WO2016119681A1 - 微波感应天线模块 - Google Patents

微波感应天线模块 Download PDF

Info

Publication number
WO2016119681A1
WO2016119681A1 PCT/CN2016/072174 CN2016072174W WO2016119681A1 WO 2016119681 A1 WO2016119681 A1 WO 2016119681A1 CN 2016072174 W CN2016072174 W CN 2016072174W WO 2016119681 A1 WO2016119681 A1 WO 2016119681A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
antenna module
curved portion
circuit structure
detection
Prior art date
Application number
PCT/CN2016/072174
Other languages
English (en)
French (fr)
Inventor
陈明允
Original Assignee
东莞巨扬电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞巨扬电器有限公司 filed Critical 东莞巨扬电器有限公司
Publication of WO2016119681A1 publication Critical patent/WO2016119681A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • the invention relates to a microwave sensing antenna module, in particular to a microwave sensing antenna module applied to a lighting device.
  • a general lighting device or luminaire can provide illumination by using a conventional incandescent light bulb, a lamp or a power saving bulb as a illuminating element, and conventional control means mostly control the strobe of these illuminating elements in an artificial manner.
  • LEDs light-emitting diodes
  • lighting devices or lamps designed by using motion sensing technology to control the flashing of the light-emitting elements are more effective in achieving energy saving.
  • the so-called motion sensing technology is to provide a sensor in the lighting device or the luminaire, which can sense the change of the action of the object or the change of the intensity of the ambient light, so that the illuminating element can be further flashed according to the relevant change situation in the sensing range. Control of extinction.
  • Conventional motion sensing sensors can be designed using passive human infrared (PIR) or microwave (Microwave) sensing technologies.
  • PIR passive human infrared
  • Microwave microwave
  • the technique is to compare the frequency of transmitting and receiving electromagnetic waves of microwaves by using the Doppler principle. Since the frequency of the object before and after the sensor changes, the frequency before and after the reception changes correspondingly, so that the movement of the object can be effectively determined.
  • microwave sensors can be assembled and matched in a separate manner with various lighting devices or lamps including a bulb or a lamp tube, and if they are directly integrated into various lighting devices or lamps, Obviously it will provide more convenient applicability. That is to say, the various lighting devices or lamps with microwave sensing function can be directly installed on the lamp holder without requiring the user to greatly change the indoor or power arrangement design of the existing lighting device or the lamp.
  • FIG. 1 is an exploded view of a light bulb 1 with microwave sensing function.
  • the bulb 1 mainly includes a lamp body 11, a light-emitting module 13, a sensing and driving module 15, and a transparent lamp cover 18.
  • the light emitting module 13 includes a circuit board and a plurality of light emitting elements that are LEDs disposed thereon.
  • the sensing and driving module 15 is a microwave sensing module comprising a circuit board 155 and a sensing device 154 composed of an upper cover 154a, an antenna module 154b, an amplifying circuit board 154c and a lower cover 154d.
  • the antenna module 154b and the amplifying circuit board 154c are interposed between the upper cover case 154a and the lower cover case 154d, and the circuit board 154c is enlarged and coupled with the antenna module.
  • the blocks 154b are coupled to each other and recoupled to the circuit board 155.
  • the induction and drive module 15 is capable of being ultrasonically sensed by the antenna module 154b.
  • FIG. 2 is a schematic circuit diagram of the antenna module 154b
  • FIG. 3 is a functional block diagram of the antenna module 154b.
  • the antenna module 154b mainly includes a current input terminal 21, an oscillator 22, a power divider 24, a transmitting antenna 28, a receiving antenna 29, a detecting mixer 25, and an intermediate frequency (IF) output. 20 and a plurality of filters 23, 26, 27.
  • the figure also shows the coupling relationship between the components, and the components are disposed on the same plate (substrate).
  • the oscillator 22 is a microwave source and includes an oscillating circuit structure 220, an RF transistor (FET or BJT) 221, and an arc-shaped filter coupling structure F0.
  • the RF transistor 221 is disposed in the oscillating circuit structure 220. on.
  • the frequency of the microwaves generated by the oscillator 22 can be determined by the design of the shape and length of the oscillating circuit structure 220, and the microwaves are emitted outwardly from the transmitting antenna 28.
  • the oscillating circuit structure 220 in Fig. 2 is partially rectangular and the other end is a filter.
  • the curved portions C01 and C02 of the oscillating circuit structure 220 are bent in a direction opposite to or away from the position where the radio frequency transistor (FET or BJT) 221 is located, and the curved portions C01 and C02 and the arc filter coupling structure F0 are used.
  • the curved ends of one of the curved ends form a spatially angular relationship with each other in the form of a right angle.
  • the reflected wave can be received by the receiving antenna 29, and the reflected wave is mixed and detected by the detecting mixer 25 with the microwave from the oscillator 22;
  • the signal can reflect the movement of the object and is output by the intermediate frequency output 20 for signal amplification.
  • the detector mixer 25 includes two detector elements 251, 252 and a detector hybrid circuit structure 250, and the two detector elements 251, 252 are disposed on the detector hybrid circuit structure 250.
  • the shape and length of the hybrid hybrid circuit structure 250 can be determined by the frequency of the low frequency signal it demodulates; and the hybrid hybrid circuit structure 250 of FIG.
  • the antenna module 154b that is inductively sensed by microwave is not easily affected by the light or thermal energy generated by the surrounding light-emitting elements. Therefore, it is not necessary to provide a hood, but the installation position needs to be integrated with the light-emitting module 13.
  • the collocation assembly is such that the microwave sensing module 15 described above can be installed and integrated into various lighting devices or interiors of the luminaire (for example, in a bulb, a lamp or a ceiling lamp), and can satisfy, for example, not being able to block illumination.
  • microwave induction module 15 is incorporated into various illumination devices or lamps (eg, bulbs, tubes or suction) In the interior of the dome light, the size of the antenna module or circuit board needs to be considered.
  • the maximum side length L0 of the substrate tends to fall at least between 25 mm and 36 mm, and even if the design is poor, the size is even more
  • the maximum side length L0 means that any of the four side lengths of any square or rectangle belongs to the longest length; if the substrate used is circular
  • the maximum side length L0 means the diameter of the above circular substrate.
  • the area (or volume) of the substrate used be further reduced, so that the user can more easily install and apply the antenna module 154b to various lighting devices or lamps, especially for small sizes.
  • the field of lighting such as LED bulbs, LED tubes or small LED ceiling lamps has become an important technical issue.
  • the design of the shape and length of the oscillation circuit structure or the structure of the detection hybrid circuit also affects the relevant frequency. Therefore, in order to reduce the area (or volume), it is necessary to take these design points into consideration. In view of this, it is an important research and development issue in the industry to provide an inductive lighting device to enable the antenna module to operate more efficiently and to achieve both lighting effects and sensing performance.
  • the present invention aims to provide a microwave sensing antenna module, which can effectively utilize the space on the board by designing a specific shape of the related circuit, that is, reducing the circuit layout.
  • the occupied area enables the module to be assembled and applied in a simpler and easier assembly manner to various lighting devices or lamps using light-emitting diodes (LEDs) as light-emitting elements, and to achieve both lighting effects and sensing performance.
  • LEDs light-emitting diodes
  • the present invention provides a microwave sensing antenna module including a substrate, an oscillator, and a detection mixer, the substrate having a first side and a second side; the oscillator is disposed on the first side, The method is configured to generate a microwave having a first frequency; the detection mixer is disposed on the first side to mix and detect a reflected wave formed with the microwave, and generate a corresponding low frequency signal.
  • the detection hybrid has a detection hybrid circuit structure and two detection elements, and the detection elements are disposed on the detection hybrid circuit structure, the detection hybrid circuit structure includes a first structural segment and a second structural segment, the first structural segment having a a first curved portion; the second structural portion has a second curved portion, and two ends of the second structural portion are respectively connected to two ends of the first structural segment; wherein the first curved portion and the second curved portion The bending directions correspond to each other.
  • the first curved portion has a c-like shape
  • the second curved portion has an s-shaped or c-like shape
  • the first curved portion and the second curved portion together form a closed micro-strip, and the first curved portion and the second curved portion are respectively curved portions having different curvatures.
  • the closed microstrip line encloses a planar geometric figure having a planar geometric center point, the plane There are at least two unequal linear distances between the geometric center point and the plurality of linear distances formed between the plurality of points of the closed microstrip line.
  • the closed microstrip line encloses a planar geometric figure having a planar geometric center point, and at least one of the first curved portion and the second curved portion is curved toward the geometric center point of the plane.
  • the first curved portion and the second curved portion are both bent in the same direction, or are bent close to the same direction to be brought together or retracted.
  • the substrate is at least one of a circle, a square and a rectangle.
  • the maximum side length of the substrate does not exceed 24 mm (inclusive), and the maximum side length refers to the length of the longest side of the four side lengths of the square substrate or the rectangular substrate, or the maximum side Length refers to the diameter of the circular substrate.
  • the maximum side length of the substrate may be 16 mm or less (inclusive) or 9 mm or less (inclusive).
  • the oscillator has an oscillating circuit structure and an RF transistor, and the RF transistor is disposed on the oscillating circuit structure, and the oscillating circuit structure includes a first filter.
  • the microwave sensing antenna module further includes a current input terminal, a second filter, a power divider, a third filter, a transmitting antenna, a receiving antenna, and a fourth filter, wherein the current input end is formed on the first side And coupled to the oscillating circuit structure for inputting a driving current to drive the RF transistor;
  • the second filter is disposed on the first side and coupled to the oscillating circuit structure for the microwave Filtering;
  • the power splitter is disposed on the first side and coupled to the second filter, the power splitter has two output ports for distributing and outputting the microwave;
  • the transmitting antenna is disposed on the second side, and is formed on the first side by correspondingly a transmitting antenna end coupled to the third filter for transmitting the microwave;
  • the receiving antenna is disposed on the second side for receiving a reflection formed by the microwave being reflected by the object
  • the fourth filter is disposed on the first side
  • the low frequency signal is outputted by an intermediate frequency output terminal formed on the first side for signal amplification.
  • the first frequency is a microwave frequency between 23 GHz and 25 GHz.
  • the present invention also provides a microwave-sensing antenna module, comprising: a substrate, an oscillator, and a detection mixer, the substrate having a first side and a second side; wherein the maximum side length of the substrate does not exceed 24 mm (inclusive);
  • the oscillator is disposed on the first side for generating a microwave having a first frequency;
  • the detection mixer is configured On the first side, the reflected wave is mixed and detected with the microwave, and a corresponding low frequency signal is generated.
  • the detection mixer has at least one detection hybrid circuit structure, and the detection hybrid circuit structure
  • the first structural segment and the second structural segment have a first curved portion; the second structural segment has a second curved portion, and the two ends of the second structural segment are respectively connected to the first structural portion Both ends of the segment; wherein the bending directions of the first curved portion and the second curved portion correspond to each other.
  • the maximum side length of the substrate may be 16 mm or less (inclusive) or 9 mm or less (inclusive).
  • the detector mixer further has two detector elements, and the detector elements are disposed on the detector hybrid circuit structure.
  • the first curved portion and the second curved portion together form a closed micro-strip, and the first curved portion and the second curved portion are respectively curved portions having different curvatures.
  • the closed microstrip line encloses a planar geometric figure having a planar geometric center point, the planar geometric center point having at least two of a plurality of linear distances formed between the plurality of points of the closed microstrip line The above unequal linear distances.
  • the closed microstrip line encloses a planar geometric figure having a planar geometric center point, and at least one of the first curved portion and the second curved portion is curved toward the geometric center point of the plane.
  • the first curved portion and the second curved portion are both bent in the same direction, or are bent close to the same direction to be brought together or retracted.
  • the present invention also provides a microwave sensing antenna module, comprising: a substrate, an oscillator, and a detection mixer, the substrate having a first side and a second side; the oscillator being disposed on the first side for generating a microwave of a first frequency; the detection mixer is disposed on the first side for mixing and detecting a reflected wave and the microwave, and generating a corresponding low frequency signal; wherein the detection mixing
  • the device has at least one detector hybrid circuit structure, and the detector hybrid circuit structure forms a closed micro-strip and has at least two bends of different curvatures in the closed microstrip line.
  • the closed microstrip line encloses a planar geometric figure having a planar geometric center point, the planar geometric center point having at least two of a plurality of linear distances formed between the plurality of points of the closed microstrip line The above unequal linear distances.
  • the closed microstrip line encloses a planar geometric figure having a planar geometric center point, and at least one of the first curved portion and the second curved portion is curved toward the geometric center point of the plane.
  • the maximum side length of the substrate does not exceed 24 mm (inclusive).
  • the present invention also provides a microwave-sensing antenna module, comprising: a substrate, an oscillator, and a detection mixer, the substrate having a first side and a second side; wherein the maximum side length of the substrate does not exceed 24 mm (inclusive);
  • the An oscillator is disposed on the first side for generating a microwave having a first frequency;
  • the detection mixer is disposed on the first side for mixing and detecting a reflected wave with the microwave And generating a corresponding low frequency signal; wherein the detection mixer has at least one detection hybrid circuit structure and two detection components, the detection components are disposed on the detection hybrid circuit structure, and the detection hybrid circuit structure forms a closed
  • the micro-strip has at least two curved portions in the closed microstrip line, and the curved portions are bent in the same direction or in the same direction.
  • the maximum side length of the substrate may be 16 mm or less (inclusive) or 9 mm or less (inclusive).
  • the present invention also provides a microwave sensing antenna module, comprising: a substrate, an oscillator, and a detection mixer, the substrate having a first side and a second side; the oscillator being disposed on the first side for generating a microwave of a first frequency; the detection mixer is disposed on the first side for mixing and detecting a reflected wave with the microwave, and generating a corresponding low frequency signal; wherein the detection mixing
  • the device has at least one detection hybrid circuit structure, and the detection hybrid circuit structure forms a closed micro-strip line; wherein a planar geometric figure surrounded by the closed microstrip line has a planar geometric center point, and There are at least two unequal linear distances between the planar geometric center point and a plurality of linear distances formed between the plurality of points of the closed microstrip line.
  • the maximum side length of the substrate does not exceed 24 mm (inclusive), or the detection mixer further has two detecting elements disposed on the structure of the detecting hybrid circuit.
  • the present invention also provides a microwave sensing antenna module, comprising: a substrate, an oscillator, and a detection mixer, the substrate having a first side and a second side; the oscillator being disposed on the first side for generating a microwave of a first frequency; the detection mixer is disposed on the first side for mixing and detecting a reflected wave with the microwave, and generating a corresponding low frequency signal; wherein the detection mixing
  • the device has at least one detection hybrid circuit structure, and the detection hybrid circuit structure forms a closed micro-strip with at least two curved portions; wherein a planar geometric figure surrounded by the closed microstrip line has a A planar geometric center point, and at least one of the bends is curved toward the geometric center point of the plane.
  • the maximum side length of the substrate does not exceed 24 mm (inclusive), or the detection mixer further has two detecting elements disposed on the structure of the detecting hybrid circuit.
  • the microwave-sensing antenna module of the present invention can effectively utilize the space on the board by designing the specific shape of the related circuit, that is, reducing the area occupied by the circuit layout, thereby making the module simpler and easier to assemble.
  • LEDs light-emitting diodes
  • FIG. 1 is an exploded perspective view of a bulb 1 having a microwave sensing function.
  • FIG. 2 is a circuit diagram of the existing antenna module 154b of FIG. 1.
  • FIG. 3 is a functional block diagram of the existing antenna module 154b of FIG. 1.
  • FIG. 4 is a schematic circuit diagram of a microwave sensing antenna module 300 according to a first embodiment of the present invention.
  • FIG. 5 is a functional block diagram of a microwave sensing antenna module 300 according to a first embodiment of the present invention.
  • FIG. 6 is a schematic circuit diagram of a microwave sensing antenna module 400 according to a second embodiment of the present invention.
  • FIG. 7 is a schematic circuit diagram of a microwave sensing antenna module 500 according to a third embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of the microwave sensing antenna module 300 of the first embodiment
  • FIG. 5 is a functional block diagram of the microwave sensing antenna module 300
  • the microwave sensing antenna module 300 mainly includes a current input terminal 31, an oscillator 32, a power divider 34, a transmitting antenna 38, a receiving antenna 39, a detecting mixer 35, and an intermediate frequency (IF).
  • the figure also shows the coupling relationship between the components, and each component is disposed on a substrate 3 having a first side 3a and a second side (not shown), which is only illustrated in FIG.
  • the plane of the first side 3a is the back side of the first side 3a.
  • the microwave-sensing antenna module 300 is substantially similar to the existing antenna module 154b in FIGS. 2 and 3, regardless of the type of components provided or the coupling relationship between the components. There is no significant difference between them; of course, those skilled in the art can also make some modifications or replacement of components without affecting the improvement of the present invention against the background art.
  • FIG. 3 can be The columnar antenna in the existing antenna module 154b is modified and replaced with a planar printed antenna (not shown), and is not limited thereto.
  • the microwave sensing antenna module 300 of the present invention is also applied and assembled into a light bulb having an LED as a light emitting element, that is, the LED light emitting element shown in FIG. 1 as in the background art surrounds the microwave sensing.
  • the antenna module 300 can achieve better illumination effect; of course, the above bulb is not used in practical applications.
  • the microwave-sensing antenna module 300 can also be mounted to other interiors of the lighting device or the luminaire including the ceiling lamp, and will not be described herein.
  • the shape of the substrate 3 is designed to be circular, so that all necessary components for performing microwave induction can be integrated on the substrate 3 under the condition that the illumination effect can be achieved.
  • the substrate 3 can be designed in other shapes, such as a square or a rectangle, and the microwave induction design can also be achieved.
  • the main difference between the microwave sensing antenna module 300 of the present invention and the existing antenna module 154b of FIG. 2 and FIG. 3 is that at least one of the oscillator 32 and the detecting mixer 35 is provided by the present invention.
  • the circuit layout or its corresponding length is redesigned to allow the module to achieve overall size reduction and operation at the required frequency.
  • the oscillator 32 is a microwave source disposed on the first side 3a and includes at least an oscillating circuit structure 320 and a radio frequency transistor (FET or BJT) 321 .
  • the first side 3a has a first area A1.
  • the oscillating circuit structure 320 is a micro-strip directly printed on the strip-shaped metal wire and formed on the first side surface 3a.
  • the oscillating circuit structure 320 further includes a first filter F1, four contacts P1 to P4, and a plurality of structural segments forming a curved filter coupling structure.
  • the plurality of structural segments are four structural segments of the first to fourth structural segments S1 to S4.
  • Each of the structural segments has a curved portion, that is, first to fourth curved portions C1 to C4, and the RF transistor 321 is disposed on the four contacts P1 to P4 of the oscillating circuit structure 320 and located in the first region. A1.
  • the structural sections of the portion of the oscillating circuit structure 320 are connected to each other as shown.
  • the first end S2a of the second structural segment S2 is connected to the first end S1a of the first structural segment S1
  • the first end S3a of the third structural segment S3 is connected to the second structural segment S2.
  • the first end F1a of the first filter segment F1 is connected to the second end S1b of the first structure segment S1
  • the first end S4a of the fourth structure segment S4 is connected to a first one of the contacts.
  • the second end S3b of the third structural segment S3 is connected to a second contact P2 of the contacts toward the first region A1.
  • the first curved portion C1 and the second curved portion C2 are curved toward the first region A1, and the fourth curved portion C4 is connected to the second end F1b of the first filter F1.
  • the first curved portion C1 and the second curved portion C2 are c-shaped, and the third curved portion C3 is formed in an s-like shape, and the first filter F1 and the fourth curved portion C4 also exhibits a c-shape or an arc-like curvature; of course, the first curved portion C1, the second curved portion C2, the third curved portion C3, the fourth curved portion C4, and the first filter F1 And at least two or more different curved curves in the curved structure rate.
  • the whole of the oscillating circuit structure 320 is more toward the center of the structure than the pattern of FIG. 2 of the background art, that is, the position of the first area A1 is brought closer. Or shrinkage, which greatly reduces the area occupied by its circuit layout.
  • the two ends of the curved structure of the first structural segment S1 are disclosed in the embodiment (ie, the first end S1a and the second end S1b), and the two form a non-orthogonal form.
  • the second structural section S2 has two sides of the curved structure (ie, the first end S2a and the second end S2b) and the third structural section S3.
  • the ends (ie, the first end S3a and the second end S3b) and the fourth structural segment S4 are both ends of the curved structure (ie, the first end S4a and the second end S4b), the first filtering
  • the two ends of the arc-shaped filter coupling structure of the device F1 also each form a spatial angle relationship in a non-orthogonal form. In this way, different from the two ends of the curved structure of any one of the curved portions C01, C02 and the curved filter coupling structure F0 in FIG. 2, forming a spatial angular relationship with each other in a straight angle form; This approach can significantly reduce the area occupied by the circuit layout.
  • the second end S4b of the fourth structural segment S4 is in a straight line, and is designed as an inductance to perform impedance matching adjustment on the current flowing through the structural segment.
  • the oscillating circuit structure 320 of this shape will have a corresponding length such that the oscillator 32 will Generating a microwave having a first frequency; in this embodiment, the first frequency may be a microwave frequency between 23 GHz and 25 GHz, and preferably 24.15 GHz or 24GHz.
  • the current input terminal 31, the second filter 33, the power divider 34, the third filter 36, the fourth filter 37, the detection mixer 35, the intermediate frequency output terminal 30, etc. are Formed or disposed on the first side 3a, and the transmitting antenna 38 and the receiving antenna 39 are correspondingly disposed on the second side.
  • the current input terminal 31 is coupled to the first contact P1 and inputs a driving current to drive the RF transistor 321 .
  • the second filter 33 is coupled to the fourth bent portion C4.
  • the power splitter 34 having two output ports is coupled to the second filter 33, and the third filter 36 is coupled to one of the output ports of the power splitter 34.
  • the second filter 33 and the third filter 36 can filter the generated and transmitted microwaves; for example, high-pass or low-pass filtering to determine the required transmission frequency.
  • the transmitting antenna 38 disposed on the second side is coupled to the third filter 36 through a transmitting antenna end formed on the first side 3a, and the generated microwave can be emitted.
  • the receiving antenna 39 which is also disposed on the second side, has a spacing between the transmitting antenna 38 and the transmitting antenna 38, so that there is an isolation on the signal transmission to avoid the shape. Coupling interference.
  • the receiving antenna 39 receives a reflected wave formed by the reflected object of the microwave; and the fourth filtering coupled to the receiving antenna 39 by a receiving antenna end formed on the first side 3a.
  • the filter 37 filters the reflected wave and outputs it to the detection mixer 35 coupled to each other.
  • the power splitter 34 having two output ports can distribute the output of the microwave; that is, the other output port of the power splitter 34 is coupled to the detection mixer 35 in addition to the signal outputting the transmitting portion. Therefore, the detection mixer 35 can mix and detect the reflected wave with the microwave, and generate a corresponding low frequency signal. Finally, an output is made by an intermediate frequency output terminal 30 formed on the first side 3a to provide subsequent signal amplification and further sensing determination and related applications.
  • the detector mixer 35 includes a detector hybrid circuit structure 350 and at least one detector element; in this embodiment, two detector elements, such as detector elements 351, 352.
  • the detection hybrid circuit structure 350 is also a micro-strip directly printed on the strip-shaped metal wire and formed on the first side surface 3a.
  • the detection hybrid circuit structure 350 includes a plurality of structural segments; in this embodiment, two structural segments including the fifth and sixth structural segments S5, S6 are included.
  • Each of the structural segments has a curved portion, that is, fifth and sixth curved portions C5, C6, and the detecting elements 351, 352 are disposed on the detecting hybrid circuit structure 350.
  • the two ends of the sixth structural segment S6 are respectively connected to the two ends of the fifth structural segment S5, and wherein the bending directions of the fifth curved portion C5 and the sixth curved portion C6 correspond to each other, and a cashew is presented.
  • the shape is such that its notch faces the transmitting antenna 38.
  • the fifth curved portion C5 appears as a c-like shape
  • the sixth curved portion C6 appears as an s-shaped or c-like shape. Therefore, under the curved design of the relevant structural section, the whole of the detection hybrid circuit structure 350 is more inclined to a corner than the pattern of FIG. 2 of the background art, that is, the fifth and sixth curved portions C5 and C6 are Bending in the same direction (or nearly the same direction) to bring together or retract, greatly reducing the area occupied by its circuit layout.
  • the two curved portions can also be designed to be bent toward the other corner, and the same can be achieved for reducing the occupied area.
  • the fifth and sixth curved portions C5, C6 may also be curved toward the opposite but mutually adjacent directions (or directions that are close to each other but close to each other) to be brought together or retracted. It is also an equal change according to the invention.
  • the fifth and sixth structural segments S5, S6 of the detection hybrid circuit structure 350 a different arrangement manner, which is a plane geometric center point surrounded by the closed microstrip line composed of the fifth and sixth structural segments S5, S6, and formed between the plurality of points of the closed microstrip line a plurality of linear distances having at least two unequal linear distances therein; that is, the closed microstrip line composed of the fifth and sixth structural segments S5 and S6 does not constitute a perfect circle or Close to a closed circular geometry of a perfect circle and having at least one bend that is curved toward a point of the geometric center of the plane.
  • the positions of the second filter 33, the power distributor 34, the third filter 36, and the like located on the adjacent side are also disposed.
  • the pattern of Fig. 2 compared to the background art can also be more toward the center of the substrate 3. Therefore, in combination with the shape design of the oscillating circuit structure 320, all necessary components can be integrated and effectively utilized on the substrate 3, and the shape of the substrate 3 can be designed as a circle on the process. shape.
  • the shape of the detection hybrid circuit structure 350 will have a corresponding length depending on the size of the applied bulb or the number of light-emitting elements.
  • the detector elements 351, 352 can determine the frequency of the low frequency signal that they demodulate.
  • FIG. 6 is a circuit diagram of the microwave sensing antenna module 400 of the second embodiment. It should be noted that similar constituent elements are also illustrated by similar component numbers in comparison with FIG. 4 of the first embodiment; including current input terminal 41, oscillator 42, power divider 44, transmitting antenna 48, and receiving antenna 49.
  • the difference between the second embodiment and the first embodiment is only in the form of a circuit layout, especially the oscillator circuit structure 420 of the oscillator 42.
  • the oscillating circuit structure 420 has three structural segments S1'-S3', four contacts P1'-P4' and a first filter F1'; the first end of the second structural segment S2' S2a' is connected to the first end S1a' of the first structural segment S1', and the second end S2b' of the second structural segment S2' is connected to the second contact P2' toward the first region A1' (ie, toward the radio frequency transistor (FET or BJT) 421), and the first curved portion C1' and the second curved portion C2' of the three curved portions C1' to C3' are also curved toward the first region A1'.
  • FET or BJT radio frequency transistor
  • the shape and the connection relationship between the first filter F1', the third structure segment S3', and the first end S3a', the second end S3b', the third end portion S3b', and the like are all corresponding to the first embodiment.
  • the circuit layout on the location is the same. Further, in the curved structure of the first curved portion C1', the second curved portion C2', the third curved portion C3', the first filter F1', and the like, at least two or more different bending curvatures are provided.
  • the first curved portion C1' is c-like, but the degree of bending of the first curved portion C1' is smaller than that of Fig. 4 of the first embodiment.
  • the second curved portion C2' is presented as an ⁇ -like word
  • the oscillating circuit structure 420 has one structural section or curved portion missing, and the second end S2b' of the second structural segment S2' is directly connected to the second contact P2', so that the oscillation The overall length of the circuit structure 420 is relatively short, thereby further reducing the area occupied by the circuit layout.
  • the two ends of the curved structure of the first structural segment S1 ′ are disclosed in the embodiment.
  • Forming a spatial angular relationship in a non-orthogonal form similarly, the second structural segment S2' is a curved structure at both ends (ie, referring to the first end S2a' and the second end S2b'), the third The two ends of the curved structure of the structural segment S3' (ie, the first end S3a' and the second end S3b'), and the two ends of the arc filter coupling structure of the first filter F1' (ie, It is meant that the first end F1a' and the second end F1b') each also form a spatial angular relationship in a non-orthogonal form.
  • the detection mixer 45 of the second embodiment which includes a detector hybrid circuit structure 450 and detection elements 451, 452, since it is similar to the detector mixer of the first embodiment, it will not be described again.
  • FIG. 7 is a circuit diagram of the microwave sensing antenna module 500 of the third embodiment.
  • the possible variations of the oscillation circuit structure of the oscillator proposed in the first two embodiments are further described.
  • similar constituent elements are also illustrated by similar component numbers;
  • the oscillating circuit structure 520 has three structural segments S1"-S3", four contacts P1"-P4" and a first filter F1".
  • first structural segment S1" has a a curved portion C1" extending from the first end S1a" of the curved portion C1" and a second end S1b"
  • second structural segment S2 having a curved portion C2" extending from the first end S2a of the curved portion C2"
  • the third structural section S3" has a curved portion C3", a first end S3a” extending from the curved portion C3" and a second end S3b".
  • the first end S1a" of the first structural segment S1" is connected to the first end S2a" of the second structural segment S2", and the second end S2b" of the second structural segment S2" is connected to the second contact P2". Therefore, the structural segment S1" and the structural segment S2" together form a continuous and uninterrupted curved shape.
  • the first end F1a" of the first filter F1" is coupled to the second end S1b" of the first structure segment S1
  • the second end F1b" of the first filter F1" is coupled to the first end The second end S3b" of the third structural segment S3
  • the first end S3a" of the third structural segment S3" is connected to the first contact P1".
  • the curved structure of the first curved portion C1" and the second curved portion C2" has at least two different bending curvatures.
  • Another special feature of the third embodiment is that the first filter F1" is presented in a parallel strip shape.
  • the first curved portion C1" appears as a c-like shape, but the first curved portion C1 of the present invention is compared with the first curved portion C1 of FIG. 4 of the first embodiment.
  • the degree of bending is small, and the second end S1b" of the first structural segment S1" extending from the first curved portion C1" has a long straight shape, and the long straight strip is parallel to the first filtering The direction of the device F1" extends.
  • the intermediate portion of the second bent portion C2" protrudes toward the radio frequency transistor (FET or BJT) 521 (i.e., protrudes toward the first region A1) so that its shape assumes an m-like shape.
  • FET or BJT radio frequency transistor
  • the shape of the third curved portion C3 it is slightly curved, and due to its short length, it may be changed to be presented in the shape of a short line.
  • the two ends of the curved structure of the first structural segment S1" (ie, referring to the first end S1a" and the second end S1b"), Forming a spatial angle relationship in a non-orthogonal form; for the same reason, the two ends of the curved structure of the second structural segment S2" (ie, referring to the first end S2a" and the second end S2b") also form a non- The angular relationship of the space in the form of a right angle.
  • the two sides of the curved structure different from any one of the curved portions C01 and C02 and the curved filter coupling structure F0 in FIG. 2 are spatially formed at right angles to each other;
  • the practice of the third embodiment can also greatly reduce the area occupied by the circuit layout.
  • the detection mixer 55 of the third embodiment which includes a detector hybrid circuit structure 550 and detection elements 551, 552, since the detection mixers are similar to those of the first two embodiments, they will not be described again.
  • the first to third embodiments have a shape change or a different style of bending design for the oscillation circuit structure and the detection hybrid circuit structure with respect to FIG. 2 of the background art.
  • the present invention can also carry out related changes and implementations according to the concepts disclosed in the above first to third embodiments, and can achieve similar functions and implementation purposes under similar structural design.
  • the oscillation circuit structure may be designed only by the patterns of the first to third embodiments, and the detection hybrid circuit structure may adopt the ring pattern of the background art; or, the detection hybrid circuit structure may be adopted only.
  • the patterns of the first to third embodiments are designed, and the oscillation circuit structure thereof can adopt a partial rectangular pattern of the background art. In this way, although the effect of reducing the area occupied by the circuit will be different, it also allows all necessary components to be integrated and effectively utilized on the substrate.
  • the shape of the substrate used in the microwave sensing antenna module disclosed in the present invention may be at least one of a circle, a square, and a rectangle.
  • the maximum side lengths L, L′, L′′ of the substrates 3 , 4 , and 5 used by the overall microwave sensing antenna modules 300 and 400 may not exceed 24 mm (inclusive).
  • a preferred practice of the maximum side lengths L, L', L" may each be 16mm or less or 9mm or less; wherein, when the substrate to be used is square or rectangular, the maximum side lengths L, L', and L" refer to four sides of any square or rectangle.
  • the longest is the longest one; if the substrate used is circular (for example, those shown in Figures 4, 6, and 7 are labeled 3, 4, and 5), the maximum side lengths L, L', and L" refer to The smallest square or rectangular geometry G, G', G" that can be used to completely cover the area of the circular substrate 3, 4, 5 has the longest length among the four side lengths (i.e., the aforementioned maximum side length) L, L', L" refer to the diameter of the circular substrate 3, 4, 5).
  • the size reduction of the microwave sensing antenna modules provided in various lighting devices or lamps is a non-negligible focus.
  • the frequency of generating microwaves is also related to the design of the shape and length of the circuit structure, and this can be analyzed and verified experimentally to know whether the designed circuit structure can obtain the desired frequency. Therefore, when the microwave-sensing antenna module proposed by the present invention can maintain the prior art and effectively operate on microwave induction while reducing the overall size, the industrial target has been successfully achieved.
  • the size of the substrate or circuit board can be further reduced, in addition to significantly reducing consumables, the number of LED lighting elements in various types of lighting devices or lamps can be increased, thereby further improving lighting. effect.
  • the present invention can effectively solve the related problems raised in the background art and can successfully achieve the main object of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种微波感应天线模块,包括基板(3)、振荡器(32)以及检波混合器(35)。该基板(3)具有一第一侧面(3a);该振荡器(3a)设置在该第一侧面(3a)上;该检波混合器(35)设置在第一侧面(3a)上,具有一检波混合电路结构(350)和设置在检波混合电路结构(350)上的至少一检波元件。其中,检波混合电路结构(350)包括多个结构段(S5、S6),每一结构段(S5、S6)各具有一弯曲部(C5、C6);检波混合电路结构(350)的该些结构段(S5、S6)相互连接,且其弯曲部(C5、C6)的弯曲方向相互对应,以呈现靠拢或内缩,从而大幅度地减少其电路布局所会占据的面积。该微波感应天线模块在确保进行有效微波感应的同时能减少整体尺寸

Description

微波感应天线模块 技术领域
本发明涉及一种微波感应天线模块,尤其是涉及一种应用在照明装置上的微波感应天线模块。
背景技术
一般的照明装置或灯具是采用传统白炽灯泡、灯管或省电灯泡等作为发光元件而能提供照明,且习用的控制手段多半是以人为方式控制这些发光元件的闪灭。随着技术的进步,以发光二极管(LED)作为发光元件的设计也越来越广泛,并带来更高的照明效果。此外,目前利用动作感应技术来控制发光元件的闪灭所设计而成的照明装置或灯具更能有效地达到节省能源的目的。
所谓的动作感应技术是在照明装置或灯具中设置一感应器,该感应器可感应物体的动作变化或环境光的强度变化,因而能进一步根据感应范围内相关的变化情形来对发光元件作闪灭的控制。习用可进行动作感应的感应器可采用被动式人体红外线(PIR)或微波(Microwave)等感应技术作设计。相关技术可参考中国专利号200520000991.X、200810097926.1所示。
以其中的微波感应技术来说,此技术是利用多普勒原理将微波的电磁波进行发射与接收的频率的比较。由于当感应器之前有物体产生动作变化时,接收前后的频率会有对应变化,从而能有效地判断出物体的移动情形。一般来说,此类微波感应器除了能以分离方式和包括灯泡或灯管在内的各式照明装置或灯具作组装搭配设置外,如果直接将其结合至各式照明装置或灯具的内部,显然将能提供更方便的应用性。也就是说,此种具有微波感应功能的各式照明装置或灯具,更能让使用者无需大幅改变既有照明装置或灯具的室内或电源安排设计,而可直接安装在其灯座上。
请参阅图1,为具有微波感应功能的一灯泡1的分解示意图。如图所示,该灯泡1主要包含有一灯体11、一发光模块13、一感应及驱动模块15以及一透明灯罩18。其中该发光模块13包括一电路板和设置于其上的多个为LED的发光元件。感应及驱动模块15是一微波感应模块,包括一电路板155以及由一上盖壳154a、一天线模块154b、一放大电路板154c和一下盖壳154d所组成的一感应装置154。天线模块154b与放大电路板154c夹设于上盖壳154a与下盖壳154d之间,而放大电路板154c并与天线模 块154b相互耦接且再耦接于电路板155。
感应及驱动模块15即是因天线模块154b而能以微波方式进行感应。请同时参阅图2和图3,其中图2为天线模块154b的电路示意图,而图3则为天线模块154b的功能方块示意图。如图所示,天线模块154b主要包含有一电流输入端21、一振荡器22、一功率分配器24、一发射天线28、一接收天线29、一检波混合器25、一中频(IF)输出端20和多个滤波器23、26、27。图中并示意出各元件之间的耦接关系,且各元件设置在同一板材(基板)上。
承上所述,该振荡器22为一微波源,包括一振荡电路结构220、一射频晶体管(FET或BJT)221和一弧形的滤波耦合结构F0,该射频晶体管221设置在振荡电路结构220上。振荡器22所产生的微波的频率可由对振荡电路结构220的形状、长度的设计决定,并从发射天线28向外定向地发射微波。图2中的该振荡电路结构220部分呈现为矩形,而另一端则为一滤波器。其中,振荡电路结构220的弯曲部C01、C02,是以朝向射频晶体管(FET或BJT)221所在位置的相反或远离的方向弯曲设置,且弯曲部C01、C02与弧形滤波耦合结构F0中任一者的弯曲结构两侧端,彼此形成一直角形式的空间夹角关系。
另外,当微波遇到物体而被反射时便可由该接收天线29接收其反射波,并由该检波混合器25将反射波与来自该振荡器22的微波进行混合与检波;之后所产生的低频信号即能反应出物体的移动情形,并由中频输出端20作输出以进行信号放大。该检波混合器25包括两检波元件251、252和一检波混合电路结构250,且两检波元件251、252设置在检波混合电路结构250上。类似地,检波混合电路结构250的形状、长度的设计可决定其所解调出的低频信号的频率;而图2中的该检波混合电路结构250呈现环形。
以微波方式进行感应的天线模块154b,原则上并不容易受到周围发光元件所产生的光线或热能的影响,因此其可不需设置遮光罩,但,其设置位置还是需要能和发光模块13进行整体的搭配组装,以使上述微波感应模块15不但要能被安装并结合至各式照明装置或灯具的内部(例如,灯泡、灯管或吸顶灯中),且要能满足诸如不能够阻挡到发光模块13的发光路径等等各式照明特性或其它微波感应特性的一些组装上的要求;基于此,要将上述微波感应模块15结合至各式照明装置或灯具(例如,灯泡、灯管或吸顶灯)的内部中,其天线模块或电路板的尺寸设计便需着重考虑。
一般而言,以带状的金属导线直接印制并形成于天线模块154b中所使用的基板的一侧面上的若干微带线(Micro-strip),且此些微带线中包括有如图2所示的上述振荡 电路结构220或上述检波混合电路结构250的导线布局(layout)方式时,上述基板的最大边长L0,往往会至少落在25mm至36mm之间,甚至若设计不良,此尺寸还会再更加地长;其中,针对所使用的前述基板为方形或矩形时,所谓最大边长L0指任一方形或矩形所具有的四个边长中属于长度最长者;若,使用的前述基板为圆形时,所谓最大边长L0是指上述圆形基板的直径。基于此,如何能进一步缩小所使用基板的面积(或体积),以便更方便地让使用者能将天线模块154b安装与应用于各式不同尺寸的照明装置或灯具内部,特别是应用于小尺寸的LED灯泡、LED灯管或小型LED吸顶灯等等照明领域,即成为一重要的技术课题。
此外,振荡电路结构或检波混合电路结构的形状、长度的设计亦会对相关的频率造成影响,因此,于进行上述面积(或体积)的缩减时,也是必须要兼顾好此些设计要点。有鉴于此,提供一感应照明装置使其中的天线模块能更有效运作并能兼顾照明效果与感应效能,便为业界中的重要研发议题。
发明内容
针对现有技术存在的不足,本发明的目的在于,提供一种微波感应天线模块,藉由对相关的电路进行特定形状的设计而能有效利用板材上的空间,也就是缩减其电路布局所会占据的面积,从而能将其模块以更简单与更易组装的方式组装与应用在使用发光二极管(LED)作为发光元件的各式照明装置或灯具上,并能兼顾照明效果与感应效能。
为实现上述目的,本发明提供一种微波感应天线模块,其包括基板、振荡器以及检波混合器,该基板具有一第一侧面和一第二侧面;该振荡器设置在该第一侧面上,用以产生具有一第一频率的一微波;该检波混合器设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号,该检波混合器具有一检波混合电路结构和两个检波元件,该些检波元件设置在该检波混合电路结构上,该检波混合电路结构包括第一结构段以及第二结构段,该第一结构段具有一第一弯曲部;该第二结构段具有一第二弯曲部,该第二结构段的两端分别连接于该第一结构段的两端;其中,该第一弯曲部和该第二弯曲部的弯曲方向相互对应。
较佳地,该第一弯曲部呈类c字形,该第二弯曲部呈类s字形或类c字形。
较佳地,该第一弯曲部和该第二弯曲部共同组成一封闭式微带线(Micro-strip),且该第一弯曲部和该第二弯曲部分别为具有不同曲率的弯曲部。
较佳地,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,该平面 几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
较佳地,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,且该第一弯曲部和该第二弯曲部中的至少一者,朝向该平面几何中心点弯曲。
较佳地,该第一弯曲部和该第二弯曲部皆朝同一方向,抑或接近同一方向进行弯曲而呈现靠拢或内缩。
较佳地,该基板至少为圆形、方形和矩形中的任一者。
较佳地,该基板的最大边长不超过24mm(含),且该最大边长是指该方形基板或该矩形基板所具有的四个边长中长度最长的边长,抑或该最大边长是指该圆形基板的直径。
较佳地,该基板的最大边长可为16mm以下(含)或是9mm以下(含)。
较佳地,该振荡器具有一振荡电路结构和一射频晶体管,该射频晶体管设置在该振荡电路结构上,该振荡电路结构包括一第一滤波器。
较佳地,该微波感应天线模块还包括电流输入端、第二滤波器、功率分配器、第三滤波器、发射天线、接收天线以及第四滤波器,该电流输入端形成于该第一侧面上,并耦接至该振荡电路结构,用以输入一驱动电流以驱动该射频晶体管;该第二滤波器设置在该第一侧面上,并耦接至该振荡电路结构,用以对该微波进行滤波;该功率分配器设置在该第一侧面上,并耦接至该第二滤波器,该功率分配器具有两个输出端口,用以对该微波进行分配输出;该第三滤波器设置在该第一侧面上,并耦接至该功率分配器的其一输出端口,用以对该微波进行滤波;该发射天线设置在该第二侧面上,并通过对应形成于该第一侧面上的一发射天线端而耦接至该第三滤波器,用以发射该微波;该接收天线设置在该第二侧面上,用以接收该微波遇到物体所反射形成的一反射波;该第四滤波器设置在该第一侧面上,并通过对应形成于该第一侧面上的一接收天线端而耦接至该接收天线,用以对该反射波进行滤波;其中,该检波混合器耦接至该功率分配器的另一输出端口,而该第四滤波器亦耦接至该检波混合器。
较佳地,该低频信号通过对应形成于该第一侧面上的一中频输出端作输出以进行信号放大。
较佳地,该第一频率为23GHz至25GHz之间的微波频率。
本发明还提供一种微波感应天线模块,其包括基板、振荡器以及检波混合器,该基板具有一第一侧面和一第二侧面;其中,该基板的最大边长不超过24mm(含);该振荡器设置在该第一侧面上,用以产生具有一第一频率的一微波;该检波混合器设置 在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构包括第一结构段以及第二结构段,该第一结构段具有一第一弯曲部;该第二结构段具有一第二弯曲部,该第二结构段的两端分别连接于该第一结构段的两端;其中,该第一弯曲部和该第二弯曲部的弯曲方向相互对应。
较佳地,该基板的最大边长可为16mm以下(含)或是9mm以下(含)。
较佳地,该检波混合器还具有两个检波元件,该些检波元件设置在该检波混合电路结构上。
较佳地,该第一弯曲部和该第二弯曲部共同组成一封闭式微带线(Micro-strip),且该第一弯曲部和该第二弯曲部分别为具有不同曲率的弯曲部。
较佳地,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,该平面几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
较佳地,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,且该第一弯曲部和该第二弯曲部中的至少一者,朝向该平面几何中心点弯曲。
较佳地,该第一弯曲部和该第二弯曲部皆朝同一方向,抑或接近同一方向进行弯曲而呈现靠拢或内缩。
本发明还提供一种微波感应天线模块,其包括基板、振荡器以及检波混合器,该基板具有一第一侧面和一第二侧面;该振荡器设置在该第一侧面上,用以产生具有一第一频率的一微波;该检波混合器设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号;其中,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构形成一封闭式微带线(Micro-strip),且于该封闭式微带线中具有至少两个不同曲率的弯曲部。
较佳地,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,该平面几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
较佳地,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,且该第一弯曲部和该第二弯曲部中的至少一者,朝向该平面几何中心点弯曲。
较佳地,该基板的最大边长不超过24mm(含)。
本发明还提供一种微波感应天线模块,其包括基板、振荡器以及检波混合器,该基板具有一第一侧面和一第二侧面;其中,该基板的最大边长不超过24mm(含);该 振荡器设置在该第一侧面上,用以产生具有一第一频率的一微波;该检波混合器设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号;其中,该检波混合器至少具有一检波混合电路结构和两个检波元件,该些检波元件设置在该检波混合电路结构上,且该检波混合电路结构形成一封闭式微带线(Micro-strip),且于该封闭式微带线中具有至少两个弯曲部,该些弯曲部皆朝同一方向,抑或接近同一方向进行弯曲。
较佳地,该基板的最大边长可为16mm以下(含)或是9mm以下(含)。
本发明还提供一种微波感应天线模块,其包括基板、振荡器以及检波混合器,该基板具有一第一侧面和一第二侧面;该振荡器设置在该第一侧面上,用以产生具有一第一频率的一微波;该检波混合器设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号;其中,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构形成一封闭式微带线(Micro-strip);其中,由该封闭式微带线所围的一平面几何图形具有一平面几何中心点,且该平面几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
较佳地,该基板的最大边长不超过24mm(含),抑或该检波混合器还具有两个检波元件,该些检波元件设置在该检波混合电路结构上。
本发明还提供一种微波感应天线模块,其包括基板、振荡器以及检波混合器,该基板具有一第一侧面和一第二侧面;该振荡器设置在该第一侧面上,用以产生具有一第一频率的一微波;该检波混合器设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号;其中,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构以至少两个弯曲部形成一封闭式微带线(Micro-strip);其中,由该封闭式微带线所围的一平面几何图形具有一平面几何中心点,且该些弯曲部中的至少一者,朝向该平面几何中心点弯曲。
较佳地,该基板的最大边长不超过24mm(含),抑或该检波混合器还具有两个检波元件,该些检波元件设置在该检波混合电路结构上。
本发明的微波感应天线模块藉由对相关的电路进行特定形状的设计而能有效利用板材上的空间,也就是缩减其电路布局所会占据的面积,从而能将其模块以更简单与更易组装的方式组装与应用在使用发光二极管(LED)作为发光元件的各式照明装置或灯具上;且当其基板或电路板的尺寸更为缩小时,除了能明显地减少耗材外,还能增加各式照明装置或灯具中的LED发光元件的数量,进而可更进一步提升照明效果, 从而能兼顾照明效果与感应效能。
为了对本发明的上述及其它方面有更佳的了解,下文特举较佳实施例,并配合所附图式,作详细说明。
附图说明
图1为具有微波感应功能的一灯泡1的分解示意图。
图2为图1中现有天线模块154b的电路示意图。
图3为图1中现有天线模块154b的功能方块示意图。
图4为本发明第一实施例的微波感应天线模块300的电路示意图。
图5为本发明第一实施例的微波感应天线模块300的功能方块示意图。
图6为本发明第二实施例的微波感应天线模块400的电路示意图。
图7为本发明第三实施例的微波感应天线模块500的电路示意图。
具体实施方式
现以一第一实施例进行本发明所提出的微波感应天线模块300的实施说明。请同时参阅图4和图5,其中图4为第一实施例的微波感应天线模块300的电路示意图,而图5则为该微波感应天线模块300的功能方块示意图。如图所示,该微波感应天线模块300主要包含有一电流输入端31、一振荡器32、一功率分配器34、一发射天线38、一接收天线39、一检波混合器35、一中频(IF)输出端30和多个滤波器33、36、37。图中并示意出各元件之间的耦接关系,且各元件设置在具有一第一侧面3a和一第二侧面(未显示于图式)的一基板3上,在图4中仅示意出该第一侧面3a所在的平面,而该第二侧面则为该第一侧面3a的背面。
和背景技术的图2和图3相比可知,无论是所设置的元件种类或这些元件之间的耦接关系,该微波感应天线模块300大致与图2和图3中的现有天线模块154b间无太大的差异;当然,本技术领域普通技术人员亦可在不影响本发明针对背景技术的缺失所要提出的改善做法的前提下,进行若干修改或元件的替换,例如,可将图3现有天线模块154b中的柱状式天线,予以修改并替换为平面式印刷天线(图未示出),且不以此为限。
同样的,本发明的该微波感应天线模块300亦将应用与组装至以LED作为发光元件的一灯泡中,也就是亦如背景技术的图1所示的其LED发光元件是环绕着该微波感应天线模块300,从而能达到较佳的照明效果;当然,于实际应用时并不以上述灯泡 为限,亦可将该微波感应天线模块300安装至其它包括吸顶灯在内的各式照明装置或灯具的内部,在此即不再赘述。
再则,由背景技术所述可知,现有天线模块的尺寸愈大时,必会对LED发光元件的设置也造成限制。因此,于本发明第一实施例中将该基板3的形状设计为圆形,使得在能兼顾照明效果的条件下,进行微波感应的所有必要元件亦能整合于该基板3上。
当然,于其它的实施方式中亦可将该基板3作其它形状的设计,例如方形或矩形,则同样能达到微波感应的设计目的。
惟,本发明所提出的微波感应天线模块300,其与图2和图3中现有天线模块154b间的主要特征差异是在于:本发明对该振荡器32与该检波混合器35中至少一者的电路布局形式或其对应的长度重新设计,从而使其模块能达到减少整体尺寸以及能于所需的频率上进行运作的目的。
申言之,该振荡器32为一微波源,设置在该第一侧面3a上,并至少包括一振荡电路结构320和一射频晶体管(FET或BJT)321。该第一侧面3a并具有一第一区域A1。于此实施例中,该振荡电路结构320为以带状的金属导线直接印制并形成于该第一侧面3a上的微带线(Micro-strip)。
进一步来说,如图所示,该振荡电路结构320并包含有形成一弧形滤波耦合结构的一第一滤波器F1、四个接点P1~P4和多个结构段所共同组成的微带线,于此实施例中该多个结构段为第一至第四结构段S1~S4等四个结构段。其中每一结构段各具有一弯曲部,即第一至第四弯曲部C1~C4,而该射频晶体管321则设置在该振荡电路结构320的四个接点P1~P4上并位于该第一区域A1。
承上所述,如图所示,该振荡电路结构320的部分的结构段相互连接。详细来说,该第二结构段S2的第一端S2a连接于该第一结构段S1的第一端S1a,该第三结构段S3的第一端S3a连接于该第二结构段S2的第二端S2b,该第一滤波器F1的第一端F1a连接于该第一结构段S1的第二端S1b,该第四结构段S4的第一端S4a连接于该些接点中的一第一接点P1,该第三结构段S3的第二端S3b连接于该些接点中的一第二接点P2而朝向该第一区域A1。其中,该第一弯曲部C1和该第二弯曲部C2朝向该第一区域A1的方向弯曲,而该第四弯曲部C4连接于该第一滤波器F1的第二端F1b。
于此实施例中,该第一弯曲部C1和该第二弯曲部C2呈现为类c字形,该第三弯曲部C3呈现为类s字形,而该第一滤波器F1和该第四弯曲部C4亦呈现为类c字形或弧形的弯曲;当然,于该第一弯曲部C1、该第二弯曲部C2、该第三弯曲部C3、该第四弯曲部C4、该第一滤波器F1等等弯曲结构中,至少具有两种以上不同的弯曲曲 率。
是以,在相关结构段的弯曲设计下,该振荡电路结构320的整体相较于背景技术的图2的样式而更为趋向本身结构的中心,也就是向该第一区域A1的位置呈现靠拢或是内缩,从而大幅度地减少其电路布局所会占据的面积。
从另一角度而言,本实施例中所揭露该第一结构段S1这一弯曲结构两侧端(即,是指第一端S1a与第二端S1b),此两者形成一非直角形式的空间夹角关系;同理,该第二结构段S2这一弯曲结构两侧端(即,是指第一端S2a与第二端S2b)、该第三结构段S3这一弯曲结构两侧端(即,是指第一端S3a与第二端S3b)、该第四结构段S4这一弯曲结构两侧端(即,是指第一端S4a与第二端S4b)、该第一滤波器F1这一弧形滤波耦合结构两侧端(即,是指第一端F1a与第二端F1b),也皆各自形成一非直角形式的空间夹角关系。如此一来,即有别于图2中弯曲部C01、C02与弧形滤波耦合结构F0中任一者的弯曲结构两侧端,彼此形成一直角形式的空间夹角关系;是以,本发明的做法确实可以大幅度地减少电路布局所会占据的面积。
另外,该第四结构段S4的第二端S4b呈直线,且其设计是作为一电感而能对结构段上所流经的电流进行阻抗匹配调整。同样的,在对该振荡电路结构320的形状的设计下,根据所应用的灯泡的规格或发光元件的数量,此种形状的振荡电路结构320将具有相对应的长度,使得该振荡器32将产生具有一第一频率的一微波;于此实施例中,该第一频率在透过实验的方式进行分析验证下可为23GHz至25GHz之间的微波频率,较佳地,可为24.15GHz或24GHz。
而其它元件的设置与运作大致和背景技术相同。详细来说,该电流输入端31、该第二滤波器33、该功率分配器34、该第三滤波器36、该第四滤波器37、该检波混合器35、该中频输出端30等是形成或设置于该第一侧面3a上,而该发射天线38和该接收天线39则对应地设置在该第二侧面上。该电流输入端31耦接至该第一接点P1,并输入一驱动电流以驱动该射频晶体管321。该第二滤波器33耦接至第四弯曲部C4。具有两输出端口的该功率分配器34耦接至该第二滤波器33,而该第三滤波器36耦接至该功率分配器34的其一输出端口。
承上所述,所述的第二滤波器33与第三滤波器36能对所产生并传输通过的微波进行滤波;例如进行高通或低通的滤波,以决定出所需的发射频率。其次,设置在该第二侧面上的该发射天线38通过对应形成于该第一侧面3a上的一发射天线端而耦接至该第三滤波器36,能将所得的该微波发射而出。而同样设置在该第二侧面上的该接收天线39与该发射天线38之间将有一间距,使得于信号传输上有一隔离度以避免形 成耦合干扰。
接着,由该接收天线39接收该微波遇到物体所反射形成的一反射波;而通过对应形成于该第一侧面3a上的一接收天线端而耦接至该接收天线39的该第四滤波器37将对该反射波进行滤波,并再输出至相互耦接的该检波混合器35。
其中具有两输出端口的该功率分配器34能对该微波进行分配输出;也就是除了会输出发射部分的信号以外,该功率分配器34的另一输出端口则和该检波混合器35相耦接,从而该检波混合器35能将该反射波与该微波进行混合与检波,并产生对应的一低频信号。最后,通过对应形成于该第一侧面3a上的一中频输出端30作输出,以提供后续进行信号放大与进一步的感应判断和相关应用。
另一方面,该检波混合器35包括一检波混合电路结构350和至少一检波元件;于此实施例中为检波元件351、352等两个检波元件。同样的,该检波混合电路结构350亦为以带状的金属导线直接印制并形成于该第一侧面3a上的微带线(Micro-strip)。进一步来说,如图所示,该检波混合电路结构350并包含有多个结构段;于此实施例中为包括第五和第六结构段S5、S6等两个结构段。其中每一结构段各具有一弯曲部,即第五和第六弯曲部C5、C6,而该些检波元件351、352则设置在该检波混合电路结构350上。当然,于该第五弯曲部C5与该第六弯曲部C6等等弯曲结构中,至少具有两种以上不同的弯曲曲率。
承上所述,如图所示,该检波混合电路结构350的所有的结构段相互连接。详细来说,该第六结构段S6的两端分别连接于该第五结构段S5的两端,且其中该第五弯曲部C5和该第六弯曲部C6的弯曲方向相互对应,呈现一腰果外形,且其凹口朝向发射天线38。
于此实施例中,该第五弯曲部C5呈现为类c字形,而该第六弯曲部C6呈现为类s字形或类c字形。是以,在相关结构段的弯曲设计下,该检波混合电路结构350的整体相较于背景技术的图2的样式而更为趋向一角落,也就是第五和第六弯曲部C5、C6皆朝同一方向(或接近同一方向)进行弯曲而呈现靠拢或是内缩,从而大幅度地减少其电路布局所会占据的面积。当然,于其它的实施方式中亦可将此两弯曲部设计成朝另一角落进行弯曲,则同样也能达到缩减所占面积的目的。
另一种做法(图未示出),第五和第六弯曲部C5、C6也可皆朝向相反但相互接近的方向(或接近相反但相互接近的方向)进行弯曲而呈现靠拢或是内缩,也是属于依据本发明而为的一种均等变化。
申言之,基于前述关于该检波混合电路结构350中第五和第六结构段S5、S6的 各种不同设置方式,其即是由第五和第六结构段S5、S6共同组成的封闭式微带线所围成的平面几何中心点,与前述封闭式微带线多个点之间所形成的多个直线距离,于其中至少具有两种以上不相等的直线距离;也就是说,前述由第五和第六结构段S5、S6共同组成的封闭式微带线,并未构成一正圆形或接近正圆形的封闭式平面几何图形,且具有朝向前述平面几何中心点弯曲的至少一弯曲部。
另外,也因为图4中对第五和第六弯曲部C5、C6的弯曲设计,位于邻侧的该第二滤波器33、该功率分配器34、该第三滤波器36等元件的设置位置,相较于背景技术的图2的样式也能更为趋向该基板3的中心。是以,在搭配对该振荡电路结构320的形状设计下,能让所有必要元件于该基板3上作整合与有效利用可布局的空间,也使得该基板3的形状于制程上得以设计为圆形。
同样的,在对该检波混合电路结构350的形状的设计下,根据所应用的灯泡的规格或发光元件的数量,此种形状的检波混合电路结构350亦将具有相对应的长度,使得该些检波元件351、352可决定其所解调出的该低频信号的频率。
现以一第二实施例进行本发明所提出的微波感应天线模块400的实施说明。请参阅图6,为第二实施例的微波感应天线模块400的电路示意图。需注意的是和第一实施例的图4相比,类似的构成单元亦以相近的元件编号作示意;包括电流输入端41、振荡器42、功率分配器44、发射天线48、接收天线49、检波混合器45、中频输出端40和滤波器43、46、47,以及具有第一侧面4a和第二侧面的基板4等。
如图所示,可知此第二实施例和第一实施例的差异亦仅在于电路布局的形式而已,尤其是该振荡器42的振荡电路结构420。于此实施例中,该振荡电路结构420具有三个结构段S1’~S3’、四个接点P1’~P4’和一第一滤波器F1’;该第二结构段S2’的第一端S2a’连接于该第一结构段S1’的第一端S1a’,该第二结构段S2’的第二端S2b’连接于第二接点P2’而朝向第一区域A1’(即朝向射频晶体管(FET或BJT)421),且三个弯曲部C1’~C3’中的该第一弯曲部C1’和该第二弯曲部C2’亦朝向该第一区域A1’的方向弯曲。
而第一滤波器F1’、第三结构段S3’及其第一端S3a’、第二端S3b’与第三弯曲部C3’等的形状与连接关系,则皆和第一实施例的对应位置上的电路布局相同。且,于该第一弯曲部C1’、该第二弯曲部C2’、该第三弯曲部C3’、该第一滤波器F1’等等弯曲结构中,至少具有两种以上不同的弯曲曲率。
再则,于此实施例中,该第一弯曲部C1’呈现为类c字形,但和第一实施例的图4相比,该第一弯曲部C1’的弯曲程度较小。另外,该第二弯曲部C2’则呈现为类ω字 形,且相比之下,该振荡电路结构420少了一个结构段或弯曲部,并由该第二结构段S2’的第二端S2b’直接连接于该第二接点P2’,使得该振荡电路结构420的整体长度相对较短,因而又更减少了电路布局所会占据的面积。
相同地,从另一角度而言,本实施例中所揭露该第一结构段S1’这一弯曲结构两侧端(即,是指第一端S1a’与第二端S1b’),此两者形成一非直角形式的空间夹角关系;同理,该第二结构段S2’这一弯曲结构两侧端(即,是指第一端S2a’与第二端S2b’)、该第三结构段S3’这一弯曲结构两侧端(即,是指第一端S3a’与第二端S3b’)、该第一滤波器F1’这一弧形滤波耦合结构两侧端(即,是指第一端F1a’与第二端F1b’),也皆各自形成一非直角形式的空间夹角关系。如此一来,即有别于图2中弯曲部C01、C02与弧形滤波耦合结构F0中任一者的弯曲结构两侧端,彼此形成一直角形式的空间夹角关系;是以,本发明的做法确实可以大幅度地减少电路布局所会占据的面积。
至于第二实施例的检波混合器45包括一检波混合电路结构450以及检波元件451、452,则因其设置相似于第一实施例的检波混合器,故于此即不再赘述。
现以一第三实施例进行本发明所提出的微波感应天线模块500的实施说明。请参阅图7,为第三实施例的微波感应天线模块500的电路示意图。于第三实施例中特别针对前两实施例中所提的振荡器的振荡电路结构的可能变化形态,进一步提出加以说明,同样地,类似的构成单元亦以相近的元件编号作示意;包括电流输入端51、振荡器52、发射天线58、接收天线59、检波混合器55、中频输出端50以及具有第一侧面5a和第二侧面的基板5等。
于此实施例中,该振荡电路结构520具有三个结构段S1”~S3”、四个接点P1”~P4”和一第一滤波器F1”。其中,该第一结构段S1”具有一弯曲部C1”、延伸自弯曲部C1”的第一端S1a”以及第二端S1b”;该第二结构段S2”具有一弯曲部C2”、延伸自弯曲部C2”的第一端S2a”以及第二端S2b”;该第三结构段S3”具有一弯曲部C3”、延伸自弯曲部C3”的第一端S3a”以及第二端S3b”。
接着介绍结构段S1”~S3”之间的连接关系。
该第一结构段S1”的第一端S1a”连接于该第二结构段S2”的第一端S2a”,该第二结构段S2”的第二端S2b”连接于第二接点P2”,故结构段S1”与结构段S2”共同组成一连续而不间断的曲线形状。
至于该第一滤波器F1”的第一端F1a”耦接于该第一结构段S1”的第二端S1b”,该第一滤波器F1”的第二端F1b”则是耦接于该第三结构段S3”的第二端S3b”,而该第三结构段S3”的第一端S3a”则连接于第一接点P1”。
如图7所示,该第一弯曲部C1”以及该第二弯曲部C2”的弯曲结构中,至少具有两种以上不同的弯曲曲率。且第三实施例另一特别之处在于,该第一滤波器F1”以平行长条形状呈现。
进一步而言,于第三实施例中,该第一弯曲部C1”呈现为类c字形,但和第一实施例的图4的第一弯曲部C1相比,本发明该第一弯曲部C1”的弯曲程度较小,并且,自该第一弯曲部C1”延伸的第一结构段S1”的第二端S1b”外形呈长直条形,该长直条形以平行于该第一滤波器F1”的方向延伸。另一方面,该第二弯曲部C2”的中间部分朝向射频晶体管(FET或BJT)521凸出(即朝向第一区域A1”凸出),使其形状呈现类m字形。至于该第三弯曲部C3”的形状属微幅弯曲,且因其长度较短的关系,亦可能改变将其以短线条的形状呈现。
相同地,从另一角度而言,本实施例中所揭露该第一结构段S1”这一弯曲结构两侧端(即,是指第一端S1a”与第二端S1b”),此两者形成一非直角形式的空间夹角关系;同理,该第二结构段S2”这一弯曲结构两侧端(即,是指第一端S2a”与第二端S2b”)也形成一非直角形式的空间夹角关系。如此一来,即有别于图2中弯曲部C01、C02与弧形滤波耦合结构F0中任一者的弯曲结构两侧端,是彼此形成一直角形式的空间夹角关系;是以,第三实施例的做法亦可以大幅度地减少电路布局所会占据的面积。
至于第三实施例的检波混合器55包括一检波混合电路结构550以及检波元件551、552,则因其设置相似于前两实施例的检波混合器,故于此即不再赘述。
根据上述的实施说明可知,相对于背景技术的图2而言,第一~第三实施例皆对其振荡电路结构与检波混合电路结构作形状变化或不同样式的弯曲设计。然而,本发明还可根据上述第一~第三实施例所揭露的概念进行相关的变化实施,而能在类似的构造设计下达成相近的功效与实施目的。
举例来说,可仅对其振荡电路结构采用第一~第三实施例的样式作设计,而其检波混合电路结构则可采用背景技术的环形样式;或者,可仅对其检波混合电路结构采用第一~第三实施例的样式作设计,而其振荡电路结构则可采用背景技术的部分矩形样式。如此,虽然对于缩减电路所占面积的效果会有所不一,但同样也能让所有必要元件于基板上作整合与有效利用可布局的空间。
就一制造上的实例来说,本发明揭露的微波感应天线模块所使用的基板的形状,可至少为圆形、方形和矩形中的任一者。且请配合参阅图4、图6以及图7,于其中整体微波感应天线模块300、400所使用基板3、4、5的最大边长L、L’、L”,皆可不超过24mm(含);举例而言,此一最大边长L、L’、L”的一较佳做法,可各自皆为 16mm(含)以下或是9mm(含)以下;其中,针对所使用的基板为方形或矩形时,前述最大边长L、L’、L”皆指任一方形或矩形所具有的四个边长中属于长度最长者;若,使用的基板为圆形(例如,图4、图6以及图7中标示3、4、5者),前述最大边长L、L’、L”皆指可用以完整涵盖此一圆形基板3、4、5面积的最小方形或矩形几何图形G、G’、G”所具有的四个边长中属于长度最长者(亦即,前述最大边长L、L’、L”皆指该圆形基板3、4、5的直径)。
综上所述,为了搭配现有各式照明装置或灯具的规格与兼顾照明效果,将设于各式照明装置或灯具中的微波感应天线模块进行尺寸的对应缩减,便为一不可忽略的重点。同时,根据目前技术,产生微波的频率亦和电路结构的形状、长度的设计有关,而这可透过实验的方式进行分析验证而能得知所设计的电路结构是否可得到所需的频率。因此,当本发明所提出的微波感应天线模块能保有现有技术而于微波感应上有效运作并同时能减少整体尺寸时,实已成功地达到产业上的目标。另一方面,当其基板或电路板的尺寸可再更为缩小时,除了能明显地减少耗材外,还能增加各式照明装置或灯具中的LED发光元件的数量,进而可更进一步提升照明效果。
是故,本发明能有效解决背景技术中所提出的相关问题,并能成功地达到本发明的主要目的。
任何本技术领域普通技术人员,可在与本发明相同目的的前提下,使用本发明所揭示的概念和实施例变化来作为设计和改进其它一些方法的基础。这些变化、替代和改进不能背离权利要求范围所界定的本发明的保护范围。是故,本发明可以由本技术领域普通技术人员任施匠思而为诸般修饰,然皆不脱如附权利要求范围所欲保护者。

Claims (30)

  1. 一种微波感应天线模块,包括:
    基板,具有一第一侧面和一第二侧面;
    振荡器,设置在该第一侧面上,用以产生具有一第一频率的一微波;以及
    检波混合器,设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号,该检波混合器具有一检波混合电路结构和两个检波元件,该些检波元件设置在该检波混合电路结构上,该检波混合电路结构包括:
    第一结构段,具有一第一弯曲部;以及
    第二结构段,具有一第二弯曲部,该第二结构段的两端分别连接于该第一结构段的两端;
    其中,该第一弯曲部和该第二弯曲部的弯曲方向相互对应。
  2. 如权利要求1所述的微波感应天线模块,其中,该第一弯曲部呈类c字形,该第二弯曲部呈类s字形或类c字形。
  3. 如权利要求1所述的微波感应天线模块,其中,该第一弯曲部和该第二弯曲部共同组成一封闭式微带线,且该第一弯曲部和该第二弯曲部分别为具有不同曲率的弯曲部。
  4. 如权利要求3所述的微波感应天线模块,其中,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,该平面几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
  5. 如权利要求3所述的微波感应天线模块,其中,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,且该第一弯曲部和该第二弯曲部中的至少一者,朝向该平面几何中心点弯曲。
  6. 如权利要求1所述的微波感应天线模块,其中,该第一弯曲部和该第二弯曲部皆朝同一方向,抑或接近同一方向进行弯曲而呈现靠拢或内缩。
  7. 如权利要求1所述的微波感应天线模块,其中,该基板至少为圆形、方形和矩形中的任一者。
  8. 如权利要求7所述的微波感应天线模块,其中,该基板的最大边长不超过24mm, 且该最大边长是指该方形基板或该矩形基板所具有的四个边长中长度最长的边长,抑或该最大边长是指该圆形基板的直径。
  9. 如权利要求8所述的微波感应天线模块,其中,该基板的最大边长为16mm以下或是9mm以下。
  10. 如权利要求1所述的微波感应天线模块,其中,该振荡器具有一振荡电路结构和一射频晶体管,该射频晶体管设置在该振荡电路结构上,该振荡电路结构包括一第一滤波器。
  11. 如权利要求10所述的微波感应天线模块,其中,该微波感应天线模块还包括:
    电流输入端,形成于该第一侧面上,并耦接至该振荡电路结构,用以输入一驱动电流以驱动该射频晶体管;
    第二滤波器,设置在该第一侧面上,并耦接至该振荡电路结构,用以对该微波进行滤波;
    功率分配器,设置在该第一侧面上,并耦接至该第二滤波器,该功率分配器具有两个输出端口,用以对该微波进行分配输出;
    第三滤波器,设置在该第一侧面上,并耦接至该功率分配器的其一输出端口,用以对该微波进行滤波;
    发射天线,设置在该第二侧面上,并通过对应形成于该第一侧面上的一发射天线端而耦接至该第三滤波器,用以发射该微波;
    接收天线,设置在该第二侧面上,用以接收该微波遇到物体所反射形成的一反射波;以及
    第四滤波器,设置在该第一侧面上,并通过对应形成于该第一侧面上的一接收天线端而耦接至该接收天线,用以对该反射波进行滤波;
    其中,该检波混合器耦接至该功率分配器的另一输出端口,而该第四滤波器亦耦接至该检波混合器。
  12. 如权利要求1所述的微波感应天线模块,其中,该低频信号通过对应形成于该第一侧面上的一中频输出端作输出以进行信号放大。
  13. 如权利要求1所述的微波感应天线模块,其中,该第一频率为23GHz至25GHz之间的微波频率。
  14. 一种微波感应天线模块,包括:
    基板,具有一第一侧面和一第二侧面;其中,该基板的最大边长不超过24mm;
    振荡器,设置在该第一侧面上,用以产生具有一第一频率的一微波;以及
    检波混合器,设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构包括:
    第一结构段,具有一第一弯曲部;以及
    第二结构段,具有一第二弯曲部,该第二结构段的两端分别连接于该第一结构段的两端;
    其中,该第一弯曲部和该第二弯曲部的弯曲方向相互对应。
  15. 如权利要求14所述的微波感应天线模块,其中,该基板的最大边长为16mm以下或是9mm以下。
  16. 如权利要求14所述的微波感应天线模块,其中,该检波混合器还具有两个检波元件,该些检波元件设置在该检波混合电路结构上。
  17. 如权利要求14所述的微波感应天线模块,其中,该第一弯曲部和该第二弯曲部共同组成一封闭式微带线,且该第一弯曲部和该第二弯曲部分别为具有不同曲率的弯曲部。
  18. 如权利要求17所述的微波感应天线模块,其中,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,该平面几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
  19. 如权利要求17所述的微波感应天线模块,其中,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,且该第一弯曲部和该第二弯曲部中的至少一者,朝向该平面几何中心点弯曲。
  20. 如权利要求14所述的微波感应天线模块,其中,该第一弯曲部和该第二弯曲部皆朝同一方向,抑或接近同一方向进行弯曲而呈现靠拢或内缩。
  21. 一种微波感应天线模块,包括:
    基板,具有一第一侧面和一第二侧面;
    振荡器,设置在该第一侧面上,用以产生具有一第一频率的一微波;以及
    检波混合器,设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号;
    其中,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构形成一封闭式微带线,且于该封闭式微带线中具有至少两个不同曲率的弯曲部。
  22. 如权利要求21所述的微波感应天线模块,其中,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,该平面几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
  23. 如权利要求21所述的微波感应天线模块,其中,该封闭式微带线围成具有一平面几何中心点的一平面几何图形,且该第一弯曲部和该第二弯曲部中的至少一者,朝向该平面几何中心点弯曲。
  24. 如权利要求21所述的微波感应天线模块,其中,该基板的最大边长不超过24mm。
  25. 一种微波感应天线模块,包括:
    基板,具有一第一侧面和一第二侧面;其中,该基板的最大边长不超过24mm;
    振荡器,设置在该第一侧面上,用以产生具有一第一频率的一微波;以及
    检波混合器,设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号;
    其中,该检波混合器至少具有一检波混合电路结构和两个检波元件,该些检波元件设置在该检波混合电路结构上,且该检波混合电路结构形成一封闭式微带线,且于该封闭式微带线中具有至少两个弯曲部,该些弯曲部皆朝同一方向,抑或接近同一方向进行弯曲。
  26. 如权利要求25所述的微波感应天线模块,其中,该基板的最大边长为16mm以下或是9mm以下。
  27. 一种微波感应天线模块,包括:
    基板,具有一第一侧面和一第二侧面;
    振荡器,设置在该第一侧面上,用以产生具有一第一频率的一微波;以及
    检波混合器,设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合 与检波,并产生对应的一低频信号;
    其中,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构形成一封闭式微带线;其中,由该封闭式微带线所围的一平面几何图形具有一平面几何中心点,且该平面几何中心点与该封闭式微带线多个点之间所形成的多个直线距离中至少具有两种以上不相等的直线距离。
  28. 如权利要求27所述的微波感应天线模块,其中,该基板的最大边长不超过24mm,抑或该检波混合器还具有两个检波元件,该些检波元件设置在该检波混合电路结构上。
  29. 一种微波感应天线模块,包括:
    基板,具有一第一侧面和一第二侧面;
    振荡器,设置在该第一侧面上,用以产生具有一第一频率的一微波;以及
    检波混合器,设置在该第一侧面上,用以将所形成的一反射波与该微波进行混合与检波,并产生对应的一低频信号;
    其中,该检波混合器至少具有一检波混合电路结构,且该检波混合电路结构以至少两个弯曲部形成一封闭式微带线;其中,由该封闭式微带线所围的一平面几何图形具有一平面几何中心点,且该些弯曲部中的至少一者,朝向该平面几何中心点弯曲。
  30. 如权利要求29所述的微波感应天线模块,其中,该基板的最大边长不超过24mm,抑或该检波混合器还具有两个检波元件,该些检波元件设置在该检波混合电路结构上。
PCT/CN2016/072174 2015-01-26 2016-01-26 微波感应天线模块 WO2016119681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510039837.1A CN105891823B (zh) 2015-01-26 2015-01-26 微波感应天线模块
CN201510039837.1 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016119681A1 true WO2016119681A1 (zh) 2016-08-04

Family

ID=56542425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072174 WO2016119681A1 (zh) 2015-01-26 2016-01-26 微波感应天线模块

Country Status (2)

Country Link
CN (1) CN105891823B (zh)
WO (1) WO2016119681A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262783A (en) * 1990-11-30 1993-11-16 Gec-Marconi Limited Motion detector unit
GB2338617A (en) * 1998-06-16 1999-12-22 Microwave Solutions Limited A voltage controlled oscillator with a dielectric resonator and a Schottky variable capacitance diode
US6756936B1 (en) * 2003-02-05 2004-06-29 Honeywell International Inc. Microwave planar motion sensor
CN101930068A (zh) * 2009-06-23 2010-12-29 武光杰 微波传感器
CN202433533U (zh) * 2012-01-05 2012-09-12 宁波市乐星感应电器有限公司 一种微型微波平面传感器
CN204118267U (zh) * 2014-10-09 2015-01-21 南充鑫源通讯技术有限公司 一种x波段的多普勒微波模块的天线板结构
CN204515128U (zh) * 2015-01-26 2015-07-29 东莞巨扬电器有限公司 微波感应天线模块
CN204515129U (zh) * 2015-01-26 2015-07-29 东莞巨扬电器有限公司 微波感应天线模块

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591806B2 (ja) * 1998-02-25 2004-11-24 京セラ株式会社 インダクタ
CN2767821Y (zh) * 2005-01-18 2006-03-29 陈凯柏 具感测功能的灯泡
CN101729053A (zh) * 2008-10-15 2010-06-09 武光杰 微波感应开关
CN101738641A (zh) * 2008-11-27 2010-06-16 武光杰 微波移动传感器
CN201462734U (zh) * 2009-06-05 2010-05-12 深圳市西柯南电子科技有限公司 微波感应自动灯
DE102011007058A1 (de) * 2011-04-08 2012-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrische Leiterbahn
CN104297806A (zh) * 2014-11-12 2015-01-21 武光杰 微波感应模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262783A (en) * 1990-11-30 1993-11-16 Gec-Marconi Limited Motion detector unit
GB2338617A (en) * 1998-06-16 1999-12-22 Microwave Solutions Limited A voltage controlled oscillator with a dielectric resonator and a Schottky variable capacitance diode
US6756936B1 (en) * 2003-02-05 2004-06-29 Honeywell International Inc. Microwave planar motion sensor
CN101930068A (zh) * 2009-06-23 2010-12-29 武光杰 微波传感器
CN202433533U (zh) * 2012-01-05 2012-09-12 宁波市乐星感应电器有限公司 一种微型微波平面传感器
CN204118267U (zh) * 2014-10-09 2015-01-21 南充鑫源通讯技术有限公司 一种x波段的多普勒微波模块的天线板结构
CN204515128U (zh) * 2015-01-26 2015-07-29 东莞巨扬电器有限公司 微波感应天线模块
CN204515129U (zh) * 2015-01-26 2015-07-29 东莞巨扬电器有限公司 微波感应天线模块

Also Published As

Publication number Publication date
CN105891823B (zh) 2018-10-23
CN105891823A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6406603B2 (ja) 照明器具
JP5766380B2 (ja) 制御可能な照明アセンブリ
US10677435B2 (en) Method for assembling an antenna element for a directional lighting fixture
CN105378376B (zh) 用于定向光束led照明的反射器
EP3255339B1 (en) Solid-state lighting device having a wireless communication antenna
JP2016530681A5 (zh)
JP6699134B2 (ja) 照明器具、照明用通信ユニット
JP5498007B2 (ja) 照明装置
WO2016119680A1 (zh) 微波感应天线模块
JP5271600B2 (ja) 照明装置
WO2016119681A1 (zh) 微波感应天线模块
US9217546B2 (en) LED bulb laterally installed and projecting light beams onto ground
CN104864363B (zh) 可传导多个led光源的导光柱
US20170153015A1 (en) Efficient board to board connection
CN204515128U (zh) 微波感应天线模块
CN204515129U (zh) 微波感应天线模块
EP2925091B1 (en) Spotlight LED module and light module
CN208332137U (zh) 光学设备
CA3233307A1 (en) Control module for a lighting fixture
JP2012112745A (ja) ドップラーセンサ付き照明器具
CN103748404A (zh) 灯泡形灯
JP2014093187A (ja) 照明器具
JP2021519504A (ja) 照明デバイス内の積層型回路基板
JP5161704B2 (ja) 照明器具
CN107887708A (zh) 天线反射板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742743

Country of ref document: EP

Kind code of ref document: A1