WO2016112588A1 - 信道检测通知方法、系统和基站 - Google Patents

信道检测通知方法、系统和基站 Download PDF

Info

Publication number
WO2016112588A1
WO2016112588A1 PCT/CN2015/075560 CN2015075560W WO2016112588A1 WO 2016112588 A1 WO2016112588 A1 WO 2016112588A1 CN 2015075560 W CN2015075560 W CN 2015075560W WO 2016112588 A1 WO2016112588 A1 WO 2016112588A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
cell base
channel detection
secondary cell
Prior art date
Application number
PCT/CN2015/075560
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
雷艺学
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2016112588A1 publication Critical patent/WO2016112588A1/zh
Priority to US15/641,750 priority Critical patent/US10194451B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel detection notification method when an LTE system operates in an unlicensed frequency band, a channel detection notification system when an LTE system operates in an unlicensed frequency band, and a base station.
  • 3GPP is discussing how to use unlicensed spectrum, such as the 2.4 GHz and 5 GHz bands, with the help of licensed spectrum.
  • unlicensed spectrum are currently mainly used in systems such as Wi-Fi, Bluetooth, radar, and medical.
  • LAA LTE Assisted Access
  • TDD mode TDD mode
  • LTE systems operating in unlicensed bands have the ability to provide higher spectral efficiency and greater coverage, while relying on the same core network to allow data traffic between licensed and unlicensed bands. Sew switch. For the user, this means a better broadband experience, higher speed, better stability and mobility.
  • Wi-Fi Wireless Fidelity
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the basic principle of this method is Wi-Fi. Before the AP (Access Point) or the terminal sends signaling or data, it must first monitor whether other APs or other terminals are transmitting/receiving signaling or data. If so, continue to listen until it is monitored. If not, a random number is generated as the backoff time. If no signaling or data transmission is detected during this backoff time, the AP or the terminal may start transmitting signaling or data after the end of the backoff time. The process is shown in Figure 1.
  • the LTE network has good orthogonality to ensure the interference level, the uplink and downlink transmissions between the base station and the user do not need to consider whether other base stations or other users are transmitting data. If LTE is used on an unlicensed band, it does not consider whether other devices are using unlicensed bands nearby, which will cause great interference to Wi-Fi devices. Because LTE transmits as long as there is traffic, there is no monitoring rule, then the Wi-Fi device cannot transmit when LTE has service transmission, and can only detect the channel idle state for data transmission after the LTE service transmission is completed.
  • LAA Long Before Talk
  • the currently deployed LBT mechanisms mainly include: LBT mechanism based on frame structure and LBT mechanism based on load.
  • the specific scheme is as follows:
  • the period of the LBT is fixed, and the time of CCA (Channel Clear Assessment, which is the same as LBT) is the beginning of each cycle.
  • CCA Channel Clear Assessment
  • the CCA occupies the first one or more symbols (symbols) of the #0 subframe in a period of 10 ms.
  • the #0 subframe can be used for CCA. If the service arrives in subframe #1, it must wait until the #0 subframe of the next cycle performs CCA before it can determine whether the channel can be Occupied, resulting in a large delay.
  • the main principle is to perform channel detection immediately when the load arrives. If the detection channel is idle, the data service is sent immediately; if the detection channel is busy, a number N is randomly selected, in the next channel detection time. If it is detected that the channel is busy, then N is unchanged. If the channel is detected to be idle, then N-1, when N is reduced to 0, data can be transmitted.
  • the present invention is based on at least one of the above technical problems, and proposes a channel detection notification scheme when a new LTE system operates in an unlicensed frequency band, so that channel detection work when the LTE system works in an unlicensed frequency band is performed by the primary cell.
  • the base station is uniformly managed, which can effectively reduce the delay of channel detection by the secondary cell base station and/or the terminal, and can improve the accuracy of determining the channel detection timing, and is beneficial to improving the resource utilization rate of the LTE system when operating in the unlicensed frequency band.
  • the present invention provides a channel detection notification method for an LTE system in a non-licensed frequency band, which is applicable to a RRM measurement result of a plurality of base stations in an unlicensed frequency band reported by a primary cell base station. And selecting, according to the RRM measurement result of the multiple base stations, a secondary cell base station for the terminal; if it is determined that the downlink traffic volume reaches the set first traffic volume threshold, notifying the secondary cell base station on the unlicensed frequency band Performing downlink channel detection; and if it is determined that the uplink traffic reaches the set second traffic threshold, notifying the secondary cell base station and/or the terminal to perform uplink channel detection on the unlicensed frequency band.
  • the primary cell base station and/or the terminal triggers channel detection by the primary cell base station according to the size of the traffic volume, so that the communication when the LTE system works on the unlicensed frequency band is uniformly managed by the primary cell base station, and further
  • the delay of channel detection by the secondary cell base station and/or the terminal can be effectively reduced, and the accuracy of determining the channel detection timing can be improved, which is beneficial to improving the resource utilization rate of the LTE system when operating in the unlicensed frequency band.
  • RRM Radio Resource Management
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the method for performing channel detection by the secondary cell base station and/or the terminal may be specified when the base station and/or the terminal is notified of the channel detection, and specifically, the secondary cell base station and/or the terminal are notified in the non-
  • the steps of performing channel detection on the licensed frequency band specifically include the following two methods:
  • Notifying the secondary cell base station and/or the terminal to repeatedly perform channel detection on the unlicensed frequency band at a fixed period That is, the secondary cell base station and/or the terminal is notified to perform channel detection by using a frame structure-based LBT mechanism.
  • the method further includes: sending a secondary cell to the terminal.
  • the adding instruction includes the secondary cell base station and And/or at least three of the start time of the channel detection and the following parameters: channel detection duration, channel detection period, maximum channel occupation time, and idle time; if the secondary cell base station and/or the terminal are notified And performing channel detection on the unlicensed frequency band when receiving the traffic to be transmitted, where the adding instruction includes a channel detection duration and a random number, where the secondary cell base station and/or the terminal are detected.
  • the step of determining, by the primary cell, whether the downlink traffic reaches the first traffic threshold, and determining whether the uplink traffic reaches the second traffic threshold includes:
  • the primary cell base station needs to send a corresponding instruction to the terminal to notify the terminal to take corresponding countermeasures, as follows:
  • the secondary cell base station after notifying the secondary cell base station to perform downlink channel detection on the unlicensed frequency band, sending, by the terminal, activation signaling of the secondary cell base station, so that the terminal is in the After receiving the activation signaling, monitoring a Physical Downlink Control Channel (PDCCH), a Physical Downlink Shared Channel (PDSCH), and a reference sent by the secondary cell base station of the secondary cell base station Signaling, and measuring channel state information (CSI) of the secondary cell base station;
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • CSI channel state information
  • the step of notifying the terminal to perform uplink channel detection on the unlicensed frequency band is specifically: detecting whether the downlink channel of the secondary cell base station is idle, and detecting the secondary cell base station When the downlink channel is idle, the downlink reference signal is sent by the secondary cell base station, and the terminal is notified to perform uplink channel detection on the unlicensed frequency band.
  • the secondary cell base station may continue to send the reference signal based on the short control signaling (Short Control Signaling) to directly notify the terminal to perform detection when the primary cell base station determines that the terminal needs to perform uplink channel detection.
  • Short Control Signaling Short Control Signaling
  • the present invention also defines how to notify the terminal to perform uplink channel detection on the unlicensed frequency band, which specifically includes the following methods:
  • the terminal is implicitly notified by the activation signaling to perform uplink channel detection, and implicitly notifies the terminal to stop uplink channel detection by deactivating signaling.
  • the terminal is implicitly notified by the uplink grant signaling (ie, UL grant) sent to the terminal for uplink channel detection.
  • the uplink grant signaling ie, UL grant
  • Defining a new media access layer control signaling including multiple indication bits to notify the terminal to perform uplink channel detection, where each indicator bit of the multiple indicator bits corresponds to one secondary cell base station, Each indicator bit is used to indicate whether the terminal needs to detect an uplink channel of the secondary cell base station corresponding to each indicator bit.
  • a new physical downlink control signaling is defined to notify the terminal to detect an uplink channel of the designated secondary cell base station.
  • the method for informing the secondary cell base station to perform the uplink channel detection and/or the downlink channel detection on the unlicensed frequency band is specifically as follows: the interface between the primary cell base station and the secondary cell base station (such as the X2 interface) is notified.
  • the secondary cell base station performs uplink channel detection and/or downlink channel detection.
  • a channel detection notification system which is applicable to a base station, when the LTE system operates in an unlicensed frequency band, and includes: a receiving unit, configured to receive, by the primary cell base station, an unlicensed frequency band reported by the terminal a RRM measurement result for the plurality of base stations; a selecting unit, configured to select a secondary cell base station for the terminal according to the RRM measurement result of the multiple base stations; and a notification unit, configured to determine that the downlink traffic volume reaches the set first Notifying the secondary cell base station to perform downlink channel detection on the unlicensed frequency band, and configured to notify the secondary cell base station and/or when determining that the uplink traffic volume reaches the set second traffic volume threshold.
  • the terminal performs uplink channel detection on the unlicensed frequency band.
  • the primary cell base station and/or the terminal triggers channel detection by the primary cell base station according to the size of the traffic volume, so that the communication when the LTE system works on the unlicensed frequency band is uniformly managed by the primary cell base station, and further
  • the delay of channel detection by the secondary cell base station and/or the terminal can be effectively reduced, and the accuracy of determining the channel detection timing can be improved, which is beneficial to improving the resource utilization rate of the LTE system when operating in the unlicensed frequency band.
  • RRM Radio Resource Management
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the method for performing channel detection by the secondary cell base station and/or the terminal may be specified when the base station and/or the terminal is notified of the channel detection, and specifically, the secondary cell base station and/or the terminal are notified in the non- Channel detection on the licensed frequency band includes the following two methods:
  • the notification unit is specifically configured to: notify the secondary cell base station and/or the terminal to repeatedly perform channel detection on the unlicensed frequency band in a fixed period. That is, the secondary cell base station and/or the terminal is notified to perform channel detection by using a frame structure-based LBT mechanism.
  • the notification unit is specifically configured to: notify the secondary cell base station and/or the terminal to perform channel detection on the unlicensed frequency band when receiving the traffic volume to be transmitted. That is, the secondary cell base station and/or the terminal is notified to perform channel detection using a load-based LBT mechanism.
  • the method further includes: a first sending unit, configured to: after the selecting unit selects the secondary cell base station for the terminal, notify the secondary cell base station and/or in the notification unit Or before the terminal performs channel detection, sending an add instruction of the secondary cell base station to the terminal, to notify the terminal that the secondary cell base station provides a communication service.
  • a first sending unit configured to: after the selecting unit selects the secondary cell base station for the terminal, notify the secondary cell base station and/or in the notification unit Or before the terminal performs channel detection, sending an add instruction of the secondary cell base station to the terminal, to notify the terminal that the secondary cell base station provides a communication service.
  • the adding instruction includes the At least three of a start time of the channel detection by the secondary cell base station and/or the terminal and the following parameters: a channel detection duration, a channel detection period, a maximum channel occupation time, and an idle time; if the notification unit notifies the auxiliary
  • the primary cell base station can determine whether the downlink traffic volume reaches the first traffic volume threshold.
  • the method further includes: a determining unit, configured to receive the When the scheduling request and/or the buffer status report sent by the terminal is sent, it is determined whether the uplink traffic of the serving cell that the terminal has activated reaches the second traffic threshold.
  • the primary cell base station needs to send a corresponding instruction to the terminal to notify the terminal to take corresponding countermeasures, as follows:
  • the method further includes: a second sending unit, configured to send, after the notification unit, the secondary cell base station performs downlink channel detection on the unlicensed frequency band, to send the Activating signaling of the secondary cell base station, so that after receiving the activation signaling, the terminal monitors a physical downlink control channel, a physical downlink shared channel, and a reference signal sent by the secondary cell base station of the secondary cell base station, And measuring channel state information of the secondary cell base station, and the like;
  • a second sending unit configured to send, after the notification unit, the secondary cell base station performs downlink channel detection on the unlicensed frequency band, to send the Activating signaling of the secondary cell base station, so that after receiving the activation signaling, the terminal monitors a physical downlink control channel, a physical downlink shared channel, and a reference signal sent by the secondary cell base station of the secondary cell base station, And measuring channel state information of the secondary cell base station, and the like;
  • a third sending unit configured to send the activation signaling of the secondary cell base station to the terminal after the notification unit notifies the secondary cell base station to perform uplink channel detection on the unlicensed frequency band, so that the After receiving the activation signaling, the terminal sends a sounding reference signal.
  • the notification unit is specifically configured to: detect whether the downlink channel of the secondary cell base station is idle, and pass the secondary cell base station when detecting that the downlink channel of the secondary cell base station is idle Sending a downlink reference signal, and notifying the terminal to perform uplink channel detection on the unlicensed frequency band.
  • the secondary cell base station may continue to send the reference signal based on the short control signaling (Short Control Signaling) to directly notify the terminal to perform detection when the primary cell base station determines that the terminal needs to perform uplink channel detection.
  • Short Control Signaling Short Control Signaling
  • the notification unit is further configured to:
  • a new media access layer control signaling including multiple indicator bits to notify the terminal to perform uplink channel detection, wherein each of the plurality of indicator bits corresponds to a secondary small a regional base station, where each indicator bit is used to indicate whether the terminal needs to detect an uplink channel of the secondary cell base station corresponding to each indicator bit;
  • a new physical downlink control signaling is defined to notify the terminal to detect an uplink channel of the designated secondary cell base station.
  • the notification unit is specifically configured to: notify, by using an interface between the primary cell base station and the secondary cell base station (such as an X2 interface), the secondary cell base station to perform uplink channel detection and/or Or downlink channel detection.
  • a base station comprising: a channel detection notification system when the LTE system according to any one of the foregoing technical solutions operates in an unlicensed frequency band.
  • the channel detection work when the LTE system works in the unlicensed frequency band is uniformly managed by the primary cell base station, thereby effectively reducing the delay of the channel detection by the secondary cell base station and/or the terminal, and improving the judgment channel.
  • the accuracy of the detection timing is beneficial to improve the resource utilization rate of the LTE system when operating in an unlicensed frequency band.
  • FIG. 1 is a schematic diagram showing an interference avoidance rule of a Wi-Fi system
  • FIG. 2 is a schematic diagram showing a frame structure based channel detection mechanism proposed in the related art
  • FIG. 3 is a schematic flow chart of a channel detection notification method when an LTE system applicable to a base station operates in an unlicensed band according to an embodiment of the present invention
  • FIG. 4 is a schematic block diagram of a channel detection notification system when an LTE system applicable to a base station operates in an unlicensed band according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a connection relationship between a primary serving base station and a secondary serving base station according to an embodiment of the present invention
  • FIG. 6 shows a schematic flow chart of a channel detecting method according to an embodiment of the present invention
  • FIG. 7 shows a schematic flow chart of a channel detecting method according to another embodiment of the present invention.
  • FIG. 8 shows a schematic flow chart of a channel detecting method according to still another embodiment of the present invention.
  • FIG. 3 is a schematic flow chart showing a channel detection notification method when an LTE system applicable to a base station operates in an unlicensed frequency band according to an embodiment of the present invention.
  • a channel detection notification method when an LTE system is applicable to a base station in an unlicensed frequency band includes: Step 302: A primary cell base station receives a plurality of unlicensed frequency bands reported by a terminal.
  • Step 304 selecting a secondary cell base station for the terminal according to the RRM measurement result of the multiple base stations; Step 306, if it is determined that the downlink traffic volume reaches the set first traffic volume threshold, the notification is The secondary cell base station performs downlink channel detection on the unlicensed frequency band; and if it is determined that the uplink traffic volume reaches the set second traffic volume threshold, notifying the secondary cell base station and/or the terminal in the non- Uplink channel detection is performed on the licensed frequency band.
  • the primary cell base station and/or the terminal triggers channel detection by the primary cell base station according to the size of the traffic volume, so that the communication when the LTE system works on the unlicensed frequency band is uniformly managed by the primary cell base station, and further
  • the delay of channel detection by the secondary cell base station and/or the terminal can be effectively reduced, and the accuracy of determining the channel detection timing can be improved, which is beneficial to improving the resource utilization rate of the LTE system when operating in the unlicensed frequency band.
  • the RRM Radio Resource Management
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the method for performing channel detection by the secondary cell base station and/or the terminal may be specified when the base station and/or the terminal is notified of the channel detection, and specifically, the secondary cell base station and/or the terminal are notified in the non-
  • the steps of performing channel detection on the licensed frequency band specifically include the following two methods:
  • Notifying the secondary cell base station and/or the terminal to repeatedly perform channel detection on the unlicensed frequency band at a fixed period That is, the secondary cell base station and/or the terminal is notified to perform channel detection by using a frame structure-based LBT mechanism.
  • the method further includes: sending a secondary cell to the terminal.
  • the adding instruction includes the secondary cell base station and And/or at least three of the start time of the channel detection and the following parameters: channel detection duration, channel detection period, maximum channel occupation time, and idle time; if the secondary cell base station and/or the terminal are notified And performing channel detection on the unlicensed frequency band when receiving the traffic to be transmitted, where the adding instruction includes a channel detection duration and a random number, where the secondary cell base station and/or the terminal are detected.
  • the step of determining, by the primary cell, whether the downlink traffic reaches the first traffic threshold, and determining whether the uplink traffic reaches the second traffic threshold includes:
  • the terminal When receiving the scheduling request (Scheduling Request) and/or the Buffer Status Report sent by the terminal, determining whether the uplink traffic of the activated serving cell of the terminal reaches the second traffic threshold .
  • the primary cell base station needs to send a corresponding instruction to the terminal to notify the terminal to take corresponding countermeasures, as follows:
  • the secondary cell base station after notifying the secondary cell base station to perform downlink channel detection on the unlicensed frequency band, sending, by the terminal, activation signaling of the secondary cell base station, After the terminal receives the activation signaling, the physical downlink control channel (PDCCH), the physical downlink shared channel (PDSCH), and the physical downlink shared channel (PDSCH) of the secondary cell base station are monitored.
  • a reference signal sent by the secondary cell base station, and measuring channel state information (CSI) of the secondary cell base station;
  • the step of notifying the terminal to perform uplink channel detection on the unlicensed frequency band is specifically: detecting whether the downlink channel of the secondary cell base station is idle, and detecting the secondary cell base station When the downlink channel is idle, the downlink reference signal is sent by the secondary cell base station, and the terminal is notified to perform uplink channel detection on the unlicensed frequency band.
  • the secondary cell base station may continue to send the reference signal based on the short control signaling (Short Control Signaling) to directly notify the terminal to perform detection when the primary cell base station determines that the terminal needs to perform uplink channel detection.
  • Short Control Signaling Short Control Signaling
  • the present invention also defines how to notify the terminal to perform uplink channel detection on the unlicensed frequency band, which specifically includes the following methods:
  • the terminal is implicitly notified by the activation signaling to perform uplink channel detection, and implicitly notifies the terminal to stop uplink channel detection by deactivating signaling.
  • the terminal is implicitly notified by the uplink grant signaling (ie, UL grant) sent to the terminal for uplink channel detection.
  • the uplink grant signaling ie, UL grant
  • Defining a new media access layer control signaling including multiple indication bits to notify the terminal to perform uplink channel detection, where each indicator bit of the multiple indicator bits corresponds to one secondary cell base station, Each indicator bit is used to indicate whether the terminal needs to pair each of the indication bits The uplink channel of the secondary cell to be detected is detected.
  • a new physical downlink control signaling is defined to notify the terminal to detect an uplink channel of the designated secondary cell base station.
  • the method for informing the secondary cell base station to perform the uplink channel detection and/or the downlink channel detection on the unlicensed frequency band is specifically as follows: the interface between the primary cell base station and the secondary cell base station (such as the X2 interface) is notified.
  • the secondary cell base station performs uplink channel detection and/or downlink channel detection.
  • FIG. 4 is a schematic block diagram of a channel detection notification system when an LTE system suitable for a base station operates in an unlicensed frequency band, according to an embodiment of the present invention.
  • the channel detection notification system 400 when the LTE system is applicable to the base station in the unlicensed frequency band includes: a receiving unit 402, configured to receive, by the primary cell base station, the non-authorized a RRM measurement result for a plurality of base stations in the frequency band; a selecting unit 404, configured to select a secondary cell base station for the terminal according to the RRM measurement result of the multiple base stations; and a notification unit 406, configured to determine that the downlink traffic volume is set Notifying the secondary cell base station to perform downlink channel detection on the unlicensed frequency band, and configured to notify the secondary cell when determining that the uplink traffic volume reaches the set second traffic volume threshold The base station and/or the terminal perform uplink channel detection on the unlicensed frequency band.
  • the primary cell base station and/or the terminal triggers channel detection by the primary cell base station according to the size of the traffic volume, so that the communication when the LTE system works on the unlicensed frequency band is uniformly managed by the primary cell base station, and further
  • the delay of channel detection by the secondary cell base station and/or the terminal can be effectively reduced, and the accuracy of determining the channel detection timing can be improved, which is beneficial to improving the resource utilization rate of the LTE system when operating in the unlicensed frequency band.
  • the RRM Radio Resource Management
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the method for performing channel detection by the secondary cell base station and/or the terminal may be specified when the base station and/or the terminal is notified of the channel detection, and specifically, the secondary cell base station and/or the terminal are notified in the non- Channel detection on the licensed frequency band includes the following two methods:
  • the notification unit 406 is specifically configured to: notify the secondary cell base station and/or the terminal to repeatedly perform channel detection on the unlicensed frequency band in a fixed period. That is, the secondary cell base station and/or the terminal is notified to perform channel detection by using a frame structure-based LBT mechanism.
  • the notification unit 406 is specifically configured to: notify the secondary cell base station and/or the terminal to perform channel detection on the unlicensed frequency band when receiving the traffic volume to be transmitted. That is, the secondary cell base station and/or the terminal is notified to perform channel detection using a load-based LBT mechanism.
  • the method further includes: a first sending unit 408, configured to: after the selecting unit 404 selects the secondary cell base station for the terminal, notify the secondary cell at the notification unit 406 Before the base station and/or the terminal performs channel detection, the terminal adds an addition instruction of the secondary cell base station to notify the terminal that the terminal provides communication service by the secondary cell base station.
  • a first sending unit 408 configured to: after the selecting unit 404 selects the secondary cell base station for the terminal, notify the secondary cell at the notification unit 406 Before the base station and/or the terminal performs channel detection, the terminal adds an addition instruction of the secondary cell base station to notify the terminal that the terminal provides communication service by the secondary cell base station.
  • the primary cell base station can determine whether the downlink traffic volume reaches the first traffic volume threshold.
  • the determining unit 410 is configured to determine, when receiving the scheduling request and/or the buffer status report sent by the terminal, whether the uplink traffic of the serving cell that the terminal has activated is The second traffic threshold is reached.
  • the primary cell base station needs to notify the terminal after notifying the secondary cell base station to perform channel detection. Send the corresponding instruction to inform the terminal to take corresponding countermeasures, as follows:
  • the method further includes: a second sending unit 412, configured to: after the notification unit 406 notifies the secondary cell base station to perform downlink channel detection on the unlicensed frequency band, send the signal to the terminal The activation signaling of the secondary cell base station, so that after receiving the activation signaling, the terminal monitors a physical downlink control channel, a physical downlink shared channel, and a reference sent by the secondary cell base station of the secondary cell base station. Signaling, and measuring channel state information of the secondary cell base station, etc.;
  • the third sending unit 414 is configured to: after the notification unit 406 notifies the secondary cell base station to perform uplink channel detection on the unlicensed frequency band, send the activation signaling of the secondary cell base station to the terminal, so that After receiving the activation signaling, the terminal sends a sounding reference signal.
  • the notification unit 406 is specifically configured to: detect whether the downlink channel of the secondary cell base station is idle, and pass the secondary cell when detecting that the downlink channel of the secondary cell base station is idle.
  • the base station sends a downlink reference signal, and notifies the terminal to perform uplink channel detection on the unlicensed frequency band.
  • the secondary cell base station may continue to send the reference signal based on the short control signaling (Short Control Signaling) to directly notify the terminal to perform detection when the primary cell base station determines that the terminal needs to perform uplink channel detection.
  • Short Control Signaling Short Control Signaling
  • the notification unit 406 is further used to:
  • Defining a new media access layer control signaling including multiple indication bits to notify the terminal to perform uplink channel detection, where each indicator bit of the multiple indicator bits corresponds to one secondary cell base station, Each indicator bit is used to indicate whether the terminal needs to detect an uplink channel of the secondary cell base station corresponding to each indicator bit; or
  • a new physical downlink control signaling is defined to notify the terminal to detect an uplink channel of the designated secondary cell base station.
  • the notification unit 406 is specifically configured to: notify, by using an interface between the primary cell base station and the secondary cell base station (such as an X2 interface), the secondary cell base station to perform uplink channel detection and / or downlink channel detection.
  • the present invention also proposes a base station (not shown), including: a channel detection notification system 400 when the LTE system operates in an unlicensed frequency band as shown in FIG.
  • the present invention is mainly directed to a trigger condition for channel detection on an unlicensed spectrum and a trigger signaling procedure, and proposes a method for controlling channel detection by a primary serving base station (ie, the above-described primary cell base station) based on the following three cases:
  • Case 1 the secondary serving base station (ie, the secondary cell base station described above) performs downlink channel detection;
  • Case 2 The secondary serving base station performs uplink channel detection
  • Case 3 The terminal performs uplink channel detection.
  • the above three cases respectively include an LBT mechanism based on frame-based architecture (FBE) and an LBT mechanism based on load-based (LBE).
  • FBE frame-based architecture
  • LBE load-based
  • the terminal performs RRM measurement on the unlicensed spectrum and reports the measurement result under the control of the Pcell (primary cell).
  • the primary serving base station PeNB, primary eNB
  • the primary serving base station sends RRC signaling to the terminal to add a cell with a large RSRP/RSRQ value on the unlicensed spectrum as the Scell of the terminal, based on the RRM measurement result of the terminal on the unlicensed spectrum.
  • the RRC signaling needs to include the channel detection start time of the FBE-based LBT mechanism on the Scell when the Scell adds the command to the terminal. Detection time length, CCA detection time repetition period, maximum channel occupation time, and idle time. If the secondary serving base station uses the LBE-based LBT mechanism, the RRC signaling needs to include the CCA detection time length of the LBE-based LBT mechanism on the Scell and the N in the CCA when the RRC signaling sends the Scell add instruction to the terminal (ie, N) value, maximum channel occupancy time, and idle time as described in the above scheme.
  • the primary serving base station determines whether the downlink service is excessive. If the service is excessive and the unlicensed spectrum resource is not used, channel detection on the unlicensed spectrum is started. It is possible that other terminals are already served by the Scell before the terminal adds the Scell, so the primary serving base station has already started channel detection on the unlicensed spectrum; it is also possible that the terminal is the first terminal to add the Scell, then the primary service at this time
  • the base station informs the secondary serving base station to start channel detection on the unlicensed spectrum.
  • the primary serving base station needs to notify the base station where the Scell is located on the unlicensed spectrum through an interface between the base stations (such as an X2 interface). Channel detection.
  • the terminal After the secondary service base station starts channel detection on the unlicensed spectrum, the terminal sends the Scell activation signaling (MAC signaling, Scell activation) to the terminal, and after receiving the activation signaling, the terminal starts monitoring the PDCCH of the Scell (if Yes), PDSCH, measurement of CSI, and monitoring of reference signals.
  • Scell activation signaling MAC signaling, Scell activation
  • the terminal performs RRM measurement on the unlicensed spectrum and reports the measurement result under the control of the Pcell (primary cell).
  • the primary serving base station PeNB, primary eNB
  • the primary serving base station sends RRC signaling to the terminal to add a cell with a large RSRP/RSRQ value on the unlicensed spectrum as the Scell of the terminal, based on the RRM measurement result of the terminal on the unlicensed spectrum.
  • the RRC signaling needs to include the channel detection start time of the FBE-based LBT mechanism on the Scell when the Scell adds the command to the terminal. Detection time length, CCA detection time repetition period, maximum channel occupation time, and idle time. If the secondary serving base station uses the LBE-based LBT mechanism, the RRC signaling needs to include the CCA detection time length of the LBE-based LBT mechanism on the Scell, and the N in the CCA (that is, in the above solution) N) value, maximum channel occupancy time, and idle time.
  • the scheduling request (Scheduling Request) and/or the Buffer Status Report are sent on the serving cell where the PUCCH (Physical Uplink Control Channel) is configured.
  • PUCCH Physical Uplink Control Channel
  • the serving cell that is configured with the PUCCH After receiving the scheduling request signaling and/or the buffer status report sent by the terminal, if the serving cell that is configured with the PUCCH considers that there are more uplink services, it determines whether the unlicensed spectrum uplink channel detection has been triggered. Then, if the terminal is in a dual connectivity (Dual Connectivity, DC) relationship with the primary serving base station and the base station where the Scell is located, the primary serving base station needs to notify the base station where the Scell is located to start the unlicensed spectrum through an interface between the base stations, such as an X2 interface. Channel detection on the above, as shown in Figure 5.
  • DC Dual Connectivity
  • the base station After the secondary serving base station starts the uplink channel detection on the unlicensed spectrum, the base station sends the Scell activation signaling (Scell activation) to the terminal, and after receiving the activation signaling, the terminal starts to send the sounding on the Scell. Reference signal, etc.
  • Scell activation Scell activation signaling
  • FIG. 6 A processing flow chart in this case is shown in FIG. 6.
  • a channel detecting method includes:
  • step 602 the Scell on the unlicensed spectrum is added to the terminal.
  • step 604 the terminal has a load arriving, that is, the terminal has a service to be processed.
  • Step 606 The terminal sends an SR (Scheduling Request) and/or a BSR (Buffer Status Report) on the PUCCH of the serving cell.
  • SR Service Request
  • BSR Buffer Status Report
  • Step 608 The primary serving base station determines whether the uplink service is excessive. If yes, step 610 is performed.
  • step 610 the primary serving base station triggers uplink channel detection on the unlicensed spectrum.
  • Step 612 The primary serving base station sends the activation signaling of the Scell to the terminal.
  • FIG. 1 Another processing flow chart in this case is shown in FIG. 1
  • a channel detecting method includes:
  • step 702 the Scell on the unlicensed spectrum is added to the terminal.
  • Step 704 When the terminal arrives, the terminal sends an SR (Scheduling Request) and/or a BSR (Buffer Status Report) on the PUCCH of the serving cell.
  • SR Service Request
  • BSR Buffer Status Report
  • Step 706 The primary serving base station determines whether the uplink service is excessive, and when the determination is excessive, triggers the uplink channel detection of the secondary serving base station on the unlicensed spectrum (through the X2 structure).
  • step 708 the secondary serving base station turns on channel state detection.
  • Step 710 The primary serving base station sends the activation signaling of the Scell to the terminal.
  • the terminal performs RRM measurement on the unlicensed spectrum and reports the measurement result under the control of the Pcell (primary cell).
  • the primary serving base station PeNB, primary eNB
  • the primary serving base station sends RRC signaling to the terminal to add a cell with a large RSRP/RSRQ value on the unlicensed spectrum as the Scell of the terminal, based on the RRM measurement result of the terminal on the unlicensed spectrum.
  • the RRC signaling needs to include the channel detection start time of the FBE-based LBT mechanism and the length of the CCA detection time when the RRC signaling sends the Scell add command to the terminal.
  • the CCA detects the time repetition period, the maximum channel occupation time, and the idle time.
  • the RRC signaling needs to include the CCA detection time length of the LBE-based LBT mechanism and the N in the CCA (that is, the N described in the above scheme) when the RRC signaling sends the Scell add instruction to the terminal. Value, maximum channel occupancy time, and idle time.
  • the scheduling request (Scheduling Request) and/or the Buffer Status Report are sent on the serving cell where the PUCCH (Physical Uplink Control Channel) is configured.
  • PUCCH Physical Uplink Control Channel
  • the serving cell configured with the PUCCH After receiving the scheduling request signaling and the buffer status report of the terminal, the serving cell configured with the PUCCH sends the uplink channel detection trigger signaling to the terminal if it considers that there are more uplink services.
  • the signaling design scheme has the following ways:
  • Manner 1 The Scell activation signaling is multiplexed, indicating that the uplink channel detection needs to be performed; and the uplink channel detection is terminated by the Scell deactivation signaling implicit indication.
  • Manner 2 multiplexing UL grant signaling, which uses the Cross Carrier Scheduling to directly allocate uplink resources on the unlicensed spectrum to the terminal, indicating that uplink channel detection is required.
  • the new MAC signaling can be defined, that is, similar to the Scell activation signaling, each Scell corresponds to one bit, and the bit is '1', the identifier triggers the uplink channel detection, and multiple triggers can be triggered at the same time. Scell.
  • the DCI signaling on the new PDCCH can be defined, that is, similar to Cross Carrier Scheduling, indicating that an Scell triggers uplink channel detection. Only one Scell can be triggered at the same time.
  • the base station may select a time position for the terminal to perform uplink channel detection according to a specific situation, for example, selecting a time when the Scell has no downlink service, and a time when the other terminal in the Scell has no uplink service, etc., to avoid false positives.
  • the terminal After receiving the uplink channel detection trigger signaling, if the terminal is based on FBE, it monitors the uplink channel at the next CCA detection time; if it is based on LBE, it immediately performs uplink channel detection.
  • the downlink reference signal is transmitted based on Short Control Signaling, there is no need to wait for the channel to be idle.
  • the downlink reference signal is sent only when the channel is available, in this case, it is necessary to determine whether the current downlink channel of the base station is available, whether the downlink reference signal is being transmitted, and if the base station currently detects that the channel is busy and cannot send the downlink reference signal, it does not send.
  • the uplink channel detection triggers signaling to the terminal. Because the downlink reference signal is used for terminal downlink time-frequency synchronization, after the time-frequency synchronization, the terminal can obtain the uplink transmission time. Therefore, in this case, it is equivalent to transmitting the uplink channel detection trigger signaling to the terminal only when the base station detects that the current downlink channel is available. That is to say, only when the uplink and downlink channels are idle, the uplink transmission can be performed.
  • FIG. 1 A processing flow chart in this case is shown in FIG.
  • a channel detecting method includes:
  • step 802 the Scell on the unlicensed spectrum is added to the terminal.
  • step 804 the terminal has a load arriving, that is, the terminal has a service to be processed.
  • Step 806 The terminal sends an SR (Scheduling Request) and/or a BSR (Buffer Status Report) on the PUCCH of the serving cell.
  • SR Service Request
  • BSR Buffer Status Report
  • Step 808 The primary serving base station determines whether the uplink service is excessive. If yes, step 810 is performed; otherwise, step 814 is performed.
  • Step 810 The primary serving base station sends uplink channel detection trigger signaling on the unlicensed spectrum to the terminal.
  • step 812 the terminal performs uplink channel detection on the unlicensed spectrum.
  • step 814 the primary serving base station allocates uplink channel resources on the existing serving cell to the terminal.
  • the above technical solution of the present invention mainly designs the trigger channel detection controlled by the primary serving base station. Condition and trigger signaling flow.
  • the communication of the LTE system on the unlicensed spectrum is controlled by the base station, and the false positives and delays can be reduced, and the resource utilization rate on the unlicensed spectrum is further improved.
  • the present invention proposes a channel detection notification scheme when a new LTE system operates in an unlicensed frequency band, so that the channel detection work when the LTE system works on an unlicensed frequency band is
  • the primary cell base station is uniformly managed, thereby effectively reducing the delay of channel detection by the secondary cell base station and/or the terminal, and improving the accuracy of determining the channel detection timing, thereby improving the resource usage of the LTE system when operating in the unlicensed frequency band. rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种LTE系统在非授权频段工作时的信道检测通知方法、系统和基站,其中,信道检测通知方法,包括:主小区基站接收终端上报的在非授权频段上对多个基站的RRM测量结果;根据多个基站的RRM测量结果,为终端选择辅小区基站;若确定下行业务量达到设定的第一业务量阈值,则通知辅小区基站进行下行信道检测;若确定上行业务量达到设定的第二业务量阈值,则通知辅小区基站和/或终端进行上行信道检测。本发明使得LTE系统在非授权频段上工作时的信道检测工作均由主小区基站统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。

Description

信道检测通知方法、系统和基站
本申请要求于2015年1月12日提交中国专利局、申请号为201510014487.3,发明名称为“信道检测通知方法、系统和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体而言,涉及一种LTE系统在非授权频段工作时的信道检测通知方法、一种LTE系统在非授权频段工作时的信道检测通知系统和一种基站。
背景技术
随着通信业务量的急剧增加,3GPP的授权频谱越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用率,3GPP正讨论如何在授权频谱的帮助下使用未授权频谱,如2.4GHz和5GHz频段。这些未授权频谱目前主要是Wi-Fi、蓝牙、雷达、医疗等系统在使用。
通常情况下,为已授权频段设计的接入技术,如LTE(Long Term Evolution,长期演进)不适合在未授权频段上使用,因为LTE这类接入技术对频谱效率和用户体验优化的要求非常高。然而,载波聚合(Carrier Aggregation,CA)功能让将LTE部署于非授权频段变为可能。3GPP提出了LAA(LTE Assisted Access,LTE辅助接入)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(SDL,Supplemental Downlink),即只有下行传输子帧;另一种是TDD模式,既包含下行子帧、也包含上行子帧。补充下行这种情况只能是借助载波聚合技术使用。而TDD模式除了可以借助载波聚合技术使用外,还可以借助DC(Dual Connectivity,双连通)使用,也可以独立使用。
相比于Wi-Fi系统,工作在未授权频段的LTE系统有能力提供更高的频谱效率和更大的覆盖效果,同时基于同一个核心网让数据流量在授权频段和未授权频段之间无缝切换。对用户来说,这意味着更好的宽带体验、更高的速率、更好的稳定性和移动便利。
现有的在非授权频谱上使用的接入技术,如Wi-Fi,具有较弱的抗干扰能力。为了避免干扰,Wi-Fi系统设计了很多干扰避免规则,如CSMA/CD(Carrier Sense Multiple Access/Collision Detection,载波监听多路访问/冲突检测方法),这种方法的基本原理是Wi-Fi的AP(Access Point,接入点)或者终端在发送信令或者数据之前,要先监听检测周围是否有其他AP或者其他终端在发送/接收信令或数据,若有,则继续监听,直到监听到没有为止;若没有,则生成一个随机数作为退避时间,在这个退避时间内,如果没检测到有信令或数据传输,那么在退避时间结束之后,AP或终端可以开始发送信令或数据。该过程如图1所示。
但是,LTE网络中由于有很好的正交性保证了干扰水平,所以基站与用户的上下行传输不用考虑周围是否有其他基站或其他用户在传输数据。如果LTE在非授权频段上使用时也不考虑周围是否有其他设备在使用非授权频段,那么将对Wi-Fi设备带来极大的干扰。因为LTE只要有业务就进行传输,没有任何监听规则,那么Wi-Fi设备在LTE有业务传输时就不能传输,只能等到LTE业务传输完成,才能检测到信道空闲状态以进行数据传输。
可见,LTE网络在使用非授权频段时,最主要的关键点之一是确保LAA能够在公平友好的基础上和现有的接入技术(比如Wi-Fi)共存。而传统的LTE系统中没有LBT(Listen Before Talk,先听后说)的机制来避免碰撞,为了与Wi-Fi更好的共存,LTE系统需要一种LBT机制。
而目前已布局的LBT机制主要包括:即基于帧结构的LBT机制和基于负载的LBT机制,具体方案如下:
基于帧结构的LBT机制,如图2所示,LBT的周期是固定的,CCA(Channel Clear Assessment,信道空闲检测,与LBT意思相同)的时间是每个周期的最开始。若在LTE帧结构中,以10ms为周期,CCA占用#0子帧的最前面的1个或多个symbol(符号)。在这种固定周期的结构下,只有#0号子帧才能做CCA,如果业务在#1号子帧到达,也必须等到下一个周期的#0号子帧进行CCA之后,才能判断信道是否可以占用,从而带来很大的延时。
基于负载的LBT机制,主要原理是在负载到达时,马上进行信道检测,如果检测信道空闲,则马上发送数据业务;如果检测信道忙,则随机选择一个数N,在接下来的信道检测时间内,若检测到信道忙,则N不变,若检测到信道闲,则N-1,当N减为0时,则可以发送数据。
但是,当非授权频谱被添加为Scell(Secondary Cell,辅服务小区)后,什么时候开始进行信道检测,这个应该是受Pcell(Primary Cell,主服务小区)控制的。而如何定义主小区基站触发辅小区基站进行非授权频谱上的信道检测或是触发终端进行非授权频谱上的信道检测的触发条件以及触发信令流程成为亟待解决的技术问题。
发明内容
本发明正是基于上述技术问题至少之一,提出了一种新的LTE系统在非授权频段工作时的信道检测通知方案,使得LTE系统在非授权频段上工作时的信道检测工作均由主小区基站统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。
有鉴于此,本发明提出了一种适用于基站的LTE系统在非授权频段工作时的信道检测通知方法,包括:主小区基站接收终端上报的在非授权频段上对多个基站的RRM测量结果;根据所述多个基站的RRM测量结果,为所述终端选择辅小区基站;若确定下行业务量达到设定的第一业务量阈值,则通知所述辅小区基站在所述非授权频段上进行下行信道检测;以及若确定上行业务量达到设定的第二业务量阈值,则通知所述辅小区基站和/或所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,通过由主小区基站根据业务量的大小触发辅小区基站和/或终端进行信道检测,使得LTE系统在非授权频段上工作时的通信均由主小区基站进行统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。
其中,RRM(Radio Resource Management,无线资源管理)包括RSRP (Reference Signal Receiving Power,参考信号接收功率)和RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
其中,在通知辅小区基站和/或终端进行信道检测时,可以指定辅小区基站和/或终端进行信道检测的方式,具体地,通知所述辅小区基站和/或所述终端在所述非授权频段上进行信道检测的步骤具体包括以下两种方式:
方式一:
通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测。即通知辅小区基站和/或终端采用基于帧结构的LBT机制进行信道检测。
方式二:
通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测。即通知辅小区基站和/或终端采用基于负载的LBT机制进行信道检测。
在上述技术方案中,优选地,为所述终端选择所述辅小区基站之后,并在通知所述辅小区基站和/或所述终端进行信道检测之前,还包括:向所述终端发送辅小区基站的添加指令,以通知所述终端由所述辅小区基站提供通信服务。
在上述技术方案中,优选地,若通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测,则所述添加指令包括所述辅小区基站和/或所述终端进行信道检测的起始时间和以下参数中的至少三个:信道检测时长、信道检测周期、最大信道占用时间和空闲时间;若通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测,则所述添加指令包括信道检测时长和随机数,其中,所述辅小区基站和/或所述终端在检测到信道忙时,选择所述随机数,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N=N-1,直到N值为0时,确定可以传输数据。
此外,主小区基站可以自行判断下行业务量是否达到所述第一业务量阈值,而判断上行业务量是否达到所述第二业务量阈值的步骤包括:
在接收到所述终端发送的调度请求(Scheduling Request)和/或缓存状 态报告(Buffer Status Report)时,判断所述终端的已激活的服务小区的上行业务量是否达到所述第二业务量阈值。
同时,主小区基站在通知辅小区基站进行信道检测之后,需要向终端发送相应的指令,以通知终端采取相应的应对措施,具体如下所述:
在上述技术方案中,优选地,在通知所述辅小区基站在所述非授权频段上进行下行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,监测所述辅小区基站的物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和所述辅小区基站发送的参考信号,并测量所述辅小区基站的信道状态信息(Channel State Information,CSI);以及
在通知所述辅小区基站在所述非授权频段上进行上行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,发送探测参考信号。
在上述技术方案中,优选地,通知所述终端在所述非授权频段上进行上行信道检测的步骤具体为:检测所述辅小区基站的下行信道是否空闲,并在检测到所述辅小区基站的下行信道空闲时,通过所述辅小区基站发送下行参考信号,并通知所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,定义了如何通知终端进行上行信道的检测,即在辅小区基站的下行信道空闲时才进行发送,否则不进行发送。此外,辅小区基站还可以基于短控制信令(Short Control Signaling)持续发送参考信号,以在主小区基站确定需要终端进行上行信道检测时,直接通知终端进行检测。
另外,本发明也定义了如何通知终端在所述非授权频段上进行上行信道检测,具体包括以下几种方式:
方式一:
通过所述激活信令隐式通知所述终端进行上行信道检测,并通过去激活信令隐式通知所述终端停止进行上行信道检测。
方式二:
通过向所述终端发送的上行授权信令(即UL grant)隐式通知所述终端进行上行信道检测。
方式三:
定义新的包含多个指示位的媒体接入层控制信令,以通知所述终端进行上行信道检测,其中,所述多个指示位中的每个指示位对应于一个辅小区基站,所述每个指示位用于指示所述终端是否需要对所述每个指示位对应的辅小区基站的上行信道进行检测。
方式四:
定义新的物理下行控制信令,以通知所述终端对指定辅小区基站的上行信道进行检测。
本发明定义的通知辅小区基站在非授权频段上进行上行信道检测和/或下行信道检测的方式具体为:通过所述主小区基站与所述辅小区基站之间的接口(如X2接口)通知所述辅小区基站进行上行信道检测和/或下行信道检测。
根据本发明的另一方面,还提出了一种适用于基站的LTE系统在非授权频段工作时的信道检测通知系统,包括:接收单元,用于主小区基站接收终端上报的在非授权频段上对多个基站的RRM测量结果;选择单元,用于根据所述多个基站的RRM测量结果,为所述终端选择辅小区基站;通知单元,用于在确定下行业务量达到设定的第一业务量阈值时,通知所述辅小区基站在所述非授权频段上进行下行信道检测,并用于在确定上行业务量达到设定的第二业务量阈值时,通知所述辅小区基站和/或所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,通过由主小区基站根据业务量的大小触发辅小区基站和/或终端进行信道检测,使得LTE系统在非授权频段上工作时的通信均由主小区基站进行统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。
其中,RRM(Radio Resource Management,无线资源管理)包括RSRP(Reference Signal Receiving Power,参考信号接收功率)和RSRQ (Reference Signal Receiving Quality,参考信号接收质量)。
其中,在通知辅小区基站和/或终端进行信道检测时,可以指定辅小区基站和/或终端进行信道检测的方式,具体地,通知所述辅小区基站和/或所述终端在所述非授权频段上进行信道检测具体包括以下两种方式:
方式一:
所述通知单元具体用于:通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测。即通知辅小区基站和/或终端采用基于帧结构的LBT机制进行信道检测。
方式二:
所述通知单元具体用于:通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测。即通知辅小区基站和/或终端采用基于负载的LBT机制进行信道检测。
在上述技术方案中,优选地,还包括:第一发送单元,用于在所述选择单元为所述终端选择所述辅小区基站之后,并在所述通知单元通知所述辅小区基站和/或所述终端进行信道检测之前,向所述终端发送辅小区基站的添加指令,以通知所述终端由所述辅小区基站提供通信服务。
在上述技术方案中,优选地,若所述通知单元通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测,则所述添加指令包括所述辅小区基站和/或所述终端进行信道检测的起始时间和以下参数中的至少三个:信道检测时长、信道检测周期、最大信道占用时间和空闲时间;若所述通知单元通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测,则所述添加指令包括信道检测时长和随机数,其中,所述辅小区基站和/或所述终端在检测到信道忙时,选择所述随机数,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N=N-1,直到N值为0时,确定可以传输数据。
此外,主小区基站可以自行判断下行业务量是否达到所述第一业务量阈值。
在上述技术方案中,优选地,还包括:判断单元,用于在接收到所述 终端发送的调度请求和/或缓存状态报告时,判断所述终端已激活的服务小区的上行业务量是否达到所述第二业务量阈值。
同时,主小区基站在通知辅小区基站进行信道检测之后,需要向终端发送相应的指令,以通知终端采取相应的应对措施,具体如下所述:
在上述技术方案中,优选地,还包括:第二发送单元,用于在所述通知单元通知所述辅小区基站在所述非授权频段上进行下行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,监测所述辅小区基站的物理下行控制信道、物理下行共享信道和所述辅小区基站发送的参考信号,并测量所述辅小区基站的信道状态信息等;以及
第三发送单元,用于在所述通知单元通知所述辅小区基站在所述非授权频段上进行上行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,发送探测参考信号。
在上述技术方案中,优选地,所述通知单元具体用于:检测所述辅小区基站的下行信道是否空闲,并在检测到所述辅小区基站的下行信道空闲时,通过所述辅小区基站发送下行参考信号,并通知所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,定义了如何通知终端进行上行信道的检测,即在辅小区基站的下行信道空闲时才进行发送,否则不进行发送。此外,辅小区基站还可以基于短控制信令(Short Control Signaling)持续发送参考信号,以在主小区基站确定需要终端进行上行信道检测时,直接通知终端进行检测。
在上述技术方案中,优选地,所述通知单元具体还用于:
通过所述激活信令隐式通知所述终端进行上行信道检测,并通过去激活信令隐式通知所述终端停止进行上行信道检测;或
通过向所述终端发送的上行授权信令隐式通知所述终端进行上行信道检测;或
定义新的包含多个指示位的媒体接入层控制信令,以通知所述终端进行上行信道检测,其中,所述多个指示位中的每个指示位对应于一个辅小 区基站,所述每个指示位用于指示所述终端是否需要对所述每个指示位对应的辅小区基站的上行信道进行检测;或
定义新的物理下行控制信令,以通知所述终端对指定辅小区基站的上行信道进行检测。
在上述技术方案中,优选地,所述通知单元具体用于:通过所述主小区基站与所述辅小区基站之间的接口(如X2接口)通知所述辅小区基站进行上行信道检测和/或下行信道检测。
根据本发明的又一方面,还提出了一种基站,包括:如上述任一项技术方案中所述的LTE系统在非授权频段工作时的信道检测通知系统。
通过以上技术方案,使得LTE系统在非授权频段上工作时的信道检测工作均由主小区基站统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。
附图说明
图1示出了Wi-Fi系统的干扰避免规则的示意图;
图2示出了相关技术中提出的基于帧结构的信道检测机制的示意图;
图3示出了根据本发明的实施例的适用于基站的LTE系统在非授权频段工作时的信道检测通知方法的示意流程图;
图4示出了根据本发明的实施例的适用于基站的LTE系统在非授权频段工作时的信道检测通知系统的示意框图;
图5示出了根据本发明的实施例的主服务基站和辅服务基站之间的连接关系示意图;
图6示出了根据本发明的一个实施例的信道检测方法的示意流程图;
图7示出了根据本发明的另一个实施例的信道检测方法的示意流程图;
图8示出了根据本发明的又一个实施例的信道检测方法的示意流程图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图3示出了根据本发明的实施例的适用于基站的LTE系统在非授权频段工作时的信道检测通知方法的示意流程图。
如图3所示,根据本发明的实施例的适用于基站的LTE系统在非授权频段工作时的信道检测通知方法,包括:步骤302,主小区基站接收终端上报的在非授权频段上对多个基站的RRM测量结果;步骤304,根据所述多个基站的RRM测量结果,为所述终端选择辅小区基站;步骤306,若确定下行业务量达到设定的第一业务量阈值,则通知所述辅小区基站在所述非授权频段上进行下行信道检测;以及若确定上行业务量达到设定的第二业务量阈值,则通知所述辅小区基站和/或所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,通过由主小区基站根据业务量的大小触发辅小区基站和/或终端进行信道检测,使得LTE系统在非授权频段上工作时的通信均由主小区基站进行统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。
其中,RRM(Radio Resource Management,无线资源管理)包括RSRP(Reference Signal Receiving Power,参考信号接收功率)和RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
其中,在通知辅小区基站和/或终端进行信道检测时,可以指定辅小区基站和/或终端进行信道检测的方式,具体地,通知所述辅小区基站和/或所述终端在所述非授权频段上进行信道检测的步骤具体包括以下两种方式:
方式一:
通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测。即通知辅小区基站和/或终端采用基于帧结构的LBT机制进行信道检测。
方式二:
通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测。即通知辅小区基站和/或终端采用基于负载的LBT机制进行信道检测。
在上述技术方案中,优选地,为所述终端选择所述辅小区基站之后,并在通知所述辅小区基站和/或所述终端进行信道检测之前,还包括:向所述终端发送辅小区基站的添加指令,以通知所述终端由所述辅小区基站提供通信服务。
在上述技术方案中,优选地,若通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测,则所述添加指令包括所述辅小区基站和/或所述终端进行信道检测的起始时间和以下参数中的至少三个:信道检测时长、信道检测周期、最大信道占用时间和空闲时间;若通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测,则所述添加指令包括信道检测时长和随机数,其中,所述辅小区基站和/或所述终端在检测到信道忙时,选择所述随机数,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N=N-1,直到N值为0时,确定可以传输数据。
此外,主小区基站可以自行判断下行业务量是否达到所述第一业务量阈值,而判断上行业务量是否达到所述第二业务量阈值的步骤包括:
在接收到所述终端发送的调度请求(Scheduling Request)和/或缓存状态报告(Buffer Status Report)时,判断所述终端的已激活的服务小区的上行业务量是否达到所述第二业务量阈值。
同时,主小区基站在通知辅小区基站进行信道检测之后,需要向终端发送相应的指令,以通知终端采取相应的应对措施,具体如下所述:
在上述技术方案中,优选地,在通知所述辅小区基站在所述非授权频段上进行下行信道检测之后,向所述终端发送所述辅小区基站的激活信令, 以使所述终端在接收到所述激活信令后,监测所述辅小区基站的物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和所述辅小区基站发送的参考信号,并测量所述辅小区基站的信道状态信息(Channel State Information,CSI);以及
在通知所述辅小区基站在所述非授权频段上进行上行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,发送探测参考信号。
在上述技术方案中,优选地,通知所述终端在所述非授权频段上进行上行信道检测的步骤具体为:检测所述辅小区基站的下行信道是否空闲,并在检测到所述辅小区基站的下行信道空闲时,通过所述辅小区基站发送下行参考信号,并通知所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,定义了如何通知终端进行上行信道的检测,即在辅小区基站的下行信道空闲时才进行发送,否则不进行发送。此外,辅小区基站还可以基于短控制信令(Short Control Signaling)持续发送参考信号,以在主小区基站确定需要终端进行上行信道检测时,直接通知终端进行检测。
另外,本发明也定义了如何通知终端在所述非授权频段上进行上行信道检测,具体包括以下几种方式:
方式一:
通过所述激活信令隐式通知所述终端进行上行信道检测,并通过去激活信令隐式通知所述终端停止进行上行信道检测。
方式二:
通过向所述终端发送的上行授权信令(即UL grant)隐式通知所述终端进行上行信道检测。
方式三:
定义新的包含多个指示位的媒体接入层控制信令,以通知所述终端进行上行信道检测,其中,所述多个指示位中的每个指示位对应于一个辅小区基站,所述每个指示位用于指示所述终端是否需要对所述每个指示位对 应的辅小区基站的上行信道进行检测。
方式四:
定义新的物理下行控制信令,以通知所述终端对指定辅小区基站的上行信道进行检测。
本发明定义的通知辅小区基站在非授权频段上进行上行信道检测和/或下行信道检测的方式具体为:通过所述主小区基站与所述辅小区基站之间的接口(如X2接口)通知所述辅小区基站进行上行信道检测和/或下行信道检测。
图4示出了根据本发明的实施例的适用于基站的LTE系统在非授权频段工作时的信道检测通知系统的示意框图。
如图4所示,根据本发明的实施例的适用于基站的LTE系统在非授权频段工作时的信道检测通知系统400,包括:接收单元402,用于主小区基站接收终端上报的在非授权频段上对多个基站的RRM测量结果;选择单元404,用于根据所述多个基站的RRM测量结果,为所述终端选择辅小区基站;通知单元406,用于在确定下行业务量达到设定的第一业务量阈值时,通知所述辅小区基站在所述非授权频段上进行下行信道检测,并用于在确定上行业务量达到设定的第二业务量阈值时,通知所述辅小区基站和/或所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,通过由主小区基站根据业务量的大小触发辅小区基站和/或终端进行信道检测,使得LTE系统在非授权频段上工作时的通信均由主小区基站进行统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。
其中,RRM(Radio Resource Management,无线资源管理)包括RSRP(Reference Signal Receiving Power,参考信号接收功率)和RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
其中,在通知辅小区基站和/或终端进行信道检测时,可以指定辅小区基站和/或终端进行信道检测的方式,具体地,通知所述辅小区基站和/或所述终端在所述非授权频段上进行信道检测具体包括以下两种方式:
方式一:
所述通知单元406具体用于:通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测。即通知辅小区基站和/或终端采用基于帧结构的LBT机制进行信道检测。
方式二:
所述通知单元406具体用于:通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测。即通知辅小区基站和/或终端采用基于负载的LBT机制进行信道检测。
在上述技术方案中,优选地,还包括:第一发送单元408,用于在所述选择单元404为所述终端选择所述辅小区基站之后,并在所述通知单元406通知所述辅小区基站和/或所述终端进行信道检测之前,向所述终端发送辅小区基站的添加指令,以通知所述终端由所述辅小区基站提供通信服务。
在上述技术方案中,优选地,若所述通知单元406通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测,则所述添加指令包括所述辅小区基站和/或所述终端进行信道检测的起始时间和以下参数中的至少三个:信道检测时长、信道检测周期、最大信道占用时间和空闲时间;若所述通知单元406通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测,则所述添加指令包括信道检测时长和随机数,其中,所述辅小区基站和/或所述终端在检测到信道忙时,选择所述随机数,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N=N-1,直到N值为0时,确定可以传输数据。
此外,主小区基站可以自行判断下行业务量是否达到所述第一业务量阈值。
在上述技术方案中,优选地,还包括:判断单元410,用于在接收到所述终端发送的调度请求和/或缓存状态报告时,判断所述终端已激活的服务小区的上行业务量是否达到所述第二业务量阈值。
同时,主小区基站在通知辅小区基站进行信道检测之后,需要向终端 发送相应的指令,以通知终端采取相应的应对措施,具体如下所述:
在上述技术方案中,优选地,还包括:第二发送单元412,用于在所述通知单元406通知所述辅小区基站在所述非授权频段上进行下行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,监测所述辅小区基站的物理下行控制信道、物理下行共享信道和所述辅小区基站发送的参考信号,并测量所述辅小区基站的信道状态信息等;以及
第三发送单元414,用于在所述通知单元406通知所述辅小区基站在所述非授权频段上进行上行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,发送探测参考信号。
在上述技术方案中,优选地,所述通知单元406具体用于:检测所述辅小区基站的下行信道是否空闲,并在检测到所述辅小区基站的下行信道空闲时,通过所述辅小区基站发送下行参考信号,并通知所述终端在所述非授权频段上进行上行信道检测。
在该技术方案中,定义了如何通知终端进行上行信道的检测,即在辅小区基站的下行信道空闲时才进行发送,否则不进行发送。此外,辅小区基站还可以基于短控制信令(Short Control Signaling)持续发送参考信号,以在主小区基站确定需要终端进行上行信道检测时,直接通知终端进行检测。
在上述技术方案中,优选地,所述通知单元406具体还用于:
通过所述激活信令隐式通知所述终端进行上行信道检测,并通过去激活信令隐式通知所述终端停止进行上行信道检测;或
通过向所述终端发送的上行授权信令隐式通知所述终端进行上行信道检测;或
定义新的包含多个指示位的媒体接入层控制信令,以通知所述终端进行上行信道检测,其中,所述多个指示位中的每个指示位对应于一个辅小区基站,所述每个指示位用于指示所述终端是否需要对所述每个指示位对应的辅小区基站的上行信道进行检测;或
定义新的物理下行控制信令,以通知所述终端对指定辅小区基站的上行信道进行检测。
在上述技术方案中,优选地,所述通知单元406具体用于:通过所述主小区基站与所述辅小区基站之间的接口(如X2接口)通知所述辅小区基站进行上行信道检测和/或下行信道检测。
本发明还提出了一种基站(图中未示出),包括:如图4中所示的LTE系统在非授权频段工作时的信道检测通知系统400。
以下结合图5至图8详细说明本发明的技术方案。
本发明主要针对非授权频谱上信道检测的触发条件以及触发信令流程,并且基于以下三种情况提出了由主服务基站(即上述的主小区基站)控制信道检测的方法:
情况一:辅服务基站(即上述的辅小区基站)进行下行信道检测;
情况二:辅服务基站进行上行信道检测;
情况三:终端进行上行信道检测。
以上三种情况又分别包含基于帧结构(FBE,frame based equipment)的LBT机制和基于负载的(LBE,load based equipment)的LBT机制。以下分别对上述三种情况进行详细说明:
情况一,即辅服务基站进行下行信道检测:
终端当前在Pcell(primary cell,主服务小区)的控制下,进行在非授权频谱上的RRM测量并进行测量结果上报。主服务基站(PeNB,primary eNB)基于终端在非授权频谱上的RRM测量结果,发送RRC信令给终端添加该非授权频谱上RSRP/RSRQ值较大的一个小区作为终端的Scell。
其中,在该情况下,需要遵循以下几点:
1、若辅服务基站在非授权频谱上使用的LBT机制是基于FBE的,那么RRC信令发送Scell添加指令给终端时,需要包含该Scell上基于FBE的LBT机制的信道检测起始时间、CCA检测时间长度、CCA检测时间重复周期、最大信道占用时间,以及空闲时间。若辅服务基站使用基于LBE的LBT机制,则RRC信令发送Scell添加指令给终端时,需要包含该Scell上基于LBE的LBT机制的CCA检测时间长度,以及CCA中的N(即以 上方案中所述的N)值、最大信道占用时间和空闲时间。
2、主服务基站判断下行业务是否过多,如果业务过多且该非授权频谱资源未被使用,则开始该非授权频谱上的信道检测。可能在终端添加该Scell之前已有其它终端被该Scell服务,所以主服务基站早已开启该非授权频谱上的信道检测;也有可能该终端是第一个添加该Scell的终端,那么这个时候主服务基站要通知辅服务基站开始在该非授权频谱上的信道检测。如果终端与主服务基站和该Scell所在基站(即辅服务基站)是双连接的关系,那么主服务基站需要通过基站之间的接口(如X2接口)通知该Scell所在基站开始在非授权频谱上的信道检测。
3、辅服务基站开始该非授权频谱上的信道检测后,给终端发送该Scell的激活信令(MAC信令,Scell activation),终端收到激活信令后,开始监测该Scell的PDCCH(若有)、PDSCH,测量CSI,以及监测参考信号等。
情况二,即辅服务基站进行上行信道检测:
终端当前在Pcell(primary cell,主服务小区)的控制下,进行在非授权频谱上的RRM测量并进行测量结果上报。主服务基站(PeNB,primary eNB)基于终端在非授权频谱上的RRM测量结果,发送RRC信令给终端添加该非授权频谱上RSRP/RSRQ值较大的一个小区作为终端的Scell。
其中,在该情况下,需要遵循以下几点:
1、若辅服务基站在非授权频谱上使用的LBT机制是基于FBE的,那么RRC信令发送Scell添加指令给终端时,需要包含该Scell上基于FBE的LBT机制的信道检测起始时间、CCA检测时间长度、CCA检测时间重复周期、最大信道占用时间,以及空闲时间。若辅服务基站使用基于LBE的LBT机制,则RRC信令发送Scell添加指令给终端时,需要包含该Scell上基于LBE的LBT机制的CCA检测时间长度,以及CCA中的N(即以上方案中所述的N)值、最大信道占用时间和空闲时间。
2、当终端有上行业务到达时,在配置了PUCCH(物理上行控制信道)的服务小区上发送调度请求(Scheduling Request)和/或缓存状态报告(Buffer Status Report)。
3、配置了PUCCH的服务小区在收到终端发送的调度请求信令和/或缓存状态报告后,如果认为目前上行业务较多,则判断非授权频谱上行信道检测是否已经触发,如果没有触发,则马上触发,如果终端与主服务基站和该Scell所在基站是双连接(Dual Connectivity,DC)的关系,那么主服务基站需要通过基站之间的接口如X2接口通知该Scell所在基站开始非授权频谱上的信道检测,具体如图5所示。
4、辅服务基站开始该非授权频谱上的上行信道检测后,给终端发送该Scell的激活信令(MAC信令,Scell activation),终端收到激活信令后,开始在该Scell上发送sounding reference signal等。
该情况下的一个处理流程图如图6所示。
如图6所示,根据本发明的一个实施例的信道检测方法包括:
步骤602,非授权频谱上的Scell添加给终端。
步骤604,终端有负载到达,即终端有待处理的业务。
步骤606,终端在服务小区的PUCCH上发送SR(Scheduling Request,调度请求)和/或BSR(Buffer Status Report,缓存状态报告)。
步骤608,主服务基站判断上行业务是否过多,若是,则执行步骤610。
步骤610,主服务基站触发非授权频谱上的上行信道检测。
步骤612,主服务基站发送该Scell的激活信令给终端。
该情况下的另一个处理流程图如图7所示。
如图7所示,根据本发明的另一个实施例的信道检测方法包括:
步骤702,非授权频谱上的Scell添加给终端。
步骤704,终端有业务到达时,在服务小区的PUCCH上发送SR(Scheduling Request,调度请求)和/或BSR(Buffer Status Report,缓存状态报告)。
步骤706,主服务基站判断上行业务是否过多,并在判定过多时,(通过X2结构)触发辅服务基站在非授权频谱上的上行信道检测。
步骤708,辅服务基站开启信道状态检测。
步骤710,主服务基站发送该Scell的激活信令给终端。
情况三,即终端进行上行信道检测:
终端当前在Pcell(primary cell,主服务小区)的控制下,进行在非授权频谱上的RRM测量并进行测量结果上报。主服务基站(PeNB,primary eNB)基于终端在非授权频谱上的RRM测量结果,发送RRC信令给终端添加该非授权频谱上RSRP/RSRQ值较大的一个小区作为终端的Scell。
其中,在该情况下,需要遵循以下几点:
1、若终端在非授权频谱上使用的LBT机制是基于FBE的,那么RRC信令发送Scell添加指令给终端时,需要包含终端基于FBE的LBT机制的信道检测起始时间、CCA检测时间长度、CCA检测时间重复周期、最大信道占用时间,以及空闲时间。若终端使用基于LBE的LBT机制,则RRC信令发送Scell添加指令给终端时,需要包含终端基于LBE的LBT机制的CCA检测时间长度,以及CCA中的N(即以上方案中所述的N)值、最大信道占用时间和空闲时间。
2、当终端有上行业务到达时,在配置了PUCCH(物理上行控制信道)的服务小区上发送调度请求(Scheduling Request)和/或缓存状态报告(Buffer Status Report)。
3、配置了PUCCH的服务小区在收到终端的调度请求信令和或缓存状态报告后,如果认为目前上行业务较多,则发送上行信道检测触发信令给终端。该信令设计方案有如下几种方式:
方式一:复用Scell激活信令,隐示指示需要进行上行信道检测;同时通过Scell去激活信令隐示指示结束上行信道检测。
方式二:复用UL grant信令,该UL grant信令使用Cross Carrier Scheduling(跨载波调度),直接给终端分配了非授权频谱上的上行资源,隐示指示需要进行上行信道检测;
方式三:设计新的信令,具体地:
如果是基于FBE的LBT机制,则可以定义新的MAC信令,即类似于Scell激活信令,每个Scell对应一个bit,bit为‘1’,标识触发上行信道检测,并且同时可以触发多个Scell。
如果是基于LBE的LBT机制,则可以定义新的PDCCH上的DCI信令,即类似于Cross Carrier Scheduling,指示某个Scell触发上行信道检测, 同时只能触发一个Scell。这里,基站可以根据具体情况选择终端进行上行信道检测的时间位置,比如选择该Scell没有下行业务的时间,和或该Scell内别的终端没有上行业务的时间等,避免误判。
4、终端在收到上行信道检测触发信令后,如果是基于FBE的,则在接下来最近的一个CCA检测时间开始监测上行信道;如果是基于LBE的,则马上进行上行信道检测。
5、基站在发送上行信道检测触发信令给终端之前,需要进行判断:
若下行参考信号是基于Short Control Signaling发送的话,则不需要等待信道空闲。
若下行参考信号是只有信道可用时才发送,这种情况下就需要判断,基站当前下行信道是否可用,是否在发送下行参考信号,如果基站当前检测到信道忙不能发送下行参考信号,则不发送上行信道检测触发信令给终端。因为下行参考信号用于终端下行时频同步,时频同步之后,终端才能获得上行发送时间。所以,这种情况下,相当于只有基站检测到当前下行信道是可用的时候,才能发送上行信道检测触发信令给终端。也就是说只有上下行信道都空闲时,才能进行上行传输。
该情况下的一个处理流程图如图8所示。
如图8所示,根据本发明的又一个实施例的信道检测方法包括:
步骤802,非授权频谱上的Scell添加给终端。
步骤804,终端有负载到达,即终端有待处理的业务。
步骤806,终端在服务小区的PUCCH上发送SR(Scheduling Request,调度请求)和/或BSR(Buffer Status Report,缓存状态报告)。
步骤808,主服务基站判断上行业务是否过多,若是,则执行步骤810;否则,执行步骤814。
步骤810,主服务基站发送非授权频谱上的上行信道检测触发信令给终端。
步骤812,终端在非授权频谱上进行上行信道检测。
步骤814,主服务基站分配已有服务小区上的上行信道资源给终端。
本发明的上述技术方案主要设计了主服务基站控制的触发信道检测的 条件和触发信令流程。通过本发明提供的方法和信令流程,使得LTE系统在非授权频谱上的通信都是受基站控制的,同时可以减少误判和时延,进一步提高非授权频谱上的资源使用率。
以上结合附图详细说明了本发明的技术方案,本发明提出了一种新的LTE系统在非授权频段工作时的信道检测通知方案,使得LTE系统在非授权频段上工作时的信道检测工作均由主小区基站统一管理,进而能够有效降低辅小区基站和/或终端进行信道检测的时延,并且能够提高判断信道检测时机的准确性,有利于提高LTE系统在非授权频段工作时的资源使用率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种LTE系统在非授权频段工作时的信道检测通知方法,适用于基站,其特征在于,包括:
    主小区基站接收终端上报的在非授权频段上对多个基站的RRM测量结果;
    根据所述多个基站的RRM测量结果,为所述终端选择辅小区基站;
    若确定下行业务量达到设定的第一业务量阈值,则通知所述辅小区基站在所述非授权频段上进行下行信道检测;以及
    若确定上行业务量达到设定的第二业务量阈值,则通知所述辅小区基站和/或所述终端在所述非授权频段上进行上行信道检测。
  2. 根据权利要求1所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于,通知所述辅小区基站和/或所述终端在所述非授权频段上进行信道检测的步骤具体包括:
    通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测;或
    通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测。
  3. 根据权利要求2所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于,为所述终端选择所述辅小区基站之后,并在通知所述辅小区基站和/或所述终端进行信道检测之前,还包括:
    向所述终端发送辅小区基站的添加指令,以通知所述终端由所述辅小区基站提供通信服务。
  4. 根据权利要求3所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于:
    若通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测,则所述添加指令包括所述辅小区基站和/或所述终端进行信道检测的起始时间和以下参数中的至少三个:信道检测时长、信道检测周期、最大信道占用时间和空闲时间;
    若通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测,则所述添加指令包括信道检测时长和随机数,其中,所述辅小区基站和/或所述终端在检测到信道忙时,选择所述随机数,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N=N-1,直到N值为0时,确定可以传输数据。
  5. 根据权利要求1所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于,还包括:
    在接收到所述终端发送的调度请求和/或缓存状态报告时,判断所述终端的已激活的服务小区的上行业务量是否达到所述第二业务量阈值。
  6. 根据权利要求1所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于:
    在通知所述辅小区基站在所述非授权频段上进行下行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,监测所述辅小区基站的物理下行控制信道、物理下行共享信道和所述辅小区基站发送的参考信号,并测量所述辅小区基站的信道状态信息;以及
    在通知所述辅小区基站在所述非授权频段上进行上行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,发送探测参考信号。
  7. 根据权利要求1至6中任一项所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于,通知所述终端在所述非授权频段上进行上行信道检测的步骤具体为:
    检测所述辅小区基站的下行信道是否空闲,并在检测到所述辅小区基站的下行信道空闲时,通过所述辅小区基站发送下行参考信号,并通知所述终端在所述非授权频段上进行上行信道检测。
  8. 根据权利要求7所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于,通知所述终端在所述非授权频段上进行上行信道检测的方式包括:
    通过所述激活信令隐式通知所述终端进行上行信道检测,并通过去激 活信令隐式通知所述终端停止进行上行信道检测;或
    通过向所述终端发送的上行授权信令隐式通知所述终端进行上行信道检测;或
    定义新的包含多个指示位的媒体接入层控制信令,以通知所述终端进行上行信道检测,其中,所述多个指示位中的每个指示位对应于一个辅小区基站,所述每个指示位用于指示所述终端是否需要对所述每个指示位对应的辅小区基站的上行信道进行检测;或
    定义新的物理下行控制信令,以通知所述终端对指定辅小区基站的上行信道进行检测。
  9. 根据权利要求1至6中任一项所述的LTE系统在非授权频段工作时的信道检测通知方法,其特征在于,通知所述辅小区基站在所述非授权频段上进行上行信道检测和/或下行信道检测的步骤具体为:
    通过所述主小区基站与所述辅小区基站之间的接口通知所述辅小区基站进行上行信道检测和/或下行信道检测。
  10. 一种LTE系统在非授权频段工作时的信道检测通知系统,适用于基站,其特征在于,包括:
    接收单元,用于主小区基站接收终端上报的在非授权频段上对多个基站的RRM测量结果;
    选择单元,用于根据所述多个基站的RRM测量结果,为所述终端选择辅小区基站;
    通知单元,用于在确定下行业务量达到设定的第一业务量阈值时,通知所述辅小区基站在所述非授权频段上进行下行信道检测,并用于在确定上行业务量达到设定的第二业务量阈值时,通知所述辅小区基站和/或所述终端在所述非授权频段上进行上行信道检测。
  11. 根据权利要求10所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于,所述通知单元通知所述辅小区基站和/或所述终端在所述非授权频段上进行信道检测具体包括:
    通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测;或
    通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测。
  12. 根据权利要求11所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于,还包括:
    第一发送单元,用于在所述选择单元为所述终端选择所述辅小区基站之后,并在所述通知单元通知所述辅小区基站和/或所述终端进行信道检测之前,向所述终端发送辅小区基站的添加指令,以通知所述终端由所述辅小区基站提供通信服务。
  13. 根据权利要求12所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于:
    若所述通知单元通知所述辅小区基站和/或所述终端在所述非授权频段上以固定的周期重复进行信道检测,则所述添加指令包括所述辅小区基站和/或所述终端进行信道检测的起始时间和以下参数中的至少三个:信道检测时长、信道检测周期、最大信道占用时间和空闲时间;
    若所述通知单元通知所述辅小区基站和/或所述终端在接收到待传输的业务量时,在所述非授权频段上进行信道检测,则所述添加指令包括信道检测时长和随机数,其中,所述辅小区基站和/或所述终端在检测到信道忙时,选择所述随机数,并在后续的检测过程中,若检测到信道繁忙,则N值不变,若检测到信道空闲,则N=N-1,直到N值为0时,确定可以传输数据。
  14. 根据权利要求10所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于,还包括:
    判断单元,用于在接收到所述终端发送的调度请求和/或缓存状态报告时,判断所述终端已激活的服务小区的上行业务量是否达到所述第二业务量阈值。
  15. 根据权利要求10所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于,还包括:
    第二发送单元,用于在所述通知单元通知所述辅小区基站在所述非授权频段上进行下行信道检测之后,向所述终端发送所述辅小区基站的激活 信令,以使所述终端在接收到所述激活信令后,监测所述辅小区基站的物理下行控制信道、物理下行共享信道和所述辅小区基站发送的参考信号,并测量所述辅小区基站的信道状态信息等;以及
    第三发送单元,用于在所述通知单元通知所述辅小区基站在所述非授权频段上进行上行信道检测之后,向所述终端发送所述辅小区基站的激活信令,以使所述终端在接收到所述激活信令后,发送探测参考信号。
  16. 根据权利要求10至15中任一项所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于,所述通知单元具体用于:
    检测所述辅小区基站的下行信道是否空闲,并在检测到所述辅小区基站的下行信道空闲时,通过所述辅小区基站发送下行参考信号,并通知所述终端在所述非授权频段上进行上行信道检测。
  17. 根据权利要求16所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于,所述通知单元具体还用于:
    通过所述激活信令隐式通知所述终端进行上行信道检测,并通过去激活信令隐式通知所述终端停止进行上行信道检测;或
    通过向所述终端发送的上行授权信令隐式通知所述终端进行上行信道检测;或
    定义新的包含多个指示位的媒体接入层控制信令,以通知所述终端进行上行信道检测,其中,所述多个指示位中的每个指示位对应于一个辅小区基站,所述每个指示位用于指示所述终端是否需要对所述每个指示位对应的辅小区基站的上行信道进行检测;或
    定义新的物理下行控制信令,以通知所述终端对指定辅小区基站的上行信道进行检测。
  18. 根据权利要求10至15中任一项所述的LTE系统在非授权频段工作时的信道检测通知系统,其特征在于,所述通知单元具体用于:
    通过所述主小区基站与所述辅小区基站之间的接口通知所述辅小区基站进行上行信道检测和/或下行信道检测。
  19. 一种基站,其特征在于,包括:如权利要求10至18中任一项所述的LTE系统在非授权频段工作时的信道检测通知系统。
PCT/CN2015/075560 2015-01-12 2015-03-31 信道检测通知方法、系统和基站 WO2016112588A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/641,750 US10194451B2 (en) 2015-01-12 2017-07-05 Channel detection notification method, apparatus and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510014487.3 2015-01-12
CN201510014487.3A CN104540158B (zh) 2015-01-12 2015-01-12 信道检测通知方法、系统和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/641,750 Continuation-In-Part US10194451B2 (en) 2015-01-12 2017-07-05 Channel detection notification method, apparatus and base station

Publications (1)

Publication Number Publication Date
WO2016112588A1 true WO2016112588A1 (zh) 2016-07-21

Family

ID=52855593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075560 WO2016112588A1 (zh) 2015-01-12 2015-03-31 信道检测通知方法、系统和基站

Country Status (3)

Country Link
US (1) US10194451B2 (zh)
CN (1) CN104540158B (zh)
WO (1) WO2016112588A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205387A1 (zh) * 2017-05-12 2018-11-15 华为技术有限公司 一种辅小区配置方法、基站及终端设备
EP3637918A4 (en) * 2017-06-29 2020-06-17 Sony Corporation ELECTRONIC DEVICE, WIRELESS COMMUNICATION DEVICE AND WIRELESS COMMUNICATION METHOD
CN112335277A (zh) * 2018-06-29 2021-02-05 索尼公司 触发上行链路参考信号发送的方法和系统
CN113660049A (zh) * 2021-08-17 2021-11-16 电子科技大学 一种事件触发控制与无线通信联合系统的设计方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304091B (zh) * 2015-05-15 2022-06-14 索尼公司 用于未授权频段的频率分配的方法和装置
CN106301722A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种信号处理方法、网络设备及系统
CN106162898B (zh) * 2015-05-15 2022-01-28 中兴通讯股份有限公司 非授权载波处理的方法及装置
US10326619B2 (en) * 2015-05-15 2019-06-18 Sharp Kabushiki Kaisha Terminal device
CN105634703B (zh) * 2015-05-25 2017-11-17 宇龙计算机通信科技(深圳)有限公司 指示方法、指示系统、获取方法、获取系统和通信系统
US20160353481A1 (en) * 2015-05-29 2016-12-01 Acer Incorporated Device and Method of Handling Communication Operation for Unlicensed Band
CN114759995A (zh) * 2015-06-04 2022-07-15 索尼公司 用于无线通信的装置、频谱管理装置和用户设备
CN106332297B (zh) * 2015-06-29 2019-12-17 上海诺基亚贝尔股份有限公司 一种无线通信方法
CN105636225B (zh) * 2015-06-30 2019-03-22 宇龙计算机通信科技(深圳)有限公司 业务检测方法及业务检测系统、终端和基站
CN106341828B (zh) * 2015-07-10 2020-04-03 华为技术有限公司 一种信道测量方法及sta
CN106411455A (zh) 2015-07-30 2017-02-15 中兴通讯股份有限公司 信道状态信息测量方法及装置
WO2017022778A1 (ja) * 2015-08-05 2017-02-09 シャープ株式会社 端末装置、基地局装置および通信方法
CN106455108B (zh) * 2015-08-07 2019-12-13 电信科学技术研究院 一种先听在说方法及装置
CN106453181B (zh) * 2015-08-07 2021-04-30 中兴通讯股份有限公司 一种信息处理方法、装置及系统
CN106452701B (zh) * 2015-08-07 2020-06-09 中兴通讯股份有限公司 一种非授权多载波先听后说lbt执行方法和装置
CN105050189B (zh) * 2015-08-10 2019-02-05 上海华为技术有限公司 一种无线资源调度的方法及相关设备
EP3335508A1 (en) * 2015-08-13 2018-06-20 Intel IP Corporation Energy detection threshold adaptation for licensed assisted access of lte in unlicensed band
CN105208593B (zh) * 2015-08-14 2019-02-01 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的辅服务小区的管理方法、系统及基站
CN105101439B (zh) * 2015-08-28 2018-09-14 宇龙计算机通信科技(深圳)有限公司 一种传输的方法及终端
WO2017041274A1 (zh) 2015-09-10 2017-03-16 广东欧珀移动通信有限公司 信道测量与测量结果上报的方法和装置
GB2542172A (en) * 2015-09-10 2017-03-15 Nec Corp Communication system
CN106549742B (zh) * 2015-09-23 2021-01-08 索尼公司 无线通信系统中的装置和方法
CN105338640B (zh) * 2015-09-25 2018-12-25 宇龙计算机通信科技(深圳)有限公司 一种基于上行复用的数据传输方法及装置
CN106900175B (zh) 2015-09-25 2020-07-07 华为技术有限公司 一种用户设备、基站及数据信道的发送和接收方法
CA2997465C (en) * 2015-09-25 2022-07-26 Panasonic Intellectual Property Corporation Of America User equipment and wireless communication method
KR20180070550A (ko) 2015-10-23 2018-06-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 거주 셀을 선택하는 방법 및 장치
JP6301302B2 (ja) * 2015-10-27 2018-03-28 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106658721B (zh) * 2015-10-30 2020-05-19 中兴通讯股份有限公司 非授权载波资源处理方法及装置
CN106714231B (zh) * 2015-11-12 2021-05-11 中兴通讯股份有限公司 非授权载波测量报告的处理方法及装置
CN106714232B (zh) * 2015-11-13 2021-07-30 中兴通讯股份有限公司 非授权载波的测量上报方法和终端及配置方法和基站
CN105611540A (zh) * 2015-12-17 2016-05-25 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备
CN105592468A (zh) * 2015-12-17 2016-05-18 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备、系统
US10425193B2 (en) * 2015-12-23 2019-09-24 Qualcomm Incorporated Resource requirement signaling and rate setting
CN105722097B (zh) * 2016-01-21 2017-09-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置和终端
CN107026723B (zh) * 2016-02-02 2020-10-09 电信科学技术研究院 一种传输上行控制信息的方法和设备
CN107027123A (zh) 2016-02-02 2017-08-08 索尼公司 用于无线通信系统的装置和方法、频谱管理装置
CN105704728B (zh) * 2016-03-18 2019-03-15 北京北方烽火科技有限公司 终端选择非授权频谱的方法及终端
KR20230145247A (ko) 2016-03-23 2023-10-17 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 비인가 대역으로의 상향링크 채널 액세스 방법 및 이를 위한 장치
KR102287383B1 (ko) * 2016-03-25 2021-08-06 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 비인가 대역으로의 상향링크 채널 액세스 방법 및 이를 위한 장치
KR102637865B1 (ko) 2016-03-30 2024-02-20 주식회사 윌러스표준기술연구소 비인가 대역에서 채널 엑세스 방법, 장치 및 시스템
WO2018010181A1 (zh) * 2016-07-15 2018-01-18 华为技术有限公司 非授权载波共享的方法及装置
CN106255124B (zh) * 2016-09-09 2022-12-20 宇龙计算机通信科技(深圳)有限公司 通信方法和通信装置
CN106454910B (zh) 2016-09-09 2022-09-02 宇龙计算机通信科技(深圳)有限公司 通信方法、通信装置和终端
CN107889173A (zh) * 2016-09-30 2018-04-06 北京佰才邦技术有限公司 一种获取信息、小区切换、小区选择或重选的方法和装置
CN107920363A (zh) * 2016-10-10 2018-04-17 中兴通讯股份有限公司 非授权载波缓冲区状态报告的触发方法和装置
CN106535269B (zh) * 2016-10-26 2019-09-10 重庆邮电大学 一种lte-a与laa异系统中双连接技术切换的方法
US10321505B2 (en) 2016-12-23 2019-06-11 Ofinno, Llc Dual connectivity based on listen before talk information
WO2018176634A1 (zh) * 2017-03-29 2018-10-04 华为技术有限公司 基于非授权载波的上行调度方法和装置
CN109151877A (zh) * 2017-06-27 2019-01-04 大唐移动通信设备有限公司 一种载波聚合中辅载波的配置方法及装置
CN109391986B (zh) * 2017-08-11 2021-10-01 华为技术有限公司 一种辅小区激活方法、接入网设备、通信装置以及系统
WO2019065814A1 (ja) * 2017-09-27 2019-04-04 三菱電機株式会社 通信システム、基地局装置および通信端末装置
CN109688595A (zh) * 2017-10-18 2019-04-26 珠海市魅族科技有限公司 用于基站或终端的数据处理时延的处理方法及装置
JP2019092063A (ja) * 2017-11-15 2019-06-13 シャープ株式会社 移動体通信システムにおける移動局装置および基地局装置
CN109803395A (zh) * 2017-11-17 2019-05-24 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
CN108430114B (zh) * 2018-01-26 2021-07-20 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测系统、基站和终端
CN110086585B (zh) * 2018-03-21 2020-07-21 中国信息通信研究院 一种上行控制信息传输方法及设备
CN110636542B (zh) * 2018-06-22 2021-01-08 维沃移动通信有限公司 非授权频段上波束管理的方法、设备和介质
CN111107659B (zh) * 2018-10-26 2022-03-11 华为技术有限公司 非授权频谱中无线链路检测的方法和通信装置
JP2022525358A (ja) * 2019-03-20 2022-05-12 北京小米移動軟件有限公司 チャネル検出メカニズムの決定方法、装置、機器及び記憶媒体
US10904936B1 (en) * 2019-06-06 2021-01-26 Sprint Communications Company L.P. Wireless communication service delivery over a fifth generation new radio (5GNR) access node and a long term evolution (LTE) access node
CN112312462A (zh) * 2019-07-30 2021-02-02 中国移动通信有限公司研究院 一种非授权频段小区切换方法、终端及网络侧设备
CN113038629A (zh) * 2019-12-25 2021-06-25 中兴通讯股份有限公司 通信方法、通信系统、通信设备及计算机可读存储介质
WO2023221129A1 (zh) * 2022-05-20 2023-11-23 深圳传音控股股份有限公司 信道检测方法、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421149A (zh) * 2010-09-28 2012-04-18 中兴通讯股份有限公司 切换信息的通知方法及基站
CN102595543A (zh) * 2011-01-10 2012-07-18 中兴通讯股份有限公司 一种终端内多种无线技术共存的通信方法和系统
CN103460740A (zh) * 2011-02-07 2013-12-18 交互数字专利控股公司 在免许可频谱中操作补充小区的方法和装置
CN103875187A (zh) * 2011-06-02 2014-06-18 美国博通公司 在免授权/共享频带中的跳频

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723411B1 (ko) * 2009-08-21 2017-04-05 엘지전자 주식회사 멀티 캐리어 시스템의 슬립모드 동작 방법 및 장치
CN102325005B (zh) * 2011-07-18 2017-06-27 中兴通讯股份有限公司 一种终端对hs‑scch命令的实施方法、系统和终端
US9031017B2 (en) * 2012-06-21 2015-05-12 Nokia Solutions And Networks Oy Power control for LTE deployment in unlicensed band
WO2014025302A1 (en) * 2012-08-07 2014-02-13 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus in a multi-carrier system for controlling interruption and measurement performance
CN103686823B (zh) * 2012-09-06 2017-12-05 华为技术有限公司 测量的方法和装置
US10021600B2 (en) * 2013-01-02 2018-07-10 Qualcomm Incorporated Backhaul traffic reliability in unlicensed bands using spectrum sensing and channel reservation
EP3167668B1 (en) * 2014-07-25 2020-05-27 Sony Corporation Lte carrier aggregation with wifi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421149A (zh) * 2010-09-28 2012-04-18 中兴通讯股份有限公司 切换信息的通知方法及基站
CN102595543A (zh) * 2011-01-10 2012-07-18 中兴通讯股份有限公司 一种终端内多种无线技术共存的通信方法和系统
CN103460740A (zh) * 2011-02-07 2013-12-18 交互数字专利控股公司 在免许可频谱中操作补充小区的方法和装置
CN103875187A (zh) * 2011-06-02 2014-06-18 美国博通公司 在免授权/共享频带中的跳频

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205387A1 (zh) * 2017-05-12 2018-11-15 华为技术有限公司 一种辅小区配置方法、基站及终端设备
EP3637918A4 (en) * 2017-06-29 2020-06-17 Sony Corporation ELECTRONIC DEVICE, WIRELESS COMMUNICATION DEVICE AND WIRELESS COMMUNICATION METHOD
EP4152800A1 (en) * 2017-06-29 2023-03-22 Sony Group Corporation Electronic devices for base station side and user equipment side
CN112335277A (zh) * 2018-06-29 2021-02-05 索尼公司 触发上行链路参考信号发送的方法和系统
CN113660049A (zh) * 2021-08-17 2021-11-16 电子科技大学 一种事件触发控制与无线通信联合系统的设计方法
CN113660049B (zh) * 2021-08-17 2022-04-22 电子科技大学 一种事件触发控制与无线通信联合系统的设计方法

Also Published As

Publication number Publication date
US10194451B2 (en) 2019-01-29
US20170303288A1 (en) 2017-10-19
CN104540158A (zh) 2015-04-22
CN104540158B (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2016112588A1 (zh) 信道检测通知方法、系统和基站
US10405250B2 (en) RRM measurement method, measurement system, terminal and base station
WO2016161710A1 (zh) 信道占用概率的调整方法、调整系统和设备
US10362602B2 (en) Air channel detection method and node device
WO2017004901A1 (zh) 信道占用概率的调整方法、调整系统和基站
EP3273737B1 (en) Wireless base station, user terminal, wireless communication system, and wireless communication method
WO2016119325A1 (zh) Csi测量及反馈方法、csi测量及反馈系统和基站
WO2021204121A1 (zh) 测量方法、装置、节点和存储介质
KR20170015251A (ko) 비면허 대역 채널에서 클리어 채널 평가에 근거한 신호 전송 방법 및 이동 통신 시스템
CN104507108A (zh) 信道空闲状态的指示或资源预留方法、系统、终端和基站
WO2017051837A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2017026488A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN111294802B (zh) 小区切换方法及装置、存储介质、终端、基站
WO2017026489A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
EP3323211B1 (en) Contention based radio resource management for small packet transmission
JP2017175674A (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2017020384A1 (zh) 基于负载的lbt信道检测方法及系统、基站和终端
CN113826432A (zh) 用于上行链路传输的方法、终端设备和网络节点
WO2017000415A1 (zh) 业务检测方法及业务检测系统、终端和基站
WO2017000374A1 (zh) 业务检测方法及业务检测系统、终端和基站
WO2016153882A1 (en) Transmission of priority indicator between enbs in a licensed frequency band to manage communication resources in an unlicensed frequency band
JP7393108B2 (ja) ライセンス不要新無線(nr-u)のためのシグナリングのための技術
WO2017166249A1 (zh) 信息传输方法及装置
US11490422B2 (en) Methods, terminal device and base station for channel sensing in unlicensed spectrum
CN110831163B (zh) 非授权频谱中激活bwp的配置、确定方法及装置、存储介质、基站、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877506

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15877506

Country of ref document: EP

Kind code of ref document: A1