WO2016119440A1 - 一种子带资源确定装置及方法 - Google Patents

一种子带资源确定装置及方法 Download PDF

Info

Publication number
WO2016119440A1
WO2016119440A1 PCT/CN2015/087069 CN2015087069W WO2016119440A1 WO 2016119440 A1 WO2016119440 A1 WO 2016119440A1 CN 2015087069 W CN2015087069 W CN 2015087069W WO 2016119440 A1 WO2016119440 A1 WO 2016119440A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
resource
sub
carrier
subcarrier
Prior art date
Application number
PCT/CN2015/087069
Other languages
English (en)
French (fr)
Inventor
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2017525034A priority Critical patent/JP6504482B2/ja
Priority to CN201580023336.2A priority patent/CN106465368B/zh
Priority to EP15879639.1A priority patent/EP3193553B1/en
Publication of WO2016119440A1 publication Critical patent/WO2016119440A1/zh
Priority to US15/660,570 priority patent/US10524263B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of communication network technologies, and in particular, to a device and a method for determining a subband resource.
  • the base station performs information communication with the UE (User Equipment) on the carrier.
  • the frequency bandwidth of the carrier (referred to as carrier bandwidth) may be referred to as channel bandwidth or transmission bandwidth or system bandwidth or bandwidth.
  • the UE can receive data within the entire system bandwidth.
  • working bandwidth is less than the carrier bandwidth, such as 20 MHz bandwidth, working bandwidth is 200 KHz, 1.4 MHz, 3 MHz, or 5 MHz, etc.
  • the information is controlled, and the low complexity UE cannot know which segment of the bandwidth is the bandwidth for transmitting data and/or control information, thus hindering communication between the low complexity UE and the base station.
  • An embodiment of the present invention provides a method and an apparatus for determining a sub-band resource, which can solve the problem of how to ensure communication between a UE and a base station while realizing cost reduction or complexity reduction of user equipment.
  • an embodiment of the present invention provides a subband resource determining apparatus, where the apparatus is applied to a user equipment UE, the subband resource is a resource in a subband, and the subband has a bandwidth.
  • An obtaining module configured to obtain subband resource information, and provide the subband resource information to a determining module, where the subband resource information includes information for determining a subband resource;
  • the determining module is configured to determine the subband resource according to the subband resource information, and provide the subband resource to a transmission module;
  • the transmission module is configured to transmit data and/or control information according to the subband resource.
  • the sub-band resource is the sub-band, or
  • the subband resource is a central subcarrier of the subband.
  • the subband resource information includes specific frequency information and a first offset parameter, the specific frequency information Determining a central subcarrier of the subband, the first offset parameter being used to determine an offset of a center subcarrier of the subband; or
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in a resource block RB, and the second parameter is used to determine the sub The resource block RB where the center subcarrier of the band is located; or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner defines a configuration manner of subbands in the bandwidth, where the subband index is a number of subbands in the bandwidth.
  • the subband resource information includes specific frequency information and a first offset parameter:
  • the specific frequency information is a center frequency point of a center subcarrier of a carrier, a center subcarrier of a carrier, a subcarrier index of a center subcarrier of a carrier, a specific subcarrier in a carrier, a specific subcarrier index in a carrier, and a carrier;
  • a specific resource block a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency location in a carrier, and a specific frequency resource in a carrier;
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the determining module is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the sub-band resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where The sub-band resource information further includes the second offset parameter, where the second offset parameter indicates that the second offset is a frequency resource width of N subcarriers or N subcarriers, and the N is not equal to 0. Integer.
  • the device further includes: a receiving module
  • the receiving module is configured to receive the first signaling sent by the base station, and provide the first signaling to the determining module, where the first signaling is used to indicate the specific frequency information and the first Determining a first specific manner of determining the subband resource, the first specific manner being an addition manner or a subtraction manner, or indicating the specific frequency information, the first offset, and the second offset Determining a second specific manner of the sub-band resource, where the second specific mode is an addition mode or a subtraction mode;
  • the determining module is further configured to determine the subband resource by using the subband resource information and the first signaling.
  • the determining module is further configured to determine, according to the first parameter, the second parameter and the third offset parameter, when the subband resource information includes the first parameter and the second parameter a subband resource, the subband resource information further including the third offset parameter, where the third offset parameter is used to determine an offset of a center subcarrier of the subband.
  • the apparatus further includes: a numbering module,
  • the numbering module is configured to number the subbands from one side of the central subcarrier of the carrier, and after the available subband number of the center subcarrier side of the carrier is completed, from the center of the carrier The other side of the carrier numbers the sub-bands;
  • the numbering module is further configured to number the subbands from one side of the central subcarrier of the carrier, and after completing the numbering of one subband, from the other side of the central subcarrier of the carrier to the subband Numbering, after completing the numbering of one subband, returning to one side of the center subcarrier of the carrier, numbering the remaining subbands, and returning to the center of the carrier after completing the numbering of one subband
  • the remaining subbands are numbered until the available subbands on both sides of the center subcarrier of the carrier are numbered.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, where a four offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine an offset of the subband;
  • the determining module is further configured to determine the subband resource according to the subband determining manner, the subband index, and the fourth offset parameter; according to the subband determining manner, the subband index, and The fifth offset parameter determines the subband resource; and determines the subband resource according to the subband determining manner, the subband index, the fourth offset parameter, and the fifth offset parameter.
  • the determining module is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information is further a sixth offset parameter, where the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is less than the first threshold, according to the subband resource information and the sixth offset
  • the shift parameter determines the subband resource; when the subband index is an even number, determining a subband resource according to the subband resource information and the sixth offset parameter; when the subband index is an odd number, according to The subband resource information and the sixth offset parameter determine a subband resource.
  • the sub-carrier has one subcarrier as a central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a high frequency M+1 subcarriers of the center subcarrier of the subband; or the center subcarrier of the subband, the frequency is lower than the M+1 subcarriers of the center subcarrier of the subband, and the frequency is higher than the M subcarriers of the center subcarrier of the subband;
  • the sub-band has two sub-carriers as sub-band center sub-carriers, and the sub-band resources include: a central sub-carrier of the sub-band, a frequency of M sub-carriers lower than a central sub-carrier of the sub-band, and a frequency higher than M subcarriers of the center subcarrier of the subband.
  • the acquiring module includes: a receiving unit, a determining unit;
  • the receiving unit is configured to receive the second signaling sent by the base station, and obtain the subband resource information from the second signaling;
  • the determining unit is configured to determine the sub-band resource information according to a predetermined manner.
  • the receiving module is further configured to receive the third signaling sent by the base station, and provide the third signaling to the determining module, where the third signaling indicates a downlink subband resource and an uplink subband Duplex interval between resources;
  • the determining module is further configured to: when the subband resource is a downlink subband resource, determine an uplink subband resource according to the downlink subband resource and the duplex interval; and when the subband resource is an uplink subband When the resource is used, the downlink subband resource is determined according to the uplink subband resource and the duplex interval.
  • an embodiment of the present invention provides a subband resource determining apparatus, where the apparatus is applied to a base station, the subband resource is a resource in a subband, and the subband has a working bandwidth in a bandwidth.
  • the frequency resource is the downlink bandwidth or the uplink bandwidth, and the working bandwidth is smaller than the bandwidth.
  • the device includes:
  • An obtaining module configured to obtain subband resource information, and provide the subband resource information to a determining module, where the subband resource information includes information for determining a subband resource;
  • the determining module is configured to determine the subband resource according to the subband resource information, and provide the subband resource to a transmission module;
  • the transmission module is configured to transmit data and/or control information according to the subband resource.
  • the sub-band resource is the sub-band, or
  • the subband resource is a central subcarrier of the subband.
  • the subband resource information includes specific frequency information for determining a center subcarrier of the subband, and a first offset parameter, where the first offset parameter is used to determine a center of the subband Subcarrier offset; or,
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in a resource block RB, and the second parameter is used to determine a resource block RB in which the center subcarrier of the subband is located; or
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner defines a configuration manner of subbands in the bandwidth, where the subband index is a number of subbands in the bandwidth.
  • the subband resource information includes specific frequency information and a first offset parameter:
  • the specific frequency information is a center frequency point of a center subcarrier of a carrier, a center subcarrier of a carrier, a subcarrier index of a center subcarrier of a carrier, a specific subcarrier in a carrier, a specific subcarrier index in a carrier, and a carrier;
  • a specific resource block a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency location in a carrier, and a specific frequency resource in a carrier;
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the determining module is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the sub-band resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where The sub-band resource information further includes the second offset parameter, where the second offset parameter indicates that the second offset is a frequency resource width of N subcarriers or N subcarriers, and the N is an integer not equal to 0. .
  • the device further includes: a generating module, a sending module;
  • the generating module configured to generate a first specific manner for indicating the specific frequency information and the first offset to determine the subband resource, and/or generate the information for indicating the specific frequency information,
  • the first offset and the second offset determine a second specific manner of the subband resource, where the first specific mode is an addition mode or a subtraction mode, and the second specific mode is an adder And subtracting; and generating first signaling, the first signaling indicating the first specific manner and/or the second specific manner;
  • the determining module is further configured to determine the subband resource according to the subband resource information, the first specific manner, and/or the second specific manner;
  • the sending module is configured to send the first signaling to the user equipment UE.
  • the determining module is further configured to determine, according to the first parameter, the second parameter and the third offset parameter, when the subband resource information includes the first parameter and the second parameter a subband resource, wherein the subband resource information further includes a third offset parameter, the third offset parameter being used to determine an offset of a center subcarrier of the subband.
  • the apparatus further includes a numbering module
  • the numbering module is further configured to number the subbands from one side of the central subcarrier of the carrier, and after the subband numbers of the center subcarrier side of the carrier are completed, from the center of the carrier The other side of the subcarrier numbers the subbands; the subbands are numbered starting from one side of the center subcarrier of the carrier, and after completing the numbering of one subband, another subcarrier from the center of the carrier The sub-bands are numbered.
  • the remaining subbands are numbered until the number of subbands is completed on both sides of the center subcarrier of the carrier.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, where a four offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine an offset of the subband;
  • the determining module is further configured to determine, according to the subband, a subband index, and the Determining, by the fourth offset parameter, the subband resource; determining, according to the subband determining manner, the subband index, and the fifth offset parameter, the subband resource; The subband index, the fourth offset parameter, and the fifth offset parameter determine the subband resource.
  • the determining module is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information is further Include the sixth offset parameter, where the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is less than the first threshold, according to the subband resource information and the a six-offset parameter determining the sub-band resource; when the sub-band index is an even number, determining a sub-band resource according to the sub-band resource information and the sixth offset parameter; when the sub-band index is an odd number And determining a subband resource according to the subband resource information and the sixth offset parameter.
  • the sub-carrier has one subcarrier as a central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a high frequency M+1 subcarriers of the center subcarrier of the subband; or the center subcarrier of the subband, the frequency is lower than the M+1 subcarriers of the center subcarrier of the subband, and the frequency is higher than the M subcarriers of the center subcarrier of the subband;
  • the sub-band has two sub-carriers as sub-band center sub-carriers, and the sub-band resources include: a central sub-carrier of the sub-band, a frequency of M sub-carriers lower than a central sub-carrier of the sub-band, and a frequency higher than M subcarriers of the center subcarrier of the subband.
  • the acquiring module includes: a generating unit, a determining unit;
  • the generating unit is configured to generate the subband resource information
  • the determining unit is configured to determine the subband resource information according to a predetermined manner
  • the sending module is further configured to send the second signaling that carries the sub-band resource information to the UE.
  • the determining module is further configured to determine a duplex interval between the downlink subband resource and the uplink subband resource;
  • the generating module is further configured to generate third signaling, and provide the third signaling to the sending module;
  • the sending module is further configured to send, to the UE, third signaling that carries the duplex interval;
  • the determining module is further configured to: when the subband resource is a downlink subband resource, determine an uplink subband resource according to the downlink subband resource and the duplex interval; and when the subband resource is an uplink subband The downlink subband resource is determined according to the downlink subband resource and the duplex interval.
  • an embodiment of the present invention provides a subband resource determining apparatus, where the apparatus is applied to a user equipment UE, the subband resource is a resource in a subband, and the subband has a bandwidth.
  • a memory for storing information including program instructions
  • the processor is coupled to the memory and the transceiver for controlling execution of the program instruction, specifically for acquiring subband resource information, where the subband resource information includes information for determining a subband resource; Subband resource information determines the subband resource;
  • the transceiver is configured to transmit data and/or control information according to the sub-band resource.
  • the sub-band resource is the sub-band, or
  • the subband resource is a central subcarrier of the subband.
  • the subband resource information includes specific frequency information for determining a center subcarrier of the subband, and a first offset parameter, where the first offset parameter is used to determine a center of the subband Subcarrier offset; or,
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in a resource block RB, and the second parameter is used to determine the sub The resource block RB where the center subcarrier of the band is located; or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner defines a configuration manner of subbands in the bandwidth, where the subband index is a number of subbands in the bandwidth.
  • the subband resource information includes specific frequency information and a first offset parameter:
  • the specific frequency information is a center frequency point of a center subcarrier of a carrier, a center subcarrier of a carrier, a subcarrier index of a center subcarrier of a carrier, a specific subcarrier in a carrier, a specific subcarrier index in a carrier, and a carrier;
  • a specific resource block a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency location in a carrier, and a specific frequency resource in a carrier;
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the processor is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the sub-band resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where The subband resource information further includes the second offset parameter, where the second offset parameter indicates The second offset is a frequency resource width of N subcarriers or N subcarriers, and the N is an integer not equal to 0.
  • the transceiver is further configured to receive the first signaling sent by the base station, and provide the first signaling to the processor, where the first signaling is used to indicate the specific frequency information and the first An offset determining a first specific manner of the subband resource, the first specific manner being an addition manner or a subtraction manner, or indicating the specific frequency information, the first offset, and the second offset Moving to determine a second specific manner of the sub-band resource, where the second specific mode is an addition mode or a subtraction mode;
  • the processor is further configured to determine the subband resource by using the subband resource information and the first signaling.
  • the processor is further configured to determine, according to the first parameter, the second parameter and the third offset parameter, when the subband resource information includes the first parameter and the second parameter a subband resource, the subband resource information further including the third offset parameter, where the third offset parameter is used to determine an offset of a center subcarrier of the subband.
  • the processor is further configured to number the subbands from one side of the central subcarrier of the carrier, and when the available subband number of the center subcarrier side of the carrier is completed, from the center of the carrier
  • the other side of the subcarrier numbers the subbands; the subbands are numbered starting from one side of the center subcarrier of the carrier, and after completing the numbering of one subband, another subcarrier from the center of the carrier
  • the sub-bands are numbered.
  • the remaining subbands are numbered until the available subbands of both sides of the center subcarrier of the carrier are numbered.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, where a four offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine an offset of the subband;
  • the processor is further configured to determine the subband resource according to the subband determining manner, the subband index, and the fourth offset parameter; according to the subband determining manner, the subband index, and The fifth offset parameter determines the subband resource; and determines the subband resource according to the subband determining manner, the subband index, the fourth offset parameter, and the fifth offset parameter.
  • the processor is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information is further a sixth offset parameter, where the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is less than the first threshold, according to the subband resource information and the sixth offset
  • the shift parameter determines the subband resource; when the subband index is an even number, determining a subband resource according to the subband resource information and the sixth offset parameter; when the subband index is an odd number, according to The subband resource information and the sixth offset parameter determine a subband resource.
  • the sub-carrier has one subcarrier as a central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a high frequency M+1 subcarriers of the center subcarrier of the subband; or the center subcarrier of the subband, the frequency is lower than the M+1 subcarriers of the center subcarrier of the subband, and the frequency is higher than the M subcarriers of the center subcarrier of the subband;
  • the sub-band has two sub-carriers as sub-band center sub-carriers, and the sub-band resources include: a central sub-carrier of the sub-band, and M sub-carriers whose frequency is lower than a central sub-carrier of the sub-band, The frequency is higher than the M subcarriers of the center subcarrier of the subband.
  • the transceiver is further configured to receive the second signaling sent by the base station, and obtain the subband resource information from the second signaling;
  • the processor is further configured to determine the subband resource information according to a predetermined manner.
  • the transceiver is further configured to receive the third signaling sent by the base station, and provide the third signaling to the processor, where the third signaling indicates a downlink subband resource and an uplink subband Duplex interval between resources;
  • the processor is further configured to: when the subband resource is a downlink subband resource, determine an uplink subband resource according to the downlink subband resource and the duplex interval; when the subband resource is an uplink subband When the resource is used, the downlink subband resource is determined according to the uplink subband resource and the duplex interval.
  • an embodiment of the present invention provides a subband resource determining apparatus, where the apparatus is applied to a base station, the subband resource is a resource in a subband, and the subband has a working bandwidth in a bandwidth.
  • the frequency resource is the downlink bandwidth or the uplink bandwidth, and the working bandwidth is smaller than the bandwidth.
  • the device includes:
  • a memory for storing information including program instructions
  • the processor is coupled to the memory and the transceiver for controlling execution of the program instruction, specifically for acquiring subband resource information, where the subband resource information includes information for determining a subband resource; Subband resource information determines the subband resource;
  • the transceiver is configured to transmit data and/or control information according to the sub-band resource.
  • the sub-band resource is the sub-band, or
  • the subband resource is a central subcarrier of the subband.
  • the subband resource information includes specific frequency information for determining a center subcarrier of the subband, and a first offset parameter, where the first offset parameter is used to determine a center of the subband Subcarrier offset; or,
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in a resource block RB, and the second parameter is used to determine the sub The resource block RB where the center subcarrier of the band is located; or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner defines a configuration manner of subbands in the bandwidth, where the subband index is a number of subbands in the bandwidth.
  • the subband resource information includes specific frequency information and a first offset parameter:
  • the specific frequency information is a center frequency point of a center subcarrier of a carrier, a center subcarrier of a carrier, a subcarrier index of a center subcarrier of a carrier, a specific subcarrier in a carrier, a specific subcarrier index in a carrier, and a carrier;
  • a specific resource block a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency location in a carrier, and a specific frequency resource in a carrier;
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the processor is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the sub-band resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where The subband resource information further includes the second offset parameter, where the second offset parameter indicates The second offset is a frequency resource width of N subcarriers or N subcarriers, and the N is an integer not equal to 0.
  • the processor is further configured to generate a first specific manner for indicating that the specific frequency information and the first offset determine the subband resource, and/or generate, to indicate the specific frequency information,
  • the first offset and the second offset determine a second specific manner of the subband resource, where the first specific mode is an addition mode or a subtraction mode, and the second specific mode is an addition mode or a subtraction mode; and generating a first signaling, the first signaling indicating the first specific mode and/or the second specific mode; according to the subband resource information, the first specific mode, and/or Or determining the sub-band resource in the second specific manner;
  • the transceiver is further configured to send the first signaling to the user equipment UE.
  • the processor is further configured to determine, according to the first parameter, the second parameter and the third offset parameter, when the subband resource information includes the first parameter and the second parameter
  • the subband resource, the subband resource information further includes a third offset parameter, where the third offset parameter is used to determine an offset of a center subcarrier of the subband.
  • the processor is further configured to number subbands from one side of a central subcarrier of the carrier, and when all subband numbers on a side of a center subcarrier of the carrier are completed, from a center of the carrier The other side of the subcarrier numbers the subbands; the subbands are numbered starting from one side of the center subcarrier of the carrier, and after completing the numbering of one subband, another subcarrier from the center of the carrier The sub-bands are numbered.
  • the remaining subbands are numbered until the number of subbands is completed on both sides of the center subcarrier of the carrier.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, where a four offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine an offset of the subband;
  • the processor is further configured to determine the subband resource according to the subband determining manner, the subband index, and the fourth offset parameter; according to the subband determining manner, the subband index, and The fifth offset parameter determines the subband resource; and determines the subband resource according to the subband determining manner, the subband index, the fourth offset parameter, and the fifth offset parameter.
  • the processor is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information is further Include the sixth offset parameter, where the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is smaller than the first threshold, the base station according to the subband resource information and The sixth offset parameter determines the subband resource; when the subband index is an even number, determining a subband resource according to the subband resource information and the sixth offset parameter; when the subband index When it is an odd number, the subband resource is determined according to the subband resource information and the sixth offset parameter.
  • the sub-carrier has one subcarrier as a central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a high frequency M+1 subcarriers of the center subcarrier of the subband; or the center subcarrier of the subband, the frequency is lower than the M+1 subcarriers of the center subcarrier of the subband, and the frequency is higher than the M subcarriers of the center subcarrier of the subband;
  • the sub-band has two sub-carriers as sub-band center sub-carriers, and the sub-band resources include: a central sub-carrier of the sub-band, and M sub-carriers whose frequency is lower than a central sub-carrier of the sub-band, The frequency is higher than the M subcarriers of the center subcarrier of the subband.
  • the processor is further configured to generate the subband resource information, and determine the subband resource information according to a predetermined manner;
  • the transceiver is further configured to send the second signaling that carries the subband resource information to the UE.
  • the processor is further configured to determine a duplex interval between the downlink subband resource and the uplink subband resource; generate third signaling, and provide the third signaling to the transceiver;
  • the transceiver is further configured to send, to the UE, third signaling that carries the duplex interval;
  • the processor is further configured to: when the subband resource is a downlink subband resource, determine an uplink subband resource according to the downlink subband resource and the duplex interval; when the subband resource is an uplink subband When the resource is used, the downlink sub-band resource is determined according to the downlink sub-band resource and the duplex interval.
  • an embodiment of the present invention provides a method for determining a sub-band resource, where the method is applied to a user equipment UE, where the sub-band resource is a resource in a sub-band, and the sub-band has a bandwidth.
  • a frequency resource of a working bandwidth where the bandwidth is a downlink bandwidth or an uplink bandwidth, and the working bandwidth is smaller than the bandwidth, where the method includes:
  • the UE acquires subband resource information, where the subband resource information includes information for determining a subband resource;
  • the UE transmits data and/or control information according to the subband resource.
  • the sub-band resource is the sub-band, or
  • the subband resource is a central subcarrier of the subband.
  • the subband resource information includes specific frequency information for determining a center subcarrier of the subband, and a first offset parameter, where the first offset parameter is used to determine a center of the subband Subcarrier offset; or,
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in a resource block RB, and the second parameter is used to determine the sub The resource block RB where the center subcarrier of the band is located; or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner defines a configuration manner of subbands in the bandwidth, where the subband index is a number of subbands in the bandwidth.
  • the subband resource information includes specific frequency information and a first offset parameter:
  • the specific frequency information is a center frequency point of a center subcarrier of a carrier, a center subcarrier of a carrier, a subcarrier index of a center subcarrier of a carrier, a specific subcarrier in a carrier, a specific subcarrier index in a carrier, and a carrier;
  • a specific resource block a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency location in a carrier, and a specific frequency resource in a carrier;
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the subband resource information when the number of resource blocks included in the bandwidth is an odd number, the subband resource information further includes a second offset parameter.
  • the second offset parameter indicates that the second offset is N subcarriers or N subcarriers Frequency resource width, the N is an integer not equal to 0;
  • Determining, by the UE, the subband resource according to the subband resource information including:
  • the UE determines the subband resource according to the specific frequency information, the first offset parameter, and the second offset parameter.
  • the method further includes:
  • the first signaling sent by the base station where the first signaling is used to indicate that the specific frequency information and the first offset determine a first specific manner of the subband resource, where the first specific
  • the method is an adding manner or a subtracting manner, or indicating the specific frequency information, the first offset, and the second offset to determine a second specific manner of the subband resource, where the second specific manner is Adding method or subtracting method;
  • Determining, by the UE, the subband resource according to the subband resource information including:
  • the UE determines the subband resource by using the subband resource information and the first signaling.
  • the subband resource information when the subband resource information includes the first parameter and the second parameter: the subband resource The information further includes a third offset parameter, the third offset parameter being used to determine an offset of a center subcarrier of the subband;
  • Determining, by the UE, the subband resource according to the subband resource information including:
  • the subband resource information includes a subband determination manner and a subband index:
  • the sub-band determination manner adopts sub-band determination mode 1 or sub-band determination mode 2;
  • the sub-band determination mode 1 the UE numbers the sub-bands from one side of the central sub-carrier of the carrier, and when the available sub-band numbers on the central sub-carrier side of the carrier are completed, Numbering subbands from the other side of the center subcarrier of the carrier;
  • the sub-band determination mode 2 the UE numbers the sub-bands from one side of the central sub-carrier of the carrier, and after completing the number of one sub-band, from the other side of the central sub-carrier of the carrier Sub-bands are numbered, after completing the number of one sub-band, return to one side of the center sub-carrier of the carrier, number the remaining sub-bands, and after completing the number of one sub-band, return to the carrier On the other side of the central subcarrier, the remaining subbands are numbered until the available subbands on both sides of the center subcarrier of the carrier are numbered.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, where a four offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine an offset of the subband;
  • Determining, by the UE, the subband resource according to the subband resource information including:
  • the UE determines the subband resource according to the subband determination manner, the subband index, the fourth offset parameter, and the fifth offset parameter.
  • the subband resource information further includes a sixth offset parameter, where the sixth offset parameter is used to determine the The central subcarrier of the subband, the UE determines the subband resource according to the subband resource information, including:
  • the UE determines the sub-band resource according to the sub-band resource information and the sixth offset parameter;
  • the UE determines the sub-band resource according to the sub-band resource information and the sixth offset parameter; or
  • the UE determines the sub-band resource according to the sub-band resource information and the sixth offset parameter; or
  • the UE determines the subband resource according to the subband resource information and the sixth offset parameter.
  • the sub-carrier has one subcarrier as a central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a high frequency M+1 subcarriers of the center subcarrier of the subband; or the center subcarrier of the subband, the frequency is lower than the M+1 subcarriers of the center subcarrier of the subband, and the frequency is higher than the M subcarriers of the center subcarrier of the subband;
  • the sub-band has two sub-carriers as sub-band center sub-carriers, and the sub-band resources include: a central sub-carrier of the sub-band, a frequency of M sub-carriers lower than a central sub-carrier of the sub-band, and a frequency higher than M subcarriers of the center subcarrier of the subband.
  • the acquiring, by the UE, the subband resource information includes:
  • the UE determines the subband resource information according to a predetermined manner.
  • the method further include:
  • the UE receives the third signaling sent by the base station, where the third signaling indicates a duplex interval between the downlink subband resource and the uplink subband resource;
  • the UE determines an uplink sub-band resource according to the downlink sub-band resource and the duplex interval;
  • the UE determines a downlink sub-band resource according to the uplink sub-band resource and the duplex interval.
  • an embodiment of the present invention provides a method for determining a subband resource, where the method is applied to a base station, where the subband resource is a resource in a subband, and the subband has a working bandwidth in a bandwidth.
  • the frequency resource is the downlink bandwidth or the uplink bandwidth, and the working bandwidth is smaller than the bandwidth.
  • the base station acquires subband resource information, where the subband resource information includes information for determining a subband resource;
  • the base station transmits data and/or control information according to the subband resource.
  • the sub-band resource is the sub-band, or
  • the subband resource is a central subcarrier of the subband.
  • the subband resource information includes specific frequency information for determining a center subcarrier of the subband, and a first offset parameter, where the first offset parameter is used to determine a center of the subband Subcarrier offset; or,
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in a resource block RB, and the second parameter is used to determine the sub The resource block RB where the center subcarrier of the band is located; or,
  • the sub-band resource information includes a sub-band determination manner and a sub-band index, where the sub-band determination manner specifies a manner of constructing a sub-band in the bandwidth, where the sub-band index is a sub-band in the bandwidth The number.
  • the subband resource information includes specific frequency information and a first offset parameter:
  • the specific frequency information is a center frequency point of a center subcarrier of a carrier, a center subcarrier of a carrier, a subcarrier index of a center subcarrier of a carrier, a specific subcarrier in a carrier, a specific subcarrier index in a carrier, and a carrier;
  • a specific resource block a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency location in a carrier, and a specific frequency resource in a carrier;
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the sub-band resource information when the number of resource blocks included in the bandwidth is an odd number, the sub-band resource information further includes a second offset parameter.
  • the second offset parameter indicates that the second offset is a frequency resource width of N subcarriers or N subcarriers, and the N is an integer not equal to 0;
  • Determining, by the base station, the subband resource according to the subband resource information including:
  • the base station determines the subband resource according to the specific frequency information, the first offset parameter, and the second offset parameter.
  • the method further includes:
  • the base station Generating, by the base station, a first specific manner for indicating the specific frequency information and the first offset to determine the subband resource, and/or generating the specific frequency information, the first offset And the second specific manner of determining the sub-band resource, where the first specific mode is an adding mode or a subtracting mode, and the second specific mode is an adding mode or a subtracting mode;
  • the base station sends the first signaling to the user equipment UE.
  • the subband resource information when the subband resource information includes the first parameter and the second parameter: the subband resource The information further includes a third offset parameter, the third offset parameter being used to determine an offset of a center subcarrier of the subband;
  • Determining, by the base station, the subband resource according to the subband resource information including:
  • the base station determines the subband resource according to the first parameter, the second parameter, and the third offset parameter.
  • the subband resource information includes a subband determination manner and a subband index:
  • the sub-band determination manner adopts sub-band determination mode 1 or sub-band determination mode 2;
  • the sub-band determination mode 1 the base station numbers the sub-bands from one side of the central sub-carrier of the carrier, and when all sub-band numbers on the central sub-carrier side of the carrier are completed, from the The other side of the center subcarrier of the carrier numbers the subbands;
  • the sub-band determination mode 2 the base station numbers the sub-bands from one side of the central sub-carrier of the carrier, and after completing the number of one sub-band, from the other side of the central sub-carrier of the carrier Sub-bands are numbered, after completing the number of one sub-band, return to one side of the center sub-carrier of the carrier, number the remaining sub-bands, and after completing the number of one sub-band, return to the carrier On the other side of the center subcarrier, the remaining subbands are numbered until the number of subbands is completed on both sides of the center subcarrier of the carrier.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, where a four offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine an offset of the subband;
  • Determining, by the base station, the subband resource according to the subband resource information including:
  • the base station determines the subband resource according to the subband determination manner, the subband index, the fourth offset parameter, and the fifth offset parameter.
  • the subband resource information further includes a sixth offset parameter, where the sixth offset parameter is used to determine the a central subcarrier of the subband, the base station determining the subband resource according to the subband resource information, including:
  • the base station determines the sub-band resource according to the sub-band resource information and the sixth offset parameter; or
  • the base station determines the sub-band resource according to the sub-band resource information and the sixth offset parameter; or
  • the base station determines the subband resource according to the subband resource information and the sixth offset parameter; or
  • the base station determines the subband resource according to the subband resource information and the sixth offset parameter.
  • the sub-carrier has one subcarrier as a central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, and M subcarriers whose frequency is lower than a central subcarrier of the subband, The frequency is higher than the M+1 subcarriers of the center subcarrier of the subband; or the center subcarrier of the subband, the frequency is lower than the M+1 subcarriers of the center subcarrier of the subband, and the frequency is higher than M subcarriers of the center subcarrier of the subband;
  • the sub-band has two sub-carriers as sub-band center sub-carriers, and the sub-band resources include: a central sub-carrier of the sub-band, a frequency of M sub-carriers lower than a central sub-carrier of the sub-band, and a frequency higher than M subcarriers of the center subcarrier of the subband.
  • the acquiring, by the base station, the subband resource information includes:
  • the base station generates the subband resource information; and/or, the base station determines the subband resource information according to a predetermined manner;
  • the method further includes:
  • the base station sends a second signaling that carries the subband resource information to the UE.
  • the method further include:
  • the base station generates third signaling
  • the base station determines an uplink sub-band resource according to the downlink sub-band resource and the duplex interval;
  • the base station determines a downlink sub-band resource according to the downlink sub-band resource and the duplex interval.
  • the present invention provides a device and a method for determining a subband resource.
  • a low complexity UE can only transmit or receive data of a working bandwidth in a carrier, and a low complexity UE cannot know which working bandwidth in the bandwidth.
  • Bandwidth is the bandwidth used to transmit data related to it, because
  • the present invention determines the subband resource by acquiring the subband resource information by the UE, so that the data and/or the control information can be transmitted according to the subband resource.
  • the UE can determine the bandwidth of a certain specific frequency bandwidth in the bandwidth as the bandwidth of sending or receiving data and related data through the sub-band resource, thereby achieving the saving or complexity of implementing the user equipment cost.
  • the UE is made to communicate with the base station.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a subband resource determining apparatus according to an embodiment of the present invention.
  • FIG. 3(a) is a schematic diagram of a subband in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 3(b) is another schematic diagram of a subband in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of another seed band resource determining apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another apparatus for determining a seed resource according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of still another sub-band resource determining apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a sub-band resource determining apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another apparatus for determining a seed resource according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for determining a subband resource according to an embodiment of the present invention.
  • FIG. 10(a) is a schematic diagram of a method for determining a subband resource according to an embodiment of the present invention.
  • FIG. 10(b) is a schematic diagram of another method for determining a seed band resource according to an embodiment of the present invention.
  • FIG. 11(a) is a schematic diagram of determining a subband in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 11(b) is another schematic diagram of determining a subband in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 11(c) is still another schematic diagram of determining a subband in a method for determining a subband resource according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another method for determining a seed band resource according to an embodiment of the present invention.
  • FIG. 13(a) is a schematic diagram of a subband number in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 13(b) is another schematic diagram of a subband number in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 13(c) is still another schematic diagram of a subband number in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 13(d) is still another schematic diagram of a subband number in a method for determining a subband resource according to an embodiment of the present invention
  • 14(a) is a schematic diagram of subband numbers of overlapping subbands in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 14(b) is another schematic diagram of subband numbers of overlapable subbands in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 14(c) is still another schematic diagram of subband numbers of overlapable subbands in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 14(d) is still another schematic diagram of subband numbers of overlapable subbands in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 15(a) is still another schematic diagram of a subband number in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 15(b) is still another schematic diagram of a subband number in a method for determining a subband resource according to an embodiment of the present invention
  • FIG. 15(c) is a schematic diagram of a value of a fourth offset parameter in a method for determining a subband resource according to an embodiment of the present invention.
  • FIG. 15(d) is another schematic diagram of taking a value of a fourth offset parameter in a method for determining a subband resource according to an embodiment of the present invention.
  • FIG. 15(e) is still another schematic diagram of the value of the fourth offset parameter in the method for determining a subband resource according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of another seed band resource determining method according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside in the process and/or In a row thread, components can be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the UE may be a wireless user equipment or a wired user equipment.
  • the wireless user equipment may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless user equipment can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile user equipment such as a mobile telephone (or "cellular" telephone) and
  • RAN Radio Access Network
  • a computer having a mobile user device for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • a wireless user equipment may also be referred to as a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, and an Access Point. , Remote User Equipment, Access Terminal, User Terminal, User Agent, User Equipment.
  • the UE in the embodiment of the present invention may refer to only a working bandwidth that can be transmitted and/or received in the carrier (the working bandwidth is smaller than the bandwidth of the carrier, for example, the carrier bandwidth is 20 MHz, and the working bandwidth is 200 kHz, 1.4 MHz. UEs of 3 MHz, or 5 MHz, etc., and/or UEs with enhanced transmission characteristics.
  • the UE is a low complexity UE, and/or low cost, and/or low power consumption, and/or UE with enhanced transmission characteristics, and/or new type UE.
  • the working bandwidth of the UE can be understood as the frequency width at which the UE transceiver works normally, or the maximum frequency width supported.
  • the currently defined system bandwidth is 20 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz.
  • the working bandwidth of the LTE system is 20 MHz
  • the working bandwidth of the UE may be various possible values such as 200 KHz, 1 MHz, 1.4 MHz, and 5 MHz.
  • the value of the UE is only an example.
  • the actual working bandwidth of the UE can be set based on actual requirements, such as one or more requirements of the UE radio frequency capability, baseband capability, processor, and filter.
  • the radio frequency capability and/or baseband capability of the UE is less than the system bandwidth.
  • the system bandwidth is 20 MHz and the UE radio frequency capability and/or baseband processing capability is 200 KHz or 1.4 MHz.
  • a low complexity UE refers to a class of UEs that are only capable of transmitting and/or receiving working bandwidth in a carrier.
  • the present invention exemplifies the inventive method of the present invention by taking the UE as a low complexity UE as an example.
  • the enhanced transmission may be repeated transmission, spread spectrum transmission, retransmission, bundle time interval transmission, narrowband (such as subcarrier scheduling) transmission, ultra narrowband (such as bandwidth is several tens of hertz to ten thousand kilohertz) transmission, improve One or more of power spectral density transmission, relaxed demand transmission, and continuous attempted transmission.
  • the base station in the embodiment of the present invention may specifically refer to a device that communicates with a wireless UE through an air interface.
  • the base station is an access point or a terminal device.
  • the base station can be an evolved base station eNodeB.
  • the base station can also be regarded as a cell.
  • the present invention is mainly applied to an LTE (Long Term Evolution) system or an LTE-A (LTE Advanced, Advanced Long Term Evolution) system.
  • the invention is also applicable to other communication systems as long as there are entities in the communication system that can transmit information and other entities that can receive the information.
  • the base station or the UE transmits data and/or control information according to the subband resources.
  • the data may include a reference signal or a pilot signal or sequence.
  • the control information is carried in the control channel, and the control channel may be an enhanced physical downlink control channel or other channel carrying control information. of course, In the present invention, the base station or the UE may also transmit other information according to the sub-band resources.
  • a base station and a UE1 to a UE6 form a communication system in which a base station transmits public information to one or more UEs of UE1 to UE6.
  • UE4 to UE6 also constitute a communication system in which UE5 can transmit common information to one or more UEs in UE4 and UE6.
  • a base station in a communication system may refer to a device in an access network that communicates with wireless user equipment over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless user equipment and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE.
  • UE5 is a hotspot in the communication system. Its role is similar to that of a base station.
  • hotspots in a communication system are referred to as base stations, and the remaining devices are referred to as UEs.
  • an embodiment of the present invention provides a subband resource determining apparatus 20, where the apparatus 20 is applied to a UE, and the subband resource in the apparatus 20 is a resource in a subband, where the subband has a work in a bandwidth.
  • the frequency resource of the bandwidth, the bandwidth is the downlink bandwidth or the uplink bandwidth, and the working bandwidth is smaller than the bandwidth.
  • the device 20 includes an obtaining module 201, a determining module 202, and a transmitting module 203.
  • the obtaining module 201 is configured to obtain subband resource information, and provide the subband resource information to the determining module 202, where the subband resource information includes information for determining the subband resource.
  • the determining module 202 is configured to determine the subband resource according to the subband resource information, and provide the subband resource to the transmission module 203.
  • the transmission module 203 is configured to transmit data and/or control information according to the subband resource.
  • the present invention provides a subband resource determining apparatus, and the low complexity UE in the prior art can only transmit or receive data of a working bandwidth in a carrier, and the low complexity UE cannot know the bandwidth. Which of the working bandwidths of the bandwidth is used to transmit the bandwidth of the data associated with it, thereby obstructing the problem of communication between the low complexity UE and the base station, compared to the problem that the determining module in the UE of the present invention acquires by the acquiring module
  • the resource information is used to determine the subband resource, so that the transmission module can transmit data and/or control information according to the subband resource, so that when the working bandwidth is smaller than the carrier bandwidth, the UE can determine a certain frequency bandwidth in the bandwidth through the subband resource.
  • the bandwidth of the size is the bandwidth for transmitting or receiving data and its related data, so that the UE can communicate with the base station while realizing the cost saving or complexity reduction of the user equipment.
  • the subband resource in the present invention may be a subband or a central subcarrier of the subband.
  • the subband may be composed of at least one RB (Resource Block) or a PRB (Physical Resource Block).
  • RB and PRB are interchangeable.
  • RB/PRB is a time-frequency two-dimensional concept.
  • RB/PRB occupies at least one subcarrier in the frequency domain and at least one time slot in the time domain.
  • the carrier and subband of the present invention only represent the frequency dimension.
  • the subband in FIG. 3(a) includes 6 (even) PRBs and a center subcarrier of one carrier, and each PRB includes 12 subcarriers.
  • the central subcarrier is also called DC subcarrier, center frequency, and DC frequency.
  • the subband in FIG. 3(b) includes 15 (odd) PRBs and a center subcarrier of one carrier, and each PRB includes 12 subcarriers.
  • the eighth PRB numbered 7 is divided into two semi PRBs of equal frequency by the center subcarrier of the carrier.
  • the subband resource information in the present invention includes specific frequency information and a first offset parameter
  • the specific frequency information is used to determine a center subcarrier of the subband
  • the first offset parameter is used to determine a center of the subband. The offset of the subcarrier.
  • the subband resource information includes a first parameter used to determine a location of a central subcarrier of the subband in the resource block RB, and a second parameter used to determine a central subcarrier of the subband The resource block RB. or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner specifies a configuration manner of the subband in the bandwidth, and the subband index is the number of the subband in the bandwidth.
  • the specific frequency information is a center frequency point of a center subcarrier of the carrier, a center subcarrier of the carrier, a subcarrier index of a center subcarrier of the carrier, and a carrier a specific subcarrier, a specific subcarrier index in a carrier, a specific resource block in a carrier, a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency position in a carrier, a carrier in a carrier
  • the first offset parameter indicates one of a number of subcarriers of the first offset, a frequency magnitude of the first offset, a number of resource blocks of the first offset, or A variety.
  • the present invention further provides a sub-band resource determining apparatus 40.
  • the apparatus 40 further includes: a receiving module 204, a numbering module 205; and the obtaining module 201 further includes a receiving unit 2011 and a determining unit 2012. .
  • the receiving module 204 is configured to receive the first signaling sent by the base station, and provide the first signaling to the determining module 202, where the first signaling is used to indicate the specific frequency information and the first offset determining the subband resource.
  • the first specific mode is an adding mode or a subtracting mode, or a second specific mode indicating a specific frequency information, a first offset, and a second offset determining a subband resource, and the second specific mode is an adding manner.
  • the determining module 202 determines the subband resource by using the subband resource information and the first signaling.
  • the signaling in the present invention may be one or more of radio resource control signaling, media access control signaling, and physical layer signaling.
  • the radio resource control signaling may be radio resource control common signaling and/or radio resource control proprietary signaling.
  • the radio resource control common signaling may be one or more of system information, system information blocks, and main information blocks.
  • the radio resource control proprietary signaling may specifically be one or more of an initial random access response and a contention resolution message.
  • the media access control signaling may be a control element of media access control.
  • the physical layer signaling may be a control channel carrying control information.
  • the control channel is a control channel that schedules control information for a random access response. Or a control channel that schedules control information for contention resolution messages.
  • the determining module 202 is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the subband resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where the subband resource information further includes a second offset parameter, where the second offset parameter indicates that the second offset is a frequency resource width of N subcarriers or N subcarriers, and N is an integer not equal to 0.
  • the determining module 202 is further configured to: when the subband resource information includes the first parameter and the second parameter, determine the subband resource, the subband resource information according to the first parameter, the second parameter, and the third offset parameter.
  • a third offset parameter is also included, the third offset parameter being used to determine an offset of a center subcarrier of the subband.
  • the subband determination manner adopts the subband determination manner 1 or the subband determination manner 2. among them:
  • Subband determination mode 1 The numbering module 205 numbers the subbands from one side of the center subcarrier of the carrier, and when the available subband number on the center subcarrier side of the carrier is completed, the other subcarrier of the carrier from the center Numbering the sub-bands sideways;
  • all subbands whose subband resources are located on the left side of the center subcarrier of the carrier are sequentially numbered from the low frequency to the high frequency, and then the subband resources are located on the carrier.
  • All unnumbered sub-bands on the right side of the center subcarrier ie, the frequency resource whose frequency is higher than the carrier center subcarrier frequency point
  • all subbands whose subband resources are located on the right side of the center subcarrier of the carrier are sequentially numbered from the high frequency to the low frequency, and then the subband resources are located.
  • All unnumbered sub-bands on the left side of the center subcarrier of the carrier ie, the frequency resource whose frequency is lower than the carrier center subcarrier frequency
  • Subband determination mode 2 The numbering module 205 numbers the subbands from one side of the center subcarrier of the carrier, and after completing the numbering of one subband, numbers the subbands from the other side of the center subcarrier of the carrier. After completing the number of one subband, return to the center subcarrier of the carrier One side, numbering its remaining subbands, after completing the numbering of one subband, returning to the other side of the center subcarrier of the carrier, numbering the remaining subbands until two of the center subcarriers of the carrier The side sub-bands are all numbered.
  • the subband is referred to as a central subband. Otherwise, the subband is called a non-center subband.
  • the center subband can be the first subband (ie numbered 0), or numbered as the last subband, or the numbering method is the same as the non-center subband, or as the default subband.
  • the default subband is numbered 0, or the default subband does not participate in the subband number.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, the fourth offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine the subband Offset
  • the determining module 202 is further configured to determine a subband resource according to the subband determining manner, the subband index, and the fourth offset parameter, and determine the subband resource according to the subband determining manner, the subband index, and the fifth offset parameter; The determining mode, the subband index, the fourth offset parameter, and the fifth offset parameter determine the subband resource.
  • the value of the fourth offset parameter may be fixed in advance according to the system bandwidth.
  • the fourth offset 1.5RB; and / or,
  • the fourth offset 0.5RB; and / or,
  • the fourth offset 1 RB; and / or,
  • the fourth offset 2 RB.
  • the fourth offset to the left (or right) of the center subcarrier of the carrier is 0, and the fourth offset to the right (or left) of the center subcarrier of the carrier is 1 RB; and/or,
  • the fourth offset to the left (or right) of the center subcarrier of the carrier is 0, and the fourth offset to the right (or left) of the center subcarrier of the carrier is 2RB; and/or,
  • the RBs within the offset range indicated by the fourth offset do not belong to any subband.
  • the RBs in the offset range indicated by the fourth offset may form a special subband (the number of RBs included in the special subband is smaller than the RB included in the subband) number).
  • the RBs in the offset range indicated by the fourth offset may constitute a special subband; for the second system bandwidth set
  • the RBs within the offset range indicated by the fourth offset (including the left and right sides of the center subcarrier of the carrier) do not belong to any subband.
  • the first system bandwidth set contains a different bandwidth than the second system bandwidth set.
  • the first system bandwidth set includes 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz system bandwidth
  • the second system bandwidth set includes 1.4 MHz system bandwidth.
  • the special sub-band includes 3 RBs
  • the special sub-band includes 1 RB;
  • the special sub-band includes 2 RBs
  • the special sub-band includes 3 RBs
  • the special sub-band includes 4 RBs
  • the first system bandwidth set includes 5 MHz, 10 MHz, 15 MHz, 20 MHz system bandwidth
  • the second system bandwidth set includes 1.4 MHz, 3 MHz system bandwidth.
  • the fifth offset 0.
  • the fifth offset is equal to zero.
  • the value of the fifth offset is configured by higher layer signaling.
  • the center subcarrier of the carrier is the DC subcarrier of the carrier or the center frequency of the carrier. If the carrier does not have a DC subcarrier, the center subcarrier of the carrier is the center frequency of the carrier.
  • the determining module 202 is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information further includes the sixth bias.
  • a shift parameter, the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is smaller than the first threshold, the subband resource is determined according to the subband resource information and the sixth offset parameter; when the subband index is an even number And determining, according to the subband resource information and the sixth offset parameter, the subband resource; and when the subband index is an odd number, determining the subband resource according to the subband resource information and the sixth offset parameter.
  • the subband resource is a subband
  • the subband includes 2M+2 subcarriers, where M is an integer greater than 0.
  • the subband carries one subcarrier as the central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a frequency higher than a central subcarrier of the subband M+1 subcarriers; or, the center subcarrier of the subband, the M+1 subcarriers whose frequency is lower than the center subcarrier of the subband, and the M subcarriers whose frequency is higher than the center subcarrier of the subband wave;
  • the subband has two subcarriers as subband center subcarriers, and the subband resources include: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and M of a frequency higher than a central subcarrier of the subband Subcarriers.
  • the obtaining module 201 obtains the subband resource information in two ways.
  • the first mode is: the receiving unit 2011 in the obtaining module 201 receives the second signaling sent by the base station, and obtains the subband resource information from the second signaling.
  • the second way is: the determining unit 2012 in the obtaining module 201 determines the sub-band resource information according to a predetermined manner.
  • the predetermined manner may be a standard and/or system prescribed manner.
  • the receiving module 204 is further configured to receive the third signaling sent by the base station, and provide the third signaling to the determining module 202, where the third signaling indicates the downlink subband resource and the uplink subband resource.
  • the determining module 202 determines the uplink sub-band resource according to the downlink sub-band resource and the duplex interval.
  • the determining module 202 is configured according to the uplink. The subband resource and the duplex interval determine the downlink subband resource.
  • the duplex interval may be a signaling configuration or a predetermined manner.
  • the invention determines the sub-band resource by acquiring the sub-band resource information, so that the data and/or the control information can be transmitted according to the sub-band resource, so that when the working bandwidth is smaller than the carrier bandwidth, a certain segment of the bandwidth can be determined by using the sub-band resource.
  • the bandwidth of the frequency bandwidth is the bandwidth for transmitting or receiving data and its related data, so that the UE can communicate with the base station while realizing the cost saving or complexity reduction of the user equipment.
  • the present invention may further provide another seedband resource determining apparatus 50, where the apparatus 50 is applied to a base station, and the subband resource in the apparatus 50 is a resource in a subband, where the subband For the frequency resource having the working bandwidth in the bandwidth, the bandwidth is the downlink bandwidth or the uplink bandwidth, and the working bandwidth is smaller than the bandwidth.
  • the device 50 includes an obtaining module 501, and a determining module 502. Transmission module 503.
  • the obtaining module 501 is configured to obtain subband resource information, and provide the subband resource information to the determining module 502, where the subband resource information includes information for determining the subband resource.
  • the determining module 502 is configured to determine the subband resource according to the subband resource information, and provide the subband resource to the transmission module 503.
  • the transmission module 503 is configured to transmit data and/or control information according to the subband resource.
  • the present invention provides a subband resource determining apparatus.
  • a low complexity UE can only transmit or receive data of a working bandwidth in a carrier, and a low complexity UE cannot know which bandwidth of the working bandwidth in the bandwidth is a bandwidth.
  • the determining module in the base station of the present invention determines the sub-band resource by acquiring the sub-band resource information acquired by the module, as compared with the problem of the bandwidth of the data associated with the base station, and thus the communication between the low-complexity UE and the base station.
  • the transmission module transmits data and/or control information according to the subband resource, so that when the working bandwidth is smaller than the carrier bandwidth, the base station can determine the bandwidth of a certain specific frequency bandwidth in the bandwidth through the subband resource, and send or receive data related thereto.
  • the bandwidth of the data so that the UE can communicate with the base station while realizing the cost saving or complexity reduction of the user equipment.
  • the subband resource in the present invention may be a subband or a central subcarrier of the subband.
  • the subband resource information in the present invention includes specific frequency information and a first offset parameter
  • the specific frequency information is used to determine a center subcarrier of the subband
  • the first offset parameter is used to determine a center of the subband. The offset of the subcarrier.
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in the resource block RB, and the second parameter is used to determine a resource block RB where the central subcarrier of the subband is located. . or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner specifies a configuration manner of the subband in the bandwidth, and the subband index is the number of the subband in the bandwidth.
  • the specific frequency information is a center frequency point of a center subcarrier of the carrier, a center subcarrier of the carrier, a subcarrier index of a center subcarrier of the carrier, and a carrier a specific subcarrier, a specific subcarrier index in a carrier, a specific resource block in a carrier, a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency position in a carrier, a carrier in a carrier
  • the first offset parameter indicates one of a number of subcarriers of the first offset, a frequency magnitude of the first offset, a number of resource blocks of the first offset, or A variety.
  • the present invention further provides a sub-band resource determining apparatus 60.
  • the apparatus 60 further includes: a generating module 504, a sending module 505, a numbering module 506; and the obtaining module 501 includes a generating unit 5011 and The unit 5012 is determined.
  • the generating module 504 is configured to generate a first specific manner for indicating specific frequency information and a first offset determining subband resource, and/or generate to indicate specific frequency information, a first offset, and a second offset. Determining a second specific manner of the subband resource, where the first specific mode is an addition mode or a subtraction mode, and the second specific mode is an addition mode or a subtraction mode; and generating a first signaling, where the first signaling indicates the first Specific way and / or second specific way.
  • the determining module 502 determines the subband resources according to the subband resource information, the first specific manner, and/or the second specific manner.
  • the sending module 505 sends the first signaling to the user equipment UE.
  • the determining module 502 is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the subband resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where the subband resource information further includes The second offset parameter indicates that the second offset is a frequency resource width of N subcarriers or N subcarriers, and N is an integer not equal to 0.
  • the determining module 502 is further configured to: when the subband resource information includes the first parameter and the second parameter, determine the subband resource, the subband resource information according to the first parameter, the second parameter, and the third offset parameter.
  • a third offset parameter is also included, the third offset parameter being used to determine an offset of a center subcarrier of the subband.
  • the subband determining manner adopts a subband determining manner 1 or a subband determining manner 2;
  • Subband determination mode 1 The numbering module 506 numbers the subbands from one side of the center subcarrier of the carrier, and when the available subband number on the center subcarrier side of the carrier is completed, the other subcarrier of the carrier from the center Numbering the sub-bands sideways;
  • Subband determination mode 2 The numbering module 506 numbers the subbands from one side of the center subcarrier of the carrier, and after completing the numbering of one subband, numbers the subbands from the other side of the center subcarrier of the carrier. After completing the number of one subband, return to one side of the center subcarrier of the carrier, number the remaining subbands, and after completing the number of one subband, return to the other side of the center subcarrier of the carrier, The remaining subbands are numbered until the available subbands on both sides of the center subcarrier of the carrier are numbered.
  • sub-band determination mode 1 and the sub-band determination mode 2 are the same as those in the sub-band resource determination device 40, and are not described herein again.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, the fourth offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine the subband Offset.
  • the determining module 502 is further configured to determine a subband resource according to the subband determining manner, the subband index, and the fourth offset parameter, and determine the subband resource according to the subband determining manner, the subband index, and the fifth offset parameter; The determining mode, the subband index, the fourth offset parameter, and the fifth offset parameter determine the subband resource.
  • the related description of the fourth offset parameter is the same as the related description in the foregoing sub-band resource determining apparatus 40, and details are not described herein again.
  • the determining module 502 is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information further includes the sixth bias.
  • a shift parameter the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is less than the first threshold, the subband resource is determined according to the subband resource information and the sixth offset parameter; When the subband index is an even number, the subband resource is determined according to the subband resource information and the sixth offset parameter; when the subband index is an odd number, the subband resource is determined according to the subband resource information and the sixth offset parameter.
  • the subband resource is a subband
  • the subband includes 2M+2 subcarriers, where M is an integer greater than 0.
  • the subband carries one subcarrier as the central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a frequency higher than a central subcarrier of the subband M+1 subcarriers; or, the center subcarrier of the subband, the M+1 subcarriers whose frequency is lower than the center subcarrier of the subband, and the M subcarriers whose frequency is higher than the center subcarrier of the subband.
  • the subband has two subcarriers as subband center subcarriers, and the subband resources include: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and M of a frequency higher than a central subcarrier of the subband Subcarriers.
  • the obtaining module 501 obtains the subband resource information in two ways.
  • the first mode is: the generating unit 5011 in the obtaining module 501 generates subband resource information;
  • the second mode is: the determining unit 5012 in the obtaining module 501 determines the subband resource information according to a predetermined manner;
  • the sending module 505 sends the second signaling that carries the sub-band resource information to the UE.
  • the determining module 502 is further configured to determine a duplex interval between the downlink subband resource and the uplink subband resource; the generating module 504 generates the third signaling, and provides the third signaling to the sending module 505. .
  • the sending module 505 sends a third signaling carrying a duplex interval to the UE.
  • the determining module 502 is further configured to determine, according to the downlink sub-band resource and the duplex interval, the uplink sub-band resource when the sub-band resource is the downlink sub-band resource; and when the sub-band resource is the uplink sub-band resource, according to the downlink sub-band The resource and duplex intervals determine the downlink subband resources.
  • the invention determines the sub-band resource by acquiring the sub-band resource information by the base station, so that the data can be transmitted according to the sub-band resource and/or the control information, and the base bandwidth is less than the carrier bandwidth.
  • the sub-band resource can determine the bandwidth of a certain frequency bandwidth in the bandwidth as the bandwidth of sending or receiving data and its related data, so that the UE and the UE can achieve the cost saving or the complexity reduction.
  • the purpose of communication by the base station is not limited to communicated.
  • FIG. 7 is a schematic diagram of a hardware structure of the UE.
  • the UE may include a memory 701, a processor 702, and a transceiver 703.
  • the memory 701 may be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 701 can store an operating system and other applications.
  • the program code for implementing the technical solution provided by the embodiment of the present invention is stored in the memory 701 and executed by the processor 702.
  • the processor 702 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the transceiver 703 is used for communication between the device and other devices or communication networks such as, but not limited to, Ethernet, Radio Access Network (RAN), Wireless Local Area Network (WLAN), and the like. It should be noted that although the hardware shown in FIG. 7 shows only the memory 701, the transceiver 702, and the processor 703.
  • the terminal also includes other devices necessary for normal operation.
  • the terminal also includes other devices necessary for normal operation.
  • hardware devices that implement other functions may also be included, depending on the particular needs.
  • the processor 703 in the apparatus is configured to be coupled to the memory 701 and the transceiver 703 for controlling program instructions.
  • Execution, specifically for acquiring subband resource information, the subband resource information includes determining information of the subband resource; and determining the subband resource according to the subband resource information.
  • the transceiver 703 is configured to transmit data and/or control information according to the subband resource.
  • the sub-band resource is a sub-band.
  • the subband resource is the center subcarrier of the subband.
  • the subband resource information includes specific frequency information and a first offset parameter, the specific frequency information is used to determine a center subcarrier of the subband, and the first offset parameter is used to determine an offset of a center subcarrier of the subband; or
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in the resource block RB, and the second parameter is used to determine a resource block RB where the central subcarrier of the subband is located. ;or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner specifies a configuration manner of the subband in the bandwidth, and the subband index is the number of the subband in the bandwidth.
  • the specific frequency information is a center frequency point of a center subcarrier of the carrier, a center subcarrier of the carrier, a subcarrier index of a center subcarrier of the carrier, and a carrier a specific subcarrier, a specific subcarrier index in a carrier, a specific resource block in a carrier, a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency position in a carrier, a carrier in a carrier One or more of a specific frequency resource.
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the processor 702 is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the subband resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where the subband resource information A second offset parameter is further included, the second offset parameter indicating that the second offset is a frequency resource width of N subcarriers or N subcarriers, and N is an integer not equal to 0.
  • the transceiver 703 is further configured to receive the first signaling sent by the base station, and provide the first signaling to the processor 702, where the first signaling is used to indicate the specific frequency information and the first offset determining the subband resource.
  • the first specific mode is an adding mode or a subtracting mode, or a second specific mode indicating a specific frequency information, a first offset, and a second offset determining a subband resource, where the second specific mode is a phase Add mode or subtract mode.
  • Processor 702 passes subband resource information And the first signaling determines the subband resource.
  • the processor 702 is further configured to: when the subband resource information includes the first parameter and the second parameter, determine the subband resource, the subband resource information according to the first parameter, the second parameter, and the third offset parameter.
  • a third offset parameter is also included, the third offset parameter being used to determine an offset of a center subcarrier of the subband.
  • the subband determining manner adopts a subband determining manner 1 or a subband determining manner 2; wherein:
  • Subband determination mode 1 The processor 702 numbers the subbands from one side of the center subcarrier of the carrier, and when the available subband number on the center subcarrier side of the carrier is completed, another subcarrier from the center of the carrier The sub-bands are numbered on the side.
  • Subband determination mode 2 The processor 702 numbers the subbands from one side of the center subcarrier of the carrier, and after completing the number of one subband, numbers the subbands from the other side of the center subcarrier of the carrier. After completing the number of one subband, return to one side of the center subcarrier of the carrier, number the remaining subbands, and after completing the number of one subband, return to the other side of the center subcarrier of the carrier, The remaining subbands are numbered until the available subbands on both sides of the center subcarrier of the carrier are numbered.
  • sub-band determination mode 1 and the sub-band determination mode 2 are the same as those in the sub-band resource determination device 40, and are not described herein again.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, the fourth offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine the subband Offset.
  • the processor 702 is further configured to determine a subband resource according to the subband determining manner, the subband index, and the fourth offset parameter, and determine the subband resource according to the subband determining manner, the subband index, and the fifth offset parameter; The determining mode, the subband index, the fourth offset parameter, and the fifth offset parameter determine the subband resource.
  • the related description of the fourth offset parameter is the same as the related description in the foregoing sub-band resource determining apparatus 40, and details are not described herein again.
  • the processor 702 is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information further includes the sixth bias.
  • a shift parameter, the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is smaller than the first threshold, the subband resource is determined according to the subband resource information and the sixth offset parameter; when the subband index is an even number And determining, according to the subband resource information and the sixth offset parameter, the subband resource; and when the subband index is an odd number, determining the subband resource according to the subband resource information and the sixth offset parameter.
  • the subband resource is a subband
  • the subband includes 2M+2 subcarriers, where M is an integer greater than 0.
  • the subband carries one subcarrier as the central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a frequency higher than a central subcarrier of the subband M+1 subcarriers; or, the center subcarrier of the subband, the M+1 subcarriers whose frequency is lower than the center subcarrier of the subband, and the M subcarriers whose frequency is higher than the center subcarrier of the subband.
  • the subband has two subcarriers as subband center subcarriers, and the subband resources include: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and M of a frequency higher than a central subcarrier of the subband Subcarriers.
  • the transceiver 703 is further configured to receive the second signaling sent by the base station, and obtain the subband resource information from the second signaling.
  • the processor 702 is further configured to determine subband resource information according to a predetermined manner.
  • the transceiver 703 is further configured to receive the third signaling sent by the base station, and provide the third signaling to the processor 702, where the third signaling indicates the downlink subband resource and the uplink subband resource. Duplex interval.
  • the processor 702 is further configured to: when the sub-band resource is a downlink sub-band resource, according to the downlink sub-band The source and the duplex interval determine the uplink subband resource.
  • the subband resource is the uplink subband resource
  • the downlink subband resource is determined according to the uplink subband resource and the duplex interval.
  • the memory 701, the processor 702, and the transceiver 703 may also be connected by bus communication, and the bus may include a path for transferring information between various components of the device, such as the memory 701, the processor 702, and the transceiver 703.
  • the present invention determines the sub-band resource by acquiring the sub-band resource information by the base station, so that the sub-band resource can transmit the data and/or the control information, so that when the working bandwidth is smaller than the carrier bandwidth, the UE can determine the bandwidth in the bandwidth through the sub-band resource.
  • the bandwidth of a certain frequency bandwidth is the bandwidth for transmitting or receiving data and its related data, so that the UE can communicate with the base station while realizing the cost saving or complexity reduction of the user equipment.
  • FIG. 8 is a hardware structure diagram of a base station.
  • the base station may include a memory 801, a processor 802, and a transceiver 803.
  • FIG. 8 only shows the memory 801, the processor 802, and the transceiver 803, in a specific implementation process, those skilled in the art should understand that the terminal also needs to implement the normal operation. Other devices. At the same time, those skilled in the art will appreciate that hardware devices that implement other functions may also be included, depending on the particular needs.
  • the processor 802 in the apparatus is coupled to the memory 801 and the transceiver 803 for controlling execution of program instructions. Specifically, it is used to obtain subband resource information, where the subband resource information includes information for determining a subband resource, and the subband resource is determined according to the subband resource information.
  • the transceiver 803 is configured to transmit data and/or control information according to the subband resource.
  • the sub-band resource is a sub-band.
  • the subband resource is the center subcarrier of the subband.
  • the subband resource information includes specific frequency information and a first offset parameter, the specific frequency information is used to determine a center subcarrier of the subband, and the first offset parameter is used to determine an offset of a center subcarrier of the subband; or
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in the resource block RB, and the second parameter is used to determine a resource block RB where the central subcarrier of the subband is located. ;or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner specifies a configuration manner of the subband in the bandwidth, and the subband index is the number of the subband in the bandwidth.
  • the specific frequency information is a center frequency point of a center subcarrier of the carrier, a center subcarrier of the carrier, a subcarrier index of a center subcarrier of the carrier, and a carrier a specific subcarrier, a specific subcarrier index in a carrier, a specific resource block in a carrier, a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency position in a carrier, a carrier in a carrier One or more of a specific frequency resource.
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the processor 802 is further configured to: when the number of resource blocks included in the bandwidth is an odd number, determine the subband resource according to the specific frequency information, the first offset parameter, and the second offset parameter, where the subband resource information A second offset parameter is further included, the second offset parameter indicating that the second offset is a frequency resource width of N subcarriers or N subcarriers, and N is an integer not equal to 0.
  • the processor 802 is further configured to generate a first specific manner for indicating the specific frequency information and the first offset determining subband resource, and/or generate the information for indicating the specific frequency, the first offset, and the second
  • the second specific way of determining the subband resource, the first specific way is the adder Or a subtraction mode, the second specific mode is an addition mode or a subtraction mode; and generating first signaling, the first signaling indicating the first specific mode and/or the second specific mode; according to the subband resource information, Subband resources are determined in a particular manner and/or in a second specific manner.
  • the transceiver 803 transmits the first signaling to the UE.
  • the processor 802 is further configured to: when the subband resource information includes the first parameter and the second parameter, determine the subband resource, the subband resource information according to the first parameter, the second parameter, and the third offset parameter.
  • a third offset parameter is also included, the third offset parameter being used to determine an offset of a center subcarrier of the subband.
  • the subband determining manner adopts a subband determining manner 1 or a subband determining manner 2; wherein:
  • Subband determination mode 1 The processor 802 numbers the subbands from one side of the center subcarrier of the carrier, and when the available subband number on the center subcarrier side of the carrier is completed, the other subcarrier of the carrier from the center The sub-bands are numbered on the side.
  • Subband determination mode 2 The processor 802 numbers the subbands from one side of the center subcarrier of the carrier, and after completing the numbering of one subband, numbers the subbands from the other side of the center subcarrier of the carrier. After completing the number of one subband, return to one side of the center subcarrier of the carrier, number the remaining subbands, and after completing the number of one subband, return to the other side of the center subcarrier of the carrier, The remaining subbands are numbered until the available subbands on both sides of the center subcarrier of the carrier are numbered.
  • sub-band determination mode 1 and the sub-band determination mode 2 are the same as those in the sub-band resource determination device 40, and are not described herein again.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, the fourth offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine the subband Offset.
  • the processor 802 is further configured to determine a subband resource according to the subband determining manner, the subband index, and the fourth offset parameter, and determine the subband resource according to the subband determining manner, the subband index, and the fifth offset parameter;
  • the subband resource is determined according to the subband determination manner, the subband index, the fourth offset parameter, and the fifth offset parameter.
  • the related description of the fourth offset parameter is the same as the related description in the foregoing sub-band resource determining apparatus 40, and details are not described herein again.
  • the processor 802 is further configured to: when the subband index is greater than and/or equal to the first threshold, determine the subband resource according to the subband resource information and the sixth offset parameter, where the subband resource information further includes a sixth bias.
  • a shift parameter the sixth offset parameter is used to determine a center subcarrier of the subband; when the subband index is smaller than the first threshold, the base station determines the subband resource according to the subband resource information and the sixth offset parameter; when the subband index is an even number The subband resource is determined according to the subband resource information and the sixth offset parameter; when the subband index is an odd number, the subband resource is determined according to the subband resource information and the sixth offset parameter.
  • subband resource is a subband
  • subband includes 2M+2 subcarriers:
  • the subband carries one subcarrier as the central subcarrier of the subband
  • the subband resource includes: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and a frequency higher than a central subcarrier of the subband M+1 subcarriers; or, the center subcarrier of the subband, the M+1 subcarriers whose frequency is lower than the center subcarrier of the subband, and the M subcarriers whose frequency is higher than the center subcarrier of the subband.
  • the subband has two subcarriers as subband center subcarriers, and the subband resources include: a central subcarrier of the subband, M subcarriers whose frequency is lower than a central subcarrier of the subband, and M of a frequency higher than a central subcarrier of the subband Subcarriers.
  • the processor 802 is further configured to generate subband resource information, and determine subband resource information according to a predetermined manner.
  • the transceiver 803 is further configured to send the second signaling that carries the subband resource information to the UE.
  • the processor 802 is further configured to determine a duplex interval between the downlink subband resource and the uplink subband resource, generate the third signaling, and provide the third signaling to the transceiver.
  • the transceiver 803 is further configured to send, to the UE, third signaling that carries a duplex interval.
  • the processor 802 is further configured to determine, according to the downlink subband resource and the duplex interval, the uplink subband resource when the subband resource is the downlink subband resource, and the downlink subband resource according to the downlink subband resource when the subband resource is the uplink subband resource. And the duplex interval determines the downlink subband resource.
  • the memory 801, the processor 802, and the transceiver 803 may also be connected by bus communication, and the bus may include a path for transferring information between various components of the device, such as the memory 801, the processor 802, and the transceiver 803.
  • the present invention determines the sub-band resource by acquiring the sub-band resource information by the base station, so that the base station can transmit the data and/or the control information according to the sub-band resource, so that when the working bandwidth is smaller than the carrier bandwidth, the base station can determine the bandwidth in the bandwidth through the sub-band resource.
  • the bandwidth of a certain frequency bandwidth is the bandwidth for transmitting or receiving data and its related data, so that the UE can communicate with the base station while realizing the cost saving or complexity reduction of the user equipment.
  • an embodiment of the present invention provides a method for determining a subband resource, where the method is applied to a UE, where a subband resource is a resource in a subband, where the subband is a frequency having a working bandwidth in the bandwidth.
  • Resources, bandwidth is downlink bandwidth or uplink bandwidth, and working bandwidth is smaller than bandwidth, as follows:
  • the UE acquires subband resource information, where the subband resource information includes information for determining a subband resource.
  • the UE determines the subband resource according to the subband resource information.
  • the UE transmits data and/or control information according to the subband resource.
  • the present invention provides a method for determining a subband resource.
  • a low complexity UE can only transmit or receive data of a working bandwidth in a carrier, and a low complexity UE cannot know which bandwidth of the bandwidth in the bandwidth is Compared with the problem of the communication between the low complexity UE and the base station, the present invention determines the subband resource by using the subband resource information acquired by the UE, so that the subband resource can be determined according to the subband resource. Transfer data and/or control The information is realized, when the working bandwidth is smaller than the carrier bandwidth, the UE can determine the bandwidth of a certain specific frequency bandwidth in the bandwidth by using the sub-band resource as the bandwidth of transmitting or receiving data and related data, thereby achieving the realization of the user equipment cost.
  • the purpose of communication between the UE and the base station while reducing the complexity or complexity.
  • the subband resource information in step 901 may include specific frequency information and a first offset parameter, the specific frequency information is used to determine a center subcarrier of the subband, and the first offset parameter is used to determine the subband. The offset of the center subcarrier.
  • the specific frequency information is the center frequency of the center subcarrier of the carrier, the center subcarrier of the carrier, the subcarrier index of the center subcarrier of the carrier, one specific subcarrier in the carrier, one specific subcarrier index in the carrier, and the carrier.
  • the specific frequency information in the present invention is described by taking the central subcarrier of the carrier as an example.
  • one specific subcarrier in the carrier is a subcarrier indexed as N DL PBB ⁇ (N RB SC /2), or a subcarrier indexed as N DL PBB ⁇ (N RB SC /2)-1.
  • One specific RB in the carrier is an RB indexed as N DL PBB /2, or an RB indexed as (N DL PBB /2)-1, or an RB indexed as 0, or an RB indexed as N DL PBB -1.
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the first offset size can be determined by signaling or by subband indexing.
  • the subband resource information may further include a second offset parameter, where the second offset parameter indicates that the second offset is a frequency resource width of the N subcarriers or the N subcarriers, and N is an integer not equal to 0.
  • N may be any one of 5, 6, and 7.
  • the second offset parameter is applied to a scenario in which the number of resource blocks included in the bandwidth is an odd number.
  • each RB boundary in the subband needs to be associated with the carrier. The RB boundaries are consistent, so that the number of subcarriers that cannot be used can be reduced.
  • the present invention may further include: the UE receiving the first signaling sent by the base station, where the first signaling is used to indicate the specific frequency information and the first offset determining the subband resource.
  • the first specific mode is an addition mode or a subtraction mode.
  • the first signaling is used to indicate a specific frequency information
  • the first offset, and the second offset determine a second specific manner of the subband resource
  • the second specific manner is an adding manner or a subtracting manner.
  • the first specific manner may be expressed as a plus or minus sign or an identifier representing a plus/minus sign.
  • the first signaling may also include a sub-band index.
  • the UE may directly determine, by the first specific manner, that the specific frequency information is added or phased with the first offset. Reduce the relationship.
  • the first signaling includes a subband index
  • the UE needs to determine, by the subband index, an addition or subtraction relationship between the frequency information and the first offset. After the UE determines that the specific frequency information is added or subtracted from the first offset, the subband resource can be determined.
  • the second specific mode has the same meaning as the first specific mode, except that the second specific mode determines the addition and subtraction relationship between the specific frequency information, the first offset, and the second offset. Therefore, it will not be repeated here.
  • the subband resource is determined according to the specific frequency information and the first offset parameter, as shown in FIG. 10(a).
  • the UE first determines a central subcarrier of the carrier by using specific frequency information, obtains a first specific manner by using the first signaling, and then determines, according to the first specific manner, that the center subcarrier of the carrier is offset (subtracted) by the first offset subcarrier.
  • the center subcarrier of the subband is determined by using specific frequency information, obtains a first specific manner by using the first signaling, and then determines, according to the first specific manner, that the center subcarrier of the carrier is offset (subtracted) by the first offset subcarrier.
  • the subband resource is determined according to the specific frequency information, the first offset parameter, and the second offset parameter, as shown in FIG. 10(b).
  • the UE first determines the center subcarrier of the carrier by using specific frequency information, and obtains the first signaling through the first signaling. Taking a second specific manner, then determining, according to the first specific manner, that the center subcarrier of the carrier is offset (subtracted) by the first offset, and then offsetting (subtracting) the second offset of the subcarrier into the center of the subband Subcarrier.
  • the UE can determine the center subcarrier of the subband by using specific frequency information, a first offset parameter, and/or a second offset parameter in the subband resource information. The UE then needs to determine the subband. The UE can know the number of subcarriers included in the subband, and thus after determining the center subcarrier of the subband, the subband is determined by the number of subcarriers included in the subband.
  • sub-band resources There are various ways to determine sub-band resources (sub-bands), and three ways are listed again.
  • M is an integer greater than 0.
  • the sub-band resource may include: a central subcarrier of the subband, and M sub-carriers whose frequency is lower than a subcarrier of the subband.
  • the carrier and frequency are higher than the M+1 subcarriers of the center subcarrier of the subband.
  • the subband m includes 35 subcarriers whose center frequency is less than 1 subband m, and 36 subcarriers. The frequency is higher than the center subcarrier of 1 subband m, and the center subcarrier of one subband m.
  • the sub-band resource may also include: or, the center sub-carrier of the sub-band and the center sub-carrier whose frequency is lower than the sub-band
  • the M+1 subcarriers have a frequency higher than the M subcarriers of the center subcarrier of the subband.
  • FIG. 11(b) it is assumed that 72 subcarriers are included in the subband, and the second subband can be obtained.
  • the subband m includes 36 subcarriers whose center frequency is lower than 1 subband m, and 35 subcarriers. The frequency is higher than the center subcarrier of 1 subband m, and the center subcarrier of one subband m.
  • the subband resource may include: a central subcarrier of the subband, and M subcarriers whose frequency is lower than a central subcarrier of the subband. The frequency is higher than the M subcarriers of the center subcarrier of the subband. As shown in FIG.
  • the subband m includes 35
  • the frequency of the subcarrier is lower than the center subcarrier of one subband m
  • the frequency of the 35 subcarriers is higher than the center subcarrier of one subband m
  • the center subcarrier of the two subbands m is assumed that 72 subcarriers are included in the subband, which can be obtained in the third manner, and the subband m includes 35
  • the frequency of the subcarrier is lower than the center subcarrier of one subband m
  • the frequency of the 35 subcarriers is higher than the center subcarrier of one subband m
  • the center subcarrier of the two subbands m is assumed that 72 subcarriers are included in the subband, which can be obtained in the third manner, and the subband m includes 35
  • the frequency of the subcarrier is lower than the center subcarrier of one subband m
  • the frequency of the 35 subcarriers is higher than the center subcarrier of one subband m
  • the subband resource information in step 901 includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in the resource block RB, and the second parameter is used to determine the subband.
  • the first parameter indicates which subcarrier is the central subcarrier of the subband. There may be 1 subcarrier or multiple subcarriers as the center subcarrier of the subband.
  • the first parameter consists of one or more bits.
  • the present invention may set one of the subcarrier k 1 and the subcarrier k 2 as a center subcarrier of the subband in advance.
  • the subcarrier k1 and the subcarrier k2 are different subcarriers.
  • subcarrier k1 is the first subcarrier in the RB
  • subcarrier k2 is the last subcarrier in the RB.
  • subcarrier k1 is the sixth subcarrier in the RB
  • subcarrier k2 is the seventh subcarrier in the RB.
  • the subcarrier k1 is the first subcarrier in the RB, and the subcarrier k2 is the last subcarrier in the RB; when the number of RBs included in the bandwidth is an odd number, the subcarrier k1 For the 6th subcarrier in the RB, the subcarrier k2 is the 7th subcarrier in the RB.
  • the first parameter consists of one bit.
  • the bit status of the first parameter can be 0 and 1. Where 0 (or 1) indicates that the subcarrier k1 is the center subcarrier of the subband.
  • the bit state of the first parameter is 1 (or 0) indicating that the subcarrier k2 in the determined RB is the center subcarrier of the subband.
  • the subband resource information further includes a third offset parameter, where the third offset parameter is used to determine an offset of a center subcarrier of the subband.
  • the first parameter consists of two bits.
  • the bit status of the first parameter may be 00, 01, 10, 11.
  • 00 indicates that the subcarrier k1 is the center subcarrier of the subband
  • 01 indicates that the subcarrier k2 is the center subcarrier of the subband
  • 10 indicates that the subcarrier k1 and the subcarrier k1-offset 3 are the center subcarriers of the subband
  • 11 indicates the subcarrier.
  • Carrier k2 and subcarrier k2+offset 3 are the center subcarriers of the subband.
  • the second parameter indicates the RB where the center subcarrier of the subband is located.
  • the second parameter may indicate which of the N RB RBs is the RB where the center subcarrier of the subband is located.
  • the RB where the central subcarrier of the subband is located may be one or more RBs.
  • N RB N DL RB
  • N DL RB is the number of RBs included in the carrier or subband.
  • N RB is a preset integer.
  • the second parameter may be composed of 7 bits, and the second parameter may indicate which of the 100 RBs is the RB where the center subcarrier of the subband is located.
  • the first parameter indicates that the first subcarrier in the determined RB is the center subcarrier of the subband.
  • the second parameter indicates that the RB where the central subcarrier of the subband is located is an RB with an index of 4, that is, the determined RB is an RB with an index of 4.
  • the UE determines that the center subcarrier of the subband is the first subcarrier in the RB with index 4.
  • the subband resource information in step 901 includes a subband determination manner and a subband index, and the subband determination manner specifies a configuration manner of the subband in the bandwidth, where the subband index is the number of the subband in the bandwidth.
  • Subband determination mode 1 The UE numbers the subbands from one side of the center subcarrier of the carrier. When the available subband number on the center subcarrier side of the carrier is completed, the other side of the center subcarrier of the carrier is paired. The subbands are numbered. As shown in Figure 13 (a) or as shown in Figure 13 (b), where DC0 is the center subcarrier of the carrier, Figure 13 (a) / Figure 13 (b) shows four sub-bands, each of which includes 6 RB. In Fig. 13(a), the numbers are started with sub-bands close to DC0; in Fig. 13(b), numbers are started with sub-bands far from DC0.
  • all subbands whose subband resources are located on the left side of the center subcarrier of the carrier are sequentially numbered from the low frequency to the high frequency, and then the subband resources are located on the carrier.
  • All unnumbered sub-bands on the right side of the center subcarrier ie, the frequency resource whose frequency is higher than the carrier center subcarrier frequency point
  • all subbands whose subband resources are located on the right side of the center subcarrier of the carrier are sequentially numbered from the high frequency to the low frequency, and then the subband resources are located.
  • All unnumbered sub-bands on the left side of the center subcarrier of the carrier ie, the frequency resource whose frequency is lower than the carrier center subcarrier frequency
  • Subband determination mode 2 The UE numbers the subbands from one side of the center subcarrier of the carrier. After completing the number of one subband, the subbands are numbered from the other side of the center subcarrier of the carrier, and are completed. After the number of a subband, it returns to the side of the center subcarrier of the carrier, numbers the remaining subbands, and after completing the number of one subband, returns to the other side of the center subcarrier of the carrier, leaving it The subbands are numbered until the subbands available for both sides of the center subcarrier of the carrier are numbered. As shown in Fig. 13(c) or as shown in Fig. 13(d), where DC0 is the center subcarrier of the carrier, and Fig.
  • FIG. 13(c)/Fig. 13(d) shows four subbands, each of which includes 6 RB. Similarly, in FIG. 13(c), the numbers are started with sub-bands close to DC0; in FIG. 13(d), numbers are started with sub-bands far from DC0.
  • DC0 is the center subcarrier of the carrier, and each subband includes 6 RBs.
  • 14(a) corresponds to FIG. 13(a)
  • FIG. 14(b) corresponds to FIG. 13(b)
  • FIG. 14(c) corresponds to FIG. 13(c)
  • FIG. 14(d) corresponds to FIG. 13(d).
  • the subband is referred to as a central subband. Otherwise, the subband is called a non-center subband.
  • the center subband can be the first subband (ie numbered 0) or numbered as the last
  • the subband, or numbering method is the same as the non-center subband, or as the default subband.
  • the default subband is numbered 0, or the default subband does not participate in the subband number.
  • the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, the fourth offset parameter is used to determine an offset of the subband, and the fifth offset parameter is used to determine the subband Offset.
  • the UE may determine the subband resource according to the subband determining manner, the subband index, and the fourth offset parameter; or, the UE may determine the subband determining manner, the subband index, the fourth offset parameter, and the first The five offset parameter determines the subband resource.
  • the fourth offset parameter can have a plurality of different meanings, and the value of the fourth offset parameter can be fixed or signaled.
  • the fourth offset parameter indicates an offset of the fourth offset from a center frequency point of the center subcarrier of the carrier, or indicates a shift of the fourth offset from the center subcarrier of the carrier, or indicates a fourth offset and The offset between specific RBs, or the offset of the fourth offset subband.
  • the fifth offset parameter has the same properties as the fourth offset parameter except that the range used is different.
  • the value of the fourth offset parameter may be fixed in advance according to the system bandwidth.
  • the fourth offset 1.5RB; and / or,
  • the fourth offset 0.5RB; and / or,
  • the fourth offset 1 RB; and / or,
  • the fourth offset 2 RB.
  • the fourth offset to the left (or right) of the center subcarrier of the carrier is 0, and the fourth offset to the right (or left) of the center subcarrier of the carrier is 1 RB; and/or,
  • the fourth offset to the left (or right) of the center subcarrier of the carrier is 0, and the fourth offset to the right (or left) of the center subcarrier of the carrier is 2RB; and/or,
  • the RBs within the offset range indicated by the fourth offset do not belong to any subband.
  • the RBs in the offset range indicated by the fourth offset may form a special subband (the number of RBs included in the special subband is smaller than the RB included in the subband) number).
  • the RBs in the offset range indicated by the fourth offset may constitute a special subband; for the second system bandwidth set
  • the RBs within the offset range indicated by the fourth offset (including the left and right sides of the center subcarrier of the carrier) do not belong to any subband.
  • the first system bandwidth set contains a different bandwidth than the second system bandwidth set.
  • the first system bandwidth set includes 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz system bandwidth
  • the second system bandwidth set includes 1.4 MHz system bandwidth.
  • the special sub-band includes 3 RBs
  • the special sub-band includes 1 RB;
  • the special sub-band includes 2 RBs
  • the special sub-band includes 3 RBs
  • the special sub-band includes 4 RBs
  • the first system bandwidth set includes 5 MHz, 10 MHz, 15 MHz, 20 MHz system bandwidth
  • the second system bandwidth set includes 1.4 MHz, 3 MHz system bandwidth.
  • the fifth offset 0.
  • the fifth offset is equal to zero.
  • the value of the fifth offset is configured by higher layer signaling.
  • the center subcarrier of the carrier is the DC subcarrier of the carrier or the center frequency of the carrier. If the carrier does not have a DC subcarrier, the center subcarrier of the carrier is the center frequency of the carrier.
  • the fourth offset indicates the offset of the subband from the center subcarrier of the carrier
  • the fifth offset indicates the specific RB in the subband and the carrier (eg, the first RB in the carrier) Or the offset of the last RB).
  • FIG. 15(c) shows the value of the fourth offset parameter in different system bandwidths, and the offset range indicated by the fourth offset (including the left and right sides of the center subcarrier of the carrier).
  • the RBs within ) do not belong to any subbands.
  • FIG. 15(d) shows the value of the fourth offset parameter under different system bandwidths, and the offset range indicated by the fourth offset (including the left and right sides of the center subcarrier of the carrier).
  • the RBs within constitute a sub-band.
  • FIG. 15(e) shows the value of the fourth offset parameter in another different system bandwidth, and the offset range indicated by the fourth offset (including the center subcarrier of the carrier)
  • the RBs in both sides do not belong to any sub-bands.
  • the subband resource information further includes a sixth offset parameter, where the sixth offset parameter is used to determine a center subcarrier of the subband, and the UE in step 902 determines the subband resource according to the subband resource information, including:
  • the UE determines the subband resource according to the subband resource information and the sixth offset parameter. or,
  • the UE determines the subband resource according to the subband resource information and the sixth offset parameter. or,
  • the UE determines the subband resource according to the subband resource information and the sixth offset parameter; or
  • the UE determines the subband resource according to the subband resource information and the sixth offset parameter.
  • the first threshold may be m-offset 4 or the first threshold may be m-offset 4 -offset 5.
  • m floor(A/S)
  • A N DL RB
  • N DL RB is the number of RBs included in the carrier or subband.
  • A is a preset integer.
  • Floor is a round-down function
  • N RB SC is the number of subcarriers included in each RB.
  • Defining parameters L, and L may be a parameter S, N RB SC or more relevant parameters, may be independent of S, N RB SC.
  • VDC(k) Define VDC(k) as the subcarrier index of the center subcarrier of subband k.
  • the definition offset 4 is the fourth offset parameter
  • the definition offset 5 is the fifth offset parameter
  • the definition offset 6 is the sixth offset parameter.
  • k the index of the subband.
  • VDC(k) N DL RB ⁇ (N RB SC /2)–(k+offse t 4) ⁇ L
  • VDC(k) N DL RB ⁇ (N RB SC /2)+(k-m+2 ⁇ offset 4 ) ⁇ L-offset 6
  • the value of k can be 1, 2, 3, ..., 2m-2 ⁇ offset4.
  • VDC(k) N DL RB ⁇ (N RB SC /2)–(K+offset 4 ) ⁇ L
  • VDC(k) N DL RB ⁇ (N RB SC /2)+(K-m+2 ⁇ offset 4 +offset 5 ) ⁇ L-offset 6
  • the value of k can be 1, 2, 3, ..., 2m - 2 ⁇ offset 4 - 2 ⁇ offset 5
  • VDC(k) N DL RB ⁇ (N RB SC /2)–(m-K+1-offset 4 ) ⁇ L
  • VDC(k) N DL RB ⁇ (N RB SC /2)+(2m-K+1-2 ⁇ offset 4 ) ⁇ L-offset 6
  • the value of k can be 1, 2, 3, ..., 2m-2 ⁇ offset 4 .
  • VDC(k) N DL RB ⁇ (N RB SC /2)–(m-k+1-offset 4 ) ⁇ L
  • VDC(k) N DL RB ⁇ (N RB SC /2)+(2m-k+1-2 ⁇ offset 4 -offset 5 ) ⁇ L-offset 6
  • the value of k can be 1, 2, 3, ..., 2m - 2 ⁇ offset 4 - 2 ⁇ offset 5
  • VDC(k) N DL RB ⁇ (N RB SC /2)–(m-ceil(k/2)+1-offset 4 ) ⁇ L
  • VDC(k) N DL RB ⁇ (N RB SC /2)+(mk/2+1-offset 4 ) ⁇ L-offset 6 or
  • VDC(k) N DL RB ⁇ (N RB SC /2)–VDC(k-1)
  • VDC(k) N DL RB ⁇ (N RB SC /2)–(m-ceil(K/2)+1-offset4) ⁇ L
  • VDC(k) N DL RB ⁇ (N RB SC /2)+(mk/2+1-offset4) ⁇ L-offset6or
  • VDC(k) N DL RB ⁇ (N RB SC /2)–VDC(k-1)
  • the value of k can be 1, 2, 3, ..., 2m - 2 ⁇ offset 4 - 2 ⁇ offset 5
  • the standard or system may specify that the subband center subcarriers are determined using one or more of the above described implementation methods.
  • the standard specifies the implementation of the method 3 or 6 to determine the subband center subcarrier.
  • the UE determines, by receiving signaling, which implementation method is used to determine the subband center subcarrier.
  • step 901 the UE acquires subband resource information in two ways.
  • the first mode the UE receives the second signaling sent by the base station, and obtains the subband resource information from the second signaling.
  • the second mode the UE determines the subband resource information according to a predetermined manner.
  • the present invention can also determine sub-band resources in another direction.
  • the UE receiving the base station sends the third signaling, and the third signaling indicates the duplex interval between the downlink subband resource and the uplink subband resource.
  • the UE determines the uplink sub-band resource according to the downlink sub-band resource and the duplex interval.
  • the sub-band resource is an uplink sub-band resource
  • the UE determines the downlink sub-band resource according to the uplink sub-band resource and the duplex interval. If the sub-band resource information occupied by the uplink transmission is determined by the notification determining message 3 in the random access response, the UE may determine the uplink sub-band resource transmitted by the message 3 according to the sub-band resource information. Further, the UE may determine a downlink subband resource of the contention resolution message transmission (or the control channel transmission of the scheduling contention resolution message) according to the uplink subband resource and the duplex interval.
  • the present invention determines the sub-band resource by acquiring the sub-band resource information, so that the UE can determine the bandwidth in the bandwidth through the sub-band resource when the working bandwidth is smaller than the carrier bandwidth, according to the sub-band resource transmission data and/or the control information.
  • the bandwidth of a certain frequency bandwidth is the bandwidth for transmitting or receiving data and its related data, so that the UE can communicate with the base station while realizing the cost saving or complexity reduction of the user equipment.
  • the present invention can also provide a method for determining a subband resource. As shown in FIG. 16 , the method is applied to a base station, where the sub-band resource is a resource in a sub-band, where the sub-band is a frequency resource having a working bandwidth in the bandwidth, and the bandwidth is a downlink bandwidth or an uplink bandwidth, and the working bandwidth is Less than the bandwidth, as follows:
  • the base station acquires subband resource information, where the subband resource information includes information for determining a subband resource.
  • the base station determines the subband resource according to the subband resource information.
  • the base station transmits data and/or control information according to the subband resource.
  • the present invention provides a method for determining a subband resource.
  • a low complexity UE can only transmit or receive data of a working bandwidth in a carrier, and a low complexity UE cannot know which bandwidth of the bandwidth in the bandwidth is Compared with the problem of transmitting the bandwidth of the related data, thereby obstructing the problem of communication between the low complexity UE and the base station, the present invention determines the subband resource by acquiring the subband resource information by the base station, thereby being able to transmit according to the subband resource.
  • the base station can determine the bandwidth of a certain frequency bandwidth in the bandwidth through the sub-band resource as the bandwidth of sending or receiving data and related data, thereby achieving The purpose of communication between the UE and the base station is achieved while the cost of the user equipment is reduced or the complexity is reduced.
  • the subband resource is a subband, or the subband resource is a central subcarrier of the subband.
  • the subband resource information in step 1601 may include specific frequency information and a first offset parameter, the specific frequency information is used to determine a center subcarrier of the subband, and the first offset parameter is used to determine a center subband of the subband. Carrier offset. or,
  • the subband resource information includes a first parameter and a second parameter, where the first parameter is used to determine a location of a central subcarrier of the subband in the resource block RB, and the second parameter is used to determine a resource block RB where the central subcarrier of the subband is located. . or,
  • the subband resource information includes a subband determination manner and a subband index, and the subband determination manner specifies a configuration manner of the subband in the bandwidth, and the subband index is the number of the subband in the bandwidth.
  • the specific frequency information is a center frequency point of a center subcarrier of the carrier, a center subcarrier of the carrier, a subcarrier index of a center subcarrier of the carrier, a specific subcarrier in the carrier, a specific subcarrier index in the carrier, and a carrier.
  • a specific resource block a specific resource block index in a carrier, a specific frequency point in a carrier, a specific frequency location in a carrier, and a specific frequency resource in a carrier.
  • the first offset parameter indicates one or more of the number of subcarriers of the first offset, the frequency magnitude of the first offset, and the number of resource blocks of the first offset.
  • the subband resource information when the number of resource blocks included in the bandwidth is an odd number, and the subband resource information includes the specific frequency information and the first offset parameter, the subband resource information further includes a second offset parameter, and the second offset The parameter indicates that the second offset is a frequency resource width of N subcarriers or N subcarriers, and N is an integer not equal to 0;
  • the determining, by the base station in the step 1602, the subband resource according to the subband resource information includes: determining, by the base station, the subband resource according to the specific frequency information, the first offset parameter, and the second offset parameter.
  • step 1602 the method further includes:
  • the base station generates a first specific manner for indicating the specific frequency information and the first offset determining subband resource, and/or generating a second for indicating the specific frequency information, the first offset, and the second offset determining subband resource
  • the first specific mode is an adding mode or a subtracting mode
  • the second specific mode is an adding mode or a subtracting mode, so that the base station determines according to the subband resource information, the first specific mode, and/or the second specific mode.
  • the base station generates first signaling, where the first signaling indicates the first specific mode and/or the second specific mode; and the first signaling is sent to the UE.
  • the source information further includes a third offset parameter, where the third offset parameter is used to determine an offset of a center subcarrier of the subband; and step 1602 may include: determining, by the base station, the first parameter, the second parameter, and the third offset parameter Subband resources.
  • the subband resource information includes a subband determination manner and a subband index:
  • the subband determination mode adopts subband determination mode 1 or subband determination mode 2;
  • Subband determination mode 1 The base station numbers the subbands from one side of the center subcarrier of the carrier. When all subbands on the center subcarrier side of the carrier are numbered, the other side of the center subcarrier of the carrier is paired. Subbands are numbered;
  • all subbands whose subband resources are located on the left side of the center subcarrier of the carrier are sequentially numbered from the low frequency to the high frequency, and then the subband resources are located on the carrier.
  • All unnumbered sub-bands on the right side of the center subcarrier ie, the frequency resource whose frequency is higher than the carrier center subcarrier frequency point
  • all subbands whose subband resources are located on the right side of the center subcarrier of the carrier are sequentially numbered from the high frequency to the low frequency, and then the subband resources are located.
  • All unnumbered sub-bands on the left side of the center subcarrier of the carrier ie, the frequency resource whose frequency is lower than the carrier center subcarrier frequency
  • Subband determination mode 2 The base station numbers the subbands from one side of the center subcarrier of the carrier, and after completing the number of one subband, numbers the subbands from the other side of the center subcarrier of the carrier, after completion After the number of one subband, return to the side of the center subcarrier of the carrier, number the remaining subbands, and after completing the number of one subband, return to the other side of the center subcarrier of the carrier of the carrier, The remaining subbands are numbered until the subbands are numbered on both sides of the center subcarrier of the carrier.
  • the subband is referred to as a central subband. Otherwise, the subband is called a non-center subband.
  • the center subband can be the first subband (ie numbered 0), or numbered as the last subband, or the numbering method is the same as the non-center subband, or as the default subband. Among them, the default The subband is numbered 0, or the default subband does not participate in the subband number.
  • the subband resource information when the subband resource information includes a subband determination manner and a subband index: the subband resource information further includes a fourth offset parameter and/or a fifth offset parameter, where the fourth offset parameter is used to determine the subband Offset, the fifth offset parameter is used to determine the offset of the subband;
  • Step 1602 The base station determines the subband resource according to the subband determining manner, the subband index, and the fourth offset parameter; or the base station determines the subband resource according to the subband determining manner, the subband index, and the fifth offset parameter; or The base station determines the subband resource according to the subband determining manner, the subband index, the fourth offset parameter, and the fifth offset parameter.
  • the value of the fourth offset parameter may be fixed in advance according to the system bandwidth.
  • the fourth offset 1.5RB; and / or,
  • the fourth offset 0.5RB; and / or,
  • the fourth offset 1 RB; and / or,
  • the fourth offset 2 RB.
  • the fourth offset to the left (or right) of the center subcarrier of the carrier is 0, and the fourth offset to the right (or left) of the center subcarrier of the carrier is 1 RB; and/or,
  • the RBs within the offset range indicated by the fourth offset do not belong to any subband.
  • the RBs in the offset range indicated by the fourth offset may form a special subband (the number of RBs included in the special subband is smaller than the RB included in the subband) number).
  • the RBs in the offset range indicated by the fourth offset may constitute a special subband; for the second system bandwidth set
  • the RBs within the offset range indicated by the fourth offset (including the left and right sides of the center subcarrier of the carrier) do not belong to any subband.
  • the first system bandwidth set contains a different bandwidth than the second system bandwidth set.
  • the first system bandwidth set includes 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz system bandwidth
  • the second system bandwidth set includes 1.4 MHz system bandwidth.
  • the special sub-band includes 3 RBs
  • the special sub-band includes 1 RB;
  • the special sub-band includes 2 RBs
  • the special sub-band includes 3 RBs
  • the special sub-band includes 4 RBs
  • the first system bandwidth set includes 5 MHz, 10 MHz, 15 MHz, 20 MHz system bandwidth
  • the second system bandwidth set includes 1.4 MHz, 3 MHz system bandwidth.
  • the fifth offset 0.
  • the fifth offset is equal to zero.
  • the value of the fifth offset is configured by higher layer signaling.
  • the center subcarrier of the carrier is the DC subcarrier of the carrier or the center frequency of the carrier. If the carrier does not have a DC subcarrier, the center subcarrier of the carrier is the center frequency of the carrier.
  • the subband resource information when the subband resource information includes a subband determination manner and a subband index: the subband resource information further includes a sixth offset parameter, where the sixth offset parameter is used to determine a center subcarrier of the subband, and the step 1602 includes :
  • the base station determines the subband resource according to the subband resource information and the sixth offset parameter; or
  • the base station determines the subband resource according to the subband resource information and the sixth offset parameter; or
  • the base station determines the subband resource according to the subband resource information and the sixth offset parameter; or
  • the base station determines the subband resource according to the subband resource information and the sixth offset parameter.
  • the subband resource when the subband resource is a subband, when the subband includes 2M+2 subcarriers, taking a subcarrier with a subcarrier as a subband as an example, the subband resource includes: a subband The center subcarrier, the frequency is lower than the M subcarriers of the center subcarrier of the subband, and the frequency is higher than the M+1 subcarriers of the center subcarrier of the subband; or the center subcarrier of the subband, the frequency is lower than the center of the subband M+1 subcarriers of the subcarrier, the frequency is higher than the M subcarriers of the central subcarrier of the subband;
  • the sub-band resources include: a central subcarrier of the subband, M subcarriers whose frequency is lower than the center subcarrier of the subband, and a frequency higher than the subcarrier. M subcarriers of the center subcarrier of the band.
  • step 1601 the manner in which the base station obtains the subband resource information includes:
  • the first type the base station generates subband resource information
  • the second type the base station determines subband resource information according to a predetermined manner.
  • the base station sends the second signaling that carries the sub-band resource information to the UE.
  • the method further includes:
  • the base station determines a duplex interval between the downlink subband resource and the uplink subband resource, and sends a third signaling carrying the duplex interval to the UE; when the subband resource is a downlink subband resource, the base station according to the downlink subband resource and The duplex interval determines the uplink subband resource.
  • the base station determines the downlink subband resource according to the downlink subband resource and the duplex interval.
  • the present invention determines the sub-band resource by acquiring the sub-band resource information by the base station, so that the base station can transmit the data and/or the control information according to the sub-band resource, so that when the working bandwidth is smaller than the carrier bandwidth, the base station can determine the bandwidth in the bandwidth through the sub-band resource.
  • the bandwidth of a certain frequency bandwidth is the bandwidth for transmitting or receiving data and its related data, so that the UE can communicate with the base station while realizing the cost saving or complexity reduction of the user equipment.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or To integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明公开一种子带资源确定装置及方法,涉及通信网络技术领域,可以解决在实现用户设备成本的节省或复杂度的降低的同时,如何保证UE与基站进行通信的问题。本发明实施例通过UE获取的子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息。本发明实施例提供的方案适于对子带资源进行确定时采用。

Description

一种子带资源确定装置及方法
本申请要求于2015年1月30日提交中国专利局、申请号为PCT/CN2015/072036、发明名称为“一种子带资源确定装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信网络技术领域,尤其涉及一种子带资源确定装置及方法。
背景技术
在当前通信系统中,基站与UE(User Equipment,用户设备)在载波上进行信息通信,载波的频率宽度(简称载波带宽)可称为信道带宽或传输带宽或系统带宽或带宽。对于能力正常的UE,该UE可以接收整个系统带宽内的数据。
在物联网通信中,通过部署具有一定感知、计算、执行和通信能力的各种设备,通过网络实现信息传输、协同和处理功能,从而实现人与物、物与物的互联。出于降低成本考虑,低复杂度(和/或低成本,和/或低功耗,和/或具有覆盖增强特性)的UE特别适用于物联网通信或MTC(Machine Type Communication,机器类型通信)。
然而对于低复杂度UE而言,在载波中只能够发送或接收工作带宽(工作带宽小于载波带宽,例如带宽是20MHz,工作带宽是200KHz、1.4MHz、3MHz、或5MHz等)的数据和/或控制信息,而低复杂度UE无法获知带宽中的哪段工作带宽是用于传输数据和/或控制信息的带宽,因而阻碍了低复杂度UE与基站之间的通信。
发明内容
本发明的实施例提供一种子带资源确定方法及装置,可以解决在实现用户设备成本的节省或复杂度的降低的同时,如何保证UE与基站进行通信的问题。
第一方面,本发明的实施例提供一种子带资源确定装置,其特征在于,所述装置应用于用户设备UE,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
获取模块,用于获取子带资源信息,并将所述子带资源信息提供给确定模块,所述子带资源信息包括确定子带资源的信息;
所述确定模块,用于根据所述子带资源信息确定所述子带资源,并将所述子带资源提供给传输模块;
所述传输模块,用于根据所述子带资源传输数据和/或控制信息。
在第一种可能的实施例中,结合第一方面,所述子带资源是所述子带,或
所述子带资源是所述子带的中心子载波。
在第二种可能的实施例中,结合第一方面或第一方面中的第一种可能的实施例,所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
在第三种可能的实施例中,结合第一方面中的第二种可能的实施例,当所述子带资源信息包括特定频率信息和第一偏移参数时:
所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
在第四种可能的实施例中,结合第一方面中的第三种可能的实施例,
所述确定模块,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,其中所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
在第五种可能的实施例中,结合第一方面中的第四种可能的实施例,所述装置还包括:接收模块;
所述接收模块,用于接收基站发送的第一信令,并将所述第一信令提供给所述确定模块,所述第一信令用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,所述第一特定方式为相加方式或者相减方式,或者指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第二特定方式为相加方式或者相减方式;
所述确定模块,还用于通过所述子带资源信息和所述第一信令确定所述子带资源。
在第六种可能的实施例中,结合第一方面中的第二种可能的实施例,
所述确定模块,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源,所述子带资源信息还包括所述第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
在第七种可能的实施例中,结合第一方面中的第二种可能的实施例,所述装置还包括:编号模块,
所述编号模块,用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的可用子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;
所述编号模块,还用于从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧可用子带均完成编号。
在第八种可能的实施例中,结合或第一方面中的第七种可能的实施例,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
所述确定模块,还用于根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
在第九种可能的实施例中,结合第一方面中的第八种可能的实施例,
所述确定模块,还用于当所述子带索引大于和/或等于第一门限,根据所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波;当子带索引小于所述第一门限,根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
在第十种可能的实施例中,结合第一方面或第一方面中的任意一种可能的实施例,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,其中,M为大于0的整数;
所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
在第十一种可能的实施例中,结合第一方面或第一方面中的任意一种可能的实施例,所述获取模块包括:接收单元,确定单元;
所述接收单元,用于接收所述基站发送的第二信令;从所述第二信令中获取所述子带资源信息;
所述确定单元,用于根据预先规定的方式确定所述子带资源信息。
在第十二种可能的实施例中,结合第一方面或第一方面中的任意一种可能的实施例,
所述接收模块,还用于接收所述基站发送的第三信令,并将所述第三信令提供给所述确定模块,所述第三信令指示了下行子带资源和上行子带资源之间的双工间隔;
所述确定模块,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,根据所述上行子带资源和所述双工间隔确定下行子带资源。
第二方面,本发明的实施例提供一种子带资源确定装置,其特征在于,所述装置应用于基站,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
获取模块,用于获取子带资源信息,并将所述子带资源信息提供给确定模块,所述子带资源信息包括确定子带资源的信息;
所述确定模块,用于根据所述子带资源信息确定所述子带资源,并将所述子带资源提供给传输模块;
所述传输模块,用于根据所述子带资源传输数据和/或控制信息。
在第一种可能的实施例中,结合第二方面,
所述子带资源是所述子带,或
所述子带资源是所述子带的中心子载波。
在第二种可能的实施例中,结合第二方面或第二方面中的第一种可能的实施例,
所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所 述子带的中心子载波所在的资源块RB;或,
所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
在第三种可能的实施例中,结合第二方面中的第二种可能的实施例,当所述子带资源信息包括特定频率信息和第一偏移参数时:
所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
在第四种可能的实施例中,结合第二方面中的第三种可能的实施例,
所述确定模块,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
在第五种可能的实施例中,结合第二方面中的第四种可能的实施例,所述装置还包括:生成模块,发送模块;
所述生成模块,用于生成用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,和/或生成用于指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第一特定方式为相加方式或者相减方式,所述第二特定方式为相加方 式或者相减方式;以及生成第一信令,所述第一信令指示所述第一特定方式和/或所述第二特定方式;
所述确定模块,还用于根据所述子带资源信息、所述第一特定方式和/或所述第二特定方式确定所述子带资源;
所述发送模块,用于将所述第一信令发送给用户设备UE。
在第六种可能的实施例中,结合第二方面中的第二种可能的实施例,
所述确定模块,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源其中所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
在第七种可能的实施例中,结合第二方面中的第二种可能的实施例,所述装置还包括编号模块;
所述编号模块,还用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的所有子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧均完成子带的编号。
在第八种可能的实施例中,结合或第二方面中的第七种可能的实施例,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
所述确定模块,还用于根据所述子带确定方式、所述子带索引和所述 第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
在第九种可能的实施例中,结合第二方面中的第八种可能的实施例,
所述确定模块,还用于当所述子带索引大于和/或等于第一门限,根据所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括所述第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波;当子带索引小于所述第一门限,根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
在第十种可能的实施例中,结合第二方面或第二方面中的任意一种可能的实施例,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,
所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
在第十一种可能的实施例中,结合第二方面或第二方面中的任意一种可能的实施例,所述获取模块包括:生成单元,确定单元;
所述生成单元,用于生成所述子带资源信息;
所述确定单元,用于根据预先规定的方式确定所述子带资源信息;
所述发送模块,还用于将携带所述子带资源信息的第二信令发送给所述UE。
在第十二种可能的实施例中,结合第二方面或第二方面中的任意一种可能的实施例,
所述确定模块,还用于确定下行子带资源和上行子带资源之间的双工间隔;
所述生成模块,还用于生成第三信令,并将所述第三信令提供给所述发送模块;
所述发送模块,还用于向UE发送携带所述双工间隔的第三信令;
所述确定模块,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,根据所述下行子带资源和所述双工间隔确定下行子带资源。
第三方面,本发明的实施例提供一种子带资源确定装置,其特征在于,所述装置应用于用户设备UE,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
存储器,用于存储包括程序指令的信息;
所述处理器,与所述存储器、收发器耦合,用于控制所述程序指令的执行,具体用于获取子带资源信息,所述子带资源信息包括确定子带资源的信息;根据所述子带资源信息确定所述子带资源;
所述收发器,用于根据所述子带资源传输数据和/或控制信息。
在第一种可能的实施例中,结合第三方面,
所述子带资源是所述子带,或
所述子带资源是所述子带的中心子载波。
在第二种可能的实施例中,结合第三方面或第三方面中的第一种可能的实施例,
所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
在第三种可能的实施例中,结合第三方面中的第二种可能的实施例,当所述子带资源信息包括特定频率信息和第一偏移参数时:
所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
在第四种可能的实施例中,结合第三方面中的第三种可能的实施例,
所述处理器,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,其中所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示 了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
在第五种可能的实施例中,结合第三方面中的第四种可能的实施例,
所述收发器,还用于接收基站发送的第一信令,并将所述第一信令提供给所述处理器,所述第一信令用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,所述第一特定方式为相加方式或者相减方式,或者指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第二特定方式为相加方式或者相减方式;
所述处理器,还用于通过所述子带资源信息和所述第一信令确定所述子带资源。
在第六种可能的实施例中,结合第三方面中的第二种可能的实施例,
所述处理器,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源,所述子带资源信息还包括所述第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
在第七种可能的实施例中,结合第三方面中的第二种可能的实施例,
所述处理器,还用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的可用子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧可用子带均完成编号。
在第八种可能的实施例中,结合或第三方面中的第七种可能的实施例,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
所述处理器,还用于根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
在第九种可能的实施例中,结合第三方面中的第八种可能的实施例,
所述处理器,还用于当所述子带索引大于和/或等于第一门限,根据所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波;当子带索引小于所述第一门限,根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
在第十种可能的实施例中,结合第三方面或第三方面中的任意一种可能的实施例,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,其中,M为大于0的整数;
所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、 频率高于所述子带的中心子载波的M个子载波。
在第十一种可能的实施例中,结合第三方面或第三方面中的任意一种可能的实施例,
所述收发器,还用于接收所述基站发送的第二信令;从所述第二信令中获取所述子带资源信息;
所述处理器,还用于根据预先规定的方式确定所述子带资源信息。
在第十二种可能的实施例中,结合第三方面或第三方面中的任意一种可能的实施例,
所述收发器,还用于接收所述基站发送的第三信令,并将所述第三信令提供给所述处理器,所述第三信令指示了下行子带资源和上行子带资源之间的双工间隔;
所述处理器,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,根据所述上行子带资源和所述双工间隔确定下行子带资源。
第四方面,本发明的实施例提供一种子带资源确定装置,其特征在于,所述装置应用于基站,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
存储器,用于存储包括程序指令的信息;
所述处理器,与所述存储器、收发器耦合,用于控制所述程序指令的执行,具体用于获取子带资源信息,所述子带资源信息包括确定子带资源的信息;根据所述子带资源信息确定所述子带资源;
所述收发器,用于根据所述子带资源传输数据和/或控制信息。
在第一种可能的实施例中,结合第四方面,
所述子带资源是所述子带,或
所述子带资源是所述子带的中心子载波。
在第二种可能的实施例中,结合第四方面或第四方面中的第一种可能的实施例,
所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
在第三种可能的实施例中,结合第四方面中的第二种可能的实施例,当所述子带资源信息包括特定频率信息和第一偏移参数时:
所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
在第四种可能的实施例中,结合第四方面中的第三种可能的实施例,
所述处理器,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,其中所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示 了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
在第五种可能的实施例中,结合第四方面中的第四种可能的实施例,
所述处理器,还用于生成用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,和/或生成用于指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第一特定方式为相加方式或者相减方式,所述第二特定方式为相加方式或者相减方式;以及生成第一信令,所述第一信令指示所述第一特定方式和/或所述第二特定方式;根据所述子带资源信息、所述第一特定方式和/或所述第二特定方式确定所述子带资源;
所述收发器,还用于将所述第一信令发送给用户设备UE。
在第六种可能的实施例中,结合第四方面中的第二种可能的实施例,
所述处理器,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源,所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
在第七种可能的实施例中,结合第四方面中的第二种可能的实施例,
所述处理器,还用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的所有子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧均完成子带的编号。
在第八种可能的实施例中,结合或第四方面中的第七种可能的实施例,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
所述处理器,还用于根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
在第九种可能的实施例中,结合第四方面中的第八种可能的实施例,
所述处理器,还用于当所述子带索引大于和/或等于第一门限,根据所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括所述第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波;当子带索引小于所述第一门限,所述基站根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
在第十种可能的实施例中,结合第四方面或第四方面中的任意一种可能的实施例,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,
所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、 频率高于所述子带的中心子载波的M个子载波。
在第十一种可能的实施例中,结合第四方面或第四方面中的任意一种可能的实施例,
所述处理器,还用于生成所述子带资源信息;根据预先规定的方式确定所述子带资源信息;
所述收发器,还用于将携带所述子带资源信息的第二信令发送给所述UE。
在第十二种可能的实施例中,结合第四方面或第四方面中的任意一种可能的实施例,
所述处理器,还用于确定下行子带资源和上行子带资源之间的双工间隔;生成第三信令,并将所述第三信令提供给所述收发器;
所述收发器,还用于向UE发送携带所述双工间隔的第三信令;
所述处理器,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,所根据所述下行子带资源和所述双工间隔确定下行子带资源。
第五方面,本发明的实施例提供一种子带资源确定方法,其特征在于,所述方法应用于用户设备UE,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述方法包括:
所述UE获取子带资源信息,所述子带资源信息包括确定子带资源的信息;
所述UE根据所述子带资源信息确定所述子带资源;
所述UE根据所述子带资源传输数据和/或控制信息。
在第一种可能的实施例中,结合第五方面,
所述子带资源是所述子带,或
所述子带资源是所述子带的中心子载波。
在第二种可能的实施例中,结合第五方面或第五方面中的第一种可能的实施例,
所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
在第三种可能的实施例中,结合第五方面中的第二种可能的实施例,当所述子带资源信息包括特定频率信息和第一偏移参数时:
所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
在第四种可能的实施例中,结合第五方面中的第三种可能的实施例,当所述带宽包含的资源块数是奇数时,所述子带资源信息还包括第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的 频率资源宽度,所述N为不等于0的整数;
所述UE根据子带资源信息确定子带资源,包括:
所述UE根据所述特定频率信息、所述第一偏移参数和所述第二偏移参数,确定所述子带资源。
在第五种可能的实施例中,结合第五方面中的第四种可能的实施例,所述方法还包括:
所述UE接收基站发送的第一信令,所述第一信令用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,所述第一特定方式为相加方式或者相减方式,或者指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第二特定方式为相加方式或者相减方式;
所述UE根据子带资源信息确定子带资源,包括:
所述UE通过所述子带资源信息和所述第一信令确定所述子带资源。
在第六种可能的实施例中,结合第五方面中的第二种可能的实施例,当所述子带资源信息包括所述第一参数和所述第二参数时:所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移;
所述UE根据子带资源信息确定所述子带资源,包括:
所述UE根据所述第一参数,所述第二参数和所述第三偏移参数确定所述子带资源。
在第七种可能的实施例中,结合第五方面中的第二种可能的实施例,当所述子带资源信息包括子带确定方式和子带索引时:
所述子带确定方式采用子带确定方式1或子带确定方式2;其中,
所述子带确定方式1:所述UE从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的可用子带编号完成后, 从所述载波的中心子载波的另一侧对子带进行编号;
所述子带确定方式2:所述UE从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧可用子带均完成编号。
在第八种可能的实施例中,结合或第五方面中的第七种可能的实施例,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
所述UE根据子带资源信息确定所述子带资源,包括:
所述UE根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;或者,
所述UE根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;或者,
所述UE根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
在第九种可能的实施例中,结合第五方面中的第八种可能的实施例,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波,所述UE根据子带资源信息确定所述子带资源,包括:
当所述子带索引大于和/或等于第一门限,所述UE根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
当子带索引小于所述第一门限,所述UE根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
当所述子带索引是偶数时,所述UE根据所述子带资源信息和所述第六偏移参数确定子带资源;或者,
当所述子带索引是奇数时,所述UE根据所述子带资源信息和所述第六偏移参数确定子带资源。
在第十种可能的实施例中,结合第五方面或第五方面中的任意一种可能的实施例,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,其中,M为大于0的整数;
所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
在第十一种可能的实施例中,结合第五方面或第五方面中的任意一种可能的实施例,所述UE获取子带资源信息,包括:
所述UE接收所述基站发送的第二信令;从所述第二信令中获取所述子带资源信息;和/或,
所述UE根据预先规定的方式确定所述子带资源信息。
在第十二种可能的实施例中,结合第五方面或第五方面中的任意一种可能的实施例,在所述UE根据子带资源信息确定所述子带资源之后,所述方法还包括:
所述UE接收所述基站发送的第三信令,所述第三信令指示了下行子带资源和上行子带资源之间的双工间隔;
当所述子带资源为下行子带资源时,所述UE根据所述下行子带资源和所述双工间隔确定上行子带资源;
当所述子带资源为上行子带资源时,所述UE根据所述上行子带资源和所述双工间隔确定下行子带资源。
第六方面,本发明的实施例提供一种子带资源确定方法,其特征在于,所述方法应用于基站,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述方法包括:
所述基站获取子带资源信息,所述子带资源信息包括确定子带资源的信息;
所述基站根据所述子带资源信息确定所述子带资源;
所述基站根据所述子带资源传输数据和/或控制信息。
在第一种可能的实施例中,结合第六方面,
所述子带资源是所述子带,或
所述子带资源是所述子带的中心子载波。
在第二种可能的实施例中,结合第六方面或第六方面中的第一种可能的实施例,
所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带 的编号。
在第三种可能的实施例中,结合第六方面中的第二种可能的实施例,当所述子带资源信息包括特定频率信息和第一偏移参数时:
所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
在第四种可能的实施例中,结合第六方面中的第三种可能的实施例,当所述带宽包含的资源块数是奇数时,所述子带资源信息还包括第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数;
所述基站根据子带资源信息确定子带资源,包括:
所述基站根据所述特定频率信息、所述第一偏移参数和所述第二偏移参数,确定所述子带资源。
在第五种可能的实施例中,结合第六方面中的第四种可能的实施例,所述方法还包括:
所述基站生成用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,和/或生成用于指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第一特定方式为相加方式或者相减方式,所述第二特定方式为相加方式或者相减方式;
所述基站生成第一信令,所述第一信令指示所述第一特定方式和/或 所述第二特定方式;
所述基站根据所述子带资源信息、所述第一特定方式和/或所述第二特定方式确定所述子带资源;
所述基站将所述第一信令发送给用户设备UE。
在第六种可能的实施例中,结合第六方面中的第二种可能的实施例,当所述子带资源信息包括所述第一参数和所述第二参数时:所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移;
所述基站根据子带资源信息确定所述子带资源,包括:
所述基站根据所述第一参数,所述第二参数和所述第三偏移参数确定所述子带资源。
在第七种可能的实施例中,结合第六方面中的第二种可能的实施例,当所述子带资源信息包括子带确定方式和子带索引时:
所述子带确定方式采用子带确定方式1或子带确定方式2;其中,
所述子带确定方式1:所述基站从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的所有子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;
所述子带确定方式2:所述基站从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧均完成子带的编号。
在第八种可能的实施例中,结合或第六方面中的第七种可能的实施例,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第 四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
所述基站根据子带资源信息确定所述子带资源,包括:
所述基站根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;或者,
所述基站根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;或者,
所述基站根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
在第九种可能的实施例中,结合第六方面中的第八种可能的实施例,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波,所述基站根据子带资源信息确定所述子带资源,包括:
当所述子带索引大于和/或等于第一门限,所述基站根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
当子带索引小于所述第一门限,所述基站根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
当所述子带索引是偶数时,所述基站根据所述子带资源信息和所述第六偏移参数确定子带资源;或者,
当所述子带索引是奇数时,所述基站根据所述子带资源信息和所述第六偏移参数确定子带资源。
在第十种可能的实施例中,结合第六方面或第六方面中的任意一种可能的实施例,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,
所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、 频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
在第十一种可能的实施例中,结合第六方面或第六方面中的任意一种可能的实施例,所述基站获取子带资源信息,包括:
所述基站生成所述子带资源信息;和/或,所述基站根据预先规定的方式确定所述子带资源信息;
在所述基站获取子带资源信息之后,所述方法还包括:
所述基站将携带所述子带资源信息的第二信令发送给所述UE。
在第十二种可能的实施例中,结合第六方面或第六方面中的任意一种可能的实施例,在所述基站根据子带资源信息确定所述子带资源之后,所述方法还包括:
所述基站确定下行子带资源和上行子带资源之间的双工间隔;
所述基站生成第三信令;
所述基站向UE发送携带所述双工间隔的第三信令;
当所述子带资源为下行子带资源时,所述基站根据所述下行子带资源和所述双工间隔确定上行子带资源;
当所述子带资源为上行子带资源时,所述基站根据所述下行子带资源和所述双工间隔确定下行子带资源。
本发明提供一种子带资源确定装置及方法,与现有技术中低复杂度UE在载波中只能够发送或接收工作带宽的数据,而低复杂度UE无法获知带宽中的哪段工作带宽大小的带宽是用于传输与其相关数据的带宽,因 而,从而阻碍了低复杂度UE与基站之间通信的问题相比,本发明通过UE获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,UE通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种通信系统的示意图;
图2为本发明实施例提供的一种子带资源确定装置的逻辑示意图;
图3(a)为本发明实施例提供的子带资源确定方法中子带的一种示意图;
图3(b)为本发明实施例提供的子带资源确定方法中子带的另一种示意图;
图4为本发明实施例提供的另一种子带资源确定装置的逻辑示意图;
图5为本发明实施例提供的又一种子带资源确定装置的逻辑示意图;
图6为本发明实施例提供的再一种子带资源确定装置的逻辑示意图;
图7为本发明实施例提供的还一种子带资源确定装置的逻辑示意图;
图8为本发明实施例提供的再另一种子带资源确定装置的逻辑示意图;
图9为本发明实施例提供的一种子带资源确定方法的流程图;
图10(a)为本发明实施例提供的一种子带资源确定方法的示意图;
图10(b)为本发明实施例提供的另一种子带资源确定方法的示意图;
图11(a)为本发明实施例提供的子带资源确定方法中确定子带的一种示意图;
图11(b)为本发明实施例提供的子带资源确定方法中确定子带的另一种示意图;
图11(c)为本发明实施例提供的子带资源确定方法中确定子带的又一种示意图;
图12为本发明实施例提供的又一种子带资源确定方法的示意图;
图13(a)为本发明实施例提供的子带资源确定方法中子带编号的一种示意图;
图13(b)为本发明实施例提供的子带资源确定方法中子带编号的另一种示意图;
图13(c)为本发明实施例提供的子带资源确定方法中子带编号的又一种示意图;
图13(d)为本发明实施例提供的子带资源确定方法中子带编号的还一种示意图;
图14(a)为本发明实施例提供的子带资源确定方法中可重叠子带的子带编号的一种示意图;
图14(b)为本发明实施例提供的子带资源确定方法中可重叠子带的子带编号的另一种示意图;
图14(c)为本发明实施例提供的子带资源确定方法中可重叠子带的子带编号的又一种示意图;
图14(d)为本发明实施例提供的子带资源确定方法中可重叠子带的子带编号的还一种示意图;
图15(a)为本发明实施例提供的子带资源确定方法中子带编号的再一种示意图;
图15(b)为本发明实施例提供的子带资源确定方法中子带编号的又再一种示意图;
图15(c)为本发明实施例提供的子带资源确定方法中第四偏移参数取值的一种示意图;
图15(d)为本发明实施例提供的子带资源确定方法中第四偏移参数取值的另一种示意图;
图15(e)为本发明实施例提供的子带资源确定方法中第四偏移参数取值的又一种示意图;
图16为本发明实施例提供的另一种子带资源确定方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语"部件"、"模块"、"系统"等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执 行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
UE,可以是无线用户设备也可以是有线用户设备,无线用户设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线用户设备可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线用户设备可以是移动用户设备,如移动电话(或称为“蜂窝”电话)和具有移动用户设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线用户设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程用户设备(Remote Terminal)、接入用户设备(Access Terminal)、用户设备(User Terminal)、用户代理(User Agent)、用户设备(User Equipment)。
本发明实施例中的UE(User Equipment,用户设备)可以是指在载波中只能够发送和/或接收工作带宽(工作带宽小于载波的带宽,例如载波带宽是20MHz,工作带宽是200KHz、1.4MHz、3MHz、或5MHz等)的UE,和/或,具有增强传输特性的UE。具体地,UE是低复杂度UE、和/或低成本,和/或低功耗,和/或具有增强传输特性的UE,和/或新类型 的UE。
UE的工作带宽可以理解为UE收发机正常工作的频率宽度,或支持的最大频率宽度。例如,在LTE系统中,目前定义的系统带宽为20MHz、10MHz、5MHz、3MHz、1.4MHz。假设LTE系统的工作带宽为20MHz,UE的工作带宽可以为200KHz、1MHz、1.4MHz、5MHz等各种可能值。此处取值仅为举例,UE实际的工作带宽可以基于实际需求设定,如根据UE射频能力、基带能力、处理器、滤波器等中的一种或多种要求确定。如,UE的射频能力和/或基带能力小于系统带宽。例如,系统带宽是20MHz,UE射频能力和/或基带处理能力是200KHz或1.4MHz。
譬如,低复杂度UE是指在载波中只能够发送和/或接收工作带宽的一类UE。如无特殊说明,本发明以UE是低复杂度UE为例阐述本发明的发明方法。本发明中,增强传输可以是重复传输、扩频传输、重传、捆绑时间间隔传输、窄带(如子载波调度)传输、超窄带(如带宽是几十赫兹到十几千赫兹)传输、提高功率谱密度传输、放松需求传输、不断尝试传输中的一种或多种。
本发明实施例中的基站,具体可以是指通过空中接口与无线UE通信的设备。例如基站是接入点或终端设备。基站可以是演进基站eNodeB。基站也可以当作小区。
本发明主要应用于LTE(Long Term Evolution,长期演进)系统或LTE-A(LTE Advanced,高级的长期演进)系统。本发明也可以应用于其它的通信系统,只要该通信系统中存在实体可以发送信息和存在其它实体可以接收信息。
本文中结合UE和/或基站来描述各种方面。
本发明中基站或者UE根据子带资源传输数据和/或控制信息。数据可以包括参考信号或导频信号或序列。控制信息承载在控制信道中,控制信道可以是增强的物理下行控制信道或其它携带控制信息的信道。当然, 本发明中基站或者UE还可以根据子带资源传输其他信息。
如图1所示,Base station(基站)和UE1~UE6组成一个通信系统,在该通信系统中,Base station发送公共信息给UE1~UE6中的一个或多个UE。此外,UE4~UE6也组成一个通信系统,在该通信系统中,UE5可以发送公共信息给UE4和UE6中的一个或多个UE。通信系统中的基站可以是指接入网中在空中接口上通过一个或多个扇区与无线用户设备通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线用户设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。可选的,基站可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B)。
可以理解的是,在UE4、UE5和UE6行程的通信系统中,UE5为该通信系统中的热点。其作用与基站相类似。为了方便描述,在本发明中通信系统中的热点均称为基站,其余设备称为UE。
如图2所示,本发明实施例提供一种子带资源确定装置20,该装置20应用于UE,该装置20中的子带资源是子带中的资源,其中,子带为带宽中具有工作带宽的频率资源,带宽为下行带宽或上行带宽,工作带宽小于带宽,其中该装置20包括获取模块201,确定模块202,传输模块203。
获取模块201,用于获取子带资源信息,并将子带资源信息提供给确定模块202,子带资源信息包括确定子带资源的信息。
确定模块202,用于根据子带资源信息确定子带资源,并将子带资源提供给传输模块203。
传输模块203,用于根据子带资源传输数据和/或控制信息。
本发明提供一种子带资源确定装置,与现有技术中低复杂度UE在载波中只能够发送或接收工作带宽的数据,而低复杂度UE无法获知带宽中 的哪段工作带宽大小的带宽是用于传输与其相关数据的带宽,因而,从而阻碍了低复杂度UE与基站之间通信的问题相比,本发明UE中的确定模块通过获取模块获取的子带资源信息来确定子带资源,从而传输模块能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,UE通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
需要说明的是,本发明中的子带资源可以是子带,也可以是子带的中心子载波。
其中,子带可以由至少一个RB(Resource Block,资源块)或者PRB(Physical Resource Block,物理资源块)构成。本发明中,RB和PRB可以互换。RB/PRB为时频二维概念,RB/PRB在频域上占据至少一个子载波,在时域上占据至少一个时隙。为了方便描述,本发明的载波、子带只表现频率维度。
如图3(a)所示,图3(a)中的子带包括6个(偶数)PRB和一个载波的中心子载波,每个PRB包括12个子载波。可以理解的是,中心子载波又叫做直流子载波、中心频率、直流频率。
如图3(b)所示,图3(b)中的子带包括15个(奇数)PRB和一个载波的中心子载波,每个PRB包括12个子载波。其中,由于载波的中心子载波两侧的子载波对称,使得编号为7的第八个PRB被载波的中心子载波分成两个相等频率的半PRB。
进一步需要说明的是,本发明中的子带资源信息包括特定频率信息和第一偏移参数,特定频率信息用于确定子带的中心子载波,第一偏移参数用于确定子带的中心子载波的偏移。或,
子带资源信息包括第一参数和第二参数,第一参数用于确定子带的中心子载波在资源块RB中的位置,第二参数用于确定子带的中心子载波所 在的资源块RB。或,
子带资源信息包括子带确定方式和子带索引,子带确定方式规定了在带宽中子带的构成方式,子带索引是带宽中的子带的编号。
当子带资源信息包括特定频率信息和第一偏移参数时:特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
进一步可选的,如图4所示,本发明还提供一种子带资源确定装置40,该装置40还包括:接收模块204,编号模块205;以及获取模块201还包括接收单元2011和确定单元2012。
其中,接收模块204,用于接收基站发送的第一信令,并将第一信令提供给确定模块202,第一信令用于指示特定频率信息与第一偏移确定子带资源的第一特定方式,第一特定方式为相加方式或者相减方式,或者指示特定频率信息、第一偏移以及第二偏移确定子带资源的第二特定方式,第二特定方式为相加方式或者相减方式;确定模块202通过子带资源信息和第一信令确定子带资源。
其中,在本发明中的信令可以为无线资源控制信令、媒体接入控制信令、物理层信令中的一种或多种。无线资源控制信令可以是无线资源控制公共信令和/或无线资源控制专有信令。无线资源控制公共信令可以是系统信息、系统信息块、主信息块中的一种或多种。无线资源控制专有信令具体可以是初始随机接入响应、竞争解决消息中的一种或多种。媒体接入控制信令可以是媒体接入控制的控制元素。物理层信令可以是携带控制信息的控制信道。如,控制信道是调度随机接入响应的控制信息的控制信道 或调度竞争解决消息的控制信息的控制信道。本发明中的第一信令以及下述出现的第二信令、第三信令均是上述信令中的一种。
对应的,确定模块202,还用于当带宽包含的资源块数是奇数时,根据特定频率信息、第一偏移参数和第二偏移参数,确定子带资源,其中子带资源信息还包括第二偏移参数,第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,N为不等于0的整数。
进一步可选的,确定模块202,还用于当子带资源信息包括第一参数和第二参数时,根据第一参数,第二参数和第三偏移参数确定子带资源,子带资源信息还包括第三偏移参数,第三偏移参数用于确定子带的中心子载波的偏移。
进一步可选的,在子带资源信息中包括子带确定方式和子带索引时,所述子带确定方式采用子带确定方式1或子带确定方式2。其中:
子带确定方式1:编号模块205从载波的中心子载波的一侧开始对子带进行编号,当载波的中心子载波一侧的可用子带编号完成后,从载波的中心子载波的另一侧对子带进行编号;
例如,对子带资源位于载波的中心子载波的左侧(即频率低于载波中心子载波频点的频率资源)的所有子带从低频往高频依次进行编号,而后对子带资源位于载波的中心子载波的右侧(即频率高于载波中心子载波频点的频率资源)的所有未编号子带从低频往高频依次进行编号。
再如,对子带资源位于载波的中心子载波的右侧(即频率高于载波中心子载波频点的频率资源)的所有子带从高频往低频依次进行编号,而后对子带资源位于载波的中心子载波的左侧(即频率低于载波中心子载波频点的频率资源)的所有未编号子带从高频往低频依次进行编号。
子带确定方式2:编号模块205从载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波 的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的另一侧,对其剩余子带进行编号,直至对载波的中心子载波的两侧可用子带均完成编号。
可选的,对于任一种子带确定方式,如果某个子带的子带资源位于载波的中心子载波的两侧,这个子带称为中心子带。否则,子带称为非中心子带。中心子带可以作为第一个子带(即编号为0),或者编号为最后一个子带,或者编号方法与非中心子带一样,或者作为默认子带。其中,默认子带的编号为0,或者默认子带不参与子带的编号。
进一步可选的,子带资源信息还包括第四偏移参数和/或第五偏移参数,第四偏移参数用于确定子带的偏移,第五偏移参数用于确定子带的偏移;
确定模块202,还用于根据子带确定方式、子带索引和第四偏移参数确定子带资源;根据子带确定方式、子带索引和第五偏移参数确定子带资源;根据子带确定方式、子带索引、第四偏移参数和第五偏移参数确定子带资源。
在本发明实施例中,可以根据系统带宽预先固定第四偏移参数的值。
例如,一种取值方式为:
系统带宽=1.4MHz时,第四偏移=0;和/或,
系统带宽=3MHz时,第四偏移=1.5RB;和/或,
系统带宽=5MHz时,第四偏移=0.5RB;和/或,
系统带宽=10MHz时,第四偏移=1RB;和/或,
系统带宽=15MHz时,第四偏移=1.5RB;和/或,
系统带宽=20MHz时,第四偏移=2RB。
另一种取值方式为:
系统带宽=1.4MHz时,第四偏移=0;和/或,
系统带宽=3MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=3RB;和/或,
系统带宽=5MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=1RB;和/或,
系统带宽=10MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=2RB;和/或,
系统带宽=15MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=3RB;和/或,
系统带宽=20MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=4RB。
可选地,第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。
可选地,可以把第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB构成一个特殊的子带(特殊子带包含的RB数小于子带包括的RB数)。
可选地,对于第一系统带宽集合,可以把第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB构成一个特殊的子带;对于第二系统带宽集合,第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。第一系统带宽集合包含的带宽和第二系统带宽集合包含的带宽不同。如,第一系统带宽集合包含3MHz、5MHz、10MHz、15MHz、20MHz系统带宽,第二系统带宽集合包含1.4MHz系统带宽。
系统带宽=1.4MHz时,没有特殊子带;
系统带宽=3MHz时,特殊子带包括3个RB;
系统带宽=5MHz时,特殊子带包括1个RB;
系统带宽=10MHz时,特殊子带包括2个RB;
系统带宽=15MHz时,特殊子带包括3个RB;
系统带宽=20MHz时,特殊子带包括4个RB;
再如,第一系统带宽集合包含5MHz、10MHz、15MHz、20MHz系统带宽,第二系统带宽集合包含1.4MHz、3MHz系统带宽。
可选地,第五偏移=0。当确定的子带是下行子带时,第五偏移等于0。当确定的子带是上行子带时,第五偏移的值是高层信令配置的。
需要说明的是,在本发明中如果某个偏移参数的值恒定为0,表示没有或者不需要引入(或定义)这个偏移参数。并且,本发明中,如果载波有直流子载波,则载波的中心子载波是载波的直流子载波或载波的中心频率。如果载波没有直流子载波,则载波的中心子载波是载波的中心频率。
进一步可选的,确定模块202,还用于当子带索引大于和/或等于第一门限,根据子带资源信息和第六偏移参数确定子带资源,子带资源信息还包括第六偏移参数,第六偏移参数用于确定子带的中心子载波;当子带索引小于第一门限,根据子带资源信息和第六偏移参数确定子带资源;当子带索引是偶数时,根据子带资源信息和第六偏移参数确定子带资源;当子带索引是奇数时,根据子带资源信息和第六偏移参数确定子带资源。
进一步可选的,当子带资源是子带时,当子带包括2M+2个子载波时,其中,M为大于0的整数。
子带有一个子载波作为子带的中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M+1个子载波;或者,子带的中心子载波、频率低于子带的中心子载波的M+1个子载波、频率高于子带的中心子载波的M个子载 波;
子带有两个子载波作为子带中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M个子载波。
进一步可选的,获取模块201获取子带资源信息的方式有两种。
第一种方式为:获取模块201中的接收单元2011来接收基站发送的第二信令;从第二信令中获取子带资源信息。
第二种方式为:获取模块201中的确定单元2012根据预先规定的方式确定子带资源信息。
其中,预先规定的方式可以为标准和/或系统规定的方式。
进一步可选的,接收模块204,还用于接收基站发送的第三信令,并将第三信令提供给确定模块202,第三信令指示了下行子带资源和上行子带资源之间的双工间隔;当子带资源为下行子带资源时,确定模块202根据下行子带资源和双工间隔确定上行子带资源;当子带资源为上行子带资源时,确定模块202根据上行子带资源和双工间隔确定下行子带资源。
在本发明中,双工间隔可以为信令配置,也可以是预先规定的方式。
本发明通过获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
可选的,如图5所示,本发明还可以提供另一种子带资源确定装置50,该装置50应用于基站,该装置50中的子带资源是子带中的资源,其中,子带为带宽中具有工作带宽的频率资源,带宽为下行带宽或上行带宽,工作带宽小于带宽,其中该装置50包括获取模块501,确定模块502, 传输模块503。
获取模块501,用于获取子带资源信息,并将子带资源信息提供给确定模块502,子带资源信息包括确定子带资源的信息。
确定模块502,用于根据子带资源信息确定子带资源,并将子带资源提供给传输模块503。
传输模块503,用于根据子带资源传输数据和/或控制信息。
本发明提供一种子带资源确定装置,与现有技术中低复杂度UE在载波中只能够发送或接收工作带宽的数据,而低复杂度UE无法获知带宽中的哪段工作带宽大小的带宽是用于传输与其相关数据的带宽,因而,从而阻碍了低复杂度UE与基站之间通信的问题相比,本发明基站中的确定模块通过获取模块获取的子带资源信息来确定子带资源,从而传输模块根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,基站通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
需要说明的是,本发明中的子带资源可以是子带,也可以是子带的中心子载波。
进一步需要说明的是,本发明中的子带资源信息包括特定频率信息和第一偏移参数,特定频率信息用于确定子带的中心子载波,第一偏移参数用于确定子带的中心子载波的偏移。或,
子带资源信息包括第一参数和第二参数,第一参数用于确定子带的中心子载波在资源块RB中的位置,第二参数用于确定子带的中心子载波所在的资源块RB。或,
子带资源信息包括子带确定方式和子带索引,子带确定方式规定了在带宽中子带的构成方式,子带索引是带宽中的子带的编号。
当子带资源信息包括特定频率信息和第一偏移参数时:特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
进一步可选的,如图6所示,本发明还提供一种子带资源确定装置60,该装置60还包括:生成模块504,发送模块505,编号模块506;以及获取模块501包括生成单元5011和确定单元5012。
其中,生成模块504,用于生成用于指示特定频率信息与第一偏移确定子带资源的第一特定方式,和/或生成用于指示特定频率信息、第一偏移以及第二偏移确定子带资源的第二特定方式,第一特定方式为相加方式或者相减方式,第二特定方式为相加方式或者相减方式;以及生成第一信令,第一信令指示第一特定方式和/或第二特定方式。
确定模块502根据子带资源信息、第一特定方式和/或第二特定方式确定子带资源。
发送模块505将第一信令发送给用户设备UE。
对应的,确定模块502,还用于当带宽包含的资源块数是奇数时,根据特定频率信息、第一偏移参数和第二偏移参数,确定子带资源,子带资源信息还包括第二偏移参数,第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,N为不等于0的整数。
进一步可选的,确定模块502,还用于当子带资源信息包括第一参数和第二参数时,根据第一参数,第二参数和第三偏移参数确定子带资源,子带资源信息还包括第三偏移参数,第三偏移参数用于确定子带的中心子载波的偏移。
进一步可选的,在子带资源信息中包括子带确定方式和子带索引时,所述子带确定方式采用子带确定方式1或子带确定方式2;其中,
子带确定方式1:编号模块506从载波的中心子载波的一侧开始对子带进行编号,当载波的中心子载波一侧的可用子带编号完成后,从载波的中心子载波的另一侧对子带进行编号;
子带确定方式2:编号模块506从载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的另一侧,对其剩余子带进行编号,直至对载波的中心子载波的两侧可用子带均完成编号。
其中,子带确定方式1与子带确定方式2的相关描述与上述子带资源确定装置40中的相关描述内容相同,此处不再赘述。
进一步可选的,子带资源信息还包括第四偏移参数和/或第五偏移参数,第四偏移参数用于确定子带的偏移,第五偏移参数用于确定子带的偏移。
确定模块502,还用于根据子带确定方式、子带索引和第四偏移参数确定子带资源;根据子带确定方式、子带索引和第五偏移参数确定子带资源;根据子带确定方式、子带索引、第四偏移参数和第五偏移参数确定子带资源。
其中,第四偏移参数的相关描述与上述子带资源确定装置40中的相关描述内容相同,此处不再赘述。
进一步可选的,确定模块502,还用于当子带索引大于和/或等于第一门限,根据子带资源信息和第六偏移参数确定子带资源,子带资源信息还包括第六偏移参数,第六偏移参数用于确定子带的中心子载波;当子带索引小于第一门限,根据子带资源信息和第六偏移参数确定子带资源;当 子带索引是偶数时,根据子带资源信息和第六偏移参数确定子带资源;当子带索引是奇数时,根据子带资源信息和第六偏移参数确定子带资源。
进一步可选的,当子带资源是子带时,当子带包括2M+2个子载波时,其中,M为大于0的整数。
子带有一个子载波作为子带的中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M+1个子载波;或者,子带的中心子载波、频率低于子带的中心子载波的M+1个子载波、频率高于子带的中心子载波的M个子载波。
子带有两个子载波作为子带中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M个子载波。
进一步可选的,获取模块501获取子带资源信息的方式有两种。
第一种方式为:获取模块501中的生成单元5011生成子带资源信息;
第二种方式为:获取模块501中的确定单元5012根据预先规定的方式确定子带资源信息;
对应的,发送模块505将携带子带资源信息的第二信令发送给UE。
进一步可选的,确定模块502,还用于确定下行子带资源和上行子带资源之间的双工间隔;则生成模块504生成第三信令,并将第三信令提供给发送模块505。发送模块505向UE发送携带双工间隔的第三信令。
另外,确定模块502,还用于当子带资源为下行子带资源时,根据下行子带资源和双工间隔确定上行子带资源;当子带资源为上行子带资源时,根据下行子带资源和双工间隔确定下行子带资源。
本发明通过基站获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,基 站通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
如图7所示,本发明还提供一种子带资源确定装置,图7为UE的硬件结构示意图。其中,UE可包括存储器701、处理器702和收发器703。
存储器701可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器701可以存储操作系统和其他应用程序。在通过软件或者固件来实现本发明实施例提供的技术方案时,用于实现本发明实施例提供的技术方案的程序代码保存在存储器701中,并由处理器702来执行。
处理器702可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
收发器703用于装置与其他设备或通信网络(例如但不限于以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Network,WLAN)等)之间的通信。应注意,尽管图7所示的硬件仅仅示出了存储器701、收发器702和处理器703。
但是在具体实现过程中,本领域的技术人员应当明白,该终端还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,还可包含实现其他功能的硬件器件。
具体的,图7所示的基站用于实现图2、图4实施例所示的装置时,该装置中的处理器703,用于与存储器701和收发器703耦合,用于控制程序指令的执行,具体用于获取子带资源信息,子带资源信息包括确定子带资源的信息;根据子带资源信息确定子带资源。
收发器703,用于根据子带资源传输数据和/或控制信息。
其中,子带资源是子带。或子带资源是子带的中心子载波。
子带资源信息包括特定频率信息和第一偏移参数,特定频率信息用于确定子带的中心子载波,第一偏移参数用于确定子带的中心子载波的偏移;或,
子带资源信息包括第一参数和第二参数,第一参数用于确定子带的中心子载波在资源块RB中的位置,第二参数用于确定子带的中心子载波所在的资源块RB;或,
子带资源信息包括子带确定方式和子带索引,子带确定方式规定了在带宽中子带的构成方式,子带索引是带宽中的子带的编号。
当子带资源信息包括特定频率信息和第一偏移参数时:特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种。
第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
进一步可选的,处理器702,还用于当带宽包含的资源块数是奇数时,根据特定频率信息、第一偏移参数和第二偏移参数,确定子带资源,其中子带资源信息还包括第二偏移参数,第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,N为不等于0的整数。
对应的,收发器703,还用于接收基站发送的第一信令,并将第一信令提供给处理器702,第一信令用于指示特定频率信息与第一偏移确定子带资源的第一特定方式,第一特定方式为相加方式或者相减方式,或者指示特定频率信息、第一偏移以及第二偏移确定子带资源的第二特定方式,第二特定方式为相加方式或者相减方式。处理器702通过子带资源信息 和第一信令确定子带资源。
进一步可选的,处理器702,还用于当子带资源信息包括第一参数和第二参数时,根据第一参数,第二参数和第三偏移参数确定子带资源,子带资源信息还包括第三偏移参数,第三偏移参数用于确定子带的中心子载波的偏移。
进一步可选的,在子带资源信息中包括子带确定方式和子带索引时,所述子带确定方式采用子带确定方式1或子带确定方式2;其中:
子带确定方式1:处理器702从载波的中心子载波的一侧开始对子带进行编号,当载波的中心子载波一侧的可用子带编号完成后,从载波的中心子载波的另一侧对子带进行编号。
子带确定方式2:处理器702从载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的另一侧,对其剩余子带进行编号,直至对载波的中心子载波的两侧可用子带均完成编号。
其中,子带确定方式1与子带确定方式2的相关描述与上述子带资源确定装置40中的相关描述内容相同,此处不再赘述。
进一步可选的,子带资源信息还包括第四偏移参数和/或第五偏移参数,第四偏移参数用于确定子带的偏移,第五偏移参数用于确定子带的偏移。
处理器702,还用于根据子带确定方式、子带索引和第四偏移参数确定子带资源;根据子带确定方式、子带索引和第五偏移参数确定子带资源;根据子带确定方式、子带索引、第四偏移参数和第五偏移参数确定子带资源。
其中,第四偏移参数的相关描述与上述子带资源确定装置40中的相关描述内容相同,此处不再赘述。
进一步可选的,处理器702,还用于当子带索引大于和/或等于第一门限,根据子带资源信息和第六偏移参数确定子带资源,子带资源信息还包括第六偏移参数,第六偏移参数用于确定子带的中心子载波;当子带索引小于第一门限,根据子带资源信息和第六偏移参数确定子带资源;当子带索引是偶数时,根据子带资源信息和第六偏移参数确定子带资源;当子带索引是奇数时,根据子带资源信息和第六偏移参数确定子带资源。
进一步可选的,当子带资源是子带时,当子带包括2M+2个子载波时,其中,M为大于0的整数。
子带有一个子载波作为子带的中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M+1个子载波;或者,子带的中心子载波、频率低于子带的中心子载波的M+1个子载波、频率高于子带的中心子载波的M个子载波。
子带有两个子载波作为子带中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M个子载波。
进一步可选的,收发器703,还用于接收基站发送的第二信令;从第二信令中获取子带资源信息。
处理器702,还用于根据预先规定的方式确定子带资源信息。
进一步可选的,收发器703,还用于接收基站发送的第三信令,并将第三信令提供给处理器702,第三信令指示了下行子带资源和上行子带资源之间的双工间隔。
处理器702,还用于当子带资源为下行子带资源时,根据下行子带资 源和双工间隔确定上行子带资源;当子带资源为上行子带资源时,根据上行子带资源和双工间隔确定下行子带资源。
可选的,存储器701、处理器702、收发器703还可以通过总线通信连接,总线可包括一通路,在装置各个部件(例如存储器701、处理器702和收发器703)之间传送信息。
本发明通过基站获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,UE通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
如图8所示,本发明还提供一种子带资源确定装置,图8为基站的硬件结构示意图。其中,基站可包括存储器801、处理器802和收发器803。
其中在装置中对于存储器801、处理器802和收发器803的共同功能的概述可参考图7中的UE包括的存储器701、处理器702和收发器703的说明,在此不再一一赘述。
应注意,尽管图8所示的硬件仅仅示出了存储器801、处理器802和收发器803,但是在具体实现过程中,本领域的技术人员应当明白,该终端还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,还可包含实现其他功能的硬件器件。
具体的,图8所示的基站用于实现图5-图6实施例所示的装置时,该装置中的处理器802,与存储器801、收发器803耦合,用于控制程序指令的执行,具体用于获取子带资源信息,子带资源信息包括确定子带资源的信息;根据子带资源信息确定子带资源。
收发器803,用于根据子带资源传输数据和/或控制信息。
其中,子带资源是子带。或子带资源是子带的中心子载波。
子带资源信息包括特定频率信息和第一偏移参数,特定频率信息用于确定子带的中心子载波,第一偏移参数用于确定子带的中心子载波的偏移;或,
子带资源信息包括第一参数和第二参数,第一参数用于确定子带的中心子载波在资源块RB中的位置,第二参数用于确定子带的中心子载波所在的资源块RB;或,
子带资源信息包括子带确定方式和子带索引,子带确定方式规定了在带宽中子带的构成方式,子带索引是带宽中的子带的编号。
当子带资源信息包括特定频率信息和第一偏移参数时:特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种。
第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
进一步可选的,处理器802,还用于当带宽包含的资源块数是奇数时,根据特定频率信息、第一偏移参数和第二偏移参数,确定子带资源,其中子带资源信息还包括第二偏移参数,第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,N为不等于0的整数。
对应的,处理器802,还用于生成用于指示特定频率信息与第一偏移确定子带资源的第一特定方式,和/或生成用于指示特定频率信息、第一偏移以及第二偏移确定子带资源的第二特定方式,第一特定方式为相加方 式或者相减方式,第二特定方式为相加方式或者相减方式;以及生成第一信令,第一信令指示第一特定方式和/或第二特定方式;根据子带资源信息、第一特定方式和/或第二特定方式确定子带资源。收发器803将第一信令发送给UE。
进一步可选的,处理器802,还用于当子带资源信息包括第一参数和第二参数时,根据第一参数,第二参数和第三偏移参数确定子带资源,子带资源信息还包括第三偏移参数,第三偏移参数用于确定子带的中心子载波的偏移。
进一步可选的,在子带资源信息中包括子带确定方式和子带索引时,所述子带确定方式采用子带确定方式1或子带确定方式2;其中:
子带确定方式1:处理器802从载波的中心子载波的一侧开始对子带进行编号,当载波的中心子载波一侧的可用子带编号完成后,从载波的中心子载波的另一侧对子带进行编号。
子带确定方式2:处理器802从载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的另一侧,对其剩余子带进行编号,直至对载波的中心子载波的两侧可用子带均完成编号。
其中,子带确定方式1与子带确定方式2的相关描述与上述子带资源确定装置40中的相关描述内容相同,此处不再赘述。
进一步可选的,子带资源信息还包括第四偏移参数和/或第五偏移参数,第四偏移参数用于确定子带的偏移,第五偏移参数用于确定子带的偏移。
处理器802,还用于根据子带确定方式、子带索引和第四偏移参数确定子带资源;根据子带确定方式、子带索引和第五偏移参数确定子带资源; 根据子带确定方式、子带索引、第四偏移参数和第五偏移参数确定子带资源。
其中,第四偏移参数的相关描述与上述子带资源确定装置40中的相关描述内容相同,此处不再赘述。
进一步可选的,处理器802,还用于当子带索引大于和/或等于第一门限,根据子带资源信息和第六偏移参数确定子带资源,子带资源信息还包括第六偏移参数,第六偏移参数用于确定子带的中心子载波;当子带索引小于第一门限,基站根据子带资源信息和第六偏移参数确定子带资源;当子带索引是偶数时,根据子带资源信息和第六偏移参数确定子带资源;当子带索引是奇数时,根据子带资源信息和第六偏移参数确定子带资源。
进一步可选的,当子带资源是子带时,当子带包括2M+2个子载波时:
子带有一个子载波作为子带的中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M+1个子载波;或者,子带的中心子载波、频率低于子带的中心子载波的M+1个子载波、频率高于子带的中心子载波的M个子载波。
子带有两个子载波作为子带中心子载波,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M个子载波。
进一步可选的,处理器802,还用于生成子带资源信息;根据预先规定的方式确定子带资源信息。
收发器803,还用于将携带子带资源信息的第二信令发送给UE。
进一步可选的,处理器802,还用于确定下行子带资源和上行子带资源之间的双工间隔;生成第三信令,并将第三信令提供给收发器。
收发器803,还用于向UE发送携带双工间隔的第三信令。
处理器802,还用于当子带资源为下行子带资源时,根据下行子带资源和双工间隔确定上行子带资源;当子带资源为上行子带资源时,所根据下行子带资源和双工间隔确定下行子带资源。
可选的,存储器801、处理器802、收发器803还可以通过总线通信连接,总线可包括一通路,在装置各个部件(例如存储器801、处理器802和收发器803)之间传送信息。
本发明通过基站获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,基站通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
如图9所示,本发明实施例提供一种子带资源确定方法,该方法应用于UE,该方法中的子带资源是子带中的资源,其中,子带为带宽中具有工作带宽的频率资源,带宽为下行带宽或上行带宽,工作带宽小于带宽,具体如下:
901,UE获取子带资源信息,子带资源信息包括确定子带资源的信息。
902,UE根据子带资源信息确定子带资源。
903,UE根据子带资源传输数据和/或控制信息。
本发明提供一种子带资源确定方法,与现有技术中低复杂度UE在载波中只能够发送或接收工作带宽的数据,而低复杂度UE无法获知带宽中的哪段工作带宽大小的带宽是用于传输与其相关数据的带宽,因而,从而阻碍了低复杂度UE与基站之间通信的问题相比,本发明通过UE获取的子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控 制信息,实现了在工作带宽小于载波带宽时,UE通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
进一步需要说明的是,在步骤901中的子带资源信息可以包括特定频率信息和第一偏移参数,特定频率信息用于确定子带的中心子载波,第一偏移参数用于确定子带的中心子载波的偏移。
特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种。为了方便说明,在本发明中的特定频率信息以载波的中心子载波为例进行描述。
例如,载波中的一个特定子载波是索引为NDL PBB×(NRB SC/2)的子载波,或索引为NDL PBB×(NRB SC/2)-1的子载波。载波中的一个特定RB是索引为NDL PBB/2的RB,或索引为(NDL PBB/2)-1的RB,或索引为0的RB,或索引为NDL PBB-1的RB。
第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。第一偏移大小可以通过信令配置,或者通过子带索引来确定。
进一步可选的,子带资源信息还可以包括第二偏移参数,第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,N为不等于0的整数。以一个RB中包括12个子载波为例时,N可以为5、6、7中的任意一种。
通常,第二偏移参数应用于带宽包含的资源块数为奇数的场景下。为了有效利用载波中的子载波,需要将子带中的每个RB边界要与载波的 RB边界一致,从而能够减少不能使用子载波的个数。
进一步可选的,作为本发明的另一实施例,本发明还可以包括:UE接收基站发送的第一信令,第一信令用于指示特定频率信息与第一偏移确定子带资源的第一特定方式,第一特定方式为相加方式或者相减方式。或者,第一信令用于指示特定频率信息、第一偏移以及第二偏移确定子带资源的第二特定方式,第二特定方式为相加方式或者相减方式。
其中,第一特定方式可以表示为加号或者减号或者某一代表加号/减号的标识等信息。第一信令还可以包括子带索引。
当第一特定方式为加号或者减号或者某一代表加号/减号的标识等信息时,UE可以直接通过第一特定方式确定特定频率信息与第一偏移之间是相加或者相减关系。当第一信令包括子带索引时,UE需要通过子带索引来确定频率信息与第一偏移之间是相加或者相减关系。当UE确定了特定频率信息与第一偏移之间是相加或者相减关系之后,进而能够确定子带资源。
同理第二特定方式与第一特定方式的含义相同,不同点在于第二特定方式确定的是特定频率信息、第一偏移、第二偏移三者之间的加减关系。因此在此不再一一赘述。
对应的,当带宽所包含的RB数是偶数时,根据特定频率信息和第一偏移参数确定子带资源,如图10(a)所示。
UE首先通过特定频率信息确定载波的中心子载波,通过第一信令获得第一特定方式,然后根据第一特定方式确定载波的中心子载波偏移了(减去)第一偏移的子载波为子带的中心子载波。
当带宽所包含的RB数是奇数时,根据特定频率信息、第一偏移参数和第二偏移参数确定子带资源,如图10(b)所示。
UE首先通过特定频率信息确定载波的中心子载波,通过第一信令获 得第二特定方式,然后根据第一特定方式确定载波的中心子载波偏移了(减去)第一偏移,再偏移了(减去)第二偏移的子载波为子带的中心子载波。
进一步可选的,当子带资源是子带时,那么UE通过子带资源信息中的特定频率信息、第一偏移参数和/或第二偏移参数能够确定子带的中心子载波。然后UE需要确定子带。其中UE可知子带所包含子载波的数量,因而在确定子带的中心子载波之后,通过子带所包含子载波的数量确定子带。
其中确定子带资源(子带)方式有多种,再次列举三种方式。其中设子带包括2M+2个子载波时,M为大于0的整数。
第一种方式,当子带有一个子载波作为子带的中心子载波时,子带资源(子带)可以包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M+1个子载波。如图11(a)所示,设子带中包括72个子载波,以第一种方式可以得出,子带m包括35个子载波的频率低于1个子带m的中心子载波,36个子载波的频率高于1个子带m的中心子载波,和一个子带m的中心子载波。
第二种方式,当子带有一个子载波作为子带的中心子载波时,子带资源(子带)也可以包括:或者,子带的中心子载波、频率低于子带的中心子载波的M+1个子载波、频率高于子带的中心子载波的M个子载波。如图11(b)所示,设子带中包括72个子载波,以第二种方式可以得出,子带m包括36个子载波的频率低于1个子带m的中心子载波,35个子载波的频率高于1个子带m的中心子载波,和一个子带m的中心子载波。
第三种方式,当子带有两个子载波作为子带中心子载波时,子带资源(子带)可以包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M个子载波。如图11(c)所示,设子带中包括72个子载波,以第三种方式可以得出,子带m包括35个 子载波的频率低于1个子带m的中心子载波,35个子载波的频率高于1个子带m的中心子载波,和两个子带m的中心子载波。
可选的,在步骤901中的子带资源信息包括第一参数和第二参数,第一参数用于确定子带的中心子载波在资源块RB中的位置,第二参数用于确定子带的中心子载波所在的资源块RB。
其中,第一参数指示了哪个子载波作为子带的中心子载波。可以有1个子载波或多个子载波作为子带的中心子载波。第一参数由一个或多个比特构成。
本发明可以预先设置子载波k1、子载波k2中的一种作为子带的中心子载波。其中,子载波k1和子载波k2是不同的子载波。例如,子载波k1为RB中的第一个子载波,子载波k2为RB中的最后一个子载波。或者,子载波k1为RB中的第6个子载波,子载波k2为RB中的第7个子载波。或者,当带宽包含的RB数是偶数时,子载波k1为RB中的第一个子载波,子载波k2为RB中的最后一个子载波;当带宽包含的RB数是奇数时,子载波k1为RB中的第6个子载波,子载波k2为,RB中的第7个子载波。
可选的,第一参数由一个比特构成。第一参数的比特状态可以为0和1。其中,0(或为1)表示子载波k1为子带的中心子载波。第一参数的比特状态为1(或为0)表示所确定的RB中的子载波k2为子带的中心子载波。
进一步可选的,子带资源信息还包括第三偏移参数,第三偏移参数用于确定子带的中心子载波的偏移。
记第三偏移参数为offset3。offset3可以是固定的常数,如offset3=1或offset3=-1。
可选的,第一参数由两个比特构成。第一参数的比特状态可以为00、01、10、11。其中,00表示子载波k1为子带的中心子载波,01表示子 载波k2为子带的中心子载波,10表示子载波k1和子载波k1-offset3为子带的中心子载波,11表示子载波k2和子载波k2+offset3为子带的中心子载波。
第二参数指示了子带的中心子载波所在的RB。第二参数可以指示NRB个RB中的哪个RB为子带的中心子载波所在的RB。该子带的中心子载波所在的RB可以是一个或多个RB。其中,NRB=NDL RB,NDL RB是在载波或子带包含的RB数。或者NRB是预先设定的整数。例如,NDL RB=100,且NRB=100,第二参数可以由7个比特构成,第二参数可以指示100个RB中的哪一个RB为子带的中心子载波所在的RB。再如,NDL RB=100,但NRB=16,这16个RB是100个RB中特定的16个RB,第二参数可以由4个比特构成,第二参数可以指示16个RB中的哪一个RB为子带的中心子载波所在的RB。
如图12所示,第一参数指示所确定的RB中的第1个子载波是子带的中心子载波。第二参数指示子带的中心子载波所在的RB是索引为4的RB,即所确定的RB是索引为4的RB。这样UE就确定了子带的中心子载波是索引为4的RB中的第1个子载波。
可选的,在步骤901中的子带资源信息包括子带确定方式和子带索引,子带确定方式规定了在带宽中子带的构成方式,子带索引是带宽中的子带的编号。
在本发明中子带确定方式有多种,在此列举其中几种方式。
子带确定方式1:UE从载波的中心子载波的一侧开始对子带进行编号,当载波的中心子载波一侧的可用子带编号完成后,从载波的中心子载波的另一侧对子带进行编号。如图13(a)所示或者如图13(b)所示,其中,DC0为载波的中心子载波,图13(a)/图13(b)显示四个子带,其中每个子带包括6个RB。在图13(a)中,以靠近DC0的子带开始编号;在图13(b)中,以远离DC0的子带开始编号。
例如,对子带资源位于载波的中心子载波的左侧(即频率低于载波中心子载波频点的频率资源)的所有子带从低频往高频依次进行编号,而后对子带资源位于载波的中心子载波的右侧(即频率高于载波中心子载波频点的频率资源)的所有未编号子带从低频往高频依次进行编号。
再如,对子带资源位于载波的中心子载波的右侧(即频率高于载波中心子载波频点的频率资源)的所有子带从高频往低频依次进行编号,而后对子带资源位于载波的中心子载波的左侧(即频率低于载波中心子载波频点的频率资源)的所有未编号子带从高频往低频依次进行编号。
子带确定方式2:UE从载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的另一侧,对其剩余子带进行编号,直至对载波的中心子载波的两侧可用子带均完成编号。如图13(c)所示或者如图13(d)所示,其中,DC0为载波的中心子载波,图13(c)/图13(d)显示四个子带,其中每个子带包括6个RB。同理,在图13(c)中,以靠近DC0的子带开始编号;在图13(d)中,以远离DC0的子带开始编号。
进一步可选的,在本发明中可以允许不同的子带有RB的重叠。如图14(a)、图14(b)、图14(c)、图14(d)所示。
同样的,在图14(a)、图14(b)、图14(c)、图14(d)中,DC0为载波的中心子载波,每个子带包括6个RB。图14(a)对应图13(a),图14(b)对应图13(b),图14(c)对应图13(c),图14(d)对应图13(d)。
可选的,对于任一种子带确定方式,如果某个子带的子带资源位于载波的中心子载波的两侧,这个子带称为中心子带。否则,子带称为非中心子带。中心子带可以作为第一个子带(即编号为0),或者编号为最后一个 子带,或者编号方法与非中心子带一样,或者作为默认子带。其中,默认子带的编号为0,或者默认子带不参与子带的编号。
进一步可选的,子带资源信息还包括第四偏移参数和/或第五偏移参数,第四偏移参数用于确定子带的偏移,第五偏移参数用于确定子带的偏移。对应的,步骤902中:UE可以根据子带确定方式、子带索引和第四偏移参数确定子带资源;或者,UE可以根据子带确定方式、子带索引、第四偏移参数和第五偏移参数确定子带资源。
第四偏移参数可以有多种不同的含义,且第四偏移参数的值可以是固定的或者信令配置的。第四偏移参数指示了第四偏移与载波的中心子载波的中心频点的偏移,或者指示了第四偏移与载波的中心子载波的偏移,或者指示了第四偏移与特定的RB之间的偏移,或者指示了第四偏移子带的偏移。同理,第五偏移参数与第四偏移参数的性质相同,只是使用的范围不同。
在本发明实施例中,可以根据系统带宽预先固定第四偏移参数的值。
例如,一种取值方式为:
系统带宽=1.4MHz时,第四偏移=0;和/或,
系统带宽=3MHz时,第四偏移=1.5RB;和/或,
系统带宽=5MHz时,第四偏移=0.5RB;和/或,
系统带宽=10MHz时,第四偏移=1RB;和/或,
系统带宽=15MHz时,第四偏移=1.5RB;和/或,
系统带宽=20MHz时,第四偏移=2RB。
另一种取值方式为:
系统带宽=1.4MHz时,第四偏移=0;和/或,
系统带宽=3MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=3RB;和/或,
系统带宽=5MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=1RB;和/或,
系统带宽=10MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=2RB;和/或,
系统带宽=15MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=3RB;和/或,
系统带宽=20MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=4RB。
可选地,第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。
可选地,可以把第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB构成一个特殊的子带(特殊子带包含的RB数小于子带包括的RB数)。
可选地,对于第一系统带宽集合,可以把第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB构成一个特殊的子带;对于第二系统带宽集合,第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。第一系统带宽集合包含的带宽和第二系统带宽集合包含的带宽不同。如,第一系统带宽集合包含3MHz、5MHz、10MHz、15MHz、20MHz系统带宽,第二系统带宽集合包含1.4MHz系统带宽。
系统带宽=1.4MHz时,没有特殊子带;
系统带宽=3MHz时,特殊子带包括3个RB;
系统带宽=5MHz时,特殊子带包括1个RB;
系统带宽=10MHz时,特殊子带包括2个RB;
系统带宽=15MHz时,特殊子带包括3个RB;
系统带宽=20MHz时,特殊子带包括4个RB;
再如,第一系统带宽集合包含5MHz、10MHz、15MHz、20MHz系统带宽,第二系统带宽集合包含1.4MHz、3MHz系统带宽。
可选地,第五偏移=0。当确定的子带是下行子带时,第五偏移等于0。当确定的子带是上行子带时,第五偏移的值是高层信令配置的。
需要说明的是,在本发明中如果某个偏移参数的值恒定为0,表示没有或者不需要引入(或定义)这个偏移参数。并且,本发明中,如果载波有直流子载波,则载波的中心子载波是载波的直流子载波或载波的中心频率。如果载波没有直流子载波,则载波的中心子载波是载波的中心频率。
如图15(a)所示,第四偏移指示了子带与载波的中心子载波的偏移,第五偏移指示了子带与载波中的特定RB(如载波中的第一个RB或最后一个RB)的偏移。
对应的,第四偏移与第五偏移代表的意义可以进行转换。如图15(b)所示。
如图15(c)所示,图15(c)示出了不同系统带宽下第四偏移参数的值,且第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。
如图15(d)所示,图15(d)示出了不同系统带宽下第四偏移参数的值,且第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB构成一个子带。
图15(e)所示,图15(e)示出了另一种不同系统带宽下第四偏移参数的值,且第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。
进一步可选的,子带资源信息还包括第六偏移参数,第六偏移参数用于确定子带的中心子载波,步骤902中的UE根据子带资源信息确定子带资源,包括:
当子带索引大于和/或等于第一门限,UE根据子带资源信息和第六偏移参数确定子带资源。或者,
当子带索引小于第一门限,UE根据子带资源信息和第六偏移参数确定子带资源。或者,
当子带索引是偶数时,UE根据子带资源信息和第六偏移参数确定子带资源;或者,
当子带索引是奇数时,UE根据子带资源信息和第六偏移参数确定子带资源。
第一门限可以为m-offset4,或者第一门限可以为m-offset4-offset5。其中,m=floor(A/S),这里A=NDL RB,NDL RB是载波或子带包含的RB数。或者A是预先设定的整数。floor是向下取整函数,S是固定的常数或者显式信令配置的参数或者是隐式得出的参数。例如S=10。
以下用伪代码描述确定子带的中心子载波(或确定子带)的不同方法:
定义m=floor(A/S)。
定义NRB SC是每个RB包含的子载波个数。
定义参数L,参数L可以和S、NRB SC中的一个或多个参数相关,也可以与S、NRB SC无关。
定义VDC(k)是子带k的中心子载波的子载波索引。
定义offset4是第四偏移参数,定义offset5是第五偏移参数,定义offset6是第六偏移参数。
定义k是子带的索引。
实施方法1:
If k<=m-offset4
VDC(k)=NDL RB×(NRB SC/2)–(k+offset4)×L
Else
VDC(k)=NDL RB×(NRB SC/2)+(k-m+2×offset4)×L-offset6
k的取值可以是1,2,3,……,2m-2×offset4。
实施方法2:
If k<=m-offset4–offset5
VDC(k)=NDL RB×(NRB SC/2)–(K+offset4)×L
Else
VDC(k)=NDL RB×(NRB SC/2)+(K-m+2×offset4+offset5)×L-offset6
k的取值可以是1,2,3,……,2m-2×offset4–2×offset5
实施方法3:
If k<=m-offset4
VDC(k)=NDL RB×(NRB SC/2)–(m-K+1-offset4)×L
Else
VDC(k)=NDL RB×(NRB SC/2)+(2m-K+1-2×offset4)×L-offset6
k的取值可以是1,2,3,……,2m-2×offset4
实施方法4:
If k<=m-offset4–offset5
VDC(k)=NDL RB×(NRB SC/2)–(m-k+1-offset4)×L
Else
VDC(k)=NDL RB×(NRB SC/2)+(2m-k+1-2×offset4-offset5)×L-offset6
k的取值可以是1,2,3,……,2m-2×offset4–2×offset5
实施方法5:
If k mod 2=1
VDC(k)=NDL RB×(NRB SC/2)–(m-ceil(k/2)+1-offset4)×L
If k mod 2=0
VDC(k)=NDL RB×(NRB SC/2)+(m-k/2+1-offset4)×L-offset6或者
VDC(k)=NDL RB×(NRB SC/2)–VDC(k-1)
其中mod是求模运算。
实施方法6:
If k mod 2=1
VDC(k)=NDL RB×(NRB SC/2)–(m-ceil(K/2)+1-offset4)×L
If k mod 2=0
VDC(k)=NDL RB×(NRB SC/2)+(m-k/2+1-offset4)×L-offset6or
VDC(k)=NDL RB×(NRB SC/2)–VDC(k-1)
k的取值可以是1,2,3,……,2m-2×offset4-2×offset5
标准或者系统可以规定采用上述实施方法中的一种或多种方法确定子带中心子载波。如,标准规定采用实施方法3或6确定子带中心子载波。或者UE通过接收信令确定采用哪种实施方法确定子带中心子载波。
进一步可选的,在步骤901中,UE获取子带资源信息的方式有两种。
第一种方式:UE接收基站发送的第二信令;从第二信令中获取子带资源信息。
第二种方式:UE根据预先规定的方式确定子带资源信息。
进一步可选的,在步骤903之后,本发明还可以确定另一方向的子带资源。
UE接收基站发送第三信令,第三信令指示了下行子带资源和上行子带资源之间的双工间隔。
当子带资源为下行子带资源时,UE根据下行子带资源和双工间隔确定上行子带资源。当子带资源为上行子带资源时,UE根据上行子带资源和双工间隔确定下行子带资源。如随机接入响应中通知确定消息3上行传输所占用的子带资源信息,UE可以根据子带资源信息确定消息3上行传输的上行子带资源。进一步地,UE可以根据上行子带资源和双工间隔确定竞争解决消息传输(或调度竞争解决消息的控制信道传输)的下行子带资源。
本发明通过UE获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,UE通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
对应通信系统的热点侧,本发明还可以提供一种子带资源确定方法, 如图16所示,该方法应用于基站,该方法中的子带资源是子带中的资源,其中,子带为带宽中具有工作带宽的频率资源,带宽为下行带宽或上行带宽,工作带宽小于所述带宽,具体如下:
1601,基站获取子带资源信息,子带资源信息包括确定子带资源的信息。
1602,基站根据子带资源信息确定子带资源。
1603,基站根据子带资源传输数据和/或控制信息。
本发明提供一种子带资源确定方法,与现有技术中低复杂度UE在载波中只能够发送或接收工作带宽的数据,而低复杂度UE无法获知带宽中的哪段工作带宽大小的带宽是用于传输与其相关数据的带宽,因而,从而阻碍了低复杂度UE与基站之间通信的问题相比,本发明通过基站获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,基站通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
需要说明的是,子带资源是子带,或子带资源是子带的中心子载波。
进一步的,在步骤1601中的子带资源信息可以包括特定频率信息和第一偏移参数,特定频率信息用于确定子带的中心子载波,第一偏移参数用于确定子带的中心子载波的偏移。或者,
子带资源信息包括第一参数和第二参数,第一参数用于确定子带的中心子载波在资源块RB中的位置,第二参数用于确定子带的中心子载波所在的资源块RB。或者,
子带资源信息包括子带确定方式和子带索引,子带确定方式规定了在带宽中子带的构成方式,子带索引是带宽中的子带的编号。
其中,特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种。
第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
另外,需要说明的是,关于特定频率信息、第一偏移参数、第一参数、第二参数、子带确定方式和子带索引的详细说明,可参照上述附图(图2-图15(e))中的描述,在此不再一一赘述。
进一步可选的,当带宽包含的资源块数是奇数,并且子带资源信息包括的是特定频率信息和第一偏移参数时,子带资源信息还包括第二偏移参数,第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,N为不等于0的整数;
步骤1602中的基站根据子带资源信息确定子带资源,包括:基站根据特定频率信息、第一偏移参数和第二偏移参数,确定子带资源。
进一步可选的,在步骤1602之前还包括:
基站生成用于指示特定频率信息与第一偏移确定子带资源的第一特定方式,和/或生成用于指示特定频率信息、第一偏移以及第二偏移确定子带资源的第二特定方式,第一特定方式为相加方式或者相减方式,第二特定方式为相加方式或者相减方式,以便于基站根据子带资源信息、第一特定方式和/或第二特定方式确定子带资源;
另外,基站生成第一信令,第一信令指示第一特定方式和/或第二特定方式;并将第一信令发送给UE。
进一步可选的,当子带资源信息包括第一参数和第二参数时:子带资 源信息还包括第三偏移参数,第三偏移参数用于确定子带的中心子载波的偏移;则步骤1602可以包括:基站根据第一参数,第二参数和第三偏移参数确定子带资源。
进一步可选的,当子带资源信息包括子带确定方式和子带索引时:
子带确定方式采用子带确定方式1或子带确定方式2;其中,
子带确定方式1:基站从载波的中心子载波的一侧开始对子带进行编号,当载波的中心子载波一侧的所有子带编号完成后,从载波的中心子载波的另一侧对子带进行编号;
例如,对子带资源位于载波的中心子载波的左侧(即频率低于载波中心子载波频点的频率资源)的所有子带从低频往高频依次进行编号,而后对子带资源位于载波的中心子载波的右侧(即频率高于载波中心子载波频点的频率资源)的所有未编号子带从低频往高频依次进行编号。
再如,对子带资源位于载波的中心子载波的右侧(即频率高于载波中心子载波频点的频率资源)的所有子带从高频往低频依次进行编号,而后对子带资源位于载波的中心子载波的左侧(即频率低于载波中心子载波频点的频率资源)的所有未编号子带从高频往低频依次进行编号。
子带确定方式2:基站从载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到载波的载波的中心子载波的另一侧,对其剩余子带进行编号,直至对载波的中心子载波的两侧均完成子带的编号。
可选的,对于任一种子带确定方式,如果某个子带的子带资源位于载波的中心子载波的两侧,这个子带称为中心子带。否则,子带称为非中心子带。中心子带可以作为第一个子带(即编号为0),或者编号为最后一个子带,或者编号方法与非中心子带一样,或者作为默认子带。其中,默认 子带的编号为0,或者默认子带不参与子带的编号。
进一步可选的,当子带资源信息包括子带确定方式和子带索引时:子带资源信息还包括第四偏移参数和/或第五偏移参数,第四偏移参数用于确定子带的偏移,第五偏移参数用于确定子带的偏移;
步骤1602包括:基站根据子带确定方式、子带索引和第四偏移参数确定子带资源;或者,基站根据子带确定方式、子带索引和第五偏移参数确定子带资源;或者,基站根据子带确定方式、子带索引、第四偏移参数和第五偏移参数确定子带资源。
在本发明实施例中,可以根据系统带宽预先固定第四偏移参数的值。
例如,一种取值方式为:
系统带宽=1.4MHz时,第四偏移=0;和/或,
系统带宽=3MHz时,第四偏移=1.5RB;和/或,
系统带宽=5MHz时,第四偏移=0.5RB;和/或,
系统带宽=10MHz时,第四偏移=1RB;和/或,
系统带宽=15MHz时,第四偏移=1.5RB;和/或,
系统带宽=20MHz时,第四偏移=2RB。
另一种取值方式为:
系统带宽=1.4MHz时,第四偏移=0;和/或,
系统带宽=3MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=3RB;和/或,
系统带宽=5MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=1RB;和/或,
系统带宽=10MHz时,载波的中心子载波左侧(或右侧)的第四偏移 =0,载波的中心子载波右侧(或左侧)的第四偏移=2RB;和/或,
系统带宽=15MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=3RB;和/或,
系统带宽=20MHz时,载波的中心子载波左侧(或右侧)的第四偏移=0,载波的中心子载波右侧(或左侧)的第四偏移=4RB。
可选地,第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。
可选地,可以把第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB构成一个特殊的子带(特殊子带包含的RB数小于子带包括的RB数)。
可选地,对于第一系统带宽集合,可以把第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB构成一个特殊的子带;对于第二系统带宽集合,第四偏移所指示的偏移范围(包括载波的中心子载波左右两侧)内的RB不属于任何子带。第一系统带宽集合包含的带宽和第二系统带宽集合包含的带宽不同。如,第一系统带宽集合包含3MHz、5MHz、10MHz、15MHz、20MHz系统带宽,第二系统带宽集合包含1.4MHz系统带宽。
系统带宽=1.4MHz时,没有特殊子带;
系统带宽=3MHz时,特殊子带包括3个RB;
系统带宽=5MHz时,特殊子带包括1个RB;
系统带宽=10MHz时,特殊子带包括2个RB;
系统带宽=15MHz时,特殊子带包括3个RB;
系统带宽=20MHz时,特殊子带包括4个RB;
再如,第一系统带宽集合包含5MHz、10MHz、15MHz、20MHz系统带宽,第二系统带宽集合包含1.4MHz、3MHz系统带宽。
可选地,第五偏移=0。当确定的子带是下行子带时,第五偏移等于0。当确定的子带是上行子带时,第五偏移的值是高层信令配置的。
需要说明的是,在本发明中如果某个偏移参数的值恒定为0,表示没有或者不需要引入(或定义)这个偏移参数。并且,本发明中,如果载波有直流子载波,则载波的中心子载波是载波的直流子载波或载波的中心频率。如果载波没有直流子载波,则载波的中心子载波是载波的中心频率。
进一步可选的,当子带资源信息包括子带确定方式和子带索引时:子带资源信息还包括第六偏移参数,第六偏移参数用于确定子带的中心子载波,步骤1602包括:
当子带索引大于和/或等于第一门限,基站根据子带资源信息和第六偏移参数确定子带资源;或者,
当子带索引小于第一门限,基站根据子带资源信息和第六偏移参数确定子带资源;或者,
当子带索引是偶数时,基站根据子带资源信息和第六偏移参数确定子带资源;或者,
当子带索引是奇数时,基站根据子带资源信息和第六偏移参数确定子带资源。
进一步可选的,当子带资源是子带时,当子带包括2M+2个子载波时,以子带有一个子载波作为子带的中心子载波为例,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子带的中心子载波的M+1个子载波;或者,子带的中心子载波、频率低于子带的中心子载波的M+1个子载波、频率高于子带的中心子载波的M个子载波;
以子带有两个子载波作为子带中心子载波为例,子带资源包括:子带的中心子载波、频率低于子带的中心子载波的M个子载波、频率高于子 带的中心子载波的M个子载波。
进一步可选的,步骤1601中,基站获取子带资源信息的方式包括:
第一种:基站生成子带资源信息;第二种:基站根据预先规定的方式确定子带资源信息。对应的,在基站获取子带资源信息之后,基站将携带子带资源信息的第二信令发送给UE。
进一步可选的,在基站根据子带资源信息确定子带资源之后,方法还包括:
基站确定下行子带资源和上行子带资源之间的双工间隔;并向UE发送携带双工间隔的第三信令;当子带资源为下行子带资源时,基站根据下行子带资源和双工间隔确定上行子带资源;当子带资源为上行子带资源时,基站根据下行子带资源和双工间隔确定下行子带资源。
本发明通过基站获取子带资源信息来确定子带资源,从而能够根据子带资源传输数据和/或控制信息,实现了在工作带宽小于载波带宽时,基站通过子带资源可以确定带宽中的某一段特定频率带宽大小的带宽为发送或接收数据与其相关数据的带宽,从而能够达到在实现用户设备成本的节省或复杂度的降低的同时,使得UE与基站进行通信的目的。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可 以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (78)

  1. 一种子带资源确定装置,其特征在于,所述装置应用于用户设备UE,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
    获取模块,用于获取子带资源信息,并将所述子带资源信息提供给确定模块,所述子带资源信息包括确定子带资源的信息;
    所述确定模块,用于根据所述子带资源信息确定所述子带资源,并将所述子带资源提供给传输模块;
    所述传输模块,用于根据所述子带资源传输数据和/或控制信息。
  2. 根据权利要求1所述的装置,其特征在于,
    所述子带资源是所述子带,或
    所述子带资源是所述子带的中心子载波。
  3. 根据权利要求1或2所述的装置,其特征在于,
    所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
    所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
    所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
  4. 根据权利要求3所述的装置,其特征在于,当所述子带资源信息包 括特定频率信息和第一偏移参数时:
    所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
    所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
  5. 根据权利要求4权利要求所述的装置,其特征在于,
    所述确定模块,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,其中所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
  6. 根据权利要求5所述的装置,其特征在于,所述装置还包括:接收模块;
    所述接收模块,用于接收基站发送的第一信令,并将所述第一信令提供给所述确定模块,所述第一信令用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,所述第一特定方式为相加方式或者相减方式,或者指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第二特定方式为相加方式或者相减方式;
    所述确定模块,还用于通过所述子带资源信息和所述第一信令确定所述子带资源。
  7. 根据权利要求3所述的装置,其特征在于,
    所述确定模块,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源,所述子带资源信息还包括所述第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
  8. 根据权利要求3所述的装置,其特征在于,所述装置还包括:编号模块,
    所述编号模块,用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的可用子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;
    所述编号模块,还用于从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧可用子带均完成编号。
  9. 根据权利要求8所述的装置,其特征在于,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
    所述确定模块,还用于根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
  10. 根据权利要求9权利要求所述的装置,其特征在于,
    所述确定模块,还用于当所述子带索引大于和/或等于第一门限,根据所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波; 当子带索引小于所述第一门限,根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
  11. 根据权利要求1至10中任一项权利要求所述的装置,其特征在于,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,其中,M为大于0的整数;
    所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
    所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
  12. 根据权利要求1至11中任一项权利要求所述的装置,其特征在于,所述获取模块包括:接收单元,确定单元;
    所述接收单元,用于接收所述基站发送的第二信令;从所述第二信令中获取所述子带资源信息;
    所述确定单元,用于根据预先规定的方式确定所述子带资源信息。
  13. 根据权利要求1至12中任一项权利要求所述的装置,其特征在于,
    所述接收模块,还用于接收所述基站发送的第三信令,并将所述第三信令提供给所述确定模块,所述第三信令指示了下行子带资源和上行子带资源之间的双工间隔;
    所述确定模块,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,根据所述上行子带资源和所述双工间隔确定下行子带资源。
  14. 一种子带资源确定装置,其特征在于,所述装置应用于基站,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
    获取模块,用于获取子带资源信息,并将所述子带资源信息提供给确定模块,所述子带资源信息包括确定子带资源的信息;
    所述确定模块,用于根据所述子带资源信息确定所述子带资源,并将所述子带资源提供给传输模块;
    所述传输模块,用于根据所述子带资源传输数据和/或控制信息。
  15. 根据权利要求14所述的装置,其特征在于,
    所述子带资源是所述子带,或
    所述子带资源是所述子带的中心子载波。
  16. 根据权利要求14或15所述的装置,其特征在于,
    所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
    所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
    所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
  17. 根据权利要求16所述的装置,其特征在于,当所述子带资源信息包括特定频率信息和第一偏移参数时:
    所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
    所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
  18. 根据权利要求17权利要求所述的装置,其特征在于,
    所述确定模块,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括:生成模块,发送模块;
    所述生成模块,用于生成用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,和/或生成用于指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第一特定方式为相加方式或者相减方式,所述第二特定方式为相加方式或者相减方式;以及生成第一信令,所述第一信令指示所述第一特定方式和/或所述第二特定方式;
    所述确定模块,还用于根据所述子带资源信息、所述第一特定方式和/或所述第二特定方式确定所述子带资源;
    所述发送模块,用于将所述第一信令发送给用户设备UE。
  20. 根据权利要求16所述的装置,其特征在于,
    所述确定模块,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源其中所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
  21. 根据权利要求16所述的装置,其特征在于,所述装置还包括编号模块;
    所述编号模块,还用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的所有子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧均完成子带的编号。
  22. 根据权利要求21所述的装置,其特征在于,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
    所述确定模块,还用于根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
  23. 根据权利要求22权利要求所述的装置,其特征在于,
    所述确定模块,还用于当所述子带索引大于和/或等于第一门限,根据 所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括所述第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波;当子带索引小于所述第一门限,根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
  24. 根据权利要求14至23中任一项权利要求所述的装置,其特征在于,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,
    所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
    所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
  25. 根据权利要求14至24中任一项权利要求所述的装置,其特征在于,所述获取模块包括:生成单元,确定单元;
    所述生成单元,用于生成所述子带资源信息;
    所述确定单元,用于根据预先规定的方式确定所述子带资源信息;
    所述发送模块,还用于将携带所述子带资源信息的第二信令发送给所述UE。
  26. 根据权利要求14至25中任一项权利要求所述的装置,其特征在于,
    所述确定模块,还用于确定下行子带资源和上行子带资源之间的双工 间隔;
    所述生成模块,还用于生成第三信令,并将所述第三信令提供给所述发送模块;
    所述发送模块,还用于向UE发送携带所述双工间隔的第三信令;
    所述确定模块,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,根据所述下行子带资源和所述双工间隔确定下行子带资源。
  27. 一种子带资源确定装置,其特征在于,所述装置应用于用户设备UE,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
    存储器,用于存储包括程序指令的信息;
    所述处理器,与所述存储器、收发器耦合,用于控制所述程序指令的执行,具体用于获取子带资源信息,所述子带资源信息包括确定子带资源的信息;根据所述子带资源信息确定所述子带资源;
    所述收发器,用于根据所述子带资源传输数据和/或控制信息。
  28. 根据权利要求27所述的装置,其特征在于,
    所述子带资源是所述子带,或
    所述子带资源是所述子带的中心子载波。
  29. 根据权利要求27或28所述的装置,其特征在于,
    所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
    所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定 所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
    所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
  30. 根据权利要求29所述的装置,其特征在于,当所述子带资源信息包括特定频率信息和第一偏移参数时:
    所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
    所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
  31. 根据权利要求30权利要求所述的装置,其特征在于,
    所述处理器,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,其中所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
  32. 根据权利要求31所述的装置,其特征在于,
    所述收发器,还用于接收基站发送的第一信令,并将所述第一信令提供给所述处理器,所述第一信令用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,所述第一特定方式为相加方式或者相减方式,或者指示所述特定频率信息、所述第一偏移以及所述第二偏移 确定所述子带资源的第二特定方式,所述第二特定方式为相加方式或者相减方式;
    所述处理器,还用于通过所述子带资源信息和所述第一信令确定所述子带资源。
  33. 根据权利要求29所述的装置,其特征在于,
    所述处理器,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源,所述子带资源信息还包括所述第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
  34. 根据权利要求29所述的装置,其特征在于,
    所述处理器,还用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的可用子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧可用子带均完成编号。
  35. 根据权利要求34所述的装置,其特征在于,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
    所述处理器,还用于根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
  36. 根据权利要求35权利要求所述的装置,其特征在于,
    所述处理器,还用于当所述子带索引大于和/或等于第一门限,根据所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波;当子带索引小于所述第一门限,根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
  37. 根据权利要求27至36中任一项权利要求所述的装置,其特征在于,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,其中,M为大于0的整数;
    所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
    所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
  38. 根据权利要求27至37中任一项权利要求所述的装置,其特征在于,
    所述收发器,还用于接收所述基站发送的第二信令;从所述第二信令中获取所述子带资源信息;
    所述处理器,还用于根据预先规定的方式确定所述子带资源信息。
  39. 根据权利要求27至38中任一项权利要求所述的装置,其特征在 于,
    所述收发器,还用于接收所述基站发送的第三信令,并将所述第三信令提供给所述处理器,所述第三信令指示了下行子带资源和上行子带资源之间的双工间隔;
    所述处理器,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,根据所述上行子带资源和所述双工间隔确定下行子带资源。
  40. 一种子带资源确定装置,其特征在于,所述装置应用于基站,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述装置包括:
    存储器,用于存储包括程序指令的信息;
    所述处理器,与所述存储器、收发器耦合,用于控制所述程序指令的执行,具体用于获取子带资源信息,所述子带资源信息包括确定子带资源的信息;根据所述子带资源信息确定所述子带资源;
    所述收发器,用于根据所述子带资源传输数据和/或控制信息。
  41. 根据权利要求40所述的装置,其特征在于,
    所述子带资源是所述子带,或
    所述子带资源是所述子带的中心子载波。
  42. 根据权利要求40或41所述的装置,其特征在于,
    所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
    所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所 述子带的中心子载波所在的资源块RB;或,
    所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
  43. 根据权利要求42所述的装置,其特征在于,当所述子带资源信息包括特定频率信息和第一偏移参数时:
    所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
    所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
  44. 根据权利要求43权利要求所述的装置,其特征在于,
    所述处理器,还用于当所述带宽包含的资源块数是奇数时,根据所述特定频率信息、所述第一偏移参数和第二偏移参数,确定所述子带资源,其中所述子带资源信息还包括所述第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数。
  45. 根据权利要求44所述的装置,其特征在于,
    所述处理器,还用于生成用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,和/或生成用于指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第一特定方式为相加方式或者相减方式,所述第二特定方式为相加方式或者相减方式;以及生成第一信令,所述第一信令指示所述第一特定方 式和/或所述第二特定方式;根据所述子带资源信息、所述第一特定方式和/或所述第二特定方式确定所述子带资源;
    所述收发器,还用于将所述第一信令发送给用户设备UE。
  46. 根据权利要求42所述的装置,其特征在于,
    所述处理器,还用于当所述子带资源信息包括所述第一参数和所述第二参数时,根据所述第一参数,所述第二参数和第三偏移参数确定所述子带资源,所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移。
  47. 根据权利要求42所述的装置,其特征在于,
    所述处理器,还用于从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的所有子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧均完成子带的编号。
  48. 根据权利要求47所述的装置,其特征在于,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
    所述处理器,还用于根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
  49. 根据权利要求48权利要求所述的装置,其特征在于,
    所述处理器,还用于当所述子带索引大于和/或等于第一门限,根据所述子带资源信息和第六偏移参数确定所述子带资源,所述子带资源信息还包括所述第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波;当子带索引小于所述第一门限,所述基站根据所述子带资源信息和所述第六偏移参数确定所述子带资源;当所述子带索引是偶数时,根据所述子带资源信息和所述第六偏移参数确定子带资源;当所述子带索引是奇数时,根据所述子带资源信息和所述第六偏移参数确定子带资源。
  50. 根据权利要求40至49中任一项权利要求所述的装置,其特征在于,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,
    所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
    所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
  51. 根据权利要求40至50中任一项权利要求所述的装置,其特征在于,
    所述处理器,还用于生成所述子带资源信息;根据预先规定的方式确定所述子带资源信息;
    所述收发器,还用于将携带所述子带资源信息的第二信令发送给所述UE。
  52. 根据权利要求40至51中任一项权利要求所述的装置,其特征在于,
    所述处理器,还用于确定下行子带资源和上行子带资源之间的双工间隔;生成第三信令,并将所述第三信令提供给所述收发器;
    所述收发器,还用于向UE发送携带所述双工间隔的第三信令;
    所述处理器,还用于当所述子带资源为下行子带资源时,根据所述下行子带资源和所述双工间隔确定上行子带资源;当所述子带资源为上行子带资源时,所根据所述下行子带资源和所述双工间隔确定下行子带资源。
  53. 一种子带资源确定方法,其特征在于,所述方法应用于用户设备UE,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述方法包括:
    所述UE获取子带资源信息,所述子带资源信息包括确定子带资源的信息;
    所述UE根据所述子带资源信息确定所述子带资源;
    所述UE根据所述子带资源传输数据和/或控制信息。
  54. 根据权利要求53所述的方法,其特征在于,
    所述子带资源是所述子带,或
    所述子带资源是所述子带的中心子载波。
  55. 根据权利要求53或54所述的方法,其特征在于,
    所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
    所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
    所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
  56. 根据权利要求55所述的方法,其特征在于,当所述子带资源信息包括特定频率信息和第一偏移参数时:
    所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
    所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
  57. 根据权利要求56权利要求所述的方法,其特征在于,当所述带宽包含的资源块数是奇数时,所述子带资源信息还包括第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数;
    所述UE根据子带资源信息确定子带资源,包括:
    所述UE根据所述特定频率信息、所述第一偏移参数和所述第二偏移参数,确定所述子带资源。
  58. 根据权利要求57所述的方法,其特征在于,所述方法还包括:
    所述UE接收基站发送的第一信令,所述第一信令用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,所述第一特定方式为相加方式或者相减方式,或者指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第二特定方式为相加方式或者相减方式;
    所述UE根据子带资源信息确定子带资源,包括:
    所述UE通过所述子带资源信息和所述第一信令确定所述子带资源。
  59. 根据权利要求55所述的方法,其特征在于,当所述子带资源信息包括所述第一参数和所述第二参数时:所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移;
    所述UE根据子带资源信息确定所述子带资源,包括:
    所述UE根据所述第一参数,所述第二参数和所述第三偏移参数确定所述子带资源。
  60. 根据权利要求55所述的方法,其特征在于,当所述子带资源信息包括子带确定方式和子带索引时:
    所述子带确定方式采用子带确定方式1或子带确定方式2;其中,
    所述子带确定方式1:所述UE从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的可用子带编号完成后,从所述载波的中心子载波的另一侧对子带进行编号;
    所述子带确定方式2:所述UE从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧可用子带均完成编号。
  61. 根据权利要求60所述的方法,其特征在于,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
    所述UE根据子带资源信息确定所述子带资源,包括:
    所述UE根据所述子带确定方式、所述子带索引和所述第四偏移参数 确定所述子带资源;或者,
    所述UE根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;或者,
    所述UE根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
  62. 根据权利要求61权利要求所述的方法,其特征在于,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波,所述UE根据子带资源信息确定所述子带资源,包括:
    当所述子带索引大于和/或等于第一门限,所述UE根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
    当子带索引小于所述第一门限,所述UE根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
    当所述子带索引是偶数时,所述UE根据所述子带资源信息和所述第六偏移参数确定子带资源;或者,
    当所述子带索引是奇数时,所述UE根据所述子带资源信息和所述第六偏移参数确定子带资源。
  63. 根据权利要求53至62中任一项权利要求所述的方法,其特征在于,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,其中,M为大于0的整数;
    所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
    所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所 述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
  64. 根据权利要求53至63中任一项权利要求所述的方法,其特征在于,所述UE获取子带资源信息,包括:
    所述UE接收所述基站发送的第二信令;从所述第二信令中获取所述子带资源信息;和/或,
    所述UE根据预先规定的方式确定所述子带资源信息。
  65. 根据权利要求53至64中任一项权利要求所述的方法,其特征在于,在所述UE根据子带资源信息确定所述子带资源之后,所述方法还包括:
    所述UE接收所述基站发送的第三信令,所述第三信令指示了下行子带资源和上行子带资源之间的双工间隔;
    当所述子带资源为下行子带资源时,所述UE根据所述下行子带资源和所述双工间隔确定上行子带资源;
    当所述子带资源为上行子带资源时,所述UE根据所述上行子带资源和所述双工间隔确定下行子带资源。
  66. 一种子带资源确定方法,其特征在于,所述方法应用于基站,所述子带资源是子带中的资源,所述子带为带宽中具有工作带宽的频率资源,所述带宽为下行带宽或上行带宽,所述工作带宽小于所述带宽,所述方法包括:
    所述基站获取子带资源信息,所述子带资源信息包括确定子带资源的信息;
    所述基站根据所述子带资源信息确定所述子带资源;
    所述基站根据所述子带资源传输数据和/或控制信息。
  67. 根据权利要求66所述的方法,其特征在于,
    所述子带资源是所述子带,或
    所述子带资源是所述子带的中心子载波。
  68. 根据权利要求66或67所述的方法,其特征在于,
    所述子带资源信息包括特定频率信息和第一偏移参数,所述特定频率信息用于确定所述子带的中心子载波,所述第一偏移参数用于确定所述子带的中心子载波的偏移;或,
    所述子带资源信息包括第一参数和第二参数,所述第一参数用于确定所述子带的中心子载波在资源块RB中的位置,所述第二参数用于确定所述子带的中心子载波所在的资源块RB;或,
    所述子带资源信息包括子带确定方式和子带索引,所述子带确定方式规定了在所述带宽中子带的构成方式,所述子带索引是所述带宽中的子带的编号。
  69. 根据权利要求68所述的方法,其特征在于,当所述子带资源信息包括特定频率信息和第一偏移参数时:
    所述特定频率信息是载波的中心子载波的中心频点、载波的中心子载波、载波的中心子载波的子载波索引、载波中的一个特定子载波、载波中的一个特定子载波索引、载波中的一个特定资源块、载波中的一个特定资源块索引、载波中的一个特定频点、载波中的一个特定频率位置、载波中的一个特定频率资源中的一种或多种;
    所述第一偏移参数指示了第一偏移的子载波个数、第一偏移的频率大小、第一偏移的资源块数中的一种或多种。
  70. 根据权利要求69权利要求所述的方法,其特征在于,当所述带宽包含的资源块数是奇数时,所述子带资源信息还包括第二偏移参数,所述第二偏移参数指示了第二偏移是N个子载波或N个子载波的频率资源宽度,所述N为不等于0的整数;
    所述基站根据子带资源信息确定子带资源,包括:
    所述基站根据所述特定频率信息、所述第一偏移参数和所述第二偏移参数,确定所述子带资源。
  71. 根据权利要求70所述的方法,其特征在于,所述方法还包括:
    所述基站生成用于指示所述特定频率信息与所述第一偏移确定所述子带资源的第一特定方式,和/或生成用于指示所述特定频率信息、所述第一偏移以及所述第二偏移确定所述子带资源的第二特定方式,所述第一特定方式为相加方式或者相减方式,所述第二特定方式为相加方式或者相减方式;
    所述基站生成第一信令,所述第一信令指示所述第一特定方式和/或所述第二特定方式;
    所述基站根据所述子带资源信息、所述第一特定方式和/或所述第二特定方式确定所述子带资源;
    所述基站将所述第一信令发送给用户设备UE。
  72. 根据权利要求68所述的方法,其特征在于,当所述子带资源信息包括所述第一参数和所述第二参数时:所述子带资源信息还包括第三偏移参数,所述第三偏移参数用于确定所述子带的中心子载波的偏移;
    所述基站根据子带资源信息确定所述子带资源,包括:
    所述基站根据所述第一参数,所述第二参数和所述第三偏移参数确定所述子带资源。
  73. 根据权利要求68所述的方法,其特征在于,当所述子带资源信息包括子带确定方式和子带索引时:
    所述子带确定方式采用子带确定方式1或子带确定方式2;其中,
    所述子带确定方式1:所述基站从所述载波的中心子载波的一侧开始对子带进行编号,当所述载波的中心子载波一侧的所有子带编号完成后, 从所述载波的中心子载波的另一侧对子带进行编号;
    所述子带确定方式2:所述基站从所述载波的中心子载波的一侧开始对子带进行编号,在完成一个子带的编号之后,从所述载波的中心子载波的另一侧对子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的一侧,对其剩余子带进行编号,在完成一个子带的编号之后,返回到所述载波的中心子载波的另一侧,对其剩余子带进行编号,直至对所述载波的中心子载波的两侧均完成子带的编号。
  74. 根据权利要求73所述的方法,其特征在于,所述子带资源信息还包括第四偏移参数和/或第五偏移参数,所述第四偏移参数用于确定所述子带的偏移,所述第五偏移参数用于确定所述子带的偏移;
    所述基站根据子带资源信息确定所述子带资源,包括:
    所述基站根据所述子带确定方式、所述子带索引和所述第四偏移参数确定所述子带资源;或者,
    所述基站根据所述子带确定方式、所述子带索引和所述第五偏移参数确定所述子带资源;或者,
    所述基站根据所述子带确定方式、所述子带索引、所述第四偏移参数和所述第五偏移参数确定所述子带资源。
  75. 根据权利要求74权利要求所述的方法,其特征在于,所述子带资源信息还包括第六偏移参数,所述第六偏移参数用于确定所述子带的中心子载波,所述基站根据子带资源信息确定所述子带资源,包括:
    当所述子带索引大于和/或等于第一门限,所述基站根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
    当子带索引小于所述第一门限,所述基站根据所述子带资源信息和所述第六偏移参数确定所述子带资源;或者,
    当所述子带索引是偶数时,所述基站根据所述子带资源信息和所述第 六偏移参数确定子带资源;或者,
    当所述子带索引是奇数时,所述基站根据所述子带资源信息和所述第六偏移参数确定子带资源。
  76. 根据权利要求66至75中任一项权利要求所述的方法,其特征在于,当所述子带资源是所述子带时,当所述子带包括2M+2个子载波时,
    所述子带有一个子载波作为子带的中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M+1个子载波;或者,所述子带的中心子载波、频率低于所述子带的中心子载波的M+1个子载波、频率高于所述子带的中心子载波的M个子载波;
    所述子带有两个子载波作为子带中心子载波,所述子带资源包括:所述子带的中心子载波、频率低于所述子带的中心子载波的M个子载波、频率高于所述子带的中心子载波的M个子载波。
  77. 根据权利要求66至76中任一项权利要求所述的方法,其特征在于,所述基站获取子带资源信息,包括:
    所述基站生成所述子带资源信息;和/或,所述基站根据预先规定的方式确定所述子带资源信息;
    在所述基站获取子带资源信息之后,所述方法还包括:
    所述基站将携带所述子带资源信息的第二信令发送给所述UE。
  78. 根据权利要求66至77中任一项权利要求所述的方法,其特征在于,在所述基站根据子带资源信息确定所述子带资源之后,所述方法还包括:
    所述基站确定下行子带资源和上行子带资源之间的双工间隔;
    所述基站生成第三信令;
    所述基站向UE发送携带所述双工间隔的第三信令;
    当所述子带资源为下行子带资源时,所述基站根据所述下行子带资源和所述双工间隔确定上行子带资源;
    当所述子带资源为上行子带资源时,所述基站根据所述下行子带资源和所述双工间隔确定下行子带资源。
PCT/CN2015/087069 2015-01-30 2015-08-14 一种子带资源确定装置及方法 WO2016119440A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017525034A JP6504482B2 (ja) 2015-01-30 2015-08-14 サブバンドリソースを決定するための装置および方法
CN201580023336.2A CN106465368B (zh) 2015-01-30 2015-08-14 一种子带资源确定装置及方法
EP15879639.1A EP3193553B1 (en) 2015-01-30 2015-08-14 Sub-band resource determining device and method
US15/660,570 US10524263B2 (en) 2015-01-30 2017-07-26 Apparatus and method for determining subband resource

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015072036 2015-01-30
CNPCT/CN2015/072036 2015-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/660,570 Continuation US10524263B2 (en) 2015-01-30 2017-07-26 Apparatus and method for determining subband resource

Publications (1)

Publication Number Publication Date
WO2016119440A1 true WO2016119440A1 (zh) 2016-08-04

Family

ID=56542312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087069 WO2016119440A1 (zh) 2015-01-30 2015-08-14 一种子带资源确定装置及方法

Country Status (5)

Country Link
US (1) US10524263B2 (zh)
EP (1) EP3193553B1 (zh)
JP (1) JP6504482B2 (zh)
CN (1) CN106465368B (zh)
WO (1) WO2016119440A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133650A1 (zh) * 2017-01-17 2018-07-26 维沃移动通信有限公司 一种边带信息的发送方法、接收方法、发送端和接收端
CN108366030A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种发送载波信息的方法、基站及终端
CN110168128A (zh) * 2017-01-11 2019-08-23 奥科宁克公司 预加工铝合金产品以便粘结的方法
CN113056003A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种通信方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11212760B2 (en) * 2015-09-24 2021-12-28 Qualcomm Incorporated Common synchronization channel design for narrowband communications
US10278227B2 (en) 2017-09-01 2019-04-30 Google Llc Downlink-only fifth generation new radio
CN110138534B (zh) * 2017-09-08 2020-12-08 华为技术有限公司 一种信号的发送方法、装置以及可读存储介质
US20190132831A1 (en) * 2017-10-30 2019-05-02 Google Llc Resource Element-Level Allocation For Wireless Communication
US20210385052A1 (en) * 2018-10-22 2021-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Asymmetric carrier bandwidth design for wireless communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834824A (zh) * 2010-03-22 2010-09-15 深圳市云海通讯股份有限公司 一种多载波滤波方法、系统及直放站
CN102781094A (zh) * 2012-07-10 2012-11-14 华为技术有限公司 通信方法、用户设备、基站及通信系统
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
CN103517439A (zh) * 2012-06-21 2014-01-15 华为技术有限公司 位置处理方法及基站、终端
WO2014053067A1 (en) * 2012-10-05 2014-04-10 Sierra Wireless, Inc. Method and system for radio resource allocation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567714A (zh) * 2008-04-24 2009-10-28 夏普株式会社 用于信息反馈的子带判决方法、基站、用户设备以及通信系统
US9084283B2 (en) * 2008-11-19 2015-07-14 Qualcomm Incorporated Peer-to-peer communication using a wide area network air interface
WO2012058648A2 (en) * 2010-10-29 2012-05-03 Neocific, Inc. Transmission of synchronization and control signals in a broadband wireless system
US9622230B2 (en) 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
US10574417B2 (en) * 2013-03-04 2020-02-25 Qualcomm Incorporated Method and apparatus for MTC device association schemes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834824A (zh) * 2010-03-22 2010-09-15 深圳市云海通讯股份有限公司 一种多载波滤波方法、系统及直放站
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
CN103517439A (zh) * 2012-06-21 2014-01-15 华为技术有限公司 位置处理方法及基站、终端
CN102781094A (zh) * 2012-07-10 2012-11-14 华为技术有限公司 通信方法、用户设备、基站及通信系统
WO2014053067A1 (en) * 2012-10-05 2014-04-10 Sierra Wireless, Inc. Method and system for radio resource allocation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193553A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168128A (zh) * 2017-01-11 2019-08-23 奥科宁克公司 预加工铝合金产品以便粘结的方法
WO2018133650A1 (zh) * 2017-01-17 2018-07-26 维沃移动通信有限公司 一种边带信息的发送方法、接收方法、发送端和接收端
US11108606B2 (en) 2017-01-17 2021-08-31 Vivo Mobile Communication Co., Ltd. Side information transmission method, side information reception method, transmitter and receiver
CN108366030A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种发送载波信息的方法、基站及终端
US10904051B2 (en) 2017-01-26 2021-01-26 Huawei Technologies Co., Ltd. Method for sending carrier information, base station, and terminal
CN108366030B (zh) * 2017-01-26 2022-09-02 华为技术有限公司 一种发送载波信息的方法、基站及终端
CN113056003A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种通信方法和装置
CN113056003B (zh) * 2019-12-26 2024-03-22 大唐移动通信设备有限公司 一种通信方法和装置

Also Published As

Publication number Publication date
JP2018504795A (ja) 2018-02-15
EP3193553B1 (en) 2019-01-23
CN106465368B (zh) 2019-10-22
CN106465368A (zh) 2017-02-22
JP6504482B2 (ja) 2019-04-24
EP3193553A4 (en) 2017-12-06
US10524263B2 (en) 2019-12-31
US20170325236A1 (en) 2017-11-09
EP3193553A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
WO2016119440A1 (zh) 一种子带资源确定装置及方法
US10973020B2 (en) Signal scrambling method and apparatus, and signal descrambling method and apparatus
WO2020020180A1 (zh) 一种资源配置方法及装置
JP7227297B2 (ja) データ通信方法、端末、および基地局
WO2018202130A1 (zh) 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质
TW201931807A (zh) 相位追蹤參考信號傳輸
JP2023054357A (ja) アップリンク制御情報を送信するための方法、システム、および装置
CN111527722A (zh) 用于物理下行链路控制信道(pdcch)候选确定的方法
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
JP7032418B2 (ja) データ伝送方法および装置
JP7152418B2 (ja) リソース指示方法および装置
JP2015532032A (ja) チャネル推定のための地理的に同一なアンテナポート
WO2018010184A1 (zh) 基于无线网络的通信方法、终端设备和网络设备
WO2015007208A1 (zh) 一种上下行配置的指示、确定方法及基站、终端
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
JP2020523933A (ja) 情報送信方法、端末デバイス、及びネットワーク・デバイス
WO2014183680A1 (zh) 一种传输下行信号的方法、装置及终端设备
US20220224466A1 (en) Uplink transmission method and apparatus
TW201824841A (zh) 信息傳輸方法、網絡設備和終端設備
TW201813357A (zh) 用戶設備及虛擬載波的操作方法
TW201742484A (zh) 用於消除小區間干擾的方法和裝置
WO2016172822A1 (zh) 共享频谱上的数据传输方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879639

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015879639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015879639

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017525034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE