WO2016119296A1 - 一种空调驱动装置 - Google Patents

一种空调驱动装置 Download PDF

Info

Publication number
WO2016119296A1
WO2016119296A1 PCT/CN2015/075344 CN2015075344W WO2016119296A1 WO 2016119296 A1 WO2016119296 A1 WO 2016119296A1 CN 2015075344 W CN2015075344 W CN 2015075344W WO 2016119296 A1 WO2016119296 A1 WO 2016119296A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
air conditioner
module
certain
signal
Prior art date
Application number
PCT/CN2015/075344
Other languages
English (en)
French (fr)
Inventor
胡军
邓勇明
刘平
Original Assignee
广州光炬智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州光炬智能科技有限公司 filed Critical 广州光炬智能科技有限公司
Priority to CA3012871A priority Critical patent/CA3012871C/en
Publication of WO2016119296A1 publication Critical patent/WO2016119296A1/zh
Priority to US16/056,608 priority patent/US11168912B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • F24F2110/32Velocity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants

Definitions

  • the present invention relates to the field of air conditioning, and more particularly to an air conditioner driving device.
  • the prior art is implemented on an air conditioning adjustment panel or various remote controllers. That is to say, the prior art must rely on artificial switching actions to control the air conditioner, and its intelligence is limited.
  • each specific air conditioner does not automatically sense the dynamic changes in the environment due to the size of the human traffic, and adjusts the air conditioner to work at different power levels. That is to say, the prior art cannot control the air conditioner automatically and without switching due to human flow to achieve energy saving and long service life.
  • the present invention provides an air conditioner driving device, characterized in that:
  • the driving device includes a sensing unit and a processing unit, and the sensing unit includes at least a microwave sensing module;
  • the sensing unit is configured to: at least according to a certain microwave sensing period, based on the sensing of the microwave, sense whether there is human activity in the range of motion, and periodically output a sensing signal to the processing unit;
  • the processing unit is configured to: cause the drive based on processing of the sensing signal
  • the moving device can adaptively control the opening and closing of the air conditioner, and adaptively adjust the power of the air conditioner.
  • the present invention can realize a dynamic air conditioner driving device based on environmental state sensing without a user switch, which is energy-saving and intelligent.
  • FIG. 1 is a schematic structural view of a device in an embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a fixed frequency air conditioner driving device according to an embodiment of the present invention
  • FIG. 3 is a circuit diagram of an inverter air conditioner driving device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of signal waveforms sensed when a human body is static in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a waveform of a signal sensed by a human body when it is statically processed according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of signal waveforms sensed when a human body continuously moves according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a waveform after a signal sensed by a human body in a continuous motion according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of signal waveforms sensed when a human body swings in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a waveform of a signal sensed by a human body when the human body is adjusted by a blur operation according to an embodiment of the present invention.
  • 10 to 11 are diagrams for adjusting the power of an air conditioner to different functions in one embodiment of the present invention.
  • the air conditioner referred to in the present disclosure is not limited to use for cooling or heating, nor is it limited to adjusting the air flow rate and humidity.
  • an air conditioning drive is disclosed, wherein:
  • the driving device includes a sensing unit and a processing unit, and the sensing unit includes at least a microwave sensing module;
  • the sensing unit is configured to: at least according to a certain microwave sensing period, based on the sensing of the microwave, sense whether there is human activity in the range of motion, and periodically output a sensing signal to the processing unit;
  • the processing unit is configured to enable the driving device to adaptively control the opening and closing of the air conditioner and adaptively adjust the power of the air conditioning operation based on the processing of the sensing signal.
  • the present invention can realize a dynamic air conditioner driving device based on human or object activity without using a user to open and close, and realize an intelligent and air-conditioning driving based on environmental state sensing.
  • Device Not only does the user switch need to be used, but the user does not need to adjust the operating power of the air conditioner, typically, for example, strong cooling and forced heat.
  • this embodiment does not require any existing switches for the user to switch the air conditioner or adjust the power of the air conditioner.
  • this embodiment does not require any intervention by the user, and the air conditioner driving device can manage the air conditioner autonomously.
  • the technical solution of the above embodiment can obviously meet the following requirements: when the air conditioner itself can adapt to a long-term low temperature environment to heat or a long-temperature high environment to cool, or a long-term airflow environment to ventilate if desired It automatically turns on and automatically turns off when no one is present, and hopes to further adjust the power of the air conditioner according to the sensed human activity. For example, the closer the person is to the microwave sensing module, the higher the power, and the farther it is, the lower Power; Generally, the stronger the signal reflected by the human body activity detected by the microwave, the higher the power, and the lower the power is.
  • the microwave signals corresponding to different operating frequency characteristics, different human flows, and the like can be selectively identified and used in the technical solution of the present disclosure.
  • the magnitude of the change in the power level is customizable.
  • the magnitude of the change may be specifically a different difference, for example, the rated power is defined as 100%, and the magnitude of the change may include but is not limited to the following examples: 70%, 50%, 30%, 20%, 10%, and 5%. .
  • the processing unit includes a signal processing module, a control module, and an air conditioner driving module;
  • the signal processing module is configured to: process the signal output by the sensing unit into a digital signal required by the control module, and output the signal to the control module;
  • the control module is configured to: after performing the fuzzy operation on the received digital signal, outputting a control signal to the air conditioner driving module after comparing with the control strategy in the database;
  • the air conditioner driving module is configured to: adaptively control the opening and closing of the air conditioner according to the control signal, and adaptively adjust the power of the air conditioner.
  • the signal processing module can also be highly integrated with the control module or even the air conditioning drive module if the manufacturing process permits, as long as its function is achieved.
  • the control module can be implemented by various suitable processors.
  • the sensing signals obtained by a relatively versatile sensor are analog signals, and some sensors have been able to directly convert the sensing signals directly into digital signals
  • the signal processing module is not limited to various ADC analog to digital conversions suitable for the present disclosure.
  • Device Assuming that a sensing signal has been processed by the sensor itself as a digital signal, the signal processing module according to the embodiment: processing the signal output by the sensing unit into a digital signal required by the control module, and outputting to the control Module.
  • This embodiment reflects the technical path of the present invention from one side, that is, taking the control strategy in the database as the core, and controlling the switching and power adjustment of the air conditioner through the module design of the specific processing unit. Under the premise of meeting the basic requirements of performance, how to deal with the data fuzzy operation is not important, and the fuzzy operation or fuzzy calculation method in mathematics can be used.
  • control policy in the database includes the following rules:
  • a control signal is output, so that the working state of the air conditioner is Adjusting to a working state lower than the current power level; otherwise, outputting a control signal, so that the working state of the air conditioner is adjusted to a working state higher than the current power level;
  • the working state that is one level lower than the current power level includes an operating state of the air conditioning standby or air conditioning shutdown corresponding to the lowest power level;
  • the operating state that is one level higher than the current power level includes a working state of rated power with a maximum power level of 100%.
  • control strategy in the database is implemented in a preferred manner, and specific program control rules are given, which are characterized in that the lowest power level of the air conditioner can be correspondingly closed or set to In the standby state, this can be fixed when the air conditioner is shipped from the factory, or it can be freely selected by the user.
  • the loop detection is performed at a certain time interval, and the power level of the air conditioner operation is stepped down or raised step by step in the working state corresponding to the current ambient temperature and humidity.
  • This step-by-step adjustment does not occur at all times, but when the change is not sensed within a certain time range, the drive device considers that there is no human activity, then changes the power level until standby or shutdown, otherwise Power level, cooling according to the preset target value, heating to reach the temperature represented by the target value, or ventilation according to the target value to reach the air flow rate it represents, or humidifying or dehumidifying according to the target value to reach the target value
  • the humidity represented however, for a working state from off or standby to on, it is desirable to adjust as soon as possible to correspond to The current operating temperature of the ambient temperature and / or humidity rather than a period of time.
  • the present invention does not exclude the selection of other control strategies depending on the specific needs of the air conditioning use.
  • the current power-off or standby state is not excluded, and the current power level corresponding to a current ambient temperature and humidity is not excluded, for example, for long-term low temperature.
  • Environment or long-term high temperature environment then it may be hoped that when someone has air conditioning, it is always heating or cooling; and in the relatively clear environment of the four seasons, then it may be hoped that when the ambient temperature and humidity reach the starting condition, it is hoped that when someone has air conditioning It is heating or cooling or ventilation or humidification or dehumidification.
  • the standby it is not excluded to maintain the air conditioning sleep state and the air conditioning standby state of different low power consumption levels: for example, when the air conditioner is switched from the sleep state to the normal working state, it may take a little longer to wake up the functional components; When the air conditioner is switched from the standby state to the normal working state, it may take a little time to wake up the functional components.
  • the preset target value here, it may be a default value set at the time of shipment, or a user value that is freely set when the user wishes to freely set it.
  • the preset target value referred to in the present disclosure may be a numerical value or a numerical value range. For example, by default, the preferred temperature for a human settlement is set to 26 degrees Celsius in summer and 20 degrees Celsius in winter.
  • the programmed temperature is used as the target value to regulate the temperature; similarly, by default, assuming that the preferred air flow rate in the living environment is set to 20 cm per second, the air conditioner is only used for When ventilating, it uses the air flow rate as a target value to regulate the air flow rate; naturally, the ventilation function can be combined with the cooling or heating function to integrate the air conditioner. Regulation, the preset value of the air flow rate may also be set according to the user's local climatic conditions, such as the local latitude and longitude of the user, humidity, summer, winter arrival and end time, etc., for example, winter may wish The air flow rate is slightly lower to avoid feeling cold. Similarly, by default, the preferred humidity for a human settlement is 30%-80% in winter and 30%-60% in summer.
  • the present disclosure does not exclude the difference between the preset target value and the currently actually sensed ambient temperature, humidity, and air flow rate in order to adaptively increase or decrease the power of the air conditioner.
  • the fan speed of the air conditioner is a high air volume mode, and when the temperature differs by 5 degrees Celsius, the fan automatically switches to the medium speed air volume mode.
  • the ambient temperature is closer to the preset target value, it will automatically switch to the low-speed air volume mode.
  • the sensing unit further includes an ambient temperature and humidity sensing module, and the ambient temperature and humidity sensing module is configured to: according to a certain temperature, a certain humidity sensing period, based on a sense of temperature and humidity in an environment in which the air conditioner acts And measuring, periodically outputting an ambient temperature and humidity sensing signal to the processing unit for the processing unit to adaptively control the opening and closing of the air conditioner, and adaptively adjusting the power of the air conditioner.
  • an environmental temperature and humidity sensing module is additionally provided to assist in controlling the opening, closing and power adjustment of the air conditioner by sensing the ambient temperature and humidity. For example, if the current ambient temperature and humidity conditions are very good, then it is not necessary to continue to adjust the temperature and humidity of the air according to the sensing result of the microwave, or even to turn on the air conditioner, and vice versa. That is, the embodiment can further pass the current air conditioning environment on the basis of the foregoing various embodiments.
  • the sensing of temperature and humidity provides a smarter power adjustment while correcting the problem of too low or too high power due to pure microwave sensing. That is, when the ambient temperature and humidity measured by the ambient temperature and humidity sensing module meets the conditions for the air conditioner to be turned on, the power is turned on.
  • this embodiment can also be combined with air flow rate adjustment to adjust the air.
  • the ambient temperature and humidity sensing module comprises an infrared sensor.
  • the present invention can control only the switching and power adjustment of the air conditioner within a certain range in which the source of the infrared signal is located, and the remaining air conditioners that are significantly distant from the source of the infrared signal maintain the normally closed state.
  • the infrared signals of humans and other animals are different, and the frequency of their actions is also different.
  • This auxiliary means can also be combined with microwave sensing for avoiding false triggering of air conditioners caused by the actions of other animals or objects.
  • the sensing unit further includes an air flow rate sensing module, wherein the air flow rate sensing module is configured to: periodically sense the cycle according to a certain air flow rate, based on sensing the air flow rate in the environment in which the air conditioner acts, and periodically outputting An air flow rate sensing signal is sent to the processing unit for the processing unit to adaptively control the opening and closing of the air conditioner, and adaptively adjust the power of the air conditioner.
  • the air flow rate sensing module is configured to: periodically sense the cycle according to a certain air flow rate, based on sensing the air flow rate in the environment in which the air conditioner acts, and periodically outputting An air flow rate sensing signal is sent to the processing unit for the processing unit to adaptively control the opening and closing of the air conditioner, and adaptively adjust the power of the air conditioner.
  • the present disclosure can further embody intelligence and energy efficiency through an air flow rate sensing module.
  • the air conditioning can be independently controlled by each of the sensing modules as needed.
  • Switch and power adjustment can also control the switch and power adjustment of the air conditioner through two or three kinds of sensing modules as needed Sections, specific control rules can be formulated as appropriate: In general, in order to better save energy, it is recommended to determine the compliance with the ambient temperature and humidity sensing module based on the measurement signal of the ambient temperature and humidity sensing module; if it is consistent, further based on other senses
  • the module is used to switch and adjust power, such as a microwave sensing module and/or an air flow sensing module.
  • the processing unit is used to prevent other according to the temperature characteristics of the person and other objects.
  • the object falsely triggers the opening and closing of the air conditioner, and the adjustment of the power by the false trigger.
  • false triggers that such other objects may cause include, but are not limited to, movements of small animals, sudden fall of objects. Since these objects are different from the human surface area, especially the surface area of the surface receiving the microwave, this surface area characteristic has an influence on the microwave sensing signal, and the influence of the distance from the microwave sensing module on the microwave sensing signal, and the motion characteristics. For the influence of the microwave sensing signal, the present invention can formulate a control strategy based on the three effects to prevent the false trigger from causing the air conditioner to be switched or adjusted. In addition, since the temperature characteristics of the human and other objects are also different, the present invention may also introduce the temperature feature in other embodiments, and associate with the microwave sensing module by using an infrared sensing module or other type of temperature sensing module.
  • a microwave oscillator having a working frequency of 54 GHz is composed of a loop antenna and a microwave triode inside the microwave sensing module, and a semiconductor PN junction of the internal microwave transistor is mixed to detect a weak frequency shift signal by using a beat method (for example, , detecting the movement signal of the human body), the processing unit can first remove the interference signal whose amplitude is too small, only A certain intensity of the detection frequency shift signal is converted into a constant amplitude pulse of different width, and the circuit only recognizes a single signal having a sufficiently wide pulse.
  • a beat method for example, , detecting the movement signal of the human body
  • a weak interference signal such as small-sized animals, high-frequency communication signals, long-distance lightning, and interference generated by household appliances switching
  • the certain microwave sensing period, a certain temperature sensing period, a certain humidity sensing period, and a certain air flow sensing period are different periods. In this case, the working cycles of the corresponding multiple sensing modules are different, but the implementation of the air conditioning control function is not hindered.
  • This embodiment defines an implementation of a particular sensing cycle.
  • the certain microwave sensing period, a certain temperature sensing period, a certain humidity sensing period, and a certain air flow sensing period may also be the same period T. More preferably, the same period T is 1 second.
  • the cycle can be changed and reset at any time, and the cycle sensing can be set in the sensing unit, the cycle can be set in the processing unit, or both can be set.
  • the cycle sensing can be set in the sensing unit
  • the cycle can be set in the processing unit, or both can be set.
  • the processing unit is further used to: increase or decrease the power at the current power level. Or adjust the power to a fixed power.
  • the wave adjustment defined by the present invention can achieve the function of wave intelligent adjustment without additional equipment addition, and the wave control function can be realized by adding various control strategies corresponding to the wave action in the database.
  • the generated adjustment command is transmitted to the air conditioner driver module for execution. Because the various activities of the human body in real life are difficult to achieve an action frequency greater than 5 Hz through a large number of acquisition simulations, the present disclosure will determine whether there is a human body in the environment to make a low frequency action of no more than 5 Hz in the range of motion.
  • the threshold is not 5 Hz but other lower or higher thresholds, which does not prevent the implementation of the technical solution of the present disclosure. Taking the threshold value of 5 Hz as an example, when the sensor for microwave sensing senses an action frequency greater than 5 Hz, the waveform output to the signal processing module is significantly different from the waveform of other actions, and the waveform corresponding to the wave is passed.
  • the signal processing module After being processed and sent to the processing unit, the signal processing module is subjected to fuzzy processing, and the power is controlled according to a preset adjustment strategy, such as 80% or 50%; of course, the power can be adjusted or the power is lowered at the current power level. Strategy, the next time after a certain time interval, the next time you wave again, the power will be turned up or down again.
  • a preset adjustment strategy such as 80% or 50%
  • the air-conditioning driving module of the present disclosure controls whether the relay of the fixed-frequency air conditioner is turned on or not, thereby Control the working time of the compressor.
  • the air conditioner driving module of the present disclosure can pulse-width modulate the compressor by using a sine wave pulse; and for the inverter air conditioner adopting the DC inverter compressor, the air conditioner driving module of the present disclosure can The compressor is pulse width modulated by a square wave pulse.
  • the compressor can be started again after 3 minutes to 5 minutes after the last shutdown.
  • hexadecimal data is a real-time AD sample value measured by the microwave sensing module during a certain period of time when a person is in a static state with no apparent motion.
  • Figure 4 which reflects the microwave sensing data when the human body is static:
  • the processing unit can determine the human body static motion state after the fuzzy operation.
  • the theoretical static is not limited to the human body.
  • FIG. 5 shows a waveform of the sensing data of the human body when the static data is processed by the fuzzy operation, and the processing unit compares the database according to the data represented by the waveform to issue a control signal.
  • hexadecimal data is a real-time AD sampling value in a certain period of time when a person is in a continuous operation state, and its illustration is shown in FIG. 6, which reflects the continuous movement of the human body.
  • Microwave sensing data is a real-time AD sampling value in a certain period of time when a person is in a continuous operation state, and its illustration is shown in FIG. 6, which reflects the continuous movement of the human body.
  • the processing unit passes Fuzzy operation After that, it can be determined that the human body is continuously operating.
  • FIG. 7 shows a waveform after the sensing data of the human body is continuously processed by the fuzzy operation, and the processing unit compares the database according to the data represented by the waveform to issue a control signal.
  • hexadecimal data is a real-time AD sampling value in a certain period of time when a person is in a wave adjustment operation state, and its illustration is shown in FIG. 8 , which reflects the human body waving motion.
  • Microwave sensing data is a real-time AD sampling value in a certain period of time when a person is in a wave adjustment operation state, and its illustration is shown in FIG. 8 , which reflects the human body waving motion.
  • the above-mentioned waving is an active change state, and from the start of the swing to the end of the swing, the data change law is first gentle, then the upper and lower oscillating, and then gentle
  • the processing unit can determine the state of the human body wave adjustment after the fuzzy operation.
  • FIG. 9 shows a waveform of the sensing data processed by the human body during the wave adjustment operation, and the processing unit compares the database with the data represented by the waveform to issue a control signal to adjust the air conditioner. Power level.
  • FIGS. 10 to 11 a schematic diagram of adjusting the power of the air conditioner to a control signal corresponding to PWM on different powers is shown.

Abstract

一种空调驱动装置,包括传感单元、处理单元,该传感单元至少包括微波感测模块;该传感单元至少用于:按照一定的微波感测周期,基于对微波的感测,感测其作用范围内是否存在人体活动,并周期性的输出一传感信号至处理单元;处理单元用于:基于对于该传感信号的处理,使得该驱动装置能够自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。实现一种动态的、无需用户开、关的、基于环境状态感测的智能空调驱动装置。

Description

一种空调驱动装置 技术领域
本发明涉及空调领域,更具体的,涉及一种空调驱动装置。
背景技术
一方面,关于空调的受控开、关,以及功率调节方面,现有技术均是在空调调节面板或者各种遥控器上来实现。也就是说,现有技术必须依靠人为的开关动作来控制空调,其智能程度有限。
另一方面,在驱动空调时,无论是定频空调还是变频空调,不论其安装场合具体如何,对应的环境需求总是会发生变化的,即使安装了中央控制系统仍然要有人在监控中心监控和管理,每个具体的空调并不会因环境的人流量大小来自动感测环境中的动态变化而调节空调以不同的功率水平工作。也就是说,现有技术不能因人流量而自动、无开关的控制空调以达到节能、延长使用寿命的目的。
发明内容
鉴于此,为解决上述一个或多个技术问题,本发明提供一种空调驱动装置,其特征在于:
所述驱动装置包括传感单元、处理单元,所述传感单元至少包括微波感测模块;
所述传感单元至少用于:按照一定的微波感测周期,基于对微波的感测,感测其作用范围内是否存在人体活动,并周期性的输出一传感信号至所述处理单元;
所述处理单元用于:基于对于所述传感信号的处理,使得所述驱 动装置能够自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。
通过上述技术方案,本发明可以实现一种动态的、无需用户开关的、基于环境状态感测的空调驱动装置,既节能又智能。
附图说明
图1为本发明一个实施例中的装置结构示意图;
图2为本发明一个实施例中的定频空调驱动装置的电路示意图;
图3为本发明一个实施例中的变频空调驱动装置的电路示意图;
图4为本发明一个实施例中的人体静态时感测到的信号波形示意图;
图5为本发明一个实施例中的人体静态时感测到的信号被模糊运算处理后的波形示意图;
图6为本发明一个实施例中的人体连续动作时感测到的信号波形示意图;
图7为本发明一个实施例中的人体连续动作时感测到的信号被模糊运算处理后的波形示意图;
图8为本发明一个实施例中的人体挥手调节时感测到的信号波形示意图;
图9为本发明一个实施例中的人体挥手调节时感测到的信号被模糊运算处理后的波形示意图;
图10至11为本发明一个实施例中将空调的功率调节为不同的功 率上的PWM所对应的控制信号的示意图。
具体实施方式
以下实施例中,本公开所称的空调并不局限于用于制冷或制热,也不限于侧重于调节空气流速、湿度。
参考图1~11,在一个实施例中,其公开了一种空调驱动装置,其中:
所述驱动装置包括传感单元、处理单元,所述传感单元至少包括微波感测模块;
所述传感单元至少用于:按照一定的微波感测周期,基于对微波的感测,感测其作用范围内是否存在人体活动,并周期性的输出一传感信号至所述处理单元;
所述处理单元用于:基于对于所述传感信号的处理,使得所述驱动装置能够自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。
通过上述技术方案,本发明利用微波感测模块可以实现一种动态的、无需用户开、关的、基于人或物体活动的空调驱动装置,进而实现一种基于环境状态感测的智能、空调驱动装置。不仅无需用户开关,而且无需用户调节空调的工作功率,典型的,例如:强制冷、强制热。
显而易见,该实施例不需要任何原有的、供用户开关空调或调节空调功率的开关。与现有的通过智能手机、平板电脑等智能终端来控制空调明显不同的是,该实施例不需要用户的任何干预,所述空调驱动装置能够自主管理所述空调。
上述实施例的技术方案显然能够满足如下需求:当所述空调本身能够适应长期气温低的环境以制热或长期气温高的环境以制冷,抑或长期气流不畅的环境以通风,如果希望在有人时就自动开启而无人时自动关闭,并且希望能够进一步的依据感测到的人体活动来调节空调的功率,例如:具体的,人越靠近微波感测模块,则提高功率,越远离则降低功率;一般的,微波感测到的人体活动所反映的信号越强,则提高功率,越低则降低功率。不同动作频率特征、不同人流量等所对应的微波信号,均可以被有选择性的识别,从而用于本公开的技术方案。
优选的,在另一个实施例中,所述功率水平的变化幅度可自定义设置。比如,变化幅度可以具体为不同的差值,例如额定功率定义为100%,那么变化的幅度可以包括但不限于如下示例:70%、50%、30%、20%、10%,以及5%。
优选的,在另一个实施例中,
所述处理单元包括信号处理模块、控制模块,空调驱动模块;
所述信号处理模块用于:将所述传感单元输出的信号,处理为控制模块所需的数字信号,并输出至控制模块;
所述控制模块用于:对接收到的所述数字信号进行模糊运算后,经与数据库中控制策略比对后输出一控制信号至空调驱动模块;
空调驱动模块用于:依据控制信号,自适应的控制所述空调的开、关,以及自适应的调节空调工作时的功率。
对于该实施例,其给出了处理单元的一种实现方式,容易理解的, 如果制造工艺允许的条件下,所述信号处理模块也可以和所述控制模块,甚至空调驱动模块进行高度集成,只要实现其功能即可。其中,控制模块可以通过各种适合的处理器来实现。此外,由于相当种类的传感器获得的传感信号为模拟信号,而某些传感器已经能够直接将传感信号直接转为数字信号,所以信号处理模块并不限于各种适合本公开的ADC模数转换器。假设某传感信号已被传感器自身处理为数字信号,那么信号处理模块则按该实施例所述:将所述传感单元输出的信号,处理为控制模块所需的数字信号,并输出至控制模块。该实施例从一个侧面反映了本发明的技术路径,即以数据库中的控制策略为核心,通过具体的处理单元的模块设计来控制空调的开关和功率调节。在满足性能基本要求的前提下,如何对数据模糊运算并不重要,数学中的模糊运算或模糊计算方法都可以。
优选的,在另一个实施例中,所述数据库中控制策略包括如下规则:
(1)空调当前处于关闭或待机状态时,如果当前感测时刻与上一个周期的感测时刻相比,数字信号被判断为未发生变化,则继续保持关闭或待机状态的控制信号,空调维持关闭或待机状态;否则,依据当前环境温湿度,输出并保持一控制信号,使得空调的工作状态被调节至对应于当前环境温湿度的工作状态;
(2)空调当前处于某一功率水平的工作状态时,如果当前感测时刻与上一个周期的感测时刻相比,数字信号被判断为未发生变化,则继续保持当前工作状态的控制信号,空调继续维持当前功率水平的 工作状态;
进一步的,如果当前感测时刻的一定间隔时间后的某间隔感测时刻,数字信号依然被判断为整个所述一定间隔时间内均未发生变化,则输出一控制信号,使得空调的工作状态被调节至比当前功率水平低一级的工作状态;否则,输出一控制信号,使得空调的工作状态被调节至比当前功率水平高一级的工作状态;其中:
所述比当前功率水平低一级的工作状态包括最低功率水平所对应的空调待机或空调关闭的工作状态;
所述比当前功率水平高一级的工作状态包括最高功率水平为100%的、额定功率的工作状态。
对于该实施例而言,其以一种较佳的方式实现了数据库中的控制策略,给出了具体的程控规则,其特点在于:空调的最低功率水平可以对应为关闭状态,也可以设置为待机状态,这可以是空调出厂时就固定的,也可以是由用户所能自由选择的。无论空调是处于关闭或待机状态还是开启状态,按一定时间间隔来循环检测,在对应于当前环境温湿度的工作状态下来逐级调低或调高空调工作的功率水平。这种逐级调节不是时刻发生的,而是在某个时间范围内始终没有感测到变化时,所述驱动装置认为没有人类的活动时,才改变功率水平直至待机或关闭,否则按原有功率水平、按预设目标值来进行制冷、制热以达到目标值所代表的温度,抑或按目标值来通风以达到其所代表的空气流速,抑或按目标值来加湿或除湿以达到目标值所代表的湿度;然而,对于从关闭或待机到开启的工作状态,则希望尽快调节为对应于 当前环境温度和/或湿度的工作状态而不是经过一段时间。当然,由于所有的控制策略不能一一枚举,所以本发明并不排斥根据空调使用场合的具体需求来选择其他控制策略。
至于此处的对应于当前环境温湿度的工作状态,则不排除当前为关闭或待机状态,也不排除当前为对应于某当前环境温湿度的低功耗的功率水平,例如:对于长期气温低的环境或长期气温高的环境,那么可能希望在有人时空调总是在制热或制冷的;而四季相对分明的环境,那么可能希望环境温湿度达到开机条件时,才希望在有人时空调总是在制热或制冷或通风或加湿或除湿。
至于此处的关闭,则不排除彻底关闭电源的状态。
至于此处的待机,则不排除维持不同低功耗水平的空调睡眠状态、空调待机状态:例如,当空调从睡眠状态切换到正常工作状态时,可能需要稍长时间才能唤醒各功能元件;当空调从待机状态切换到正常工作状态时,可能只需要稍短时间就能唤醒各功能元件。
至于此处的预设目标值,可以是出厂时就设置的默认值,也可以是用户希望自由设置时所自由设置的用户值。本公开所称的预设目标值可以是一个数值,也可以是一个数值范围。例如,默认的,假设人居环境的较佳温度夏天设置为26摄氏度,冬天设置为20摄氏度。无论空调是处于制热或制冷模式,都以程序设定的温度为目标值来调控温度;类似的,默认的,假设人居环境的较佳空气流速设置为每秒20cm,那么空调仅用于通风时,其以该空气流速为目标值来调控空气流速;自然的,该通风功能可以和制冷或制热功能结合来综合对空调 调控,该空气流速预设目标值也可以根据用户当地经纬度、湿度、夏季、冬季到来和结束的时间等条件所表征的用户当地气候条件来作出厂设置或用户自定义设置,例如,冬季可能希望空气流速略低以免觉得冷。类似的,默认的,假设人居环境的较佳湿度为冬季湿度为30%-80%,夏季湿度为30%-60%。
进一步的,对于空调而言,本公开也不排斥通过比较预设目标值与当前实际感测的环境温度、湿度、空气流速的差异以便自适应的调高或调低空调的功率。例如,以温度差和调节常规空调的风机为例,当室温与预设目标值相差10摄氏度以上时空调的风机转速为高风量模式,当温度相差5摄氏度时风机则自动转为中速风量模式,当环境温度更加接近预设目标值时则自动转为低速风量模式。
优选的,在另一个实施例中,
所述传感单元还包括环境温湿度感测模块,所述环境温湿度感测模用于:按照一定的温度、一定的湿度感测周期,基于对空调所作用环境中的温度、湿度的感测,周期性的输出一环境温湿度传感信号至所述处理单元以供所述处理单元用于自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。
对于该实施例,其额外设置了环境温湿度感测模块,通过对环境温湿度的感测,来辅助控制所述空调的开、关和功率调节。例如,当前环境温湿度条件非常好,那么并不需要根据微波的感测结果来继续调节空气的温湿度,甚至是不必开启空调,反之亦然。也就是说,该实施例能够在前述各个实施例的基础上,进一步通过对当前空调环境 的温湿度的感测来提供更智能的功率调节,而修正由于单纯微波感测所引起的功率过低或过高的问题。即,当所述环境温湿度感测模块测量的环境温湿度符合空调开机的条件时才开机。自然地,该实施例也可以和空气流速调节结合在一起,综合调节空气。
优选的,所述环境温湿度感测模块包括红外传感器。
例如,本发明可以仅仅控制红外信号的来源所在一定范围内的空调的开关和功率调节,其余明显与红外信号的来源相距较远的空调则维持常闭状态。进一步的,人与其他动物的红外信号是不同的,其动作的频率也有不同,此辅助手段也可以和微波感测结合,以用于避免其他动物或物体的动作所引起的空调误触发。
优选的,在另一个实施例中:
所述传感单元还包括空气流速感测模块,所述空气流速感测模块用于:按照一定的空气流速感测周期,基于对空调所作用环境中的空气流速的感测,周期性的输出一空气流速传感信号至所述处理单元以供所述处理单元用于自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。
正如该实施例所明确指出的,本公开可以通过空气流速感测模块来进一步体现智能性和节能性。
需要说明的是,对于上述环境温湿度感测模块和空气流速感测模块,其与微波感测模块能够较好的相配合,那么既可以根据需要通过其中每种感测模块来独立控制空调的开关和功率调节,也可以根据需要通过其中的2种或3种感测模块来联动的控制空调的开关和功率调 节,具体的控制规则可以酌情制定:一般的,为了更好地节能,建议基于环境温湿度感测模块的测量信号,来确定是否符合开启空调的最基本调节;如果符合,则进一步依据其他感测模块来开关和调节功率,例如微波感测模块和/或空气流速感测模块。
优选的,在另一个实施例中:
根据人与其他物体的表面积特征和动作特征,以及距微波感测模块的距离,三者对微波传感信号的不同影响,以及根据人与其他物体的温度特征,所述处理单元用于防止其他物体误触发空调的开、关,以及误触发对功率的调节。
对于该实施例而言,这种其他物体可能引起的误触发包括但不限于小动物的动作、物体突然坠落。由于这些物体与人的表面积不同,特别是接受微波的表面的表面积,这种表面积特征会对微波感测信号有影响,加之距微波感测模块的距离对于微波感测信号的影响,以及动作特征对于微波感测信号的影响,本发明可以基于此三种影响来制定控制策略,防止引起误触发而导致空调被开关或对功率的调节。此外,由于人与其他物体的温度特征也有不同,本发明也可以在其他实施例中引入所述温度特征,借助红外感测模块或其他类型的温度感测模块来与微波感测模块进行联动,防止误触发空调的开、关,以及对空调功率的调节。更具体的,假设微波感测模块内部由环形天线和微波三极管组成一个工作频率为54GHz的微波振荡器,内部微波三极管的半导体PN结混频后用差拍法检出微弱的频移信号(例如,检测到人体的移动信号),处理单元可以首先去除幅度太小的干扰信号,只 将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号。如此,人体的动作变化才触发有意义的信号;相对应的,如果是较弱的干扰信号,如小体积的动物、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰均可以予以排除。也就是说,处理单元可以鉴别出真正足够大、符合有意义原则的信号,例如人体移动信号,只有鉴别出这种信号,处理单元才会输出相应的控制信号以控制空调驱动模块工作,从而防止误触发。
优选的,在另一个实施例中:
所述一定的微波感测周期、一定的温度感测周期、一定的湿度感测周期、一定的空气流速感测周期,为不同的周期。此种情况下,对应的多种感测模块的工作周期就有所不同,但不妨碍对空调控制功能的实现。该实施例限定了一种具体的感测周期的实现方式。类似的,在另一个实施例中,所述一定的微波感测周期、一定的温度感测周期、一定的湿度感测周期、一定的空气流速感测周期,也可以为相同的周期T。更优选的,所述相同的周期T为1秒。
对于与周期有关的这些实施例,其周期都可以随时改变、重新设置,既可以在传感单元中设置按周期感测,也可以在处理单元中设置按周期来处理,还可以二者都设置,无论如何设置,以能够满足本发明无需开关即可自适应地调节空调的开、关,和功率调节为准则。
优选的,在另一个实施例中,
当用户挥手时,根据微波感测模块对挥手动作的感测,无需额外增加任何模块,处理单元还用于:在当前功率水平上调高或调低功率, 或者调节功率到某固定功率。
对于上述实施例,本发明定义的挥手调节可以在无需额外增加设备的前提下就能达到挥手智能调节的功能,数据库中增加各种与挥手动作对应的调节的控制策略就能够实现挥手调节功能。当微波感测的传感器感测的挥手动作所表达的信息经信号处理模块处理后的波形信息与数据库比对后,生成调节指令传输给空调驱动模块执行。因为现实生活中人体的各种活动经大量采集模拟很难达到一个动作频率大于5Hz以上的动作,而本公开会判断环境中是否有人体在活动范围内做出了动作频率不大于5Hz低频动作。因为,一般而言,对空调功率有要求时,人体有意识的做出调节要求的挥手动作所产生的频率将大于5Hz以上。这正是本公开实现挥手调节功能的出发点。在特定场合下,可能此处的阈值不是5Hz而是其他更低或更高的阈值,这不妨碍实施本公开的技术方案。以阈值为5Hz为例,当微波感测用的传感器感测到大于5Hz的动作频率后输出给信号处理模块的波形与其他动作的波形是有较大不同的,这种挥手所对应的波形通过信号处理模块处理后输送给处理单元后经模糊处理,按照事先设置好的调节策略,比如:80%或50%来控制功率;当然,也可以是在当前功率水平上调高功率或调低功率的策略,一定时间间隔后的下次再次挥手时则再次调高或调低功率。
参考图2和图3,对于定频空调和变频空调,其分别示意了本公开的驱动装置的实现原理。以制热或制冷为例,对于定频空调而言,本公开的空调驱动模块控制定频空调的继电器的导通与否即可,从而 控制压缩机的工作时间。对于采用交流变频压缩机的变频空调而言,本公开的空调驱动模块可通过正弦波脉冲来脉宽调制压缩机;而对于采用直流变频压缩机的变频空调而言,本公开的空调驱动模块可通过方波脉冲来脉宽调制压缩机。
更优的,为了保护压缩机,可考虑压缩机自上次停机后3分钟至5分钟后方可再次启动。
进一步的,另一实施例如下所示,以下16进制数据为某人处于基本无明显动作的静态状态时,某时间段内微波感测模块所测的的实时AD采样值,其图示参见图4,其反映了人体静态时的微波感应数据:
8A 8A 8B 8A 8A 8A 8A 8A 8A 8B 8A 8A 8A 8A 89 8A 89 8A 8A 8A 8A 8A 8B 8A 8B 8A 8B 8B 8B 8C 8C 8C 8C 8B 8C 8C 8C 8D 8D 8D 8D 8D 8E 8E 8D 8E 8D 8E 8D 8D 8D 8D 8C 8C 8C 8C 8C 8C 8D 8C 8C 8C 8C 8D 8C 8D 8D 8D 8D 8D 8D 8D 8D 8D 8E 8D 8E 8E 8E 8E 8E 8E 8F 8E 8F 8F 8F 8F 8F 8F 8E 8E 8E 8E 8D 8D 8D 8C 8D 8D 8D 8D 8D 8D 8C 8D 8C 8D 8C 8C 8B 8C 8C 8C 8C 8B 8B 8B 8B 8B 8C 8C 8C 8C 8C 8C 8B 8B 8B 8C 8B 8B 8B 8B 8A 8B 8B 8A 8B 8B 8B 8B 8B 8C 8C 8B 8B 8B 8B 8C 8B 8B 8A 8A 8A 8A 8A 8A 8A 8A 8A 8A 89 8A 89 8A 89 89 89 89 89 89 89 89 89 88 88 88 88 87 88 88 88 88 88 88 87 88 87 87 87 87 87 87 87 87 87 87 86 87 87 88 88 88 88 87 88 88 87 87 87 87 87 87 87 87 87 88 87 87 87 87 88 87 88 87 88 87 88 87 88 87 87 87 87 88 88 89 88 89 88 89 89 8A 89 89 89 8A 89 8A  8A 8A 89 8A 89 89 8A 8A 89 89 89 8A 8A 8A 8A 8A 8A 89 8A 89 89 89 89 88 89 88 88 89 88 88 88 88 88 89 89 88 88 88 88 88 88 88 88 88 88 87 88 87 88 87 88 87 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 87 87 87 87 88 89 88 88 88 88 89 88 89 88 88 89 88 88 89 89 89 89 89 89 8A 8A 8A 8A 8A 8B 8A 8B 8A 8B 8A 8B 8A 8A 8A 8A 8A 8A 8A 8A 8A 8A 8B 8A 8A 8A 8A 8B 8A 8A 8B 8A 8B 8B 8B 8A 8B 8B 8B 8C 8C 8C 8C 8C 8C 8C 8C 8C 8C 8C 8B 8B 8B 8B 8B 8B 8B 8A 8B 8B 8B 8B 8B 8B 8B 8A 8A 89 8A 89 8A 89 89 89 8A 8A 8A 8A 8A 8A 8B 8B 8A 8B 8B 8B 8B 8A 8A 8A 8A 8A 89 8A 8A 8A 8A 89 8A 8A 8A 8A 8B 89 8A 8A 8A 8B 8B 8A 8A 8A 8B 8B 8B 8B 8B 8B 8B 8C 8C 8C 8C 8D 8C 8D 8D 8D 8D 8D 8D 8D 8E 8D 8D 8D 8E 8D 8E 8D 8E 8E 8E 8E 8F 8F 90 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 90 90 90 90 8F 90 90 90 8F 8F 90 8F 90 90 8F 91 90 90 90 91 91 91 91 91 91 91 90 91 91 8F 90 90 90 90 90 90 90 8F 90 8F 90 8F 90 90 90 91 90 91 91 91 91 91 90 91 91 92 92 91 91 91 91 91 92 91 91 91 91 92 91 91 91 90 90 90 90 91 90 8F 90 8F 90 90 90 8F 8F 8F 8E 8F 8F 8E 8E 8E 8E 8E 8E 8D 8E 8D 8E 8E 8E 8F 8E 8E 8E 8E 8E 8E 8D 8D 8D 8D 8D 8C 8C 8D 8C 8C 8C 8C 8C 8C 8B 8C 8B 8B 8C 8B 8B 8B 8B 8B 8B 8B 8C 8C 8B 8C 8C 8C 8C 8D 8D 8D 8C 8C 8C 8C 8C 8C 8B 8A 8A 8A 8A 8B 8A 8A 8A 8A 8B 8A 8B 8A 8B 8B 8A 8B 8B 8A 8A 8B 8B 8A 8A 8B 8B 8B 8C 8B 8B 8C 8B 8B 8C 8B 8B 8B 8B 8B 8B 8B 8B 8B 8C 8B 8C 8C 8C 8D 8D 8E 8E 8E 8E 8E 8E 8F 8F 8F  8F 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8D 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8F 8F 8F 8E 8F 8E 8F 8E 8E 8E 8D 8D 8D 8D 8D 8C 8C 8C 8C 8C 8D 8D 8D 8D 8D 8C 8C 8C 8C 8B 8B 8B 8B 8B 8A 8B 8B 8B 8B 8B 8C 8C 8B 8C 8B 8B 8B 8B 8B 8B 8A 8A 8A 8A 8A 89 8A 89 89 8A 89 89 89 89 89 88 89 89 88 89 88 88 88 88 88 88 88 88 88 88 88 88 89 89 89 89 89 89 89 88 88 88 88 87 87 87 88 88 87 88 88 88 88 87 87 87 87 87 86 87 86 86 86 87 86 86 87 87 87 87 88 88 88 88 88 88 88 87 88 87 88 87 87 87 87 87 88 88 88 88 88 88 89 88 88 89 88 88 88 88 87 87 88 87 88 86 87 87 87 87 87 89 88 88 87 88 88 88 88 88 88 88 88 88 88 88 88 89 88 89 88 89 89 89 89 89 88 88 88 88 88 88 87 87 88 88 88 88 88 89 89 89 8A 89 8A 89 8A 8A 89 8A 89 8A 8A 8A 8A 8A 8A 8A 8A 89 8A 8B 8A 8A 8A 8A 8A 8A 89 8A 89 8A 89 89 88 89 89 89 89 8A 8A 8A 8B 8B 8A 8A 8B 8A 8A 8B 8A 8B 8A 8B 8A 8B 8B 8B 8B 8B 8C 8C 8C 8C 8C 8C 8D 8B 8C 8C 8C 8D 8C 8C 8C 8C 8B 8C 8B 8C 8C 84 84 84 83 85 84 84 83 83 83 83 83 83 83 83 83 83 83 83 83 84 83 83 84 83 83 84 83 84 84 83 84 84 84 84 83 83 83 84 83 84 83 84 83 84 83 84 84 83 83 84 83 84 83 84 83 84 84 83 84 84 84 84 84 84 84 84 85 84 85 85 85 85 84 84 84 84 84 84 84 84 84 84 85 84 85 85 85 85 85 85 84 84 84 84 85 84 84 84 85 84 85 84 84 85 85 85 85 85 84 84 84 84 84 84 84 85 84 84 85 84 85 84 85 85 85 85 85 85 85 84 85 85 84 84 85 84 84 84 84 84 84 84 84 85 85 85 85 86 85 86  86 85 86 85 86 85 85 86 86 86 85 86 86 86 86 87 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87 88 88 88 88 88 88 88 87 88 87 87 87 87 87 86 87 87 86 87 87 87 87 87 87 87 87 87 87 87 86 86 87 86 86 86 85 87 86 85 86 86 86 86 86 86 86 86 87 86 86 86 86 86 86 86 86 86 87 86 86 86 86 87 87 88 87 88 88 88 88 88 87 88 88 87 88 87 87 87 88 87 87 87 87 87 88 88 88 88 88 88 88 88 88 88 88 87 88 88 88 88 88 88 88 88 87 88 88 88 87 87 87 87 87 86 87 87 87 86 87 87 87 87 87 88 88 87 87 87 87 88 87 88 88 87 87 87 87 87 87 87 87 88 88 88 88 88 89 88 89 89 89 89 88 89 89 89 8A 89 89 89 89 8A 89 8A 89 89 8A 8A 8A 8A 8A 8A 8A 8A 8A 8A 8A 8A 89 8A 8A 8A 8A 8A 8A 8A 8A 8B 8B 8A 8A 8B 8B 8B 8A 8B 8B 8B 8C 8C 8C 8C 8C 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8E 8D 8D 8D 8E 8E 8E 8E 8E 8F 8F 8E 8F 8F 8F 8F 8F 8F 90 90 90 8F 90 8F 90 8F 90 8F 90 90 8F 91 90 90 90 90 90 90 90 90 90 90 8F 90 90 90 90 8F 8F 8F 90 90 90 8F 8F 8F 8E 8E 8F 8F 8F 8F 8F 8E 8F 8F 8E 8F 8F 8F 8E 8F 8F 8E 8E 8E 8E 8E 8E 8E 8E 8D 8E 8E 8D 8E 8E 8D 8E 8D 8E 8E 8E 8D 8D 8D 8D 8D 8C 8D 8C 8D 8C 8C 8C 8C 8C 8C 8C 8D 8D 8C 8E 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8F 8E 8F 8E 8E 8F 8F 8E 8F 8E 8E 8F 8E 8F 8F 90 90 91 90 91 91 90 90 91 90 91 91 90 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 90 90 91 90 90 90 90 90 90 90 90 8F 90 90  90 8F 90 90 8F 90 8F 8F 8F 8F 8F 8E 90 8F 90 90 90 90 90 8F 90 90 91 90 90 90 90 90 90 90 90 90 90 90 90 90 90 8F 90 8F 90 8F 8F 8F 8F 8F 8F 8E 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8E 8F 8F 8F 8F 8F 8F 8F 8F 90 8F 90 8F 90 90 90 91 91 91 91 91 91 91 91 91 91 91 90 91 91 90 91 91 91 91 91 91 91 91 90 91 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 8F 91 8F 90 90 8F 8F 90 8F 90 8F 90 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8E 8F 8F 8F 8E 8E 8E 8E 8E 8E 8E 8F 8E 8E 8E 8E 8F 8E 8F 8E 8F 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8D 8D 8E 8D 8C 8F 8C 8E 8E 8D 8E 8D 8E 8E 8E 8E 8E 8E 8E 8E 8D 8E 8C 8D 8E 8D 8D 8D 8D 8D 8D 8D 8D 8E 8E 8D 8E 8E 8D 8E 8E 8D 8E 8D 8E 8E 8D 8F 8D 8F 8D 8E 8F 8E 8F 8F 8F 8F 8E 8E 8F 8E 8E 90 8E 8E 8F 8F 8F 8E 8F 8F 8E 8F 8E 90 90 8F 90 90 8F 91 8F 90 91 8F 90 8F 90 8F 8E 90 8F 8F 91 8F 90 90 90 8F 8F 8F 8F 8F 8E 8F 8E 90 8E 8F 8F 8E 90 8F 8E 8F 8E 90 8F 8E 8F 8F 8E 8F 8F 8E 8E 8F 8F 8F 8F 8E 8F 8F 8F 8F 8E 90 90 90 8F 90 8F 90 90 8F 90 90 8F 90 90 8F 90 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 90 91 92 91 91 92 91 92 90 92 91 91 92 92 92 92 91 91 92 90 91 90 91 90 91 90 92 90 91 91 90 90 91 91 90 90 90 90 90 90 90 90 90 90 90 90 92 91 90 90 90 90 90 91 91 90 90 8F 91 8F 90 91
对于上述人体在静止状态下时的采样数据及其图4所示,基本是在80-9F之间幅度范围变化,波形振动幅度范围基本没有变化,假设 符合上述数据变化规律的其他采样数据都对应人体处于静态,那么处理单元通过模糊运算后,就可以判定为人体静止动作状态。当然,理论上的静止并不仅限于人体这一对象。
图5则示出了一种人体静态时的感测数据经模糊运算处理后的波形,处理单元正是依据此类波形所代表的数据来和数据库进行比对后发出控制信号。
进一步的,另一实施例如下所示,以下16进制数据为某人处于连续动作状态时,某时间段内的实时AD采样值,其图示参见图6,其反映了人体连续动作时的微波感应数据:
A0 9D 9A 97 94 90 8E 8B 88 85 83 80 7E 7C 79 77 75 72 70 6E 6C 69 67 65 63 61 5F 5D 5B 59 57 55 53 52 4F 4E 4D 4B 49 47 46 44 43 40 3F 3E 3C 3A 39 38 36 35 32 32 30 2F 2E 2C 2B 2A 29 27 26 25 24 23 21 20 1F 1E 1C 1C 1B 19 18 17 16 15 15 13 12 11 10 0F 0E 0D 0C 0C 0B 0A 09 08 08 07 06 06 05 05 04 04 03 03 02 02 01 02 02 02 02 02 02 02 02 02 02 02 02 03 03 03 03 03 03 03 04 03 03 04 04 05 05 05 06 06 07 07 07 07 08 08 09 0A 0A 0B 0C 0C 0D 0E 0F 10 11 12 13 14 15 16 18 19 1A 1B 1C 1E 1F 20 22 23 25 26 28 29 2B 2C 2E 30 3 1 33 34 36 38 39 3C 3D 3F 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 59 5C 5D 5F 61 64 65 66 68 6A 6C 6D 6F 72 72 74 76 78 7A 7C 7D 7F 80 82 84 84 86 87 89 8A 8B 8D 8E 90 90 92 93 94 95 97 98 99 9A 9C 9C 9D 9E A0 A1 A2 A3 A4 A5 A7 A8 A8 AA AA AC AE AE AF B1 B1 B2 B3 B4 B5 B7 B7 B9 B9 BA BB BD  BC BE BE C0 C1 C2 C4 C4 C7 C6 C8 C9 CA CA CC CD CE CF D0 D1 D2 D3 D5 D6 D7 D9 DA DB DC DD DF E0 E2 E3 E4 E6 E8 E9 EC ED EF F1 F3 F6 F8 FB FC FD FD FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FD FD FE FE FE FE FE FE FE FF FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FC FA F9 F7 F4 F2 EF EC E8 E5 E2 DE DA D6 D2 CD C9 C5 C0 BC B7 B3 AE AA A6 A1 9D 99 95 91 8D 89 85 81 7D 7A 76 72 6E 6B 67 64 61 5D 5A 56 53 50 4C 49 46 43 40 3D 3A 37 34 3 1 2E 2B 28 24 22 1F 1B 19 15 13 10 0D 0A 07 04 02 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 01 02 01 02 01 02 02 02 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 01 01 02 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 01 02 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 03 03 03 03 03 03 04 04 04 04 05 05 05 06 06 07 07 07  09 0A 0A 0C 0D 0E 0F 10 12 13 14 16 18 1A 1C 1D 1F 20 23 25 26 28 2B 2D 30 32 0C 0E 10 11 13 15 17 19 1B 1D 1F 22 25 27 2B 2D 31 33 36 3A 3D 41 44 47 4B 4E 51 55 58 5B 5F 62 65 68 6C 6F 72 76 79 7C 80 83 87 89 8C 8F 91 94 97 99 9B 9E A0 A2 A5 A7 AA AC AE B1 B3 B5 B7 B8 BB BC BE C0 C2 C5 C6 C8 CA CC CE CF D2 D4 D6 D9 DA DC DE E0 E2 E4 E6 E8 EA ED EE F0 F2 F5 F6 F9 FB FC FD FD FE FD FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FB F9 F7 F4 F1 EE EA E7 E3 DF DB D7 D4 CF CB C7 C3 BE BA B5 B2 AC A8 A4 9F 9B 97 93 8F 8B 87 83 7F 7B 78 75 72 6E 6B 67 64 61 5D 5A 56 54 50 4D 4A 47 44 41 3E 3B 38 35 32 2F 2C 29 26 23 1F 1C 19 16 13 0F 0C 09 05 02 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 01 01 01 02 02 02 02 02 02 03 03 03 03 03 04 03 03 04 04 05 04 05 06 06 06 07 07 08 09 09 09 0A 0A 0B 0C 0C 0D 0D 0F 0F 10 11 12 13 13 14 15 16 17 17 18 18 19 1A 1A 1A 1B 1C 1C 1C 1E 1E 1F 1F 21 20 21 21 22 23 22 23 23 24 24 24 25 25 25 26 25 27 28 28 29 29 29 2B 2B 2B 2C 2D 2D 2E 2E 2F 2F 30 3 1 32 33 34 35 37 37 39 3A 3C 3D 3F 40 41 43 45 46 48 4A 4B 4E 4F 52 55 57 59 5B 5D 60 63 65 67 69 6C 6E 71 74 76 79 7C 7F 81 84 88 8B 8D 90 94 96 99 9B 9E A1 A4 A7 A9 AC AE B1 B4 B6 BA BC BF C2 C4 C7 CA CD D0 D2 D5 D7 DB DE E1 E4 E8 EB EE F2 F6 F9 FB FD FD FD FD FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE  FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FD FE FD FE FD FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FC F9 F7 F4 F1 EE EB E7 E3 DF DB D6 D2 CD C8 C4 BF BB B6 B2 AC A8 A4 9F 9B 97 92 8E 8A 86 82 7E 7A 77 73 70 6D 6A 67 64 61 5E 47 49 4C 4E 4F 51 54 56 59 5A 5C 5F 63 65 68 6B 6E 71 74 76 79 7B 7E 80 83 86 88 8A 8D 8F 91 93 96 98 99 9C 9F A1 A3 A4 A6 A8 A9 AB AC AE B0 B1 B2 B2 B4 B4 B5 B7 B7 B8 B8 B9 B9 B9 B9 BA B9 B9 B9 B9 B8 B7 B7 B5 B4 B4 B2 B1 B0 AF AE AC AB AA A8 A7 A5 A4 A1 9F 9E 9C 9A 98 96 93 91 8F 8E 8B 8A 88 86 84 82 80 7E 7B 79 78 75 73 71 6F 6D 6B 69 67 65 64 62 61 5E 5D 5B 59 58 56 54 52 50 4F 4D 4B 49 48 46 45 44 43 41 40 3F 3E 3D 3C 3A 3A 39 38 37 35 34 33 32 3 1 3 1 30 2F 2F 2E 2F 2F 2E 2D 2D 2D 2C 2D 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2C 2D 2D 2D 2E 2F 2F 2F 30 31 31 32 32 33 34 34 35 36 37 39 3A 3B 3D 3D 3E 40 41 42 44 46 47 48 4A 4B 4C 4E 4F 51 52 54 55 57 59 5B 5D 5E 60 62 63 64 66 67 69 6B 6D 6E 6F 71 72 74 76 78 79 7B 7C 7F 80 81 83 85 87 87 8A 8A 8C 8E 8E 90 91 92 94 96 97 98 9A 9B 9C 9E 9F A1
对于上述人体在某种连续动作状态下时的采样数据及其图6所示,波形震动幅度范围变化比较大,假设符合上述数据变化规律的其他采样数据都对应人体处于连续动作,那么处理单元通过模糊运算 后,就可以判定为人体连续动作状态。
图7则示出了一种人体连续动作时的感测数据经模糊运算处理后的波形,处理单元正是依据此类波形所代表的数据来和数据库进行比对后发出控制信号。
进一步的,另一实施例如下所示,以下16进制数据为某人处于挥手调节动作状态时,某时间段内的实时AD采样值,其图示参见图8,其反映了人体挥手动作时的微波感应数据:
9C 9C 9C 9D 9D 9C 9D 9D 9E 9E 9E 9E 9D 9E 9E 9E 9E 9E 9F 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9E 9D 9D 9E 9D 9D 9C 9D 9D 9C 9D 9D 9C 9C 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9E 9D 9D 9D 9E 9D 9D 9D 9C 9D 9D 9D 9D 9D 9C 9C 9C 9C 9C 9C 9C 9C 9C 9B 9A 9B 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 99 99 9A 99 99 98 99 99 99 98 98 98 99 99 9A 99 98 99 98 98 98 98 97 98 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 96 97 96 96 97 96 97 96 97 97 97 97 97 97 97 97 96 97 97 97 97 97 97 96 97 97 97 98 97 97 97 97 97 97 96 97 97 96 96 96 96 96 96 96 96 96 97 96 96 96 96 96 96 96 96 96 96 95 96 95 96 95 95 95 95 95 95 95 95 95 95 95 96 96 95 95 96 95 96 96 96 96 95 96 96 96 96 96 96 96 96 96 97 96 96 96 95 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 95 96 96 95 95 95 95 95 95 94 94 94 93 93 94 93 93 93 93 93 92 93 92 92 92 92 92 92 91 91 92 91 92 91 91 91 91 91 91 91 91 91 91 90 90 90 90 90 90  90 90 90 91 90 90 91 91 90 91 91 90 91 90 91 91 90 90 90 90 90 90 90 90 90 90 90 90 90 91 90 91 8F 90 90 90 90 90 8F 90 8F 8F 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 8F 90 90 90 90 90 90 8F 91 8F 91 90 90 91 91 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 8F 8F 8F 8F 8F 8F 8F 8F 8E 8F 8E 8E 8E 8E 8E 8E 8E 8E 8E 8E 8D 8D 8D 8E 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8E 8D 8D 8D 8D 8D 8D 8C 8D 8C 8D 8C 8C 8C 8C 8C 8C 8B 8C 8C 8B 8C 8B 8C 8C 8C 8C 8C 8C 8C 8C 8B 8B 8B 8B 8C 8C 8B 8B 8B 8C 8B 8C 8C 8C 8C 8C 8D 8C 8C 8C 8C 8C 8C 8D 8D 8C 8C 8D 8C 8D 8D 8E 8D 8E 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D A6 A6 A6 A6 A6 A7 A6 A6 A7 A7 A7 A8 A8 A9 AA AA AC AB AC AE AE AF B0 B1 B1 B2 B3 B3 B3 B4 B4 B4 B4 B5 B7 B8 BA BD BF C2 C5 C7 CB CD D0 D1 D3 D5 D7 D9 DB DE E1 E3 E6 E9 EC EF F2 F5 F7 F9 FB FC FD FD FD FE FE FE FD FE FE FE FE FE FE FD FE FE FE FD FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FC FB F9 F7 F5 F3 F0 ED EA E8 E5 E2 DF DB D8 D5 D1 CE CA C6 C2 BE BA B6 B4 AF AB A7 A4 9F 9C 98 94 90 8D 89 85 82 7E 7A 76  73 6F 6C 68 65 62 5E 5B 58 55 5 1 4E 4B 47 44 41 3D 3A 37 33 30 2D 2A 27 23 21 1D 1A 17 14 11 0D 0B 07 04 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 02 03 04 05 06 06 07 08 08 0A 0A 0C 0C 0C 0C 0C 0C 0C 0B 0B 0A 0A 09 08 06 06 04 03 03 02 02 01 01 01 01 02 02 02 03 03 03 04 04 05 06 06 07 07 07 07 08 07 07 07 07 09 09 0A 0A 0B 0D 0E 10 13 14 17 18 1B 1C 1E 1F 20 22 23 25 25 26 27 27 27 28 29 29 2A 2A 2A 2A 2A 2A 29 29 28 27 26 24 22 21 1E 1D 1B 19 18 17 16 15 15 15 15 17 17 19 1A 1C 1D 1E 1F 20 21 21 22 22 21 21 20 1F 1E 1D 1C 1B 19 19 19 19 1A 1B 1C 1E 20 22 24 26 28 2B 2D 2F 3 1 32 33 34 35 36 37 38 39 3B 3C 3D 40 41 44 47 49 4B 4E 50 52 55 56 58 5A 5C 5E 60 62 64 67 69 6D 6F 72 74 77 79 7B 7D 7F 81 82 84 85 87 86 88 89 8A 8B 8B 8D 8D 8D 8F 8F 91 91 93 95 96 98 99 9A 9C 9D 9E A0 A0 A1 A3 A3 A5 A5 A7 A8 AA AC AE B0 B2 B3 B5 B8 B9 BA BC BD BF C1 C3 C6 C8 CB CE D2 D5 D9 DC E0 E3 E6 E8 EB EE F0 F2 F5 F8 FB FC FD FD FD FD FE FD FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FD FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FF FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE  FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FD FD FD FE FE FE FE FE FE FE FD FE FE FE FE FE FE FE FD FE FD FC FC FB F8 F7 F5 F3 F0 EE EB E8 E5 E2 DE DB D7 D3 CF CB C7 C2 BE BB B7 B3 AE AB A6 A3 9F 9B 98 94 91 8D 8A 86 83 80 7D 7A 75 74 71 6E 6C 69 67 64 62 5F 5D 5A 57 55 53 50 4F 4D 4A 49 46 44 43 41 3F 3E 3C 3B 39 37 36 34 33 3 1 30 2E 2C 2A 29 28 26 25 23 22 21 1F 1E 1C 1B 19 18 16 14 13 11 10 0D 0C 0A 09 06 05 03 02 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 A5 A6 A6 A5 A5 A5 A5 A5 A6 A5 A5 A5 A6 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A4 A6 A5 A5 A5 A6 A5 A6 A6 A6 A6 A6 A6 A6 A6 A7 A6 A7 A6 A6 A6 A7 A6 A6 A6 A6 A6 A6 A6 A6 A6 A5 A5 A5 A5 A4 A5 A5 A5 A4 A4 A4 A4 A4 A5 A4 A5 A5 A4 A4 A4 A5 A4 A5 A4 A4 A4 A5 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A3 A3 A4 A3 A3 A3 A3 A3 A3 A3 A3 A3 A4 A3 A3 A3 A3 A2 A2 A2 A2 A1 A1 A1 A0 A1 A0 A0 A1 A1 A0 A0 9F A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 9F 9F A0 9F 9F 9F 9F 9F 9E 9E 9F 9E 9E 9E 9E 9E  9D 9D 9D 9D 9D 9D 9D 9D 9D 9C 9C 9C 9C 9C 9C 9C 9C 9C 9C 9C 9C 9D 9C 9D 9C 9D 9D 9C 9C 9C 9C 9C 9C 9D 9C 9D 9C 9C 9D 9C 9C 9D 9D 9C 9C 9D 9C 9D 9C 9C 9C 9D 9D 9C 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9D 9C 9C 9C 9C 9C 9D 9C 9C 9C 9C 9C 9B 9B 9C 9C 9B 9C 9B 9C 9B 9C 9C 9C 9C 9C 9B 9C 9B 9B 9C 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B 9A 9A 9A 9A 9A 9A 9A 9A 9A 99 9A 9A 99 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9B 9B 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 9B 9B 9B 9B 9A 9B 9A 9A 9A 9A 9A 99 99 99 9A 98 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 9A 99 99 99 9A 9A 9A 9A 9A 9A 9A 9A 9A 9A 99 99 9A 99 9A 99 9A 9B 9A 9A 99 9A 9A 9A 99 99 99 99 99 99 99 99 99 99 99 99 99 99 98 99 99 99 99 99 99 99 99 99 99 99 98 99 98 98 99 98 97 98 98 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 96 96 97 96 96 96 97 97 96 96 96 96 96 96 96 96 96 96 96 96 96 95 95 95 96 96 96 95 96 96 96 96 96 95 96 95 95 95 95 94 95 94 95 94 94 95 95 95 94 94 94 95 94 94 94 95 94 94 94 94 94 94 93 93 94 93 93 93 93
对于上述人体在挥手动作状态下时的采样数据及其图8所示,上述挥手是一个主动变化状态,从开始挥动到结束挥动,数据变化规律是先平缓,再大幅度上下震荡,然后再平缓的动作特点,假设符合上述数据变化规律的其他采样数据都对应人体处于挥手调节动作,那么处理单元通过模糊运算后,就可以判定为人体挥手调节状态。
图9则示出了一种人体挥手调节动作时的感测数据经模糊运算处理后的波形,处理单元正是依据此类波形所代表的数据来和数据库进行比对后发出控制信号以调节空调功率水平。
对于本公开所揭示的前述防止误触发的功能,其涉及的相应信号的采样和模糊运算,可参考上述实施例和相关附图4至9。
此外,需要说明的是,本公开并不排斥通过挥手来直接设置各种前述预设目标值的实现方式,包括但不限于关于温度、湿度、空气流速的预设目标值。
对于变频空调,以方波脉宽调制为例,更进一步的,参见图10至11,其示出了将空调的功率调节为不同的功率上的PWM所对应的控制信号的示意图。
以上利用具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;对于本领域技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种空调驱动装置,其特征在于:
    所述驱动装置包括传感单元、处理单元,所述传感单元至少包括微波感测模块;
    所述传感单元至少用于:按照一定的微波感测周期,基于对微波的感测,感测其作用范围内是否存在人体活动,并周期性的输出一传感信号至所述处理单元;
    所述处理单元用于:基于对于所述传感信号的处理,使得所述驱动装置能够自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。
  2. 根据权利要求1所述的驱动装置,其特征在于:
    所述处理单元包括信号处理模块、控制模块,空调驱动模块;
    所述信号处理模块用于:将所述传感单元输出的信号,处理为控制模块所需的数字信号,并输出至控制模块;
    所述控制模块用于:对接收到的所述数字信号进行模糊运算后,经与数据库中控制策略比对后输出一控制信号至空调驱动模块;
    空调驱动模块用于:依据控制信号,自适应的控制所述空调的开、关,以及自适应的调节空调工作时的功率。
  3. 根据权利要求2所述的驱动装置,其特征在于,所述数据库中控制策略包括如下规则:
    (1)空调当前处于关闭或待机状态时,如果当前感测时刻与上一个周期的感测时刻相比,数字信号被判断为未发生变化,则继续保持关闭或待机状态的控制信号,空调维持关闭或待机状态;否则,依 据当前环境温湿度,输出并保持一控制信号,使得空调的工作状态被调节至对应于当前环境温湿度的工作状态;
    (2)空调当前处于某一功率水平的工作状态时,如果当前感测时刻与上一个周期的感测时刻相比,数字信号被判断为未发生变化,则继续保持当前工作状态的控制信号,空调继续维持当前功率水平的工作状态;
    进一步的,如果当前感测时刻的一定间隔时间后的某间隔感测时刻,数字信号依然被判断为整个所述一定间隔时间内均未发生变化,则输出一控制信号,使得空调的工作状态被调节至比当前功率水平低一级的工作状态;否则,输出一控制信号,使得空调的工作状态被调节至比当前功率水平高一级的工作状态;其中:
    所述比当前功率水平低一级的工作状态包括最低功率水平所对应的空调待机或空调关闭的工作状态;
    所述比当前功率水平高一级的工作状态包括最高功率水平为100%的、额定功率的工作状态。
  4. 根据权利要求2或3所述的驱动装置,其特征在于:
    所述传感单元还包括环境温湿度感测模块,所述环境温湿度感测模用于:按照一定的温度、一定的湿度感测周期,基于对空调所作用环境中的温度、湿度的感测,周期性的输出一环境温湿度传感信号至所述处理单元以供所述处理单元用于自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。
  5. 根据权利要求2至4任一所述的驱动装置,其特征在于:
    所述传感单元还包括空气流速感测模块,所述空气流速感测模块用于:按照一定的空气流速感测周期,基于对空调所作用环境中的空气流速的感测,周期性的输出一空气流速传感信号至所述处理单元以供所述处理单元用于自适应的控制空调的开、关,以及自适应的调节空调工作时的功率。
  6. 根据权利要求2至4任一所述的驱动装置,其特征在于:
    当用户挥手时,根据微波感测模块对挥手动作的感测,无需额外增加任何模块,处理单元还用于:在当前功率水平上调高或调低功率,或者调节功率到某固定功率。
  7. 根据权利要求5所述的驱动装置,其特征在于:
    所述一定的微波感测周期、一定的温度感测周期、一定的湿度感测周期、一定的空气流速感测周期,为不同的周期。
  8. 根据权利要求5所述的驱动装置,其特征在于:
    所述一定的微波感测周期、一定的温度感测周期、一定的湿度感测周期、一定的空气流速感测周期,为相同的周期T。
  9. 根据权利要求5所述的驱动装置,其特征在于:根据人与其他物体的表面积特征和动作特征,以及距微波感测模块的距离,三者对微波传感信号的不同影响,以及根据人与其他物体的温度特征,所述处理单元用于:防止其他物体误触发空调的开、关,以及误触发对空调功率的调节。
  10. 根据权利要求8所述的驱动装置,其特征在于:所述相同的周期T为1秒。
PCT/CN2015/075344 2015-01-28 2015-03-29 一种空调驱动装置 WO2016119296A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3012871A CA3012871C (en) 2015-01-28 2015-03-29 Air conditioner driving device
US16/056,608 US11168912B2 (en) 2015-01-28 2018-08-07 Air conditioner driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510045356.1 2015-01-28
CN201510045356.1A CN104633859B (zh) 2015-01-28 2015-01-28 一种空调驱动装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/056,608 Continuation US11168912B2 (en) 2015-01-28 2018-08-07 Air conditioner driving device

Publications (1)

Publication Number Publication Date
WO2016119296A1 true WO2016119296A1 (zh) 2016-08-04

Family

ID=53212898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075344 WO2016119296A1 (zh) 2015-01-28 2015-03-29 一种空调驱动装置

Country Status (4)

Country Link
US (1) US11168912B2 (zh)
CN (1) CN104633859B (zh)
CA (1) CA3012871C (zh)
WO (1) WO2016119296A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104632680B (zh) * 2015-01-28 2016-07-06 胡军 一种风扇驱动装置
CN105674483B (zh) * 2016-01-19 2018-11-23 浙江大学 一种空调看闪动遥控装置及其控制方法
CN107747792A (zh) * 2017-09-22 2018-03-02 南京律智诚专利技术开发有限公司 一种室内空调的智能控制系统及方法
CN111881605B (zh) * 2020-07-24 2022-12-16 四川长虹空调有限公司 变频空调压缩机管路自动优化设计方法
CN112902416B (zh) * 2020-12-24 2022-04-22 珠海格力电器股份有限公司 一种空调的控制装置、方法和空调

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201314675Y (zh) * 2008-12-19 2009-09-23 何少嘉 人体感应风扇和空调
CN201351979Y (zh) * 2008-12-22 2009-11-25 浙江大学城市学院 一种节能型空调自动控制开关
CN101639273A (zh) * 2009-08-26 2010-02-03 陈秋池 空调温度自动监控仪
CN201628340U (zh) * 2010-02-25 2010-11-10 济南赛英立德电子科技有限公司 双重控制模式的空调节能控制器
CN201672623U (zh) * 2010-02-10 2010-12-15 刘仪 节能空调器
CN201866885U (zh) * 2010-10-18 2011-06-15 湘潭高新区湘大智姆电子有限公司 空调遥控管理节电器
CN102374613A (zh) * 2011-09-30 2012-03-14 宁波奥克斯电气有限公司 通过人体感应以控制空调上电的方法
CN102374608A (zh) * 2010-08-24 2012-03-14 海尔集团公司 空调器以及控制空调器开关的控制方法
CN202709381U (zh) * 2012-07-16 2013-01-30 上海海镕信息科技有限公司 一种智能空调控制器
CN103884082A (zh) * 2014-03-03 2014-06-25 杭州电子科技大学 判断室内有无人的空调自动开关装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984732B2 (ja) * 1991-09-30 1999-11-29 株式会社建築設備設計研究所 空調用床吹出口における風量調節装置
JP2004036990A (ja) * 2002-07-03 2004-02-05 Rinnai Corp 空気調和機
JP4668770B2 (ja) * 2005-11-09 2011-04-13 株式会社山武 無線空調制御システムおよび空調コントローラ
KR20080070432A (ko) * 2007-01-26 2008-07-30 엘지전자 주식회사 공기조화시스템 및 그 운전 방법
US20130217491A1 (en) * 2007-11-02 2013-08-22 Bally Gaming, Inc. Virtual button deck with sensory feedback
KR20110045798A (ko) * 2009-10-27 2011-05-04 이현명 가정용 절전 자동화 후드 제어시스템
JP2011215031A (ja) * 2010-03-31 2011-10-27 Toshiba Corp 人感センサおよび空調装置
KR20140003577A (ko) * 2011-02-22 2014-01-09 파나소닉 주식회사 무선 통신 시스템과 이에 사용되는 무선 슬레이브 기기 및 무선 마스터 기기
CN103363625B (zh) * 2012-03-31 2015-10-21 南充鑫源通讯技术有限公司 一种带多普勒微波传感器的智能遥控器
US20130325368A1 (en) * 2012-06-04 2013-12-05 Robert Edwin ROBB System for monitoring air flow efficiency
JP5871747B2 (ja) * 2012-08-08 2016-03-01 三菱電機株式会社 空気調和機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201314675Y (zh) * 2008-12-19 2009-09-23 何少嘉 人体感应风扇和空调
CN201351979Y (zh) * 2008-12-22 2009-11-25 浙江大学城市学院 一种节能型空调自动控制开关
CN101639273A (zh) * 2009-08-26 2010-02-03 陈秋池 空调温度自动监控仪
CN201672623U (zh) * 2010-02-10 2010-12-15 刘仪 节能空调器
CN201628340U (zh) * 2010-02-25 2010-11-10 济南赛英立德电子科技有限公司 双重控制模式的空调节能控制器
CN102374608A (zh) * 2010-08-24 2012-03-14 海尔集团公司 空调器以及控制空调器开关的控制方法
CN201866885U (zh) * 2010-10-18 2011-06-15 湘潭高新区湘大智姆电子有限公司 空调遥控管理节电器
CN102374613A (zh) * 2011-09-30 2012-03-14 宁波奥克斯电气有限公司 通过人体感应以控制空调上电的方法
CN202709381U (zh) * 2012-07-16 2013-01-30 上海海镕信息科技有限公司 一种智能空调控制器
CN103884082A (zh) * 2014-03-03 2014-06-25 杭州电子科技大学 判断室内有无人的空调自动开关装置

Also Published As

Publication number Publication date
CN104633859A (zh) 2015-05-20
CA3012871C (en) 2020-01-28
CN104633859B (zh) 2017-09-01
US11168912B2 (en) 2021-11-09
US20180372360A1 (en) 2018-12-27
CA3012871A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
US11168912B2 (en) Air conditioner driving device
WO2018076767A1 (zh) 风扇和风扇的控制方法
AU2011202347B2 (en) Method for energy saving on electrical systems using habit oriented control
WO2016119295A1 (zh) 一种光源驱动装置
CN103791591A (zh) 基于自适应学习实现空调智能节能控制的系统
CN203396037U (zh) 人体感应自动开关调节空调器
WO2022206221A1 (zh) 空调控制方法、装置、空调、存储介质及程序产品
EP3829268A1 (en) Iot light switch module for smart home construction
US11871483B2 (en) Control device having a secondary radio for waking up a primary radio
CN106839279B (zh) 一种空调睡眠控制方法
CN109458692A (zh) 一种控制智能电器的方法及智能电器
WO2016119294A1 (zh) 一种风扇驱动装置
US20140142773A1 (en) Methods for Energy Saving On Electrical Systems Using Habit Oriented Control
CN203149367U (zh) 一种房间温度联合调控系统
WO2011147297A1 (en) Methods for energy saving on electrical systems using habit oriented control
CN112346348A (zh) 一种室内环境调整系统
WO2023005218A1 (zh) 空调器控制方法、控制装置及空调器
CN205299840U (zh) 一种空调智能控制系统
CN104033989A (zh) 空调控制系统及其控制方法
CN105241001A (zh) 一种参数调整方法及空调
CN104676835B (zh) 空调的节能运行控制装置及其控制方法
CN111271826A (zh) 一种基于物联网的风机盘管控制方法
CN106839280B (zh) 空调睡眠控制方法
CN203980550U (zh) 一种车用空调节能控制系统
CN111380141A (zh) 一种室内环境舒适度自动调控系统及其调控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2017)

WWE Wipo information: entry into national phase

Ref document number: 3012871

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 15879504

Country of ref document: EP

Kind code of ref document: A1