WO2016119302A1 - 信道检测方法、信道检测系统、基站和终端 - Google Patents

信道检测方法、信道检测系统、基站和终端 Download PDF

Info

Publication number
WO2016119302A1
WO2016119302A1 PCT/CN2015/075583 CN2015075583W WO2016119302A1 WO 2016119302 A1 WO2016119302 A1 WO 2016119302A1 CN 2015075583 W CN2015075583 W CN 2015075583W WO 2016119302 A1 WO2016119302 A1 WO 2016119302A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
channel detection
data service
fixed period
detection
Prior art date
Application number
PCT/CN2015/075583
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2016119302A1 publication Critical patent/WO2016119302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel detection method when an LTE system operates in an unlicensed frequency band, a channel detection system when the LTE system operates in an unlicensed frequency band, a base station, and a terminal.
  • 3GPP is discussing how to use unlicensed spectrum, such as the 2.4 GHz and 5 GHz bands, with the help of licensed spectrum.
  • unlicensed spectrum are currently mainly used in systems such as Wi-Fi, Bluetooth, radar, and medical.
  • LAA Licensed Assisted Access
  • SDL Supplemental Downlink
  • TDD Time Division Duplex Detection
  • LTE systems operating in unlicensed bands have the ability to provide higher spectral efficiency and greater coverage, while relying on the same core network to allow data traffic between licensed and unlicensed bands. Sew switch. For the user, this means a better broadband experience, higher speed, better stability and mobility.
  • Wi-Fi Wireless Fidelity
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the basic principle of this method is Wi-Fi. Before the AP (Access Point) or the terminal sends signaling or data, it must first monitor whether other APs or other terminals are transmitting/receiving signaling or data. If so, continue to listen until it is monitored. If not, a random number is generated as the backoff time. If no signaling or data transmission is detected during this backoff time, the AP or the terminal may start transmitting signaling or data after the end of the backoff time. The process is shown in Figure 2.
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the LTE network has good orthogonality to ensure the interference level, the uplink and downlink transmissions between the base station and the user do not need to consider whether other base stations or other users are transmitting data. If LTE is used on an unlicensed band, it does not consider whether other devices are using unlicensed bands nearby, which will cause great interference to Wi-Fi devices. Because LTE transmits as long as there is traffic, there is no monitoring rule, then the Wi-Fi device cannot transmit when LTE has service transmission, and can only detect the channel idle state for data transmission after the LTE service transmission is completed.
  • LTE Long Before Talk
  • the previously laid LBT mechanism is a frame based LBT frame structure.
  • the LBT period is fixed, and the CCA (Clear Channel Assessment) time is the beginning of each cycle.
  • the CCA occupies the first one or more symbols (symbols) of the #0 subframe in a period of 10 ms.
  • the #0 subframe can be used for CCA. If the data service arrives in the #1 subframe, the channel must be waited until the next period of the #0 subframe to perform CCA. Whether it can be occupied, which brings a lot of delay.
  • LBT mechanism based on load LBE
  • the main principle is to perform channel detection immediately when the load (data service) arrives. If the detection channel is idle, the data service is sent immediately; if the detection channel is busy , using extended CCA time, that is, random A number N is selected. In the next channel detection time, if the channel is detected to be busy, N is unchanged. If the channel is detected to be idle, N is decremented by 1. When N is reduced to 0, data can be transmitted.
  • the channel detection time is periodically repeated, that is, as long as the channel is detected to be idle, it can be sent; if it is busy, it is not sent.
  • the above figure A) is the case when the device #1 uses the FBE
  • the following figure B) is the case when the device #1 uses the LBE: it is assumed that only the device #1 is now available.
  • device #2 contends for the channel, then at time t1, the service of device #1 arrives, and channel detection is performed based on FBE and LBE, and at this time, device #2 is transmitting data, so device #1 is detected in both cases. Busy to the channel.
  • the FBE case may also occupy the channel with greater probability than the LBE case.
  • the present invention is based on the above problems, and proposes a new technical solution, which combines the LBT mechanism for channel detection according to a fixed period based on a frame structure and the load-based LBT mechanism for performing channel detection at the same time for channel detection.
  • Channel occupancy can be further increased and latency can be reduced.
  • an aspect of the present invention proposes an LTE system operating in an unlicensed band.
  • the channel detection method includes: performing channel detection according to a fixed period based on a frame structure; setting an additional channel detection time based on a load when a data service arrives; and performing a first detection result according to the channel detection according to the fixed period And/or performing a second detection result obtained by channel detection according to the additional channel detection time to determine whether to send the data service.
  • the channel detection is first performed according to the fixed period based on the frame structure, and when the data service (ie, the load) arrives, the additional channel detection time based on the load is set to perform the channel together. Detecting, and determining whether to transmit data traffic based on the result of two channel state detection mechanisms, that is, by combining LBT mechanism for channel detection according to a fixed period of frame structure and parallel detection of load-based LBT mechanism for performing channel detection channel.
  • the channel detection mode of the fixed period based on the frame structure may trigger the channel detection when the data service (ie, the load) arrives, and the LTE system first works according to the frame structure when operating in the unlicensed band.
  • the fixed period continues to perform channel detection.
  • the data service is transmitted.
  • the additional channel detection time based on the load is set to perform channel detection together, and based on the results of the two channel state detection mechanisms. Determining whether to send a data service, that is, by combining an LBT mechanism for performing channel detection according to a fixed period based on a frame structure and a load-based LBT mechanism for performing channel detection, which is a parallel detection channel.
  • the two detection mechanisms are used in combination to further increase channel occupancy and reduce latency. To further increase channel occupancy and reduce latency.
  • the data service is sent.
  • data traffic is transmitted as long as at least one of the LBT mechanisms detects that the channel is idle, thereby reducing delay and increasing channel occupancy.
  • the channel detection is continued; and when the second detection result is busy, the random number N is selected.
  • the value of N is unchanged, and if the channel is detected to be idle, the value of N is decremented by 1, until the value of N is reduced to 0, it is determined that the data service can be sent;
  • the channel detection time of the fixed period arrives, channel detection is performed simultaneously until channel idle is detected; and the start position of the additional channel detection time Is the starting position of the sub-frame.
  • the LBT mechanism based on the data service defines a method for performing channel state detection by using an indefinite detection period.
  • N randomly select an integer N
  • N repeatedly set the channel detection time in consecutive multiple subframes after the subframe in which the channel detection time is set to perform channel state detection, whenever the channel state detection result is When idle, N is decremented by 1, and when the detection result is busy, N remains unchanged.
  • N is reduced to 0
  • data traffic is transmitted, and if N is reduced to 0, channel detection is performed at a fixed period.
  • channel detection time arrives, channel state detection is performed simultaneously until the channel is detected to be idle.
  • channel state detection can be performed in multiple consecutive subframes, and combined with the LBT mechanism according to a fixed period to further reduce the time. Delay and increase channel occupancy.
  • the channel detection since the time length of channel detection is determined each time the data service arrives, and when the channel is detected to be busy, the channel detection is continued, and only the detected channel idle channel detection can be determined. The number of times, and because of the different channel conditions, the final channel detection time is also different.
  • the channel occupancy time if the data service is not transmitted, the channel detection is continued, and the time is detected by the additional channel.
  • the start position is set to the start position of the subframe each time, that is, the start time of the control channel detection starts from the start position of the subframe, and then the end position of the top channel detection time is in the middle of the subframe, so only One half of the subframe needs to be processed. In this way, the channel occupation time can be satisfied, and the channel occupancy is ended at the end position of a certain subframe to improve the channel occupancy rate.
  • the value of N ranges from 1 to q
  • the value of the q ranges from 4 to 32
  • the channel occupation time is less than or equal to (13/ 32) *q.
  • the channel detection time of the fixed period is set before the data service arrives or when the data service arrives; and the data service is a one-time data service or multiple consecutive data. business.
  • the channel detection time for channel detection according to a fixed period may be set before the data service arrives, or after the data service arrives, for example, before the data service is available, the frame structure is determined to be good.
  • the subframe 9 is used for channel detection. If the period is 10 ms, the CCA detection time occurs in each of the #9 subframes; or the time when a certain data service arrives, for example, a certain data service is in the frame structure# When the 5th subframe arrives, the first CCA detection time is #5. No. Subframe, before the data service is transmitted, the FCA-based CCA detection time periodically appears. If the period is 10ms, the CCA detection time occurs in each #5 subframe.
  • the data service may be a one-time data service or a multiple-continuous data service.
  • the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones.
  • Data business may be a one-time data service or a multiple-continuous data service. For example, the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones. Data business.
  • the fixed period is sent by the base station to the terminal, and a channel detection time of a fixed period; or setting a channel detection time of the fixed period when the data service arrives, the base station transmitting the fixed period to the terminal, and setting, by the terminal, the channel of the fixed period Detection time.
  • the period and the channel detection time need the base station to notify the terminal, if the channel detection is set when the data service arrives At the time, the terminal receives the period from the base station and can determine the channel detection time by itself.
  • the LBT mechanism for performing channel detection by the terminal at a fixed period and the LBT mechanism for performing channel detection at the same time provide a strong premise guarantee for channel detection. To further reduce the delay and increase the channel occupancy.
  • the base station when no downlink data service is reached, performs channel detection in the channel detection time, which can further reduce the delay of uplink data service transmission.
  • a channel detection system for an LTE system operating in an unlicensed frequency band comprising: a control module, configured to continuously perform channel detection according to a fixed period based on a frame structure; and a setting module, configured to When the data service arrives, setting an additional channel detection time based on the load; the sending module is configured to perform channel detection according to the first detection result obtained by performing channel detection according to the fixed period and/or according to the additional channel detection time Obtaining a second detection result, determining whether to send the data service.
  • the channel detection is first performed according to the fixed period based on the frame structure, and when the data service (ie, the load) arrives, the additional channel detection time based on the load is set to perform the channel together. Detecting, and determining whether to transmit data traffic based on the result of two channel state detection mechanisms, that is, by combining LBT mechanism for channel detection according to a fixed period of frame structure and parallel detection of load-based LBT mechanism for performing channel detection Channels to further increase channel occupancy and reduce latency.
  • the sending module is specifically configured to: when the first detection result and/or the second detection result is that the channel is idle, send the data service.
  • data traffic is transmitted as long as at least one of the LBT mechanisms detects that the channel is idle, thereby reducing delay and increasing channel occupancy.
  • control module is further configured to: when the first detection result and the second detection result are both busy channels, control to continue channel detection; and when the second detection When the result is busy, the control selects the random number N, and in the subsequent detection process, if the channel is detected to be busy, the control N value is unchanged, and if the channel is detected to be idle, the control N value is decreased by 1, until the N value is reduced to Determining that the data service can be sent; and performing channel detection in the process of performing channel detection according to the additional channel detection time, if the channel detection time of the fixed period arrives, controlling channel detection until channel idle is detected
  • the setting module is further configured to: set a starting position of the additional channel detection time to be a starting position of the subframe.
  • the LBT mechanism based on the data service defines a method for performing channel state detection by using an indefinite detection period.
  • N randomly select an integer N
  • N repeatedly set the channel detection time in consecutive multiple subframes after the subframe in which the channel detection time is set to perform channel state detection, whenever the channel state detection result is When idle, N is decremented by 1, and when the detection result is busy, N remains unchanged.
  • N is reduced to 0
  • data traffic is transmitted, and if N is reduced to 0, channel detection is performed at a fixed period.
  • channel detection time arrives, channel state detection is performed simultaneously until the channel is detected to be idle.
  • channel state detection can be performed in multiple consecutive subframes, and combined with the LBT mechanism according to a fixed period to further reduce the time. Delay and increase channel occupancy.
  • the channel detection is continued, and only the detected channel idle channel detection can be determined.
  • the number of times, and because of the different channel conditions, the final channel detection time is also different.
  • the starting position is set to the starting position of the subframe each time, that is, the starting time of the control channel detection starts from the starting position of the subframe, then the top channel check
  • the end of the measurement time is in the middle of the subframe, so only one half of the subframe needs to be processed. Therefore, the channel occupation time can be satisfied, and the channel occupancy is ended at the end position of a certain subframe to improve the channel occupancy time.
  • Channel occupancy is set to the starting position of the subframe each time, that is, the starting time of the control channel detection starts from the starting position of the subframe, then the top channel check
  • the end of the measurement time is in the middle of the subframe, so only one half of the subframe needs to be processed. Therefore, the channel occupation time can be satisfied, and the channel occupancy is ended at the end position of a certain subframe to improve the channel occupancy time
  • the value of N ranges from 1 to q
  • the value of the q ranges from 4 to 32
  • the channel occupation time is less than or equal to (13/ 32) *q.
  • the setting module is further configured to: set the channel detection time of the fixed period before the data service arrives or when the data service arrives; and the data service is one-time Data service or multiple continuous data services.
  • the channel detection time for channel detection according to a fixed period may be set before the data service arrives, or after the data service arrives, for example, before the data service is available, the frame structure is determined to be good.
  • the subframe 9 is used for channel detection. If the period is 10 ms, the CCA detection time occurs in each of the #9 subframes; or the time when a certain data service arrives, for example, a certain data service is in the frame structure# When the 5th subframe arrives, the first CCA detection time is #5 subframe. Before the data service is transmitted, the FBE-based CCA detection time periodically appears. If the period is 10ms, then each time # The CCA detection time occurs in subframe 5.
  • the data service may be a one-time data service or a multiple-continuous data service.
  • the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones.
  • Data business may be a one-time data service or a multiple-continuous data service. For example, the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones. Data business.
  • control module is further configured to: when channel detection is performed by the terminal, and when the channel detection time of the fixed period is set before the data service arrives, control is performed by the base station to the Transmitting, by the terminal, the channel detection time of the fixed period and the fixed period; or setting a channel detection time of the fixed period when the data service arrives, controlling, by the base station, sending the fixed period to the terminal, and controlling The channel detection time of the fixed period is set by the terminal.
  • the period and the channel detection time need the base station to notify the terminal, if the channel detection is set when the data service arrives At the time, the terminal receives the period from the base station and can determine the channel detection time by itself.
  • the LBT mechanism for realizing the channel detection by the terminal at a fixed period and the LBT mechanism for performing the channel detection at the same time provide a powerful premise for channel detection. Guaranteed to further reduce latency and increase channel occupancy.
  • control module is further configured to: when no downlink data service is reached, control the base station to perform channel detection in the channel detection time, which may further reduce the delay of uplink data service transmission.
  • a base station comprising: a channel detection system when an LTE system according to any one of the preceding technical solutions operates in an unlicensed frequency band.
  • the channel detection is performed continuously according to the fixed period based on the frame structure, when there is data service (ie, load).
  • Arrival means setting the channel-based detection based on the additional channel detection time of the load, and determining whether to transmit the data service based on the result of the two channel state detection mechanisms, that is, by combining the LBT mechanism and data for channel detection according to the fixed period based on the frame structure.
  • the service arrives, that is, the load-based LBT mechanism for channel detection detects the channel in parallel to further improve channel occupancy and reduce delay.
  • a terminal comprising: a channel detection system when an LTE system according to any one of the above technical solutions operates in an unlicensed frequency band.
  • the terminal when the terminal works through the unlicensed frequency band of the LTE system, when working in an unlicensed frequency band, the terminal first performs channel detection according to a fixed period based on the frame structure, when there is a data service (ie, a load).
  • Arrival means setting the channel-based detection based on the additional channel detection time of the load, and determining whether to transmit the data service based on the result of the two channel state detection mechanisms, that is, by combining the LBT mechanism and data for channel detection according to the fixed period based on the frame structure.
  • the service arrives, that is, the load-based LBT mechanism for channel detection detects the channel in parallel to further improve channel occupancy and reduce delay.
  • the LBT mechanism for performing channel detection according to the fixed period of the frame structure and the load-based LBT mechanism for performing channel detection at the same time the channel detection can be further improved, and the channel occupancy rate can be further improved and reduced. Delay.
  • Figure 1 shows a schematic diagram of two modes of operation of an unlicensed spectrum
  • FIG. 2 is a schematic diagram showing an interference avoidance rule of a Wi-Fi system
  • Figure 3 shows a schematic diagram of a frame based LBT frame structure
  • FIG. 4 is a schematic diagram showing the probability of occupying a channel when the device uses FBE and LBE respectively;
  • FIG. 5 is a schematic flowchart diagram of a channel detecting method when an LTE system operates in an unlicensed frequency band according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a channel detecting system when an LTE system operates in an unlicensed band according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a channel occupation time at which a random number N is 8 and a channel detection time start position is at a start position of a subframe according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 shows a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a flow chart showing a channel detecting method when an LTE system operates in an unlicensed band according to an embodiment of the present invention.
  • a channel detecting method when an LTE system operates in an unlicensed frequency band includes: Step 502: performing channel detection according to a fixed period based on a frame structure; and step 504, when there is a data service When arriving, setting additional load detection time based on the load; step 506, performing second detection based on the first detection result obtained by performing channel detection according to the fixed period and/or performing channel detection according to the additional channel detection time As a result, it is determined whether or not to transmit the data service.
  • the channel detection is first performed according to the fixed period based on the frame structure, and when the data service (ie, the load) arrives, the additional channel detection time based on the load is set to perform the channel together. Detect and based on two channel status checks The result of the measurement mechanism determines whether to transmit the data service, that is, by combining the LBT mechanism for channel detection according to the fixed period of the frame structure and the data-based arrival of the load-based LBT mechanism for channel detection, to further improve the channel occupation. Rate and reduce latency.
  • the data service is sent.
  • data traffic is transmitted as long as at least one of the LBT mechanisms detects that the channel is idle, thereby reducing delay and increasing channel occupancy.
  • the channel detection is continued; and when the second detection result is busy, the random number N is selected.
  • the value of N is unchanged, and if the channel is detected to be idle, the value of N is decremented by 1, until the value of N is reduced to 0, it is determined that the data service can be sent;
  • the channel detection time of the fixed period arrives, channel detection is performed simultaneously until channel idle is detected; and the start position of the additional channel detection time Is the starting position of the sub-frame.
  • the LBT mechanism based on the data service defines a method for performing channel state detection by using an indefinite detection period.
  • N randomly select an integer N
  • N repeatedly set the channel detection time in consecutive multiple subframes after the subframe in which the channel detection time is set to perform channel state detection, whenever the channel state detection result is When idle, N is decremented by 1, and when the detection result is busy, N remains unchanged.
  • N is reduced to 0
  • data traffic is transmitted, and if N is reduced to 0, channel detection is performed at a fixed period.
  • channel detection time arrives, channel state detection is performed simultaneously until the channel is detected to be idle.
  • channel state detection can be performed in multiple consecutive subframes, and combined with the LBT mechanism according to a fixed period to further reduce the time. Delay and increase channel occupancy.
  • the channel detection is continued, and only the detected channel idle channel detection can be determined. The number of times, and because of the different channel conditions, the final channel detection time is also different.
  • the channel occupancy time if the data service is not available.
  • the channel detection is continued, and the start position of the additional channel detection time is set to the start position of the subframe each time, that is, the start time of the control channel detection is started from the start position of the subframe. Then, the end position of the top channel detection time is in the middle of the subframe, so only one half of the subframe needs to be processed, so that the channel occupation time can be satisfied, and the end of a certain subframe ends.
  • Channel occupancy to increase channel occupancy.
  • the value of N ranges from 1 to q
  • the value of the q ranges from 4 to 32
  • the channel occupation time is less than or equal to (13/ 32) *q.
  • the LBT period is 10ms
  • the value of q is 16, and the value of N is 8.
  • each additional load-based channel detection time is the start position of the subframe
  • the time occupied by each channel is not completely the same, that is, if the maximum occupied time is not exceeded.
  • the end position of the subframe ends; of course, if the data service is transmitted in the middle of the subframe, the above rules need not be considered, and thus, the channel occupancy rate can be improved.
  • the channel detection time of the fixed period is set before the data service arrives or when the data service arrives; and the data service is a one-time data service or multiple consecutive data. business.
  • the channel detection time for channel detection according to a fixed period may be set before the data service arrives, or after the data service arrives, for example, before the data service is available, the frame structure is determined to be good.
  • the subframe 9 is used for channel detection. If the period is 10 ms, the CCA detection time occurs in each of the #9 subframes; or the time when a certain data service arrives, for example, a certain data service is in the frame structure# When the 5th subframe arrives, the first CCA detection time is #5 subframe. Before the data service is transmitted, the FBE-based CCA detection time periodically appears. If the period is 10ms, then each time # The CCA detection time occurs in subframe 5.
  • the data service may be a one-time data service or a multiple-continuous data service.
  • the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones.
  • Data business may be a one-time data service or a multiple-continuous data service. For example, the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones. Data business.
  • the base station when channel detection is performed by the terminal, and when the channel detection time of the fixed period is set before the data service arrives, the base station approaches the terminal Transmitting the fixed period and the channel detection time of the fixed period; or setting a channel detection time of the fixed period when the data service arrives, sending, by the base station, the fixed period to the terminal, and by the The terminal sets the channel detection time of the fixed period.
  • the period and the channel detection time need the base station to notify the terminal, if the channel detection is set when the data service arrives At the time, the terminal receives the period from the base station and can determine the channel detection time by itself.
  • the LBT mechanism for performing channel detection by the terminal at a fixed period and the LBT mechanism for performing channel detection at the same time provide a strong premise guarantee for channel detection. To further reduce the delay and increase the channel occupancy.
  • the base station when no downlink data service is reached, performs channel detection in the channel detection time, which can further reduce the delay of uplink data service transmission.
  • FIG. 6 is a block diagram showing the structure of a channel detecting system when an LTE system operates in an unlicensed band according to an embodiment of the present invention.
  • the channel detection system 600 when the LTE system operates in an unlicensed frequency band includes: a control module 602, configured to perform channel detection continuously according to a fixed period based on a frame structure; 604, configured to: when a data service arrives, set an additional channel detection time; the sending module 606 is configured to: according to the first detection result obtained by performing channel detection according to the fixed period, and/or according to the additional channel detection time Performing a second detection result obtained by channel detection to determine whether to send the data service.
  • the channel detection is first performed according to the fixed period based on the frame structure, and when the data service (ie, the load) arrives, the additional channel detection time based on the load is set to perform the channel together. Detecting, and determining whether to transmit data traffic based on the result of two channel state detection mechanisms, that is, by combining LBT mechanism for channel detection according to a fixed period of frame structure and parallel detection of load-based LBT mechanism for performing channel detection Channels to further increase channel occupancy and reduce latency.
  • the sending module 606 is specifically configured to: when the first detection result and/or the second detection result is that the channel is idle, send the data service.
  • data traffic is transmitted as long as at least one of the LBT mechanisms detects that the channel is idle, thereby reducing delay and increasing channel occupancy.
  • control module 602 is further configured to: when the first detection result and the second detection result are both busy channels, control to continue channel detection; and when the second When the detection result is busy, the control selects the random number N, and in the subsequent detection process, if the channel is detected to be busy, the control N value is unchanged, and if the channel is detected to be idle, the control N value is decreased by 1 until the value of N is decreased. When it is 0, it is determined that the data service can be sent; and in the process of performing channel detection according to the additional channel detection time, if the channel detection time of the fixed period arrives, then control channel detection is performed until the channel is detected.
  • the setting module 604 is further configured to: set a starting position of the additional channel detection time to be a starting position of the subframe.
  • the LBT mechanism based on the data service defines a method for performing channel state detection by using an indefinite detection period.
  • N randomly select an integer N
  • N repeatedly set the channel detection time in consecutive multiple subframes after the subframe in which the channel detection time is set to perform channel state detection, whenever the channel state detection result is When idle, N is decremented by 1, and when the detection result is busy, N remains unchanged.
  • N is reduced to 0
  • data traffic is transmitted, and if N is reduced to 0, channel detection is performed at a fixed period.
  • channel detection time arrives, channel state detection is performed simultaneously until the channel is detected to be idle.
  • channel state detection can be performed in multiple consecutive subframes, and combined with the LBT mechanism according to a fixed period to further reduce the time. Delay and increase channel occupancy.
  • the channel detection since the time length of channel detection is determined each time the data service arrives, and when the channel is detected to be busy, the channel detection is continued, and only the detected channel idle channel detection can be determined. The number of times, and because of the different channel conditions, the final channel detection time is also different.
  • the starting position setting is the starting position of the subframe each time, that is, the starting time of the control channel detection starts from the starting position of the subframe, and then the ending position of the top channel detecting time is in the middle of the subframe, so only One half of the subframe needs to be processed. In this way, the channel occupation time can be satisfied, and the channel occupancy is ended at the end position of a certain subframe to improve the channel occupancy rate.
  • the value of N ranges from 1 to q, and the value of the value of q is The range is: 4 to 32, and when the data transmission service is performed, the channel occupation time is less than or equal to (13/32)*q.
  • the LBT period is 10ms
  • the value of q is 16, and the value of N is 8.
  • each additional load-based channel detection time is the start position of the subframe
  • the time occupied by each channel is not completely the same, that is, if the maximum occupied time is not exceeded.
  • the end position of the subframe ends; of course, if the data service is transmitted in the middle of the subframe, the above rules need not be considered, and thus, the channel occupancy rate can be improved.
  • the setting module 604 is further configured to: set the channel detection time of the fixed period before the data service arrives or when the data service arrives; and the data service is once sexual data services or multiple continuous data services.
  • the channel detection time for channel detection according to a fixed period may be set before the data service arrives, or after the data service arrives, for example, before the data service is available, the frame structure is determined to be good.
  • the subframe 9 is used for channel detection. If the period is 10 ms, the CCA detection time occurs in each of the #9 subframes; or the time when a certain data service arrives, for example, a certain data service is in the frame structure# When the 5th subframe arrives, the first CCA detection time is #5 subframe. Before the data service is transmitted, the FBE-based CCA detection time periodically appears. If the period is 10ms, then each time # The CCA detection time occurs in subframe 5.
  • the data service may be a one-time data service or a multiple-continuous data service.
  • the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones.
  • Data business may be a one-time data service or a multiple-continuous data service. For example, the last data service has not been transmitted, and the next data service arrives, then the two data services may be referred to as consecutive ones. Data business.
  • control module is further configured to: when channel detection is performed by the terminal, and when the channel detection time of the fixed period is set before the data service arrives, the control is performed by the base station Transmitting, by the terminal, the fixed period and the channel detection time of the fixed period; or setting a channel detection time of the fixed period when the data service arrives, controlling, by the base station, sending the fixed period to the terminal, and Controlling, by the terminal, the channel detection time of the fixed period.
  • the terminal when the channel state detection is performed by the terminal, and the channel detection time of the fixed period is set before the data service arrives, the period and the channel detection time need to be notified by the base station. If the terminal sets the channel detection time when the data service arrives, the terminal receives the period from the base station and can determine the channel detection time by itself, and implements the channel detection for the LBT mechanism for performing channel detection by the terminal at a fixed period and the arrival of the data service.
  • the LBT mechanism provides a strong premise guarantee for channel detection at the same time to further reduce delay and increase channel occupancy.
  • control module 602 is further configured to: when no downlink data service is reached, control the base station to perform channel detection in the channel detection time, which may further reduce the delay of uplink data service transmission.
  • FIG. 8 shows a schematic structural diagram of a base station according to an embodiment of the present invention.
  • a base station includes at least one input device 803, at least one output device 804, at least one processor 801, such as a CPU, a memory 805, and at least one bus 802.
  • the bus 802 is used to connect the input device 803, the output device 804, the processor 801, and the memory 805.
  • the above memory 805 may be a high speed RAM memory or a non-volatile memory such as a disk memory.
  • the memory 805 is further configured to store a set of program codes, and the input device 803, the output device 804, and the processor 801 are configured to call the program code stored in the memory 805, and perform the following operations:
  • the processor 801 is configured to control to perform channel detection according to a fixed period based on a frame structure
  • the processor 801 is further configured to: when a data service arrives to the input device 803, set an additional channel detection time based on the load;
  • the output device 804 is configured to determine whether to send the data according to a first detection result obtained by performing channel detection according to the fixed period and/or a second detection result obtained by performing channel detection according to the additional channel detection time. business.
  • the processor 801 is further configured to: when the first detection result and/or the second detection result is that the channel is idle, send the data service.
  • the processor 801 is further configured to: when the first detection result and the second detection result are both busy channels, control continues to perform channel detection;
  • the control selects the random number N, and in the subsequent detection process, if the channel is detected to be busy, the control N value is unchanged, and if the channel idle is detected, the control N value is decreased by 1 Determining that the data service can be sent until the value of N is reduced to zero;
  • the starting position of the additional channel detection time is set to be the starting position of the subframe.
  • the processor 801 is further configured to: perform the following steps: setting the channel detection time of the fixed period before the data service arrives or when the data service arrives;
  • the data service is a one-time data service or a multiple-continuous data service.
  • the processor 801 is further configured to perform the following steps: when performing channel detection by the terminal, and
  • the channel detection is performed continuously according to the fixed period based on the frame structure, when there is data service (ie, load).
  • Arrival means setting the channel-based detection based on the additional channel detection time of the load, and determining whether to transmit the data service based on the result of the two channel state detection mechanisms, that is, by combining the LBT mechanism and data for channel detection according to the fixed period based on the frame structure.
  • the service arrives, that is, the load-based LBT mechanism for channel detection detects the channel in parallel to further improve channel occupancy and reduce delay.
  • FIG. 9 is a block diagram showing the structure of a terminal according to an embodiment of the present invention.
  • a terminal includes at least one input device 903, at least one output device 904, at least one processor 901, such as a CPU, a memory 905, and at least one bus 902.
  • the bus 902 is used to connect the input device 903, the output device 904, the processor 901, and the memory 905.
  • the above memory 905 may be a high speed RAM memory or a non-volatile memory such as a disk memory.
  • the memory 905 is further configured to store a set of program codes, and the input device 903, the output device 904, and the processor 901 are configured to call the program code stored in the memory 905, and perform the following operations:
  • the processor 901 is configured to control to perform channel detection according to a fixed period based on a frame structure
  • the processor 901 is further configured to: when a data service arrives at the input device 903, set an additional channel detection time based on the load;
  • the output device 904 is configured to determine whether to send the data according to a first detection result obtained by performing channel detection according to the fixed period and/or a second detection result obtained by performing channel detection according to the additional channel detection time. business.
  • the processor 901 is further configured to: send the data service when the first detection result and/or the second detection result is that the channel is idle.
  • the processor 901 is further configured to: when the first detection result and the second detection result are both busy channels, control continues to perform channel detection;
  • the control selects the random number N, and in the subsequent detection process, if the channel is detected to be busy, the control N value is unchanged, and if the channel idle is detected, the control N value is decreased by 1 Determining that the data service can be sent until the value of N is reduced to zero;
  • the starting position of the additional channel detection time is set to be the starting position of the subframe.
  • the processor 901 is further configured to perform the steps of: setting the channel detection time of the fixed period before the data service arrives or when the data service arrives;
  • the data service is a one-time data service or a multiple-continuous data service.
  • the processor 901 is further configured to perform the following steps: when performing channel detection by the processor 901, and
  • the terminal when the terminal works through the unlicensed frequency band of the LTE system, when working in an unlicensed frequency band, the terminal first performs channel detection according to a fixed period based on the frame structure, when there is a data service (ie, a load).
  • Arrival means setting the channel-based detection based on the additional channel detection time of the load, and determining whether to transmit the data service based on the result of the two channel state detection mechanisms, that is, by combining the LBT mechanism and data for channel detection according to the fixed period based on the frame structure.
  • the service arrives, that is, the load-based LBT mechanism for channel detection detects the channel in parallel to further improve channel occupancy and reduce delay.
  • the LBT mechanism for performing channel detection according to a fixed period based on a frame structure and the load-based LBT mechanism for performing channel detection at the same time can perform channel detection, which can be further improved. Channel occupancy and reduced latency.

Abstract

本发明提出了一种LTE系统在非授权频段工作时的信道检测方法、一种LTE系统在非授权频段工作时的信道检测系统、一种基站和一种终端,其中,所述方法包括:按照基于帧结构的固定周期持续进行信道检测;当有数据业务到达时,设置基于负载的额外的信道检测时间;根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。通过本发明的技术方案,按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制两者同时进行信道检测,可以进一步地提高信道占用率并减少时延。

Description

信道检测方法、信道检测系统、基站和终端
本申请要求于2015年1月28日提交中国专利局、申请号为201510043773.2,发明名称为“信道检测方法、信道检测系统、基站和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体而言,涉及一种LTE系统在非授权频段工作时的信道检测方法、LTE系统在非授权频段工作时的信道检测系统、一种基站和一种终端。
背景技术
随着通信业务量的急剧增加,3GPP的授权频谱越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用率,3GPP正讨论如何在授权频谱的帮助下使用未授权频谱,如2.4GHz和5GHz频段。这些未授权频谱目前主要是Wi-Fi、蓝牙、雷达、医疗等系统在使用。
通常情况下,为已授权频段设计的接入技术,如LTE(Long Term Evolution,长期演进)不适合在未授权频段上使用,因为LTE这类接入技术对频谱效率和用户体验优化的要求非常高。然而,载波聚合(Carrier Aggregation,CA)功能让将LTE部署于非授权频段变为可能。3GPP提出了LAA(Licensed Assisted Access,LTE授权频谱辅助的接入)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(SDL,Supplemental Downlink),即只有下行传输子帧;另一种是TDD模式,既包含下行传输子帧,也包含上行传输子帧。补充下行这种情况只能是借助载波聚合技术使用(如图1所示)。而TDD模式除了可以借助DC(Dual Connectivity,双连通)使用,也可以独立使用。
相比于Wi-Fi系统,工作在非授权频段的LTE系统有能力提供更高的频谱效率和更大的覆盖效果,同时基于同一个核心网让数据流量在授权频段和未授权频段之间无缝切换。对用户来说,这意味着更好的宽带体验、更高的速率、更好的稳定性和移动便利。
现有的在非授权频谱上使用的接入技术,如Wi-Fi,具有较弱的抗干扰能力。为了避免干扰,Wi-Fi系统设计了很多干扰避免规则,如CSMA/CD(Carrier Sense Multiple Access/Collision Detection,载波监听多路访问/冲突检测方法),这种方法的基本原理是Wi-Fi的AP(Access Point,接入点)或者终端在发送信令或者数据之前,要先监听检测周围是否有其他AP或者其他终端在发送/接收信令或数据,若有,则继续监听,直到监听到没有为止;若没有,则生成一个随机数作为退避时间,在这个退避时间内,如果没检测到有信令或数据传输,那么在退避时间结束之后,AP或终端可以开始发送信令或数据。该过程如图2所示。
但是,LTE网络中由于有很好的正交性保证了干扰水平,所以基站与用户的上下行传输不用考虑周围是否有其他基站或其他用户在传输数据。如果LTE在非授权频段上使用时也不考虑周围是否有其他设备在使用非授权频段,那么将对Wi-Fi设备带来极大的干扰。因为LTE只要有业务就进行传输,没有任何监听规则,那么Wi-Fi设备在LTE有业务传输时就不能传输,只能等到LTE业务传输完成,才能检测到信道空闲状态以进行数据传输。
所以,LTE网络在使用非授权频段时,最主要的关键点之一是确保LAA能够在公平友好的基础上和现有的接入技术(比如Wi-Fi)共存。而传统的LTE系统中没有LBT(Listen Before Talk,先听后说)的机制来避免碰撞。为了与Wi-Fi系统更好的共存,LTE系统需要一种LBT机制。
然而,之前已布局的LBT机制都是frame based LBT帧结构,如图3所示,LBT的周期是固定的,CCA(Clear Channel Assessment,空闲信道评估)的时间是每个周期的最开始。例如,在LBT帧结构中,以10ms为周期,CCA占用#0号子帧的最前面的1个或多个symbol(符号)。在这种固定周期的帧结构下,只有#0号子帧才能做CCA,如果数据业务在#1号子帧到达,则必须等到下一个周期的#0号子帧进行CCA之后,才能判断信道是否可以占用,从而带来很大的时延。
所以,又布局了基于负载的(LBE,Load based equipment)LBT机制,主要原理是在负载(数据业务)到达时,马上进行信道检测,如果检测信道空闲,则马上发送数据业务;如果检测信道忙,则采用extended CCA时间,即随机 选择一个数N,在接下来的信道检测时间内,若检测到信道忙,则N不变,若检测到信道闲,则N减1,当N减为0时,则可以发送数据。
基于LBE的LBT机制,看起来信道检测机会多,所以会认为信道占用的概率大。而基于帧结构的(FBE,Framed based equipment)的LBT机制,信道检测时间是周期性重复出现的,即只要检测到信道闲,就可以发送;检测到忙,就不发送。
但是,在某种情况下,如图4所示,上面的图A)是设备#1使用FBE时的情况,下面的图B)是设备#1使用LBE时的情况:假设现在只有设备#1和设备#2竞争信道,那么在t1时刻,设备#1的业务到达,同时基于FBE和LBE进行信道检测,而这时,设备#2正在传输数据,所以设备#1在两种情况下都检测到信道忙。那么在A情况下,设备#1继续等待等到下次信道检测时间的到来;而在B情况下,设备#1随机取N=5,继续检测,但信道一直繁忙,N保持不变;在t2时刻,设备#2达到信道占用时间,开始再次进行信道检测,若设备#2取值N=3(只要比设备#1的N取值小),那么如果设备#1是B情况,那么在3次检测到信道空闲后,设备#2的N变为0,开始发送数据;而设备#1的N=2,还需要继续检测;而如果设备#1使用的是FBE的情况,也就是A情况,在t3时刻,设备#2的N=1,而设备#1检测到一次信道空闲,则开始发送数据了。所以,从图4可以看出,FBE的情况也可能比LBE的情况更大概率的占用到信道。
因此,如何有效地减少因仅使用按基于帧结构的固定周期进行信道检测的LBT机制或数据业务到达即进行信道检测的基于负载的LBT机制引起的信道占用率低,以进一步地提高信道占用率并减少时延成为亟待解决的技术问题。
发明内容
本发明正是基于上述问题,提出了一种新的技术方案,结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制同时进行信道检测,可以进一步地提高信道占用率并减少时延。
有鉴于此,本发明的一方面提出了一种LTE系统在非授权频段工作时的 信道检测方法,包括:按照基于帧结构的固定周期持续进行信道检测;当有数据业务到达时,设置基于负载的额外的信道检测时间;根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
在该技术方案中,LTE系统在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道。在其他的技术方案中,还可以是,基于帧结构的固定周期的信道检测方式当数据业务(即负载)到达时才触发进行信道检测,LTE系统在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当检测到信道空闲则进行数据业务发送,当检测到信道繁忙,则设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道。两者检测机制结合使用以进一步地提高信道占用率并减少时延。以进一步地提高信道占用率并减少时延。
在上述技术方案中,优选地,当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
在该技术方案中,只要有其中的至少一个LBT机制检测到信道空闲则发送数据业务,从而减少时延和提高信道占用率。
在上述技术方案中,优选地,当所述第一检测结果和所述第二检测结果均为信道繁忙时,继续进行信道检测;以及当所述第二检测结果为繁忙时,选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N值减1,直到N值减为0时,确定可以发送所述数据业务;以及在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则同时进行信道检测,直至检测到信道空闲;以及所述额外的信道检测时间的起始位置为子帧的起始位置。
在该技术方案中,当通过两种LBT机制检测到的信道状态均为繁忙时,则继续进行信道检测,且基于数据业务的LBT机制限定了一种以不定检测周期进行信道状态检测的方法,并在信道状态为繁忙时,随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间以进行信道状态检测,每当信道状态检测结果为空闲时,将N减1,以及在检测结果为忙碌时,N保持不变,如此,直至N减为0,进行数据业务传输,而且,若在N减为0之前,按固定周期进行信道检测的信道检测时间到达,则同时进行信道状态检测,直至检测到信道空闲,如此,可以在多个连续的子帧内进行信道状态检测,并结合按固定周期的LBT机制一同检测,以进一步减少时延并提高信道占用率。
在该技术方案中,由于每次当数据业务到达即进行信道检测的时间长度不确定,且当检测到信道繁忙时,还要继续进行信道检测,且只能确定检测到的信道空闲的信道检测时间的个数,又由于信道情况不同,所以最终信道检测时间也不同,另外,在一次信道占用时间后,如果数据业务没传完,还要继续进行信道检测,通过将额外的信道检测时间的起始位置每次均设置为子帧的起始位置,即控制信道检测的起始时间是从子帧的起始位置开始,那么顶多信道检测时间的结束位置是在子帧中间,所以只有一个半子帧需要处理,如此,可以实现信道占用时间满足不超过最大信道占用时间的同时,在某个子帧的结束位置结束信道占用,以提高信道占用率。
在上述技术方案中,优选地,N的取值范围为1~q,所述q的取值范围为:4~32,以及进行所述数据传输业务时,信道占用时间小于或等于(13/32)*q。
在上述技术方案中,优选地,在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及所述数据业务为一次性数据业务或多次连续性数据业务。
在该技术方案中,可以在数据业务到达之前设置按固定周期进行信道检测的信道检测时间,也可以在数据业务到达之后,比如,在没有任何数据业务来之前就确定好的在帧结构的#9号子帧进行信道检测,如周期为10ms,则在每次的#9号子帧出现CCA检测时间;或者由某次数据业务到达的时间确定,比如某次数据业务是在帧结构的#5号子帧到达,则第一次CCA检测时间是#5 号子帧,在此次数据业务传完之前,基于FBE的CCA检测时间周期性出现,如周期为10ms,则在每次的#5号子帧出现CCA检测时间。
而且,数据业务可以是一次性数据业务,也可以是多次连续性数据业务,比如上次数据业务还没传完,下次数据业务就到达,那么这两次数据业务可以称为连续的一次数据业务。
在上述技术方案中,优选地,当由终端进行信道检测时,以及当在所述数据业务到达前设置所述固定周期的信道检测时间,由基站向所述终端发送所述固定周期以及所述固定周期的信道检测时间;或当在所述数据业务到达时设置所述固定周期的信道检测时间,由基站向所述终端发送所述固定周期,并由所述终端设置所述固定周期的信道检测时间。
在该技术方案中,当由终端进行信道状态检测,且固定周期的信道检测时间是在数据业务到达之前设置,则周期和信道检测时间需要基站告知终端,如果是在数据业务到达时设置信道检测时间,则终端接收来自基站的周期并可以自己确定信道检测时间,为实现终端按固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的LBT机制同时进行信道检测提供有力的前提保障,以进一步减少时延并提高信道占用率。
在上述技术方案中,优选地,当没有下行数据业务达到时,基站在信道检测时间内进行信道检测,可以进一步减少上行数据业务传输的时延。
根据本发明的另一方面提出了一种LTE系统在非授权频段工作时的信道检测系统,包括:控制模块,用于控制按照基于帧结构的固定周期持续进行信道检测;设置模块,用于当有数据业务到达时,设置基于负载的额外的信道检测时间;发送模块,用于根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
在该技术方案中,LTE系统在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测 信道,以进一步地提高信道占用率并减少时延。
在上述技术方案中,优选地,所述发送模块具体用于:当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
在该技术方案中,只要有其中的至少一个LBT机制检测到信道空闲则发送数据业务,从而减少时延和提高信道占用率。
在上述技术方案中,优选地,所述控制模块还用于:当所述第一检测结果和所述第二检测结果均为信道繁忙时,控制继续进行信道检测;以及当所述第二检测结果为繁忙时,控制选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则控制N值不变,若检测到信道空闲,则控制N值减1,直到N值减为0时,确定可以发送所述数据业务;以及在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则控制同时进行信道检测,直至检测到信道空闲;以及所述设置模块还用于:设置所述额外的信道检测时间的起始位置为子帧的起始位置。
在该技术方案中,当通过两种LBT机制检测到的信道状态均为繁忙时,则继续进行信道检测,且基于数据业务的LBT机制限定了一种以不定检测周期进行信道状态检测的方法,并在信道状态为繁忙时,随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间以进行信道状态检测,每当信道状态检测结果为空闲时,将N减1,以及在检测结果为忙碌时,N保持不变,如此,直至N减为0,进行数据业务传输,而且,若在N减为0之前,按固定周期进行信道检测的信道检测时间到达,则同时进行信道状态检测,直至检测到信道空闲,如此,可以在多个连续的子帧内进行信道状态检测,并结合按固定周期的LBT机制一同检测,以进一步减少时延并提高信道占用率。
在该技术方案中,由于每次当数据业务到达即进行信道检测的时间长度不确定,且当检测到信道繁忙时,还要继续进行信道检测,且只能确定检测到的信道空闲的信道检测时间的个数,又由于信道情况不同,所以最终信道检测时间也不同,另外,在一次信道占用时间后,如果数据业务没传完,还要继续进行信道检测,通过将额外的信道检测时间的起始位置每次均设置为子帧的起始位置,即控制信道检测的起始时间是从子帧的起始位置开始,那么顶多信道检 测时间的结束位置是在子帧中间,所以只有一个半子帧需要处理,如此,可以实现信道占用时间满足不超过最大信道占用时间的同时,在某个子帧的结束位置结束信道占用,以提高信道占用率。
在上述技术方案中,优选地,N的取值范围为1~q,所述q的取值范围为:4~32,以及进行所述数据传输业务时,信道占用时间小于或等于(13/32)*q。
在上述技术方案中,优选地,所述设置模块还用于:在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及所述数据业务为一次性数据业务或多次连续性数据业务。
在该技术方案中,可以在数据业务到达之前设置按固定周期进行信道检测的信道检测时间,也可以在数据业务到达之后,比如,在没有任何数据业务来之前就确定好的在帧结构的#9号子帧进行信道检测,如周期为10ms,则在每次的#9号子帧出现CCA检测时间;或者由某次数据业务到达的时间确定,比如某次数据业务是在帧结构的#5号子帧到达,则第一次CCA检测时间是#5号子帧,在此次数据业务传完之前,基于FBE的CCA检测时间周期性出现,如周期为10ms,则在每次的#5号子帧出现CCA检测时间。
而且,数据业务可以是一次性数据业务,也可以是多次连续性数据业务,比如上次数据业务还没传完,下次数据业务就到达,那么这两次数据业务可以称为连续的一次数据业务。
在上述技术方案中,优选地,所述控制模块还用于:当由终端进行信道检测时,以及当在所述数据业务到达前设置所述固定周期的信道检测时间,控制由基站向所述终端发送所述固定周期以及所述固定周期的信道检测时间;或当在所述数据业务到达时设置所述固定周期的信道检测时间,控制由基站向所述终端发送所述固定周期,并控制由所述终端设置所述固定周期的信道检测时间。
在该技术方案中,当由终端进行信道状态检测,且固定周期的信道检测时间是在数据业务到达之前设置,则周期和信道检测时间需要基站告知终端,如果是在数据业务到达时设置信道检测时间,则终端接收来自基站的周期并可以自己确定信道检测时间,为实现终端按固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的LBT机制同时进行信道检测提供有力的前提 保障,以进一步减少时延并提高信道占用率。
在上述技术方案中,优选地,所述控制模块还用于:当没有下行数据业务达到时,控制基站在信道检测时间内进行信道检测,可以进一步减少上行数据业务传输的时延。
根据本发明的又一方面,提出了一种基站,包括:如上任一项技术方案所述的LTE系统在非授权频段工作时的信道检测系统。
在该技术方案中,基站通过该LTE系统在非授权频段工作时的信道检测系统,在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道,以进一步地提高信道占用率并减少时延。
根据本发明的再一方面,提出了一种终端,包括:如上任一项技术方案所述的LTE系统在非授权频段工作时的信道检测系统。
在该技术方案中,终端通过该LTE系统在非授权频段工作时的信道检测系统,在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道,以进一步地提高信道占用率并减少时延。
通过本发明的技术方案,结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制同时进行信道检测,可以进一步地提高信道占用率并减少时延。
附图说明
图1示出了非授权频谱的两种工作方式的示意图;
图2示出了Wi-Fi系统的干扰避免规则的示意图;
图3示出了frame based LBT帧结构的示意图;
图4示出了设备分别使用FBE和LBE时占用信道的概率示意图;
图5示出了根据本发明的实施例的LTE系统在非授权频段工作时的信道检测方法的流程示意图;
图6示出了根据本发明的实施例的LTE系统在非授权频段工作时的信道检测系统的结构示意图;
图7示出了根据本发明的实施例的随机数N取为8及信道检测时间起始位置位于子帧起始位置的信道占用时间示意图;
图8示出了根据本发明的实施例的基站的结构示意图;
图9示出了根据本发明的实施例的终端的结构示意图。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图5示出了根据本发明的实施例的LTE系统在非授权频段工作时的信道检测方法的流程示意图。
如图5所示,根据本发明的实施例的LTE系统在非授权频段工作时的信道检测方法,包括:步骤502,按照基于帧结构的固定周期持续进行信道检测;步骤504,当有数据业务到达时,设置基于负载的额外的信道检测时间;步骤506,根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
在该技术方案中,LTE系统在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检 测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道,以进一步地提高信道占用率并减少时延。
在上述技术方案中,优选地,当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
在该技术方案中,只要有其中的至少一个LBT机制检测到信道空闲则发送数据业务,从而减少时延和提高信道占用率。
在上述技术方案中,优选地,当所述第一检测结果和所述第二检测结果均为信道繁忙时,继续进行信道检测;以及当所述第二检测结果为繁忙时,选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N值减1,直到N值减为0时,确定可以发送所述数据业务;以及在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则同时进行信道检测,直至检测到信道空闲;以及所述额外的信道检测时间的起始位置为子帧的起始位置。
在该技术方案中,当通过两种LBT机制检测到的信道状态均为繁忙时,则继续进行信道检测,且基于数据业务的LBT机制限定了一种以不定检测周期进行信道状态检测的方法,并在信道状态为繁忙时,随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间以进行信道状态检测,每当信道状态检测结果为空闲时,将N减1,以及在检测结果为忙碌时,N保持不变,如此,直至N减为0,进行数据业务传输,而且,若在N减为0之前,按固定周期进行信道检测的信道检测时间到达,则同时进行信道状态检测,直至检测到信道空闲,如此,可以在多个连续的子帧内进行信道状态检测,并结合按固定周期的LBT机制一同检测,以进一步减少时延并提高信道占用率。
在该技术方案中,由于每次当数据业务到达即进行信道检测的时间长度不确定,且当检测到信道繁忙时,还要继续进行信道检测,且只能确定检测到的信道空闲的信道检测时间的个数,又由于信道情况不同,所以最终信道检测时间也不同,另外,在一次信道占用时间后,如果数据业务没 传完,还要继续进行信道检测,通过将额外的信道检测时间的起始位置每次均设置为子帧的起始位置,即控制信道检测的起始时间是从子帧的起始位置开始,那么顶多信道检测时间的结束位置是在子帧中间,所以只有一个半子帧需要处理,如此,可以实现信道占用时间满足不超过最大信道占用时间的同时,在某个子帧的结束位置结束信道占用,以提高信道占用率。
在上述技术方案中,优选地,N的取值范围为1~q,所述q的取值范围为:4~32,以及进行所述数据传输业务时,信道占用时间小于或等于(13/32)*q。如图7所示,LBT周期为10ms,q取值为16,N取值为8,则信道占用时间小于或等于6.5ms,即信道占用最大时间为(13/32)*16=6.5ms,则在满足每次基于负载的额外的信道检测时间的起始位置为子帧起始位置的情况下,每次信道占用的时间不完全相同,即在满足不超过最大占用时间的前提下,在子帧结束位置结束;当然,如果数据业务在子帧中间传完,则无需考虑上述规则,如此,可以提高信道占用率。
在上述技术方案中,优选地,在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及所述数据业务为一次性数据业务或多次连续性数据业务。
在该技术方案中,可以在数据业务到达之前设置按固定周期进行信道检测的信道检测时间,也可以在数据业务到达之后,比如,在没有任何数据业务来之前就确定好的在帧结构的#9号子帧进行信道检测,如周期为10ms,则在每次的#9号子帧出现CCA检测时间;或者由某次数据业务到达的时间确定,比如某次数据业务是在帧结构的#5号子帧到达,则第一次CCA检测时间是#5号子帧,在此次数据业务传完之前,基于FBE的CCA检测时间周期性出现,如周期为10ms,则在每次的#5号子帧出现CCA检测时间。
而且,数据业务可以是一次性数据业务,也可以是多次连续性数据业务,比如上次数据业务还没传完,下次数据业务就到达,那么这两次数据业务可以称为连续的一次数据业务。
在上述技术方案中,优选地,当由终端进行信道检测时,以及当在所述数据业务到达前设置所述固定周期的信道检测时间,由基站向所述终端 发送所述固定周期以及所述固定周期的信道检测时间;或当在所述数据业务到达时设置所述固定周期的信道检测时间,由基站向所述终端发送所述固定周期,并由所述终端设置所述固定周期的信道检测时间。
在该技术方案中,当由终端进行信道状态检测,且固定周期的信道检测时间是在数据业务到达之前设置,则周期和信道检测时间需要基站告知终端,如果是在数据业务到达时设置信道检测时间,则终端接收来自基站的周期并可以自己确定信道检测时间,为实现终端按固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的LBT机制同时进行信道检测提供有力的前提保障,以进一步减少时延并提高信道占用率。
在上述技术方案中,优选地,当没有下行数据业务达到时,基站在信道检测时间内进行信道检测,可以进一步减少上行数据业务传输的时延。
图6示出了根据本发明的实施例的LTE系统在非授权频段工作时的信道检测系统的结构示意图。
如图6所示,根据本发明的实施例的LTE系统在非授权频段工作时的信道检测系统600,包括:控制模块602,用于控制按照基于帧结构的固定周期持续进行信道检测;设置模块604,用于当有数据业务到达时,设置额外的信道检测时间;发送模块606,用于根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
在该技术方案中,LTE系统在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道,以进一步地提高信道占用率并减少时延。
在上述技术方案中,优选地,所述发送模块606具体用于:当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
在该技术方案中,只要有其中的至少一个LBT机制检测到信道空闲则发送数据业务,从而减少时延和提高信道占用率。
在上述技术方案中,优选地,所述控制模块602还用于:当所述第一检测结果和所述第二检测结果均为信道繁忙时,控制继续进行信道检测;以及当所述第二检测结果为繁忙时,控制选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则控制N值不变,若检测到信道空闲,则控制N值减1,直到N值减为0时,确定可以发送所述数据业务;以及在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则控制同时进行信道检测,直至检测到信道空闲;以及所述设置模块604还用于:设置所述额外的信道检测时间的起始位置为子帧的起始位置。
在该技术方案中,当通过两种LBT机制检测到的信道状态均为繁忙时,则继续进行信道检测,且基于数据业务的LBT机制限定了一种以不定检测周期进行信道状态检测的方法,并在信道状态为繁忙时,随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间以进行信道状态检测,每当信道状态检测结果为空闲时,将N减1,以及在检测结果为忙碌时,N保持不变,如此,直至N减为0,进行数据业务传输,而且,若在N减为0之前,按固定周期进行信道检测的信道检测时间到达,则同时进行信道状态检测,直至检测到信道空闲,如此,可以在多个连续的子帧内进行信道状态检测,并结合按固定周期的LBT机制一同检测,以进一步减少时延并提高信道占用率。
在该技术方案中,由于每次当数据业务到达即进行信道检测的时间长度不确定,且当检测到信道繁忙时,还要继续进行信道检测,且只能确定检测到的信道空闲的信道检测时间的个数,又由于信道情况不同,所以最终信道检测时间也不同,另外,在一次信道占用时间后,如果数据业务没传完,还要继续进行信道检测,通过将额外的信道检测时间的起始位置设置每次均为子帧的起始位置,即控制信道检测的起始时间是从子帧的起始位置开始,那么顶多信道检测时间的结束位置是在子帧中间,所以只有一个半子帧需要处理,如此,可以实现信道占用时间满足不超过最大信道占用时间的同时,在某个子帧的结束位置结束信道占用,以提高信道占用率。
在上述技术方案中,优选地,N的取值范围为1~q,所述q的取值范 围为:4~32,以及进行所述数据传输业务时,信道占用时间小于或等于(13/32)*q。如图7所示,LBT周期为10ms,q取值为16,N取值为8,则信道占用时间小于或等于6.5ms,即信道占用最大时间为(13/32)*16=6.5ms,则在满足每次基于负载的额外的信道检测时间的起始位置为子帧起始位置的情况下,每次信道占用的时间不完全相同,即在满足不超过最大占用时间的前提下,在子帧结束位置结束;当然,如果数据业务在子帧中间传完,则无需考虑上述规则,如此,可以提高信道占用率。
在上述技术方案中,优选地,所述设置模块604还用于:在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及所述数据业务为一次性数据业务或多次连续性数据业务。
在该技术方案中,可以在数据业务到达之前设置按固定周期进行信道检测的信道检测时间,也可以在数据业务到达之后,比如,在没有任何数据业务来之前就确定好的在帧结构的#9号子帧进行信道检测,如周期为10ms,则在每次的#9号子帧出现CCA检测时间;或者由某次数据业务到达的时间确定,比如某次数据业务是在帧结构的#5号子帧到达,则第一次CCA检测时间是#5号子帧,在此次数据业务传完之前,基于FBE的CCA检测时间周期性出现,如周期为10ms,则在每次的#5号子帧出现CCA检测时间。
而且,数据业务可以是一次性数据业务,也可以是多次连续性数据业务,比如上次数据业务还没传完,下次数据业务就到达,那么这两次数据业务可以称为连续的一次数据业务。
在上述技术方案中,优选地,所述控制模块还602用于:当由终端进行信道检测时,以及当在所述数据业务到达前设置所述固定周期的信道检测时间,控制由基站向所述终端发送所述固定周期以及所述固定周期的信道检测时间;或当在所述数据业务到达时设置所述固定周期的信道检测时间,控制由基站向所述终端发送所述固定周期,并控制由所述终端设置所述固定周期的信道检测时间。
在该技术方案中,当由终端进行信道状态检测,且固定周期的信道检测时间是在数据业务到达之前设置,则周期和信道检测时间需要基站告知 终端,如果是在数据业务到达时设置信道检测时间,则终端接收来自基站的周期并可以自己确定信道检测时间,为实现终端按固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的LBT机制同时进行信道检测提供有力的前提保障,以进一步减少时延并提高信道占用率。
在上述技术方案中,优选地,所述控制模块602还用于:当没有下行数据业务达到时,控制基站在信道检测时间内进行信道检测,可以进一步减少上行数据业务传输的时延。
图8示出了根据本发明的实施例的基站的结构示意图。
如图8所示,根据本发明的实施例的基站,包括:至少一个输入装置803,至少一个输出装置804,至少一个处理器801,例如CPU,存储器805和至少一个总线802。
其中,上述总线802用于连接上述输入装置803、输出装置804、处理器801和存储器805。
上述存储器805可以是高速RAM存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。上述存储器805还用于存储一组程序代码,上述输入装置803、输出装置804和处理器801用于调用存储器805中存储的程序代码,执行如下操作:
所述处理器801,用于控制按照基于帧结构的固定周期持续进行信道检测;
所述处理器801,还用于当有数据业务到达至所述输入装置803时,设置基于负载的额外的信道检测时间;
所述输出装置804,用于根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
在上述技术方案中,优选地,所述处理器801还用于执行如下步骤:当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
在上述技术方案中,优选地,所述处理器801还用于执行如下步骤:当所述第一检测结果和所述第二检测结果均为信道繁忙时,控制继续进行信道检测;以及
当所述第二检测结果为繁忙时,控制选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则控制N值不变,若检测到信道空闲,则控制N值减1,直到N值减为0时,确定可以发送所述数据业务;以及
在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则控制同时进行信道检测,直至检测到信道空闲;以及
设置所述额外的信道检测时间的起始位置为子帧的起始位置。
在上述技术方案中,优选地,所述处理器801还用于执行如下步骤:在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及
所述数据业务为一次性数据业务或多次连续性数据业务。
在上述技术方案中,优选地,所述处理器801还用于执行如下步骤:当由终端进行信道检测时,以及
当在所述数据业务到达前设置所述固定周期的信道检测时间,控制由所述输出装置804向所述终端发送所述固定周期以及所述固定周期的信道检测时间;或
当在所述数据业务到达时设置所述固定周期的信道检测时间,控制由所述输出装置804向所述终端发送所述固定周期,并控制由所述终端设置所述固定周期的信道检测时间。
在该技术方案中,基站通过该LTE系统在非授权频段工作时的信道检测系统,在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道,以进一步地提高信道占用率并减少时延。
图9出了根据本发明的实施例的终端的结构示意图。
如图9所示,根据本发明的实施例的终端,包括:至少一个输入装置903,至少一个输出装置904,至少一个处理器901,例如CPU,存储器905和至少一个总线902。
其中,上述总线902用于连接上述输入装置903、输出装置904、处理器901和存储器905。
上述存储器905可以是高速RAM存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。上述存储器905还用于存储一组程序代码,上述输入装置903、输出装置904和处理器901用于调用存储器905中存储的程序代码,执行如下操作:
所述处理器901,用于控制按照基于帧结构的固定周期持续进行信道检测;
所述处理器901,还用于当有数据业务到达至所述输入装置903时,设置基于负载的额外的信道检测时间;
所述输出装置904,用于根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
所述处理器901还用于执行如下步骤:当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
所述处理器901还用于执行如下步骤:当所述第一检测结果和所述第二检测结果均为信道繁忙时,控制继续进行信道检测;以及
当所述第二检测结果为繁忙时,控制选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则控制N值不变,若检测到信道空闲,则控制N值减1,直到N值减为0时,确定可以发送所述数据业务;以及
在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则控制同时进行信道检测,直至检测到信道空闲;以及
设置所述额外的信道检测时间的起始位置为子帧的起始位置。
所述处理器901还用于执行如下步骤:在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及
所述数据业务为一次性数据业务或多次连续性数据业务。
所述处理器901还用于执行如下步骤:当由所述处理器901进行信道检测时,以及
当在所述数据业务到达前设置所述固定周期的信道检测时间,控制由基站 向所述输入装置903发送所述固定周期以及所述固定周期的信道检测时间;或
当在所述数据业务到达时设置所述固定周期的信道检测时间,控制由所述基站向所述输入装置903发送所述固定周期,并控制由所述处理器901设置所述固定周期的信道检测时间。
在该技术方案中,终端通过该LTE系统在非授权频段工作时的信道检测系统,在非授权频段工作时,首先按照基于帧结构的固定周期持续进行信道检测,当有数据业务(即负载)到达即设置基于负载的额外的信道检测时间一同进行信道检测,并基于两种信道状态检测机制的结果确定是否发送数据业务,即通过结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制并行检测信道,以进一步地提高信道占用率并减少时延。
以上结合附图详细说明了本发明的技术方案,结合按基于帧结构的固定周期进行信道检测的LBT机制和数据业务到达即进行信道检测的基于负载的LBT机制同时进行信道检测,可以进一步地提高信道占用率并减少时延。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种LTE系统在非授权频段工作时的信道检测方法,其特征在于,包括:
    按照基于帧结构的固定周期持续进行信道检测;
    当有数据业务到达时,设置基于负载的额外的信道检测时间;
    根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
  2. 根据权利要求1所述的LTE系统在非授权频段工作时的信道检测方法,其特征在于,当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
  3. 根据权利要求1所述的LTE系统在非授权频段工作时的信道检测方法,其特征在于,当所述第一检测结果和所述第二检测结果均为信道繁忙时,继续进行信道检测;以及
    当所述第二检测结果为繁忙时,选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N值减1,直到N值减为0时,确定可以发送所述数据业务;以及
    在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则同时进行信道检测,直至检测到信道空闲;以及
    所述额外的信道检测时间的起始位置为子帧的起始位置。
  4. 根据权利要求1至3中任一项所述的LTE系统在非授权频段工作时的信道检测方法,其特征在于,在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及
    所述数据业务为一次性数据业务或多次连续性数据业务。
  5. 根据权利要求4所述的LTE系统在非授权频段工作时的信道检测方法,其特征在于,当由终端进行信道检测时,以及
    当在所述数据业务到达前设置所述固定周期的信道检测时间,由基站向所 述终端发送所述固定周期以及所述固定周期的信道检测时间;或
    当在所述数据业务到达时设置所述固定周期的信道检测时间,由基站向所述终端发送所述固定周期,并由所述终端设置所述固定周期的信道检测时间。
  6. 一种LTE系统在非授权频段工作时的信道检测系统,其特征在于,包括:
    控制模块,用于控制按照基于帧结构的固定周期持续进行信道检测;
    设置模块,用于当有数据业务到达时,设置基于负载的额外的信道检测时间;
    发送模块,用于根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
  7. 根据权利要求6所述的LTE系统在非授权频段工作时的信道检测系统,其特征在于,所述发送模块具体用于:当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
  8. 根据权利要求6所述的LTE系统在非授权频段工作时的信道检测系统,其特征在于,所述控制模块还用于:当所述第一检测结果和所述第二检测结果均为信道繁忙时,控制继续进行信道检测;以及
    当所述第二检测结果为繁忙时,控制选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则控制N值不变,若检测到信道空闲,则控制N值减1,直到N值减为0时,确定可以发送所述数据业务;以及
    在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则控制同时进行信道检测,直至检测到信道空闲;以及
    所述设置模块还用于:设置所述额外的信道检测时间的起始位置为子帧的起始位置。
  9. 根据权利要求6至8中任一项所述的LTE系统在非授权频段工作时的信道检测系统,其特征在于,所述设置模块还用于:在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及
    所述数据业务为一次性数据业务或多次连续性数据业务。
  10. 根据权利要求9所述的LTE系统在非授权频段工作时的信道检测系 统,其特征在于,所述控制模块还用于:当由终端进行信道检测时,以及
    当在所述数据业务到达前设置所述固定周期的信道检测时间,控制由基站向所述终端发送所述固定周期以及所述固定周期的信道检测时间;或
    当在所述数据业务到达时设置所述固定周期的信道检测时间,控制由基站向所述终端发送所述固定周期,并控制由所述终端设置所述固定周期的信道检测时间。
  11. 一种基站,其特征在于,所述基站包括通信总线、输入装置、输出装置、存储器以及处理器,其中:
    所述通信总线,用于实现所述输入装置、输出装置、存储器以及处理器之间的连接通信;
    所述存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
    所述处理器,用于控制按照基于帧结构的固定周期持续进行信道检测;
    所述处理器,还用于当有数据业务到达至所述输入装置时,设置基于负载的额外的信道检测时间;
    所述输出装置,用于根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
  12. 根据权利要求11所述的基站,其特征在于,
    所述处理器还用于执行如下步骤:当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
  13. 根据权利要求11所述的基站,其特征在于,
    所述处理器还用于执行如下步骤:当所述第一检测结果和所述第二检测结果均为信道繁忙时,控制继续进行信道检测;以及
    当所述第二检测结果为繁忙时,控制选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则控制N值不变,若检测到信道空闲,则控制N值减1,直到N值减为0时,确定可以发送所述数据业务;以及
    在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则控制同时进行信道检测,直至检测到信道空闲;以及
    设置所述额外的信道检测时间的起始位置为子帧的起始位置。
  14. 根据权利要求11至13任一项所述的基站,其特征在于,
    所述处理器还用于执行如下步骤:在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及
    所述数据业务为一次性数据业务或多次连续性数据业务。
  15. 根据权利要求14所述的基站,其特征在于,
    所述处理器还用于执行如下步骤:当由终端进行信道检测时,以及
    当在所述数据业务到达前设置所述固定周期的信道检测时间,控制由所述输出装置向所述终端发送所述固定周期以及所述固定周期的信道检测时间;或
    当在所述数据业务到达时设置所述固定周期的信道检测时间,控制由所述输出装置向所述终端发送所述固定周期,并控制由所述终端设置所述固定周期的信道检测时间。
  16. 一种终端,其特征在于,所述终端包括通信总线、输入装置、输出装置、存储器以及处理器,其中:
    所述通信总线,用于实现所述输入装置、输出装置、存储器以及处理器之间的连接通信;
    所述存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
    所述处理器,用于控制按照基于帧结构的固定周期持续进行信道检测;
    所述处理器,还用于当有数据业务到达至所述输入装置时,设置基于负载的额外的信道检测时间;
    所述输出装置,用于根据按照所述固定周期进行信道检测得到的第一检测结果和/或按照所述额外的信道检测时间进行信道检测得到的第二检测结果,确定是否发送所述数据业务。
  17. 根据权利要求16所述的终端,其特征在于,
    所述处理器还用于执行如下步骤:当所述第一检测结果和/或所述第二检测结果为信道空闲时,发送所述数据业务。
  18. 根据权利要求16所述的终端,其特征在于,
    所述处理器还用于执行如下步骤:当所述第一检测结果和所述第二检测结 果均为信道繁忙时,控制继续进行信道检测;以及
    当所述第二检测结果为繁忙时,控制选择随机数N,并在后续的检测过程中,若检测到信道繁忙,则控制N值不变,若检测到信道空闲,则控制N值减1,直到N值减为0时,确定可以发送所述数据业务;以及
    在按照所述额外的信道检测时间进行信道检测过程中,若所述固定周期的信道检测时间到达,则控制同时进行信道检测,直至检测到信道空闲;以及
    设置所述额外的信道检测时间的起始位置为子帧的起始位置。
  19. 根据权利要求16至18任一项所述的终端,其特征在于,
    所述处理器还用于执行如下步骤:在所述数据业务到达前或在所述数据业务到达时设置所述固定周期的信道检测时间;以及
    所述数据业务为一次性数据业务或多次连续性数据业务。
  20. 根据权利要求19所述的终端,其特征在于,
    所述处理器还用于执行如下步骤:当由所述处理器进行信道检测时,以及
    当在所述数据业务到达前设置所述固定周期的信道检测时间,控制由基站向所述输入装置发送所述固定周期以及所述固定周期的信道检测时间;或
    当在所述数据业务到达时设置所述固定周期的信道检测时间,控制由所述基站向所述输入装置发送所述固定周期,并控制由所述处理器设置所述固定周期的信道检测时间。
PCT/CN2015/075583 2015-01-28 2015-03-31 信道检测方法、信道检测系统、基站和终端 WO2016119302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510043773.2A CN104539405B (zh) 2015-01-28 2015-01-28 信道检测方法、信道检测系统、基站和终端
CN201510043773.2 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016119302A1 true WO2016119302A1 (zh) 2016-08-04

Family

ID=52854878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075583 WO2016119302A1 (zh) 2015-01-28 2015-03-31 信道检测方法、信道检测系统、基站和终端

Country Status (2)

Country Link
CN (1) CN104539405B (zh)
WO (1) WO2016119302A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338640A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 一种基于上行复用的数据传输方法及装置
CN111758297A (zh) * 2020-05-12 2020-10-09 北京小米移动软件有限公司 信道检测方法及装置、通信设备及存储介质
CN112601233A (zh) * 2020-11-03 2021-04-02 浙江华云信息科技有限公司 一种应用于智能电网的免授权频段信道接入方法
CN112822710A (zh) * 2020-12-31 2021-05-18 四川英得赛克科技有限公司 一种多台具有单张无线网卡的设备进行无线通信数据抓取的工作方法
CN113228772A (zh) * 2018-11-16 2021-08-06 上海诺基亚贝尔股份有限公司 数据传输控制
CN114450901A (zh) * 2020-09-03 2022-05-06 北京小米移动软件有限公司 通信方法、装置、通信设备和存储介质

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162658B (zh) * 2015-04-24 2021-07-23 中兴通讯股份有限公司 一种数据传输的方法
CN106304092A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种非授权频谱的共享方法及装置
CN106301722A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种信号处理方法、网络设备及系统
CN105636099A (zh) * 2015-06-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 业务检测方法及业务检测系统、终端和基站
CN106332091B (zh) * 2015-07-01 2021-06-08 中兴通讯股份有限公司 一种非授权载波上图案的管理方法和装置
CN105634859B (zh) * 2015-07-31 2019-08-02 宇龙计算机通信科技(深圳)有限公司 基于负载的lbt信道检测方法及系统、基站和终端
CN106455110B (zh) * 2015-08-07 2019-09-17 电信科学技术研究院 一种信道接入方法及装置
WO2017025004A1 (zh) * 2015-08-07 2017-02-16 中兴通讯股份有限公司 一种竞争接入方法和装置
CN106454854A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 一种非授权频谱的频谱共享方法和装置
CN107113636B (zh) * 2015-08-14 2020-12-15 华为技术有限公司 一种确定信道质量的方法及装置
CN106559906B (zh) * 2015-09-21 2021-11-02 中兴通讯股份有限公司 数据传输方法、指示信息的发送方法及装置
CN106559908B (zh) * 2015-09-25 2021-11-09 中兴通讯股份有限公司 一种实现先听后说的方法和装置
CN106559795B (zh) 2015-09-25 2022-07-29 中兴通讯股份有限公司 一种确定lbt模式的方法、装置和实现lbt模式切换的方法
CN105307179B (zh) * 2015-09-25 2018-12-25 宇龙计算机通信科技(深圳)有限公司 信道检测方法和信道检测装置
CN105338651A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 配置有defer period的信道检测方法及装置
WO2017049631A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种通信信号的处理方法、装置及通信服务器
CN106658742B (zh) * 2015-11-03 2020-07-03 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
US10542566B2 (en) * 2016-01-29 2020-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Clear channel assessment technique
WO2017132839A1 (en) * 2016-02-02 2017-08-10 Nec Corporation Method and device for performing partial subframe transmission
CN107027127A (zh) 2016-02-02 2017-08-08 索尼公司 信道检测装置和方法、用户设备和基站
US9967902B2 (en) 2016-02-04 2018-05-08 Sharp Laboratories Of America, Inc. Systems and methods for contention access region in a licensed-assisted access(LAA)
CN108605357A (zh) * 2016-02-04 2018-09-28 华为技术有限公司 一种上行信号的传输方法、ue及基站
US10349320B2 (en) 2016-03-29 2019-07-09 Sharp Kabushiki Kaisha User equipments, base stations and methods
US11304226B2 (en) 2016-05-09 2022-04-12 Sharp Kabushiki Kaisha User equipments, base stations and methods
CN108430114B (zh) * 2018-01-26 2021-07-20 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、基站和终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815302A (zh) * 2010-01-07 2010-08-25 北京邮电大学 一种利用认知无线电网络中空闲信道的频谱接入方法
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
US20140185497A1 (en) * 2013-01-02 2014-07-03 Qualcomm Incorporated Backhaul traffic reliability in unlicensed bands using spectrum sensing and channel reservation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179778A (zh) * 2006-11-07 2008-05-14 华为技术有限公司 一种共存性无线通信系统中的信息传输方法及装置
CN101765122B (zh) * 2008-12-22 2012-02-01 鼎桥通信技术有限公司 一种调度方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815302A (zh) * 2010-01-07 2010-08-25 北京邮电大学 一种利用认知无线电网络中空闲信道的频谱接入方法
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
US20140185497A1 (en) * 2013-01-02 2014-07-03 Qualcomm Incorporated Backhaul traffic reliability in unlicensed bands using spectrum sensing and channel reservation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338640A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 一种基于上行复用的数据传输方法及装置
CN105338640B (zh) * 2015-09-25 2018-12-25 宇龙计算机通信科技(深圳)有限公司 一种基于上行复用的数据传输方法及装置
CN113228772A (zh) * 2018-11-16 2021-08-06 上海诺基亚贝尔股份有限公司 数据传输控制
CN111758297A (zh) * 2020-05-12 2020-10-09 北京小米移动软件有限公司 信道检测方法及装置、通信设备及存储介质
CN111758297B (zh) * 2020-05-12 2023-08-29 北京小米移动软件有限公司 信道检测方法及装置、通信设备及存储介质
CN114450901A (zh) * 2020-09-03 2022-05-06 北京小米移动软件有限公司 通信方法、装置、通信设备和存储介质
CN112601233A (zh) * 2020-11-03 2021-04-02 浙江华云信息科技有限公司 一种应用于智能电网的免授权频段信道接入方法
CN112601233B (zh) * 2020-11-03 2023-10-20 浙江华云信息科技有限公司 一种应用于智能电网的免授权频段信道接入方法
CN112822710A (zh) * 2020-12-31 2021-05-18 四川英得赛克科技有限公司 一种多台具有单张无线网卡的设备进行无线通信数据抓取的工作方法
CN112822710B (zh) * 2020-12-31 2022-07-22 四川英得赛克科技有限公司 一种多台具有单张无线网卡的设备进行无线通信数据抓取的工作方法

Also Published As

Publication number Publication date
CN104539405A (zh) 2015-04-22
CN104539405B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2016119302A1 (zh) 信道检测方法、信道检测系统、基站和终端
US10959266B2 (en) OFDMA contention method and access point
US10404389B2 (en) Channel detection method, terminal and base station
WO2017004901A1 (zh) 信道占用概率的调整方法、调整系统和基站
WO2016161710A1 (zh) 信道占用概率的调整方法、调整系统和设备
US9693369B2 (en) Radio communication in unlicensed band
KR101234758B1 (ko) 무선 접속 시스템에서 데이터 채널 예약 방법 및 장치
US10834758B2 (en) Media access control for license-assisted access
US11589384B2 (en) Data transmission method, terminal device, and network device
WO2017121097A1 (zh) 非授权频谱上指示上行子帧的方法及装置
WO2016112588A1 (zh) 信道检测通知方法、系统和基站
US20170055287A1 (en) Channel access method and system, stations and computer readable storage medium
CN104363657A (zh) 数据传输方法、系统和具有基站功能的设备
WO2020063683A1 (zh) 一种发送、接收随机接入前导的方法及通信装置
CN110324910B (zh) 通信方法和通信设备
WO2016072908A1 (en) Dynamic listen before talk in license-assisted access
US20220386379A1 (en) Communication method and apparatus
CN112154698A (zh) 一种通信方法和通信装置
WO2017020384A1 (zh) 基于负载的lbt信道检测方法及系统、基站和终端
WO2023274012A1 (zh) 侧行链路反馈信息传输的方法和通信装置
CN113647182A (zh) 无线通信的方法和设备
CN112788791B (zh) 多链路信道存取方法
WO2023207643A1 (zh) Uwb信道的接入方法和通信装置
WO2023115275A1 (zh) 一种共享信道占用时间的方法及其终端设备
TW202402093A (zh) 同通道共存的方法和裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879510

Country of ref document: EP

Kind code of ref document: A1