WO2017025004A1 - 一种竞争接入方法和装置 - Google Patents

一种竞争接入方法和装置 Download PDF

Info

Publication number
WO2017025004A1
WO2017025004A1 PCT/CN2016/093896 CN2016093896W WO2017025004A1 WO 2017025004 A1 WO2017025004 A1 WO 2017025004A1 CN 2016093896 W CN2016093896 W CN 2016093896W WO 2017025004 A1 WO2017025004 A1 WO 2017025004A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
transmitting node
performs
cca
cca detection
Prior art date
Application number
PCT/CN2016/093896
Other languages
English (en)
French (fr)
Inventor
杨玲
苟伟
戴博
彭佛才
毕峰
赵亚军
李新彩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610630612.8A external-priority patent/CN106455117B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16834628.6A priority Critical patent/EP3334235A4/en
Priority to US15/746,170 priority patent/US20180213563A1/en
Publication of WO2017025004A1 publication Critical patent/WO2017025004A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a contention access method and apparatus.
  • the unlicensed spectrum has the following characteristics: the unlicensed spectrum does not need to be purchased, the spectrum resource has zero cost, and has the characteristics of free/low cost; the individual and the enterprise can participate in the deployment, and the equipment of the equipment vendor can be deployed arbitrarily, and the access requirement is low.
  • unlicensed carriers have the characteristics of shared resources, that is, when multiple different systems are operating or the same system When different operators operate in it, they can consider some ways of sharing resources to improve spectrum utilization efficiency; unlicensed spectrum has many features of wireless access technology, that is, it is difficult to cooperate across different communication standards, and network topology is diverse; unlicensed spectrum It has many features of wireless access sites, that is, the number of users is large, the cooperation is difficult, and the centralized management overhead is large; the unlicensed spectrum has many features, that is, multiple services are mentioned to be able to operate therein, such as machine to machine (Machine) To Machine, M2M), Vehicle to Vehicle (V2V).
  • Machine to machine Machine
  • M2M Machine to Machine
  • V2V Vehicle to Vehicle
  • the Rel-13 version of the Long Term Evolution (LTE) LTE system was initiated in September 2014.
  • LTE Long Term Evolution
  • One of the important issues in this version is that the LTE system uses unlicensed spectrum. Carrier operation. This technology will enable the LTE system to use the carriers of the existing unlicensed spectrum, greatly increasing the potential spectrum resources of the LTE system, enabling the LTE system to obtain lower spectrum costs.
  • the regulatory requirements of the unlicensed carrier must be met, that is, the Listen Before Talk (LBT) is required before the unlicensed carrier is used.
  • LBT Listen Before Talk
  • uplink transmission in an LTE system is based on passing through a base station.
  • the scheduling mechanism at the same time, according to the European regulatory requirements, uplink transmission on the unlicensed carrier, also need to first perform the listening and speaking mechanism.
  • the Licensed-Assisted Access (LAA) system is also the conclusion of the feasibility study phase (Study Item, SI) of the unlicensed band LTE, and the LBT Cat4 is adopted for the downlink. (LBT with random back-off with variable size of contention window), and there is no clear conclusion for the uplink LBT.
  • the uplink transmission is based on the base station scheduling.
  • the same LBT Cat4 mechanism as the downlink is used, the uplink access is difficult.
  • the uplink transmission data cannot be transmitted, which leads to problems such as poor uplink performance and low frequency efficiency.
  • the embodiments of the present invention provide a method and a device for competing access.
  • the LBT which is different from the downlink, can solve at least the problem of poor uplink performance and low spectrum efficiency caused by using the downlink LBT in the uplink in the related solution.
  • a contention access method including:
  • the transit node obtains predefined information
  • the transmitting node performs contention access according to the predefined information
  • the predefined information includes at least one of the following: a frame structure, a transmission data subframe position, a data type, a proprietary indication signaling, a frame scheduling manner, and a data transmission.
  • the frame structure includes: a frequency division duplex FDD frame structure; or a time division duplex TDD frame structure; or a dynamically configured uplink and downlink frame structure.
  • the transmitting node performs contention access according to the predefined information, including:
  • the transmission node adopts a random backoff window when competing for access The LBT, or LBT with a random fallback window.
  • the LBT having a random back-off window includes at least one of the following:
  • the LBT without the random back window includes:
  • the random backoff value of the eCCA is N, and N is a natural number.
  • the transmitting node performs contention access according to the predefined information, including:
  • the LBT mechanism is performed on the configured greater than and/or equal to the predetermined number of symbols for the contention access; for the subsequent uplink subframe, the last one of the previous subframes of the configured scheduling subframe Competing access is performed on the OFDM symbol in the orthogonal frequency division multiplexing OFDM symbol or the preset frequency domain resource pattern in the last OFDM symbol; wherein the predetermined number is configured or pre-defined by the base station.
  • a preset number of OFDM symbols in the previous subframe of the first uplink subframe include:
  • the minimum value of the preset number is the last OFDM symbol of at least one of the DwPTS, the GP, and the UpPTS; and the maximum value of the preset quantity respectively corresponds to at least one of the DwPTS, the GP, and the UpPTS.
  • the number of symbols is the last OFDM symbol of at least one of the DwPTS, the GP, and the UpPTS; and the maximum value of the preset quantity respectively corresponds to at least one of the DwPTS, the GP, and the UpPTS.
  • the first subframe performs an LBT mechanism with a random back-off window
  • the subsequent subframe performs an LBT mechanism with a random back-off window
  • the first subframe performs an LBT mechanism with a random back-off window, and subsequent subframes perform an LBT mechanism without a random back-off window.
  • the transmitting node performs contention access according to the predefined information, including:
  • the next sub-frame performs CCA detection according to the LBT mechanism with a random back-off window
  • the next sub-frame performs CCA detection according to the LBT mechanism without a random back-off window
  • the next sub-frame performs CCA detection according to the LBT mechanism with a random back-off window
  • the next sub-frame performs CCA detection according to the LBT mechanism without a random back-off window
  • the next subframe performs CCA detection according to the LBT mechanism configured by the base station; or,
  • the next subframe performs CCA detection according to the LBT mechanism configured by the base station without a random backoff window
  • the next subframe performs CCA detection according to the LBT mechanism configured by the base station with a random back-off window
  • the next subframe is subjected to CCA detection according to the LBT mechanism with a random back-off window;
  • the next subframe performs CCA detection according to the LBT mechanism without a random backoff window.
  • the duration of the single CCA detection is configured to be at least one of: 34 us, 25 us, 20 us, 18 us, 16 us, 9 us, or 10 us.
  • the starting point of the single CCA detection is a fixed position in the configured CCA detection period, or a dynamically random position.
  • the configured CCA detection time period is divided into a plurality of time intervals.
  • the single CCA The detected starting position is the starting position of a particular one of the plurality of time intervals.
  • the specific one time period, or the fixed CCA detection start position is determined by at least one of the following:
  • the base station Pre-defined; the base station notifies the UE by DCI signaling; the base station and the UE agree in advance; or, the transmission nodes negotiate; or, configuration.
  • the starting position of the single CCA detection is a dynamic random position
  • the starting position of the single CCA detection is one of the following:
  • a randomly selected one of the plurality of time intervals in the configured CCA detection period begins.
  • the single CCA detection is continued until the channel starts from the busy idle time, and when the channel continuous idle duration is set to set the single CCA detection duration, it is considered CCA detection is successful; or,
  • a single CCA test is performed. If the continuous idle time of the detection channel is the preset single CCA detection duration, the CCA detection is considered successful.
  • the starting point for the next execution of a single CCA detection may randomly select one of the time intervals after the previous execution of the single CCA position as the starting point for performing a single CCA detection; or,
  • the starting point for the next execution of a single CCA test is randomly selected during the configured CCA detection period; or,
  • the starting point for the next execution of a single CCA detection may be the starting point for performing a single CCA detection from the current detected channel busy time end position.
  • the CCA detection start position is randomly selected between the transmission nodes or the system.
  • a method of adjusting a transmission node or a system to perform an LBT priority or an LBT mechanism includes at least one of the following:
  • the transmission node adjusts the priority or LBT mechanism for performing LBT detection based on the last LBT detection result
  • the transmission node adjusts the priority or LBT mechanism for performing the LBT detection based on the result of performing the LBT detection for a period of time;
  • the transmission node After the transmission node performs the LBT mechanism of the preset number of times, the priority or the LBT mechanism for performing the LBT detection is adjusted.
  • the transit node adjusts the priority of the LBT detection or the LBT mechanism or vacates a preset time based on the time accumulation of the successful LBT execution and exceeding the preset threshold.
  • the priority or the LBT mechanism for performing the LBT detection is lowered;
  • the priority or the LBT mechanism for performing the LBT detection is lowered;
  • the priority or the LBT mechanism for performing the LBT detection is increased.
  • the performing a single CCA detection for performing a preset number of times includes:
  • the preset number of times is obtained by dividing the value of the configured CCA detection period by the duration of the single CCA detection, or is predefined;
  • the location of each single CCA detection is fixed or dynamic;
  • the location of the single CCA detection is dynamic each time, when the channel continuous idle time is detected to reach the preset time in the configured CCA detection period, the right to successfully compete for the unlicensed carrier is determined;
  • the preset number of times of single CCA detection positions are consecutive, or overlap each other, or mutually discontinuous; if a single CCA detects that the channel is idle, it determines that the content of the non-authorized carrier is successfully contend If a single CCA detects that the channel is busy, it continues to perform a single CCA detection until the channel is detected to be idle, and determines the right to successfully compete for the unlicensed carrier.
  • the transmitting node may randomly select each single CCA detection location in a plurality of single CCA detection locations within the configured CCA detection period; or, pre-define a location of multiple single CCA detections.
  • the method includes:
  • the duration of the delay period is configured as one of the following:
  • the random back-off CCA detection duration in the eCCA is 9us or 10us.
  • performing the eCCA after the performing the delay period first includes:
  • the delay period detection is performed, and when the channel is idle during the delay period, the eCCA random backoff CCA detection is performed.
  • the preset quantity is a predefined value; or the preset quantity is based on The preset time duration CCA detection times that can be performed during the delay period are detected, and the preset time length CCA detects that the random backoff value N is decremented when the channel is idle once.
  • the transmission node continues to perform CCA detection until the detection channel continuously idles for a preset delay period duration, and determines that the channel is idle during the delay period.
  • the transmission node continues to perform CCA detection until the detection channel continuously idles for a preset delay period duration, and determines that the channel is idle during the delay period.
  • the data type includes: a new data packet; or, a retransmission data packet; wherein, the durations of parameters involved in executing the LBT mechanism corresponding to different types of data packets are different.
  • the duration of the parameter involved in performing the LBT corresponding to the retransmission data packet is less than the duration of the parameter involved in executing the LBT corresponding to the new data packet.
  • proprietary indication signaling includes:
  • the base station configures whether each function of the LBT is enabled and a specific parameter of the LBT; or the transmitting node determines whether the functions of the LBT are enabled and specific parameters of the LBT;
  • Whether the function of the LBT is enabled includes: whether to adopt a dynamic exponential back-off window, whether to adopt a fixed contention retreat window, or whether there is a contention window; and the specific parameters of the LBT include at least one of the following: Single CCA, eCCA, delay period, random backoff value N, N is a natural number.
  • the transmitting node acquires specific parameters of the LBT by using one of the following:
  • the base station notifies the transmitting node to perform the specific parameter of the LBT by using the uplink scheduling grant UL Grant information;
  • the specific parameters of the LBT are predefined, and the transmitting node directly obtains a specific parameter of the predefined LBT.
  • the random backoff value N is obtained by any of the following methods:
  • the value range of the N value is related to the configured length of the CCA detection period and the size of the contention window.
  • the randomly generating the random backoff value N according to the preset algorithm includes:
  • a random number N is generated by the normal distribution function as the random backoff value N.
  • the frame scheduling manner includes at least one of the following: single frame scheduling, multi-frame scheduling, self-scheduling, and cross-carrier scheduling.
  • the method further includes:
  • the transmitting node receives the information sent by the base station and then uplinks Execute LBT before data is sent; or,
  • the transmitting node When the transmitting node has a data service, the transmitting node performs the LBT according to the preset LBT position; or
  • the transmitting node executes the LBT according to the received authorization information.
  • the transmitting node learns the location where the LBT is executed by semi-static configuration or by dynamic configuration.
  • the semi-static configuration includes:
  • the downlink control information is configured by DCI; or, by the matching manner of the subframe structure.
  • the dynamic configuration includes: for the dynamically configured uplink and downlink frame structure, the base station dynamically notifies the transmission node according to a load situation.
  • the transmitting node directly performs the eCCA random backoff process for the contention access or the eCCA random backoff CCA detection process, including:
  • the transmitting node If the random back-off CCA in the eCCA detects that the channel is idle, the transmitting node performs a decrement operation on the random back-off value N, and the transmitting node determines whether the random back-off value N after the decrement operation is equal to zero; if the judgment result is yes And the transmitting node uses the unlicensed carrier for data transmission; if the determination result is no, the transmitting node performs the next random backoff CCA detection; or
  • the transmitting node determines whether the random backoff value N is equal to zero. If the determination result is yes, the transmitting node uses the unlicensed carrier for data transmission, if If the result is no, the transmitting node performs a decrement operation on the random backoff value N, and continues to perform the random backoff CCA detection in the eCCA;
  • the transmitting node If it is detected that the channel is busy, the transmitting node performs the next random backoff CCA detection.
  • the method further includes:
  • the transmitting node If the random back-off CCA in the eCCA detects that the channel is busy, the transmitting node enters a delay period; when the channel idle is detected in the delay period, the transmitting node performs a next random back-off CCA detection;
  • the transmission node performs a decrement operation on the random backoff value N, and the transmission node determines whether the random backoff value N after the decrement operation is equal to zero; if the determination result is yes, the transmission node Using an unlicensed carrier for data transmission; if the determination result is no, the transmitting node performs the next random backoff CCA detection; or
  • the transmitting node determines whether the random backoff value N is equal to zero, and if the determination result is yes, the transmitting node uses the unlicensed carrier for data transmission, and if the determination result is no, the The transmitting node performs a decrement operation on the random backoff value N, and the transmitting node performs the next random backoff CCA detection.
  • the method further includes:
  • the transmitting node If the random back-off CCA in the eCCA detects that the channel is busy, the transmitting node enters a delay period; when the channel idle is detected in the delay period, the random back-off value N is performed to decrement the preset number. An operation of determining whether the random backoff value N is equal to zero; if the determination result is yes, the transmitting node uses an unlicensed carrier for data transmission;
  • the transmitting node If the determination result is no, the transmitting node repeatedly performs the random backoff CCA detection in the eCCA or the transmitting node performs the random backoff CCA detection in the eCCA and detects that the channel is busy, enters the delay period until the random back If the return value of N is zero, the transmitting node determines to acquire the right to use the unlicensed carrier.
  • the method further includes: during the delay period, the transmitting node performs a random backoff CCA detection in the eCCA, and when detecting that the channel is idle, the transmitting node determines to acquire the use right of the unlicensed carrier; Otherwise, the random back-off CCA detection in the eCCA is repeatedly performed until the duration of the continuous detection channel idle period reaches the delay period; wherein, the random back-off CCA detection duration in one eCCA is 9 us or 10 us.
  • the transmitting node performs a decrement operation on the random backoff value N, including:
  • the transmitting node When detecting that the channel is idle, the transmitting node performs a preset number of decrements on the random backoff value N value; wherein the preset number is dynamically adjusted or always fixed.
  • the method further includes: the transmitting node acquiring the random backoff value N.
  • the transmitting node performs a single CCA and eCCA for contention access, including:
  • the transmitting node performs a single CCA, and if detecting that the channel is idle, the transmitting node determines to acquire the right to use the unlicensed carrier;
  • the transmitting node enters the eCCA random backoff process; or, after entering the delay period, and after detecting the channel idle in the delay period, the transmitting node enters the eCCA random backoff process;
  • the transmitting node When the random back-off CCA in the eCCA detects that the channel is idle, the transmitting node performs a preset number-reduction operation on the random back-off value N, and determines whether the decremented random back-off value N is zero. If the determination result is yes, the transmitting node determines to acquire the usage right of the unlicensed carrier, and if the determination result is no, the transmitting node performs the next random backoff CCA. Detection; or,
  • the transmitting node determines whether the random backoff value N is equal to zero. If the determination result is yes, the transmitting node uses the unlicensed carrier for data transmission, if If the result is no, the transmitting node performs a decrement operation on the random backoff value N, and continues to perform the random backoff CCA detection in the eCCA.
  • the method further includes:
  • the transmitting node When the random back-off CCA in the eCCA detects that the channel is busy, the transmitting node enters the delay period and detects the channel idle during the delay, the transmitting node continues to perform the eCCA random back-off CCA detection until the random backoff The value N is decremented to zero, and the transmitting node determines to acquire the usage right of the unlicensed carrier.
  • the method includes:
  • the random backoff value N is subjected to a decrement operation of a preset value.
  • the decrementing operation of the preset value during the delay period includes:
  • the random back value N is decremented by a preset number of operations; wherein the decremented preset amount is a predefined value; or the preset duration CCA that can be performed according to the detection delay period
  • the number of detections and the preset duration CCA detects that the value is decremented once to determine the preset number of delays of the idle final N decrement; or, during the delay period, a predetermined number of random backoff CCA detections are performed, when the channel is detected to be idle
  • the random backoff value N is subjected to a decrementing operation of a preset value.
  • the method further includes:
  • the transmitting node detects the channel idle when performing the random backoff CCA in the eCCA, and then the transmitting node uses the unlicensed carrier for data transmission.
  • the method further includes:
  • the transmitting node enters the delay period when the random back-off CCA in the eCCA detects that the channel is busy, and detects a preset number of channels idle during the delay period, where the transmitting node determines Obtaining the right to use the unlicensed carrier; wherein the preset number of times is obtained by a predefined configuration or according to the detection duration in the delay period and the random backoff CCA detection duration in the eCCA.
  • the method further includes:
  • the base station configures the same random backoff value N for the multiple transmission nodes;
  • each of the plurality of transmission nodes When the geographical distance of the plurality of transmission nodes is greater than or equal to a preset value and mutual interference is greater than or equal to a threshold, each of the plurality of transmission nodes generates a corresponding random backoff value N; if the plurality of transmission nodes are Any one of the transmission nodes corresponding to the random backoff value N decrementing to zero is less than the symbol boundary, and then any one of the transmission nodes transmits a reservation signal, and the reserved signal is used for other than the any one of the transmission nodes.
  • the sending, by the any one of the transmitting nodes, the reserved signal includes:
  • the preset identification information includes at least one item: a cell identifier, a group identifier, a carrier identifier, and any one of the transmission nodes.
  • the method further includes:
  • the transmitting node acquires the unlicensed carrier usage rights, including:
  • the random back-off value N is decremented to zero
  • the transmitting node acquires the usage right of the unlicensed carrier; wherein the random backoff value N is decremented to zero, and the random backoff value N is decremented to zero during the delay period; or
  • the random back-off CCA detects once or the preset number of channels are idle or the When the transmitting node performs a boundary to a preset number of OFDM symbols, the random backoff value N is not decremented to zero, forcing a zeroing operation on the random backoff value N, then the transmitting node determines to acquire the use right of the unlicensed carrier; or Freezing the random backoff value N of the transmission node whose random backoff value N is not decremented to zero for use in the next contention access;
  • the transmitting node For an LBT procedure without a random backoff window, the transmitting node performs a single CCA detection to the channel idle, and the transmitting node acquires the use right of the unlicensed carrier; or
  • the transmitting node For an LBT procedure without a random backoff window, the transmitting node performs channel idle detection on one of the multiple single CCA detections, and the transmitting node acquires the usage right of the unlicensed carrier.
  • the location of performing the LBT, and/or the time period of CCA detection, and/or the LBT mechanism, and/or the LBT mechanism corresponding parameter, and/or the number of symbols used to perform the CCA detection may pass Get at least one of the following:
  • the base station is configured to notify the UE by using the downlink control information DCI; the pre-defined; configured by the ratio configuration of the subframe structure; and the base station dynamically notifies the UE according to the load condition.
  • the CCA detection or LBT location is the last one or more OFDM symbols of the previous subframe of the scheduling subframe.
  • an apparatus for competing access comprising:
  • An access unit configured to perform contention access according to the predefined information
  • the predefined information includes at least one of the following: a frame structure, a transmission data subframe position, a data type, a proprietary indication signaling, a frame scheduling manner, and a data transmission.
  • the frame structure includes: a frequency division duplex FDD frame structure; or, a time division double The TDD frame structure; or the dynamically configured uplink and downlink frame structure.
  • the access unit is specifically configured to:
  • the frequency division duplex FDD frame structure or the time division duplex TDD frame structure, or the dynamically configured uplink and downlink frame structure, when competing for access, adopt an LBT without a random backoff window, or , there is a random retreat window LBT.
  • the LBT having a random back-off window includes at least one of the following:
  • the LBT without the random back window includes:
  • the random backoff value of the eCCA is N, and N is a natural number.
  • the access unit is specifically configured to:
  • the LBT mechanism is performed on the configured greater than and/or equal to the predetermined number of symbols for the contention access; for the subsequent uplink subframe, the last one of the previous subframes of the configured scheduling subframe Competing access is performed on the OFDM symbol in the orthogonal frequency division multiplexing OFDM symbol or the preset frequency domain resource pattern in the last OFDM symbol; wherein the predetermined number is configured or pre-defined by the base station.
  • a preset number of OFDM symbols in the previous subframe of the first uplink subframe include:
  • the minimum value of the preset number is the last OFDM symbol of at least one of the DwPTS, the GP, and the UpPTS; and the maximum value of the preset quantity respectively corresponds to at least one of the DwPTS, the GP, and the UpPTS.
  • the number of symbols is the last OFDM symbol of at least one of the DwPTS, the GP, and the UpPTS; and the maximum value of the preset quantity respectively corresponds to at least one of the DwPTS, the GP, and the UpPTS.
  • the first subframe performs an LBT mechanism with a random back-off window
  • the subsequent subframe performs an LBT mechanism with a random back-off window
  • the first subframe performs an LBT mechanism with a random back-off window, and subsequent subframes perform an LBT mechanism without a random back-off window.
  • the access unit is specifically configured to:
  • the next sub-frame performs CCA detection according to the LBT mechanism with a random back-off window
  • the next sub-frame performs CCA detection according to the LBT mechanism without a random back-off window
  • the next sub-frame performs CCA detection according to the LBT mechanism with a random back-off window
  • the next sub-frame performs CCA detection according to the LBT mechanism without a random back-off window
  • the next subframe performs CCA detection according to the LBT mechanism configured by the base station; or,
  • the next subframe performs CCA detection according to the LBT mechanism configured by the base station without a random backoff window
  • the next subframe performs CCA detection according to the LBT mechanism configured by the base station with a random back-off window
  • the next subframe is subjected to CCA detection according to the LBT mechanism with a random back-off window;
  • the next subframe performs CCA detection according to the LBT mechanism without a random backoff window.
  • the duration of the single CCA detection is configured to be at least one of: 34 us, 25 us, 20 us, 18 us, 16 us, 9 us, or 10 us.
  • the starting point of the single CCA detection is a fixed position in the configured CCA detection period, or a dynamically random position.
  • the configured CCA detection time period is divided into a plurality of time intervals.
  • the starting position of the single CCA detection is a fixed position
  • the starting position of the single CCA detection is a starting position of a specific one of the plurality of time intervals.
  • the specific one time period, or the fixed CCA detection start position is determined by at least one of the following:
  • the base station Pre-defined; the base station notifies the UE by DCI signaling; the base station and the UE agree in advance; or, the transmission nodes negotiate; or, configuration.
  • the starting position of the single CCA detection is a dynamic random position
  • the starting position of the single CCA detection is one of the following:
  • a randomly selected one of the plurality of time intervals in the configured CCA detection period begins.
  • the single CCA detection is continued until the channel starts from the busy idle time, and when the channel continuous idle duration is set to set the single CCA detection duration, it is considered CCA detection is successful; or,
  • the starting point for the next execution of a single CCA detection may randomly select one of the time intervals after the previous execution of the single CCA position as the starting point for performing a single CCA detection; or,
  • the starting point for the next execution of a single CCA test is randomly selected during the configured CCA detection period; or,
  • the starting point for the next execution of a single CCA detection may be the starting point for performing a single CCA detection from the current detected channel busy time end position.
  • the CCA detection start position is randomly selected between the transmission nodes or the system.
  • a method of adjusting a transmission node or a system to perform an LBT priority or an LBT mechanism includes at least one of the following:
  • the transmission node adjusts the priority or LBT mechanism for performing LBT detection based on the last LBT detection result
  • the transmission node adjusts the priority or LBT mechanism for performing the LBT detection based on the result of performing the LBT detection for a period of time;
  • the transmission node After the transmission node performs the LBT mechanism of the preset number of times, the priority or the LBT mechanism for performing the LBT detection is adjusted.
  • the transit node adjusts the priority of the LBT detection or the LBT mechanism or vacates a preset time based on the time accumulation of the successful LBT execution and exceeding the preset threshold.
  • the priority or the LBT mechanism for performing the LBT detection is lowered;
  • the priority or the LBT mechanism for performing the LBT detection is lowered;
  • the priority or the LBT mechanism for performing the LBT detection is increased.
  • the performing a single CCA detection for performing a preset number of times includes:
  • the preset number of times is obtained by dividing the value of the configured CCA detection period by the duration of the single CCA detection, or is predefined;
  • the location of each single CCA detection is fixed or dynamic;
  • the location of the single CCA detection is dynamic each time, when the channel continuous idle time is detected to reach the preset time in the configured CCA detection period, the right to successfully compete for the unlicensed carrier is determined;
  • the preset number of times of single CCA detection positions are consecutive, or overlap each other, or mutually discontinuous; if a single CCA detects that the channel is idle, it determines that the content of the non-authorized carrier is successfully contend If a single CCA detects that the channel is busy, it continues to perform a single CCA detection until the channel is detected to be idle, and determines the right to successfully compete for the unlicensed carrier.
  • the transmitting node randomly selects each single CCA detection position in a plurality of single CCA detection positions in the configured CCA detection time period; or, presets a position where a plurality of single CCA detections are configured.
  • the method includes:
  • the duration of the delay period is configured as one of the following:
  • the random back-off CCA detection duration in the eCCA is 9us or 10us.
  • performing the eCCA after the performing the delay period first includes:
  • the delay period detection is performed, and when the channel is idle during the delay period, the eCCA random backoff CCA detection is performed.
  • the preset number is a predefined value; or the preset number is based on detecting a preset duration CCA detection number that can be performed in the delay period and the preset duration CCA detecting that the channel is idle once
  • the random backoff value N is determined by decrementing the value.
  • the access unit continues to perform CCA detection until the detection channel continuously idles for a preset delay period duration, and determines that the channel is idle during the delay period.
  • the access unit continues to perform CCA detection until the detection channel continuously idles for a preset delay period duration, and determines that the channel is idle during the delay period.
  • the data type includes: a new data packet; or, a retransmission data packet; wherein, the durations of parameters involved in executing the LBT mechanism corresponding to different types of data packets are different.
  • the duration of the parameter involved in performing the LBT corresponding to the retransmission data packet is less than the duration of the parameter involved in executing the LBT corresponding to the new data packet.
  • proprietary indication signaling includes:
  • the base station configures whether each function of the LBT is enabled and a specific parameter of the LBT; or the transmitting node determines whether the functions of the LBT are enabled and specific parameters of the LBT;
  • Whether the function of the LBT is enabled includes: whether to adopt a dynamic exponential back-off window, whether to adopt a fixed contention retreat window, or whether there is a contention window; and the specific parameters of the LBT include at least one of the following: Single CCA, eCCA, delay period, random backoff value N, N is a natural number.
  • the acquiring unit acquires specific parameters of the LBT by using one of the following;
  • the base station notifies the transmitting node to perform the specific parameter of the LBT by using the uplink scheduling grant UL Grant information;
  • the specific parameters of the LBT are predefined, and the transmitting node directly obtains a specific parameter of the predefined LBT.
  • the random backoff value N is obtained by any of the following methods:
  • the value range of the N value is related to the configured length of the CCA detection period and the size of the contention window.
  • the randomly generating the random backoff value N according to the preset algorithm includes:
  • a random number N is generated by the normal distribution function as the random backoff value N.
  • the frame scheduling manner includes at least one of the following: single frame scheduling, multi-frame scheduling, self-scheduling, and cross-carrier scheduling.
  • the access unit is further configured to:
  • the transmitting node receives the information sent by the base station and then uplinks Execute LBT before data is sent; or,
  • the transmitting node When the transmitting node has a data service, the transmitting node follows a preset LBT location. Execute LBT; or,
  • the transmitting node executes the LBT according to the received authorization information.
  • the transmitting node learns the location where the LBT is executed by semi-static configuration or by dynamic configuration.
  • the semi-static configuration includes:
  • the downlink control information is configured by DCI; or, by the matching manner of the subframe structure.
  • the dynamic configuration includes: for the dynamically configured uplink and downlink frame structure, the base station dynamically notifies the transmission node according to a load situation.
  • the transmitting node directly performs the eCCA random backoff process for the contention access or the eCCA random backoff CCA detection process, including:
  • the transmitting node If the random back-off CCA in the eCCA detects that the channel is idle, the transmitting node performs a decrement operation on the random back-off value N, and the transmitting node determines whether the random back-off value N after the decrement operation is equal to zero; if the judgment result is yes And the transmitting node uses the unlicensed carrier for data transmission; if the determination result is no, the transmitting node performs the next random backoff CCA detection; or
  • the transmitting node determines whether the random backoff value N is equal to zero. If the determination result is yes, the transmitting node uses the unlicensed carrier for data transmission, if If the result is no, the transmitting node performs a decrement operation on the random backoff value N, and continues to perform the random backoff CCA detection in the eCCA;
  • the transmitting node If it is detected that the channel is busy, the transmitting node performs the next random backoff CCA detection.
  • the access unit is further configured to:
  • the transmitting node If the random back-off CCA in the eCCA detects that the channel is busy, the transmitting node enters a delay period; when the channel idle is detected in the delay period, the transmitting node performs a next random back-off CCA detection;
  • the transmission node performs a decrement operation on the random backoff value N, and the transmission node determines whether the random backoff value N after the decrement operation is equal to zero; If yes, the transmitting node uses the unlicensed carrier for data transmission; if the determination result is no, the transmitting node performs the next random backoff CCA detection; or
  • the transmitting node determines whether the random backoff value N is equal to zero, and if the determination result is yes, the transmitting node uses the unlicensed carrier for data transmission, and if the determination result is no, the The transmitting node performs a decrement operation on the random backoff value N, and the transmitting node performs the next random backoff CCA detection.
  • the access unit is further configured to:
  • the transmitting node If the random back-off CCA in the eCCA detects that the channel is busy, the transmitting node enters a delay period; when the channel idle is detected in the delay period, performing a random back-off value N to decrement a preset number of operations; determining the random back-off Whether the value N is equal to zero; if the judgment result is yes, the transmitting node uses an unlicensed carrier for data transmission;
  • the transmitting node If the determination result is no, the transmitting node repeatedly performs the random backoff CCA detection in the eCCA or the transmitting node performs the random backoff CCA detection in the eCCA and detects that the channel is busy, enters the delay period until the random back If the return value of N is zero, the transmitting node determines to acquire the right to use the unlicensed carrier.
  • the access unit is further configured to: during the delay period, the transmitting node performs random backoff CCA detection in the eCCA, and when detecting that the channel is idle, the transmitting node determines that the unlicensed carrier is obtained.
  • the right to use; otherwise, the random back-off CCA detection in the eCCA is repeatedly performed until the duration of the continuous detection channel idle period reaches the delay period; wherein, the random back-off CCA detection duration in one eCCA is 9 us or 10 us.
  • the transmitting node performs a decrement operation on the random backoff value N, including:
  • the transmitting node When detecting that the channel is idle, the transmitting node performs a preset number of decrements on the random backoff value N value; wherein the preset number is dynamically adjusted or always fixed.
  • the access unit is further configured to: acquire the random backoff value N.
  • the access unit performs a single CCA and eCCA for contention access, including:
  • the transmitting node performs a single CCA, and if detecting that the channel is idle, the transmitting node determines to acquire the right to use the unlicensed carrier;
  • the transmitting node enters the eCCA random backoff process; or, after entering the delay period, and after detecting the channel idle in the delay period, the transmitting node enters the eCCA random backoff process;
  • the transmitting node When the random back-off CCA in the eCCA detects that the channel is idle, the transmitting node performs a preset number-reduction operation on the random back-off value N, and determines whether the decremented random back-off value N is zero. If the determination result is yes, the transmitting node determines to obtain the usage right of the unlicensed carrier, and if the determination result is no, the transmitting node performs the next random backoff CCA detection; or
  • the transmitting node determines whether the random backoff value N is equal to zero. If the determination result is yes, the transmitting node uses the unlicensed carrier for data transmission, if If the result is no, the transmitting node performs a decrement operation on the random backoff value N, and continues to perform the random backoff CCA detection in the eCCA.
  • the access unit is further configured to:
  • the transmitting node When the random back-off CCA in the eCCA detects that the channel is busy, the transmitting node enters the delay period and detects the channel idle during the delay, the transmitting node continues to perform the eCCA random back-off CCA detection until the random backoff The value N is decremented to zero, and the transmitting node determines to acquire the usage right of the unlicensed carrier.
  • the method includes:
  • the random backoff value N is subjected to a decrement operation of a preset value.
  • the decrementing operation of the preset value during the delay period includes:
  • the random backoff value N is decremented by a preset number of operations;
  • the decremented preset amount is a pre-defined value; or the delay period idle final N decrement is determined according to the preset executable duration CCA detection count that is idle and idle during the detection delay period and the preset duration CCA detection idle decrement value. a preset number; or, performing a predetermined number of random back-off CCA detections during the delay period, and when detecting that the channel is idle once, performing a predetermined value decrement operation on the random back-off value N.
  • the access unit is further configured to:
  • the transmitting node detects the channel idle when performing the random backoff CCA in the eCCA, and then the transmitting node uses the unlicensed carrier for data transmission.
  • the access unit is further configured to:
  • the transmitting node enters the delay period when the random back-off CCA in the eCCA detects that the channel is busy, and detects a preset number of channels idle during the delay period, where the transmitting node determines Obtaining the right to use the unlicensed carrier; wherein the preset number of times is obtained by a predefined configuration or according to the detection duration in the delay period and the random backoff CCA detection duration in the eCCA.
  • the access unit is further configured to:
  • the base station configures the same random backoff value N for the multiple transmission nodes;
  • each of the plurality of transmission nodes When the geographical distance of the plurality of transmission nodes is greater than or equal to a preset value and mutual interference is greater than or equal to a threshold, each of the plurality of transmission nodes generates a corresponding random backoff value N; if the plurality of transmission nodes are Any one of the transmission nodes corresponding to the random backoff value N decrementing to zero is less than the symbol boundary, and then any one of the transmission nodes transmits a reservation signal, and the reserved signal is used for other than the any one of the transmission nodes.
  • a transmission node whose random backoff value N is not decremented to zero cannot multiplex the unlicensed carrier resources or the transmission node that successfully acquires the unlicensed carrier reserves a specific CCA detection frequency domain resource for the N value on the data transmission resource.
  • a transit node that is not decremented to zero identifies and multiplexes resources.
  • the sending, by the any one of the transmitting nodes, the reserved signal includes:
  • the preset identification information includes at least one item: a cell identifier, a group identifier, a carrier identifier, and any one of the transmission nodes.
  • the access unit is further configured to:
  • the transmitting node acquires the unlicensed carrier usage rights, including:
  • the random back-off value N is decremented to zero, and the transmitting node acquires the non- The right to use the authorized carrier; wherein the random backoff value N is decremented to zero, and the random backoff value N is decremented to zero during the delay period; or
  • the random back-off CCA detects once or the preset number of channels are idle or the When the transmitting node performs a boundary to a preset number of OFDM symbols, the random backoff value N is not decremented to zero, forcing a zeroing operation on the random backoff value N, then the transmitting node determines to acquire the use right of the unlicensed carrier; or Freezing the random backoff value N of the transmission node whose random backoff value N is not decremented to zero for use in the next contention access;
  • the transmitting node For an LBT procedure without a random backoff window, the transmitting node performs a single CCA detection to the channel idle, and the transmitting node acquires the use right of the unlicensed carrier; or
  • the transmitting node For an LBT procedure without a random backoff window, the transmitting node performs channel idle detection on one of the multiple single CCA detections, and the transmitting node acquires the usage right of the unlicensed carrier.
  • the location of performing the LBT, and/or the time period of CCA detection, and/or the LBT mechanism, and/or the LBT mechanism corresponding parameter, and/or the number of symbols used to perform the CCA detection may pass Get at least one of the following:
  • the base station sends a notification to the UE through the downlink control information DCI; predefined; through the subframe structure The configuration of the matching mode; the base station dynamically notifies the UE according to the load situation.
  • the CCA detection or LBT location is the last one or more OFDM symbols of the previous subframe of the scheduling subframe.
  • the method and device for competing access use the LBT different from the downlink to simplify the process when performing the uplink LBT, thereby avoiding the poor uplink performance caused by the downlink LBT in the uplink in the related solution. Difficult, low spectral efficiency issues.
  • FIG. 1(a) is a schematic diagram 1 of a contention access procedure in which an autonomous UE competes for an unlicensed carrier usage right;
  • FIG. 1(b) is a second schematic diagram of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station;
  • 2(a) is a schematic diagram 3 of a contention access procedure in which an autonomous UE competes for an unlicensed carrier usage right;
  • 2(b) is a schematic diagram 4 of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station;
  • FIG. 3(a) is a schematic diagram 5 of a contention access procedure in which an autonomous UE competes for an unlicensed carrier usage right;
  • FIG. 3(b) is a schematic diagram 6 of a contention access procedure in which an autonomous UE competes for an unlicensed carrier usage right;
  • FIG. 3(c) is a schematic diagram 7 of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station;
  • 4(a) is a schematic diagram 8 of a contention access procedure in which an autonomous UE competes for an unlicensed carrier usage right;
  • 4(b) is a schematic diagram IX of a contention access procedure in which an autonomous UE competes for an unlicensed carrier usage right;
  • 4(c) is a schematic diagram 10 of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station;
  • FIG. 5(a) is a schematic diagram 11 of a contention access procedure in which an autonomous UE competes for an unlicensed carrier usage right;
  • FIG. 5(b) is a schematic diagram 12 of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station.
  • the following embodiments provide the flow of the fast LBT mechanism provided by the embodiment of the present invention.
  • the fast LBT mechanism mainly performs the conventional LBT mechanism in the related art from the perspective of the complexity of the process and the like. Further optimization, thereby shortening the time of the uplink access channel and increasing the success rate of the access channel, further improving the performance of the uplink system.
  • the LBT process is introduced by using the UE as an example, but is not limited to the UE, and may also be applied to the base station side.
  • FIG. 1(a) and FIG. 1(b) are schematic diagrams showing a method for competing access of an LAA device (ie, a transit node, the same below) in an unlicensed carrier in this embodiment.
  • FIG. 1( a ) is a schematic diagram of a contention access process in which a user equipment (User Equipment, UE) competes for unauthorized carrier usage rights.
  • FIG. 1(b) is a schematic diagram of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station.
  • the LAA device performs a CCA or eCCA procedure according to the following procedure to acquire the right to use the unlicensed carrier.
  • the LAA device such as an autonomous UE, is a UE that performs data transmission autonomously using an unlicensed carrier.
  • the transmitting node obtains a value N, which may be randomly generated or a predetermined value.
  • N is a natural number, and the maximum value of N is predetermined, or a preset value in a fixed window or a random value in a fixed window.
  • the generation of the N value may be performed by one of the following methods: generating a random number N by the equalization distribution function; or generating a random number N by the binomial distribution function; or generating a random number N by the normal distribution function Where the generated random number N is as small as possible.
  • N-time CCA Carrier Channel Assessment
  • the unlicensed carrier ie, determine that the transmitting node performs CCA detection and successfully competes to obtain the use right of the unlicensed carrier.
  • the transit node obtains a value N, which includes: N is defined as a natural number, and the N value is randomly generated by a uniform distribution function or a binomial distribution or a normal distribution or a large N value is preset. small.
  • N is defined as a natural number
  • the N value is randomly generated by a uniform distribution function or a binomial distribution or a normal distribution or a large N value is preset. small.
  • the transmitting node determines that the right to use the unlicensed carrier is successfully obtained.
  • the value of N depends on the size of the fixed window, and the size of the fixed window is based on the orthogonal frequency that the UE can use to perform LBT in the uplink subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the duration of one CCA test can be 9us, 10us, 16us, 18us, 20us or 34us.
  • the length of one CCA detection is 9 us. For example, assuming that the duration of a CCA detection is 9us, then taking the conventional CP as an example, 71 divided by 9 is approximately equal to 7, then N can take any number between (0, 7).
  • the contention of the transmission node (that is, the autonomous UE) for contention access includes:
  • the contention access of the first uplink subframe may perform an LBT mechanism on a configuration greater than or equal to a predetermined number of symbols, and the LBT mechanism may employ a conventional LBT mechanism.
  • the transmitting node may perform a fast LBT mechanism on the preset symbol to compete for accessing the unlicensed carrier.
  • the contention access of the subsequent uplink subframe may also be the same as the first uplink subframe.
  • the contention access of the subsequent uplink subframe may be the last OFDM of the previous subframe of the configured scheduling subframe.
  • the symbol or the specific frequency domain resource pattern on the last OFDM symbol uses a fast LBT mechanism for contention access.
  • the predetermined number may be obtained by using a base station configuration or a predefined definition, and the predetermined number is defaulted to 1.
  • the UE is in the last OFDM symbol of subframe #0 or Performing the LBT process introduced in this example on the first OFDM symbol of subframe #1,
  • the value of N can be randomly generated between 0 and 7, or the preset N is 7, so that the UE has multiple opportunities to access the channel as much as possible.
  • the UE may generate a value as small as possible between (0, 7) or preset a value as small as possible, such as 1, 2 Or 3, because the UE has successfully contend for the channel in the first scheduling subframe, and a smaller random number can be configured or generated in the second scheduling subframe for the fast access channel, so, preferably, It is sufficient to perform CCA once on the last OFDM symbol of the first uplink subframe or the first OFDM symbol of the second uplink subframe.
  • the CCA detection may be omitted, and a CCA detection location may be directly sent.
  • the occupied signal (the occupied signal may be an SRS signal transmitted over the entire bandwidth or a Souding Reference Signal (SRS) signal of a certain pattern in the frequency domain, and may be used for identification by the same cell or other UEs of the same carrier. Therefore, the resources of the successful UE are multiplexed. For the latter, the CCA detection can be omitted and the data can be directly transmitted.
  • the third uplink subframe is the same as the second uplink subframe.
  • the UE fails to perform CCA detection and fails to perform data transmission in the first uplink subframe, the last OFDM symbol of the first uplink subframe or the first OFDM symbol in the second uplink subframe The UE still performs a preset number of CCA detections to ensure and improve the probability of the UE accessing the channel.
  • the transmitting node determines that the unlicensed carrier can perform data transmission as long as it detects one channel idle in N times of single CCA detection. For specific steps, see steps 1 and 2 in this embodiment. If the time when the channel is idle is successfully detected, the subframe boundary or the symbol boundary is not transmitted, and the reserved signal of the non-complete symbol or the complete symbol or the data transmission of the partial symbol may be transmitted.
  • the LAA device performs an LBT procedure according to the following procedure to acquire the right to use the unlicensed carrier.
  • the LAA device is a UE under the control of a base station.
  • the difference between FIG. 1(b) and (a) is that the UE needs to trigger the UE to perform the contention access operation of the unlicensed carrier before the UE performs the UL LBT, and specifically triggers the subordinate UE to perform the UL LBT process as follows:
  • the base station triggers the subordinate UE.
  • Base station with data transmission or receiving UE request The LBT mechanism (for example, LBT Cat4) performs the usage right competition of the unlicensed carrier.
  • the unlicensed carrier After successfully preempting the unlicensed carrier, the unlicensed carrier sends an uplink scheduling grant (UL grant) to the subordinate UE to trigger or notify the UE in which subframe,
  • UL grant uplink scheduling grant
  • the uplink (UL) LBT is performed on which OFDM symbol, and the parameters employed in the LBT are performed.
  • the base station with data transmission transmits the scheduling message of the subordinate UE and the parameter information of the UL LBT by using the authorized carrier.
  • the UE receiving the UL grant starts to perform the UL LBT procedure.
  • the specific process is the same as steps 1 and 2 in FIG. 1(a), that is, the autonomous UE is replaced with the UE that receives the authorization information successfully.
  • the method for obtaining the value of N may be a random generation method (uniform distribution function, binomial distribution function, normal distribution function, etc.) or a pre-configured manner or a N value specified or notified by the base station.
  • FIG. 1 (a) and (b) in this embodiment is that the LAA device (the autonomous UE or the UE under the control of the base station) performs CCA detection first, detecting that the channel is idle, and detecting N After the value is subjected to the preset number of decrementing operations, it is judged whether the decremented N value is 0 (Note: the minimum value of the random number generated here may be 0). Rather than directly determining whether the generated N value is 0 as described in FIG. 1(a) in the first embodiment, the CCA detection is performed (Note: the minimum value of N in this case is 1).
  • the CCA detection is performed first, and the N value is judged, and then it is judged whether the detected channel is idle or not, and the idle value is subjected to the N value decrementing operation (in this case, the CCA detection is performed more frequently), that is, if the N value has been decremented to 0,
  • the next CCA test is performed directly.
  • the preferred embodiment is also applicable to the LBT flow chart in several embodiments described below, and will not be repeated below.
  • 2(a) and 2(b) are schematic diagrams showing a method for competing access of an unlicensed carrier of a LAA device in this embodiment.
  • 2(a) is a schematic diagram of a contention access procedure in which a transmitting node competes for an unlicensed carrier usage right.
  • 2(b) is a schematic diagram of a contention access procedure in which a UE competes for unauthorized carrier usage rights under control of a base station.
  • the first embodiment and the second embodiment are similar, except that the UE must obtain the use right of the unlicensed carrier when the value of N is decremented to zero.
  • Embodiment 2 is similar to a simplification The direct eCCA process, but when the eCCA random back-off CCA detects that the channel is busy, it may not enter the Defer Period, but continue to perform the next random back-off CCA detection until N is decremented to zero.
  • the LAA device (in this embodiment, the UE that is not subject to the autonomous execution of the LBT under the control of the base station for data transmission is referred to as the autonomous UE) performs the LBT process to obtain the use right of the unlicensed carrier according to the following procedure.
  • the transit node gets a value of N.
  • the value of N can be generated randomly or preset.
  • N is a natural number.
  • the maximum value of N is pre-defined, and can also be implicitly acquired according to the configured execution LBT detection time.
  • an N value is randomly generated. After the unlicensed carrier usage right is successfully obtained for data transmission, the next time the non-authorized carrier is used again, an N value is regenerated. .
  • the number of OFDM symbols occupied by the uplink performing LBT is one or more.
  • the wireless access point (AP)/station (STA) performs a random backoff value decrement detection time of 9us or 10us, in order to In fair competition with the WI-FI system, the upper limit of N is set to be approximately the sum of the duration of one symbol divided by the length of a single random back-off detection (the value is approximately 7).
  • Step 1 The transmitting node performs a CCA detection. If the detection result is busy, the N value remains unchanged (ie, no decrementing operation is performed), and the CCA or eCCA detection is continued. On the other hand, if the detection result is idle, the transmitting node performs an N value decrementing operation.
  • CCA/Evolution Clear Channel Assessment eCCA
  • step 2 it is judged whether N is equal to zero operation, and is placed before the decrement of the random backoff value N, as follows:
  • the transmitting node determines whether the random back-off value N is equal to zero, and if the determination result is yes, the transmitting node uses the unlicensed carrier. Data transmission is performed. If the determination result is no, the transmitting node performs a decrement operation on the random backoff value N, and continues to perform the random backoff CCA detection in the eCCA.
  • the transmitting node When detecting that the channel is busy, the transmitting node performs the next random backoff CCA detection.
  • the UE1 and the UE2 belong to the UE of the same cell, and the UE3 is the UE of different operators.
  • all three UEs use the following process to access the channel:
  • the N values obtained by UE1, UE2, and UE3 are 3, 2, and 5, respectively.
  • the three UEs continue to perform a single CCA/eCCA detection without performing a delay period. If the configured LBT location (eg, the last OFDM of the subframe), N is not decremented to 0 (the value of N has been decremented, but failed to decrement to 0 when the subframe boundary or symbol boundary arrives), unable to proceed For data transmission, the UE can forcibly determine that the channel is idle and perform data transmission. Here, if the UE 2 detects that the channel is idle twice and the value of N is decremented to 0, the N value is decremented to 0. When the time is not up to the subframe boundary or the symbol boundary, the reserved signal needs to be transmitted.
  • the configured LBT location eg, the last OFDM of the subframe
  • the content or the pattern carried by the reserved signal sent by the UE2 can be identified to determine whether the UE2 can be multiplexed for unauthorized access.
  • Carrier
  • the LAA device acquires the use right of the unlicensed carrier according to the flow in the figure.
  • the LAA device is a UE under the control of a base station. Similar to FIG. 1(b) and (a) in the first embodiment, FIG. 2(b) is different from (a) in that the UE under the control of the base station needs to trigger the UE to execute the UE before performing the UL LBT.
  • a contention access operation of an unlicensed carrier which specifically triggers the subordinate UE process as described in the first embodiment.
  • the following embodiment 3 and the fourth embodiment add an execution module based on the LBT process in the second embodiment, that is, increase the delay period of the defer period.
  • the location of the defer period delay period may be: one is: the defer period delay period is performed before the eCCA random backoff, that is, the eCCA random backoff is performed after performing the defer period delay period. The other is to perform the eCCA random backoff first.
  • the CCA in the eCCA random backoff detects that the channel is busy, the defer period delay period is executed.
  • the channel is idle during the delay period of the defer period, and the random backoff value N may be decremented by a preset number of operations, or the random backoff value N may not be operated.
  • the preset number can be 1, but is also limited to 1.
  • FIG. 3(a), 3(b) and 3(c) are a method for competing access of an unlicensed carrier of a LAA device in the present embodiment, wherein FIG. 3(a) is a transmission node competing for use of an unlicensed carrier. Schematic diagram of the competitive access process.
  • FIG. 3(b) is a schematic diagram of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station.
  • the LAA device may be various devices that use unlicensed carriers, for example, a base station, a low-power wireless access node (Small cell), or a UE that performs data transmission autonomously.
  • the LAA device is only the UE under the control of the base station.
  • the UE that performs data transmission autonomously that is, the autonomous UE that is not controlled by the base station, the UE can perform the corresponding uplink LBT process if there is data to be transmitted, and can perform data transmission after successful).
  • the specific process of granting the right to use the carrier is as follows:
  • the next CCA detection That is, repeat step 1.
  • step 2 the transmitting node determines whether the decremented N value is equal to zero. If the result of the determination is that N is equal to 0, the transmitting node determines that the right to use the unlicensed carrier is successfully acquired. On the other hand, if the result of the determination is that N is not 0, the transmitting node proceeds to perform the operation in step 1.
  • a defer period delay period is added.
  • the transmitting node When the transmitting node detects that the channel is idle during the delay period, it proceeds to perform CCA detection. Conversely, when the transmitting node detects that the channel is busy during the delay period, the delay period detection is continued until the channel continuous detection idle time is at least the delay period duration, and then the delay period detection idle is determined.
  • the difference between the flowchart of FIG. 3(b) and FIG. 3(a) is that the N value is judged first, then the CCA detection is performed, and the generated N value is at least 1.
  • FIG. 3(c) is a specific process for the UE under the control of the base station to acquire the use right of the unlicensed carrier
  • FIG. 3(c) is the same as the process of competing for accessing the unlicensed carrier in FIG. 3(b), except that: Before performing the UL LBT, the UE needs to belong to the subordinate UE to trigger the subordinate UE, where the base station triggers the UE to perform the LBT, and may perform self-scheduling or cross-carrier scheduling.
  • the base station side needs to perform the DL LBT to obtain the use right of the unlicensed carrier, and is used to send on the unlicensed carrier that is competing.
  • the UL Grant information is sent to the UE or a reservation signal or indication information carrying the indication information is sent, and the UE is triggered to perform the UL LBT operation before the uplink data transmission.
  • the UL Grant or the reserved signal carries parameters required for the UE to perform LBT, such as CCA detection and duration, Defer Period duration, or N value.
  • the base station side needs to send information indicating in which subframe, or the OFDM symbol, or parameters used by the LBT, by using the authorized carrier, the information may be in the downlink control information.
  • Downlink Control Information DCI
  • the N value is obtained, and the N value may be randomly generated by the LAA device itself, or other devices may be configured for the LAA device.
  • the value of N is determined according to a fixed contention window size or a number of symbols allocated to the LAA device for performing LBT.
  • the following takes the UE under the control of the base station as an example, and schedules multiple UEs in combination with multiple frames to describe the detailed LBT process.
  • the base station notifies UE1 to perform UL LBT in the guard slot (GP) in subframe #1 by UL Grant, UE2 performs LBT on the last OFDM symbol of subframe #2, and UE3 is at the end of subframe #3. Perform LBT on one OFDM symbol (corresponding to the former); or, the base station configures only 13 OFDM symbols in each subframe in the uplink transmission, the last symbol is destroyed or the specific frequency domain pattern on the last symbol is controlled, and used for The scheduling UE in the next subframe performs LBT detection (corresponding to the latter latter); or, the base station configures UE1, UE2, and UE3 to perform LBT positions: GP in a special subframe; GP and uplink sub-frames in a special subframe The last one of frame #2 or a specific number of OFDM symbols; the last one of GP and uplink subframes #2 and #3 in a special subframe or a certain number of OFDM symbols, which is beneficial to UE2 and UE3 to improve the probability of successful competition (corresponding to
  • the random back-off CCA detection in the eCCA ie, the eCCA is composed of multiple random back-off CCAs
  • the defer period delay period (ie, delay) Period) is 34us.
  • the UE1 performs the random backoff CCA detection in the eCCA. If the channel is detected to be busy, the UE1 enters a delay period of 34 us.
  • a preset amount eg, the preset number is 1
  • the SRS signal of the UE1 may be transmitted (the SRS signal of the full bandwidth or the frequency domain specific pattern may be sent),
  • the base station performs channel measurement in advance and is used for reusable UE identification.
  • the time of performing LBT is only performed for one OFDM symbol, and UE1 has performed a delay of 34 us in the delay period of UL LBT.
  • the duration of the defer period delay period can be dynamically adjusted. In addition to 34us, it can be adjusted to 20us, 18us, 16us (the duration of SIFS), 9us, 10us or 0us.
  • the maximum value of N in an OFDM is 7 (the length of an OFDM symbol is 71us divided by the random back-off CCA detection time is 9us, and the defer period is 0).
  • a preset amount eg, the preset number is 1
  • step 2 it is determined whether the decremented N value is 0. If it is 0, the UE2 can transmit using the unlicensed carrier. If N is not 0, continue with step 1. If the value of N is still not decremented to 0 when an OFDM boundary is reached, and the current value of N is less than the initial value N, then N is forcibly set to 0, and data transmission is performed in the scheduling subframe of UE2. Or after UE2 enters a certain number of defer periods, the LBT can be dynamically adjusted. The duration of the defer period when the channel is busy can even be configured as 0.
  • the defer period duration is 34us and 16us, and UE3 can further shorten the defer period delay period duration according to steps 1 and 2 in this embodiment.
  • the base station configures an appropriate N value according to the position and duration of the LBT performed by each UE, it is possible to further reduce the case where the N value decreases by less than 0 at the subframe boundary.
  • UE1, UE2, and UE3 perform LBT in the GP of the special subframe according to steps 1 and 2 in this embodiment, and the LBT parameters of the three UEs are configured as follows: the random backoff CCA duration is 9us or 10us. The defer period delay period is 34us. The randomly generated N values are 3, 4, and 5, respectively. Assume that in the GP, according to the contention access mode of steps 1 and 2, UE1 first decrements the value of N to 0, and the N value of UE2 and UE3 is non-zero. At this time, UE1 will be in the remaining GP resources or uplink.
  • the pilot time slot UpPTS transmits its own SRS signal (which can transmit a full-bandwidth or frequency-domain specific pattern of SRS signals), and is used for the base station to perform channel measurement in advance and to compete for resources in the cell in the same cell.
  • UE2 and UE3 then freeze the current N value for further decrementing in the next CCA detection subframe. If UE2 and UE3 are on the last or a preset number of OFDM symbols of subframe #2, the random backoff CCA detection is continued according to the frozen N value. If the detection is idle, the respective N values are decremented. If the channel is busy, the Defer period duration configured by the base station may be selected.
  • the shortened delay period may be selected, for example, 20us, 18us, 16us (short interframe space (Short) Interframe space (SIFS) duration, 9us, 10us or 0us.
  • the defer period duration can be fixed or dynamically adjusted to accommodate N decrement to 0 at the sub-frame boundary. If both UE2 and UE3 are decremented to 0 on the symbol of the subframe, UE3 transmits a reserved signal (for example, may be an SRS signal) to occupy the channel at the LBT detection position configured by itself.
  • the LBT operation is not performed on the symbol in the subframe in which the CCA detection can be performed, and the reserved signal is directly sent at the LBT detection position (may be its own SRS signal).
  • the LBT process of multiple autonomous UEs in multiple frames is the same as above, and is not repeated here.
  • the difference is that the autonomous UE performs UL LBT detection according to the corresponding frame structure or the CCA detection position of the system configuration.
  • the detection process is the same as steps 1 and 2 in this embodiment. Among them, random fallback When the CCA detects that the channel is busy, it can dynamically adjust the defer period duration, or keep the defer period duration unchanged during an LBT process.
  • 4(a), 4(b), and 4(c) are the contention access method of the unlicensed carrier of the LAA device in the present embodiment (eCCA+defer period), the N value can be decremented)
  • 4(a) is a schematic diagram of a contention access procedure in which a transmitting node competes for an unlicensed carrier usage right.
  • 4(b) is basically the same as FIG. 4(a) except that the N value is judged to be randomly N before the random back CCA detection.
  • FIG. 4(c) is a schematic diagram of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station. As shown in FIG.
  • the LAA device performs an LBT process to acquire the use rights of the unlicensed carrier according to the following procedure.
  • the LAA device may be various devices using an unlicensed carrier, for example, a base station, Small cell or UE that performs data transmission autonomously.
  • the LAA device is only the UE under the control of the base station.
  • the transmission node ie, the UE that is not controlled by the base station, if the data needs to be transmitted, the UE can perform the corresponding uplink LBT process, and the data transmission can be performed after the success) to obtain the use right of the unlicensed carrier.
  • the specific process is as follows:
  • step 1 the transmitting node performs a random backoff CCA detection. If it is detected that the channel is idle, the transmitting node performs an operation of decrementing the N value by a preset number.
  • the preset number is 1, but is not limited to 1.
  • step 2 the transmitting node determines whether the decremented N value is 0. If the value of N is 0, the transmitting node uses an unlicensed carrier for data transmission. Conversely, if the value of N is not 0, the next CCA test is performed.
  • Step 3 if the random backoff CCA detects that the channel is busy, the transmitting node enters a Defer period delay period.
  • the operation within the Defer period delay period is as follows:
  • the number of times that the random backoff CCA detection is successfully performed within the delay period can be obtained.
  • the number of times the random backoff CCA is successfully executed during the delay period is defer.
  • the period length is divided by the rounded up value of the CCA detection time of the random backoff).
  • the random back-off CCA detection is performed during the delay period, and if the channel is detected to be idle, the N value is decremented by a preset number of operations. If the channel is detected to be busy, the random back-off CCA detection is continued until the time when the channel idle is continuously detected is the delay period, and the delay period is determined to be idle.
  • Step 1 The transmitting node performs a random backoff CCA detection. If the channel is detected to be idle, it is determined whether the random backoff value N is equal to zero. If the judgment result is 0, the transmitting node acquires the right to use the unlicensed carrier. On the other hand, if the judgment result is not 0, the transmission node performs an operation of decrementing the N value by a preset number, and continues to perform the operation of step 1.
  • the preset number in this embodiment is 1, but is not limited to 1. If the detection channel is busy, go to step 2.
  • Step 2 Perform a defer period delay period. If the channel idle is detected within the defer period delay period, it is determined whether the random backoff value N is equal to 0. If the judgment result is 0, the transmitting node acquires the use right of the unlicensed carrier. On the other hand, if the judgment result is not 0, the transmission node performs an operation of decrementing the N value by a preset number, and proceeds to step 1.
  • the preset number in this embodiment is 1, but is not limited to 1. If the defer period delay period channel is busy, the delay period detection is continued until the channel continuous detection idle time is at least the delay period duration, and then the delay period detection idle is determined.
  • the eCCA operation is performed after the defer period delay period is first executed. That is, the above step 2 is performed first, that is, the defer period delay period is executed. Perform step 1 operation.
  • step 1 Perform a defer period delay period. If the channel idle is detected within the defer period delay period, it is determined whether the random backoff value N is equal to 0. If the judgment result is 0, the transmitting node acquires the use right of the unlicensed carrier. On the other hand, if the judgment result is not 0, the transmission node performs an operation of decrementing the N value by a preset number, and proceeds to step 2.
  • Step 2 The transmitting node performs a random backoff CCA detection. If the channel is detected to be idle, Determine whether the random backoff value N is equal to zero. If the judgment result is 0, the transmitting node acquires the right to use the unlicensed carrier. On the other hand, if the judgment result is not 0, the transmission node performs an operation of decrementing the N value by a preset number, and proceeds to step 2.
  • the preset number in this embodiment is 1, but is not limited to 1. If the detection channel is busy, go to step 1.
  • a specific process of the UE acquiring the use right of the unlicensed carrier under the control of the base station, the UE contending for the access to the unlicensed carrier is the same, except that the UE performs the UL LBT before performing the UL LBT.
  • the subordinate base station is required to trigger the subordinate UE, where the base station triggers the UE to perform the LBT, which may be self-scheduling or cross-carrier scheduling.
  • the detailed description is similar to how the base station in Embodiment 1 triggers the UE to perform UL LBT.
  • 4(c) may be: adjusting the minimum value of the generated N value from 1 to 0, and determining whether the N value is 0 or not, and placing the random back-off CCA detection channel with a duration of 9 us or 10 us is idle and After the N value is decremented, the rest of the defer period is handled the same.
  • the method for obtaining the N value by the LAA device in this embodiment is the same as that in the above embodiment.
  • the process of the UE accessing the channel in this embodiment may be applied to scheduling one user in a single frame, scheduling multiple consecutive subframes in a single user, scheduling multiple users in a single frame, and scheduling multiple users in multiple consecutive subframes.
  • the process of the UE accessing the channel in this embodiment may be applied to scheduling one user in a single frame, scheduling multiple consecutive subframes in a single user, scheduling multiple users in a single frame, and scheduling multiple users in multiple consecutive subframes.
  • a single user is scheduled by multiple consecutive subframes is taken as an example to describe the uplink LBT process of the UE.
  • UE1 is scheduled on uplink subframes #1, #2, #3, and the base station configures the uplink transmission to occupy only the first 13 OFDM symbols of each subframe, the last OFDM symbol of the vacant subframe or the specific frequency in the last symbol.
  • the domain pattern is used for the next scheduling UE to perform LBT operations. Since the UE performs the corresponding LBT operation based on the base station scheduling, the UE can obtain the location and or parameters of the LBT by performing the following methods:
  • the base station informs the UE to execute the specific parameters of the LBT through the UL Grant information, and the parameters are determined, and the corresponding LBT process is determined.
  • the UE can learn the subframe and/or the symbol position of the LBT according to the corresponding frame structure.
  • the location where the LBT process is executed may be the last one or more symbols of the subframe or a specific frequency domain pattern in the last symbol, or the last OFDM symbol of the subframe and the next The first OFDM symbol of the subframe.
  • the specific parameters of the LBT process are implicit according to the time period configured by the LBT mechanism.
  • the specific parameters of the LBT are performed on the predefined UE side to determine the LBT process.
  • the acquisition of the N value is the same as the above embodiment. It is assumed that the base station notifies UE1 that it is scheduled in subframe #1 in the UL Grant and performs the UL LBT procedure in subframe 0. If the subframe 0 is a special subframe, the LBT before the transmission of the subframe #1 is performed in the GP of the special subframe. And according to the notified LBT parameter situation: the random back-off CCA detection duration in eCCA is 9us, or 10us. The Defer period is 34 us, and indicates that the channel is idle during the Defer period and can be decremented. According to the configured parameter information, the UE performs an LBT operation in the GP according to the flow of FIG.
  • N the execution time is 9us, or a random back-off CCA of 10us.
  • the detection delay period is idle, and the number of times that the N value can be decremented and the random back-off CCA is delayed is 34us divided by the random back-off CCA duration.
  • the value obtained by 9us is rounded (ie, approximately 4). That is, once the channel is idle during the delay period, the N value is decremented by a preset value, wherein the minimum value of the decrement of the N value during the delay period is approximately 4. Before the N value is subjected to the decrementing operation, optionally, the current N value and the minimum value that can be decremented during the delay period are determined.
  • the delay period is detected after the idle state, the N value. Decrement to 0.
  • the N value decrement preset value operation is performed (note that the delay period is idle, that is, the preset number of times corresponding to the delay period can be decremented.
  • the CCA detection of the duration if the CCA detection is successful once in the preset duration and the N value is decremented by 1, then the idleness is detected during the entire delay period, then the N is finally decremented (the number of preset durations can be multiplied by each decrement during the delay period) 1); It is known that it is detected once during the delay period, and N is decremented by a preset amount). Further determining whether the current N value is 0, repeating the above steps until the N value is Decrease to 0, and determine that UE1 successfully acquires the right to use the unlicensed carrier.
  • subframe 0 is a non-special subframe
  • the N value is decremented by a preset number of operations, and since the length of time available for LBT detection is not much, therefore, optional
  • the number can be set to 2, that is, once the channel is idle, the value of N is decremented by 2.
  • Help UE1 quickly decrement to 0 for data transmission.
  • the channel is detected to be idle in the defer period, and the operation of decrementing the value of N by 2 is also performed.
  • the following uplink subframe #2 is scheduled. Since UE1 has successfully contend for the channel and performs data transmission in subframe #1, at this time, UE1 can quickly and successfully acquire the use right of the unlicensed carrier. Then, on the last symbol of subframe #1, priority, UE1 can reduce the duration of the defer period to 16us, or 18us or 0 or the like (ie, the default 34us does not change) when detecting that the channel is busy, or Only one or more single CCA tests are performed within one symbol, and the duration is adjusted to 18us or 20us or not changed (ie, the default 34us is unchanged). Similarly, UE1 is scheduled on uplink subframe #3, and the LBT method on subframe #2 can also be used.
  • UE1 can directly transmit in the third subframe of continuous scheduling, and does not perform LBT operation or perform only one single CCA (the duration can be 34us or 20us or 18us), and the remaining time can send a reserved signal. Selected, send SRS signal.
  • the LBT process performed before the uplink transmission of the UE exceeds one OFDM symbol or crosses the subframe boundary (the last symbol of the subframe and the previous symbol of the next subframe).
  • the fast LBT is performed in one OFDM symbol.
  • the conventional LBT process can be adopted for the LBT mechanism before the first uplink subframe.
  • step 3 in this embodiment is further given as follows: if in the defer period When a CCA (time duration of 9us or 10us) is detected to be idle, the LAA device in (a), (b), and (c) of FIG. 4 determines that the use right of the unlicensed carrier is acquired. Alternatively, it is found that once the CCA detection is idle, the value of N decrements the current value of N, thereby decrementing the value of N to 0, and obtaining the right to use the unlicensed carrier.
  • a CCA time duration of 9us or 10us
  • N can be decremented by 4. If the value of N is not greater than 4 before the delay period, the channel is detected to be idle during the delay period, and the value of N is not subjected to the decrementing operation.
  • FIG. 5(a), 5(b), and 5(c) are a method for competing access of an unlicensed carrier of an LAA device according to an embodiment of the present invention (single CCA+eCCA+defer period) It can be decremented)), wherein FIG. 5(a) is a schematic diagram of a contention access procedure in which a transmitting node competes for unauthorized carrier usage rights.
  • FIG. 5(b) is a schematic diagram of a contention access procedure in which a UE competes for an unlicensed carrier usage right under control of a base station.
  • the LAA device performs the LBT process to obtain the use rights of the unlicensed carrier according to the following procedure.
  • the LAA device may be various devices using an unlicensed carrier, for example, a base station, Small cell or UE that performs data transmission autonomously.
  • the LAA device is only the UE under the control of the base station.
  • the transmission node ie, the autonomous UE that is not controlled by the base station, if the data needs to be transmitted, the UE can perform the corresponding uplink LBT process, and can successfully perform data transmission) to obtain the use of the unlicensed carrier.
  • the specific process of the right is as follows:
  • step 1 the transmitting node performs a single CCA. If it is detected that the channel is idle, it is determined that the unauthorized use right is successfully obtained, and data transmission can be performed. If the detection channel is busy, go to step 2.
  • Step 2 If the detection result is busy, enter the delay period of the defer period. Among them, the operation during the defer period delay period is as follows:
  • the transmitting node continues to perform the CCA detection until the channel is continuously idle for the preset delay period duration, and then determines that the delay period detects that the channel is idle. If the detection channel is idle during the delay period, the N value is decremented by a preset amount.
  • the transmitting node determines whether the generated N value is 0. If the judgment result N is 0, it is determined that the unauthorized use right is successfully obtained. If the result of the judgment N is not 0, the random back-off CCA detection is performed (the random back-off CCA duration is 9 us). If the random back-off CCA detection channel is idle, the N value is decremented by a preset number of operations (such as decrementing 1). If the preset number is 1, then N is decremented by 4 during the delay period, but the preset number is not limited to 1.
  • Step 3 After the delay period is idle, determine whether the current N value is 0. If the result of the judgment is that the value of N is 0, it is determined that the right to use the unlicensed carrier is successfully obtained. Conversely, if the value of N is not 0, the value of N is randomly rolled back to decrement the preset number of operations. Perform a random back-off CCA test to determine whether the test result is idle. If it is idle, determine whether the N value is 0. If the N value is not 0, the N value is decremented by a preset number of operations. If the N value is 0, a random backoff CCA test is performed. Conversely, if the channel is busy, go back to step 2. Repeat steps 2 and 3 above until the N value is decremented to 0 to begin data transfer.
  • the process of acquiring the use right of the unlicensed carrier by the UE under the control of the base station in FIG. 5(b) is basically the same as the process of the UE competing for accessing the unlicensed carrier in FIG. 5(a), except that the difference is that Before the UE performs the UL LBT, the UE needs to trigger the UE by the eNB.
  • the base station triggers the UE to perform the LBT, which may be self-scheduling or cross-carrier scheduling.
  • the detailed description is similar to how the base station in Embodiment 1 triggers the UE to perform the UL LBT.
  • a preferred scheme for steps 2 and 3 of (a) and (b) in FIG. 5 is to omit step 3, that is, after a single CCA detection failure, directly enter the defer period delay period of step 2 and
  • the N value is decremented by a preset number of operations. The number of times that the preset time length CCA detection can be successfully executed within the delay period of the defer period has been determined.
  • an appropriate decrementing preset quantity value is configured, thereby implementing the defer period. The value of N is decremented to zero during the delay period. When N is decremented to 0, the LAA device obtains the right to use the unlicensed carrier.
  • steps 2 and 3 of (a) and (b) in FIG. 5 is to omit step 3, that is, directly after entering the defer of step 2 after a single CCA detection failure. During the period delay period, and the channel idle is detected during the delay period, it is determined that the LAA device obtains the use right of the unlicensed carrier.
  • steps 2 and 3 of (a) and (b) in FIG. 5 is that the channel idle is detected during the defer period delay period of step 2, and the N value decrementing operation is not performed.
  • the eCCA random backoff detection in step 3 if the channel idle is detected once, the LAA device is determined to obtain the use right of the unlicensed carrier.
  • the minimum value of the generated N value may be adjusted from 1 to 0, and the judgment operation for determining whether the value of N is 0 is placed on the order.
  • the secondary eCCA detects the channel busy condition (ie, each time the N value is judged to be the value of N after the decrementing operation).
  • the method for obtaining the N value by the LAA device in this embodiment is the same as that in the above embodiment.
  • the process of the UE accessing the channel in this embodiment may be applied to scheduling one user in a single frame, scheduling multiple consecutive subframes in a single user, scheduling multiple users in a single frame, and scheduling multiple users in multiple consecutive subframes.
  • the uplink LBT process of the UE is described by taking the case of scheduling multiple users in a single frame as an example.
  • the uplink subframe #1 namely UE1, UE2, and UE3. If it is a special subframe before subframe #1, UE1, UE2, and UE3 respectively perform the UL LBT procedure in the GP on the special subframe according to the procedure of FIG. 5(b) in this embodiment. Since the geographical locations of the three UEs are different, the detection results for the channels may be different. If three UEs detect a busy channel in a single CCA, they enter a defer period delay period, thereby performing random backoff according to different N values generated by the three UEs.
  • the N values configured by UE1, UE2, and UE3 may be the same or different.
  • the N value is decremented by a preset number of operations, and the UE2 and the UE3 cause the detection channel to be busy due to different interferences.
  • the value of N remains the same.
  • the defer period detects that the channel is idle and the N values of the three UEs are not decremented to 0.
  • the user can adjust the defer period duration or decrement the preset value by the N value. Therefore, the N value of each UE is quickly decremented to 0, thereby using the unauthorized Carrier.
  • the UE that first competes to the unlicensed carrier in the UpPTS sends a reserved signal carrying the identification information or a reserved signal of a specific pattern. Resource multiplexing is performed in the scheduled subframe.
  • the location where the three UEs perform the LBT is the last one or more OFDM symbols of the previous subframe of subframe #1, preferably the last OFDM symbol. Or the last OFDM symbol of the previous subframe of subframe #1 and the first or more OFDM symbols of subframe #1.
  • the optimization scheme in this embodiment is used to further increase the speed of accessing the unlicensed carrier.
  • the latter although configured to perform the LBT process for a long time, should also choose a smaller N, so that the device can successfully obtain unlicensed carriers quickly.
  • the single CCA duration may be 34us, 25us, 20us, 16us, 18us, etc.
  • the defer period duration may also be 34us, 25us, 20us, 16us, 18us or a multiple of 9us or 10us
  • the random back CCA duration is 9us or 10us.
  • N can be randomly generated or pre-configured.
  • the size of the competition window is fixed, and its size is related to the number of symbols or the duration of the configuration used by the UE to perform the LBT process.
  • the LBT process described in this embodiment may be used.
  • One of the processes in the embodiments of the present invention is used in combination of various processes or separately. Further, in order to enable the UE to access the unlicensed carrier more quickly, it is also possible to perform the single CCA only once.
  • this embodiment will perform one or more fast LBTs provided by the embodiments of the present invention for the LAA device. After that, adjust the probability of using fast LBT for contention access (eg, lower the probability of the device performing fast LBT, or perform an existing conventional LBT).
  • the LAA device performs the LBT according to the notification notified by the base station.
  • the location and the corresponding LBT parameters are subjected to a fast LBT procedure to contend for access to the unlicensed carrier.
  • the LBT parameter is at least one of the following: a single CCA, an eCCA, a delay period, and a random backoff value N. If the user equipment UE in the LAA system uses fast LBT every time accessing the unlicensed carrier, there is a certain competitive access disadvantage for the nodes in the Wi-Fi system, because in the Wi-Fi system. The nodes use the conventional LBT competition mechanism.
  • the device in the LAA system performs a normal LBT mechanism after performing a fast LBT successfully or does not perform the contention access of the unlicensed carrier for a period of time.
  • the device in the LAA system performs one or more regular LBTs after adjusting multiple fast LBTs or adjusts the competitive access probability of the fast LBT (lower the fast LBT access probability) or does not perform the non-period for a period of time.
  • Competitive access to authorized carriers can pass one of the following rules:
  • Rule 2 If the device in the LAA system performs a preset period of time or a preset number of fast LBTs, the device reduces the competition access probability of the fast LBT, and performs a conventional LBT mechanism for contention access or execution.
  • the regular LBT of the preset time is either vacant for a preset time.
  • Rule 3 If the time for the device to perform fast LBT in the LAA system accumulates more than the preset threshold, reduce the competition access probability of the device's fast LBT, perform a conventional LBT mechanism for contention access or perform a preset.
  • the regular LBT of time is either vacant for a preset time.
  • the rule 2 is taken as an example for specific description, and the preset number of times is assumed to be 3 times (or the preset time is 220 us).
  • the UE in the LAA system uses the fast LBT mechanism to access the unlicensed carrier before the uplink transmission. If the channel is successfully detected to obtain the unlicensed carrier right, the fast LBT mechanism is still used in the next competing access. The access of the unlicensed carrier is performed. If the channel is busy this time, the calculation of the preset number or the preset time has two different processing forms: Is fast LBT execution failure this time is not calculated in the preset number of times (that is, the preset number of times only accumulates the number of successful execution of fast LBT); the other is fast LBT execution failure.
  • This calculation is performed at the preset number of times (that is, the preset number of times is successfully accumulated). And the number of failed fast LBT executions). That is, after a preset number of times or a preset time, the LAA device needs to perform a conventional LBT mechanism similar to the Wi-Fi system for competing access or a regular LBT for a preset time or a preset number of conventional LBTs. Or vacant for a period of time does not participate in the competition access to ensure that there is a certain access channel probability of the Wi-Fi system.
  • the preset threshold is 200 us
  • the LAA device performs a fast LBT contention access mechanism in a subframe before the scheduled subframe, for example, an eCCA process using a direct random backoff.
  • the N value is 4, and the single CCA detection duration in the eCCA random backoff process is 9us.
  • the LAA device will use the conventional LBT mechanism or connect in the next competitive access once the accumulated time reaches the preset threshold (the threshold is a statistical value) during the fast LBT process.
  • the regular LBT mechanism is used for a predetermined period of time or vacant for a period of time.
  • This embodiment mainly introduces how the LAA device performs contention access and subsequent competing access processing of multiple uplink subframes in the first subframe.
  • the main use is to perform the LBT mechanism on multiple OFDM symbols before the first uplink subframe transmission, and the number of symbols used to execute the LBT mechanism before the subsequent consecutive uplink subframe transmissions can be compared with the first uplink subframe transmission. Execute the same number of symbols for LBT.
  • the LBT mechanism performed by subsequent consecutive uplink subframe transmissions only schedules the last OFDM symbol of the previous subframe of the subframe.
  • the LAA device can adequately avoid surrounding interference or reduce interference with surrounding nodes.
  • the LBT mechanism needs to be performed before the uplink transmission according to the control requirement.
  • the channel idle detection needs to be performed according to the CCA detection location notified by the base station before the data transmission, where the CCA detection location notified by the base station is the last of the previous subframe of the scheduling subframe.
  • M OFDM symbols M is a positive integer greater than or equal to 1
  • the first uplink subframe may adopt a conventional LBT mechanism.
  • the base station to which the UE1 belongs may also notify the UE1 that the data transmission is only 13 OFDM symbols of the scheduling subframe, and the last symbol is cancelled, or the base station to which the UE1 belongs informs the UE1 that only the last OFDM symbol in the vacant subframe is vacant.
  • Certain frequency domain resources, or the base station to which the UE1 belongs notifies the UE1 to cancel the last M OFDM symbols in the scheduling subframe (ie, the number of symbols that are destroyed is the same as the number of symbols occupied by the UE1 itself performing LBT), and is used for the next subframe.
  • the scheduled UE in the UE performs CCA detection.
  • the UE 2 performs channel idle detection according to the location of the LBT mechanism that is notified by the base station.
  • the base station notifies the UE 2 to perform CCA detection on the last symbol of the previous subframe of the scheduling subframe, and the adopted LBT mechanism may perform channel idle detection by using one of the four fast LBT mechanisms described in the embodiments of the present invention.
  • the base station notifies the UE 2 to perform an LBT procedure on the last M symbol of the previous subframe of the scheduling subframe.
  • the subsequent LBT locations of UE3 and UE4 are also detected according to the location of the LBT mechanism notified by the base station.
  • the execution of the LBT location is the last OFDM symbol of the previous subframe of the scheduling subframe, and may also be performed according to the LBT execution success of the previous uplink subframe (if the previous uplink subframe competition access fails, the configuration may be configured. More than one symbol number resource performs the LBT process), dynamically configuring one or more OFDM symbols for the LBT process.
  • the base station can configure the last one or more symbols in each uplink subframe to perform LBT.
  • the base station may dynamically configure the location of the LBT in the uplink subframe and the number of symbols occupied or the specific frequency domain resources on the last one or several symbols to perform busy detection of the channel.
  • This implementation proposes a method of performing one or more CCAs and using a plurality of different devices under the operator to randomly select a location of a single CCA detection to solve the unfair access problem.
  • one of the devices may be blocked or coordinated or configured to randomly select a location for performing CCA detection. That is, the time period in which the base station is configured to perform the LBT by the LAA device is divided into multiple single CCA detection times, and the LAA device can randomly select one of the plurality of single CCAs to be executed in a single execution when performing single CCA detection.
  • the CCA detects that if the single CCA test fails, the next single CCA test can still randomly select one of the multiple CCA tests from the multiple CCAs after the first execution of the single CCA position.
  • the location where the LAA device performs multiple CCA detections may be continuous, discontinuous, and overlapping.
  • the single-time CCA is performed for the busy and idle state detection of the channel
  • the LAA device is in the first single CCA detection (assuming a single CCA detection duration of 34 us)
  • the detection is between 9us and 18us.
  • the channel is busy, it is determined that the LAA device successfully acquires the use right of the unlicensed carrier when the LAA device detects that the channel is continuously idle for a set time of the CCA detection.
  • the problem that one of the devices is blocked based on the timing relationship between different LAA devices can be solved by at least one of the following methods:
  • Method 1 By increasing the priority method.
  • the LAA device adjusts the priority of performing the LBT detection based on the last LBT detection situation. Or, based on the result of performing the LBT detection for a period of time, the priority of performing the LBT detection is adjusted. For example, if the probability of detecting the LBT failure reaches a preset value within a certain period of time, the LBT execution priority is increased when the LBT detection is performed this time.
  • Method 2 Perform the CCA detection start position of the alternate LAA device.
  • the CCA detection location of the LAA device 1 is always prior to the CCA detection location of the LAA device 2, and the LAA device 1 always has a successful channel preemption or a high probability of success, and the LAA device 1 can be alternated.
  • And 2 perform the starting position of the CCA.
  • Method 3 A method of randomly selecting the starting position of CCA detection. That is, the LAA device selects the position where the CCA detection configuration position is as far as possible in the CCA detection for CCA detection.
  • different transmission priorities may be obtained by configuring a transmission file for a certain device. For example, suppose a file to be transmitted by a device includes file 1, file 2, file 3, and file 4. You can configure an odd file to perform channel idle detection.
  • the random backoff value N selects the number between [A, B], even.
  • the random backoff value N selects the number between [C, D], where A ⁇ B ⁇ C ⁇ D; or, based on the priority of adjusting the device to perform LBT detection for a period of time; or Yes, the LBT priority can be adjusted periodically or the LBT execution priority can be adjusted based on the execution of the LBT result in the previous burst.
  • This embodiment mainly introduces a process of performing LBT on a subsequent uplink subframe and a number of symbols occupied according to the success or failure of the LBT before the uplink subframe transmission in the case of multiple consecutive uplink subframes.
  • the existing frame structure including: TDD and FDD frame structure
  • the current frame structure is TDD and the uplink and downlink subframe ratio is 0, and there are three consecutive uplink subframes in the ratio.
  • UE1, UE2, and UE3 are respectively scheduled on each subframe.
  • the base station notifies the subordinate UE of the location of the LBT.
  • the base station informs the UE to perform the LBT location in two ways:
  • Manner 1 The base station informs the UE that the LBT location is fixed to be the last one or more OFDM symbols of the previous subframe of the scheduling subframe.
  • Manner 2 The base station notifies that the scheduled UE in one uplink subframe performs CCA detection on the last multiple OFDM symbols of the previous subframe of the scheduling subframe, and the scheduled UE in the subsequent uplink subframe is in the last of the scheduling subframe.
  • the CCA detection is performed on an OFDM symbol or a specific frequency domain pattern on the last symbol.
  • Manner 3 Dynamic adjustment of the base station The UE performs CCA detection on one or more symbols in the previous subframe of the uplink scheduling subframe.
  • the scheduling UE in the first uplink subframe performs according to the conventional LBT mechanism according to the execution LBT position notified by the base station or according to the fast LBT mechanism (that is, the LBT mechanism is optimized to a certain extent relative to the conventional LBT).
  • the scheduled UE in the subsequent uplink subframe can perform LBT detection by one of the following:
  • Case 1 Regardless of whether the UE1 in the first uplink subframe detects whether the channel is idle, the scheduled UE in the subsequent uplink subframe performs CCA detection according to the fast LBT mechanism.
  • the scheduled UE2 in the next subframe may perform LBT detection according to one of the following:
  • UE1 notifies UE2 that it has failed to perform LBT.
  • UE2 can adjust the number of symbols occupied by itself to perform LBT (for example, increase the configured duration of LBT), and perform channel busy and idle detection according to the conventional LBT mechanism.
  • the notification mode is that UE2 does not detect data, reserve signal information, or indication information in the scheduling subframe of UE1.
  • Process 2 UE1 fails to perform LBT, and UE2 performs CCA detection by using the fast LBT mechanism according to the LBT execution location configured by the base station.
  • Process 3 UE1 fails to perform LBT, and UE2 performs CCA detection according to the LBT execution location configured by the base station by using a conventional LBT mechanism.
  • the duration of the configured LBT mechanism may be: an OFDM symbol duration, a plurality of OFDM symbol durations, or a duration of one subframe.
  • the scheduling UE2 of the next subframe may perform LBT detection according to one of the following:
  • Process 1 UE2 performs CCA detection according to the conventional LBT mechanism, and the N value is as small as possible.
  • Process 2 UE2 performs CCA detection according to the fast LBT mechanism. If a fast LBT mechanism with random backoff is adopted, the value of N should be as small as possible. Preferably, a fast LBT mechanism that is as simple as possible can be selected, such as performing only one single CCA once or performing multiple single CCA detections.
  • the scheduling UE in the next uplink subframe may perform LBT detection by using one of the following:
  • Case 1 If UE1 fails to perform LBT (if the conventional LBT fails), UE2 also fails to perform LBT (if the conventional LBT fails), then UE3 uses the conventional LBT mechanism for channel detection at the corresponding CCA detection location.
  • the time that the UE3 performs the LBT is adjusted according to the LBT execution result of the previously scheduled UE (for example, increasing the duration of performing the LBT), and if the fast LBT mechanism of the random backoff is adopted, the value of N should be as Small, increasing the probability of success of the UE3 competing channel.
  • Case 2 If UE1 fails to perform LBT (if the conventional LBT fails) and UE2 performs LBT successfully (if the conventional LBT is successful), UE3 uses the fast LBT mechanism for channel detection at the corresponding CCA detection location.
  • the number of symbols occupied by the UE3 performing the LBT process is at least one duration of one OFDM symbol.
  • the fast LBT mechanism can perform only one single CCA or multiple multiple CCA detections. Since UE2 has successfully preempted the channel, UE3 can perform a relatively simplified competitive access mechanism to quickly access to The channel transmits information.
  • Case 3 If UE1 performs LBT successfully (if the conventional LBT is successful), UE2 performs LBT failure (such as failure with fast LBT), UE3 uses the conventional LBT mechanism for channel detection at the corresponding CCA detection location.
  • the number of symbols occupied by the UE3 for performing the LBT may be longer than or equal to the number of OFDM symbols, and the value of N should be as small as possible.
  • Case 5 If UE1 performs LBT successfully (if the conventional LBT is successful) and UE2 performs LBT successfully (if fast LBT is successful), UE3 uses the fast LBT mechanism for channel detection at the corresponding CCA detection location, if fast random backoff is adopted.
  • the LBT mechanism should have a value of N as small as possible.
  • the method for processing a plurality of uplink subframes is as follows: the first uplink subframe performs the number of symbols occupied by the LBT, and preferably, the configuration is greater than or equal to one OFDM symbol duration.
  • the subsequent uplink subframe performs the number of symbols occupied by the LBT. Preferably, one OFDM symbol is configured for CCA detection. If the previous uplink subframe fails to perform LBT, the LBT of the next subframe may be increased by the length of time during which the LBT process is performed (and if the LBT mechanism with random backoff is used, the value of N should be as small as possible) and the conventional LBT mechanism is executed. Or still follow the fast LBT mechanism. On the other hand, if the previous uplink subframe performs LBT success, the next uplink subframe is preferably executed according to the fast LBT mechanism.
  • the method in this embodiment can also be applied to the continuous uplink subframe of the flexible uplink and downlink ratio frame structure.
  • Embodiments of the present invention also provide a storage medium.
  • the storage medium may be configured to store program code set to perform the following steps:
  • the transit node acquires predefined information.
  • the transmitting node performs contention access according to the predefined information.
  • the predefined information includes at least one of the following: a frame structure, a transmission data subframe position, a data type, a proprietary indication signaling, a frame scheduling manner, and a data transmission.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules of the embodiments of the present invention or The steps may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of computing devices. Alternatively, they may be implemented by program code executable by the computing device. Thus, they may be stored in a storage device by a computing device, and in some cases, the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuits. Modules, or multiple modules or steps of them, are implemented as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the contention access method and apparatus provided by the embodiments of the present invention have the following beneficial effects: the LBT is different from the downlink, and the process is simplified when the uplink LBT is executed, thereby avoiding the uplink in the related solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种竞争接入方法和装置,包括:传输节点获取预定义信息;所述传输节点根据所述预定义信息进行竞争接入;其中,所述预定义信息包括以下至少之一:帧结构、传输数据子帧位置、数据类型、专有指示信令、帧调度方式、数据传输。采用与下行时不同的LBT,在执行上行LBT时简化了流程,从而能够避免相关方案中上行时采用下行LBT所带来的上行性能差难、频谱效率低的问题。

Description

一种竞争接入方法和装置 技术领域
本发明涉及无线通信技术领域,尤指一种竞争接入方法和装置。
背景技术
随着数据业务的快速增长,授权频谱的载波上承受的数据传输压力也越来越大,因此,通过非授权频谱的载波来分担授权载波中的数据流量成为后续LTE发展的一个重要的演进方向。其中,非授权频谱具有以下特征:非授权频谱不需要购买,频谱资源零成本,具有免费/低费用的特征;个人、企业都可以参与部署,设备商的设备可以任意部署,具有准入要求低,成本低的特征;非授权频谱中的5GHz、2.4GHz等频段都可以使用,具有可用带宽大的特征;非授权载波具有共享资源的特征,即多个不同系统都在其中运营时或者同一系统的不同运营商在其中运营时,可以考虑一些共享资源的方式提高频谱利用效率;非授权频谱具有无线接入技术多的特征,即跨不同的通信标准,协作难,网络拓扑多样;非授权频谱具有无线接入站点多的特征,即用户数量大,协作难度大,集中式管理开销大;非授权频谱具有应用多的特征,即多业务被提及可以在其中运营,例如机器到机器(Machine to Machine,M2M)、车辆到车辆(Vehicle to Vehicle,V2V)。基于非授权频谱的上述特征,长期演进(Long Term Evolution,LTE)LTE系统的Rel-13版本于在2014年9月份开始立项研究,其中该版本中一个重要的议题就是LTE系统使用非授权频谱的载波工作。这项技术将使得LTE系统能够使用目前存在的非授权频谱的载波,大大提升LTE系统的潜在频谱资源,使得LTE系统能够获得更低的频谱成本。
针对于LTE系统使用非授权频谱资源,必须满足非授权载波的管制要求,也就是说,在使用非授权载波之前需要进行先听后说(Listen Before Talk,LBT)。通过执行LBT可以规避相邻系统之间同时使用非授权载波而带来的干扰问题。众所周知的,LTE系统中的上行传输是基于通过基站 调度的机制,与此同时,根据欧洲管制要求,在非授权载波上进行上行传输,同样需要先执行先听后说机制。目前,根据移动通信国际标准组织对于授权型辅助接入(Licensed-Assisted Access,LAA)系统也即使用免执照频段的LTE的可行性研究阶段(Study Item,SI)的结论,对于下行采用LBT Cat4(LBT with random back-off with variable size of contention window),而对于上行的LBT没有明确结论,结合上行传输是基于基站调度的,当采用同下行相同的LBT Cat4机制时,会导致上行接入难,上行传输数据无法传输,进而导致上行性能差,频率效率低等问题。
发明内容
本发明实施例提供了一种竞争接入方法和装置,采用与下行时不同的LBT,能够至少解决相关方案中上行时采用下行LBT所带来的上行性能差难、频谱效率低的问题。
根据本发明的一个实施例,提供了一种竞争接入方法,包括:
传输节点获取预定义信息;
所述传输节点根据所述预定义信息进行竞争接入;
其中,所述预定义信息包括以下至少之一:帧结构、传输数据子帧位置、数据类型、专有指示信令、帧调度方式、数据传输。
进一步地,所述帧结构包括:频分双工FDD帧结构;或者,时分双工TDD帧结构;或者,动态配置的上下行帧结构。
进一步地,当所述预定义信息包括所述帧结构时,所述传输节点根据所述预定义信息进行竞争接入包括:
对于所述频分双工FDD帧结构,或者,所述时分双工TDD帧结构,或者,所述动态配置的上下行帧结构,所述传输节点在竞争接入时,采用没有随机回退窗的LBT,或者,有随机回退窗的LBT。
进一步地,所述有随机回退窗的LBT包括以下至少之一:
直接执行扩展空闲信道评估eCCA;
执行单次CCA和eCCA;
执行有延迟期的eCCA;
和/或,所述没有随机回退窗的LBT包括:
仅执行单次CCA;或者,
执行预设次数的单次CCA。
进一步地,eCCA的随机回退值为N,N为自然数。
进一步地,对于所述帧结构中有多个连续的上行子帧时,所述传输节点根据所述预定义信息进行竞争接入包括:
第一个上行子帧之前,在配置的大于和/或等于预定数目的符号上执行LBT机制进行竞争接入;对于后续的上行子帧,在配置的调度子帧的前一子帧的最后一个正交频分复用OFDM符号或最后一个OFDM符号中的预设频域资源图样上执行LBT机制进行竞争接入;其中,所述预定数目通过基站配置或是预定义。
进一步地,当在第一个上行子帧上进行传输,所执行竞争接入的子帧为特殊子帧时,所述第一个上行子帧的前一子帧中的预设数量的OFDM符号,包括:
下行导频时隙DwPTS中的预设数量个OFDM符号;或者,
保护时隙GP中的预设数量个OFDM符号;或者,
上行导频时隙UpPTS中的预设数量个OFDM符号;
其中,所述预设数量的最小值为所述DwPTS、GP、UpPTS中至少一项的最后一个OFDM符号;所述预设数量的最大值分别对应DwPTS、GP、UpPTS中至少一项所占的符号数。
进一步地,对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行有随机回退窗的LBT机制;或者,
对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行没有随机回退窗的LBT机制。
进一步地,对于有多个连续的上行子帧时,所述传输节点根据所述预定义信息进行竞争接入,包括:
无论前一子帧执行LBT是否成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
无论前一子帧执行LBT是否成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照基站配置的LBT机制执行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照基站配置的没有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照基站配置的有随机回退窗的LBT机制进行CCA检测;
如果前一子帧执行LBT成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测。
进一步地,所述单次CCA检测的时长配置为以下至少之一:34us、25us、20us、18us、16us、9us或10us。
进一步地,所述单次CCA检测的起点为配置的CCA检测时间段内的固定位置,或者,动态随机的位置。
进一步地,将配置的CCA检测时间段划分为多个时间区间。
进一步地,单次CCA检测的起始位置为固定位置时,所述单次CCA 检测的起始位置为所述多个时间区间中特定的一个时间段的开始位置。
进一步地,所述特定的一个时间段,或,固定的CCA检测起始位置通过以下至少之一方式确定:
预定义;基站通过DCI信令通知给UE;基站和UE事先约定;或者,传输节点之间协商;或者,配置。
进一步地,单次CCA检测的起始位置为动态随机位置时,所述单次CCA检测的开始位置为以下的一项:
配置的CCA检测时间段内随机选择的一个位置开始;或者,
配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段的开始位置;或者,
配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段内的随机选择的一个位置开始;或者,
配置的CCA检测时间段内的多个时间区间中的一个固定时间段内随机选择的一个位置开始。
进一步地,当执行单次CCA检测到信道忙时,则继续执行单次CCA检测,直到信道由忙变闲的时刻开始,检测到信道连续空闲时长为设定单次CCA检测时长时,则认为CCA检测成功;或者,
执行单次CCA检测,如果检测信道连续空闲时长为预设单次CCA检测时长时,则认为CCA检测成功。
进一步地,当单次CCA检测到信道忙或执行CCA失败时,
下一次执行单次CCA检测的起点可以从前一次执行单次CCA位置之后的时间区间中随机选择一个作为执行单次CCA检测的起点;或者,
下一次执行单次CCA检测的起点在配置的CCA检测时间段内随机选择;或者,
下一次执行单次CCA检测的起点可以从当前检测信道忙时刻结束位置作为执行单次CCA检测的起点。
进一步地,传输节点之间不同步或异步或竞争接入信道不公平时,或者,系统之间竞争接入信道不公平时,进行以下处理至少之一:
调整传输节点或系统执行LBT优先级或LBT机制方法;
交替变化传输节点或系统执行CCA检测起始位置;
传输节点或系统之间随机选择CCA检测起始位置。
进一步地,调整传输节点或系统执行LBT优先级或LBT机制的方法,包括以下至少之一:
传输节点基于上次LBT检测结果,调整本次执行LBT检测的优先级或LBT机制;
传输节点基于一段时间内执行LBT检测的结果,调整本次执行LBT检测的优先级或LBT机制;
传输节点基于执行预设次数的LBT机制后,调整本次执行LBT检测的优先级或LBT机制;
传输节点基于执行LBT成功的时间累加和超过预设门限,调整本次执行LBT检测的优先级或LBT机制或空置一段预设时间。
进一步地,当所述传输节点上次执行LBT成功时,调低本次执行LBT检测的优先级或者LBT机制;或者,
当所述传输节点上次执行LBT失败时,调高本次执行LBT检测的优先级或者LBT机制;或者,
当传输节点基于一段时间内执行LBT检测成功次数大于预设门限值,调低本次执行LBT检测的优先级或LBT机制;或者,
当传输节点基于一段时间内执行LBT检测失败次数大于预设门限值,调高本次执行LBT检测的优先级或LBT机制。
进一步地,所述对于执行预设次数的单次CCA检测,包括:
所述预设次数为所述配置的CCA检测时间段除以单次CCA检测的时长所得值取整,或者,为预定义的;
在配置的CCA检测时间段内,每次单次CCA检测的位置是固定的或是动态的;
当每次单次CCA检测的位置是动态的时,在所述配置的CCA检测时间段内均检测到信道连续空闲时间达到预设时间时,则确定成功竞争到非授权载波的使用权;
其中,所述预设次数的单次CCA检测的位置是相互连续的、或相互有重叠的、或相互不连续的;如果单次CCA检测到信道空闲,则确定成功竞争到非授权载波的使用权;如果单次CCA检测到信道忙,则继续执行单次CCA检测直至检测到信道空闲,确定成功竞争到非授权载波的使用权。
进一步地,传输节点可以在配置的CCA检测时间段内的多个单次CCA检测位置随机选择每一次的单次CCA检测位置;或者,预定义配置多个单次CCA检测的位置。
进一步地,对于所述执行有延迟期的eCCA,包括:
先执行所述延迟期后执行eCCA;或者,
先执行eCCA当检测到信道忙时执行所述延迟期;
其中,所述延迟期的时长配置为下述任一项:
34us、25us、20us、18us、16us、10us、9us、0us、eCCA中的随机回退CCA检测时长的整数倍或上述选项的按照加法运算的组合中之一;
所述eCCA中的随机回退CCA检测时长为9us或10us。
进一步地,对于所述先执行所述延迟期后执行eCCA,包括:
执行延迟期检测,在延迟期检测到信道空闲时,执行eCCA随机回退CCA检测。
进一步地,对于在所述延迟期检测到信道空闲时,对所述随机回退值N进行预设数量的递减操作,或者,对所述随机回退值N不进行任何操作;
其中,所述预设数量是预先定义的数值;或者,所述预设数量是根据 检测所述延迟期内可执行的预设时长CCA检测次数以及所述预设时长CCA检测到信道空闲一次时所述随机回退值N进行递减的值来确定的。
进一步地,对于所述延迟期检测信道忙时,传输节点继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
进一步地,对于所述延迟期检测信道忙时,传输节点继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
进一步地,所述数据类型包括:新数据包;或者,重传数据包;其中,不同类型的数据包对应的执行LBT机制所涉及参数的时长不同。
进一步地,所述重传数据包对应的执行LBT所涉及参数的时长小于所述新数据包对应的执行LBT所涉及参数的时长。
进一步地,所述专有指示信令包括:
基站配置LBT各功能是否使能以及LBT的具体参数;或所述传输节点确定LBT各功能是否使能以及LBT的具体参数;
其中,所述LBT各功能是否使能,包括:是否采用动态的指数回退窗、是否采用固定的竞争回退窗、或有无竞争窗;所述LBT的具体参数,包括以下至少之一:单次CCA、eCCA、延迟期、随机回退值N,N为自然数。
进一步地,所述传输节点通过下述之一获取所述LBT的具体参数;
基站通过上行调度授权UL Grant信息通知所述传输节点执行LBT的具体参数;或,
所述传输节点根据子帧配比以及执行对应LBT所占的OFDM符号来确定所述LBT的具体参数;或,
所述LBT的具体参数为预定义的,所述传输节点直接获取预定义的所述LBT的具体参数。
进一步地,所述随机回退值N由以下任一方式获得:
通过基站配置;预先设定;或由所述传输节点根据预设算法随机产生;
其中,N值的取值范围与配置的CCA检测时间段长度、竞争窗大小有关。
进一步地,所述根据预设算法随机产生随机回退值N包括:
通过均分分布函数生成一个随机数N作为所述随机回退值N;或,
通过二项分布函数生成一个随机数N作为所述随机回退值N;或,
通过正态分布函数生成一个随机数N作为所述随机回退值N。
进一步地,所述帧调度方式包括以下至少一项:单帧调度、多帧调度、自调度、跨载波调度。
进一步地,在所述传输节点根据所述预定义信息进行竞争接入之前,所述方法还包括:
当有数据需要发送的基站执行下行LBT竞争到非授权载波的使用权并向所述传输节点发送下行数据以及上行调度UL grant信息时,所述传输节点收到所述基站发送的信息后在上行数据发送之前执行LBT;或,
无数据发送的基站执行下行LBT竞争到非授权载波的使用权后,发送预留信号占用信道直到所述传输节点执行LBT的时刻或发送指示信息通知所述传输节点执行LBT;或,
当所述传输节点有数据业务时,所述传输节点按照预设的LBT位置执行LBT;或,
所述传输节点根据接收到的授权信息,执行LBT。
进一步地,所述传输节点是通过半静态配置或通过动态配置的方式获知执行LBT的位置。
进一步地,所述半静态配置包括:
通过下行控制信息DCI配置;或,通过子帧结构的配比方式配置。
进一步地,所述动态配置包括:对于所述动态配置的上下行帧结构,基站根据负载情况来动态的通知所述传输节点。
进一步地,所述传输节点直接执行eCCA随机回退过程进行竞争接入或eCCA随机回退CCA检测过程,包括:
如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测;
如果检测到信道忙时,所述传输节点执行下一个随机回退CCA检测。
进一步地,所述方法还包括:
如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,所述传输节点进行下一次的随机回退CCA检测;
如果评估延迟期信道空闲,则所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
如果评估延迟期信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,所述传输节点进行下一次的随机回退CCA检测。
进一步地,所述方法还包括:
如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,执行随机回退值N递减预设数量的 操作;判断所述随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;
若判断结果为否时,所述传输节点重复执行eCCA中的随机回退CCA检测或所述传输节点执行eCCA中的随机回退CCA检测且检测到信道忙时进入延迟期,直到所述随机回退N值为零,则所述传输节点确定获取到非授权载波的使用权。
进一步地,所述方法还包括:在延迟期内,所述传输节点执行eCCA中的随机回退CCA检测,在检测到信道为空闲时,所述传输节点确定获取到非授权载波的使用权;否则,重复执行eCCA中的随机回退CCA检测直到连续检测信道空闲时长达到延迟期时长;其中,一次eCCA中的随机回退CCA检测时长为9us或者10us。
进一步地,所述传输节点对所述随机回退值N进行递减运算,包括:
所述传输节点在检测到信道空闲时,进行对所述随机回退值N值进行预设数量的递减;其中,所述预设数量是动态调整的或是始终固定不变的。
进一步地,在所述传输节点直接执行eCCA或执行eCCA随机回退CCA检测过程时,所述方法还包括:所述传输节点获取所述随机回退值N。
进一步地,所述传输节点执行单次CCA和eCCA进行竞争接入,包括:
所述传输节点执行单次CCA,如果检测到信道空闲时,所述传输节点确定获取到非授权载波的使用权;
否则,如果检测到信道忙时,所述传输节点进入eCCA随机回退过程;或者,进入延迟期,且在延迟期检测到信道空闲后,所述传输节点进入eCCA随机回退过程;
在eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点对所述随机回退值N进行预设数量递减运算,并判断递减后的所述随机回退值N是否为零,若判断结果为是时,所述传输节点确定获取到非授权载波的使用权,若判断结果为否时,所述传输节点执行下一次的随机回退CCA 检测;或者,
如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测。
进一步地,所述方法还包括:
在eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期且在延迟期间检测到信道空闲后,所述传输节点继续执行eCCA随机回退CCA检测,直到所述随机回退值N递减到零,所述传输节点确定获取到非授权载波的使用权。
进一步地,当所述传输节点进入延迟期,包括:
当在所述延迟期内检测到信道空闲时,不执行对所述随机回退值N进行预设数值的递减操作;或,
当在所述延迟期内检测到信道空闲时,对所述随机回退值N进行预设数值的递减操作。
进一步地,所述在延迟期内进行预设数值的递减操作,包括:
当检测延迟期内信道空闲,则对所述随机回退值N递减预设数量操作;其中,递减的预设量是预先定义的数值;或根据检测延迟期内空闲可执行的预设时长CCA检测次数以及预设时长CCA检测空闲一次进行递减的值来确定延迟期空闲最终N递减的预设数量;或者,在所述延迟期内执行预定次数的随机回退CCA检测,当检测到信道空闲一次,对所述随机回退值N进行预设数值的递减操作。
进一步地,所述方法还包括:
所述传输节点在执行eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点使用非授权载波进行数据传输。
进一步地,所述方法还包括:
所述传输节点在执行eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入所述延迟期,在所述延迟期内检测到预设次数的信道空闲,则所述传输节点确定获取到非授权载波的使用权;其中,预设次数是通过预定义配置的或是根据所述延迟期内检测时长和eCCA中的随机回退CCA检测时长获取的。
进一步地,当多个传输节点需要一起复用竞争到的非授权载波资源进行数据传输时,所述方法还包括:
当所述多个传输节点之间的地理距离小于预设值以及互相的干扰小于阈值时,基站为所述多个传输节点配置相同的随机回退值N;
当所述多个传输节点的地理距离大于或等于预设值以及互相的干扰大于或等于阈值时,所述多个传输节点各自产生对应的随机回退值N;如果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻不到符号边界,则所述任一个传输节点发送预留信号,所述预留信号用于除所述任一个传输节点以外的各个传输节点进行识别以继续随机回退;如果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻到达子帧边界,则所述多个传输节点中对应随机回退值N未递减到零的传输节点不能复用非授权载波资源或者成功获取到非授权载波的传输节点在数据传输资源上预留特定的CCA检测频域资源用于N值未递减到零的传输节点识别和复用资源。
进一步地,所述任一个传输节点发送预留信号包括:
所述任一个传输节点全带宽发送预留信号且携带预设识别信息,所述预设识别信息包括至少一项:小区标识Cell ID、组标识、运营商标识;所述任一个传输节点发送带有特定频域图样的预留信号。
进一步地,所述方法还包括:
所述传输节点获取非授权载波使用权,包括:
对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退值N递减到零,则所述 传输节点获取非授权载波的使用权;其中,所述随机回退值N递减到零包括在延迟期内所述随机回退值N递减到零;或者,
对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退CCA检测到一次或预设次数信道空闲或者所述传输节点执行到预设数量的OFDM符号的边界时随机回退值N未递减到零,强制对随机回退值N进行置零操作,则所述传输节点确定获取非授权载波的使用权;或冻结随机回退值N未递减到零的传输节点的随机回退值N以使下一次竞争接入时使用;
对于没有随机回退窗的LBT过程,所述传输节点执行单次CCA检测到信道空闲,则所述传输节点获取非授权载波的使用权;或,
对于没有随机回退窗的LBT过程,所述传输节点执行多个单次CCA检测中有一次检测到信道空闲,则所述传输节点获取非授权载波的使用权。
进一步地,所述执行LBT的位置,和/或,CCA检测的时间段,和/或,LBT机制,和/或,LBT机制对应参数,和/或,用于执行CCA检测的符号数目可通过以下至少之一获取:
基站通过下行控制信息DCI配置通知给UE;预定义;通过子帧结构的配比方式配置;基站根据负载情况来动态的通知UE。
进一步地,所述CCA检测或LBT位置为调度子帧的前一子帧的最后一个或多个OFDM符号。
根据本发明的另一实施例,还提供一种用于竞争接入的装置,包括:
获取单元,设置为获取预定义信息;
接入单元,设置为根据所述预定义信息进行竞争接入;
其中,所述预定义信息包括以下至少之一:帧结构、传输数据子帧位置、数据类型、专有指示信令、帧调度方式、数据传输。
进一步地,所述帧结构包括:频分双工FDD帧结构;或者,时分双 工TDD帧结构;或者,动态配置的上下行帧结构。
进一步地,当所述预定义信息包括所述帧结构时,所述接入单元具体设置为:
对于所述频分双工FDD帧结构,或者,所述时分双工TDD帧结构,或者,所述动态配置的上下行帧结构,在竞争接入时,采用没有随机回退窗的LBT,或者,有随机回退窗的LBT。
进一步地,所述有随机回退窗的LBT包括以下至少之一:
直接执行扩展空闲信道评估eCCA;
执行单次CCA和eCCA;
执行有延迟期的eCCA;
和/或,所述没有随机回退窗的LBT包括:
仅执行单次CCA;或者,
执行预设次数的单次CCA。
进一步地,eCCA的随机回退值为N,N为自然数。
进一步地,对于所述帧结构中有多个连续的上行子帧时,所述接入单元具体设置为:
第一个上行子帧之前,在配置的大于和/或等于预定数目的符号上执行LBT机制进行竞争接入;对于后续的上行子帧,在配置的调度子帧的前一子帧的最后一个正交频分复用OFDM符号或最后一个OFDM符号中的预设频域资源图样上执行LBT机制进行竞争接入;其中,所述预定数目通过基站配置或是预定义。
进一步地,当在第一个上行子帧上进行传输,所执行竞争接入的子帧为特殊子帧时,所述第一个上行子帧的前一子帧中的预设数量的OFDM符号,包括:
下行导频时隙DwPTS中的预设数量个OFDM符号;或者,
保护时隙GP中的预设数量个OFDM符号;或者,
上行导频时隙UpPTS中的预设数量个OFDM符号;
其中,所述预设数量的最小值为所述DwPTS、GP、UpPTS中至少一项的最后一个OFDM符号;所述预设数量的最大值分别对应DwPTS、GP、UpPTS中至少一项所占的符号数。
进一步地,对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行有随机回退窗的LBT机制;或者,
对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行没有随机回退窗的LBT机制。
进一步地,对于有多个连续的上行子帧时,所述接入单元具体设置为:
无论前一子帧执行LBT是否成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
无论前一子帧执行LBT是否成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照基站配置的LBT机制执行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照基站配置的没有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT失败,下一子帧按照基站配置的有随机回退窗的LBT机制进行CCA检测;
如果前一子帧执行LBT成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
如果前一子帧执行LBT成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测。
进一步地,所述单次CCA检测的时长配置为以下至少之一:34us、25us、20us、18us、16us、9us或10us。
进一步地,所述单次CCA检测的起点为配置的CCA检测时间段内的固定位置,或者,动态随机的位置。
进一步地,将配置的CCA检测时间段划分为多个时间区间。
进一步地,单次CCA检测的起始位置为固定位置时,所述单次CCA检测的起始位置为所述多个时间区间中特定的一个时间段的开始位置。
进一步地,所述特定的一个时间段,或,固定的CCA检测起始位置通过以下至少之一方式确定:
预定义;基站通过DCI信令通知给UE;基站和UE事先约定;或者,传输节点之间协商;或者,配置。
进一步地,单次CCA检测的起始位置为动态随机位置时,所述单次CCA检测的开始位置为以下的一项:
配置的CCA检测时间段内随机选择的一个位置开始;或者,
配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段的开始位置;或者,
配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段内的随机选择的一个位置开始;或者,
配置的CCA检测时间段内的多个时间区间中的一个固定时间段内随机选择的一个位置开始。
进一步地,当执行单次CCA检测到信道忙时,则继续执行单次CCA检测,直到信道由忙变闲的时刻开始,检测到信道连续空闲时长为设定单次CCA检测时长时,则认为CCA检测成功;或者,
执行单次CCA检测,如果检测信道连续空闲时长为预设单次CCA检 测时长时,则认为CCA检测成功。
进一步地,当单次CCA检测到信道忙或执行CCA失败时,
下一次执行单次CCA检测的起点可以从前一次执行单次CCA位置之后的时间区间中随机选择一个作为执行单次CCA检测的起点;或者,
下一次执行单次CCA检测的起点在配置的CCA检测时间段内随机选择;或者,
下一次执行单次CCA检测的起点可以从当前检测信道忙时刻结束位置作为执行单次CCA检测的起点。
进一步地,传输节点之间不同步或异步或竞争接入信道不公平时,或者,系统之间竞争接入信道不公平时,进行以下处理至少之一:
调整传输节点或系统执行LBT优先级或LBT机制方法;
交替变化传输节点或系统执行CCA检测起始位置;
传输节点或系统之间随机选择CCA检测起始位置。
进一步地,调整传输节点或系统执行LBT优先级或LBT机制的方法,包括以下至少之一:
传输节点基于上次LBT检测结果,调整本次执行LBT检测的优先级或LBT机制;
传输节点基于一段时间内执行LBT检测的结果,调整本次执行LBT检测的优先级或LBT机制;
传输节点基于执行预设次数的LBT机制后,调整本次执行LBT检测的优先级或LBT机制;
传输节点基于执行LBT成功的时间累加和超过预设门限,调整本次执行LBT检测的优先级或LBT机制或空置一段预设时间。
进一步地,当所述传输节点上次执行LBT成功时,调低本次执行LBT检测的优先级或者LBT机制;或者,
当所述传输节点上次执行LBT失败时,调高本次执行LBT检测的优先级或者LBT机制;或者,
当传输节点基于一段时间内执行LBT检测成功次数大于预设门限值,调低本次执行LBT检测的优先级或LBT机制;或者,
当传输节点基于一段时间内执行LBT检测失败次数大于预设门限值,调高本次执行LBT检测的优先级或LBT机制。
进一步地,所述对于执行预设次数的单次CCA检测,包括:
所述预设次数为所述配置的CCA检测时间段除以单次CCA检测的时长所得值取整,或者,为预定义的;
在配置的CCA检测时间段内,每次单次CCA检测的位置是固定的或是动态的;
当每次单次CCA检测的位置是动态的时,在所述配置的CCA检测时间段内均检测到信道连续空闲时间达到预设时间时,则确定成功竞争到非授权载波的使用权;
其中,所述预设次数的单次CCA检测的位置是相互连续的、或相互有重叠的、或相互不连续的;如果单次CCA检测到信道空闲,则确定成功竞争到非授权载波的使用权;如果单次CCA检测到信道忙,则继续执行单次CCA检测直至检测到信道空闲,确定成功竞争到非授权载波的使用权。
进一步地,传输节点在配置的CCA检测时间段内的多个单次CCA检测位置随机选择每一次的单次CCA检测位置;或者,预定义配置多个单次CCA检测的位置。
进一步地,对于所述执行有延迟期的eCCA,包括:
先执行所述延迟期后执行eCCA;或者,
先执行eCCA当检测到信道忙时执行所述延迟期;
其中,所述延迟期的时长配置为下述任一项:
34us、25us、20us、18us、16us、10us、9us、0us、eCCA中的随机回退CCA检测时长的整数倍或上述选项的按照加法运算的组合中之一;
所述eCCA中的随机回退CCA检测时长为9us或10us。
进一步地,对于所述先执行所述延迟期后执行eCCA,包括:
执行延迟期检测,在延迟期检测到信道空闲时,执行eCCA随机回退CCA检测。
进一步地,对于在所述延迟期检测到信道空闲时,对所述随机回退值N进行预设数量的递减操作,或者,对所述随机回退值N不进行任何操作;
其中,所述预设数量是预先定义的数值;或者,所述预设数量是根据检测所述延迟期内可执行的预设时长CCA检测次数以及所述预设时长CCA检测到信道空闲一次时所述随机回退值N进行递减的值来确定的。
进一步地,对于所述延迟期检测信道忙时,接入单元继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
进一步地,对于所述延迟期检测信道忙时,接入单元继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
进一步地,所述数据类型包括:新数据包;或者,重传数据包;其中,不同类型的数据包对应的执行LBT机制所涉及参数的时长不同。
进一步地,所述重传数据包对应的执行LBT所涉及参数的时长小于所述新数据包对应的执行LBT所涉及参数的时长。
进一步地,所述专有指示信令包括:
基站配置LBT各功能是否使能以及LBT的具体参数;或所述传输节点确定LBT各功能是否使能以及LBT的具体参数;
其中,所述LBT各功能是否使能,包括:是否采用动态的指数回退窗、是否采用固定的竞争回退窗、或有无竞争窗;所述LBT的具体参数,包括以下至少之一:单次CCA、eCCA、延迟期、随机回退值N,N为自然数。
进一步地,所述获取单元通过下述之一获取所述LBT的具体参数;
基站通过上行调度授权UL Grant信息通知所述传输节点执行LBT的具体参数;或,
所述传输节点根据子帧配比以及执行对应LBT所占的OFDM符号来确定所述LBT的具体参数;或,
所述LBT的具体参数为预定义的,所述传输节点直接获取预定义的所述LBT的具体参数。
进一步地,所述随机回退值N由以下任一方式获得:
通过基站配置;预先设定;或由所述传输节点根据预设算法随机产生;
其中,N值的取值范围与配置的CCA检测时间段长度、竞争窗大小有关。
进一步地,所述根据预设算法随机产生随机回退值N包括:
通过均分分布函数生成一个随机数N作为所述随机回退值N;或,
通过二项分布函数生成一个随机数N作为所述随机回退值N;或,
通过正态分布函数生成一个随机数N作为所述随机回退值N。
进一步地,所述帧调度方式包括以下至少一项:单帧调度、多帧调度、自调度、跨载波调度。
进一步地,所述接入单元还设置为:
当有数据需要发送的基站执行下行LBT竞争到非授权载波的使用权并向所述传输节点发送下行数据以及上行调度UL grant信息时,所述传输节点收到所述基站发送的信息后在上行数据发送之前执行LBT;或,
无数据发送的基站执行下行LBT竞争到非授权载波的使用权后,发送预留信号占用信道直到所述传输节点执行LBT的时刻或发送指示信息通知所述传输节点执行LBT;或,
当所述传输节点有数据业务时,所述传输节点按照预设的LBT位置 执行LBT;或,
所述传输节点根据接收到的授权信息,执行LBT。
进一步地,所述传输节点是通过半静态配置或通过动态配置的方式获知执行LBT的位置。
进一步地,所述半静态配置包括:
通过下行控制信息DCI配置;或,通过子帧结构的配比方式配置。
进一步地,所述动态配置包括:对于所述动态配置的上下行帧结构,基站根据负载情况来动态的通知所述传输节点。
进一步地,所述传输节点直接执行eCCA随机回退过程进行竞争接入或eCCA随机回退CCA检测过程,包括:
如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测;
如果检测到信道忙时,所述传输节点执行下一个随机回退CCA检测。
进一步地,所述接入单元还设置为:
如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,所述传输节点进行下一次的随机回退CCA检测;
如果评估延迟期信道空闲,则所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值N是否等于零;若判断 结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
如果评估延迟期信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,所述传输节点进行下一次的随机回退CCA检测。
进一步地,所述接入单元还设置为:
如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,执行随机回退值N递减预设数量的操作;判断所述随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;
若判断结果为否时,所述传输节点重复执行eCCA中的随机回退CCA检测或所述传输节点执行eCCA中的随机回退CCA检测且检测到信道忙时进入延迟期,直到所述随机回退N值为零,则所述传输节点确定获取到非授权载波的使用权。
进一步地,所述接入单元还设置为:在延迟期内,所述传输节点执行eCCA中的随机回退CCA检测,在检测到信道为空闲时,所述传输节点确定获取到非授权载波的使用权;否则,重复执行eCCA中的随机回退CCA检测直到连续检测信道空闲时长达到延迟期时长;其中,一次eCCA中的随机回退CCA检测时长为9us或者10us。
进一步地,所述传输节点对所述随机回退值N进行递减运算,包括:
所述传输节点在检测到信道空闲时,进行对所述随机回退值N值进行预设数量的递减;其中,所述预设数量是动态调整的或是始终固定不变的。
进一步地,在所述传输节点直接执行eCCA或执行eCCA随机回退CCA检测过程时,所述接入单元还设置为:获取所述随机回退值N。
进一步地,所述接入单元执行单次CCA和eCCA进行竞争接入,包括:
所述传输节点执行单次CCA,如果检测到信道空闲时,所述传输节点确定获取到非授权载波的使用权;
否则,如果检测到信道忙时,所述传输节点进入eCCA随机回退过程;或者,进入延迟期,且在延迟期检测到信道空闲后,所述传输节点进入eCCA随机回退过程;
在eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点对所述随机回退值N进行预设数量递减运算,并判断递减后的所述随机回退值N是否为零,若判断结果为是时,所述传输节点确定获取到非授权载波的使用权,若判断结果为否时,所述传输节点执行下一次的随机回退CCA检测;或者,
如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测。
进一步地,所述接入单元还设置为:
在eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期且在延迟期间检测到信道空闲后,所述传输节点继续执行eCCA随机回退CCA检测,直到所述随机回退值N递减到零,所述传输节点确定获取到非授权载波的使用权。
进一步地,当所述传输节点进入延迟期,包括:
当在所述延迟期内检测到信道空闲时,不执行对所述随机回退值N进行预设数值的递减操作;或,
当在所述延迟期内检测到信道空闲时,对所述随机回退值N进行预设数值的递减操作。
进一步地,所述在延迟期内进行预设数值的递减操作,包括:
当检测延迟期内信道空闲,则对所述随机回退值N递减预设数量操作; 其中,递减的预设量是预先定义的数值;或根据检测延迟期内空闲可执行的预设时长CCA检测次数以及预设时长CCA检测空闲一次进行递减的值来确定延迟期空闲最终N递减的预设数量;或者,在所述延迟期内执行预定次数的随机回退CCA检测,当检测到信道空闲一次,对所述随机回退值N进行预设数值的递减操作。
进一步地,所述接入单元还设置为:
所述传输节点在执行eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点使用非授权载波进行数据传输。
进一步地,所述接入单元还设置为:
所述传输节点在执行eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入所述延迟期,在所述延迟期内检测到预设次数的信道空闲,则所述传输节点确定获取到非授权载波的使用权;其中,预设次数是通过预定义配置的或是根据所述延迟期内检测时长和eCCA中的随机回退CCA检测时长获取的。
进一步地,当多个传输节点需要一起复用竞争到的非授权载波资源进行数据传输时,所述接入单元还设置为:
当所述多个传输节点之间的地理距离小于预设值以及互相的干扰小于阈值时,基站为所述多个传输节点配置相同的随机回退值N;
当所述多个传输节点的地理距离大于或等于预设值以及互相的干扰大于或等于阈值时,所述多个传输节点各自产生对应的随机回退值N;如果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻不到符号边界,则所述任一个传输节点发送预留信号,所述预留信号用于除所述任一个传输节点以外的各个传输节点进行识别以继续随机回退;如果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻到达子帧边界,则所述多个传输节点中对应随机回退值N未递减到零的传输节点不能复用非授权载波资源或者成功获取到非授权载波的传输节点在数据传输资源上预留特定的CCA检测频域资源用于N值 未递减到零的传输节点识别和复用资源。
进一步地,所述任一个传输节点发送预留信号包括:
所述任一个传输节点全带宽发送预留信号且携带预设识别信息,所述预设识别信息包括至少一项:小区标识Cell ID、组标识、运营商标识;所述任一个传输节点发送带有特定频域图样的预留信号。
进一步地,所述接入单元还设置为:
所述传输节点获取非授权载波使用权,包括:
对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退值N递减到零,则所述传输节点获取非授权载波的使用权;其中,所述随机回退值N递减到零包括在延迟期内所述随机回退值N递减到零;或者,
对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退CCA检测到一次或预设次数信道空闲或者所述传输节点执行到预设数量的OFDM符号的边界时随机回退值N未递减到零,强制对随机回退值N进行置零操作,则所述传输节点确定获取非授权载波的使用权;或冻结随机回退值N未递减到零的传输节点的随机回退值N以使下一次竞争接入时使用;
对于没有随机回退窗的LBT过程,所述传输节点执行单次CCA检测到信道空闲,则所述传输节点获取非授权载波的使用权;或,
对于没有随机回退窗的LBT过程,所述传输节点执行多个单次CCA检测中有一次检测到信道空闲,则所述传输节点获取非授权载波的使用权。
进一步地,所述执行LBT的位置,和/或,CCA检测的时间段,和/或,LBT机制,和/或,LBT机制对应参数,和/或,用于执行CCA检测的符号数目可通过以下至少之一获取:
基站通过下行控制信息DCI配置通知给UE;预定义;通过子帧结构 的配比方式配置;基站根据负载情况来动态的通知UE。
进一步地,所述CCA检测或LBT位置为调度子帧的前一子帧的最后一个或多个OFDM符号。
本发明实施例提供的一种竞争接入方法和装置,采用与下行时不同的LBT,在执行上行LBT时简化了流程,从而能够避免相关方案中上行时采用下行LBT所带来的上行性能差难、频谱效率低的问题。
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例而了解。本发明实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1(a)为自主UE竞争非授权载波使用权的竞争接入过程的示意图一;
图1(b)为基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图二;
图2(a)为自主UE竞争非授权载波使用权的竞争接入过程的示意图三;
图2(b)为基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图四;
图3(a)为自主UE竞争非授权载波使用权的竞争接入过程的示意图五;
图3(b)为自主UE竞争非授权载波使用权的竞争接入过程的示意图六;
图3(c)为基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图七;
图4(a)为自主UE竞争非授权载波使用权的竞争接入过程的示意图八;
图4(b)为自主UE竞争非授权载波使用权的竞争接入过程的示意图九;
图4(c)为基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图十;
图5(a)为自主UE竞争非授权载波使用权的竞争接入过程的示意图十一;
图5(b)为基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图十二。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供的以下实施例主要介绍的本发明实施例提供的快速(fast)LBT机制的流程,该fast LBT机制主要是从流程的复杂度等角度对相关技术中常规的LBT机制做的进一步优化,从而缩短上行接入信道的时间,以及增加接入信道的成功率,进一步提升上行系统性能。此外,下述实施例中以UE为例介绍LBT过程,但不限于UE,也可以应用到基站侧。
实施例一
图1(a)和图1(b)是本实施例中的LAA设备(即传输节点,下同)在非授权载波的竞争接入方法示意图。其中,图1(a)是自主用户设备(User Equipment,UE)竞争非授权载波使用权的竞争接入过程的示意图。图1(b)是基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图。
如图1(a)所示,LAA设备按照下面的流程执行CCA或eCCA过程来获取非授权载波的使用权。其中,该LAA设备如自主UE,即使用非授权载波的自主进行数据传输的UE。
传输节点获取一个数值N,该数值N可以是随机产生的,也可以是预先设定的一个值。N是自然数,且N的最大值是预先规定的,或是固定窗内的一个预设值或是固定窗内的一个随机值。其中,N值的产生可通过下述方法之一:通过均分分布函数生成一个随机数N;或者,通过二项分布函数生成一个随机数N;或者,通过正态分布函数生成一个随机数N;其中,生成的随机数N尽可能的小。
步骤1,传输节点判断当前的N是否等于0。如果判断结果为是(即N=0时),则确定传输节点的N次CCA(Clear Channel Assessment,干净信道评估)检测已经结束或在N次CCA检测过程中没有一次检测到信道空闲,即传输节点不能使用非授权载波进行数据传输。反之,如果判断结果是否(即N不等于0时),则传输节点执行步骤2操作。
步骤2,传输节点执行一次CCA(即N次CCA检测中的一次)检测。如果检测结果为忙,则N执行递减预定数量的操作,本实施例,N值递减数量为1,即N执行的N=N-1操作,且传输节点重复执行步骤1。反之,如果检测结果为空闲时,则传输节点将使用非授权载波进行传输(即确定传输节点执行CCA检测成功竞争获得非授权载波的使用权)。
下面通过本实施例的一个应用场景进行详细的描述,对于多个连续上行子帧时,传输节点的竞争接入过程。
传输节点获取一个数值N,具体包括:N的定义为自然数,通过均匀分布函数或是二项分布或是正态分布随机产生N值或是预先设置N值大 小。当在N次CCA检测过程中只要有一次检测到信道空闲,则传输节点确定成功获得非授权载波的使用权。下一次再抢占非授权载波使用时,需要重新产生N值;其中,N的取值大小取决于固定窗的大小,而固定窗的大小是根据上行子帧中UE可用于执行LBT的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数目,可选的,子帧中的最后一个或几个OFDM符号。
如果传输节点执行LBT机制的位置为上行子帧中的一个OFDM符号(对于常规循环前缀(Cyclic Prefix,CP),一个OFDM符号约为1/14ms=0.0714ms=71.4us;而对于扩展CP,一个OFDM符号约为1/12ms=0.0833ms=83.3us),则N取值的上限为一个符号的长度除以一次CCA或eCCA时长所得值的取整。其中,一次CCA检测的时长可以是9us、10us、16us、18us、20us或34us。优选的,一次CCA检测时长为9us。例如,假设一次CCA检测的时长为9us,那么,以常规CP为例,71除以9约等于7,那么N可取(0,7]之间的任意一个数。
需要说明的是,对于所述帧结构中有多个连续的上行子帧时,传输节点(也即自主UE)进行竞争接入包括:
第一个上行子帧的竞争接入可在配置大于或等于预定符号数上执行LBT机制,且LBT机制可采用常规的LBT机制。可选的,传输节点可以在预设符号上执行快速的LBT机制进行竞争接入非授权载波。后续上行子帧的竞争接入也可以采用与第一个上行子帧相同的方法,优选的,后续的上行子帧的竞争接入可在配置的调度子帧的前一子帧的最后一个OFDM符号或是最后一个OFDM符号上的特定频域资源图样上采用快速的LBT机制进行竞争接入。其中,预定数目可通过基站配置或是预定义获取,且预定数目默认为1。
例如,对于一个用户在多个连续的上行子帧上传输的场景,假设传输节点在子帧#1、#2和#3上传输,那么UE在子帧#0的最后一个OFDM符号或是在子帧#1的第一个OFDM符号上执行本实例介绍的LBT过程,其 N值可以在0到7之间随机产生,或是预设N为7,尽可能使UE有多个机会接入信道。如果UE在子帧#1成功进行数据传输,则在子帧#2,UE可以在(0,7]之间产生一个尽可能小的值或预设一个尽可能小的值,如1、2或3,原因在于,UE在第一个调度子帧已经成功竞争到信道,而在第二个调度子帧可以配置或产生一个较小的随机数用于快速接入信道,所以,优选的,在第一个上行子帧的最后一个OFDM符号上或是第二个上行子帧的第一个OFDM符号上执行一次CCA即可。对于前者,也可以省略CCA检测,直接在CCA检测位置发送一个占用信号(占用信号可以是在全带宽上发送的SRS信号或是频域上一定图样的探听参考信号(Souding Reference Signal,SRS)信号,用于同小区或是同运营商的其他UE可以进行识别从而复用竞争成功UE的资源);而对于后者,同样可以省略CCA检测,直接发送数据。第三个上行子帧同第二个上行子帧的处理方法。
反之,假如UE执行CCA检测失败,在第一个上行子帧未能进行数据传输,则第一个上行子帧的最后一个OFDM符号或是第二个上行子帧中的第一个OFDM符号上UE依然执行预设次数的CCA检测,以保证和提高UE接入信道的概率。
基于N值的确定,传输节点只要在N次的单次CCA检测中检测到一次信道空闲,则确定非授权载波可以进行数据传输。具体步骤见本实施例中的步骤1和2。如果成功检测到信道空闲的时刻没到子帧边界或是符号边界,则可以发送非完整符号的或是完整符号的预留信号或是进行部分符号的数据传输。
如图1(b)所示,LAA设备按照下面的流程执行LBT过程来获取非授权载波的使用权。其中,该LAA设备为在基站控制下的UE。其中图1(b)与(a)的不同之处在于,UE在执行UL LBT之前,需要所属基站触发该UE执行非授权载波的竞争接入操作,其具体触发下属UE执行UL LBT过程如下:
首先,基站触发下属UE。有数据传输或收到UE请求的基站按照下 行LBT机制(例如LBT Cat4)进行非授权载波的使用权竞争,成功抢占到非授权载波后,通过非授权载波给下属UE发送上行调度授权(UL grant)来触发或通知UE在哪个子帧、哪个OFDM符号上执行上行(UL)LBT,并且执行LBT中采用的参数。或者有数据传输的基站通过授权载波发送下属UE的调度消息以及执行UL LBT的参数信息。
其次,接收到UL grant的UE,开始执行UL LBT过程。具体过程同图1(a)中的步骤1和2,即将自主UE替换成接收授权信息成功的UE。且获取N值的方法可以是随机产生方式(均匀分布函数、二项分布函数、正态分布函数等)或是预先配置或是基站指定或是通知的N值等方式。
进一步地,本实施例中图1(a)和(b)的另一种优选方案:即LAA设备(自主UE或是基站控制下的UE)先进行CCA检测,检测到信道空闲,并对N值进行预设数量的递减操作后,再对递减后的N值进行是否为0的判断(注:这里产生的随机数值最小值可以为0)。而不是像实施例一中图1(a)中描述的那样直接先判断生成的N值是否为0,再进行CCA检测(注:此情况中N的最小值为1)。或者,先进行CCA检测,在判断N值,再判断检测的信道是否空闲,空闲则进行N值递减操作(这样做会出现多执行一次CCA检测的情况。即,如果N值已经递减到0,而没有对递减后的N值进行判断,则是直接进行下一次的CCA检测)。下面介绍的几个实施例中涉及到LBT流程图也可以采用这种优选方案,下面将不再重复。
实施例二
图2(a)和图2(b)是本实施例中的LAA设备的非授权载波的竞争接入方法示意图。其中,图2(a)是传输节点竞争非授权载波使用权的竞争接入过程的示意图。图2(b)是基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图。
实施例一和实施例二是类似的,不同之处在于,UE必须在N值递减到0的情况下才算获取了非授权载波的使用权。实施例二类似于一种简化 的直接eCCA的流程,但在eCCA随机回退CCA检测到信道忙时,却可以不进入Defer Period,而是继续执行下一次的随机回退CCA检测,直到N递减到0。
对于图2(a),LAA设备(在本实施例中是指不受基站控制下的自主执行LBT进行数据传输的UE简称自主UE)按照下面的流程执行LBT过程获取非授权载波的使用权。
传输节点获取一个数值N。N值可以通过随机产生或是预先设定。N为自然数。N的最大值是预先定义,也可以根据配置的执行LBT检测时间隐含获取。当传输节点在每次数据传输前抢占非授权载波使用权时,随机产生一个N值,当成功获得非授权载波使用权进行数据传输之后,下次再抢占非授权载波使用时,重新产生一个N值。结合上行执行LBT所占用的OFDM符号数为一个或多个,优选的,UL执行LBT检测的位置位于子帧的最后一个OFDM符号(对于常规CP,一个OFDM符号时长约为1/14ms=0.0714ms=71.4us;而对于扩展CP,一个OFDM符号时长约为1/12ms=0.0833ms=83.3us)。以及无线保真(WIreless-Fidelity,WI-FI)系统中无线接入点(Acess Point,AP)/站(Station,STA)在执行一次随机回退值递减的检测时长为9us或10us,则为了与WI-FI系统公平竞争,N的取值上限设置约为:一个符号的时长除以单次随机回退检测时长所得值的取整(该数值大约为7)。
步骤1,传输节点执行一次CCA检测,如果检测结果为忙,则N值保持不变(即不进行递减操作),继续执行CCA或eCCA检测。反之,如果检测结果为空闲,则传输节点执行N值递减操作,本实施例中,N值递减数量为1,即N执行的N=N-1操作,但N值每次递减不限于只递减1,可以是其他预设值,且传输节点执行步骤2。
步骤2,判断当前的N是否等于0。如果判断结果为是(即N=0时),则确定传输节点将使用非授权载波进行数据传输(也即确定自主UE执行CCA/扩展空闲信道评估(evolution Clear Channel Assessment,eCCA)成 功竞争获取非授权载波的使用权)。反之,如果判断结果是否(即N不等于0时),则自主UE执行步骤1操作。
或者,步骤2中,判断N是否等于零操作,放在对随机回退值N进行递减的前面,如下:
当eCCA中的随机回退CCA检测(即一次CCA检测)到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测。
当检测到信道忙时,所述传输节点执行下一个随机回退CCA检测。
下面通过本可选实施例的一个应用场景进行详细的描述,如:对于多个用户同时有数据传输时,传输节点的竞争接入过程。但不限于下面的实施方法和场景。
假如有三个UE同时进行自主的数据传输过程,其中:UE1和UE2属于同小区的UE,而UE3为不同运营商的UE。为了快速的接入非授权载波进行数据传输,这三个UE都采用下述过程接入信道:
UE1、UE2和UE3获得的N值分别为3,2,5。按照步骤1,三个UE执行单次CCA/eCCA检测,如果检测到信道空闲,则各自的N值递减预设数量,本实施例,预设数量为1,但不限于1。则,进入步骤2,三个UE判断N值是否为0,判断结果为是的UE(即N=0时),则将使用非授权载波进行数据传输。反之,判断结果为否的UE,进入步骤1。
如果检测到信道忙,则三个UE无需进行延迟期而直接继续执行单次CCA/eCCA检测。如果在配置的执行LBT的位置(如,子帧的最后一个OFDM),N没有递减到0(N值已发生递减,但在子帧边界或符号边界到达时未能递减到0),无法进行数据传输,则UE可以强制确定信道空闲,进行数据传输。这里,假如UE2检测到2次信道空闲,N值递减到0,则N值递减为0时刻未到子帧边界或是符号边界时,需要发送预留信号。 为了使继续执行CCA/eCCA检测的UE(属于同小区的UE1和不同运营商下的UE3)可以识别UE2发送的预留信号携带的内容或是图样来判断是否可以复用UE2竞争获得的非授权载波。
如图2(b)所示,LAA设备按照图中的流程来获取非授权载波的使用权。其中,该LAA设备为在基站控制下的UE。同实施例一中的图1(b)与(a)相似,图2(b)与(a)的不同之处在于,基站控制下的UE在执行UL LBT之前,需要所属基站触发该UE执行非授权载波的竞争接入操作,其具体触发下属UE过程同实施例一中所述。
下面实施例三和实施例四是在实施例二中所述LBT流程的基础上增加了一个执行模块,即增加defer period延迟期。其中:defer period延迟期增加的位置可以为:一种是:defer period延迟期执行在eCCA随机回退之前,即先执行defer period延迟期后执行eCCA随机回退。另一种是:先执行eCCA随机回退,在eCCA随机回退中的CCA检测到信道忙时,执行defer period延迟期。其中,defer period延迟期内检测信道空闲,可以对随机回退值N进行递减预设数量操作,也可以对随机回退值N不进行任何操作。预设数量可以为1,但也局限于为1。
实施例三
图3(a)、图3(b)以及图3(c)是本实施例中的LAA设备的非授权载波的竞争接入方法,其中,图3(a)是传输节点竞争非授权载波使用权的竞争接入过程的示意图。图3(b)是基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图。针对于图3(a),LAA设备可以是使用非授权载波的各种设备,例如,基站、低功率的无线接入节点(Small cell)或是自主进行数据传输的UE等。而针对于图3(b),LAA设备仅为在基站控制下的UE。
对于图3(a),其自主进行数据传输的UE(即不受基站控制的自主UE,只要有数据需要传输,则该UE可以执行相应的上行LBT过程,成功后可进行数据传输)获取非授权载波的使用权的具体过程如下:
步骤1,传输节点执行CCA检测。如果检测到信道忙,则传输节点进入延迟期(defer period)。反之,如果检测到信道空闲,则传输节点执行一次N递减预设数量的操作(例如本实施例中,预设数量为1,则N=N-1)。其中,进入defer period的传输节点在defer period内检测到信道空闲时,N值不进行任何操作(即在defer period内冻结N值),检测到defer period空闲后传输节点执行下一次的CCA检测(即重复执行该步骤1)。
步骤2,传输节点判断递减后的N值是否等于0。如果判断结果为N等于0,则传输节点确定成功获取到非授权载波的使用权。反之,如果判断结果为N不为0,则传输节点继续执行步骤1中的操作。
或者,基于实施例二中方法,增加一个defer period延迟期。
传输节点执行CCA检测。如果检测到信道忙,则传输节点进入延迟期(defer period)。反之,如果检测到信道空闲,传输节点判断随机回退N值是否等于0。如果判断结果为N等于0,则传输节点确定成功获取到非授权载波的使用权。反之,如果判断结果为N不为0,则传输节点执行一次N递减预设数量的操作(例如本实施例中,预设数量为1,则N=N-1),执行下一次CCA检测。
当传输节点在延迟期内检测到信道空闲,则转向执行CCA检测。反之,当传输节点在延迟期内检测信道忙,则继续执行延迟期检测直到信道连续检测空闲时长至少为延迟期时长,则确定延迟期检测空闲。
而对于图3(b)的流程图与图3(a)的不同之处在于,先进行N值判断,再执行CCA检测,且产生的N值最小为1。
对于图3(c)为基站控制下的UE获取非授权载波的使用权的具体过程,图3(c)与图3(b)的竞争接入非授权载波的过程相同,不同之处在于:UE在执行UL LBT之前,需要所属基站触发下属UE,这里基站触发UE执行LBT可以通过自调度或是跨载波调度。
对于自调度情况,UE在进行上行LBT竞争之前,基站侧需要执行DL LBT来获得非授权载波的使用权,用于在竞争到的非授权载波上发送 UL Grant信息给UE或者发送一个携带有指示信息的预留信号或是指示信息,触发UE在上行数据传输之前,进行UL LBT操作。其中,UL Grant或是预留信号中携带有指示UE进行LBT所需要用的参数,如,CCA检测以及时长,Defer Period时长,或是N值等。
对于跨载波调度情况,UE在进行上行LBT竞争之前,基站侧需要通过授权载波发送指示UE在哪个子帧、或是那个OFDM符号上或是执行LBT所用参数等信息,该信息可以在下行控制信息(Downlink Control Information,DCI)中携带。
针对图3(a)、图3(b)以及图3(c)中的LAA设备获取N值,该N值可以是LAA设备自己随机产生,或是其他设备给该LAA设备配置。其中N取值是根据固定的竞争窗大小确定或是分配给LAA设备用于执行LBT的符号数量确定。
下面以基站控制下的UE为例,结合多帧调度多个UE来描述详细的LBT过程。
假设UE1、UE2和UE3依次被上行的第一个子帧(#2)、第二个子帧(#3)和第三个子帧调度(#4),且第一个上行子帧之前为特殊子帧S(#1)。
基站通过UL Grant通知UE1在子帧#1中的保护时隙(GP)中执行UL LBT,UE2在子帧#2的最后一个OFDM符号上执行LBT,同样,UE3则在子帧#3的最后一个OFDM符号上执行LBT(对应前者);或者,基站配置上行传输中每个子帧中仅占13个OFDM符号,最后一个符号被打掉或是最后一个符号上特定频域图样被控制,用于下一子帧中的调度UE执行LBT检测(对应次后者);或者,基站配置UE1、UE2和UE3执行LBT的位置分别为:特殊子帧中的GP;特殊子帧中的GP和上行子帧#2的最后一个或是特定数量OFDM符号;特殊子帧中的GP和上行子帧#2和#3的最后一个或是特定数量OFDM符号,有利于UE2和UE3提高竞争成功的概率(对应后者)。其中,特定数量可以为大于等于1的符号数。
对于前者,UE1在GP的时长(即固定窗长)中随机产生一个尽可能小的N值,如N=5。从与Wi-Fi系统中的AP/STA公平共存角度,eCCA中的随机回退CCA检测(即eCCA是由多次随机回退CCA组成)的时长为9us或10us,defer period延迟周期(即延迟期)为34us。根据步骤1,UE1执行eCCA中的随机回退CCA检测,如果检测到信道忙,则UE1进入到时长为34us的延迟期(注:这34us中不进行N值递减操作),延迟期检测信道空闲之后,UE1继续重复步骤1的eCCA中的随机回退CCA检测。如果检测到信道空闲,则N值递减预设数量(如,预设数量为1),即N=N-1。进入步骤2,判断递减后的N值是否为0,如果为0,则UE1可以使用非授权载波进行传输。如果成功获取到非授权载波的时刻不足GP边界,则UE1可以发送预留信号,进一步的,在UpPTS中可以发送UE1的SRS信号(可以发送全带宽或频域特定图样的SRS信号),用于基站提前进行信道测量,以及用于可复用的UE进行识别。而对于UE2,仅只有一个OFDM符号的时间执行LBT,以及UE1在UL LBT的延迟周期已经执行了一次34us的延迟,则在UE2的UL LBT过程中,defer period延迟期的时长可以动态的调整,除了34us外,还可以调整为20us、18us、16us(SIFS的时长)、9us、10us或0us等。其中:一个OFDM中N值最大为7(一个OFDM符号长度71us除以随机回退CCA检测时长9us所得值取整,defer period时长为0)。UE2随机产生的N值为5,根据本实施例中的步骤1,UE2执行eCCA中的随机回退CCA检测,如果检测到信道忙,则UE2进入调整时长为16us的延迟周期(注:这16us中不进行N值递减操作)。延迟期内检测信道空闲之后,UE1继续重复步骤1的eCCA中的随机回退CCA检测。如果检测到信道空闲,则N值递减预设数量(如,预设数量为1),即N=N-1。进入步骤2,判断递减后的N值是否为0,如果为0,则UE2可以使用非授权载波进行传输。如果N不为0,则继续重复步骤1。如果再到一个OFDM边界时,N值依然未递减到0,且当前N值小于初始值N,则强制将N置0,在UE2的调度子帧进行数据传输。或者UE2进入了一定数量的defer period后,可以动态的调整本次LBT过 程中信道忙时的defer period时长,甚至可以配置为0。对于UE3,基于UE1和UE2均使用了defer period时长34us、16us,则UE3在按照本实施例中步骤1和2时,可以进一步的缩短defer period延迟周期时长。此外,如果是基站根据每个UE执行LBT的位置和时长,配置适合的N值,则可能进一步降低在子帧边界时N值递减不到0的情况。
对于后者,UE1、UE2和UE3均按照本实施例中的步骤1和2在特殊子帧的GP中执行LBT,其这三个UE的LBT参数配置为:随机回退CCA时长为9us或10us,defer period延迟周期为34us。随机产生的N值分别为3,4,5。假定在GP中按照步骤1和2的竞争接入方式,UE1最先将N值递减到0,而UE2和UE3的N值为非零,则此时,UE1会在剩余的GP资源或是上行导频时隙UpPTS中发送自身的SRS信号(可以发送全带宽或频域特定图样的SRS信号),用于基站提前进行信道测量以及同小区中设备进行识别复用竞争到的资源。UE2和UE3则冻结当前的N值,用于在下一个CCA检测子帧继续进行递减。如UE2和UE3在子帧#2的最后一个或预设数量OFDM符号上,按照冻结的N值,继续执行随机回退CCA检测。如果检测空闲,则各自的N值递减,如果信道忙,则可以按照基站配置的defer period时长,可选的,可以选择缩短的延迟期,如:20us、18us、16us(短帧间间隔(Short interframe space,SIFS)的时长)、9us、10us或0us等。在本次UL LBT过程中,defer period时长可以固定不变,也可以动态的调整,以适应在子帧边界时N递减到0。假如UE2和UE3均在本子帧的符号上N值递减到0,则UE3在自身配置的LBT检测位置,发送预留信号(例如可以为SRS信号)占用信道。反之,如果UE2和UE3在GP中与UE1一起递减到0,则在自身可执行CCA检测的子帧中的符号上,无需执行LBT操作,直接在LBT检测位置发送预留信号(可以为自身的SRS信号)。
多个自主UE在多个帧中的LBT过程同上,这里不再重复。不同之处在于,自主UE会根据相应的帧结构或者系统配置的CCA检测位置来进行UL LBT检测。检测过程同本实施例中的步骤1和2。其中,随机回退 CCA检测到信道忙时,可以动态的调整defer period时长,也可以在一次LBT过程中保持defer period时长不变。
实施例四
图4(a)、图4(b)以及图4(c)是本实施例中的LAA设备的非授权载波的竞争接入方法(eCCA+defer period(检测到空闲,N值可以递减)),其中,图4(a)是传输节点竞争非授权载波使用权的竞争接入过程的示意图。图4(b)与图4(a)基本一样,不同之处在于N值的判断在进行随机回退CCA检测之前,随机产生N值不能为0。图4(c)是基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图。如图4所示,LAA设备按照下面的流程执行LBT过程获取非授权载波的使用权,其中,针对于图4(a),LAA设备可以是使用非授权载波的各种设备,例如,基站、Small cell或是自主进行数据传输的UE等。而针对于图4(b),LAA设备仅为在基站控制下的UE。
对于图4(a),其传输节点(即不受基站控制的UE,只要有数据需要传输,则该UE可以执行相应的上行LBT过程,成功后可进行数据传输)获取非授权载波的使用权的具体过程如下:
步骤1,传输节点执行随机回退CCA检测。如果检测到信道空闲,则传输节点执行N值递减预设数量的操作,本实施例中预设数量为1,但不限于1。
步骤2,传输节点判断递减后的N值是否为0。如果N值为0,则传输节点使用非授权载波进行数据传输。反之,如果N值不为0,则执行下一次的CCA检测。
步骤3,在步骤1中,如果随机回退CCA检测到信道忙,则传输节点进入Defer period延迟期。其中,在Defer period延时周期内的操作具体如下:
根据配置的defer period时长,可以获取在延迟周期内成功执行随机回退CCA检测的次数(执行延迟期内成功执行随机回退CCA次数为defer  period时长除以随机回退CCA检测时长所得值的取整)。
在延迟期内执行随机回退CCA检测,如果检测到信道空闲,则N值进行递减预设数量的操作。如果检测到信道忙,则继续执行随机回退CCA检测,直到连续检测到信道空闲的时间为延迟期时长时,才确定延迟期空闲。
如果defer period延迟期内检测空闲,执行N值递减操作,且N值仍未递减到0,则转到执行步骤1。
同实施例二中,eCCA过程中,判断随机回退值N是否等于0操作,可以与随机回退值N递减预设数量操作前后调换位置。即
步骤1:传输节点执行随机回退CCA检测。如果检测到信道空闲,判断随机回退值N是否等于0。如果判断结果为0,则传输节点获取到非授权载波的使用权。反之,如果判断结果不为0,则传输节点执行N值递减预设数量的操作,继续执行步骤1操作。本实施例中预设数量为1,但不限于1。如果检测信道为忙,转到步骤2。
步骤2:执行defer period延迟期。如果在defer period延迟期内检测到信道空闲,判断随机回退值N是否等于0,如果判断结果为0,则传输节点获取到非授权载波的使用权。反之,如果判断结果不为0,则传输节点执行N值递减预设数量的操作,转到步骤1。本实施例中预设数量为1,但不限于1。如果检测defer period延迟期信道忙,则继续执行延迟期检测直到信道连续检测空闲时长至少为延迟期时长,则确定延迟期检测空闲。
此外,对于先执行defer period延迟期后执行eCCA操作。即为,先执行上述步骤2,即执行defer period延迟期。在执行步骤1操作。
即步骤1:执行defer period延迟期。如果在defer period延迟期内检测到信道空闲,判断随机回退值N是否等于0,如果判断结果为0,则传输节点获取到非授权载波的使用权。反之,如果判断结果不为0,则传输节点执行N值递减预设数量的操作,转到步骤2。
步骤2:传输节点执行随机回退CCA检测。如果检测到信道空闲, 判断随机回退值N是否等于0。如果判断结果为0,则传输节点获取到非授权载波的使用权。反之,如果判断结果不为0,则传输节点执行N值递减预设数量的操作,继续执行步骤2。本实施例中预设数量为1,但不限于1。如果检测信道为忙,转到步骤1。
同理的,对于图4(b)为基站控制下的UE获取非授权载波的使用权的具体过程,UE竞争接入非授权载波的过程相同,不同之处在于:UE在执行UL LBT之前,需要所属基站触发下属UE,这里基站触发UE执行LBT可以是采用的自调度或是跨载波调度,其细节描述同实施例1中基站如何触发UE执行UL LBT。此外,图4(c)的另个流程可以为,将生成N值的最小值从1调整到0,且判断N值是否为0放在时长为9us或10us的随机回退CCA检测信道空闲且N值递减之后,其余defer period的处理相同。
本实施例中LAA设备获取N值的方法与上述实施例中相同。同样,本实施例中的UE接入信道的流程可以应用到单帧调度一个用户、单个用户被多个连续子帧调度、单帧中调度多个用户以及多个连续子帧调度多个用户的情况。这里仅以单个用户被多个连续子帧调度的情况为例说明UE的上行LBT过程。
假定UE1在上行子帧#1,#2,#3上被调度,且基站配置上行传输仅占每个子帧的前13个OFDM符号,空置子帧的最后一个OFDM符号或最后一个符号中特定频域图样用于下一个调度UE执行LBT操作。由于UE是基于基站调度进行相应的LBT操作的,因此,UE可以通过下述方式获取执行LBT的位置和或参数:
方式一,基站通过UL Grant信息通知UE执行LBT的具体参数,参数已定,相应的LBT流程也就确定了。
方式二,UE根据对应的帧结构,可以获知执行LBT的子帧和或符号位置。其中,LBT流程执行的位置可以是子帧的最后一个或是多个符号或最后一个符号中特定频域图样,或者子帧的最后一个OFDM符号和下一 子帧的第一个OFDM符号。
方式三,根据执行LBT机制所配置时间段隐含LBT流程的具体参数。
方式四,预定义UE侧执行LBT的具体参数,从而确定LBT流程。
其中,N值的获取同上述实施例。假定基站在UL Grant中通知UE1在子帧#1被调度,且在子帧0执行UL LBT过程。如果子帧0为特殊子帧,则在特殊子帧的GP中执行在子帧#1进行传输之前的LBT。并且根据通知的LBT参数情况:eCCA中随机回退CCA检测时长为9us,或10us。Defer period时长34us,且指示Defer period内检测到信道空闲可以进行递减操作。UE根据配置的参数信息,在GP中按照本实施例中图4(c)流程执行LBT操作:在[1,M]间随机生成一个数值N,其中,M为竞争窗的大小,其与GP的长度有关,如N=3,M=10。首先判断N值是否为0,不为0则开始执行时长为9us,或10us的随机回退CCA,如果检测结果为空闲,则N值进行递减预设数量(本实施例N进行减1操作,但不限于1)。进而,再次判断递减后的N值是否为0,此时,N=2(不为0),则继续重复上述的随机回退CCA检测,从检测结果显示信道为忙,UE1进入defer period延迟周期,根据配置延迟期时长为34us,且延迟期递减功能使能,则可知检测延迟期内空闲,其可进行N值递减随机回退CCA的次数为延迟期时长为34us除以随机回退CCA时长9us所得值取整(即约为4)操作。即一旦延迟期内检测到信道空闲,则N值递减预设值的操作,其中,延迟期内N值递减的最小值大约为4。在N值进行递减操作之前,可选的,进行当前N值与延迟期内可递减的最小值的判断,如果当前N值小于延迟期可递减的最小值,则延迟期检测空闲后,N值递减到0。反之,如果当前N值大于延迟期可递减的最小值,则延迟期检测空闲后,进行N值递减预设值操作(注意,假定延迟期空闲也就是在延迟期内可递减对应次数的预设时长的CCA检测,若在预设时长内CCA检测成功一次,N值递减1,那么在整个延迟期检测空闲,则N最后需递减(延迟期内可执行预设时长次数乘以每次递减量1);获知在延迟期内检测到一次,N递减一次预设量)。进一步判断当前N值是否为0,重复上述步骤,直到N值递 减到0,确定UE1成功获取到非授权载波的使用权。
如果子帧0为非特殊子帧情况,则执行UL LBT的时长仅有一个OFDM符号的长度,则按照管制要求,在LBT过程中必须有一个34us的检测,所以在检测到信道忙时,进入的defer period周期时长配置为34us。基于此,一个符号中剩余的时长71us-34us=37us。从而获知N的最大取值为37us除以随机回退CCA时长所得值为4。按照上述参数以及图4(c)的流程可知,当随机回退CCA检测结果为空闲时,N值进行递减预设数量操作,由于可用于LBT检测的时长不多,因此,可选的,预设数量可以为2,即检测到一次信道空闲,则N值递减2。帮助UE1快速的递减到0进行数据传输。同样的在defer period中检测到信道空闲,同样执行N值递减2的操作。
对于UE1在紧跟着的上行子帧#2被调度,由于UE1已经成功竞争到信道,且在子帧#1进行数据传输,则此时,为了UE1能快速成功的获取非授权载波的使用权,则在子帧#1的最后一个符号上,优先的,UE1在检测到信道忙的时候,defer period时长可以缩短为16us,或18us或0等或不改变(即默认34us不变),或在一个符号内仅执行一次或多次的单次CCA检测,其时长调整到18us或20us或不改变(即默认34us不变)。同理,UE1在上行子帧#3上被调度,同样可以采用在子帧#2上的LBT方法。同时,可选的,UE1在连续调度的第三个子帧可以直接传输,不进行LBT操作或仅执行一次单次CCA(时长可以为34us或20us或18us),剩余时间可以发送预留信号,可选的,发送SRS信号。
同理,对于UE进行上行传输之前执行LBT过程所占的符号超于一个OFDM符号或是横跨子帧边界(子帧的最后一个符号和下一子帧的前一个符号情况)情况,同样可以采用上述在一个OFDM符号内执行快速LBT的方式,特别的,对于第一个上行子帧前的LBT机制可以采用常规LBT流程。
下面进一步给出本实施例中步骤3的优选方案为:如果在defer period 中检测到一次CCA(时长为9us或10us)空闲,则图4中(a)、(b)、(c)中LAA设备确定获取了非授权载波的使用权。或者,发现一次CCA检测空闲,则N值递减当前的N值,从而使N值递减到0,获得非授权载波的使用权。
进一步的,另一个可选的方案为:如果延迟期内检测到信道空闲,如延迟期时长为34us,则N值可进行递减4的操作。假如在延迟期之前,N值不大于4,则在延迟期内检测到信道空闲,N值也不进行递减操作。
实施例五
图5(a)、图5(b)以及图5(c)是本发明实施例的LAA设备的非授权载波的竞争接入方法(单次CCA+eCCA+defer period(检测到空闲,N值可以递减)),其中,图5(a)是传输节点竞争非授权载波使用权的竞争接入过程的示意图。图5(b)是基站控制下UE竞争非授权载波使用权的竞争接入过程的示意图。如图5所示,LAA设备按照下面的流程执行LBT过程获取非授权载波的使用权,其中,针对于图5(a),LAA设备可以是使用非授权载波的各种设备,例如,基站、Small cell或是自主进行数据传输的UE等。而针对于图5(b),LAA设备仅为在基站控制下的UE。
对于图5(a),其传输节点(即不受基站控制的自主UE,只要有数据需要传输,则该UE可以执行相应的上行LBT过程,成功后可进行数据传输)获取非授权载波的使用权的具体过程如下:
步骤1,传输节点执行单次CCA。如果检测到信道空闲,则确定成功获得非授权的使用权,可以进行数据传输。如果检测信道忙,则转向步骤2。
步骤2,如果检测结果忙,进入到defer period延迟期。其中,在defer period延时期内的操作具体如下:
其中,如果在延迟期内检测到信道忙,则传输节点继续执行CCA检测直到检测信道连续空闲预设延迟期时长,则确定延迟期检测信道空闲。 如果延迟期内检测信道空闲,则进行N值递减预设数量。
传输节点判断生成的N值是否为0。判断结果N为0,则确定成功获得非授权的使用权。判断结果N不为0,则执行随机回退CCA检测(随机回退CCA时长为9us),如果随机回退CCA检测信道空闲,则N值进行递减预设数量操作(如递减1)。如预设数量为1,则在延迟期内N递减4,但预设数量不限于1。
步骤3,延迟期空闲后,判断当前的N值是否为0。如果判断结果N值为0,则确定成功获得非授权载波的使用权。反之,如果N值不为0,随机回退N值进行递减预设数量操作。执行随机回退CCA检测,判断检测结果是否空闲,如果空闲,判断N值是否为0,如果N值不为0,则N值递减预设数量操作。如果N值为0,执行随机回退CCA检测。反之,如果信道忙,则回到步骤2。重复上述步骤2和3,直到N值递减到0,开始进行数据传输。
同理的,对于图5(b)为基站控制下的UE获取非授权载波的使用权的具体过程,与图5(a)中UE竞争接入非授权载波的过程基本相同,不同之处在于:UE在执行UL LBT之前,需要所属基站触发该UE,这里基站触发UE执行LBT可以是采用的自调度或是跨载波调度,其细节描述同实施例1中基站如何触发UE执行UL LBT。
进一步地,对图5中的(a)和(b)的步骤2和3一个优选方案为:省略步骤3,即在单次CCA检测失败后,直接进入到步骤2的defer period延迟期且在延迟期内检测信道空闲,则N值进行递减预设数量的操作。其中,由于defer period延迟期时长内可成功执行预设时长CCA检测的次数已定,进一步的,再根据随机生成或是配置的N值,配置适当的递减预设数量值,从而实现在defer period延迟期内使N值递减到0。N递减到0,则LAA设备获得非授权载波的使用权。
进一步地,对图5中的(a)和(b)的步骤2和3的另一个优选方案为:省略步骤3,即在单次CCA检测失败后,直接进入到步骤2的defer  period延迟期,且在延迟期内检测到一次信道空闲,则确定LAA设备获得非授权载波的使用权。
进一步地,对图5中的(a)和(b)的步骤2和3的再另一个优选方案为:步骤2的defer period延迟期内检测到信道空闲,也不执行N值递减操作,在步骤3中eCCA随机回退检测中,只要检测到一次信道空闲,则确定LAA设备获得非授权载波的使用权。
此外,优选的,图5中的(a)和(b)以及上述优选方案中,可以将生成N值的最小值从1调整到0,且对N值是否为0的判断操作放在进行单次eCCA检测信道忙闲状况之后(即每次判断N值均为进行递减操作之后的N值)。
本实施例中LAA设备获取N值的方法与上述实施例中相同。同样,本实施例中的UE接入信道的流程可以应用到单帧调度一个用户、单个用户被多个连续子帧调度、单帧中调度多个用户以及多个连续子帧调度多个用户的情况。这里仅以单帧中调度多个用户情况为例说明UE的上行LBT过程。
假定在上行子帧#1上调度了三个用户,分别为UE1、UE2和UE3。如果在子帧#1之前是一个特殊子帧,则UE1、UE2和UE3分别在特殊子帧上的GP内按照本实施例中的图5(b)的步骤执行UL LBT过程。由于三个UE所处的地理位置不同,从而导致对信道的检测结果可能不同。如果三个UE在单次CCA检测到信道忙,则进入到defer period延迟期,从而根据三个UE产生的N值不同来进行随机回退。这里UE1、UE2和UE3配置的N值可以相同,也可以不同。假定配置或产生的N值不同,则按照本实施例中的流程,当UE1检测到信道空闲,则进行N值递减预设数量操作,而UE2和UE3则由于干扰不同,造成检测信道为忙,N值保持不变。defer period检测信道空闲且三个UE的N值均没有递减到0,此时在下一次检测到信道忙时,用户可以调整defer period时长和或对N值递减预设数量。从而实现快速使各UE的N值递减到0,从而使用非授权 载波。假设到GP边界,三个UE中依然有N值未递减到0的,则在UpPTS中率先竞争到非授权载波的UE发送一个携带识别信息的预留信号或是特定图案的预留信号,用于在调度的子帧进行资源复用。
如果在子帧#1之前是非特殊子帧,则三个UE执行LBT的位置为子帧#1前一子帧的最后一个或多个OFDM符号,优选的为最后一个OFDM符号。或者子帧#1前一子帧最后一个OFDM符号和子帧#1的第一个或多个OFDM符号。其与前者不同之处,由于执行LBT过程的符号数目和时长有限,需要产生尽可能小的N值,以及采用本实施例中的优化方案来进一步提高接入非授权载波的速度。后者,虽然配置执行LBT过程的时间长,但也应该尽量选择较小的N,以便设备快速的成功获取非授权载波。
其中,单次CCA时长可以为34us、25us、20us、16us、18us等,defer period时长也可为34us、25us、20us、16us、18us或者为9us或10us的倍数,随机回退CCA时长为9us或10us。N可以随机产生或是预先配置。竞争窗大小固定,其大小与配置给UE执行LBT过程所占用的符号数或时长有关。
进一步地,对于单帧调度一个用户、单个用户被多个连续子帧调度、单帧中调度多个用户以及多个连续子帧调度多个用户时的LBT过程,可以采用本实施例中介绍的各种流程的组合或单独使用本发明实施例中的流程之一。进一步的,为了使UE能更快的接入非授权载波,也可以直接仅执行一次单次CCA。
实施例六
从LAA系统中设备和Wi-Fi系统中的节点竞争接入非授权载波的公平性角度,本实施例将针对LAA设备在执行一次或是多次本发明实施例提供的快速的(fast)LBT之后,调整一次采用fast LBT进行竞争接入的概率(如,调低设备执行fast LBT的概率,或是执行一次现有的常规的LBT)。
具体到本实施例,LAA设备(如,UE)按照基站通知的执行LBT的 位置以及相应的LBT参数进行fast LBT过程来竞争接入非授权载波。其中,LBT参数为下述至少之一:单次CCA、eCCA、延迟期、随机回退值N。如果LAA系统中的用户设备UE在每次的接入非授权载波时都采用fast LBT,那么对Wi-Fi系统中的节点来说,就存在一定的竞争接入劣势,因为Wi-Fi系统中的节点采用的是常规的LBT竞争机制。因此为了LAA系统和Wi-Fi系统中的节点的竞争接入公平性,LAA系统中设备在执行一次fast LBT成功后,执行一次常规的LBT机制或者空一段时间不进行非授权载波的竞争接入;或者,LAA系统中的设备在执行多个fast LBT之后,执行一次或多次常规LBT或是调整fast LBT的竞争接入概率(调低fast LBT接入概率)或是空一段时间不进行非授权载波的竞争接入。其中,调整执行fast LBT机制的接入概率可通过下述规则之一:
规则1:如果LAA系统中设备成功执行一次fast LBT,那么在下一次竞争接入时,该设备调整为执行一次常规的LBT机制,即fast LBT和常规的LBT竞争机制交替使用。
规则2:如果LAA系统中的设备执行预设的一段时间或是预设的次数的fast LBT后,该设备降低fast LBT的竞争接入概率,执行一次常规的LBT机制进行竞争接入或者执行一段预设时间的常规LBT或是空置一段预设时间。
规则3:如果LAA系统中的设备执行fast LBT成功的时间累加超过预设的门限,则降低该设备的fast LBT的竞争接入概率,执行一次常规的LBT机制进行竞争接入或者执行一段预设时间的常规LBT或是空置一段预设时间。
以规则2为例具体说明,假定预设次数为3次(或者预设时间为220us)。LAA系统中的UE在上行传输之前采用fast LBT机制进行非授权载波的接入,如果本次成功检测到信道空闲获取到非授权载波的使用权,则在下一次竞争接入时依然采用fast LBT机制进行非授权载波的接入,若本次检测到信道忙,则预设次数或是预设时间的计算有两种不同的处理形式:一种 是fast LBT执行失败这次不计算在预设次数(即预设次数只累积成功执行fast LBT的次数);另一种是fast LBT执行失败这次计算在预设次数(即预设次数累积成功和失败的执行fast LBT的次数)。也就是超过预设次数或是预设时间后,LAA设备需要执行一次和Wi-Fi系统类似的常规LBT机制进行竞争接入或是执行一段预设时间的常规LBT或是预设次数的常规LBT或是空置一段时间不参与竞争接入,以保证有Wi-Fi系统有一定的接入信道概率。
以规则3为例,假定预设门限为200us,如果LAA设备在被调度的子帧之前的子帧执行fast LBT竞争接入机制,如:采用直接随机回退的eCCA过程。N值为4,eCCA随机回退过程中的单次CCA检测时长为9us,同样,判定执行fast LBT过程的累积时间超过预设时间有两种处理:一种是本次eCCA随机回退过程成功获取到非授权载波的使用权所用的全部时间(包括单次CCA检测信道空闲和忙的时间);另一个种是指计算本次本次eCCA随机回退过程成功检测到信道空闲的时间(即N次信道空闲的时间累加)。若按照后者处理,则LAA设备在执行fast LBT过程中一旦累积时间达到预设的门限(该门限是一个统计值),则会在下一次的竞争接入时采用常规的LBT机制或是在接下来的一段预设时间内采用常规的LBT机制或是空置一段时间。
实施例七
本实施例主要介绍在上行第一个子帧时,LAA设备如何进行竞争接入以及后续连续的多个上行子帧的竞争接入处理。主要采用的是在第一个上行子帧传输之前采用多个OFDM符号上执行LBT机制,后续连续的多个上行子帧传输之前执行LBT机制所用的符号数可以和第一个上行子帧传输前执行LBT相同的符号数。优选的,后面连续的上行子帧传输所执行LBT机制仅调度子帧前一子帧的最后一个OFDM符号。这样做的目的在于LAA设备能充分的规避周围的干扰或是减少对周围节点的干扰。
具体到本实施例中,假设现在有4个连续的上行子帧,UE1、UE2、 UE3和UE4依次在第1、2、3和4个上行子帧上被调度。按照管制要求在上行传输之前需要执行LBT机制,对于UE1,进行数据传输之前需要按照基站通知的CCA检测位置进行信道空闲检测,这里基站通知的CCA检测位置为调度子帧的前一子帧的最后M个OFDM符号(M为大于等于1的正整数),例如,M=4。且LBT机制可采用本发明实施例提出的四种快速LBT的方式之一,可选的,第一个上行子帧可以采用常规的LBT机制。其中,UE1所属基站也可以通知UE1进行数据传输是仅占调度子帧的13个OFDM符号,最后一个符号被打掉,或者,UE1所属基站通知UE1仅空置调度子帧中最后一个OFDM符号上的某些频域资源,或者,UE1所属基站通知UE1打掉调度子帧中最后M个OFDM符号(即打掉的符号数同UE1自身执行LBT所占的符号数相同),用于下一个子帧中的调度UE进行CCA检测。
进一步,UE2按照所属基站通知的执行LBT机制的位置进行信道空闲检测。这里,基站通知UE2在调度子帧前一子帧的最后一个符号上执行CCA检测,且采用的LBT机制可采用本发明实施例所述的四种快速LBT机制之一进行信道空闲检测。可选的,如果基站通知UE2在调度子帧前一子帧的最后M符号上执行LBT过程。
进一步,后续的UE3和UE4的执行LBT位置也按照基站通知的LBT机制位置进行检测。优选的,执行LBT位置均为调度子帧的前一子帧的最后一个OFDM符号,也可以按照之前上行子帧的LBT执行成功情况(如果前面的上行子帧竞争接入均失败,则可以配置大于一个符号数资源执行LBT过程),动态的配置一个或是多个OFDM符号进行LBT过程。
综上所述,基站可以配置每个上行子帧中的最后一个或是多个符号用于执行LBT。或是基站可以动态的配置上行子帧中用于执行LBT的位置以及所占的符号数或是最后一个或是几个符号上的特定频域资源进行信道的忙闲检测。
实施例八
为了解决LAA设备之间的固定定时关系而导致的其中一个LAA设备总是受阻从而导致竞争接入不成功问题。本实施提出了执行一次或多次CCA且同运营商下的多个不同设备均采用随机选择单次CCA检测的位置的方法来解决该竞争接入不公平问题。
基于不同LAA设备之间的定时关系导致的其中一个设备受阻问题,可以在不同LAA设备之间协调或是配置或是随机选择执行CCA检测的位置。即,将基站配置给LAA设备执行LBT的时间段划分为多个单次CCA检测时间,LAA设备在执行单次CCA检测时,可以随机在划分好的多个单次CCA中选择一个执行单次CCA检测,如果本次单次CCA检测失败,则下一次的单次CCA检测仍然可以从第一次执行单次CCA位置之后的多次单次CCA中再次随机选择一个执行单次CCA检测。其中,LAA设备执行多次CCA检测的位置可以是连续的、不连续的和重叠的。
进一步的,在执行多次单次CCA进行信道的忙闲状态检测时,如果LAA设备在第一次单次CCA检测时(假定单次CCA检测时长为34us),在第9us到18us之间检测到信道忙,则在LAA设备从检测忙到闲的时刻开始,检测到信道连续空闲时长为设定的单次CCA检测时长时,确定LAA设备成功获取到非授权载波的使用权。
进一步的,基于不同LAA设备之间的定时关系导致的其中一个设备受阻问题,可以通过下述方法至少之一解决:
方法1:通过提高优先级的方法。如,LAA设备基于上一次LBT检测情况,调整本次执行LBT检测的优先级。或者基于一段时间内执行LBT检测的结果,调整本次执行LBT检测的优先级。例如:在一段时间内检测到LBT失败概率达到预设值,则本次执行LBT检测时提高LBT执行优先级。
方法2:交替LAA设备的执行CCA检测起始位置。例如:LAA设备1的CCA检测位置总是先于LAA设备2的CCA检测位置,则会出现LAA设备1总是抢占信道成功或是成功概率很高,则可通过交替LAA设备1 和2执行CCA的起始位置。
方法3:随机选择CCA检测起始位置的方法。即LAA设备在CCA检测时选择CCA检测配置位置尽可能靠前的位置进行CCA检测。
进一步的,对于不同设备之间的阻塞问题,可以通过对于某个设备配置传输文件有不同的传输优先级。如,假定某个设备待传输的文件包括文件1、文件2、文件3和文件4,可以配置奇数文件在进行信道空闲检测时,随机回退值N选择[A,B]间的数,偶数文件在进行信道空闲检测时,随机回退值N选择[C,D]间的数,其中,A<B<C<D;或是,基于一段时间内调整设备执行LBT检测的优先级;或是,可以周期性调整执行LBT优先级或是基于前一个burst内执行LBT结果情况调整LBT执行优先级。
实施例九
本实施例主要介绍对于多个连续上行子帧情况下,根据上行子帧传输之前的LBT执行的成败状况而调整后续上行子帧上执行LBT的过程以及所占的符号数。
具体到本实施例中,对于现有帧结构(包括:TDD和FDD帧结构),假定目前帧结构为TDD且采用上下行子帧配比0,该配比下有三个连续的上行子帧且每个子帧上分别调度UE1、UE2和UE3,下面具体描述三个连续上行子帧时,在每个上行子帧传输前如何执行LBT机制:
首先,基站通知下属UE执行LBT的位置。其中:基站通知UE执行LBT位置有两种方式:
方式一:基站通知UE执行LBT位置固定为调度子帧的前一子帧的最后一个或多个OFDM符号。
方式二:基站通知一个上行子帧中被调度的UE在调度子帧的前一子帧的最后多个OFDM符号上执行CCA检测,而后续上行子帧中的调度UE在调度子帧中的最后一个OFDM符号或是最后一个符号上的特定频域图样上执行CCA检测。
方式三:基站动态的调整调度UE在上行调度子帧的前一子帧中的一个或是多个符号上执行CCA检测。
其次,第一个上行子帧中的调度UE按照基站通知的执行LBT位置根据常规的LBT机制或是根据fast LBT机制(即相对于常规的LBT而言,进行一定程度优化后的LBT机制)进行信道忙闲检测,基于此,后续上行子帧中的调度UE可通过下述之一进行LBT检测:
情况1:无论第一个上行子帧中的UE1检测信道是否空闲,后续上行子帧中的调度UE都按照fast LBT机制进行CCA检测。
情况2:如果第一个上行子帧中的UE1检测信道为忙,则下一子帧中的调度UE2可以按照下述之一进行LBT检测:
处理1:UE1通知UE2自身执行LBT失败,UE2可以调整自身执行LBT所占的符号数(如,增加配置的执行LBT的时长),按照常规的LBT机制进行信道忙闲检测。其中:通知方式为UE2在UE1的调度子帧没有检测到数据或是预留信号信息或是指示信息等。
处理2:UE1执行LBT失败,则UE2按照基站配置的LBT执行位置采用fast LBT机制进行CCA检测。
处理3:UE1执行LBT失败,则UE2按照基站配置的LBT执行位置采用常规LBT机制进行CCA检测。其中:配置的执行LBT机制所占用时长可以为:一个OFDM符号时长、多个OFDM符号时长或一个子帧的时长。
情况3:如果第一个上行子帧中的UE1检测信道为空闲,则下一个子帧的调度UE2可以按照下述之一进行LBT检测:
处理1:UE2按照常规的LBT机制进行CCA检测,且N值尽可能的小。
处理2:UE2按照fast LBT机制进行CCA检测,若采用随机回退的快速LBT机制则N值应尽可能的小。优选的,可以选择尽可能简化的快速LBT机制,如:仅执行一次单次CCA或是执行多次单次CCA检测。
最后,基于第二上行子帧中UE2执行LBT的结果,下一个上行子帧中的调度UE可通过下述之一进行LBT检测:
情况1:如果UE1执行LBT失败(如采用常规LBT失败),UE2执行LBT也失败(如采用常规LBT失败),则UE3在对应CCA检测位置采用常规的LBT机制进行信道检测。可选的,根据前面调度UE的LBT执行结果来调整UE3执行LBT所占的时间(如,增大执行LBT所占的时长),且若采用随机回退的快速LBT机制则N值应尽可能的小,增加UE3竞争信道的成功概率。
情况2:如果UE1执行LBT失败(如采用常规LBT失败),UE2执行LBT成功(如采用常规LBT成功),则UE3在对应CCA检测位置采用fast LBT机制进行信道检测。其中:UE3执行LBT过程所占的符号数至少为一个OFDM符号的时长。可选的,fast LBT机制可采用仅执行一次单次CCA或是执行多次单次CCA检测,由于UE2已经成功抢占到信道,因此,UE3可以执行一个相对简化的竞争接入机制快速接入到信道进行信息传输。
情况3:如果UE1执行LBT成功(如采用常规LBT成功),UE2执行LBT失败(如采用fast LBT失败),则UE3在对应CCA检测位置采用常规的LBT机制进行信道检测。其中:UE3执行LBT所占的符号数可以为大于等于一个OFDM符号数目的时长,且N值应尽可能的小。
情况4:如果UE1执行LBT成功(如采用常规LBT成功),UE2执行LBT失败(如采用fast LBT失败),则UE3在对应CCA检测位置采用fast LBT机制进行信道检测,若采用随机回退的快速LBT机制则N值应尽可能的小。
情况5:如果UE1执行LBT成功(如采用常规LBT成功),UE2执行LBT成功(如采用fast LBT成功),则UE3在对应CCA检测位置采用fast LBT机制进行信道检测,若采用随机回退的快速LBT机制则N值应尽可能的小。
综上所述,处理连续多个上行子帧情况的方法为:第一个上行子帧执行LBT所占的符号数,优选的,配置大于等于一个OFDM符号时长。后续上行子帧执行LBT所占的符号数,优选的,配置一个OFDM符号进行CCA检测。如果前一上行子帧执行LBT失败,则下一个子帧的LBT可通过增加执行LBT过程的时长(且若采用随机回退的LBT机制则N值应尽可能的小)且执行常规的LBT机制或是仍按照快速LBT机制执行。反之,如果前一上行子帧执行LBT成功,则下一个上行子帧则优选地按照快速LBT机制执行。
本实施例中的方法也可以适用于灵活上下行配比帧结构的连续上行子帧情况。
实施例10
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储设置为执行以下步骤的程序代码:
S1,传输节点获取预定义信息;
S2,所述传输节点根据所述预定义信息进行竞争接入;
其中,所述预定义信息包括以下至少之一:帧结构、传输数据子帧位置、数据类型、专有指示信令、帧调度方式、数据传输。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或 各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种竞争接入方法和装置,具有以下有益效果:采用与下行时不同的LBT,在执行上行LBT时简化了流程,从而能够避免相关方案中上行时采用下行LBT所带来的上行性能差难、频谱效率低的问题。

Claims (112)

  1. 一种竞争接入方法,包括:
    传输节点获取预定义信息;
    所述传输节点根据所述预定义信息进行竞争接入;
    其中,所述预定义信息包括以下至少之一:帧结构、传输数据子帧位置、数据类型、专有指示信令、帧调度方式、数据传输。
  2. 根据权利要求1所述的方法,其中,所述帧结构包括:频分双工FDD帧结构;或者,时分双工TDD帧结构;或者,动态配置的上下行帧结构。
  3. 根据权利要求2所述的方法,其中,当所述预定义信息包括所述帧结构时,所述传输节点根据所述预定义信息进行竞争接入包括:
    对于所述频分双工FDD帧结构,或者,所述时分双工TDD帧结构,或者,所述动态配置的上下行帧结构,所述传输节点在竞争接入时,采用没有随机回退窗的LBT,或者,有随机回退窗的LBT。
  4. 根据权利要求3所述的方法,其中,所述有随机回退窗的LBT包括以下至少之一:
    直接执行扩展空闲信道评估eCCA;
    执行单次CCA和eCCA;
    执行有延迟期的eCCA;
    和/或,所述没有随机回退窗的LBT包括:
    仅执行单次CCA;或者,
    执行预设次数的单次CCA。
  5. 根据权利要求4所述的方法,其中,eCCA的随机回退值为N,N为自然数。
  6. 根据权利要求3所述的方法,其中,对于所述帧结构中有多个连续的上行子帧时,所述传输节点根据所述预定义信息进行竞争接入包括:
    第一个上行子帧之前,在配置的大于和/或等于预定数目的符号上执行LBT机制进行竞争接入;对于后续的上行子帧,在配置的调度子帧的前一子帧的最后一个正交频分复用OFDM符号或最后一个OFDM符号中的预设频域资源图样上执行LBT机制进行竞争接入;其中,所述预定数目通过基站配置或是预定义。
  7. 根据权利要求6所述的方法,其中,当在第一个上行子帧上进行传输,所执行竞争接入的子帧为特殊子帧时,所述第一个上行子帧的前一子帧中的预设数量的OFDM符号,包括:
    下行导频时隙DwPTS中的预设数量个OFDM符号;或者,
    保护时隙GP中的预设数量个OFDM符号;或者,
    上行导频时隙UpPTS中的预设数量个OFDM符号;
    其中,所述预设数量的最小值为所述DwPTS、GP、UpPTS中至少一项的最后一个OFDM符号;所述预设数量的最大值分别对应DwPTS、GP、UpPTS中至少一项所占的符号数。
  8. 根据权利要求3或4所述的方法,其中,
    对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行有随机回退窗的LBT机制;或者,
    对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行没有随机回退窗的LBT机制。
  9. 根据权利要求3或4所述的方法,其中,对于有多个连续的上行子帧时,所述传输节点根据所述预定义信息进行竞争接入,包括:
    无论前一子帧执行LBT是否成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    无论前一子帧执行LBT是否成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照有随机回退窗的LBT机 制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的LBT机制执行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的有随机回退窗的LBT机制进行CCA检测;
    如果前一子帧执行LBT成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测。
  10. 根据权利要求8所述的方法,其中,对于有多个连续的上行子帧时,所述传输节点根据所述预定义信息进行竞争接入,包括:
    无论前一子帧执行LBT是否成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    无论前一子帧执行LBT是否成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的LBT机制执行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的没有随机回 退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的有随机回退窗的LBT机制进行CCA检测;
    如果前一子帧执行LBT成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测。
  11. 根据权利要求4所述的方法,其中,所述单次CCA检测的时长配置为以下至少之一:34us、25us、20us、18us、16us、9us或10us。
  12. 根据权利要求4所述的方法,其中,
    所述单次CCA检测的起点为配置的CCA检测时间段内的固定位置,或者,动态随机的位置。
  13. 根据权利要求12所述的方法,其中,
    将配置的CCA检测时间段划分为多个时间区间。
  14. 根据权利要求12或13所述的方法,其中,
    单次CCA检测的起始位置为固定位置时,所述单次CCA检测的起始位置为所述多个时间区间中特定的一个时间段的开始位置。
  15. 根据权利要求14所述的方法,其中,
    所述特定的一个时间段,或,固定的CCA检测起始位置通过以下至少之一方式确定:
    预定义;基站通过DCI信令通知给UE;基站和UE事先约定;或者,传输节点之间协商;或者,配置。
  16. 根据权利要求12或13所述的方法,其中,
    单次CCA检测的起始位置为动态随机位置时,所述单次CCA检测的开始位置为以下的一项:
    配置的CCA检测时间段内随机选择的一个位置开始;或者,
    配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段的开始位置;或者,
    配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段内的随机选择的一个位置开始;或者,
    配置的CCA检测时间段内的多个时间区间中的一个固定时间段内随机选择的一个位置开始。
  17. 根据权利要求4、12或13所述的方法,其中,
    当执行单次CCA检测到信道忙时,则继续执行单次CCA检测,直到信道由忙变闲的时刻开始,检测到信道连续空闲时长为设定单次CCA检测时长时,则认为CCA检测成功;或者,
    执行单次CCA检测,如果检测信道连续空闲时长为预设单次CCA检测时长时,则认为CCA检测成功。
  18. 根据权利要求17所述的方法,其中,
    当单次CCA检测到信道忙或执行CCA失败时,
    下一次执行单次CCA检测的起点可以从前一次执行单次CCA位置之后的时间区间中随机选择一个作为执行单次CCA检测的起点;或者,
    下一次执行单次CCA检测的起点在配置的CCA检测时间段内随机选择;或者,
    下一次执行单次CCA检测的起点可以从当前检测信道忙时刻结束位置作为执行单次CCA检测的起点。
  19. 根据权利要求1或12所述的方法,其中,
    传输节点之间不同步或异步或竞争接入信道不公平时,或者,系统之间竞争接入信道不公平时,进行以下处理至少之一:
    调整传输节点或系统执行LBT优先级或LBT机制方法;
    交替变化传输节点或系统执行CCA检测起始位置;
    传输节点或系统之间随机选择CCA检测起始位置。
  20. 根据权利要求19所述的方法,其中,
    调整传输节点或系统执行LBT优先级或LBT机制的方法,包括以下至少之一:
    传输节点基于上次LBT检测结果,调整本次执行LBT检测的优先级或LBT机制;
    传输节点基于一段时间内执行LBT检测的结果,调整本次执行LBT检测的优先级或LBT机制;
    传输节点基于执行预设次数的LBT机制后,调整本次执行LBT检测的优先级或LBT机制;
    传输节点基于执行LBT成功的时间累加和超过预设门限,调整本次执行LBT检测的优先级或LBT机制或空置一段预设时间。
  21. 根据权利要求20所述的方法,其中:
    当所述传输节点上次执行LBT成功时,调低本次执行LBT检测的优先级或者LBT机制;或者,
    当所述传输节点上次执行LBT失败时,调高本次执行LBT检测的优先级或者LBT机制;或者,
    当传输节点基于一段时间内执行LBT检测成功次数大于预设门限值,调低本次执行LBT检测的优先级或LBT机制;或者,
    当传输节点基于一段时间内执行LBT检测失败次数大于预设门限值,调高本次执行LBT检测的优先级或LBT机制。
  22. 根据权利要求4所述的方法,其中,所述对于执行预设次数的单次CCA检测,包括:
    所述预设次数为所述配置的CCA检测时间段除以单次CCA检测的时长所得值取整,或者,为预定义的;
    在配置的CCA检测时间段内,每次单次CCA检测的位置是固定的或是动态的;
    当每次单次CCA检测的位置是动态的时,在所述配置的CCA检测时间段内均检测到信道连续空闲时间达到预设时间时,则确定成功竞争到非授权载波的使用权;
    其中,所述预设次数的单次CCA检测的位置是相互连续的、或相互有重叠的、或相互不连续的;如果单次CCA检测到信道空闲,则确定成功竞争到非授权载波的使用权;如果单次CCA检测到信道忙,则继续执行单次CCA检测直至检测到信道空闲,确定成功竞争到非授权载波的使用权。
  23. 根据权利要求22所述的方法,其中,传输节点可以在配置的CCA检测时间段内的多个单次CCA检测位置随机选择每一次的单次CCA检测位置;或者,预定义配置多个单次CCA检测的位置。
  24. 根据权利要求4所述的方法,其中,对于所述执行有延迟期的eCCA,包括:
    先执行所述延迟期后执行eCCA;或者,
    先执行eCCA当检测到信道忙时执行所述延迟期;
    其中,所述延迟期的时长配置为下述任一项:
    34us、25us、20us、18us、16us、10us、9us、0us、eCCA中的随机回退CCA检测时长的整数倍或上述选项的按照加法运算的组合中之一;
    所述eCCA中的随机回退CCA检测时长为9us或10us。
  25. 根据权利要求24所述的方法,其中,对于所述先执行所述延迟期后执行eCCA,包括:
    执行延迟期检测,在延迟期检测到信道空闲时,执行eCCA随机回退CCA检测。
  26. 根据权利要求24或25所述的方法,其中,
    对于在所述延迟期检测到信道空闲时,对所述随机回退值N进行预设数量的递减操作,或者,对所述随机回退值N不进行任何操作;
    其中,所述预设数量是预先定义的数值;或者,所述预设数量是根据检测所述延迟期内可执行的预设时长CCA检测次数以及所述预设时长CCA检测到信道空闲一次时所述随机回退值N进行递减的值来确定的。
  27. 根据权利要求24或25所述的方法,其中,
    对于所述延迟期检测信道忙时,传输节点继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
  28. 根据权利要求26所述的方法,其中,
    对于所述延迟期检测信道忙时,传输节点继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
  29. 根据权利要求1所述的方法,其中,所述数据类型包括:新数据包;或者,重传数据包;其中,不同类型的数据包对应的执行LBT机制所涉及参数的时长不同。
  30. 根据权利要求29所述的方法,其中,所述重传数据包对应的执行LBT所涉及参数的时长小于所述新数据包对应的执行LBT所涉及参数的时长。
  31. 根据权利要求1所述的方法,其中,所述专有指示信令包括:
    基站配置LBT各功能是否使能以及LBT的具体参数;或所述传输节点确定LBT各功能是否使能以及LBT的具体参数;
    其中,所述LBT各功能是否使能,包括:是否采用动态的指数回退窗、是否采用固定的竞争回退窗、或有无竞争窗;所述LBT的具体参数,包括以下至少之一:单次CCA、eCCA、延迟期、随机回退值N,N为自然数。
  32. 根据权利要求31所述的方法,其中,所述传输节点通过下述之一获取所述LBT的具体参数;
    基站通过上行调度授权UL Grant信息通知所述传输节点执行LBT的具体参数;或,
    所述传输节点根据子帧配比以及执行对应LBT所占的OFDM符号来确定所述LBT的具体参数;或,
    所述LBT的具体参数为预定义的,所述传输节点直接获取预定义的所述LBT的具体参数。
  33. 根据权利要求31所述的方法,其中,所述随机回退值N由以下任一方式获得:
    通过基站配置;预先设定;或由所述传输节点根据预设算法随机产生;
    其中,N值的取值范围与配置的CCA检测时间段长度、竞争窗大小有关。
  34. 根据权利要求33所述的方法,其中,所述根据预设算法随机产生随机回退值N包括:
    通过均分分布函数生成一个随机数N作为所述随机回退值N;或,
    通过二项分布函数生成一个随机数N作为所述随机回退值N;或,
    通过正态分布函数生成一个随机数N作为所述随机回退值N。
  35. 根据权利要求1所述的方法,其中,所述帧调度方式包括以下至少一项:单帧调度、多帧调度、自调度、跨载波调度。
  36. 根据权利要求1所述的方法,其中,在所述传输节点根据所述预定义信息进行竞争接入之前,所述方法还包括:
    当有数据需要发送的基站执行下行LBT竞争到非授权载波的使用权并向所述传输节点发送下行数据以及上行调度UL grant信息时,所述传输节点收到所述基站发送的信息后在上行数据发送之前执行LBT;或,
    无数据发送的基站执行下行LBT竞争到非授权载波的使用权后,发送预留信号占用信道直到所述传输节点执行LBT的时刻或发送指示信息通知所述传输节点执行LBT;或,
    当所述传输节点有数据业务时,所述传输节点按照预设的LBT位置执行LBT;或,
    所述传输节点根据接收到的授权信息,执行LBT。
  37. 根据权利要求36所述的方法,其中,所述传输节点是通过半静态配置或通过动态配置的方式获知执行LBT的位置。
  38. 根据权利要求37所述的方法,其中,所述半静态配置包括:
    通过下行控制信息DCI配置;或,通过子帧结构的配比方式配置。
  39. 根据权利要求37所述的方法,其中,所述动态配置包括:对于所述动态配置的上下行帧结构,基站根据负载情况来动态的通知所述传输节点。
  40. 根据权利要求4、24、25、26、27或28所述的方法,其中,所述传输节点直接执行eCCA随机回退过程进行竞争接入或eCCA随机回退CCA检测过程,包括:
    如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
    如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测;
    如果检测到信道忙时,所述传输节点执行下一个随机回退CCA检测。
  41. 根据权利要求40所述的方法,其中,所述方法还包括:
    如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,所述传输节点进行下一次的随机回 退CCA检测;
    如果评估延迟期信道空闲,则所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
    如果评估延迟期信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,所述传输节点进行下一次的随机回退CCA检测。
  42. 根据权利要求40所述的方法,其中,所述方法还包括:
    如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,执行随机回退值N递减预设数量的操作;判断所述随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;
    若判断结果为否时,所述传输节点重复执行eCCA中的随机回退CCA检测或所述传输节点执行eCCA中的随机回退CCA检测且检测到信道忙时进入延迟期,直到所述随机回退N值为零,则所述传输节点确定获取到非授权载波的使用权。
  43. 根据权利要求40所述的方法,其中,所述方法还包括:在延迟期内,所述传输节点执行eCCA中的随机回退CCA检测,在检测到信道为空闲时,所述传输节点确定获取到非授权载波的使用权;否则,重复执行eCCA中的随机回退CCA检测直到连续检测信道空闲时长达到延迟期时长;其中,一次eCCA中的随机回退CCA检测时长为9us或者10us。
  44. 根据权利要求42所述的方法,其中,所述传输节点对所述随机回退值N进行递减运算,包括:
    所述传输节点在检测到信道空闲时,进行对所述随机回退值N值进行预设数量的递减;其中,所述预设数量是动态调整的或是始终固定不变的。
  45. 根据权利要求40所述的方法,其中,在所述传输节点直接执行eCCA或执行eCCA随机回退CCA检测过程时,所述方法还包括:所述传输节点获取所述随机回退值N。
  46. 根据权利要求4所述的方法,其中,所述传输节点执行单次CCA和eCCA进行竞争接入,包括:
    所述传输节点执行单次CCA,如果检测到信道空闲时,所述传输节点确定获取到非授权载波的使用权;
    否则,如果检测到信道忙时,所述传输节点进入eCCA随机回退过程;或者,进入延迟期,且在延迟期检测到信道空闲后,所述传输节点进入eCCA随机回退过程;
    在eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点对所述随机回退值N进行预设数量递减运算,并判断递减后的所述随机回退值N是否为零,若判断结果为是时,所述传输节点确定获取到非授权载波的使用权,若判断结果为否时,所述传输节点执行下一次的随机回退CCA检测;或者,
    如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测。
  47. 根据权利要求46所述的方法,其中,所述方法还包括:
    在eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期且在延迟期间检测到信道空闲后,所述传输节点继续执行eCCA随机回退CCA检测,直到所述随机回退值N递减到零,所述传输节点确定获取到非授权载波的使用权。
  48. 根据权利要求47所述的方法,其中,当所述传输节点进入延迟期,包括:
    当在所述延迟期内检测到信道空闲时,不执行对所述随机回退值N进 行预设数值的递减操作;或,
    当在所述延迟期内检测到信道空闲时,对所述随机回退值N进行预设数值的递减操作。
  49. 根据权利要求48所述的方法,其中,所述在延迟期内进行预设数值的递减操作,包括:
    当检测延迟期内信道空闲,则对所述随机回退值N递减预设数量操作;其中,递减的预设量是预先定义的数值;或根据检测延迟期内空闲可执行的预设时长CCA检测次数以及预设时长CCA检测空闲一次进行递减的值来确定延迟期空闲最终N递减的预设数量;或者,在所述延迟期内执行预定次数的随机回退CCA检测,当检测到信道空闲一次,对所述随机回退值N进行预设数值的递减操作。
  50. 根据权利要求46所述的方法,其中,所述方法还包括:
    所述传输节点在执行eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点使用非授权载波进行数据传输。
  51. 根据权利要求46所述的方法,其中,所述方法还包括:
    所述传输节点在执行eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入所述延迟期,在所述延迟期内检测到预设次数的信道空闲,则所述传输节点确定获取到非授权载波的使用权;其中,预设次数是通过预定义配置的或是根据所述延迟期内检测时长和eCCA中的随机回退CCA检测时长获取的。
  52. 根据权利要求1或4所述的方法,其中,当多个传输节点需要一起复用竞争到的非授权载波资源进行数据传输时,所述方法还包括:
    当所述多个传输节点之间的地理距离小于预设值以及互相的干扰小于阈值时,基站为所述多个传输节点配置相同的随机回退值N;
    当所述多个传输节点的地理距离大于或等于预设值以及互相的干扰大于或等于阈值时,所述多个传输节点各自产生对应的随机回退值N;如 果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻不到符号边界,则所述任一个传输节点发送预留信号,所述预留信号用于除所述任一个传输节点以外的各个传输节点进行识别以继续随机回退;如果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻到达子帧边界,则所述多个传输节点中对应随机回退值N未递减到零的传输节点不能复用非授权载波资源或者成功获取到非授权载波的传输节点在数据传输资源上预留特定的CCA检测频域资源用于N值未递减到零的传输节点识别和复用资源。
  53. 根据权利要求52所述的方法,其中,所述任一个传输节点发送预留信号包括:
    所述任一个传输节点全带宽发送预留信号且携带预设识别信息,所述预设识别信息包括至少一项:小区标识Cell ID、组标识、运营商标识;所述任一个传输节点发送带有特定频域图样的预留信号。
  54. 根据权利要求1或4所述的方法,其中,所述方法还包括:
    所述传输节点获取非授权载波使用权,包括:
    对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退值N递减到零,则所述传输节点获取非授权载波的使用权;其中,所述随机回退值N递减到零包括在延迟期内所述随机回退值N递减到零;或者,
    对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退CCA检测到一次或预设次数信道空闲或者所述传输节点执行到预设数量的OFDM符号的边界时随机回退值N未递减到零,强制对随机回退值N进行置零操作,则所述传输节点确定获取非授权载波的使用权;或冻结随机回退值N未递减到零的传输节点的随机回退值N以使下一次竞争接入时使用;
    对于没有随机回退窗的LBT过程,所述传输节点执行单次CCA检测到信道空闲,则所述传输节点获取非授权载波的使用权;或,
    对于没有随机回退窗的LBT过程,所述传输节点执行多个单次CCA检测中有一次检测到信道空闲,则所述传输节点获取非授权载波的使用权。
  55. 根据权利要求1或4或12所述的方法,其中,所述执行LBT的位置,和/或,CCA检测的时间段,和/或,LBT机制,和/或,LBT机制对应参数,和/或,用于执行CCA检测的符号数目可通过以下至少之一获取:
    基站通过下行控制信息DCI配置通知给UE;预定义;通过子帧结构的配比方式配置;基站根据负载情况来动态的通知UE。
  56. 根据权利要求55所述的方法,其中,所述CCA检测或LBT位置为调度子帧的前一子帧的最后一个或多个OFDM符号。
  57. 一种用于竞争接入的装置,包括:
    获取单元,设置为获取预定义信息;
    接入单元,设置为根据所述预定义信息进行竞争接入;
    其中,所述预定义信息包括以下至少之一:帧结构、传输数据子帧位置、数据类型、专有指示信令、帧调度方式、数据传输。
  58. 根据权利要求57所述的装置,其中,所述帧结构包括:频分双工FDD帧结构;或者,时分双工TDD帧结构;或者,动态配置的上下行帧结构。
  59. 根据权利要求58所述的装置,其中,当所述预定义信息包括所述帧结构时,所述接入单元具体设置为:
    对于所述频分双工FDD帧结构,或者,所述时分双工TDD帧结构,或者,所述动态配置的上下行帧结构,在竞争接入时,采用没有随机回退窗的LBT,或者,有随机回退窗的LBT。
  60. 根据权利要求59所述的装置,其中,所述有随机回退窗的LBT包括以下至少之一:
    直接执行扩展空闲信道评估eCCA;
    执行单次CCA和eCCA;
    执行有延迟期的eCCA;
    和/或,所述没有随机回退窗的LBT包括:
    仅执行单次CCA;或者,
    执行预设次数的单次CCA。
  61. 根据权利要求60所述的装置,其中,eCCA的随机回退值为N,N为自然数。
  62. 根据权利要求59所述的装置,其中,对于所述帧结构中有多个连续的上行子帧时,所述接入单元具体设置为:
    第一个上行子帧之前,在配置的大于和/或等于预定数目的符号上执行LBT机制进行竞争接入;对于后续的上行子帧,在配置的调度子帧的前一子帧的最后一个正交频分复用OFDM符号或最后一个OFDM符号中的预设频域资源图样上执行LBT机制进行竞争接入;其中,所述预定数目通过基站配置或是预定义。
  63. 根据权利要求62所述的装置,其中,当在第一个上行子帧上进行传输,所执行竞争接入的子帧为特殊子帧时,所述第一个上行子帧的前一子帧中的预设数量的OFDM符号,包括:
    下行导频时隙DwPTS中的预设数量个OFDM符号;或者,
    保护时隙GP中的预设数量个OFDM符号;或者,
    上行导频时隙UpPTS中的预设数量个OFDM符号;
    其中,所述预设数量的最小值为所述DwPTS、GP、UpPTS中至少一项的最后一个OFDM符号;所述预设数量的最大值分别对应DwPTS、GP、UpPTS中至少一项所占的符号数。
  64. 根据权利要求59或60所述的装置,其中,
    对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行有随机回退窗的LBT机制;或者,
    对于一个传输burst,第一个子帧执行有随机回退窗的LBT机制,后续的子帧执行没有随机回退窗的LBT机制。
  65. 根据权利要求59或60所述的装置,其中,对于有多个连续的上行子帧时,所述接入单元具体设置为:
    无论前一子帧执行LBT是否成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    无论前一子帧执行LBT是否成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的LBT机制执行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的有随机回退窗的LBT机制进行CCA检测;
    如果前一子帧执行LBT成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测。
  66. 根据权利要求64所述的装置,其中,对于有多个连续的上行子帧时,所述接入单元具体设置为:
    无论前一子帧执行LBT是否成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    无论前一子帧执行LBT是否成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的LBT机制执行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的没有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT失败,下一子帧按照基站配置的有随机回退窗的LBT机制进行CCA检测;
    如果前一子帧执行LBT成功,下一子帧按照有随机回退窗的LBT机制进行CCA检测;或者,
    如果前一子帧执行LBT成功,下一子帧按照没有随机回退窗的LBT机制进行CCA检测。
  67. 根据权利要求60所述的装置,其中,所述单次CCA检测的时长配置为以下至少之一:34us、25us、20us、18us、16us、9us或10us。
  68. 根据权利要求60所述的装置,其中,
    所述单次CCA检测的起点为配置的CCA检测时间段内的固定位置,或者,动态随机的位置。
  69. 根据权利要求68所述的装置,其中,
    将配置的CCA检测时间段划分为多个时间区间。
  70. 根据权利要求68或69所述的装置,其中,
    单次CCA检测的起始位置为固定位置时,所述单次CCA检测的起始位置为所述多个时间区间中特定的一个时间段的开始位置。
  71. 根据权利要求70所述的装置,其中,
    所述特定的一个时间段,或,固定的CCA检测起始位置通过以下至少之一方式确定:
    预定义;基站通过DCI信令通知给UE;基站和UE事先约定;或者,传输节点之间协商;或者,配置。
  72. 根据权利要求68或69所述的装置,其中,
    单次CCA检测的起始位置为动态随机位置时,所述单次CCA检测的开始位置为以下的一项:
    配置的CCA检测时间段内随机选择的一个位置开始;或者,
    配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段的开始位置;或者,
    配置的CCA检测时间段内的多个时间区间中随机选择的一个时间段内的随机选择的一个位置开始;或者,
    配置的CCA检测时间段内的多个时间区间中的一个固定时间段内随机选择的一个位置开始。
  73. 根据权利要求60、68或69所述的装置,其中,
    当执行单次CCA检测到信道忙时,则继续执行单次CCA检测,直到信道由忙变闲的时刻开始,检测到信道连续空闲时长为设定单次CCA检测时长时,则认为CCA检测成功;或者,
    执行单次CCA检测,如果检测信道连续空闲时长为预设单次CCA检测时长时,则认为CCA检测成功。
  74. 根据权利要求73所述的装置,其中,
    当单次CCA检测到信道忙或执行CCA失败时,
    下一次执行单次CCA检测的起点可以从前一次执行单次CCA位置之后的时间区间中随机选择一个作为执行单次CCA检测的起点;或者,
    下一次执行单次CCA检测的起点在配置的CCA检测时间段内随机选择;或者,
    下一次执行单次CCA检测的起点可以从当前检测信道忙时刻结束位置作为执行单次CCA检测的起点。
  75. 根据权利要求57或68所述的装置,其中,
    传输节点之间不同步或异步或竞争接入信道不公平时,或者,系统之间竞争接入信道不公平时,进行以下处理至少之一:
    调整传输节点或系统执行LBT优先级或LBT机制方法;
    交替变化传输节点或系统执行CCA检测起始位置;
    传输节点或系统之间随机选择CCA检测起始位置。
  76. 根据权利要求75所述的装置,其中,
    调整传输节点或系统执行LBT优先级或LBT机制的方法,包括以下至少之一:
    传输节点基于上次LBT检测结果,调整本次执行LBT检测的优先级或LBT机制;
    传输节点基于一段时间内执行LBT检测的结果,调整本次执行LBT检测的优先级或LBT机制;
    传输节点基于执行预设次数的LBT机制后,调整本次执行LBT检测的优先级或LBT机制;
    传输节点基于执行LBT成功的时间累加和超过预设门限,调整本次执行LBT检测的优先级或LBT机制或空置一段预设时间。
  77. 根据权利要求76所述的装置,其中:
    当所述传输节点上次执行LBT成功时,调低本次执行LBT检测的优 先级或者LBT机制;或者,
    当所述传输节点上次执行LBT失败时,调高本次执行LBT检测的优先级或者LBT机制;或者,
    当传输节点基于一段时间内执行LBT检测成功次数大于预设门限值,调低本次执行LBT检测的优先级或LBT机制;或者,
    当传输节点基于一段时间内执行LBT检测失败次数大于预设门限值,调高本次执行LBT检测的优先级或LBT机制。
  78. 根据权利要求60所述的装置,其中,所述对于执行预设次数的单次CCA检测,包括:
    所述预设次数为所述配置的CCA检测时间段除以单次CCA检测的时长所得值取整,或者,为预定义的;
    在配置的CCA检测时间段内,每次单次CCA检测的位置是固定的或是动态的;
    当每次单次CCA检测的位置是动态的时,在所述配置的CCA检测时间段内均检测到信道连续空闲时间达到预设时间时,则确定成功竞争到非授权载波的使用权;
    其中,所述预设次数的单次CCA检测的位置是相互连续的、或相互有重叠的、或相互不连续的;如果单次CCA检测到信道空闲,则确定成功竞争到非授权载波的使用权;如果单次CCA检测到信道忙,则继续执行单次CCA检测直至检测到信道空闲,确定成功竞争到非授权载波的使用权。
  79. 根据权利要求78所述的装置,其中,传输节点在配置的CCA检测时间段内的多个单次CCA检测位置随机选择每一次的单次CCA检测位置;或者,预定义配置多个单次CCA检测的位置。
  80. 根据权利要求60所述的装置,其中,对于所述执行有延迟期的eCCA,包括:
    先执行所述延迟期后执行eCCA;或者,
    先执行eCCA当检测到信道忙时执行所述延迟期;
    其中,所述延迟期的时长配置为下述任一项:
    34us、25us、20us、18us、16us、10us、9us、0us、eCCA中的随机回退CCA检测时长的整数倍或上述选项的按照加法运算的组合中之一;
    所述eCCA中的随机回退CCA检测时长为9us或10us。
  81. 根据权利要求80所述的装置,其中,对于所述先执行所述延迟期后执行eCCA,包括:
    执行延迟期检测,在延迟期检测到信道空闲时,执行eCCA随机回退CCA检测。
  82. 根据权利要求80或81所述的装置,其中,
    对于在所述延迟期检测到信道空闲时,对所述随机回退值N进行预设数量的递减操作,或者,对所述随机回退值N不进行任何操作;
    其中,所述预设数量是预先定义的数值;或者,所述预设数量是根据检测所述延迟期内可执行的预设时长CCA检测次数以及所述预设时长CCA检测到信道空闲一次时所述随机回退值N进行递减的值来确定的。
  83. 根据权利要求80或81所述的装置,其中,
    对于所述延迟期检测信道忙时,接入单元继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
  84. 根据权利要求82所述的装置,其中,
    对于所述延迟期检测信道忙时,接入单元继续执行CCA检测直到检测信道连续空闲预设延迟期时长,确定在延迟期检测信道空闲。
  85. 根据权利要求57所述的装置,其中,所述数据类型包括:新数据包;或者,重传数据包;其中,不同类型的数据包对应的执行LBT机制所涉及参数的时长不同。
  86. 根据权利要求85所述的装置,其中,所述重传数据包对应的执行LBT所涉及参数的时长小于所述新数据包对应的执行LBT所涉及参数的时长。
  87. 根据权利要求57所述的装置,其中,所述专有指示信令包括:
    基站配置LBT各功能是否使能以及LBT的具体参数;或传输节点确定LBT各功能是否使能以及LBT的具体参数;
    其中,所述LBT各功能是否使能,包括:是否采用动态的指数回退窗、是否采用固定的竞争回退窗、或有无竞争窗;所述LBT的具体参数,包括以下至少之一:单次CCA、eCCA、延迟期、随机回退值N,N为自然数。
  88. 根据权利要求87所述的装置,其中,所述获取单元通过下述之一获取所述LBT的具体参数;
    基站通过上行调度授权UL Grant信息通知所述传输节点执行LBT的具体参数;或,
    所述传输节点根据子帧配比以及执行对应LBT所占的OFDM符号来确定所述LBT的具体参数;或,
    所述LBT的具体参数为预定义的,所述传输节点直接获取预定义的所述LBT的具体参数。
  89. 根据权利要求87所述的装置,其中,所述随机回退值N由以下任一方式获得:
    通过基站配置;预先设定;或由所述传输节点根据预设算法随机产生;
    其中,N值的取值范围与配置的CCA检测时间段长度、竞争窗大小有关。
  90. 根据权利要求89所述的装置,其中,所述根据预设算法随机产生随机回退值N包括:
    通过均分分布函数生成一个随机数N作为所述随机回退值N;或,
    通过二项分布函数生成一个随机数N作为所述随机回退值N;或,
    通过正态分布函数生成一个随机数N作为所述随机回退值N。
  91. 根据权利要求57所述的装置,其中,所述帧调度方式包括以下至少一项:单帧调度、多帧调度、自调度、跨载波调度。
  92. 根据权利要求57所述的装置,其中,所述接入单元还设置为:
    当有数据需要发送的基站执行下行LBT竞争到非授权载波的使用权并向所述传输节点发送下行数据以及上行调度UL grant信息时,所述传输节点收到所述基站发送的信息后在上行数据发送之前执行LBT;或,
    无数据发送的基站执行下行LBT竞争到非授权载波的使用权后,发送预留信号占用信道直到所述传输节点执行LBT的时刻或发送指示信息通知所述传输节点执行LBT;或,
    当所述传输节点有数据业务时,所述传输节点按照预设的LBT位置执行LBT;或,
    所述传输节点根据接收到的授权信息,执行LBT。
  93. 根据权利要求92所述的装置,其中,所述传输节点是通过半静态配置或通过动态配置的方式获知执行LBT的位置。
  94. 根据权利要求93所述的装置,其中,所述半静态配置包括:
    通过下行控制信息DCI配置;或,通过子帧结构的配比方式配置。
  95. 根据权利要求93所述的装置,其中,所述动态配置包括:对于所述动态配置的上下行帧结构,基站根据负载情况来动态的通知所述传输节点。
  96. 根据权利要求60、80、81、82、83或84所述的装置,其中,所述传输节点直接执行eCCA随机回退过程进行竞争接入或eCCA随机回退CCA检测过程,包括:
    如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值 N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
    如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测;
    如果检测到信道忙时,所述传输节点执行下一个随机回退CCA检测。
  97. 根据权利要求96所述的装置,其中,所述接入单元还设置为:
    如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,所述传输节点进行下一次的随机回退CCA检测;
    如果评估延迟期信道空闲,则所述传输节点对随机回退值N进行递减运算,所述传输节点判断递减运算后的随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;若判断结果为否,则所述传输节点执行下一个随机回退CCA检测;或者,
    如果评估延迟期信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,所述传输节点进行下一次的随机回退CCA检测。
  98. 根据权利要求96所述的装置,其中,所述接入单元还设置为:
    如果eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期;在延迟期检测到信道空闲时,执行随机回退值N递减预设数量的操作;判断所述随机回退值N是否等于零;若判断结果为是,则所述传输节点使用非授权载波进行数据传输;
    若判断结果为否时,所述传输节点重复执行eCCA中的随机回退CCA检测或所述传输节点执行eCCA中的随机回退CCA检测且检测到信道忙 时进入延迟期,直到所述随机回退N值为零,则所述传输节点确定获取到非授权载波的使用权。
  99. 根据权利要求96所述的装置,其中,所述接入单元还设置为:在延迟期内,所述传输节点执行eCCA中的随机回退CCA检测,在检测到信道为空闲时,所述传输节点确定获取到非授权载波的使用权;否则,重复执行eCCA中的随机回退CCA检测直到连续检测信道空闲时长达到延迟期时长;其中,一次eCCA中的随机回退CCA检测时长为9us或者10us。
  100. 根据权利要求98所述的装置,其中,所述传输节点对所述随机回退值N进行递减运算,包括:
    所述传输节点在检测到信道空闲时,进行对所述随机回退值N值进行预设数量的递减;其中,所述预设数量是动态调整的或是始终固定不变的。
  101. 根据权利要求96所述的装置,其中,在所述传输节点直接执行eCCA或执行eCCA随机回退CCA检测过程时,所述接入单元还设置为:获取所述随机回退值N。
  102. 根据权利要求60所述的装置,其中,所述接入单元执行单次CCA和eCCA进行竞争接入,包括:
    所述传输节点执行单次CCA,如果检测到信道空闲时,所述传输节点确定获取到非授权载波的使用权;
    否则,如果检测到信道忙时,所述传输节点进入eCCA随机回退过程;或者,进入延迟期,且在延迟期检测到信道空闲后,所述传输节点进入eCCA随机回退过程;
    在eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点对所述随机回退值N进行预设数量递减运算,并判断递减后的所述随机回退值N是否为零,若判断结果为是时,所述传输节点确定获取到非授权载波的使用权,若判断结果为否时,所述传输节点执行下一次的随机回退CCA检测;或者,
    如果eCCA中的随机回退CCA检测到信道空闲时,所述传输节点判断所述随机回退值N是否等于零,若判断结果为是,则所述传输节点使用非授权载波进行数据传输,若判断结果为否,所述传输节点对随机回退值N进行递减运算,继续执行eCCA中的随机回退CCA检测。
  103. 根据权利要求102所述的装置,其中,所述接入单元还设置为:
    在eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入延迟期且在延迟期间检测到信道空闲后,所述传输节点继续执行eCCA随机回退CCA检测,直到所述随机回退值N递减到零,所述传输节点确定获取到非授权载波的使用权。
  104. 根据权利要求103所述的装置,其中,当所述传输节点进入延迟期,包括:
    当在所述延迟期内检测到信道空闲时,不执行对所述随机回退值N进行预设数值的递减操作;或,
    当在所述延迟期内检测到信道空闲时,对所述随机回退值N进行预设数值的递减操作。
  105. 根据权利要求104所述的装置,其中,所述在延迟期内进行预设数值的递减操作,包括:
    当检测延迟期内信道空闲,则对所述随机回退值N递减预设数量操作;其中,递减的预设量是预先定义的数值;或根据检测延迟期内空闲可执行的预设时长CCA检测次数以及预设时长CCA检测空闲一次进行递减的值来确定延迟期空闲最终N递减的预设数量;或者,在所述延迟期内执行预定次数的随机回退CCA检测,当检测到信道空闲一次,对所述随机回退值N进行预设数值的递减操作。
  106. 根据权利要求102所述的装置,其中,所述接入单元还设置为:
    所述传输节点在执行eCCA中的随机回退CCA检测到信道空闲时,则所述传输节点使用非授权载波进行数据传输。
  107. 根据权利要求102所述的装置,其中,所述接入单元还设置为:
    所述传输节点在执行eCCA中的随机回退CCA检测到信道忙时,所述传输节点进入所述延迟期,在所述延迟期内检测到预设次数的信道空闲,则所述传输节点确定获取到非授权载波的使用权;其中,预设次数是通过预定义配置的或是根据所述延迟期内检测时长和eCCA中的随机回退CCA检测时长获取的。
  108. 根据权利要求57或60所述的装置,其中,当多个传输节点需要一起复用竞争到的非授权载波资源进行数据传输时,所述接入单元还设置为:
    当所述多个传输节点之间的地理距离小于预设值以及互相的干扰小于阈值时,基站为所述多个传输节点配置相同的随机回退值N;
    当所述多个传输节点的地理距离大于或等于预设值以及互相的干扰大于或等于阈值时,所述多个传输节点各自产生对应的随机回退值N;如果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻不到符号边界,则所述任一个传输节点发送预留信号,所述预留信号用于除所述任一个传输节点以外的各个传输节点进行识别以继续随机回退;如果所述多个传输节点中的任一个传输节点对应的随机回退值N递减到零的时刻到达子帧边界,则所述多个传输节点中对应随机回退值N未递减到零的传输节点不能复用非授权载波资源或者成功获取到非授权载波的传输节点在数据传输资源上预留特定的CCA检测频域资源用于N值未递减到零的传输节点识别和复用资源。
  109. 根据权利要求108所述的装置,其中,所述任一个传输节点发送预留信号包括:
    所述任一个传输节点全带宽发送预留信号且携带预设识别信息,所述预设识别信息包括至少一项:小区标识Cell ID、组标识、运营商标识;所述任一个传输节点发送带有特定频域图样的预留信号。
  110. 根据权利要求57或60所述的装置,其中,所述接入单元还设 置为
    所述传输节点获取非授权载波使用权,包括:
    对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退值N递减到零,则所述传输节点获取非授权载波的使用权;其中,所述随机回退值N递减到零包括在延迟期内所述随机回退值N递减到零;或者,
    对于有随机回退窗的LBT,所述传输节点在配置的预设数量的OFDM符号内执行所述有随机回退窗的LBT时随机回退CCA检测到一次或预设次数信道空闲或者所述传输节点执行到预设数量的OFDM符号的边界时随机回退值N未递减到零,强制对随机回退值N进行置零操作,则所述传输节点确定获取非授权载波的使用权;或冻结随机回退值N未递减到零的传输节点的随机回退值N以使下一次竞争接入时使用;
    对于没有随机回退窗的LBT过程,所述传输节点执行单次CCA检测到信道空闲,则所述传输节点获取非授权载波的使用权;或,
    对于没有随机回退窗的LBT过程,所述传输节点执行多个单次CCA检测中有一次检测到信道空闲,则所述传输节点获取非授权载波的使用权。
  111. 根据权利要求57或60或68所述的装置,其中,所述执行LBT的位置,和/或,CCA检测的时间段,和/或,LBT机制,和/或,LBT机制对应参数,和/或,用于执行CCA检测的符号数目可通过以下至少之一获取:
    基站通过下行控制信息DCI配置通知给UE;预定义;通过子帧结构的配比方式配置;基站根据负载情况来动态的通知UE。
  112. 根据权利要求111所述的装置,其中,所述CCA检测或LBT位置为调度子帧的前一子帧的最后一个或多个OFDM符号。
PCT/CN2016/093896 2015-08-07 2016-08-08 一种竞争接入方法和装置 WO2017025004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16834628.6A EP3334235A4 (en) 2015-08-07 2016-08-08 Method and device for competing for access
US15/746,170 US20180213563A1 (en) 2015-08-07 2016-08-08 Method and device for competing for access

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510485514.5 2015-08-07
CN201510485514 2015-08-07
CN201610630612.8A CN106455117B (zh) 2015-08-07 2016-08-03 一种竞争接入方法和装置
CN201610630612.8 2016-08-03

Publications (1)

Publication Number Publication Date
WO2017025004A1 true WO2017025004A1 (zh) 2017-02-16

Family

ID=57982974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093896 WO2017025004A1 (zh) 2015-08-07 2016-08-08 一种竞争接入方法和装置

Country Status (1)

Country Link
WO (1) WO2017025004A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110495242A (zh) * 2019-06-28 2019-11-22 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置
WO2020025032A1 (en) * 2018-08-02 2020-02-06 JRD Communication (Shenzhen) Ltd. Uplink transmission resource sharing
WO2020192632A1 (zh) * 2019-03-25 2020-10-01 维沃移动通信有限公司 小区连接失败的处理方法、终端设备和网络侧设备
CN112566271A (zh) * 2019-09-26 2021-03-26 维沃移动通信有限公司 一种信道接入方法、设备及系统
CN112888081A (zh) * 2021-01-08 2021-06-01 西安电子科技大学 基于快速反馈机制的多址接入方法
CN115669170A (zh) * 2020-05-27 2023-01-31 高通股份有限公司 与用于侧链路通信的信道占用时间(cot)有关的多个起始点
CN117649061A (zh) * 2024-01-30 2024-03-05 山东达斯特信息技术有限公司 一种用于环保监测的多节点组网用电分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752875A (zh) * 2011-04-20 2012-10-24 株式会社Ntt都科摩 基于竞争的上行接入方法、装置及系统
WO2013112983A2 (en) * 2012-01-26 2013-08-01 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测系统、基站和终端
CN104581908A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 非连续接收模式的参数配置方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752875A (zh) * 2011-04-20 2012-10-24 株式会社Ntt都科摩 基于竞争的上行接入方法、装置及系统
WO2013112983A2 (en) * 2012-01-26 2013-08-01 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测系统、基站和终端
CN104581908A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 非连续接收模式的参数配置方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "Frame Structure Design for LAA Considering LBT", 3GPP TSG RAN WG 1 MEETING #79 RL-144828, 21 November 2014 (2014-11-21), XP050875894 *
See also references of EP3334235A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025032A1 (en) * 2018-08-02 2020-02-06 JRD Communication (Shenzhen) Ltd. Uplink transmission resource sharing
WO2020192632A1 (zh) * 2019-03-25 2020-10-01 维沃移动通信有限公司 小区连接失败的处理方法、终端设备和网络侧设备
CN110495242A (zh) * 2019-06-28 2019-11-22 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置
CN110495242B (zh) * 2019-06-28 2023-12-19 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置
CN112566271A (zh) * 2019-09-26 2021-03-26 维沃移动通信有限公司 一种信道接入方法、设备及系统
CN112566271B (zh) * 2019-09-26 2022-11-25 维沃移动通信有限公司 一种信道接入方法、设备及系统
CN115669170A (zh) * 2020-05-27 2023-01-31 高通股份有限公司 与用于侧链路通信的信道占用时间(cot)有关的多个起始点
CN112888081A (zh) * 2021-01-08 2021-06-01 西安电子科技大学 基于快速反馈机制的多址接入方法
CN112888081B (zh) * 2021-01-08 2022-08-30 西安电子科技大学 基于快速反馈机制的多址接入方法
CN117649061A (zh) * 2024-01-30 2024-03-05 山东达斯特信息技术有限公司 一种用于环保监测的多节点组网用电分析方法及系统
CN117649061B (zh) * 2024-01-30 2024-04-26 山东达斯特信息技术有限公司 一种用于环保监测的多节点组网用电分析方法及系统

Similar Documents

Publication Publication Date Title
CN106455117B (zh) 一种竞争接入方法和装置
US11277864B2 (en) Method and apparatus for determining LBT mode and method for LBT mode switching
US10764914B2 (en) Uplink information processing method and apparatus
CN107079455B (zh) 使用移动通信系统中免执照频带的用于通信的方法和设备
WO2017125009A1 (zh) 一种探测参考信号的发送方法和装置
CN107371274B (zh) 传输数据的方法及设备
WO2017025004A1 (zh) 一种竞争接入方法和装置
CN106453182B (zh) 前导发送方法和装置
CN106656428B (zh) 竞争窗调整方法和装置
RU2698429C1 (ru) Временное опережение в системах lbt
WO2017194018A1 (zh) 随机接入方法、装置及用户设备、存储介质
US20180192442A1 (en) Data transmission method and device
CN106453181B (zh) 一种信息处理方法、装置及系统
US20130203429A1 (en) Method and apparatus for enabling scheduled transmission
EP3222103A1 (en) Channel access in listen before talk systems
CN106686727B (zh) 多载波的竞争接入方法、装置及系统
RU2763959C1 (ru) Способ связи и устройство связи
KR20170098891A (ko) 메시지 전송 방법 및 장치
JP6725660B2 (ja) データチャネル及び制御チャネルの両方のスケジューリングを伴うマルチサブフレームグラント
US20230199735A1 (en) Methods and systems for coverage enhancement in wireless networks
EP3065349B1 (en) Method and station for data transmission in a wireless network
CN115052364A (zh) 传输数据的方法及设备
CN109076350B (zh) 一种基于授权辅助接入laa系统的上行传输方法及装置
EP3673698B1 (en) Methods and nodes for communication on multiple channels
CN113330807A (zh) 无线系统中的干扰抑制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15746170

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016834628

Country of ref document: EP