than using the voltage measuring means 80 is the same as that of the third embodiment. Further, not only the configuration but also the procedure for determining the optimum value of the additional current ⁇ I 0 is basically the same as in the case of the third embodiment.
  • the AD converter 40 has a configuration that is higher than that of the additional current determination circuit 70 according to the third embodiment that uses the AD converter 40. There is an advantage that a voltage change can be detected with a voltage accuracy exceeding the resolution.
  • the additional current ⁇ I 0 for which the optimum value is determined by the additional current determination circuit 70 according to the third embodiment or the fourth embodiment is applied to the setting at the time of imaging accompanied by image output.
  • the current control voltage may be sampled and held in a state where the additional current ⁇ I 0 is not supplied.
  • the second current supply portions 60 for generating an additional current .alpha. I 0, prevents current value IR drop varies during the supply of the additional current .alpha. I 0, the optimum additional current .alpha. I 0 in all pixel rows Supply can be realized.
  • the present disclosure has been described based on the preferred embodiments, the present disclosure is not limited to these embodiments.
  • the configuration and structure of the solid-state imaging device described in the above embodiments and the configuration of the driving method of the solid-state imaging device are examples, and can be changed as appropriate.
  • the fixed potential wiring of the second current supply unit 60 that generates the additional current ⁇ I 0 the first current supply unit 34 that generates the current I 0 used for the settling of the final vertical signal line 32 is fixed. It may be the same as the potential wiring, but is preferably separated. By separating these fixed potential wirings, fluctuations in the fixed potential accompanying the start / stop of supply of the additional current ⁇ I 0 can be prevented.
  • the solid-state imaging device uses a solid-state imaging device for an imaging device such as a digital still camera or a video camera, a portable terminal device having an imaging function such as a mobile phone, or an image reading unit. It can be used as an imaging unit (image capturing unit) in electronic devices such as copying machines.
  • the above-described module form mounted on an electronic device, that is, a camera module is used as an imaging device.
  • FIG. 11 is a block diagram illustrating a configuration of an imaging apparatus that is an example of the electronic apparatus of the present disclosure.
  • an imaging apparatus 100 includes an optical system 101 including a lens group, an imaging unit 102, a DSP circuit 103 that is a camera signal processing unit, a frame memory 104, a display device 105, and a recording device 106. , An operation system 107, a power supply system 108, and the like.
  • the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, the operation system 107, and the power supply system 108 are connected to each other via a bus line 109.
  • the optical system 101 takes in incident light (image light) from a subject and forms an image on the imaging surface of the imaging unit 102.
  • the imaging unit 102 converts the amount of incident light imaged on the imaging surface by the optical system 101 into an electrical signal for each pixel and outputs the electrical signal as a pixel signal.
  • the DSP circuit 103 performs general camera signal processing, such as white balance processing, demosaic processing, and gamma correction processing.
  • the frame memory 104 is used for storing data as appropriate during the signal processing in the DSP circuit 103.
  • the display device 105 includes a panel type display device such as a liquid crystal display device or an organic EL (electroluminescence) display device, and displays a moving image or a still image captured by the imaging unit 102.
  • the recording device 106 records the moving image or still image captured by the imaging unit 102 on a recording medium such as a portable semiconductor memory, an optical disk, or an HDD (Hard Disk Disk Drive).
  • the operation system 107 issues operation commands for various functions of the imaging apparatus 100 under the operation of the user.
  • the power supply system 108 appropriately supplies various power supplies serving as operation power for the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, and the operation system 107 to these supply targets.
  • the solid-state imaging device according to the first embodiment, the second embodiment, the third embodiment, or the fourth embodiment described above can be used as the imaging unit 102.
  • a unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage, A vertical signal line shared by one or more unit pixels, A pixel control line for controlling the unit pixel, A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line; The second current supply unit stops supplying current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit; Solid-state image sensor.
  • the unit pixel includes a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit, The pixel control line transmits a transfer control signal that drives the transfer transistor, The second current supply unit stops supplying current to the vertical signal line in conjunction with the transition timing of the transfer control signal.
  • the solid-state imaging device according to [1] above.
  • the unit pixel includes a reset transistor that resets the charge detection unit, The pixel control line transmits a reset control signal for driving the reset transistor, The second current supply unit stops supplying the current to the vertical signal line in conjunction with the transition timing of the reset control signal; The solid-state imaging device according to the above [1] or [2].
  • the unit pixel has an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line,
  • the amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line,
  • the second current supply unit generates an overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit by supplying a current to the vertical signal line.
  • the solid-state imaging device according to any one of [1] to [3] above.
  • the second current supply unit has a configuration in which the current supplied to the vertical signal line is variable.
  • the solid-state imaging device according to any one of [1] to [4] above.
  • the acquisition unit acquires the variation of a specific pixel column or the average variation of a plurality of pixel columns.
  • the second current supply unit converts the current that causes the potential fluctuation of the charge detection unit and the fluctuation of the overdrive voltage to be the closest to the potential fluctuation of the charge detection unit accompanying the transition of the potential of the pixel control line. Set as the corresponding current, The solid-state imaging device according to [6] or [7]. [9] The second current supply unit samples a current amount adjustment signal for adjusting a current supplied to the vertical signal line. The solid-state imaging device according to [5] above. [10] A readout circuit unit connected to the vertical signal line is provided, The readout circuit unit functions as an acquisition unit. The solid-state imaging device according to [6] above. [11] The read circuit unit samples and holds the voltage of the vertical signal line.
  • the solid-state imaging device according to [10] above.
  • the acquisition unit is a voltage measurement unit provided outside or inside the solid-state imaging device.
  • the solid-state imaging device according to [6] above.
  • the fixed potential wiring of the first current supply unit and the fixed potential wiring of the second current supply unit are separated.
  • the solid-state imaging device according to any one of [1] to [12].
  • a unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage, A vertical signal line shared by one or more unit pixels, and It has a pixel control line that controls the unit pixel, Solid that supplies current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line, and supplies current to the vertical signal line corresponding to the potential fluctuation of the charge detection unit due to the potential transition of the pixel control line In driving the image sensor, Stop the supply of current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit, A method for driving a solid-state imaging device.
  • the unit pixel includes a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit, The pixel control line transmits, and stops the supply of current to the vertical signal line in conjunction with the transition timing of the transfer control signal that drives the transfer transistor.
  • the unit pixel includes a reset transistor that resets the charge detection unit. The supply of current to the vertical signal line is stopped in conjunction with the transition timing of the reset control signal that drives the reset transistor transmitted by the pixel control line. The method for driving a solid-state imaging device according to the above [14] or [15].
  • the unit pixel has an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line,
  • the amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line,
  • An overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit is generated by supplying a current to the vertical signal line.
  • the method for driving a solid-state imaging device according to any one of [14] to [16].
  • a unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage, A vertical signal line shared by one or more unit pixels, A pixel control line for controlling the unit pixel, A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line; The second current supply unit stops supplying current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit; An electronic device having a solid-state image sensor.
  • SYMBOLS 10 Solid-state image sensor, 11 ... Pixel array part, 12 ... Row scanning part, 13 ... Reading circuit part, 13A ... In-column circuit, 13B ... Common circuit for columns, 15 ... Column scanning unit, 16 ... Horizontal output line, 17 ... Video signal processing unit, 18 ... Timing control unit, 20 ... Unit pixel, 21 ... Transfer transistor, 22 ... Reset transistor, 23... Amplification transistor, 24... Selection transistor, 30... Semiconductor substrate (semiconductor chip), 31 ( 31.sub._1 to 31.sub .-- m )... Pixel control line, 32 ( 32.sub._1 to 32.sub .-- n) ) ...
  • first current supply unit 40 ( 40_1 to 40_n ) ... AD (analog-digital) converter, 41 ... comparator (comparator), 42 ... Up / down counter, 43 Latch circuit 60 ... second current supply unit 70 ... additional current determination circuit 71,72 ... memory 73 ... comparator 74 ... current selection circuit 80 ... ⁇ Voltage measuring means, FD: Floating diffusion (charge detection unit / charge voltage conversion unit), PD: Photodiode (photoelectric conversion element)

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

The solid-state imaging element according to the present disclosure comprises: a unit pixel including a charge detection unit that converts, into voltage, charge obtained as a result of photoelectric conversion; a vertical signal line common to one or more of the unit pixels; a pixel control line that controls the unit pixel; a first electric current supply unit that supplies electric current to the vertical signal line when a signal is read out from the unit pixel to the vertical signal line; and a second electric current supply unit that supplies, to the vertical signal line, electric current corresponding to an electric potential change in the charge detection unit accompanied by a transition of the electric potential of the pixel control line. The second electric current supply unit stops supplying the electric current to the vertical signal line in conjunction with the timing at which the electric potential change in the charge detection unit occurs.

Description

固体撮像素子、固体撮像素子の駆動方法、及び、電子機器Solid-state imaging device, driving method of solid-state imaging device, and electronic device
 本開示は、固体撮像素子、固体撮像素子の駆動方法、及び、電子機器に関する。 The present disclosure relates to a solid-state imaging device, a driving method of the solid-state imaging device, and an electronic device.
 固体撮像素子に対し、画素信号の読出し速度の高速化及び高精細化が望まれている。また、解像度の向上のために多画素化が望まれている。多画素化が進むと、垂直信号線(列信号線)に接続される画素の数が多くなるため垂直信号線の寄生容量が増加する。この垂直信号線の寄生容量の増加は、垂直信号線の電位のセトリング(静定/整定)時間の短縮化を妨げる。セトリング時間の短縮化は、画素信号の読出し速度の高速化を図る上で重要である。すなわち、固体撮像素子において、画素信号の読出し速度の高速化と多画素化とはトレードオフの関係にある。 Acceleration of pixel signal reading speed and high definition are desired for solid-state imaging devices. In addition, increasing the number of pixels is desired to improve the resolution. As the number of pixels increases, the number of pixels connected to the vertical signal line (column signal line) increases, and the parasitic capacitance of the vertical signal line increases. This increase in the parasitic capacitance of the vertical signal line hinders shortening of the settling (static / settling) time of the potential of the vertical signal line. Shortening the settling time is important for increasing the readout speed of pixel signals. That is, in a solid-state image sensor, there is a trade-off between increasing the pixel signal readout speed and increasing the number of pixels.
 従来、垂直信号線の電位のセトリング時間を短縮するために、垂直信号線の電位変動量に応じて垂直信号線に追加電流を供給するようにしていた(例えば、特許文献1参照)。垂直信号線の電位変動量に応じて垂直信号線に追加電流を流すことで、垂直信号線のスルーレートが向上するため、セトリング時間を短縮することができる。 Conventionally, in order to shorten the settling time of the potential of the vertical signal line, an additional current is supplied to the vertical signal line according to the potential fluctuation amount of the vertical signal line (for example, refer to Patent Document 1). By causing an additional current to flow through the vertical signal line in accordance with the potential fluctuation amount of the vertical signal line, the slew rate of the vertical signal line is improved, so that the settling time can be shortened.
 また、垂直信号線の電位のセトリング時間を短縮するために、垂直信号線の電位を変化させる信号(リセット制御信号や転送制御信号)の後に、画素信号を読み出すタイミングで、垂直信号線に追加電流を供給するようにしていた(例えば、非特許文献1参照)。特許文献1に記載の従来技術と同様に、垂直信号線に追加電流を供給することで、垂直信号線のスルーレートが向上するため、セトリング時間を短縮することができる。 In addition, in order to shorten the settling time of the potential of the vertical signal line, an additional current is applied to the vertical signal line at the timing of reading the pixel signal after the signal for changing the potential of the vertical signal line (reset control signal or transfer control signal). (For example, refer nonpatent literature 1). Similar to the prior art described in Patent Document 1, by supplying an additional current to the vertical signal line, the slew rate of the vertical signal line is improved, so that the settling time can be shortened.
特開2015-139081号公報Japanese Patent Laying-Open No. 2015-139081
 特許文献1に記載の従来技術は、垂直信号線の電位の大振幅時には有用になる。しかしながら、追加電流の供給を停止したときや、画素制御線の電位の遷移に伴って発生するフィードスルーによってフローティング・ディフュージョンFD(電荷電圧変換部/電荷検出部)の電位が変動した後のセトリングが全体のセトリング時間を支配する場合には、セトリング時間の短縮効果が小さい。 The prior art described in Patent Document 1 is useful when the potential of the vertical signal line is large. However, the settling after the potential of the floating diffusion FD (charge voltage conversion unit / charge detection unit) fluctuates when the supply of the additional current is stopped or due to the feedthrough generated in response to the transition of the potential of the pixel control line. When the entire settling time is controlled, the effect of shortening the settling time is small.
 非特許文献1に記載の従来技術にあっては、垂直信号線の電位が一旦セトリングしたとしても、追加電流の供給の停止に伴って、ソースフォロワを構成する増幅トランジスタのゲート-ソース間電圧Vgsが変化する。そして、ゲート-ソース間電圧Vgsが変化すると、改めて、垂直信号線の配線抵抗R及び寄生容量CのRC遅延の式で定まるセトリング時間だけ待つ必要がある。また、セトリング時間の短縮効果は、フローティング・ディフュージョンFDの電位の変化に伴う垂直信号線の電位変動が、追加電流の供給停止による垂直信号線の電位変動と比較して十分大きいときに限定される。フローティング・ディフュージョンFDの電位変化が小さい場合には、逆に、垂直信号線の電位のセトリング時間を延ばすことになる。 In the prior art described in Non-Patent Document 1, even if the potential of the vertical signal line has once settled, the gate-source voltage V of the amplification transistor constituting the source follower is stopped along with the supply of the additional current. gs changes. When the gate-source voltage V gs changes, it is necessary to wait again for the settling time determined by the RC delay equation of the wiring resistance R and parasitic capacitance C of the vertical signal line. Further, the effect of shortening the settling time is limited to the case where the potential fluctuation of the vertical signal line due to the change in the potential of the floating diffusion FD is sufficiently larger than the potential fluctuation of the vertical signal line due to the supply stop of the additional current. . Conversely, when the potential change of the floating diffusion FD is small, the settling time of the potential of the vertical signal line is extended.
 そこで、本開示は、垂直信号線の電位のセトリング時間をより確実に短縮し、画素信号の読出し速度の高速化を可能とした固体撮像素子、固体撮像素子の駆動方法、及び、当該固体撮像素子を有する電子機器を提供することを目的とする。 Accordingly, the present disclosure provides a solid-state imaging device, a solid-state imaging device driving method, and the solid-state imaging device capable of more reliably reducing the settling time of the potential of the vertical signal line and increasing the pixel signal reading speed. It is an object to provide an electronic device having
 上記の目的を達成するための本開示の固体撮像素子は、
 光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
 1個以上の単位画素で共有する垂直信号線、
 単位画素を制御する画素制御線、
 単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給する第1の電流供給部、及び、
 画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する第2の電流供給部を備え、
 第2の電流供給部は、電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する。また、上記の目的を達成するための本開示の電子機器は、上記の構成の固体撮像素子を有する。
In order to achieve the above object, a solid-state imaging device of the present disclosure is provided.
A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage;
A vertical signal line shared by one or more unit pixels,
A pixel control line for controlling the unit pixel,
A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and
A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line;
The second current supply unit stops the supply of current to the vertical signal line in synchronization with the occurrence timing of the potential fluctuation of the charge detection unit. In addition, an electronic apparatus according to the present disclosure for achieving the above object includes the solid-state imaging device having the above configuration.
 上記の目的を達成するための本開示の固体撮像素子は、
 光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
 1個以上の単位画素で共有する垂直信号線、及び、
 単位画素を制御する画素制御線を備えており、
 単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給するとともに、画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する固体撮像素子の駆動に当たって、
 電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する。
In order to achieve the above object, a solid-state imaging device of the present disclosure is provided.
A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage;
A vertical signal line shared by one or more unit pixels, and
It has a pixel control line that controls the unit pixel,
Solid that supplies current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line, and supplies current to the vertical signal line corresponding to the potential fluctuation of the charge detection unit due to the potential transition of the pixel control line In driving the image sensor,
The supply of current to the vertical signal line is stopped in synchronization with the occurrence timing of the potential fluctuation of the charge detection unit.
 画素制御線の電位が遷移すると、それに伴って電荷検出部の電位が変動(変化)する。電荷検出部の電位が変動すると、垂直信号線の電位が変動する。そこで、画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給し、その供給を電荷検出部の電位変動の発生タイミングに連動させて停止すると、垂直信号線の電位の変動を抑えることができる。 When the potential of the pixel control line transitions, the potential of the charge detection unit fluctuates (changes) accordingly. When the potential of the charge detection unit varies, the potential of the vertical signal line varies. Therefore, when a current corresponding to the potential fluctuation of the charge detection unit accompanying the transition of the potential of the pixel control line is supplied to the vertical signal line and the supply is stopped in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit, Variation in the potential of the signal line can be suppressed.
 本開示によれば、電荷検出部の電位変動分に対応する電流の垂直信号線への供給を、電荷検出部の電位変動の発生タイミングに連動させて停止することで、垂直信号線の電位の変動を抑えることができる。これにより、垂直信号線の電位のセトリング時間をより確実に短縮できるため、画素信号の読出し速度の高速化が可能となる。 According to the present disclosure, the supply of the current corresponding to the potential variation of the charge detection unit to the vertical signal line is stopped in conjunction with the occurrence timing of the potential variation of the charge detection unit, so that the potential of the vertical signal line is reduced. Variation can be suppressed. Thereby, since the settling time of the potential of the vertical signal line can be more reliably shortened, the pixel signal reading speed can be increased.
 尚、ここに記載された効果に必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。また、本明細書に記載された効果はあくまで例示であって、これに限定されるものではなく、また付加的な効果があってもよい。 It should be noted that the effect described here is not necessarily limited, and may be any effect described in the present specification. Moreover, the effect described in this specification is an illustration to the last, Comprising: It is not limited to this, There may be an additional effect.
図1は、本開示の固体撮像素子の構成の概略を示すシステム構成図である。FIG. 1 is a system configuration diagram illustrating an outline of a configuration of a solid-state imaging device of the present disclosure. 図2は、単位画素の回路構成の一例を示す回路図である。FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of a unit pixel. 図3は、第1実施形態に係る固体撮像素子の要部の回路構成を示す回路図である。FIG. 3 is a circuit diagram illustrating a circuit configuration of a main part of the solid-state imaging device according to the first embodiment. 図4Aは、リセット制御信号RST、転送制御信号TRG、制御信号ΦBST、及び、制御信号ΦSHのタイミング関係を示すタイミング波形図であり、図4Bは、転送制御信号TRGの遷移に伴う、図3の回路の各部の信号波形を示すタイミング波形図である。4A is a timing waveform diagram showing a timing relationship between the reset control signal RST, the transfer control signal TRG, the control signal Φ BST , and the control signal Φ SH , and FIG. 4B is a diagram associated with the transition of the transfer control signal TRG. FIG. 6 is a timing waveform diagram showing signal waveforms of respective parts of the circuit 3. 図5は、第2実施形態の実施例1に係る電流生成回路の構成例を示す回路図である。FIG. 5 is a circuit diagram showing a configuration example of the current generation circuit according to Example 1 of the second embodiment. 図6は、第2実施形態の実施例2に係る電流生成回路の構成例を示す回路図である。FIG. 6 is a circuit diagram illustrating a configuration example of a current generation circuit according to Example 2 of the second embodiment. 図7は、第2実施形態の実施例3に係る電流生成回路の構成例を示す回路図である。FIG. 7 is a circuit diagram illustrating a configuration example of a current generation circuit according to Example 3 of the second embodiment. 図8は、第3実施形態に係る固体撮像素子の要部の回路構成を回路図である。FIG. 8 is a circuit diagram of the circuit configuration of the main part of the solid-state imaging device according to the third embodiment. 図9Aは、追加電流の最適値を決定する手順についての説明に供するタイミング波形図であり、図9Bは、追加電流の変化による垂直信号線の電圧の変化のイメージを示す波形図である。FIG. 9A is a timing waveform diagram for explaining a procedure for determining an optimum value of the additional current, and FIG. 9B is a waveform diagram showing an image of a change in voltage of the vertical signal line due to a change in the additional current. 図10は、第4実施形態に係る固体撮像素子の要部の回路構成を回路図である。FIG. 10 is a circuit diagram illustrating a circuit configuration of a main part of the solid-state imaging device according to the fourth embodiment. 図11は、本開示の電子機器の一例である撮像装置の構成を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration of an imaging apparatus that is an example of the electronic apparatus of the present disclosure.
 以下、本開示の技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示の技術は実施形態に限定されるものではなく、実施形態における種々の数値などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の固体撮像素子、その駆動方法、及び、電子機器、全般に関する説明
2.本開示の固体撮像素子
3.第1実施形態(追加電流が固定の例)
4.第2実施形態(追加電流が可変の例)
 4-1.実施例1(追加電流の調整機構を画素列毎に実装する例)
 4-2.実施例2(追加電流の調整機構を全画素列共通に実装する例)
 4-3.実施例3(追加電流の調整機構を全画素列共通に実装する例)
5.第3実施形態(AD変換器を用いて追加電流の最適値を決定する例)
6.第4実施形態(電圧測定手段を用いて追加電流の最適値を決定する例)
7.変形例
8.本開示の電子機器(撮像装置の例)
Hereinafter, modes for carrying out the technology of the present disclosure (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings. The technology of the present disclosure is not limited to the embodiments, and various numerical values in the embodiments are examples. In the following description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted. The description will be given in the following order.
1. 1. Description of the solid-state imaging device of the present disclosure, a driving method thereof, and an electronic device in general 2. Solid-state imaging device of the present disclosure First embodiment (example in which additional current is fixed)
4). Second embodiment (example in which the additional current is variable)
4-1. Example 1 (example in which an additional current adjustment mechanism is mounted for each pixel column)
4-2. Example 2 (example in which an adjustment mechanism for additional current is mounted in common for all pixel columns)
4-3. Example 3 (example in which an adjustment mechanism for an additional current is mounted in common for all pixel columns)
5). Third Embodiment (Example in which an optimum value of additional current is determined using an AD converter)
6). Fourth Embodiment (Example in which an optimum value of additional current is determined using voltage measuring means)
7). Modification 8 Electronic device of the present disclosure (example of imaging device)
<本開示の固体撮像素子、その駆動方法、及び、電子機器、全般に関する説明>
 本開示の固体撮像素子、その駆動方法、及び、電子機器にあっては、単位画素について、光電変換によって得られた電荷を電荷検出部に転送する転送トランジスタを有する構成とし、画素制御線について、転送トランジスタを駆動する転送制御信号を伝送する構成とすることができる。このとき、第2の電流供給部について、転送制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する構成とすることができる。
<Description of Solid-State Imaging Device of the Present Disclosure, its Driving Method, and Electronic Device>
In the solid-state imaging device, the driving method thereof, and the electronic device of the present disclosure, the unit pixel has a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit, and the pixel control line A transfer control signal for driving the transfer transistor can be transmitted. At this time, the second current supply unit can be configured to stop the supply of current to the vertical signal line in conjunction with the transition timing of the transfer control signal.
 上述した好ましい構成を含む本開示の固体撮像素子、その駆動方法、及び、電子機器にあっては、単位画素について、電荷検出部をリセットするリセットトランジスタを有する構成とし、画素制御線について、リセットトランジスタを駆動するリセット制御信号を伝送する構成とすることができる。このとき、第2の電流供給部について、リセット制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する構成とすることができる。 In the solid-state imaging device of the present disclosure including the preferable configuration described above, the driving method thereof, and the electronic device, the unit pixel includes a reset transistor that resets the charge detection unit, and the pixel control line includes the reset transistor. The reset control signal for driving the signal can be transmitted. At this time, the second current supply unit can be configured to stop the supply of current to the vertical signal line in conjunction with the transition timing of the reset control signal.
 更に、上述した好ましい構成を含む本開示の固体撮像素子、その駆動方法、及び、電子機器にあっては、単位画素について、電荷検出部で変換された電圧を垂直信号線に読み出す増幅トランジスタを有する構成とすることができる。このとき、増幅トランジスタ及び第1の電流供給部は、電荷検出部で変換された電圧を垂直信号線の電位に変換するソースフォロワを構成する。また、第2の電流供給部について、電荷検出部の電位変動分と等価な、ソースフォロワのオーバードライブ電圧を、垂直信号線に電流を供給することによって生成する構成とすることができる。更に、第2の電流供給部について、垂直信号線に供給する電流が可変な構成とすることができる。 Furthermore, the solid-state imaging device of the present disclosure including the above-described preferable configuration, the driving method thereof, and the electronic apparatus include an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line for each unit pixel. It can be configured. At this time, the amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line. In addition, the second current supply unit can be configured to generate an overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit by supplying a current to the vertical signal line. Further, the second current supply unit can be configured such that the current supplied to the vertical signal line is variable.
 更に、上述した好ましい構成を含む本開示の固体撮像素子、その駆動方法、及び、電子機器にあっては、画素制御線の電位の遷移に伴う電荷検出部の電位変動分と、第2の電流供給部からの垂直信号線への電流の供給に伴うソースフォロワのオーバードライブ電圧の変動分とを取得する取得手段を備える構成とすることができる。このとき、第2の電流供給部について、取得手段の取得結果に基づいて、垂直信号線に供給する電流を設定する構成とすることができる。また、取得手段は、特定の画素列の変動分又は複数の画素列の平均変動分として取得することが好ましい。 Further, in the solid-state imaging device, the driving method thereof, and the electronic apparatus of the present disclosure including the above-described preferable configuration, the potential fluctuation amount of the charge detection unit accompanying the transition of the potential of the pixel control line, and the second current An acquisition unit that acquires the amount of fluctuation in the overdrive voltage of the source follower accompanying the supply of current to the vertical signal line from the supply unit can be provided. At this time, the second current supply unit can be configured to set the current supplied to the vertical signal line based on the acquisition result of the acquisition unit. Moreover, it is preferable that an acquisition means acquires as the variation | change_quantity of a specific pixel row | line | column or the average fluctuation | variation amount of several pixel row | line | column.
 更に、上述した好ましい構成を含む本開示の固体撮像素子、その駆動方法、及び、電子機器にあっては、第2の電流供給部について、電荷検出部の電位変動分とオーバードライブ電圧の変動分とが最も近くなる電流を、画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流として設定する構成とすることができる。また、第2の電流供給部について、垂直信号線に供給する電流を調整する電流量調整信号をサンプリングする構成とすることができる。 Furthermore, in the solid-state imaging device of the present disclosure including the preferable configuration described above, the driving method thereof, and the electronic device, the second current supply unit includes the potential fluctuation amount of the charge detection unit and the fluctuation amount of the overdrive voltage. The current that is closest to the pixel control line can be set as a current corresponding to the potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line. Further, the second current supply unit can be configured to sample a current amount adjustment signal for adjusting a current supplied to the vertical signal line.
 更に、上述した好ましい構成を含む本開示の固体撮像素子、その駆動方法、及び、電子機器にあっては、垂直信号線に接続された読出し回路部を備えている構成とすることができる。このとき、読出し回路部について、取得手段として機能する構成とすることができる。あるいは又、取得手段について、固体撮像素子外部又は内部に設けられた電圧測定手段から成る構成とすることができる。また、読出し回路部について、垂直信号線の電圧をサンプルホールドする構成とすることができる。読出し回路部については、単位画素から読み出されるアナログ画素信号をデジタル画素データに変換するアナログ-デジタル変換器を用いて構成することができる。 Furthermore, in the solid-state imaging device of the present disclosure including the preferable configuration described above, a driving method thereof, and an electronic device, a configuration including a readout circuit unit connected to a vertical signal line can be employed. At this time, the reading circuit unit can be configured to function as an acquisition unit. Alternatively, the acquisition means may be configured by voltage measurement means provided outside or inside the solid-state imaging device. In addition, the readout circuit portion can be configured to sample and hold the voltage of the vertical signal line. The readout circuit unit can be configured using an analog-digital converter that converts an analog pixel signal read from a unit pixel into digital pixel data.
 更に、上述した好ましい構成を含む本開示の固体撮像素子、その駆動方法、及び、電子機器にあっては、第1の電流供給部の固定電位配線と第2の電流供給部の固定電位配線とが分離されていることが好ましい。 Furthermore, in the solid-state imaging device of the present disclosure including the above-described preferable configuration, the driving method thereof, and the electronic device, the fixed potential wiring of the first current supply unit and the fixed potential wiring of the second current supply unit; Are preferably separated.
<本開示の固体撮像素子>
 先ず、本開示の固体撮像素子の構成の概略について説明する。ここでは、本開示の固体撮像素子として、X-Yアドレス方式の固体撮像素子の一種であるCMOSイメージセンサを例に挙げて説明する。固体撮像素子は、所謂、平置構造であってもよいし、所謂、積層構造であってもよい。ここで、「平置構造」とは、単位画素が2次元マトリクス状に配列されて成る画素アレイ部の周辺回路、即ち、画素アレイ部の各単位画素を駆動する駆動部や、単位画素から読み出される信号に対して所定の信号処理を施す信号処理部などを、画素アレイ部と同じ半導体基板(半導体チップ)上に配置する構造である。また、「積層構造」とは、信号処理部などを、画素アレイ部とは別の半導体基板に搭載し、これらの半導体基板を積層した構造である。
<Solid-state imaging device of the present disclosure>
First, an outline of the configuration of the solid-state imaging device of the present disclosure will be described. Here, a CMOS image sensor which is a kind of XY address type solid-state imaging device will be described as an example of the solid-state imaging device of the present disclosure. The solid-state imaging device may have a so-called flat structure or a so-called laminated structure. Here, the “flat structure” is a peripheral circuit of a pixel array unit in which unit pixels are arranged in a two-dimensional matrix, that is, a drive unit that drives each unit pixel of the pixel array unit, or a unit pixel. In this structure, a signal processing unit that performs predetermined signal processing on a signal to be transmitted is disposed on the same semiconductor substrate (semiconductor chip) as the pixel array unit. The “stacked structure” is a structure in which a signal processing unit or the like is mounted on a semiconductor substrate different from the pixel array unit and these semiconductor substrates are stacked.
[システム構成]
 図1は、本開示の固体撮像素子の構成の概略を示すシステム構成図である。図1に示すように、本開示の固体撮像素子10は、画素アレイ部11と、その周辺の駆動系及び信号処理系を有する。本例では、周辺の駆動系や信号処理系として、例えば、行走査部(垂直走査部)12、読出し回路部13、列走査部(水平走査部)15、水平出力線16、映像信号処理部17、及び、タイミング制御部18が設けられている。これらの駆動系及び信号処理系は、画素アレイ部11と同じ半導体基板(半導体チップ)30上に集積されている。
[System configuration]
FIG. 1 is a system configuration diagram illustrating an outline of a configuration of a solid-state imaging device of the present disclosure. As illustrated in FIG. 1, the solid-state imaging device 10 of the present disclosure includes a pixel array unit 11, a peripheral driving system, and a signal processing system. In this example, as peripheral driving systems and signal processing systems, for example, a row scanning unit (vertical scanning unit) 12, a reading circuit unit 13, a column scanning unit (horizontal scanning unit) 15, a horizontal output line 16, and a video signal processing unit. 17 and a timing control unit 18 are provided. These drive system and signal processing system are integrated on the same semiconductor substrate (semiconductor chip) 30 as the pixel array unit 11.
 このシステム構成において、タイミング制御部18は、例えば外部から入力される垂直同期信号VD、水平同期信号HD、マスタークロックMCK等に基づいて、行走査部12、読出し回路部13、及び、列走査部15などの動作の基準となるクロック信号や制御信号などを生成する。タイミング制御部18で生成されたクロック信号や制御信号などは、行走査部12、読出し回路部13、及び、列走査部15などに対してそれらの駆動信号として与えられる。 In this system configuration, the timing control unit 18 includes, for example, a row scanning unit 12, a readout circuit unit 13, and a column scanning unit based on an externally input vertical synchronization signal VD, horizontal synchronization signal HD, master clock MCK, and the like. A clock signal, a control signal, and the like serving as a reference for operation such as 15 are generated. Clock signals, control signals, and the like generated by the timing control unit 18 are given as drive signals to the row scanning unit 12, the readout circuit unit 13, the column scanning unit 15, and the like.
 画素アレイ部11は、受光した光量に応じた光電荷を生成し、かつ、蓄積する光電変換素子を有する単位画素(以下、単に「画素」と記述する場合がある)20が行方向及び列方向に、即ち、行列状(2次元マトリクス状)に配列された構成となっている。ここで、行方向とは画素行における画素の配列方向を言い、列方向とは画素列における画素の配列方向を言う。 The pixel array unit 11 generates photoelectric charges according to the amount of received light, and unit pixels (hereinafter sometimes simply referred to as “pixels”) 20 each having a photoelectric conversion element to accumulate are arranged in a row direction and a column direction. That is, it is configured to be arranged in a matrix (two-dimensional matrix). Here, the row direction refers to the pixel arrangement direction in the pixel row, and the column direction refers to the pixel arrangement direction in the pixel column.
 単位画素20は、裏面照射型の画素であってもよいし、表面照射型の画素であってもよい。ここで、「裏面照射型の画素」とは、配線層が配される側を表面側とするとき、その反対側、即ち裏面側から入射光を取り込む画素構造をいう。また、「表面照射型の画素」とは、配線層が配される表面側から入射光を取り込む画素構造をいう。 The unit pixel 20 may be a back-illuminated pixel or a front-illuminated pixel. Here, the “back-illuminated pixel” refers to a pixel structure that takes incident light from the opposite side, that is, the back side when the side on which the wiring layer is disposed is the front side. Further, the “surface irradiation type pixel” refers to a pixel structure that takes in incident light from the surface side on which the wiring layer is disposed.
 画素アレイ部11において、m行n列の画素配列に対して、画素行毎に画素制御線31(31_1~31_m)が行方向に沿って配線されている画素制御線31は、単位画素20から信号を読み出す際の制御を行うための制御信号を伝送する。図1では、画素制御線31について1本の配線として図示しているが、1本に限られるものではない。画素制御線31_1~31_mの各一端は、行走査部12の各行に対応した各出力端に接続されている。また、m行n列の画素配列に対して、画素列毎に垂直信号線32(32_1~32_n)が列方向に沿って配線されている。垂直信号線32は、画素列毎に1個以上の単位画素20で共有される。 In the pixel array unit 11, the pixel control line 31 in which the pixel control lines 31 ( 31_1 to 31_m ) are wired in the row direction for each pixel row with respect to the pixel array of m rows and n columns is a unit pixel. A control signal for performing control when a signal is read from 20 is transmitted. In FIG. 1, the pixel control line 31 is illustrated as one wiring, but the number is not limited to one. One end of each of the pixel control lines 31 _ 1 to 31 _m is connected to each output end corresponding to each row of the row scanning unit 12. Further, vertical signal lines 32 ( 32_1 to 32_n ) are wired along the column direction for each pixel column with respect to the pixel array of m rows and n columns. The vertical signal line 32 is shared by one or more unit pixels 20 for each pixel column.
 行走査部12は、シフトレジスタやアドレスデコーダなどによって構成されており、画素アレイ部11の各画素20を全画素同時あるいは行単位等で駆動する。この行走査部12はその具体的な構成については図示を省略するが、一般的に、読出し走査系と掃出し走査系の2つの走査系を有する構成となっている。読出し走査系は、単位画素20から信号を読み出すために、画素アレイ部11の単位画素20を行単位で順に選択走査する。単位画素20から読み出される信号はアナログ信号である。掃出し走査系は、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査を行う。 The row scanning unit 12 includes a shift register, an address decoder, and the like, and drives each pixel 20 of the pixel array unit 11 at the same time or in units of rows. Although the specific configuration of the row scanning unit 12 is not shown, the row scanning unit 12 generally has two scanning systems, a reading scanning system and a sweeping scanning system. In order to read out a signal from the unit pixel 20, the readout scanning system selectively scans the unit pixels 20 of the pixel array unit 11 in units of rows. A signal read from the unit pixel 20 is an analog signal. The sweep-out scanning system performs sweep-out scanning with respect to the readout row on which readout scanning is performed by the readout scanning system, preceding the readout scanning by a time corresponding to the shutter speed.
 この掃出し走査系による掃出し走査により、読出し行の単位画素20の光電変換素子から不要な電荷が掃き出されることによって当該光電変換素子がリセットされる。そして、この掃出し走査系によって不要電荷を掃き出す(リセットする)ことにより、所謂、電子シャッタ動作が行われる。ここで、電子シャッタ動作とは、光電変換素子の光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことを言う。 By the sweep scanning by the sweep scanning system, unnecessary charges are swept out from the photoelectric conversion element of the unit pixel 20 in the readout row, thereby resetting the photoelectric conversion element. A so-called electronic shutter operation is performed by sweeping (resetting) unnecessary charges by the sweep scanning system. Here, the electronic shutter operation refers to an operation in which the photoelectric charge of the photoelectric conversion element is discarded and a new exposure is started (photocharge accumulation is started).
 読出し走査系による読出し動作によって読み出される信号は、その直前の読出し動作または電子シャッタ動作以降に受光した光量に対応するものである。そして、直前の読出し動作による読出しタイミングまたは電子シャッタ動作による掃出しタイミングから、今回の読出し動作による読出しタイミングまでの期間が、単位画素20における光電荷の露光期間となる。 The signal read out by the readout operation by the readout scanning system corresponds to the amount of light received after the immediately preceding readout operation or electronic shutter operation. A period from the read timing by the immediately preceding read operation or the sweep timing by the electronic shutter operation to the read timing by the current read operation is the photo charge exposure period in the unit pixel 20.
 読出し回路部13は、垂直信号線32(32_1~32_n)の電圧をサンプルホールドする構成となっている。この読出し回路部13については、例えば、アナログ画素信号をデジタル画素データに変換するアナログ-デジタル変換器を用いて構成することができる。アナログ-デジタル変換器としては、アナログ-デジタル変換の際に、単位画素20のリセット動作時のノイズを除去するための相関二重サンプリング(Correlated Double Sampling:CDS)処理を行う構成のものを用いることができる。 The readout circuit unit 13 is configured to sample and hold the voltage of the vertical signal lines 32 ( 32_1 to 32_n ). The readout circuit unit 13 can be configured using, for example, an analog-digital converter that converts an analog pixel signal into digital pixel data. An analog-digital converter having a configuration for performing correlated double sampling (CDS) processing for removing noise during reset operation of the unit pixel 20 during analog-digital conversion is used. Can do.
 図1において、列走査部15は、シフトレジスタやアドレスデコーダなどによって構成されており、読出し回路部13の列アドレスや列走査の制御を行う。この列走査部15による制御の下に、読出し回路部13においてアナログ-デジタル変換されたデジタル画素データは、順に水平出力線16に読み出され、映像信号処理部17に供給される。 In FIG. 1, the column scanning unit 15 includes a shift register, an address decoder, and the like, and controls the column address and column scanning of the readout circuit unit 13. Under the control of the column scanning unit 15, the digital pixel data subjected to analog-digital conversion in the readout circuit unit 13 is sequentially read out to the horizontal output line 16 and supplied to the video signal processing unit 17.
 映像信号処理部17は、読出し回路部13から読み出されたデジタルデータ(映像信号)に対して所定の信号処理を施した後、出力端子33から半導体基板30外へ撮像データとして出力する。 The video signal processing unit 17 performs predetermined signal processing on the digital data (video signal) read from the reading circuit unit 13 and then outputs the data as imaging data from the output terminal 33 to the outside of the semiconductor substrate 30.
[単位画素の回路構成]
 図2は、単位画素20の回路構成の一例を示す回路図である。図2に示すように、本例に係る単位画素20は、光電変換素子として例えばフォトダイオードPDを有している。単位画素20は、フォトダイオードPDに加えて、例えば、転送トランジスタ21、リセットトランジスタ22、増幅トランジスタ23、及び、選択トランジスタ24を有する構成となっている。
[Circuit configuration of unit pixel]
FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of the unit pixel 20. As shown in FIG. 2, the unit pixel 20 according to this example includes, for example, a photodiode PD as a photoelectric conversion element. In addition to the photodiode PD, the unit pixel 20 includes, for example, a transfer transistor 21, a reset transistor 22, an amplification transistor 23, and a selection transistor 24.
 尚、ここでは、転送トランジスタ21、リセットトランジスタ22、増幅トランジスタ23、及び、選択トランジスタ24の4つのトランジスタとして、例えばN型MOSFETを用いている。但し、ここで例示した4つのトランジスタ21~24の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。 Here, for example, N-type MOSFETs are used as the four transistors of the transfer transistor 21, the reset transistor 22, the amplification transistor 23, and the selection transistor 24. However, the combination of the conductivity types of the four transistors 21 to 24 exemplified here is merely an example, and the combination is not limited to these combinations.
 この単位画素20に対して、先述した画素制御線31(31_1~31_m)として、複数の制御線311,312,313が同一画素行の各画素に対して共通に配線されている。複数の制御線311,312,313は、行走査部12の各画素行に対応した出力端に画素行単位で接続されている。行走査部12は、複数の制御線311,312,313に対して転送制御信号TRG、リセット制御信号RST、及び、選択制御信号SELを適宜出力する。 A plurality of control lines 311, 312, and 313 are wired in common to the pixels in the same pixel row as the above-described pixel control lines 31 (31 _ 1 to 31 _m ) for the unit pixel 20. The plurality of control lines 311, 312, 313 are connected to the output end corresponding to each pixel row of the row scanning unit 12 in units of pixel rows. The row scanning unit 12 appropriately outputs a transfer control signal TRG, a reset control signal RST, and a selection control signal SEL to the plurality of control lines 311, 312, and 313.
 フォトダイオードPDは、アノード電極が低電位側電源(例えば、グランド)に接続されており、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオードPDのカソード電極は、転送トランジスタ21を介して増幅トランジスタ23のゲート電極と電気的に接続されている。増幅トランジスタ23のゲート電極と電気的に繋がった領域は、フローティング・ディフュージョン(浮遊拡散領域/不純物拡散領域)FDである。フローティング・ディフュージョンFDは、電荷を電圧に変換する電荷検出部(電荷電圧変換部)である。 The photodiode PD has an anode electrode connected to a low-potential-side power source (for example, ground), and photoelectrically converts received light into photocharge (here, photoelectrons) having a charge amount corresponding to the amount of light. Accumulate charge. The cathode electrode of the photodiode PD is electrically connected to the gate electrode of the amplification transistor 23 through the transfer transistor 21. A region electrically connected to the gate electrode of the amplification transistor 23 is a floating diffusion (floating diffusion region / impurity diffusion region) FD. The floating diffusion FD is a charge detection unit (charge voltage conversion unit) that converts a charge into a voltage.
 転送トランジスタ21は、フォトダイオードPDのカソード電極とフローティング・ディフュージョンFDとの間に接続されている。転送トランジスタ21のゲート電極には、高レベル(例えば、VDDレベル)がアクティブとなる転送制御信号TRGが行走査部12から制御線311を通して与えられる。転送トランジスタ21は、転送制御信号TRGに応答して導通状態となることで、フォトダイオードPDで光電変換され、蓄積された光電荷をフローティング・ディフュージョンFDに転送する。 The transfer transistor 21 is connected between the cathode electrode of the photodiode PD and the floating diffusion FD. A transfer control signal TRG that activates a high level (for example, V DD level) is applied to the gate electrode of the transfer transistor 21 from the row scanning unit 12 through the control line 311. When the transfer transistor 21 is turned on in response to the transfer control signal TRG, it is photoelectrically converted by the photodiode PD and transfers the accumulated photocharge to the floating diffusion FD.
 リセットトランジスタ22は、ドレイン電極が電圧VDDのノード(電源線)に、ソース電極がフローティング・ディフュージョンFDにそれぞれ接続されている。リセットトランジスタ22のゲート電極には、高レベルがアクティブとなるリセット制御信号RSTが行走査部12から制御線312を通して与えられる。リセットトランジスタ22は、リセット制御信号RSTに応答して導通状態となり、フローティング・ディフュージョンFDの電荷を電圧VDDのノードに捨てることによってフローティング・ディフュージョンFDをリセットする。 The reset transistor 22 has a drain electrode connected to a node (power supply line) of the voltage V DD and a source electrode connected to the floating diffusion FD. A reset control signal RST that activates a high level is applied to the gate electrode of the reset transistor 22 from the row scanning unit 12 through the control line 312. The reset transistor 22 becomes conductive in response to the reset control signal RST, and resets the floating diffusion FD by discarding the charge of the floating diffusion FD to the node of the voltage V DD .
 増幅トランジスタ23は、ゲート電極がフローティング・ディフュージョンFDに、ドレイン電極が電圧VDDのノードにそれぞれ接続されている。この増幅トランジスタ23は、フォトダイオードPDでの光電変換によって得られる信号を読み出すソースフォロワの入力部となる。すなわち、増幅トランジスタ23は、ソース電極が選択トランジスタ24を介して垂直信号線32に接続される。そして、増幅トランジスタ23と、垂直信号線32の一端に接続される電流源34とは、フローティング・ディフュージョンFDの電圧を垂直信号線32の電位に変換するソースフォロワを構成している。 The amplification transistor 23 has a gate electrode connected to the floating diffusion FD and a drain electrode connected to the node of the voltage V DD . The amplification transistor 23 serves as an input part of a source follower that reads a signal obtained by photoelectric conversion in the photodiode PD. That is, the source electrode of the amplification transistor 23 is connected to the vertical signal line 32 via the selection transistor 24. The amplification transistor 23 and the current source 34 connected to one end of the vertical signal line 32 constitute a source follower that converts the voltage of the floating diffusion FD into the potential of the vertical signal line 32.
 選択トランジスタ24は、例えば、ドレイン電極が増幅トランジスタ23のソース電極に、ソース電極が垂直信号線32にそれぞれ接続されている。選択トランジスタ24のゲート電極には、高レベルがアクティブとなる選択制御信号SELが行走査部12から制御線313を通して与えられる。選択トランジスタ24は、選択制御信号SELに応答して導通状態となることで、単位画素20を選択状態として増幅トランジスタ23から出力される信号を垂直信号線32に伝達する。 For example, the selection transistor 24 has a drain electrode connected to the source electrode of the amplification transistor 23 and a source electrode connected to the vertical signal line 32. A selection control signal SEL that activates a high level is applied to the gate electrode of the selection transistor 24 from the row scanning unit 12 through the control line 313. The selection transistor 24 becomes conductive in response to the selection control signal SEL, and transmits the signal output from the amplification transistor 23 to the vertical signal line 32 with the unit pixel 20 selected.
 尚、選択トランジスタ24については、電圧VDDのノードと増幅トランジスタ23のドレイン電極との間に接続した回路構成を採ることも可能である。また、本例では、単位画素20の画素回路として、転送トランジスタ21、リセットトランジスタ22、増幅トランジスタ23、及び、選択トランジスタ24から成る、即ち4つのトランジスタ(Tr)から成る4Tr構成を例に挙げたが、これに限られるものではない。例えば、選択トランジスタ24を省略し、増幅トランジスタ23に選択トランジスタ24の機能を持たせた3Tr構成とすることもできるし、必要に応じて、トランジスタの数を増やした構成とすることもできる。 The selection transistor 24 may have a circuit configuration connected between the node of the voltage V DD and the drain electrode of the amplification transistor 23. In this example, as a pixel circuit of the unit pixel 20, a 4Tr configuration including the transfer transistor 21, the reset transistor 22, the amplification transistor 23, and the selection transistor 24, that is, four transistors (Tr) is given as an example. However, it is not limited to this. For example, the selection transistor 24 may be omitted, and a 3Tr configuration in which the amplification transistor 23 has the function of the selection transistor 24 may be used, or a configuration in which the number of transistors is increased as necessary.
[垂直信号線の電位のセトリング時間]
 上記の回路構成の単位画素20における、フローティング・ディフュージョンFDのリセット電位(リセットレベル)Vrstの読出し時及び信号電位(信号レベル)Vsigの読出し時の動作についてより具体的に説明する。
[Vertical signal line potential settling time]
The operation at the time of reading the reset potential (reset level) V rst and the signal potential (signal level) V sig of the floating diffusion FD in the unit pixel 20 having the above circuit configuration will be described more specifically.
(リセット電位Vrstの読出し)
 フローティング・ディフュージョンFDのリセット電位Vrstの読出しは以下のようにして行われる。
1)リセット制御信号RSTが低レベルから高レベルに遷移することで、リセットトランジスタ22が導通状態となり、フローティング・ディフュージョンFDに対して、例えば電圧VDDのリセット電圧を印加する。
2)このリセット動作後、リセット制御信号RSTが高レベルから低レベルに遷移する際に、リセットトランジスタ22のフィードスルーによってフローティング・ディフュージョンFDの電位が変化する。
3)フローティング・ディフュージョンFDの電位の変化に伴って、垂直信号線32の電位も変化する。
4)このとき、垂直信号線32の配線抵抗Rと寄生容量CによるRC遅延により、垂直信号線(VSL)32の電位が安定(静定/整定)するまでのセトリング(以下、「VSLセトリング」と記述する場合がある)時間が必要となる。
( Read reset potential Vrst )
Reading of the reset potential V rst of the floating diffusion FD is performed as follows.
1) When the reset control signal RST transitions from a low level to a high level, the reset transistor 22 becomes conductive, and a reset voltage of, for example, the voltage V DD is applied to the floating diffusion FD.
2) After this reset operation, the potential of the floating diffusion FD changes due to the feedthrough of the reset transistor 22 when the reset control signal RST transitions from a high level to a low level.
3) As the potential of the floating diffusion FD changes, the potential of the vertical signal line 32 also changes.
4) At this time, settling until the potential of the vertical signal line (VSL) 32 is stabilized (stabilized / settled) due to RC delay caused by the wiring resistance R and the parasitic capacitance C of the vertical signal line 32 (hereinafter referred to as “VSL settling”). Time may be required).
(信号電位Vsigの読出し)
 フローティング・ディフュージョンFDの信号電位Vsigの読出しは以下のようにして行われる。
1)転送制御信号TRGが低レベルから高レベルに遷移し、転送トランジスタ21が導通状態となり、フォトダイオードPDで得られた光電荷をフローティング・ディフュージョンFDに転送する。
2)フローティング・ディフュージョンFDにおいて、フォトダイオードPDから転送された光電荷が電圧に変換される。
3)光電荷の転送完了時に転送制御信号TRGが高レベルから低レベルに遷移する際に、転送トランジスタ21のフィードスルーによってフローティング・ディフュージョンFDの電位が変化する。
4)信号電位Vsigの読出し時も、リセット電位Vrstの読出し時と同様に、RC遅延のセトリングが必要になる。
(Reading signal potential V sig )
Reading of the signal potential V sig of the floating diffusion FD is performed as follows.
1) The transfer control signal TRG transits from a low level to a high level, the transfer transistor 21 becomes conductive, and the photocharge obtained by the photodiode PD is transferred to the floating diffusion FD.
2) In the floating diffusion FD, the photocharge transferred from the photodiode PD is converted into a voltage.
3) The potential of the floating diffusion FD changes due to the feedthrough of the transfer transistor 21 when the transfer control signal TRG transitions from the high level to the low level when the transfer of the photocharge is completed.
4) When reading the signal potential V sig , RC delay settling is required as in the case of reading the reset potential V rst .
 上述した単位画素20の回路動作において、リセットトランジスタ22や転送トランジスタ21のフィードスルーによる垂直信号線32の電位変動分をΔVFT(=最終的安定電圧との差分)とし、垂直信号線32の配線抵抗Rと寄生容量CによるRC遅延の時定数をτとする。すると、垂直信号線32の電位V(t)は、次式(1)で与えられる。
Figure JPOXMLDOC01-appb-I000001
In the circuit operation of the unit pixel 20 described above, the potential fluctuation of the vertical signal line 32 due to the feedthrough of the reset transistor 22 and the transfer transistor 21 is ΔV FT (= difference from the final stable voltage), and the wiring of the vertical signal line 32 Let τ be the time constant of RC delay due to the resistor R and the parasitic capacitance C. Then, the potential V (t) of the vertical signal line 32 is given by the following equation (1).
Figure JPOXMLDOC01-appb-I000001
 ここで、10ビット精度(0.1%)までセトリングする時間をTとおくと、
Figure JPOXMLDOC01-appb-I000002
となり、
Figure JPOXMLDOC01-appb-I000003
から、10ビット精度までセトリングするには、6.9τの時間が必要になる。
Here, if the time for settling to 10-bit accuracy (0.1%) is T,
Figure JPOXMLDOC01-appb-I000002
And
Figure JPOXMLDOC01-appb-I000003
To set up to 10-bit precision requires 6.9τ.
 これに対し、リセットトランジスタ22や転送トランジスタ21のフィードスルーによる垂直信号線32の電位変動分ΔVFTを低減することにより、VSLセトリング時間を短縮することが可能となる。具体的には、初期値がΔVFTの場合、0.1ΔVFTにセトリングするための時間Tsettleは、次式(4)から2.3τとなる。
Figure JPOXMLDOC01-appb-I000004
 初期値の違いで、6.9τ→(6.9-2.3)τにセトリング時間が短縮することから、VSLセトリング時間の改善効果は2.3/6.9、即ち33.3%となる。
On the other hand, the VSL settling time can be shortened by reducing the potential variation ΔV FT of the vertical signal line 32 due to the feedthrough of the reset transistor 22 and the transfer transistor 21. Specifically, if the initial value of [Delta] V FT, the time T settle for settling the 0.1DerutaV FT becomes 2.3τ the following equation (4).
Figure JPOXMLDOC01-appb-I000004
Since the settling time is shortened from 6.9τ → (6.9-2.3) τ due to the difference in the initial value, the improvement effect of VSL settling time is 2.3 / 6.9, that is, 33.3%. Become.
 本開示の固体撮像素子10では、VSLセトリング時間が画素制御線31の電位の遷移で決まっている現状において、リセットトランジスタ22や転送トランジスタ21のフィードスルーによる垂直信号線32の電位変動分ΔVFTを低減し、VSLセトリング時間を短縮することを特徴としている。以下に、リセットトランジスタ22や転送トランジスタ21のフィードスルーによる垂直信号線32の電位変動分ΔVFTを低減する本開示の技術について具体的に説明する。 In the solid-state imaging device 10 of the present disclosure, in the current situation where the VSL settling time is determined by the transition of the potential of the pixel control line 31, the potential variation ΔV FT of the vertical signal line 32 due to the feedthrough of the reset transistor 22 and the transfer transistor 21 is reduced . It is characterized by reducing the VSL settling time. The technique of the present disclosure for reducing the potential fluctuation ΔV FT of the vertical signal line 32 due to the feedthrough of the reset transistor 22 and the transfer transistor 21 will be specifically described below.
<第1実施形態>
 第1実施形態に係る固体撮像素子の要部の回路構成を図3の回路図に示す。第1実施形態に係る要部の回路は、読出し回路部(カラム回路部)13内の一部の回路(以下、「カラム内回路」と記述する)13Aと、読出し回路部13に共通の回路(以下、「カラム用共通回路」と記述する)13Bとから成る電流生成回路である。カラム内回路13Aは、画素アレイ部11の各画素列に対して共通に一つ設けられても良いし、複数の画素列を単位としてその単位毎に設けられても良いし、あるいは、画素列毎に設けられてもよい。
<First Embodiment>
The circuit configuration of the main part of the solid-state imaging device according to the first embodiment is shown in the circuit diagram of FIG. The circuit of the main part according to the first embodiment is a circuit common to a part of the circuit (hereinafter referred to as “in-column circuit”) 13A in the readout circuit unit (column circuit unit) 13 and the readout circuit unit 13. (Hereinafter referred to as “column common circuit”) 13B. The in-column circuit 13A may be provided in common for each pixel column of the pixel array unit 11, or may be provided for each unit of a plurality of pixel columns, or the pixel column. It may be provided for each.
 図3において、図2にも示した電流源34は、単位画素20から垂直信号線32に画素信号を読み出すときに、垂直信号線32に電流I0を供給する第1の電流供給部(以下、「第1の電流供給部34」と記述する)である。第1の電流供給部34は、MOSトランジスタ51、MOSトランジスタ52、及び、電流源53によって構成されている。MOSトランジスタ51は、垂直信号線32の端部に直列に接続されている。MOSトランジスタ52は、ゲート電極とドレイン電極とが共通に接続された、ダイオード接続構成となっている。 3, the current source 34 also illustrated in FIG. 2 is a first current supply unit (hereinafter referred to as “current supply unit”) that supplies a current I 0 to the vertical signal line 32 when a pixel signal is read from the unit pixel 20 to the vertical signal line 32. , Described as “first current supply unit 34”). The first current supply unit 34 includes a MOS transistor 51, a MOS transistor 52, and a current source 53. The MOS transistor 51 is connected in series to the end of the vertical signal line 32. The MOS transistor 52 has a diode connection configuration in which a gate electrode and a drain electrode are connected in common.
 そして、MOSトランジスタ51とMOSトランジスタ52とは、ゲート電極が共通に接続されてカレントミラー回路を構成している。電流源53は、MOSトランジスタ52に対して直列に接続されており、MOSトランジスタ52に所定の基準電流を供給する。これにより、電流源53がMOSトランジスタ52に供給する基準電流に応じた電流I0が垂直信号線32に流れることになる。 The MOS transistor 51 and the MOS transistor 52 have a gate electrode connected in common to form a current mirror circuit. The current source 53 is connected in series to the MOS transistor 52 and supplies a predetermined reference current to the MOS transistor 52. As a result, a current I 0 corresponding to the reference current supplied from the current source 53 to the MOS transistor 52 flows through the vertical signal line 32.
 上記の構成の第1の電流供給部34において、MOSトランジスタ51がカラム内回路13Aに属し、MOSトランジスタ52と電流源53とがカラム用共通回路13Bに属することになる。 In the first current supply unit 34 configured as described above, the MOS transistor 51 belongs to the intra-column circuit 13A, and the MOS transistor 52 and the current source 53 belong to the common circuit 13B for the column.
 第1の電流供給部34とは別に、画素制御線31の電位の遷移に伴うフローティング・ディフュージョンFDの電位変動分に対応する電流を垂直信号線32に供給する第2の電流供給部60が設けられている。そして、第2の電流供給部60は、フローティング・ディフュージョンFDの電位変動の発生タイミングに連動させて垂直信号線32への電流の供給を停止することを特徴としている。ここで、フローティング・ディフュージョンFDは、フォトダイオードPDから転送された電荷を電圧に変換する電荷検出部(電荷電圧変換部)である。 In addition to the first current supply unit 34, a second current supply unit 60 that supplies a current corresponding to the potential fluctuation of the floating diffusion FD accompanying the potential transition of the pixel control line 31 to the vertical signal line 32 is provided. It has been. The second current supply unit 60 is characterized in that the supply of current to the vertical signal line 32 is stopped in synchronization with the occurrence timing of the potential fluctuation of the floating diffusion FD. Here, the floating diffusion FD is a charge detection unit (charge voltage conversion unit) that converts the charge transferred from the photodiode PD into a voltage.
 第2の電流供給部60は、スイッチ素子61、MOSトランジスタ62、容量素子63、スイッチ素子64、MOSトランジスタ65、及び、電流源66によって構成されている。スイッチ素子61は、その一端が垂直信号線32の端部に接続されている。スイッチ素子61の他端には、MOSトランジスタ62のドレイン電極が接続されている。すなわち、MOSトランジスタ62は、スイッチ素子61を介して垂直信号線32の端部に接続されている。 The second current supply unit 60 includes a switch element 61, a MOS transistor 62, a capacitor element 63, a switch element 64, a MOS transistor 65, and a current source 66. One end of the switch element 61 is connected to the end of the vertical signal line 32. The other end of the switch element 61 is connected to the drain electrode of the MOS transistor 62. That is, the MOS transistor 62 is connected to the end of the vertical signal line 32 via the switch element 61.
 容量素子63は、MOSトランジスタ62のゲート電極とソース電極との間に接続されている。スイッチ素子64は、その一端がMOSトランジスタ62のゲート電極に接続されている。容量素子63及びスイッチ素子64は、後述する追加電流αI0を調整する電流量調整信号(MOSトランジスタ62のバイアス電圧)をサンプリングする回路を構成している。スイッチ素子64の他端には、MOSトランジスタ65のゲート電極が接続されている。MOSトランジスタ65は、ゲート電極とドレイン電極とが共通に接続された、ダイオード接続構成となっている。そして、MOSトランジスタ62とMOSトランジスタ65とは、スイッチ素子64を介してゲート電極が選択的に接続されることによってカレントミラー回路を構成する。電流源66は、MOSトランジスタ52に対して直列に接続されており、MOSトランジスタ65に所定の基準電流を供給する。 The capacitive element 63 is connected between the gate electrode and the source electrode of the MOS transistor 62. One end of the switch element 64 is connected to the gate electrode of the MOS transistor 62. The capacitive element 63 and the switch element 64 constitute a circuit that samples a current amount adjustment signal (bias voltage of the MOS transistor 62) for adjusting an additional current αI 0 described later. The other end of the switch element 64 is connected to the gate electrode of the MOS transistor 65. The MOS transistor 65 has a diode connection configuration in which a gate electrode and a drain electrode are connected in common. The MOS transistor 62 and the MOS transistor 65 constitute a current mirror circuit by selectively connecting the gate electrodes via the switch element 64. The current source 66 is connected in series to the MOS transistor 52 and supplies a predetermined reference current to the MOS transistor 65.
 スイッチ素子61は、ORゲート回路67から可変遅延回路68を介して印加される制御信号ΦBSTによりオン(閉)/オフ(開)の制御が行われる。ORゲート回路67は、フローティング・ディフュージョンFDの電位を変化させる駆動信号、例えばリセット制御信号RSTと転送制御信号TRGとを2入力としている。これにより、制御信号ΦBSTは、リセット制御信号RSTと転送制御信号TRGとに基づいて生成される。可変遅延回路68は、制御信号ΦBSTの発生タイミングを適宜調整可能である。スイッチ素子64は、制御信号ΦSHによってオン/オフの制御が行われる。制御信号ΦSHは、不図示の回路部において、制御信号ΦBSTの発生タイミングよりも所定の時間Tだけ早いタイミングで発生される。但し、スイッチ素子64及び制御信号ΦSHは、必須要件ではない。 The switch element 61 is controlled to be turned on (closed) / off (opened) by a control signal Φ BST applied from the OR gate circuit 67 through the variable delay circuit 68. The OR gate circuit 67 has a drive signal for changing the potential of the floating diffusion FD, for example, a reset control signal RST and a transfer control signal TRG as two inputs. Thereby, the control signal Φ BST is generated based on the reset control signal RST and the transfer control signal TRG. The variable delay circuit 68 may be appropriately adjusts the output timing of the control signals [Phi BST. Switching element 64, the on / off control performed by the control signal [Phi SH. Control signal [Phi SH, in the circuit unit (not shown) is generated at a timing earlier by a predetermined time T than the generation timing of the control signals [Phi BST. However, the switch element 64 and the control signal [Phi SH is not a requirement.
 リセット制御信号RST、転送制御信号TRG、制御信号ΦBST、及び、制御信号ΦSHのタイミング関係を図4Aのタイミング波形図に示す。 The timing relationship of the reset control signal RST, the transfer control signal TRG, the control signal Φ BST , and the control signal Φ SH is shown in the timing waveform diagram of FIG. 4A.
 上記の構成の電流生成回路において、第1の電流供給部34は、単位画素20から垂直信号線32に画素信号を読み出すときに、電流源53の基準電流によって決まる電流I0を垂直信号線32に供給する。一例として、電流I0は4μA程度である。第2の電流供給部60は、電流I0に加えて、追加電流αI0を垂直信号線32に供給する。追加電流αI0は、画素制御線31の電位の遷移、即ち、リセット制御信号RST及び転送制御信号TRGの遷移に伴うフィードスルーによって生じる、フローティング・ディフュージョンFDの電位変化分に対応する電流であり、電流源66がMOSトランジスタ65に供給する基準電流によって決まる。 In the current generation circuit having the above configuration, the first current supply unit 34 uses the vertical signal line 32 to output the current I 0 determined by the reference current of the current source 53 when reading the pixel signal from the unit pixel 20 to the vertical signal line 32. To supply. As an example, the current I 0 is about 4 μA. The second current supply unit 60 supplies an additional current αI 0 to the vertical signal line 32 in addition to the current I 0 . The additional current αI 0 is a current corresponding to the potential change of the floating diffusion FD caused by the transition of the potential of the pixel control line 31, that is, the feedthrough accompanying the transition of the reset control signal RST and the transfer control signal TRG. It is determined by the reference current supplied from the current source 66 to the MOS transistor 65.
 第2の電流供給部60は、フローティング・ディフュージョンFDの変動の発生タイミングに連動させて、垂直信号線32への追加電流αI0の供給を停止する。ここで、「発生タイミングに連動」とは、発生タイミングと同じタイミングに限らない、換言すれば、発生タイミングに対して前後するタイミングであってもよいということである。尚、追加電流αI0の停止タイミングは、画素制御線31の電位の遷移タイミングに対して、垂直信号線32のRC遅延を無視できる程度に小さければよい。垂直信号線32に対する追加電流αI0の供給開始/供給停止の制御は、フローティング・ディフュージョンFDの電位を変化させる駆動信号、本例にあっては、リセット制御信号RST及び転送制御信号TRGに基づいて行われる。 The second current supply unit 60 stops the supply of the additional current αI 0 to the vertical signal line 32 in conjunction with the occurrence timing of the fluctuation of the floating diffusion FD. Here, “linked to the generation timing” is not limited to the same timing as the generation timing, in other words, may be a timing that is before or after the generation timing. Note that the stop timing of the additional current αI 0 may be small enough to ignore the RC delay of the vertical signal line 32 with respect to the potential transition timing of the pixel control line 31. Control of the supply start / supply stop of the additional current αI 0 to the vertical signal line 32 is based on a drive signal that changes the potential of the floating diffusion FD, in this example, the reset control signal RST and the transfer control signal TRG. Done.
 このように、垂直信号線32に対して追加電流αI0を供給することにより、増幅トランジスタ23を含むソースフォロワのオーバードライブ電圧Vodは、次式(5)に比例して変化する。
Figure JPOXMLDOC01-appb-I000005
Thus, by supplying the additional current αI 0 to the vertical signal line 32, the overdrive voltage V od of the source follower including the amplification transistor 23 changes in proportion to the following equation (5).
Figure JPOXMLDOC01-appb-I000005
 ここで、増幅トランジスタ23のゲート-ソース間電圧をVgs、閾値電圧をVthとすると、オーバードライブ電圧Vodは、Vod=Vgs-Vthである。また、βはソースフォロワのゲインであり、Vod0は垂直信号線32に対して追加電流αI0を供給していないときのオーバードライブ電圧である。 Here, when the gate-source voltage of the amplification transistor 23 is V gs and the threshold voltage is V th , the overdrive voltage V od is V od = V gs −V th . Β is a gain of the source follower, and V od0 is an overdrive voltage when the additional current αI 0 is not supplied to the vertical signal line 32.
 一方、画素制御線31の電位の遷移に伴うフィードスルーによって生じる、フローティング・ディフュージョンFDの電位変化分ΔVFDについては、画素制御線31の電位変動分ΔVcntと、画素制御線31-フローティング・ディフュージョンFD間の寄生容量C1と、フローティング・ディフュージョンFD-固定電位配線の合計寄生容量C2によって次式(6)で表現できる。
Figure JPOXMLDOC01-appb-I000006
On the other hand, regarding the potential change ΔV FD of the floating diffusion FD caused by the feedthrough accompanying the transition of the potential of the pixel control line 31, the potential change ΔV cnt of the pixel control line 31 and the pixel control line 31 -floating diffusion It can be expressed by the following equation (6) by the parasitic capacitance C 1 between the FDs and the total parasitic capacitance C 2 of the floating diffusion FD-fixed potential wiring.
Figure JPOXMLDOC01-appb-I000006
 フローティング・ディフュージョンFDの電位変動(変動分ΔVFD)により、ソースフォロワのゲインβに応じて、垂直信号線32の電位変動が生じる。このときの垂直信号線32の電位変動分ΔVFTは、ΔVFT=α・ΔVFDとなる。 Due to the potential fluctuation (variation ΔV FD ) of the floating diffusion FD, the potential fluctuation of the vertical signal line 32 occurs according to the gain β of the source follower. At this time, the potential variation ΔV FT of the vertical signal line 32 is ΔV FT = α · ΔV FD .
 そこで、画素制御線31の電位の遷移に伴うフィードスルーに伴って垂直信号線32の電位が変動するときの電位変動分ΔVFTと等価なオーバードライブ電圧Vodをあらかじめ、追加電流αI0を垂直信号線32に供給することによって生成する。そして、フローティング・ディフュージョンFDの電位変動の発生タイミングに連動させて、垂直信号線32への追加電流αI0の供給を停止する。これにより、オーバードライブ電圧Vodによって垂直信号線32の電位変動分ΔVFTが相殺される。結果的に、垂直信号線32の電位が、最終セトリング電圧に近い電圧からセトリングを開始させることが可能になる。 Therefore, an overdrive voltage V od equivalent to the potential fluctuation amount ΔV FT when the potential of the vertical signal line 32 fluctuates in accordance with the feedthrough accompanying the transition of the potential of the pixel control line 31, and the additional current αI 0 is vertically It is generated by supplying it to the signal line 32. Then, the supply of the additional current αI 0 to the vertical signal line 32 is stopped in conjunction with the occurrence timing of the potential fluctuation of the floating diffusion FD. As a result, the potential variation ΔV FT of the vertical signal line 32 is canceled by the overdrive voltage V od . As a result, settling can be started from a voltage close to the final settling voltage of the vertical signal line 32.
 VSLセトリング時間Tsettleは、セトリング開始時点での電圧と最終セトリング電圧との差分をΔVVSLとすると、次式(7)で表わせる。
Figure JPOXMLDOC01-appb-I000007
The VSL settling time T settle can be expressed by the following equation (7), where ΔV VSL is the difference between the voltage at the start of settling and the final settling voltage.
Figure JPOXMLDOC01-appb-I000007
 式(7)から明らかなように、セトリング開始時点での電圧の、最終セトリング電圧からの誤差(差分ΔVVSL)が小さいほど、セトリングに必要な時間、即ちVSLセトリング時間Tsettleを短く設定することが可能となる。 As is clear from the equation (7), the smaller the error (difference ΔV VSL ) of the voltage at the start of settling from the final settling voltage, the shorter the time necessary for settling, that is, the VSL settling time T settle is set. Is possible.
 また、フローティング・ディフュージョンFDにおける電荷-電圧変換後の信号が大きい場合、セトリング初期には、増幅トランジスタ23を含むソースフォロワがカットオフ領域になり、垂直信号線32の電位のスルーレートは、(1+α)I0/CVSLで決まる。従って、副次的に、VSLセトリング時間Tsettleを短縮できる。ここで、CVSLは、垂直信号線32の寄生容量である。 When the signal after charge-voltage conversion in the floating diffusion FD is large, the source follower including the amplification transistor 23 becomes a cutoff region in the initial stage of settling, and the slew rate of the potential of the vertical signal line 32 is (1 + α ) Determined by I 0 / C VSL . Therefore, as a secondary matter , the VSL settling time T settle can be shortened. Here, C VSL is a parasitic capacitance of the vertical signal line 32.
 転送制御信号TRGの遷移に伴う、図3の回路の各部の信号波形を図4Bのタイミング波形図に示す。図4Bのタイミング波形図には、転送制御信号TRG、追加電流αI0無しのときの垂直信号線32の電位、垂直信号線32の電流、ソースフォロワのオーバードライブ電圧Vod、及び、追加電流αI0有りのときの垂直信号線32の電位の各波形を示している。 A signal waveform of each part of the circuit of FIG. 3 accompanying the transition of the transfer control signal TRG is shown in the timing waveform diagram of FIG. 4B. The timing waveform diagram of FIG. 4B shows the transfer control signal TRG, the potential of the vertical signal line 32 without the additional current αI 0 , the current of the vertical signal line 32, the overdrive voltage V od of the source follower, and the additional current αI. Each waveform of the potential of the vertical signal line 32 when 0 is present is shown.
<第2実施形態>
 第1実施形態は、追加電流αI0を固定とした例、即ち、電流源66の固定の基準電流で決まる電流値とした例である。これに対し、第2実施形態は、半導体チップ毎(固体撮像素子毎)の垂直信号線32の電位変動分ΔVFTに合わせて追加電流αI0を可変とした例である。垂直信号線32の電位変動分ΔVFTに合わせて追加電流αI0を調整する調整機構は、画素アレイ部11の画素列毎に電流生成回路に実装してもよいし、全画素列共通に電流生成回路に実装してもよい。以下に、追加電流αI0の調整機構の具体的な実施例について説明する。
Second Embodiment
The first embodiment is an example in which the additional current αI 0 is fixed, that is, an example in which the current value is determined by a fixed reference current of the current source 66. On the other hand, the second embodiment is an example in which the additional current αI 0 is variable in accordance with the potential variation ΔV FT of the vertical signal line 32 for each semiconductor chip (each solid-state imaging device). The adjustment mechanism that adjusts the additional current αI 0 in accordance with the potential variation ΔV FT of the vertical signal line 32 may be mounted in the current generation circuit for each pixel column of the pixel array unit 11, or the current common to all the pixel columns. You may mount in a production | generation circuit. Hereinafter, a specific embodiment of the adjustment mechanism of the additional current αI 0 will be described.
[実施例1]
 実施例1は、追加電流αI0の調整機構を、画素列毎に、電流生成回路に実装する例である。実施例1に係る電流生成回路の構成例を図5に示す。実施例1に係る電流生成回路では、第2の電流源2において、カレントミラー回路を構成する、カラム内回路のMOSトランジスタ62のフィンガ数(Finger数)を選択可能とする。そして、フィンガ数選択制御信号に基づくスイッチ素子691~69pの切替えによって、MOSトランジスタ62のフィンガ数pのうち、使用する本数を選択する構成により、追加電流αI0の調整機構を実現している。
[Example 1]
The first embodiment is an example in which the adjustment mechanism for the additional current αI 0 is mounted on the current generation circuit for each pixel column. FIG. 5 shows a configuration example of the current generation circuit according to the first embodiment. In the current generation circuit according to the first embodiment, in the second current source 2, the number of fingers (number of fingers) of the MOS transistor 62 of the in-column circuit constituting the current mirror circuit can be selected. Then, by switching the switch elements 69 1 to 69 p based on the finger number selection control signal, an adjustment mechanism for the additional current αI 0 is realized by selecting the number of fingers to be used from the number of fingers p of the MOS transistor 62. Yes.
[実施例2]
 実施例2は、追加電流αI0の調整機構を、全画素列共通に、電流生成回路に実装する例(その1)である。実施例2に係る電流生成回路の構成例を図6に示す。実施例2に係る電流生成回路では、第2の電流源2において、カレントミラー回路を構成する、カラム用共通回路のMOSトランジスタ65のフィンガ数を選択可能とする。そして、フィンガ数選択制御信号に基づくスイッチ素子691~69pの切替えによって、MOSトランジスタ65のフィンガ数pのうち、使用する本数を選択する構成により、追加電流αI0の調整機構を実現している。
[Example 2]
The second embodiment is an example (No. 1) in which the adjustment mechanism for the additional current αI 0 is mounted on the current generation circuit in common to all the pixel columns. FIG. 6 shows a configuration example of the current generation circuit according to the second embodiment. In the current generation circuit according to the second embodiment, the second current source 2 can select the number of fingers of the MOS transistor 65 of the column common circuit that forms the current mirror circuit. Then, by switching the switch elements 69 1 to 69 p based on the finger number selection control signal, an adjustment mechanism for the additional current αI 0 is realized by selecting the number of fingers to be used from the number of fingers p of the MOS transistor 65. Yes.
[実施例3]
 実施例3は、追加電流αI0の調整機構を、全画素列共通に、電流生成回路に実装する例(その2)である。実施例3に係る電流生成回路の構成例を図7に示す。実施例3に係る電流生成回路では、第2の電流源2において、カレントミラー回路に入力する、もしくは、カレントミラー回路から出力される、電流源66の基準電流自体を、電流量調整信号に基づいて調整する構成により、追加電流αI0の調整機構を実現している。
[Example 3]
The third embodiment is an example (No. 2) in which the adjustment mechanism for the additional current αI 0 is mounted on the current generation circuit in common to all the pixel columns. FIG. 7 shows a configuration example of a current generation circuit according to the third embodiment. In the current generation circuit according to the third embodiment, in the second current source 2, the reference current itself of the current source 66 that is input to the current mirror circuit or output from the current mirror circuit is based on the current amount adjustment signal. Thus, an adjustment mechanism for the additional current αI 0 is realized.
 以下に、追加電流αI0の最適値を決定する具体例について、第3実施形態、第4実施形態として説明する。追加電流αI0の最適値を決定するに当たっては、セトリング開始時点での電圧と最終セトリング電圧との差分ΔVVSLと、増幅トランジスタ23を含むソースフォロワのオーバードライブ電圧Vodの変動分ΔVodを、画像出力を伴わない撮像(非撮像)中、起動時、あるいは、固体撮像素子の製造(製造工程)時に検出(測定)するようにする。製造工程で測定する場合には、測定結果を不揮発性メモリに記憶しておき、任意のアナログ-デジタル変換器(以下、「AD変換器」と記述する)において追加電流αI0の設定に用いるようにすることが好ましい。 Hereinafter, specific examples of determining the optimum value of the additional current αI 0 will be described as a third embodiment and a fourth embodiment. In determining the optimum value of the additional current αI 0 , the difference ΔV VSL between the voltage at the start of settling and the final settling voltage and the variation ΔV od of the overdrive voltage V od of the source follower including the amplification transistor 23 are Detection (measurement) is performed during imaging (non-imaging) without image output, at startup, or during manufacturing (manufacturing process) of a solid-state imaging device. When measuring in the manufacturing process, the measurement result is stored in a non-volatile memory and used to set an additional current αI 0 in an arbitrary analog-digital converter (hereinafter referred to as “AD converter”). It is preferable to make it.
<第3実施形態>
 第3実施形態は、読出し回路13において、画素列毎に配されたAD変換器40を用いて追加電流αI0の最適値を決定する例である。本実施形態にあっては、AD変換器40は、画素制御線31の電位の遷移に伴うフローティング・ディフュージョンFDの電位変動分ΔVFTと、第2の電流供給部60からの垂直信号線32への電流の供給に伴うソースフォロワのオーバードライブ電圧Vodの変動分ΔVodとを取得する取得手段として機能することになる。
<Third Embodiment>
The third embodiment is an example in which the optimum value of the additional current αI 0 is determined in the readout circuit 13 by using the AD converter 40 arranged for each pixel column. In the present embodiment, the AD converter 40 transmits the potential variation ΔV FT of the floating diffusion FD accompanying the transition of the potential of the pixel control line 31 and the vertical signal line 32 from the second current supply unit 60. It functions as an acquisition means for acquiring the variation ΔV od of the overdrive voltage V od of the source follower accompanying the supply of the current.
 フローティング・ディフュージョンFDの電位変動分ΔVFT及びオーバードライブ電圧Vodの変動分ΔVodの取得に当たっては、特定の画素列の変動分として取得するようにしてもよいし、あるいは、複数の画素列(全画素列を含む)の平均変動分として取得するようにしてもよい。また、1回の取得結果であってもよいし、複数回の取得結果の平均であってもよい。第4実施形態においても同様とする。 In obtaining the potential variation ΔV FT of the floating diffusion FD and the variation ΔV od of the overdrive voltage V od , it may be obtained as a variation of a specific pixel column, or a plurality of pixel columns ( You may make it acquire as an average fluctuation part (including all the pixel columns). Moreover, the acquisition result of 1 time may be sufficient and the average of the acquisition result of multiple times may be sufficient. The same applies to the fourth embodiment.
 以下では、フローティング・ディフュージョンFDの電位変化分ΔVFDを生じる画素制御線31の電位遷移を、リセット制御信号RSTの遷移として説明する。第4実施形態においても同様とする。 Hereinafter, a potential transition of the pixel control line 31 to produce a potential variation [Delta] V FD of the floating diffusion FD, and is described as a transition of the reset control signal RST. The same applies to the fourth embodiment.
 第3実施形態に係る固体撮像素子の要部の回路構成を図8に示す。第3実施形態に係る要部の回路は、カラム内回路13A及びカラム用共通回路13B(即ち、電流生成回路)と、追加電流αI0の最適値を決定する追加電流決定回路70とから成る。 FIG. 8 shows a circuit configuration of a main part of the solid-state imaging device according to the third embodiment. The main circuit according to the third embodiment includes an intra-column circuit 13A and a column common circuit 13B (that is, a current generation circuit), and an additional current determination circuit 70 that determines an optimum value of the additional current αI 0 .
 追加電流決定回路70は、メモリ71、メモリ72、比較器73、及び、電流選択回路74を有しており、フローティング・ディフュージョンFDの電位変動分ΔVFT及びオーバードライブ電圧Vodの変動分ΔVodを取得する手段として、AD変換器40を用いて追加電流αI0の最適値を決定する構成となっている。 The additional current determination circuit 70 includes a memory 71, a memory 72, a comparator 73, and a current selection circuit 74. The additional current determination circuit 70 has a potential variation ΔV FT and a variation ΔV od of the overdrive voltage V od of the floating diffusion FD. As a means for obtaining the above, the AD converter 40 is used to determine the optimum value of the additional current αI 0 .
 メモリ71は、リセット制御信号RSTを高レベルに設定し、十分なセトリング時間が経過したときの垂直信号線32の電圧のAD変換結果(1)と、リセット制御信号RSTを一度高レベルに設定した後に低レベルに設定し、十分なセトリング時間が経過したときの垂直信号線32の電圧のAD変換結果(2)との差分を記憶する。AD変換結果(1)とAD変換結果(2)との差分は、フローティング・ディフュージョンFDの電位変化分ΔVFDをAD変換したものに等しい。 The memory 71 sets the reset control signal RST to a high level, and sets the AD conversion result (1) of the voltage of the vertical signal line 32 when a sufficient settling time has elapsed and the reset control signal RST once to a high level. Later, it is set to a low level, and the difference from the AD conversion result (2) of the voltage of the vertical signal line 32 when a sufficient settling time has elapsed is stored. The difference between the AD conversion result (1) and AD conversion result (2) is equal to the potential variation [Delta] V FD of the floating diffusion FD to those AD conversion.
 メモリ72は、リセット制御信号RSTを一度高レベルに設定し、垂直信号線32に追加電流αI0を供給した後、十分なセトリング時間が経過したときの垂直信号線32の電圧のAD変換結果(3)と上記のAD変換結果(1)との差分を記憶する。AD変換結果(3)とAD変換結果(1)との差分は、ソースフォロワのオーバードライブ電圧Vodの変動分ΔVodをAD変換したものに等しい。比較器73は、メモリ71の記憶値とメモリ72の記憶値とを比較する。電流選択回路74は、比較器73の比較結果に基づいて例えば可変電流源66の電流を制御することで、追加電流αI0の最適値を決定する。 The memory 72 sets the reset control signal RST to a high level once, supplies an additional current αI 0 to the vertical signal line 32, and then the AD conversion result of the voltage of the vertical signal line 32 when a sufficient settling time has elapsed ( The difference between 3) and the above AD conversion result (1) is stored. The difference between the AD conversion result (3) and the AD conversion result (1) is equal to the AD conversion of the variation ΔV od of the overdrive voltage V od of the source follower. The comparator 73 compares the stored value in the memory 71 with the stored value in the memory 72. The current selection circuit 74 determines the optimum value of the additional current αI 0 by controlling the current of the variable current source 66 based on the comparison result of the comparator 73, for example.
 上記の構成の追加電流決定回路70によって、追加電流αI0の最適値を決定する手順について、図9Aのタイミング波形図を用いて説明する。また、追加電流αI0の変化による垂直信号線32の電圧の変化のイメージを図9Bの波形図に示す。 The procedure for determining the optimum value of the additional current αI 0 by the additional current determination circuit 70 having the above configuration will be described with reference to the timing waveform diagram of FIG. 9A. Further, an image of a change in the voltage of the vertical signal line 32 due to a change in the additional current αI 0 is shown in the waveform diagram of FIG. 9B.
1)先ず、リセット制御信号RSTを高レベルに設定し、十分なセトリング時間が経過したときの垂直信号線32の電圧をAD変換器40でAD変換する。これにより、AD変換結果(1)が得られる。
2)次に、リセット制御信号RSTを一度高レベルに設定した後に低レベルに設定し、十分なセトリング時間が経過したときの垂直信号線32の電圧をAD変換器40でAD変換する。これにより、AD変換結果(2)が得られる。
3)次に、リセット制御信号RSTを一度高レベルに設定し、垂直信号線32に追加電流αI0を供給した後、十分なセトリング時間が経過したときの垂直信号線32の電圧をAD変換器40でAD変換する。これにより、AD変換結果(3)が得られる。
4)そして、可変電流源66の電流を制御することによって追加電流αI0を掃引し、比較器73の比較結果、即ち、フローティング・ディフュージョンFDの電位変化分ΔVFDと、ソースフォロワのオーバードライブ電圧Vodの変動分ΔVodとが、最も近くなる追加電流αI0を最適値として決定する。
1) First, the reset control signal RST is set to a high level, and the AD converter 40 converts the voltage of the vertical signal line 32 when a sufficient settling time has elapsed. Thereby, the AD conversion result (1) is obtained.
2) Next, the reset control signal RST is once set to a high level and then set to a low level, and the AD converter 40 AD converts the voltage of the vertical signal line 32 when a sufficient settling time has elapsed. Thereby, an AD conversion result (2) is obtained.
3) Next, after the reset control signal RST is once set to a high level and the additional current αI 0 is supplied to the vertical signal line 32, the voltage of the vertical signal line 32 when a sufficient settling time has elapsed is converted into an AD converter. A / D conversion is performed at 40. Thereby, an AD conversion result (3) is obtained.
4) The additional current αI 0 is swept by controlling the current of the variable current source 66, and the comparison result of the comparator 73, that is, the potential change ΔV FD of the floating diffusion FD and the overdrive voltage of the source follower a variation [Delta] V od of V od determines the additional current .alpha. I 0 which is closest as the optimum value.
 上述したように、第3実施形態に係る追加電流決定回路70によれば、既存のAD変換器40のAD変換結果を基に、画素制御線31の電位の遷移に伴うフローティング・ディフュージョンFDの電位変動分と、第2の電流供給部60からの垂直信号線32への電流の供給に伴うソースフォロワのオーバードライブ電圧の変動分とを取得できる。そして、これらの取得結果に基づいて、垂直信号線32に供給する追加電流αI0の最適値を決定できるため、回路の追加なく追加電流αI0の設定を実現でき、画素列毎もしくは2列以上の画素列の平均値を用いて2列以上の画素列を単位とした制御が可能になる利点がある。 As described above, according to the additional current determination circuit 70 according to the third embodiment, the potential of the floating diffusion FD accompanying the transition of the potential of the pixel control line 31 based on the AD conversion result of the existing AD converter 40. The fluctuation amount and the fluctuation amount of the overdrive voltage of the source follower accompanying the supply of current from the second current supply unit 60 to the vertical signal line 32 can be acquired. Since the optimum value of the additional current αI 0 supplied to the vertical signal line 32 can be determined based on these acquisition results, the setting of the additional current αI 0 can be realized without adding a circuit, and each pixel column or two or more columns can be realized. There is an advantage that control can be performed in units of two or more pixel columns using the average value of the pixel columns.
<第4実施形態>
 第4実施形態は、電圧計等の電圧測定手段を用いて追加電流αI0の最適値を決定する例である。本実施形態にあっては、電圧測定手段は、画素制御線31の電位の遷移に伴うフローティング・ディフュージョンFDの電位変動分ΔVFTと、第2の電流供給部60からの垂直信号線32への電流の供給に伴うソースフォロワのオーバードライブ電圧Vodの変動分ΔVodとを取得する取得手段として機能することになる。電圧測定手段については、固体撮像素子外部の測定装置であってもよいし、固体撮像素子に実装されたAD変換器40とは別のAD変換器であってもよい。電圧測定手段として、固体撮像素子外部の測定装置を用いる場合は、特定の垂直信号線32、もしくは、複数の垂直信号線32をショートした信号を固体撮像素子外部に出力する機構をもつことになる。
<Fourth embodiment>
The fourth embodiment is an example in which the optimum value of the additional current αI 0 is determined using voltage measuring means such as a voltmeter. In the present embodiment, the voltage measuring unit is configured to detect the potential variation ΔV FT of the floating diffusion FD accompanying the potential transition of the pixel control line 31 and the vertical signal line 32 from the second current supply unit 60. It functions as an acquisition means for acquiring the variation ΔV od of the overdrive voltage V od of the source follower accompanying the current supply. The voltage measuring means may be a measuring device outside the solid-state image sensor, or may be an AD converter different from the AD converter 40 mounted on the solid-state image sensor. When a measuring device outside the solid-state image sensor is used as the voltage measuring means, it has a mechanism for outputting a signal obtained by short-circuiting a specific vertical signal line 32 or a plurality of vertical signal lines 32 to the outside of the solid-state image sensor. .
 第4実施形態に係る固体撮像素子の要部の回路構成を図10に示す。図8と図10との対比から明らかなように、基本的に、フローティング・ディフュージョンFDの電位変動分ΔVFT及びオーバードライブ電圧Vodの変動分ΔVodを取得する手段として、AD変換器40に代えて、電圧測定手段80を用いる以外の構成は、第3実施形態の場合と同じである。また、構成に限らず、追加電流αI0の最適値を決定する手順についても、基本的に、第3実施形態の場合と同じである。 FIG. 10 shows a circuit configuration of a main part of the solid-state imaging device according to the fourth embodiment. As evident from comparison of FIGS. 8 and 10, basically, as a means for obtaining a variation [Delta] V od of the floating diffusion FD potential variation [Delta] V FT and the overdrive voltage V od, the AD converter 40 Instead, the configuration other than using the voltage measuring means 80 is the same as that of the third embodiment. Further, not only the configuration but also the procedure for determining the optimum value of the additional current αI 0 is basically the same as in the case of the third embodiment.
 電圧計等の電圧測定手段を用いる第4実施形態に係る追加電流決定回路70によれば、AD変換器40を用いる第3実施形態に係る追加電流決定回路70に比べて、AD変換器40の分解能を超える電圧精度で電圧変化を検出できる利点がある。 According to the additional current determination circuit 70 according to the fourth embodiment that uses voltage measuring means such as a voltmeter, the AD converter 40 has a configuration that is higher than that of the additional current determination circuit 70 according to the third embodiment that uses the AD converter 40. There is an advantage that a voltage change can be detected with a voltage accuracy exceeding the resolution.
 第3実施形態、あるいは、第4実施形態に係る追加電流決定回路70によって最適値が決定された追加電流αI0は、画像出力を伴う撮像時の設定に適用される。このとき、追加電流αI0を供給していない状態において、電流制御電圧をサンプル&ホールドするようにしてもよい。これにより、追加電流αI0を生成する第2の電流供給部60の、追加電流αI0の供給時におけるIRドロップで電流値が変動することを防ぎ、全画素列で最適な追加電流αI0の供給を実現することができる。 The additional current αI 0 for which the optimum value is determined by the additional current determination circuit 70 according to the third embodiment or the fourth embodiment is applied to the setting at the time of imaging accompanied by image output. At this time, the current control voltage may be sampled and held in a state where the additional current αI 0 is not supplied. Thus, the second current supply portions 60 for generating an additional current .alpha. I 0, prevents current value IR drop varies during the supply of the additional current .alpha. I 0, the optimum additional current .alpha. I 0 in all pixel rows Supply can be realized.
<変形例>
 以上、本開示を好ましい実施形態に基づき説明したが、本開示はこれらの実施形態に限定されるものではない。上記の各実施形態において説明した固体撮像素子の構成、構造、固体撮像素子の駆動方法の構成は例示であり、適宜、変更することができる。例えば、追加電流αI0を生成する第2の電流供給部60の固定電位配線としては、最終的な垂直信号線32のセトリングに用いられる電流I0を生成する第1の電流供給部34の固定電位配線と同じであってもよいが、分離されている方が好ましい。これらの固定電位配線を分離することで、追加電流αI0の供給開始/供給停止に伴う固定電位の変動を防ぐことができる。
<Modification>
Although the present disclosure has been described based on the preferred embodiments, the present disclosure is not limited to these embodiments. The configuration and structure of the solid-state imaging device described in the above embodiments and the configuration of the driving method of the solid-state imaging device are examples, and can be changed as appropriate. For example, as the fixed potential wiring of the second current supply unit 60 that generates the additional current αI 0 , the first current supply unit 34 that generates the current I 0 used for the settling of the final vertical signal line 32 is fixed. It may be the same as the potential wiring, but is preferably separated. By separating these fixed potential wirings, fluctuations in the fixed potential accompanying the start / stop of supply of the additional current αI 0 can be prevented.
<本開示の電子機器>
 上述した第1乃至第4実施形態に係る固体撮像素子は、デジタルスチルカメラやビデオカメラ等の撮像装置や、携帯電話機などの撮像機能を有する携帯端末装置や、画像読取部に固体撮像素子を用いる複写機などの電子機器全般において、その撮像部(画像取込部)として用いることができる。尚、電子機器に搭載される上記モジュール状の形態、即ち、カメラモジュールを撮像装置とする場合もある。
<Electronic device of the present disclosure>
The solid-state imaging device according to the first to fourth embodiments described above uses a solid-state imaging device for an imaging device such as a digital still camera or a video camera, a portable terminal device having an imaging function such as a mobile phone, or an image reading unit. It can be used as an imaging unit (image capturing unit) in electronic devices such as copying machines. In some cases, the above-described module form mounted on an electronic device, that is, a camera module is used as an imaging device.
[撮像装置]
 図11は、本開示の電子機器の一例である撮像装置の構成を示すブロック図である。図11に示すように、本例に係る撮像装置100は、レンズ群等を含む光学系101、撮像部102、カメラ信号処理部であるDSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108等を有している。そして、DSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108がバスライン109を介して相互に接続された構成となっている。
[Imaging device]
FIG. 11 is a block diagram illustrating a configuration of an imaging apparatus that is an example of the electronic apparatus of the present disclosure. As shown in FIG. 11, an imaging apparatus 100 according to this example includes an optical system 101 including a lens group, an imaging unit 102, a DSP circuit 103 that is a camera signal processing unit, a frame memory 104, a display device 105, and a recording device 106. , An operation system 107, a power supply system 108, and the like. The DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, the operation system 107, and the power supply system 108 are connected to each other via a bus line 109.
 光学系101は、被写体からの入射光(像光)を取り込んで撮像部102の撮像面上に結像する。撮像部102は、光学系101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。DSP回路103は、一般的なカメラ信号処理、例えば、ホワイトバランス処理、デモザイク処理、ガンマ補正処理などを行う。 The optical system 101 takes in incident light (image light) from a subject and forms an image on the imaging surface of the imaging unit 102. The imaging unit 102 converts the amount of incident light imaged on the imaging surface by the optical system 101 into an electrical signal for each pixel and outputs the electrical signal as a pixel signal. The DSP circuit 103 performs general camera signal processing, such as white balance processing, demosaic processing, and gamma correction processing.
 フレームメモリ104は、DSP回路103での信号処理の過程で適宜データの格納に用いられる。表示装置105は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置から成り、撮像部102で撮像された動画または静止画を表示する。記録装置106は、撮像部102で撮像された動画または静止画を、可搬型の半導体メモリや、光ディスク、HDD(Hard Disk Drive)等の記録媒体に記録する。 The frame memory 104 is used for storing data as appropriate during the signal processing in the DSP circuit 103. The display device 105 includes a panel type display device such as a liquid crystal display device or an organic EL (electroluminescence) display device, and displays a moving image or a still image captured by the imaging unit 102. The recording device 106 records the moving image or still image captured by the imaging unit 102 on a recording medium such as a portable semiconductor memory, an optical disk, or an HDD (Hard Disk Disk Drive).
 操作系107は、ユーザによる操作の下に、本撮像装置100が持つ様々な機能について操作指令を発する。電源系108は、DSP回路103、フレームメモリ104、表示装置105、記録装置106、及び、操作系107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。 The operation system 107 issues operation commands for various functions of the imaging apparatus 100 under the operation of the user. The power supply system 108 appropriately supplies various power supplies serving as operation power for the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, and the operation system 107 to these supply targets.
 上記の構成の撮像装置100において、撮像部102として、先述した第1実施形態、第2実施形態、第3実施形態、又は、第4実施形態に係る固体撮像素子を用いることができる。 In the imaging apparatus 100 having the above configuration, the solid-state imaging device according to the first embodiment, the second embodiment, the third embodiment, or the fourth embodiment described above can be used as the imaging unit 102.
 尚、本開示は、以下のような構成をとることもできる。
[1]光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
 1個以上の単位画素で共有する垂直信号線、
 単位画素を制御する画素制御線、
 単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給する第1の電流供給部、及び、
 画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する第2の電流供給部を備え、
 第2の電流供給部は、電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する、
 固体撮像素子。
[2]単位画素は、光電変換によって得られた電荷を電荷検出部に転送する転送トランジスタを有しており、
 画素制御線は、転送トランジスタを駆動する転送制御信号を伝送し、
 第2の電流供給部は、転送制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
 上記[1]に記載の固体撮像素子。
[3]単位画素は、電荷検出部をリセットするリセットトランジスタを有しており、
 画素制御線は、リセットトランジスタを駆動するリセット制御信号を伝送し、
 第2の電流供給部は、リセット制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
 上記[1]又は[2]に記載の固体撮像素子。
[4]単位画素は、電荷検出部で変換された電圧を垂直信号線に読み出す増幅トランジスタを有しており、
 増幅トランジスタ及び第1の電流供給部は、電荷検出部で変換された電圧を垂直信号線の電位に変換するソースフォロワを構成しており、
 第2の電流供給部は、電荷検出部の電位変動分と等価な、ソースフォロワのオーバードライブ電圧を、垂直信号線に電流を供給することによって生成する、
 上記[1]~[3]のいずれかに記載の固体撮像素子。
[5]第2の電流供給部は、垂直信号線に供給する電流が可変な構成となっている、
 上記[1]~[4]のいずれかに記載の固体撮像素子。
[6]画素制御線の電位の遷移に伴う電荷検出部の電位変動分と、第2の電流供給部からの垂直信号線への電流の供給に伴うソースフォロワのオーバードライブ電圧の変動分とを取得する取得手段を備えており、
 第2の電流供給部は、取得手段の取得結果に基づいて、垂直信号線に供給する電流を設定する、
 上記[4]に記載の固体撮像素子。
[7]取得手段は、特定の画素列の変動分又は複数の画素列の平均変動分として取得する、
 上記[6]に記載の固体撮像素子。
[8]第2の電流供給部は、電荷検出部の電位変動分とオーバードライブ電圧の変動分とが最も近くなる電流を、画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流として設定する、
 上記[6]又は[7]に記載の固体撮像素子。
[9]第2の電流供給部は、垂直信号線に供給する電流を調整する電流量調整信号をサンプリングする、
 上記[5]に記載の固体撮像素子。
[10] 垂直信号線に接続された読出し回路部を備えており、
 読出し回路部は、取得手段として機能する、
 上記[6]に記載の固体撮像素子。
[11]読出し回路部は、垂直信号線の電圧をサンプルホールドする、
 上記[10]に記載の固体撮像素子。
[12]取得手段は、固体撮像素子外部又は内部に設けられた電圧測定手段である、
 上記[6]に記載の固体撮像素子。
[13]第1の電流供給部の固定電位配線と第2の電流供給部の固定電位配線とが分離されている、
 上記[1]~[12]のいずれかに記載の固体撮像素子。
[14]光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
 1個以上の単位画素で共有する垂直信号線、及び、
 単位画素を制御する画素制御線を備えており、
 単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給するとともに、画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する固体撮像素子の駆動に当たって、
 電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する、
 固体撮像素子の駆動方法。
[15]単位画素は、光電変換によって得られた電荷を電荷検出部に転送する転送トランジスタを有しており、
 画素制御線はが伝送する、転送トランジスタを駆動する転送制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
 上記[14]に記載の固体撮像素子の駆動方法。
[16]単位画素は、電荷検出部をリセットするリセットトランジスタを有しており、
 画素制御線が伝送する、リセットトランジスタを駆動するリセット制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
 上記[14]又は[15]に記載の固体撮像素子の駆動方法。
[17]単位画素は、電荷検出部で変換された電圧を垂直信号線に読み出す増幅トランジスタを有しており、
 増幅トランジスタ及び第1の電流供給部は、電荷検出部で変換された電圧を垂直信号線の電位に変換するソースフォロワを構成しており、
 電荷検出部の電位変動分と等価な、ソースフォロワのオーバードライブ電圧を、垂直信号線に電流を供給することによって生成する、
 上記[14]~[16]のいずれかに記載の固体撮像素子の駆動方法。
[18]画素制御線の電位の遷移に伴う電荷検出部の電位変動分と、第2の電流供給部からの垂直信号線への電流の供給に伴うソースフォロワのオーバードライブ電圧の変動分とを取得し、この取得結果に基づいて、垂直信号線に供給する電流を設定する、
 上記[17]に記載の固体撮像素子の駆動方法。
[19]特定の画素列の変動分又は複数の画素列の平均変動分として取得する、
 上記[18]に記載の固体撮像素子の駆動方法。
[20]光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
 1個以上の単位画素で共有する垂直信号線、
 単位画素を制御する画素制御線、
 単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給する第1の電流供給部、及び、
 画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する第2の電流供給部を備え、
 第2の電流供給部は、電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する、
 固体撮像素子を有する電子機器。
In addition, this indication can also take the following structures.
[1] A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage,
A vertical signal line shared by one or more unit pixels,
A pixel control line for controlling the unit pixel,
A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and
A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line;
The second current supply unit stops supplying current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit;
Solid-state image sensor.
[2] The unit pixel includes a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit,
The pixel control line transmits a transfer control signal that drives the transfer transistor,
The second current supply unit stops supplying current to the vertical signal line in conjunction with the transition timing of the transfer control signal.
The solid-state imaging device according to [1] above.
[3] The unit pixel includes a reset transistor that resets the charge detection unit,
The pixel control line transmits a reset control signal for driving the reset transistor,
The second current supply unit stops supplying the current to the vertical signal line in conjunction with the transition timing of the reset control signal;
The solid-state imaging device according to the above [1] or [2].
[4] The unit pixel has an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line,
The amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line,
The second current supply unit generates an overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit by supplying a current to the vertical signal line.
The solid-state imaging device according to any one of [1] to [3] above.
[5] The second current supply unit has a configuration in which the current supplied to the vertical signal line is variable.
The solid-state imaging device according to any one of [1] to [4] above.
[6] A change in the potential of the charge detection unit due to the transition of the potential of the pixel control line, and a change in the overdrive voltage of the source follower accompanying the supply of current from the second current supply unit to the vertical signal line. It has an acquisition means to acquire,
The second current supply unit sets a current to be supplied to the vertical signal line based on the acquisition result of the acquisition unit.
The solid-state imaging device according to [4] above.
[7] The acquisition unit acquires the variation of a specific pixel column or the average variation of a plurality of pixel columns.
The solid-state imaging device according to [6] above.
[8] The second current supply unit converts the current that causes the potential fluctuation of the charge detection unit and the fluctuation of the overdrive voltage to be the closest to the potential fluctuation of the charge detection unit accompanying the transition of the potential of the pixel control line. Set as the corresponding current,
The solid-state imaging device according to [6] or [7].
[9] The second current supply unit samples a current amount adjustment signal for adjusting a current supplied to the vertical signal line.
The solid-state imaging device according to [5] above.
[10] A readout circuit unit connected to the vertical signal line is provided,
The readout circuit unit functions as an acquisition unit.
The solid-state imaging device according to [6] above.
[11] The read circuit unit samples and holds the voltage of the vertical signal line.
The solid-state imaging device according to [10] above.
[12] The acquisition unit is a voltage measurement unit provided outside or inside the solid-state imaging device.
The solid-state imaging device according to [6] above.
[13] The fixed potential wiring of the first current supply unit and the fixed potential wiring of the second current supply unit are separated.
The solid-state imaging device according to any one of [1] to [12].
[14] A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage,
A vertical signal line shared by one or more unit pixels, and
It has a pixel control line that controls the unit pixel,
Solid that supplies current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line, and supplies current to the vertical signal line corresponding to the potential fluctuation of the charge detection unit due to the potential transition of the pixel control line In driving the image sensor,
Stop the supply of current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit,
A method for driving a solid-state imaging device.
[15] The unit pixel includes a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit,
The pixel control line transmits, and stops the supply of current to the vertical signal line in conjunction with the transition timing of the transfer control signal that drives the transfer transistor.
The method for driving a solid-state imaging device according to the above [14].
[16] The unit pixel includes a reset transistor that resets the charge detection unit.
The supply of current to the vertical signal line is stopped in conjunction with the transition timing of the reset control signal that drives the reset transistor transmitted by the pixel control line.
The method for driving a solid-state imaging device according to the above [14] or [15].
[17] The unit pixel has an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line,
The amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line,
An overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit is generated by supplying a current to the vertical signal line.
The method for driving a solid-state imaging device according to any one of [14] to [16].
[18] A change in potential of the charge detection unit accompanying a transition in potential of the pixel control line and a change in overdrive voltage of the source follower accompanying the supply of current from the second current supply unit to the vertical signal line. Acquire and set the current supplied to the vertical signal line based on the acquisition result,
The method for driving a solid-state imaging device according to the above [17].
[19] Obtain as a variation of a specific pixel column or an average variation of a plurality of pixel columns.
The method for driving a solid-state imaging device according to the above [18].
[20] A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage,
A vertical signal line shared by one or more unit pixels,
A pixel control line for controlling the unit pixel,
A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and
A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line;
The second current supply unit stops supplying current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit;
An electronic device having a solid-state image sensor.
 10・・・固体撮像素子、11・・・画素アレイ部、12・・・行走査部、13・・・読出し回路部、13A・・・カラム内回路、13B・・・カラム用共通回路、15・・・列走査部、16・・・水平出力線、17・・・映像信号処理部、18・・・タイミング制御部、20・・・単位画素、21・・・転送トランジスタ、22・・・リセットトランジスタ、23・・・増幅トランジスタ、24・・・選択トランジスタ、30・・・半導体基板(半導体チップ)、31(31_1~31_m)・・・画素制御線、32(32_1~32_n)・・・垂直信号線、34・・・第1の電流供給部、40(40_1~40_n)・・・AD(アナログ-デジタル)変換器、41・・・比較器(コンパレータ)、42・・・アップ/ダウンカウンタ、43・・・ラッチ回路、60・・・第2の電流供給部、70・・・追加電流決定回路、71,72・・・メモリ、73・・・比較器、74・・・電流選択回路、80・・・電圧測定手段、FD・・・フローティング・ディフュージョン(電荷検出部/電荷電圧変換部)、PD・・・フォトダイオード(光電変換素子) DESCRIPTION OF SYMBOLS 10 ... Solid-state image sensor, 11 ... Pixel array part, 12 ... Row scanning part, 13 ... Reading circuit part, 13A ... In-column circuit, 13B ... Common circuit for columns, 15 ... Column scanning unit, 16 ... Horizontal output line, 17 ... Video signal processing unit, 18 ... Timing control unit, 20 ... Unit pixel, 21 ... Transfer transistor, 22 ... Reset transistor, 23... Amplification transistor, 24... Selection transistor, 30... Semiconductor substrate (semiconductor chip), 31 ( 31.sub._1 to 31.sub .-- m )... Pixel control line, 32 ( 32.sub._1 to 32.sub .-- n) ) ... vertical signal line, 34 ... first current supply unit, 40 ( 40_1 to 40_n ) ... AD (analog-digital) converter, 41 ... comparator (comparator), 42 ... Up / down counter, 43 Latch circuit 60 ... second current supply unit 70 ... additional current determination circuit 71,72 ... memory 73 ... comparator 74 ... current selection circuit 80 ...・ Voltage measuring means, FD: Floating diffusion (charge detection unit / charge voltage conversion unit), PD: Photodiode (photoelectric conversion element)

Claims (20)

  1.  光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
     1個以上の単位画素で共有する垂直信号線、
     単位画素を制御する画素制御線、
     単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給する第1の電流供給部、及び、
     画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する第2の電流供給部を備え、
     第2の電流供給部は、電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する、
     固体撮像素子。
    A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage;
    A vertical signal line shared by one or more unit pixels,
    A pixel control line for controlling the unit pixel,
    A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and
    A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line;
    The second current supply unit stops supplying current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit;
    Solid-state image sensor.
  2.  単位画素は、光電変換によって得られた電荷を電荷検出部に転送する転送トランジスタを有しており、
     画素制御線は、転送トランジスタを駆動する転送制御信号を伝送し、
     第2の電流供給部は、転送制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
     請求項1に記載の固体撮像素子。
    The unit pixel has a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit,
    The pixel control line transmits a transfer control signal that drives the transfer transistor,
    The second current supply unit stops supplying current to the vertical signal line in conjunction with the transition timing of the transfer control signal.
    The solid-state imaging device according to claim 1.
  3.  単位画素は、電荷検出部をリセットするリセットトランジスタを有しており、
     画素制御線は、リセットトランジスタを駆動するリセット制御信号を伝送し、
     第2の電流供給部は、リセット制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
     請求項1に記載の固体撮像素子。
    The unit pixel has a reset transistor that resets the charge detection unit,
    The pixel control line transmits a reset control signal for driving the reset transistor,
    The second current supply unit stops supplying the current to the vertical signal line in conjunction with the transition timing of the reset control signal;
    The solid-state imaging device according to claim 1.
  4.  単位画素は、電荷検出部で変換された電圧を垂直信号線に読み出す増幅トランジスタを有しており、
     増幅トランジスタ及び第1の電流供給部は、電荷検出部で変換された電圧を垂直信号線の電位に変換するソースフォロワを構成しており、
     第2の電流供給部は、電荷検出部の電位変動分と等価な、ソースフォロワのオーバードライブ電圧を、垂直信号線に電流を供給することによって生成する、
     請求項1に記載の固体撮像素子。
    The unit pixel has an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line,
    The amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line,
    The second current supply unit generates an overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit by supplying a current to the vertical signal line.
    The solid-state imaging device according to claim 1.
  5.  第2の電流供給部は、垂直信号線に供給する電流が可変な構成となっている、
     請求項1に記載の固体撮像素子。
    The second current supply unit has a configuration in which the current supplied to the vertical signal line is variable.
    The solid-state imaging device according to claim 1.
  6.  画素制御線の電位の遷移に伴う電荷検出部の電位変動分と、第2の電流供給部からの垂直信号線への電流の供給に伴うソースフォロワのオーバードライブ電圧の変動分とを取得する取得手段を備えており、
     第2の電流供給部は、取得手段の取得結果に基づいて、垂直信号線に供給する電流を設定する、
     請求項4に記載の固体撮像素子。
    Acquisition for acquiring a potential fluctuation of the charge detection unit accompanying a transition of the potential of the pixel control line and a fluctuation of the overdrive voltage of the source follower accompanying the supply of current to the vertical signal line from the second current supply unit Means,
    The second current supply unit sets a current to be supplied to the vertical signal line based on the acquisition result of the acquisition unit.
    The solid-state imaging device according to claim 4.
  7.  取得手段は、特定の画素列の変動分又は複数の画素列の平均変動分として取得する、
     請求項6に記載の固体撮像素子。
    The acquisition means acquires the variation of a specific pixel column or the average variation of a plurality of pixel columns.
    The solid-state imaging device according to claim 6.
  8.  第2の電流供給部は、電荷検出部の電位変動分とオーバードライブ電圧の変動分とが最も近くなる電流を、画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流として設定する、
     請求項6に記載の固体撮像素子。
    The second current supply unit uses a current corresponding to the potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line as a current at which the potential variation of the charge detection unit and the variation of the overdrive voltage are closest. Set as
    The solid-state imaging device according to claim 6.
  9.  第2の電流供給部は、垂直信号線に供給する電流を調整する電流量調整信号をサンプリングする、
     請求項5に記載の固体撮像素子。
    The second current supply unit samples a current amount adjustment signal for adjusting a current supplied to the vertical signal line.
    The solid-state imaging device according to claim 5.
  10.  垂直信号線に接続された読出し回路部を備えており、
     読出し回路部は、取得手段として機能する、
     請求項6に記載の固体撮像素子。
    It has a readout circuit part connected to the vertical signal line,
    The readout circuit unit functions as an acquisition unit.
    The solid-state imaging device according to claim 6.
  11.  読出し回路部は、垂直信号線の電圧をサンプルホールドする、
     請求項10に記載の固体撮像素子。
    The readout circuit section samples and holds the voltage of the vertical signal line.
    The solid-state imaging device according to claim 10.
  12.  取得手段は、固体撮像素子外部又は内部に設けられた電圧測定手段である、
     請求項6に記載の固体撮像素子。
    The acquisition means is a voltage measurement means provided outside or inside the solid-state imaging device,
    The solid-state imaging device according to claim 6.
  13.  第1の電流供給部の固定電位配線と第2の電流供給部の固定電位配線とが分離されている、
     請求項1に記載の固体撮像素子。
    The fixed potential wiring of the first current supply unit and the fixed potential wiring of the second current supply unit are separated.
    The solid-state imaging device according to claim 1.
  14.  光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
     1個以上の単位画素で共有する垂直信号線、及び、
     単位画素を制御する画素制御線を備えており、
     単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給するとともに、画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する固体撮像素子の駆動に当たって、
     電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する、
     固体撮像素子の駆動方法。
    A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage;
    A vertical signal line shared by one or more unit pixels, and
    It has a pixel control line that controls the unit pixel,
    Solid that supplies current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line, and supplies current to the vertical signal line corresponding to the potential fluctuation of the charge detection unit due to the potential transition of the pixel control line In driving the image sensor,
    Stop the supply of current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit,
    A method for driving a solid-state imaging device.
  15.  単位画素は、光電変換によって得られた電荷を電荷検出部に転送する転送トランジスタを有しており、
     画素制御線はが伝送する、転送トランジスタを駆動する転送制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
     請求項12に記載の固体撮像素子の駆動方法。
    The unit pixel has a transfer transistor that transfers the charge obtained by photoelectric conversion to the charge detection unit,
    The pixel control line transmits, and stops the supply of current to the vertical signal line in conjunction with the transition timing of the transfer control signal that drives the transfer transistor.
    The method for driving a solid-state imaging device according to claim 12.
  16.  単位画素は、電荷検出部をリセットするリセットトランジスタを有しており、
     画素制御線が伝送する、リセットトランジスタを駆動するリセット制御信号の遷移タイミングに連動させて垂直信号線への電流の供給を停止する、
     請求項14に記載の固体撮像素子の駆動方法。
    The unit pixel has a reset transistor that resets the charge detection unit,
    The supply of current to the vertical signal line is stopped in conjunction with the transition timing of the reset control signal that drives the reset transistor transmitted by the pixel control line.
    The method for driving a solid-state imaging device according to claim 14.
  17.  単位画素は、電荷検出部で変換された電圧を垂直信号線に読み出す増幅トランジスタを有しており、
     増幅トランジスタ及び第1の電流供給部は、電荷検出部で変換された電圧を垂直信号線の電位に変換するソースフォロワを構成しており、
     電荷検出部の電位変動分と等価な、ソースフォロワのオーバードライブ電圧を、垂直信号線に電流を供給することによって生成する、
     請求項14に記載の固体撮像素子の駆動方法。
    The unit pixel has an amplification transistor that reads the voltage converted by the charge detection unit to the vertical signal line,
    The amplification transistor and the first current supply unit constitute a source follower that converts the voltage converted by the charge detection unit into the potential of the vertical signal line,
    An overdrive voltage of the source follower equivalent to the potential fluctuation of the charge detection unit is generated by supplying a current to the vertical signal line.
    The method for driving a solid-state imaging device according to claim 14.
  18.  画素制御線の電位の遷移に伴う電荷検出部の電位変動分と、第2の電流供給部からの垂直信号線への電流の供給に伴うソースフォロワのオーバードライブ電圧の変動分とを取得し、この取得結果に基づいて、垂直信号線に供給する電流を設定する、
     請求項17に記載の固体撮像素子の駆動方法。
    Obtaining the potential fluctuation amount of the charge detection unit accompanying the transition of the potential of the pixel control line and the fluctuation amount of the overdrive voltage of the source follower accompanying the current supply from the second current supply unit to the vertical signal line, Based on this acquisition result, the current supplied to the vertical signal line is set.
    The method for driving a solid-state imaging device according to claim 17.
  19.  特定の画素列の変動分又は複数の画素列の平均変動分として取得する、
     請求項18に記載の固体撮像素子の駆動方法。
    Obtain as a variation of a specific pixel column or an average variation of a plurality of pixel columns,
    The method for driving a solid-state imaging device according to claim 18.
  20.  光電変換によって得られた電荷を電圧に変換する電荷検出部を含む単位画素、
     1個以上の単位画素で共有する垂直信号線、
     単位画素を制御する画素制御線、
     単位画素から垂直信号線に信号を読み出すときに垂直信号線に電流を供給する第1の電流供給部、及び、
     画素制御線の電位の遷移に伴う電荷検出部の電位変動分に対応する電流を垂直信号線に供給する第2の電流供給部を備え、
     第2の電流供給部は、電荷検出部の電位変動の発生タイミングに連動させて垂直信号線への電流の供給を停止する、
     固体撮像素子を有する電子機器。
    A unit pixel including a charge detection unit that converts a charge obtained by photoelectric conversion into a voltage;
    A vertical signal line shared by one or more unit pixels,
    A pixel control line for controlling the unit pixel,
    A first current supply unit for supplying a current to the vertical signal line when reading a signal from the unit pixel to the vertical signal line; and
    A second current supply unit configured to supply a current corresponding to a potential variation of the charge detection unit accompanying the transition of the potential of the pixel control line to the vertical signal line;
    The second current supply unit stops supplying current to the vertical signal line in conjunction with the occurrence timing of the potential fluctuation of the charge detection unit;
    An electronic device having a solid-state image sensor.
PCT/JP2016/076977 2015-12-25 2016-09-13 Solid-state imaging element, driving method for solid-state imaging element, and electronic device WO2017110163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252947A JP2017118373A (en) 2015-12-25 2015-12-25 Solid-state imaging device, driving method for solid-state imaging device, and electronic apparatus
JP2015-252947 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110163A1 true WO2017110163A1 (en) 2017-06-29

Family

ID=59090032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076977 WO2017110163A1 (en) 2015-12-25 2016-09-13 Solid-state imaging element, driving method for solid-state imaging element, and electronic device

Country Status (2)

Country Link
JP (1) JP2017118373A (en)
WO (1) WO2017110163A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022181579A (en) * 2021-05-26 2022-12-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state image capture element and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165825A (en) * 2002-11-11 2004-06-10 Sony Corp Solid-state imaging apparatus and drive method therefor
JP2011234243A (en) * 2010-04-28 2011-11-17 Sony Corp Solid-state imaging element and method of driving the same, and camera system
JP2013123107A (en) * 2011-12-09 2013-06-20 Sony Corp Solid-state image pickup device, solid-state image pickup device driving method, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165825A (en) * 2002-11-11 2004-06-10 Sony Corp Solid-state imaging apparatus and drive method therefor
JP2011234243A (en) * 2010-04-28 2011-11-17 Sony Corp Solid-state imaging element and method of driving the same, and camera system
JP2013123107A (en) * 2011-12-09 2013-06-20 Sony Corp Solid-state image pickup device, solid-state image pickup device driving method, and electronic apparatus

Also Published As

Publication number Publication date
JP2017118373A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US10070103B2 (en) Solid-state imaging device, driving method, and electronic device
US9509927B2 (en) Solid-state imaging device, method of driving the same, signal processing method for the same, and imaging apparatus
TWI599226B (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
US8493489B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
CN106993141B (en) Image pickup apparatus
US7622699B2 (en) Solid-state image pickup device, a method of driving the same, a signal processing method for the same, and image pickup apparatus
US8004587B2 (en) Solid-state imaging device, signal processing method for the same, and imaging apparatus
US20080259178A1 (en) Solid-state imaging device, signal processing method for the same, and imaging apparatus
US9402038B2 (en) Solid-state imaging device and method of driving comprising a first and second accumulation sections for transferring charges exceeding the saturation amount
US20120327281A1 (en) Electronic apparatus and driving method therefor
JP6120091B2 (en) Solid-state imaging device, driving method, and electronic apparatus
JP2008167004A (en) Solid state imaging apparatus, method for driving the same, and imaging apparatus
US10506184B2 (en) Solid-state image pickup element, method of driving solid-state image pickup element, and electronic apparatus
TW201511564A (en) Conversion device, imaging device, electronic device, and conversion method
JP2018011272A (en) Solid-state imaging device, driving method for solid-state imaging device, and electronic apparatus
JP2012227889A (en) Image pickup device
WO2017110163A1 (en) Solid-state imaging element, driving method for solid-state imaging element, and electronic device
US9185320B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic device
JP2013143636A (en) Solid state image pickup device, signal processing method for solid state image pickup device, and electronic apparatus
JP5403019B2 (en) Physical quantity detection apparatus and imaging apparatus
JP2012109888A (en) Solid state image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878060

Country of ref document: EP

Kind code of ref document: A1