WO2016119245A1 - 一种用户设备、网络设备,以及确认信息的传输方法 - Google Patents

一种用户设备、网络设备,以及确认信息的传输方法 Download PDF

Info

Publication number
WO2016119245A1
WO2016119245A1 PCT/CN2015/072020 CN2015072020W WO2016119245A1 WO 2016119245 A1 WO2016119245 A1 WO 2016119245A1 CN 2015072020 W CN2015072020 W CN 2015072020W WO 2016119245 A1 WO2016119245 A1 WO 2016119245A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
nack
nacks
bits
frequency band
Prior art date
Application number
PCT/CN2015/072020
Other languages
English (en)
French (fr)
Inventor
温容慧
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/072020 priority Critical patent/WO2016119245A1/zh
Priority to JP2017540582A priority patent/JP6537205B2/ja
Priority to EP15879453.7A priority patent/EP3244562B1/en
Priority to CN201580002459.8A priority patent/CN106063176B/zh
Publication of WO2016119245A1 publication Critical patent/WO2016119245A1/zh
Priority to US15/663,013 priority patent/US20170331594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of wireless communications technologies, and in particular, to a user equipment, a network device, and a method for transmitting acknowledgement information.
  • a method of feedback retransmission is introduced in the wireless communication system. That is, when the communication device sends the information to the communication device 2, the communication device 2 determines whether the obtained information is correct by decoding verification or the like, and transmits the determination result to the communication device 1. If the feedback information indicates that the communication device 2 cannot obtain the information sent by the communication device, the communication device needs to retransmit the previously transmitted information; otherwise, it is not required.
  • the indication information fed back by the communication device 2 is an acknowledgement (ACK) indicating that the acquired information is correct, and the feedback indication information is a Negative ACKnowledge (NACK) indicating that the acquired information is incorrect.
  • ACK acknowledgement
  • NACK Negative ACKnowledge
  • the traditional frequency division duplex (FDD) system uses pairs of uplink and downlink frequency band resources, and the ACK/NACK of the information transmitted in the downlink frequency band resources is fed back in the corresponding uplink frequency band resources.
  • the ACK/NACK of the feedback is the physical uplink control channel (Physical Uplink Control CHannel) in the uplink frequency band resource indicated by the shaded part in FIG. , PUCCH) transmission.
  • Physical Uplink Control CHannel Physical Uplink Control CHannel
  • PUCCH Physical Uplink Control CHannel
  • DSS Dynamic Spectrum Sharing
  • D2D communication there is a communication method called Device-to-Device (D2D) communication, as shown in FIG. 2B.
  • D2D communication mode user equipment (User Equipment, UE) communicates directly without being forwarded through a network device such as a base station. In this way, the data sent by the communicating party to the other party also needs the other party to feed back the ACK/NACK.
  • UE User Equipment
  • both the traditional communication method shown in FIG. 1 and the above two types are adopted.
  • the user equipment When communicating with a communication method different from the conventional communication method shown in FIG. 1, at present, there is no feedback mechanism for the user equipment to feed back ACK/NACK information for signals received through the above-described conventional communication method and non-legacy communication method. .
  • An embodiment of the present invention provides a user equipment, a network device, and a method for transmitting acknowledgment information, which are used to provide a user equipment that adopts the traditional communication method shown in FIG. 1 and uses, for example, as shown in FIG. 2A and FIG. 2B.
  • the user equipment feeds back a feedback mechanism of ACK/NACK information to signals received through the above-described conventional communication method and non-legacy communication method.
  • an embodiment of the present invention provides a user equipment, including:
  • a processing module configured to sort, according to the following sequence, at least two acknowledgement information ACK/NACK to be sent by the user equipment on one uplink subframe, where the at least two ACK/NACKs include at least one first ACK/NACK and at least A second ACK/NACK:
  • the at least one first ACK/NACK is prior, the at least one second ACK/NACK is after, or,
  • the at least one second ACK/NACK is prior, the at least one first ACK/NACK is after;
  • the first ACK/NACK is used to feed back the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to receive the second signal. Feedback, the second signal is transmitted on a second frequency band; the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; the second frequency band Is the frequency band used for downlink transmission;
  • a sending module configured to send the at least two ACK/NACKs that are sorted by the processing module.
  • the processing module is specifically configured to:
  • the processing module is further configured to: send, by the sending module, the sorted at least two ACKs Before /NACK,
  • the processing module is specifically configured to: sort the merged at least one first ACK/NACK and the merged at least one second ACK/NACK.
  • the processing module is further configured to: before the sending the sorted at least two ACK/NACKs ,
  • the processing module is specifically configured to:
  • the time combining is performed, so that the combined at least two ACK/NACKs are performed.
  • the number of bits is not greater than the preset number of bits, or
  • the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bit thresholds, spatial combining is performed, so that the combined at least two ACK/NACKs are performed.
  • the number of bits is not greater than the preset bit number threshold.
  • the processing module is specifically configured to: according to the at least two ACK/NACK to be sent on the uplink subframe
  • the serial number of the carrier where the signal corresponding to each ACK/NACK is located is combined as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • the processing module is specifically configured to:
  • the sending module is specifically configured to:
  • the sorted at least two ACK/NACKs are transmitted by using a physical uplink control channel PUCCH format 3.
  • the sending module is specifically configured to:
  • the preset bit number threshold is 4;
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier on the first frequency band, and another 2 bits are used to Receiving feedback of the second signal sent by one carrier on the second frequency band, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers on the first frequency band, and the other 2 bits are used for The receiving condition of the second signal sent by the two carriers on the second frequency band is fed back, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier on the first frequency band, and the other 3 bits are used for the opposite The receiving condition of the second signal sent by the three carriers on the second frequency band is fed back.
  • the PUCCH occupied by the first ACK/NACK The resource is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the control channel element CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources; and/or,
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources.
  • an embodiment of the present invention provides a user equipment, including:
  • a processing module configured to determine, when the carrier aggregation CA, the number of bit bits of the at least two acknowledgment information ACK/NACK to be sent by the user equipment on one uplink subframe;
  • Determining that the number of bits of the at least two ACK/NACKs to be sent is greater than a preset bit number threshold, and according to the carrier of the signal corresponding to each ACK/NACK in the at least two ACK/NACKs to be sent The sequence number, the at least two ACK/NACKs to be sent are combined as follows:
  • a sending module configured to send the at least two ACK/NACKs that are merged by the processing module.
  • the processing module is specifically configured to:
  • Performing time combining on the at least two ACK/NACKs to be sent by the user equipment if the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bit thresholds, proceed again
  • the spatial combination is such that the number of bits of the at least two ACK/NACKs after the combination is not greater than the preset number of bit thresholds.
  • the sending module is specifically configured to:
  • the combined at least two ACK/NACKs are transmitted by using a physical uplink control channel PUCCH format 3.
  • the sending module is specifically configured to:
  • the combined at least two ACK/NACKs are transmitted using PUCCH format 1b with channel selection.
  • the preset bit number threshold is 4;
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used for feeding back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used for one of the second frequency bands.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers on the first frequency band, and the other 2 bits are used for The receiving condition of the second signal sent by the two carriers on the second frequency band is fed back, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier on the first frequency band, and the other 3 bits are used for the opposite Transmitting the reception of the second signal sent by three carriers on the second frequency band;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • an embodiment of the present invention provides a network device, including:
  • a receiving module configured to receive at least two acknowledgement information ACK/NACK from an uplink subframe
  • a processing module configured to acquire at least one first ACK/NACK and at least one second ACK/NACK from the at least two ACK/NACKs received by the receiving module in the following sequence:
  • the at least one first ACK/NACK is prior, the at least one second ACK/NACK is after, or,
  • the at least one second ACK/NACK is prior, the at least one first ACK/NACK is after;
  • the first ACK/NACK is used to feed back the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to receive the second signal. Feedback, the second signal is transmitted on a second frequency band; the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; the second frequency band It is the frequency band used for downlink transmission.
  • the at least one first ACK/NACK is sequentially or in reverse order according to the sequence number of the carrier where the first signal corresponding to the at least one first ACK/NACK is located;
  • the at least one second ACK/NACK is sorted in the order of the sequence number of the carrier where the second signal corresponding to the at least one second ACK/NACK is located, or in reverse order.
  • the processing module is further configured to: before the receiving module acquires at least one first ACK/NACK and at least one second ACK/NACK from the received at least two ACK/NACKs,
  • the merged at least one first ACK/NACK and the merged at least one second ACK/NACK are Merged as follows:
  • the number of bits of the combined at least two ACK/NACKs is not greater than The preset number of bits threshold, or,
  • the number of bits of the at least two ACK/NACKs after the combination is not greater than the preset number of bit thresholds, or
  • the time combining is performed, and the combined bits of the at least two ACK/NACKs are combined.
  • the number is not greater than the preset bit number threshold, or,
  • Performing time combining if the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset bit number threshold, spatial combining is performed, and the combined bits of the at least two ACK/NACKs are combined. The number is not greater than the preset bit number threshold.
  • the merged at least one first ACK/NACK and the merged at least one second ACK/NACK are The user equipment that sends the at least two ACK/NACKs is combined according to the sequence number of the carrier where the signal corresponding to each ACK/NACK to be transmitted on the uplink subframe is located as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • the combined at least one first ACK/NACK and the merged at least A second ACK/NACK is merged as follows:
  • receiving from an uplink subframe to Two less ACK/NACK including:
  • the at least two ACK/NACKs transmitted in PUCCH format 3 are received on the uplink subframe.
  • At least two ACK/NACKs are received from one uplink subframe, include:
  • the at least two ACK/NACKs transmitted using the PUCCH format 1b with channel selection are received on the uplink subframe.
  • the preset bit number threshold is 4;
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe occupy 4 bits, wherein 2 bits are used for receiving the first signal sent on a carrier on the first frequency band. Performing feedback, and the other 2 bits are used to feedback the reception of the second signal sent by one carrier on the second frequency band, or
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe occupy 4 bits, where 2 bits are respectively used for the first signal sent on two carriers on the first frequency band.
  • the receiving situation is fed back, and the other 2 bits are used to feedback the receiving condition of the second signal sent by the two carriers on the second frequency band, or
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe occupy 4 bits, where 1 bit is used to receive the first signal sent on a carrier on the first frequency band. Feedback is performed, and the other 3 bits are used to feedback the reception of the second signal sent by the three carriers on the second frequency band.
  • the PUCCH resource is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the control channel element CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources;
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources.
  • an embodiment of the present invention provides a network device, including:
  • a processing module configured to determine, according to the carrier aggregation CA, the number of bit bits of the acknowledgement information ACK/NACK to be received from an uplink subframe;
  • a receiving module configured to receive at least two ACK/NACKs from the uplink subframe
  • the processing module is further configured to: determine that the number of bits of the ACK/NACK to be received from the uplink subframe is greater than a preset threshold, and determine the at least two received from the uplink subframe ACK/NACK, which is a user equipment that transmits the at least two ACK/NACKs, according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the ACK/NACK to be transmitted on the uplink subframe is located,
  • the ACK/NACK to be sent on the uplink subframe is combined and generated as follows:
  • the carriers with large serial numbers are combined, and then the carriers with small serial numbers are combined.
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe are users that send the at least two ACK/NACKs.
  • the device combines the ACK/NACK to be sent on the uplink subframe as follows:
  • the number of bits of the combined at least two ACK/NACKs is not greater than The preset number of bits threshold, or,
  • the number of bits of the at least two ACK/NACKs after the combination is not greater than the preset number of bit thresholds, or
  • the time combining is performed, and the combined bits of the at least two ACK/NACKs are combined.
  • the number is not greater than the preset bit number threshold, or,
  • Performing time combining if the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset bit number threshold, spatial combining is performed, and the combined bits of the at least two ACK/NACKs are combined. The number is not greater than the preset bit number threshold.
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe are Transmitted using the physical uplink control channel PUCCH format 3.
  • the receiving module is configured to receive the at least two ACK/NACKs from the uplink subframe Transmitted by PUCCH format 1b with channel selection.
  • the preset bit number threshold is 4;
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe occupy 4 bits, wherein 2 bits are used for receiving the first signal sent on a carrier on the first frequency band. Performing feedback, and the other 2 bits are used to feedback the reception of the second signal sent by one carrier on the second frequency band, or
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe occupy 4 bits, where 2 bits are respectively used for the first signal sent on two carriers on the first frequency band.
  • the receiving situation is fed back, and the other 2 bits are used to feedback the receiving condition of the second signal sent by the two carriers on the second frequency band, or
  • the at least two ACK/NACKs received by the receiving module from the uplink subframe occupy 4 bits, where 1 bit is used for transmitting the first signal on a carrier on the first frequency band.
  • the receiving situation is fed back, and another 3 bit ACK/NACK is used to feedback the receiving condition of the second signal sent by the three carriers on the second frequency band;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • an embodiment of the present invention provides a method for sending acknowledgement information, including:
  • the at least two ACK/NACKs include at least one first ACK/NACK and at least one second ACK/NACK:
  • the at least one first ACK/NACK is prior, the at least one second ACK/NACK is after, or,
  • the at least one second ACK/NACK is prior, the at least one first ACK/NACK is after;
  • the first ACK/NACK is used to feed back the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to receive the second signal. Feedback, the second signal is transmitted on the second frequency band;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission;
  • the performing, at least two ACK/NACK sequences to be sent on an uplink subframe further includes:
  • the method before the sending the sorted at least two ACK/NACKs, the method further includes:
  • the method further includes: combining the at least one first ACK/NACK, and combining the at least one second ACK/NACK;
  • the sorting of the at least two ACK/NACKs to be sent on an uplink subframe includes:
  • the merged at least one first ACK/NACK and the merged at least one second ACK/NACK are sorted.
  • the method before the sending the sorted at least two ACK/NACKs, the method further includes:
  • the method further includes:
  • At least one of the at least two ACK/NACKs of the sorted at least one ACK/NACK is merged, and at least one of the at least two ACK/NACKs of the sorted at least two ACK/NACKs is merged.
  • the combining includes:
  • the time combining is performed, so that the combined at least two ACK/NACKs are performed.
  • the number of bits is not greater than the preset number of bits, or
  • the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bit thresholds, spatial combining is performed, so that the combined at least two ACK/NACKs are performed.
  • the number of bits is not greater than the preset bit number threshold.
  • the combining includes: performing, according to the at least two ACK/NACKs to be sent on the uplink subframe, each ACK
  • the sequence number of the carrier where the signal corresponding to /NACK is located is combined as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • the combining includes:
  • the at least two ACK/NACK including:
  • the sorted at least two ACK/NACKs are transmitted by using a physical uplink control channel PUCCH format 3.
  • the sending the at least two ACK/NACKs after the sorting includes:
  • the sorted at least two ACK/NACKs are transmitted using PUCCH format 1b with channel selection.
  • the preset bit number threshold is 4;
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier on the first frequency band, and another 2 bits are used to Receiving feedback of the second signal sent by one carrier on the second frequency band, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers on the first frequency band, and the other 2 bits are used for The receiving condition of the second signal sent by the two carriers on the second frequency band is fed back, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier on the first frequency band, and the other 3 bits are used for the opposite The receiving condition of the second signal sent by the three carriers on the second frequency band is fed back.
  • the PUCCH occupied by the first ACK/NACK The resource is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the control channel element CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first possible implementation manner of the fifth aspect to any one of the eleventh possible implementation manners, in the twelfth possible implementation manner,
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources; and/or,
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources.
  • an embodiment of the present invention provides a method for sending acknowledgement information, including:
  • Determining that the number of bits of the at least two ACK/NACKs to be sent is greater than a preset bit number threshold, and according to the carrier of the signal corresponding to each ACK/NACK in the at least two ACK/NACKs to be sent The sequence number, the at least two ACK/NACKs to be sent are combined as follows:
  • the combined at least two ACK/NACKs are transmitted.
  • the at least two ACK/NACKs to be sent are combined, including:
  • the at least two ACK/NACKs to be sent are spatially combined, such that the number of bits of the at least two ACK/NACKs that are combined is not greater than the preset number of bit thresholds, or
  • the at least two ACK/NACKs to be sent are first spatially combined. If the number of bits of the at least two ACK/NACKs that are spatially combined is still greater than the preset number of bits, the time combination is performed. The number of bits of the at least two ACK/NACKs after the combination is not greater than the preset bit number threshold, or
  • the at least two ACK/NACKs to be sent are first time-synthesized. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bits, the space combination is performed to merge. The number of bits of the at least two ACK/NACKs is not greater than the preset bit number threshold.
  • the at least two ACK/NACKs after the combination are sent, including:
  • the combined at least two ACK/NACKs are transmitted by using a physical uplink control channel PUCCH format 3.
  • the sending the at least two ACK/NACKs after the merging includes:
  • the combined at least two ACK/NACKs are transmitted using PUCCH format 1b with channel selection.
  • the preset bit number threshold is 4;
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used for feeding back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used for one of the second frequency bands.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers on the first frequency band, and the other 2 bits are used for The receiving condition of the second signal sent by the two carriers on the second frequency band is fed back, or
  • the merged at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier on the first frequency band, and the other 3 bits are used for the opposite Transmitting the reception of the second signal sent by three carriers on the second frequency band;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • an embodiment of the present invention provides a method for receiving acknowledgement information, including:
  • the at least one first ACK/NACK is prior, and the at least one second ACK/NACK is After, or,
  • the at least one second ACK/NACK is prior, the at least one first ACK/NACK is after;
  • the first ACK/NACK is used to feed back the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to receive the second signal. Feedback, the second signal is transmitted on the second frequency band;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • the at least one first ACK/NACK is sequentially or in reverse order according to the sequence number of the carrier where the first signal corresponding to the at least one first ACK/NACK is located;
  • the at least one second ACK/NACK is sorted in the order of the sequence number of the carrier where the second signal corresponding to the at least one second ACK/NACK is located, or in reverse order.
  • the method Before acquiring the at least one first ACK/NACK and the at least one second ACK/NACK from the received at least two ACK/NACKs, the method further includes:
  • the merged at least one first ACK/NACK and the merged at least one second ACK/NACK are Merged as follows:
  • the number of bits of the at least two ACK/NACKs after the merging is not greater than the preset number of bit thresholds, or
  • the number of bits of the combined at least two ACK/NACKs is not greater than The preset number of bits threshold, or,
  • the time combining is performed, and the combined bits of the at least two ACK/NACKs are combined.
  • the number is not greater than the preset bit number threshold, or,
  • Performing time combining if the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset bit number threshold, spatial combining is performed, and the combined bits of the at least two ACK/NACKs are combined. The number is not greater than the preset bit number threshold.
  • the merged at least one first ACK/NACK and the merged at least one second ACK/NACK are The user equipment that sends the at least two ACK/NACKs is combined according to the sequence number of the carrier where the signal corresponding to each ACK/NACK to be transmitted on the uplink subframe is located as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • the combined at least one first ACK/NACK and the merged at least A second ACK/NACK is merged as follows:
  • At least two are received from an uplink subframe ACK/NACK, including:
  • At least two ACK/NACKs are received from one uplink subframe, include:
  • the at least two ACK/NACKs transmitted using the PUCCH format 1b with channel selection are received on the uplink subframe.
  • the preset bit number threshold is 4;
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier on the first frequency band, and 2 bits are used to feedback the reception of the second signal sent by one carrier on the second frequency band, or
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, where 2 bits are used to feedback the reception of the first signal sent on two carriers on the first frequency band, respectively.
  • the other 2 bits are used to feedback the reception of the second signal sent by the two carriers on the second frequency band, or
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, where 1 bit is used to feed back the reception of the first signal sent on one carrier on the first frequency band, and The 3 bits are respectively used to feedback the reception of the second signal sent by the three carriers on the second frequency band.
  • the PUCCH resource is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is controlled by a channel element of the PDCCH.
  • the serial number of the CCE is determined, or,
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources;
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources.
  • an embodiment of the present invention provides a method for receiving acknowledgement information, including:
  • the ACK/NACK Determining that the number of bits of the ACK/NACK to be received from the uplink subframe is greater than a preset bit number threshold, and determining the at least two ACK/NACKs received from the uplink subframe, And at least two ACK/NACK user equipments are to be sent on the uplink subframe according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the ACK/NACK to be transmitted on the uplink subframe is located.
  • the ACK/NACK is merged as follows:
  • the carriers with large serial numbers are combined, and then the carriers with small serial numbers are combined.
  • the at least two ACK/NACKs received from the uplink subframe are user equipment pairs that send the at least two ACK/NACKs
  • the ACK/NACK to be sent on the uplink subframe is combined and generated as follows:
  • the number of bits of the at least two ACK/NACKs after the merging is not greater than the preset number of bit thresholds, or
  • the number of bits of the at least two ACK/NACKs after the combination is not greater than the preset number of bit thresholds, or
  • the time combining is performed, and the combined bits of the at least two ACK/NACKs are combined.
  • the number is not greater than the preset bit number threshold, or,
  • Performing time combining if the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset bit number threshold, spatial combining is performed, and the combined bits of the at least two ACK/NACKs are combined. The number is not greater than the preset bit number threshold.
  • the at least two ACK/NACKs received from the uplink subframe are controlled by physical uplink Channel PUCCH format 3 is transmitted.
  • the at least two ACK/NACKs received from the uplink subframe are selected by using channel selection. PUCCH format 1b sent.
  • the preset bit number threshold is 4;
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier on the first frequency band, and 2 bits are used to feedback the reception of the second signal sent by one carrier on the second frequency band, or
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, where 2 bits are used to feedback the reception of the first signal sent on two carriers on the first frequency band, respectively.
  • the other 2 bits are used to feedback the reception of the second signal sent by the two carriers on the second frequency band, or
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, where 1 bit is used to feed back the reception of the first signal sent on one carrier on the first frequency band, and The 3 bits are respectively used to feedback the reception of the second signal sent by the three carriers on the second frequency band;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or can be used for
  • the line transmission is also used for the frequency band of the downlink transmission;
  • the second frequency band is the frequency band for the downlink transmission.
  • the sequenced at least two ACK/NACKs are sent, so that the network device, such as the base station, according to the user equipment when receiving at least two ACK/NACKs sent by the user equipment
  • the same order of sorting at the time of transmission can determine which ACK/NACK is used to feed back the ACK/NACK of the signal transmitted in the non-traditional communication mode, and which ACK/NACK is used to feed back the signal transmitted in the conventional communication mode.
  • the user equipment combines at least two ACK/NACKs to be sent on one uplink subframe, which reduces the number of bits occupied by the ACK/NACK.
  • the carrier number is determined according to the quality of the signal on the carrier, generally, the smaller the carrier number, the better the communication quality on the carrier. If the carrier with the small sequence number is first combined, the first is used for the feedback communication quality.
  • the ACK/NACK of the signal on a good carrier is stable due to the good communication quality of the carrier, so the probability of feeding back the ACK is large, and the probability of retransmission of multiple signals on the carrier is small due to the combination. The transmission efficiency is high.
  • the ACK/NACK for the signal on the carrier with poor communication quality is first combined. Since the communication quality of the carrier is poor, the probability of feeding back the NACK is large, although the combination will make The probability of retransmission of multiple signals on the carrier becomes large, and the transmission efficiency may be reduced, but the reliability of signal transmission on such carriers is ensured, and the transmission of multiple ACK/NACKs can also be guaranteed.
  • FIG. 1 is a schematic diagram of an ACK/NACK transmission manner in a conventional FDD system
  • 2A is a schematic diagram of a data transmission mode in a wireless communication system adopting a DSS communication method
  • 2B is a data transmission between user equipments in a wireless communication system using D2D communication mode Schematic diagram of the mode
  • FIG. 3A and FIG. 3B are schematic diagrams showing the structure of a wireless communication system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another wireless communication system according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a radio frame of TDD configuration 2;
  • FIG. 6 is a schematic structural diagram of a first user equipment according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a second user equipment according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a third user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a fourth user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a first network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a second network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a third network device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a fourth network device according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart of a method for sending a first type of confirmation information according to an embodiment of the present invention.
  • FIG. 15 is a flowchart of a method for sending a second type of confirmation information according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of a method for receiving a third acknowledgement information according to an embodiment of the present invention.
  • FIG. 17 is a flowchart of a fourth method for receiving acknowledgement information according to an embodiment of the present invention.
  • the user equipment In the two non-traditional communication modes shown in FIG. 2A and FIG. 2B, the user equipment also needs to feedback the reception of the received signal.
  • the user equipment receives both the signal in the traditional communication mode and the signal in the communication mode shown in FIG. 2A and/or FIG. 2B, there is no solution for feedback on the reception situation.
  • an embodiment of the present invention provides a user equipment, a network device, and a method for transmitting confirmation information.
  • the user equipment sends at least two ACK/NACKs to be sent on one uplink subframe, including at least one first ACK/NACK and at least one second ACK/NACK, which are sorted and sent as follows:
  • At least one first ACK/NACK is first, at least one second ACK/NACK is after, or, At least one second ACK/NACK is preceded, and the at least one first ACK/NACK is after;
  • the first ACK/NACK is used to feed back the reception condition of the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to feedback the reception condition of the second signal, and the second signal is in the The second frequency band is transmitted; the first frequency band is a frequency band used for D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • the user equipment sends the sorted at least two ACK/NACKs when the at least two ACK/NACKs are sent, so that the network device, such as the base station, receives at least two ACK/NACKs sent by the user equipment, according to
  • the network device such as the base station
  • receives at least two ACK/NACKs sent by the user equipment according to
  • the user equipment transmits the same order, it can determine which ACK/NACK is used to feed back the ACK/NACK of the signal transmitted in the non-traditional communication mode, and which ACK/NACK is used for the feedback to transmit in the traditional communication mode. signal of. Therefore, a feedback mechanism for confirming information ACK/NACK in a case where the user equipment communicates using both a conventional communication method and a non-traditional communication method is provided.
  • the embodiment of the present invention provides another user equipment, a network device, and a method for transmitting acknowledgment information, and provides an ACK/NACK to be sent in an uplink subframe when Carrier Aggregation (CA) is used.
  • CA Carrier Aggregation
  • the user equipment is configured according to the at least two ACK/NACKs to be sent.
  • the sequence number of the carrier where the signal corresponding to each ACK/NACK is located is combined and sent according to the ACK/NACK to be sent as follows:
  • the carriers with large serial numbers are combined, and then the carriers with small serial numbers are combined.
  • the carrier number is determined according to the quality of the signal on the carrier, generally, the smaller the carrier number, the better the communication quality on the carrier. If the carrier with the small sequence number is first combined, the first is used for the feedback communication quality.
  • the ACK/NACK of the signal on a good carrier is stable due to the good communication quality of the carrier, so the probability of feeding back the ACK is large, and the probability of retransmission of multiple signals on the carrier is small due to the combination. The transmission efficiency is high.
  • the ACK/NACK for the signal on the carrier with poor communication quality is first combined. Since the communication quality of the carrier is poor, the probability of feeding back the NACK is large, although the combination will make The probability of retransmission of multiple signals on the carrier becomes large, and the transmission efficiency may be reduced, but the reliability of signal transmission on such carriers is ensured, and the transmission of multiple ACK/NACKs can also be guaranteed.
  • FIG. 3A and FIG. 3B are schematic diagrams showing two structures of a wireless communication system 30 according to an embodiment of the present invention.
  • the wireless communication system 30 includes:
  • the user equipment 301 is configured to sort the at least two ACK/NACKs to be sent on one uplink subframe in the following order, and send the sorted at least two ACK/NACKs to the network device 302:
  • At least one first ACK/NACK is preceded, at least one second ACK/NACK is followed, or at least one second ACK/NACK is prior, at least one first ACK/NACK is after;
  • the network device 302 is configured to receive the sorted at least two acknowledgement information ACK/NACK from the uplink subframe sent by the user equipment 301; and from the at least two ACK/NACKs in the same manner as the user equipment 301 sorts. Obtaining at least one first ACK/NACK and at least one second ACK/NACK.
  • the at least two ACK/NACKs include at least one first ACK/NACK and at least one second ACK/NACK; the first ACK/NACK is used to feed back the reception condition of the first signal, where the first signal is in the first frequency band. transmission.
  • the second ACK/NACK is used to feed back the second signal, and the second signal is transmitted on the second frequency band;
  • the first frequency band is the frequency band used for D2D transmission, and/or is used for both uplink transmission and downlink The frequency band to be transmitted;
  • the second frequency band is the frequency band used for downlink transmission.
  • the first frequency band comprises a continuous spectrum resource or a plurality of discrete spectrum resources
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources
  • the latter case corresponds to the scenario of carrier aggregation.
  • the user equipment 301 receives the first signal sent by the network device 302 on the first frequency band, and receives the second signal sent by the network device 302 on the first frequency band, and the user equipment 301 feeds back the first ACK/NACK to the network device. And a second ACK/NACK.
  • the user equipment 301 receives the first signal sent by the network device 302 over the first frequency band by another user equipment, and the user equipment 301 adopts the D2D communication mode with another user equipment when receiving the first signal. And, the user equipment 301 receives the second signal that the network device 302 transmits on the second frequency band. The user equipment 301 feeds back the first ACK/NACK and the second ACK/NACK to the network device 302.
  • the other user equipment may be located in the network device 302, and may also communicate with the network device 302 by way of wireless communication.
  • the communication system of the wireless communication system 30 provided by the embodiment of the present invention may include, but is not limited to, the following communication system:
  • GSM Global System of Mobile communication
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TDD LTE Time Division Duplexing-Long Term Evolution
  • FDD LTE Frequency Division Duplexing-Long Term Evolution
  • LTE-advanced Long Term Evolution-Advanced
  • User equipment 301 may include, but is not limited to, user equipment of the following types: mobile phones, tablets, personal digital assistants (PDAs), point of sales (POS), on-board computers, and the like.
  • PDAs personal digital assistants
  • POS point of sales
  • on-board computers and the like.
  • the user equipment 301 is a mobile station (MS)
  • the network equipment 302 is a base transceiver station (BTS), or a base station controller (Base Station Controller, BSC);
  • the user equipment 301 is a UE, and the network device 302 is a Node B (NodeB, NB) or a Radio Network Controller (RNC);
  • NodeB NodeB
  • RNC Radio Network Controller
  • the user equipment 301 is a UE
  • the network equipment 302 is an evolved Node B (eNB).
  • eNB evolved Node B
  • the acknowledgement information ACK/NACK transmitted between the user equipment 301 and the network device 302 is used to feed back the signal received by the user equipment.
  • the user equipment 301 feeds back the reception status of the downlink data sent by the network device 302 to the user equipment by sending an ACK/NACK.
  • the user equipment 301 feeds back an ACK when it is correctly received, and feeds back NACK when it receives an error.
  • the user equipment 301 feeds back the reception status of the data sent by another user equipment by sending an ACK/NACK. Similarly, the user equipment 301 feeds back the ACK when it is correctly received, and feeds back the NACK when it receives the error.
  • the order in which the user equipment 301 sends the ACK/NACK to the network device 302 may be agreed by the communication standard that the user equipment 301 and the network device 302 follow, or may be agreed by signaling before the user equipment 301 and the network device 302 transmit data. .
  • the network device 302 can acquire the first ACK/NACK and the second ACK/NACK from the received at least two ACK/NACKs respectively in the same order as the ACK/NACK sent by the user equipment 301.
  • the current ACK/NACK feedback timing relationship only the feedback of the second frequency band, that is, the downlink signal transmitted on the downlink frequency band, is not specified, and is not applicable to the first frequency band in the embodiment of the present invention. There is also a second frequency band, and signals transmitted on both frequency bands need to be fed back. Moreover, the current timing relationship does not distinguish and sort at least two ACK/NACKs to be transmitted on one uplink subframe.
  • the first ACK/NACK and the second ACK/NACK are distinguished and sorted according to the embodiment of the present invention, which breaks through the provisions of the existing ACK/NACK feedback timing relationship, and avoids communication. Both parties understand the inconsistency of at least two ACK/NACKs.
  • the order between the first ACK/NACK and the second ACK/NACK is agreed, in addition, at least two first ACK/NACKs may be sorted, and at least two second ACK/NACKs may be aligned. Sort.
  • At least two first ACK/NACKs may be sorted according to the sequence of the carrier numbers of the first downlink signals corresponding to the first ACK/NACK or in reverse order;
  • the user equipment 301 may optionally send at least two ACK/NACKs to be sent before or after the sorting.
  • the merging is performed to resend the sorted and merged at least two ACK/NACKs to the network device 302.
  • the merging refers to: when the user equipment has at least two ACK/NACKs to be sent in one uplink subframe, in order to save uplink transmission resources, or limited by uplink transmission capability, several ACK/NACKs are combined. .
  • ACK/NACK1 and ACK/NACK2 are combined. If ACK/NACK1 is ACK, ACK/NACK is NACK, or ACK/NACK1 is NACK, and ACK/NACK is ACK, then merged. The ACK/NACK value is NACK, and the combined ACK/NACK value is ACK only when the ACK/NACK1 and ACK/NACK2 values are both ACK.
  • the user equipment 301 when the user equipment 301 does not receive the downlink scheduling control information that is sent by the network device 302 through the downlink control channel, the user equipment 301 does not feed back the acknowledgement information ACK/NACK in the uplink subframe.
  • the discontinuous transmission (DTX) is used when the user equipment 301 merges, and various alternative implementation manners including the following methods may be adopted:
  • the user equipment 301 considers the case of the DTX as a NACK. In this case, the user equipment 301 may consider that the downlink scheduling control information sent by the network device 302 should be received, but the user is not correctly received.
  • the device 301 combines the feedback acknowledgement information ACK/NACK as a NACK with other ACK/NACK.
  • the network device is a rule that knows that the user equipment performs merging. Therefore, when the network device receives at least two ACK/NACKs, it knows which ACK/NACK is the combined ACK/NACK.
  • the received ACK/NACK value of the network device is ACK, it determines that the ACK/NACK value of the merged ACK/NACK corresponding to the merge is ACK; the received ACK after the combination
  • the value of the /NACK is NACK, it is determined that the value of each ACK/NACK before the combination of the combined ACK/NACK is NACK.
  • other user equipments may also transmit data to the user equipment 301 in a DTX manner.
  • the foregoing methods may be combined in a manner similar to the traditional FDD system and the DSS system, and are not described herein again. .
  • Time merging means that for data received at different times, the user equipment feeds back in the same uplink subframe, and combines ACK/NACK respectively fed back for data received at different times. For example, for FDD LTE, the user equipment combines ACK/NACKs respectively fed back downlink data received by different subframes.
  • Spatial merging means that when MIMO technology is adopted, for different MIMO streams received, the user equipment feeds back in the same uplink subframe, and combines ACK/NACK respectively fed back for data received on different MIMO streams.
  • the user equipment For example, for FDD LTE, the user equipment combines ACK/NACKs respectively fed back downlink data received by different MIMO streams, that is, ACK/NACK respectively fed back for data received on the same resource and different codewords.
  • the network device 302 determines, according to a rule predetermined in advance with the user equipment 301, or according to a rule specified in a protocol that the network device 302 and the user equipment 301 comply with, according to the received combined at least two ACK/NACKs, determining each received Signal feedback information.
  • the preset bit number threshold may be according to an uplink transmission capability of the user equipment 301, a number of bits available for transmitting ACK/NACK in an uplink subframe in which the at least two ACK/NACKs are transmitted, and/or an ACK/NACK transmission format. It can also be set according to the standard. After being configured by the network device 302, the message is sent to the user equipment 301.
  • the network device when the network device sends the downlink data to the user equipment, the network device also sends control information to the user equipment, indicating that the user equipment receives the downlink data, and The network device sends control information to the user equipment or indicates when the user equipment feeds back ACK/NACK through standard pre-agreed rules.
  • the data sender also sends control information to the data receiver to instruct the data receiver to receive the data.
  • the data sender can also send control information to the data receiver, or instruct the recipient to verify the feedback ACK/NACK by standard pre-agreed rules.
  • network device 302 knows that user device 301 receives particular data at a particular time and that needs to feed back on the particular data received at another particular time. Therefore, the network device 302 can know the number of bits of at least two ACK/NACKs to be received on one uplink subframe, and adopt the same rule combined with the user equipment 301 when the number of bits is greater than the preset number of bit thresholds. And interpreting the received merged at least two ACK/NACKs.
  • the network device 302 knows when another user device transmits data to the user device 301, and also knows when the user device 301 feeds back the received data. For example, the network device 302 controls the transmission of the data of the other user equipment to the user equipment 302 and the feedback of the confirmation information. Therefore, for the D2D scenario, the network device 302 also knows the number of bits of at least two ACK/NACKs to be transmitted by the user equipment on one uplink subframe.
  • the network device 302 receives the ACK/NACK of the M bit, determines that the first X bits are the combined ACK/NACK, and knows that each combined ACK/NACK bit is used according to the pre-known merge rule. If the ACK/NACK of a certain bit is ACK, the data of multiple subframes or codewords for which the bit is used for feedback is correctly received by the user equipment 301; If the ACK/NACK of the bit is NACK, it is determined that the plurality of subframes or codewords represented by the bit are not correctly received by the user equipment 301, and need to be resent to the user equipment 301.
  • the user equipment 301 may merge in one of several ways including the following alternatives:
  • the first method is to perform spatial merging, so that the number of bits of the at least two ACK/NACKs after the combination is not greater than a preset threshold of the number of bits;
  • Manner 2 performing time combining, so that the number of bits of the combined at least two ACK/NACKs is not greater than a preset bit number threshold;
  • the third method is to perform spatial merging. If the number of bits of at least two ACK/NACKs after the space combination is greater than the preset number of bits, the time combination is performed, so that the number of bits of the combined at least two ACK/NACKs is not Greater than the preset number of bits threshold;
  • the time combination is performed first. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset bit number threshold, spatial combining is performed, so that the number of bits of the combined at least two ACK/NACKs is not Greater than the preset number of bits threshold.
  • the spatial merging is the merging between different codewords transmitted on the same time resource and the frequency resource, it is precisely because the interference on the same time resource and the frequency resource is relatively consistent, thereby The probability that the correct reception of the codewords is consistent or not is relatively large.
  • the two codewords are either erroneously received and fed back NACK; either they are correctly received, and the ACK is fed back, merging the ACK/NACK information of the two codewords, and the possibility of correctly receiving the data retransmission due to the combination Not very sexual.
  • time combining since time combining is the merging of ACK/NACK information corresponding to two transport blocks on different time resources, the possibility of interference on different time resources is usually greater than that on the same time-frequency resource. Possibility, therefore, spatial merging first, then time merging, compared with the first time merging, and then spatial merging, the probability of retransmitting correctly received data due to merging is smaller, so that the downlink transmission is more efficient. The downlink performance loss is smaller.
  • the user equipment 301 performs the foregoing spatial combining and time combining according to the sequence number of the carrier where the signal corresponding to each ACK/NACK of the at least two ACK/NACKs to be sent on the uplink subframe is located as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier sequence number is determined according to the quality of the signal on the carrier, generally, the smaller the carrier number, the better the communication quality on the carrier. If at least two ACK/NACKs are combined in the order of the carrier sequence number, the first combination is performed. The ACK/NACK of the signal on the carrier with good communication quality is good. Because the communication quality of the carrier is good, the channel condition is stable, so the probability of feeding back the ACK is large, and multiple signals on the carrier are caused by the combination. The probability of retransmission is small and the transmission efficiency is high.
  • the ACK/NACK for the downlink signal on the carrier with poor communication quality is first combined, and the NACK is fed back due to poor communication quality of the carrier.
  • the probability is large, although the combination will make the probability of retransmission of multiple signals on the carrier larger, the transmission efficiency may be reduced, but the reliability of signal transmission on such carriers is guaranteed, and at the same time, at least Two ACK/NACK transmissions.
  • the user equipment 301 may perform spatial combining and time combining on the second ACK/NACK, and then perform spatial combining and time combining on the first ACK/NACK.
  • the first ACK/NACK is to feed back the reception of the signal transmitted on the first frequency band
  • the first frequency band is a frequency band used for D2D transmission and/or used for both uplink transmission and downlink transmission, first.
  • the interference conditions of the signals transmitted on the frequency band are inconsistent, so the first ACK/NACK fed back by the user equipment 301 to different signals transmitted on the first frequency band is generally inconsistent.
  • the second ACK/NACK is used to feed back the downlink signal transmitted on the second frequency band.
  • the second frequency band is the frequency band used for downlink transmission, and the interference signals received by the downlink signals transmitted in the second frequency band are basically consistent. Compared with the first ACK/NACK, the probability that the user equipment 301 agrees with the second ACK/NACK fed back by different downlink signals transmitted on the second frequency band is large.
  • the second ACK/NACK is merged first, and then the first ACK/NACK is merged.
  • the user equipment 301 When the user equipment 301 transmits at least two ACK/NACKs to the network device 302, it may transmit using an existing transmission format, or may define a new transmission format transmission.
  • the user equipment 301 is transmitting
  • the at least two ACK/NACKs may be transmitted by using a Physical Uplink Control CHannel (PUCCH) format 3 (Format 3), or may be a PUCCH Format 1b with channel selection with channel selection. Transfer.
  • PUCCH Physical Uplink Control CHannel
  • Form 3 Physical Uplink Control CHannel
  • PUCCH Format 1b with channel selection with channel selection. Transfer.
  • the PUCCH resource occupied by the foregoing first ACK/NACK is determined by a sequence number or higher layer signaling of a Channel Control Element (CCE) of the PDCCH.
  • CCE Channel Control Element
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for transmitting a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the wireless communication system 30 provided by the embodiment of the present invention is described above.
  • Another wireless communication system 40 provided by the embodiment of the present invention is described below.
  • FIG. 4 is a schematic structural diagram of another wireless communication system 40 according to an embodiment of the present invention. As shown in FIG. 4, the wireless communication system 40 includes:
  • the user equipment 401 is configured to determine, according to carrier aggregation, the number of bits of at least two ACK/NACKs to be sent in one uplink subframe; if the number of bits of at least two ACK/NACKs to be sent is greater than a preset threshold of the number of bits Then, according to the sequence number of the carrier where the signal corresponding to each ACK/NACK of the at least two ACK/NACKs to be sent, the at least two ACK/NACKs to be sent are combined and sent to the network device 402 as follows:
  • the network device 402 is configured to determine, according to the CA, the number of bits of the ACK/NACK to be received in an uplink subframe sent from the user equipment 401, and receive at least two from the uplink subframe.
  • ACK/NACK ACK/NACK
  • the sequence number of the carrier where the signal corresponding to each ACK/NACK in the ACK/NACK to be transmitted on the uplink subframe is located, and the ACK/NACK to be transmitted on the uplink subframe is combined as follows:
  • each ACK/NACK before the combination is obtained from the received at least two ACK/NACKs.
  • At least two ACK/NACKs are received from the uplink subframe.
  • the wireless communication system 40 in the scenario of carrier aggregation, when the number of bits of the ACK/NACK to be transmitted in an uplink subframe is large, and the preset bit number threshold is exceeded, the ACK/NACK is transmitted. Among them, by combining, the number of bits occupied by the ACK/NACK is reduced. Moreover, since the carrier number is determined according to the quality of the signal on the carrier, generally, the smaller the carrier number, the better the communication quality on the carrier. If the carrier with the small sequence number is first combined, the first is used for the feedback communication quality.
  • the ACK/NACK of the signal on a good carrier is stable due to the good communication quality of the carrier, so the probability of feeding back the ACK is large, and the probability of retransmission of multiple signals on the carrier is small due to the combination.
  • the transmission efficiency is high.
  • the ACK/NACK for the signal on the carrier with poor communication quality is first combined. Since the communication quality of the carrier is poor, the probability of feeding back the NACK is large, although the combination will make The probability of retransmission of multiple signals on the carrier becomes large, and the transmission efficiency may be reduced, but the reliability of signal transmission on such carriers is ensured, and the transmission of multiple ACK/NACKs can also be guaranteed.
  • the wireless communication system 40 various user equipment forms of the user equipment 401, and for a specific implementation of the network device 402 in different communication systems, reference may be made to the wireless communication system 30, and details are not described herein again.
  • the user equipment 401 can communicate with the network device 402 by using the traditional FDD communication method shown in FIG. 1; and the communication method of the DSS shown in FIG. 2A can also be used to communicate with the network device 402.
  • the system structure can be Referring to FIG. 3A, the D2D communication mode shown in FIG. 2B may be used to communicate with the network device 402.
  • the system result may refer to FIG. 3B.
  • the user equipment 401 may combine at least two ACK/NACKs to be sent in one of multiple manners as follows:
  • the at least two ACK/NACKs to be sent are spatially combined, so that the number of bits of the combined at least two ACK/NACKs is not greater than a preset number of bits, or
  • Manner 2 time combining at least two ACK/NACKs to be sent, so that the number of bits of the combined at least two ACK/NACKs is not greater than a preset bit number threshold, or
  • Manner 3 The at least two ACK/NACKs to be sent are first spatially combined. If the number of bits of the at least two ACK/NACKs after the spatial combination is still greater than the preset number of bits, the time combination is performed, so that the merged The number of bits of at least two ACK/NACKs is not greater than a preset threshold of the number of bits, or,
  • Manner 4 The at least two ACK/NACKs to be sent are first time-combined. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset bit number threshold, spatial combining is performed, so that at least the combined The number of bits of the two ACK/NACKs is not greater than the preset bit number threshold.
  • the network device 402 can refer to the principle of the combined ACK/NACK analysis and the principle of spatial combining and time combining, and can refer to the user equipment 301 and the network device 302 in the wireless communication system 30, where No longer.
  • the user equipment 401 may send the combined at least two ACK/NACKs by using PUCCH Format 3 or PUCCH Format 1b with channel selection.
  • the preset bit number threshold is 4;
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used for feeding back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used for the second frequency. Feedback of the reception of the second signal transmitted by one carrier on the segment, or
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers in the first frequency band, and the other 2 bits are used to the two on the second frequency band.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are respectively used for three on the second frequency band. Receiving feedback of the second signal transmitted by the carrier;
  • the first frequency band is a frequency band used for D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; the second frequency band is a frequency band used for downlink transmission.
  • the embodiment of the present invention further provides two methods for transmitting user equipment, network equipment, and acknowledgment information.
  • the principle of solving the technical problem is similar to the wireless communication system provided by the embodiment of the present invention. The implementation of the above wireless communication system will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a first user equipment according to an embodiment of the present invention. As shown in FIG. 6, the user equipment includes:
  • the processing module 601 is configured to sort the at least two acknowledgment information ACK/NACK to be sent by the user equipment on one uplink subframe in the following sequence, where the at least two ACK/NACKs include at least one first ACK/NACK and at least one second ACK/NACK:
  • At least one first ACK/NACK is first, at least one second ACK/NACK is after, or,
  • At least one second ACK/NACK is preceded by at least one first ACK/NACK;
  • the first ACK/NACK is used to feed back the reception condition of the first signal, and the first signal is transmitted on the first frequency band;
  • the second ACK/NACK is used to feedback the reception condition of the second signal, and the second signal is in the
  • the second frequency band is transmitted;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission;
  • the second frequency band is a frequency band used for downlink transmission;
  • the sending module 602 is configured to send at least two ACK/NACKs sorted by the processing module 601.
  • processing module 601 is specifically configured to:
  • processing module 601 is further configured to: before the sending module 602 sends the sorted at least two ACK/NACKs,
  • the processing module 601 is specifically configured to: sort the merged at least one first ACK/NACK and the merged at least one second ACK/NACK.
  • the processing module 601 is further configured to send, after sending the sorted at least two ACK/NACKs,
  • processing module 601 is specifically configured to:
  • spatial merging is performed. If the number of bits of at least two ACK/NACKs after the spatial combination is greater than a preset threshold of the number of bits, time combining is performed, so that the number of bits of the combined at least two ACK/NACKs is not greater than a preset. Bit number threshold;
  • the processing module 601 is specifically configured to: according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the at least two ACK/NACKs to be sent on the uplink subframe, is merged as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • processing module 601 is specifically configured to:
  • the at least one first ACK/NACK is spatially combined and/or temporally combined, and then the at least one second ACK/NACK is spatially combined and/or temporally combined.
  • the sending module 602 is specifically configured to:
  • the sorted at least two ACK/NACKs are transmitted using the physical uplink control channel PUCCH format 3.
  • the sending module 602 is specifically configured to:
  • the sorted at least two ACK/NACKs are transmitted using PUCCH format 1b with channel selection.
  • the preset number of bits is 4;
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used to send a carrier on the second frequency band. Feedback of the reception of the second signal, or,
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers in the first frequency band, and the other 2 bits are used to the two on the second frequency band.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the combined at least two ACK/NACKs occupy 4 bits, of which 1 bit is used for the first frequency band.
  • the reception of the first signal transmitted on one carrier is fed back, and the other three bits are used to feedback the reception of the second signal transmitted by the three carriers on the second frequency band.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the control channel element CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources; and/or,
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources.
  • FIG. 7 is a schematic structural diagram of a second user equipment according to an embodiment of the present invention. As shown in FIG. 7, the user equipment includes:
  • the processor 701 is configured to sort the at least two acknowledgment information ACK/NACK to be sent by the user equipment on one uplink subframe in the following sequence, where the at least two ACK/NACKs include at least one first ACK/NACK and at least one second.
  • ACK/NACK :
  • At least one first ACK/NACK is first, at least one second ACK/NACK is after, or,
  • At least one second ACK/NACK is preceded by at least one first ACK/NACK;
  • the first ACK/NACK is used to feed back the reception condition of the first signal, and the first signal is transmitted on the first frequency band;
  • the second ACK/NACK is used to feedback the reception condition of the second signal, and the second signal is in the
  • the second frequency band is transmitted;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission;
  • the second frequency band is a frequency band used for downlink transmission;
  • the transmitter 702 is configured to send at least two ACK/NACKs sorted by the processor 701.
  • processor 701 For a specific implementation of the processor 701, reference may be made to the foregoing processing module 601, where the transmitter 702 is For the implementation of the body, reference may be made to the above module 602, and the repeated description will not be repeated.
  • FIG. 8 is a schematic structural diagram of a third user equipment according to an embodiment of the present invention. As shown in FIG. 8, the user equipment includes:
  • the processing module 801 is configured to determine, according to the carrier aggregation CA, the number of bit bits of the at least two acknowledgment information ACK/NACK to be sent by the user equipment on one uplink subframe;
  • the sending module 802 is configured to send at least two ACK/NACKs that are combined by the processing module 801.
  • processing module 801 is specifically configured to:
  • the at least two ACK/NACKs to be sent by the user equipment are first spatially combined. If the number of bits of the at least two ACK/NACKs after the spatial combination is still greater than the preset number of bits, the time combination is performed, so that the merged The number of bits of at least two ACK/NACKs is not greater than a preset threshold of the number of bits, or
  • At least two ACK/NACKs to be sent by the user equipment are first time-synthesized. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bits, the space combination is performed, so that at least the merged The number of bits of the two ACK/NACKs is not greater than the preset bit number threshold.
  • the sending module 802 is specifically configured to:
  • the combined at least two ACK/NACKs are transmitted using the physical uplink control channel PUCCH format 3.
  • the sending module 802 is specifically configured to:
  • the combined at least two ACK/NACKs are transmitted using PUCCH format 1b with channel selection.
  • the preset number of bits is 4;
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used to send a carrier on the second frequency band. Feedback of the reception of the second signal, or,
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers in the first frequency band, and the other 2 bits are used to the two on the second frequency band.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are respectively used for three on the second frequency band. Receiving feedback of the second signal transmitted by the carrier;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; the second frequency band is a frequency band used for downlink transmission.
  • FIG. 9 is a schematic structural diagram of a fourth user equipment according to an embodiment of the present invention. As shown in FIG. 9, the user equipment includes:
  • the processor 901 is configured to determine, according to the carrier aggregation CA, the number of bit bits of the at least two acknowledgment information ACK/NACK to be sent by the user equipment on one uplink subframe;
  • the transmitter 902 is configured to send at least two ACK/NACKs that are combined by the processor 901.
  • processor 901 For the specific implementation of the processor 901, reference may be made to the foregoing processing module 801.
  • transmitter 902 For the specific implementation of the transmitter 902, reference may be made to the foregoing module 802, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a first network device according to an embodiment of the present invention. As shown in FIG. 10, the network device includes:
  • the receiving module 1001 is configured to receive at least two acknowledgements from an uplink subframe. ACK/NACK;
  • the processing module 1002 is configured to obtain at least one first ACK/NACK and at least one second ACK/NACK from the at least two ACK/NACKs received by the receiving module 1001 in the following sequence:
  • At least one first ACK/NACK is prior, at least one second ACK/NACK is after; or
  • At least one second ACK/NACK is preceded by at least one first ACK/NACK;
  • the first ACK/NACK is used to feed back the reception condition of the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to feedback the reception condition of the second signal, and the second signal is in the The second frequency band is transmitted; the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • the at least one first ACK/NACK is sequentially or in reverse order according to the sequence number of the carrier where the first signal corresponding to the at least one first ACK/NACK is located;
  • the at least one second ACK/NACK is ordered in the order of the sequence numbers of the carriers in which the second signals corresponding to the at least one second ACK/NACK are located.
  • the processing module 1002 is further configured to: before the receiving module 1001 acquires at least one first ACK/NACK and at least one second ACK/NACK from the received at least two ACK/NACKs,
  • the combined at least one first ACK/NACK and the combined at least one second ACK/NACK are combined as follows:
  • the time combination is performed, and the number of bits of the combined at least two ACK/NACKs is not greater than a preset bit number threshold, or
  • spatial merging is performed. If the space is combined, at least two ACK/NACK bits are larger than the pre-prepared If the threshold of the number of bits is set, time combining is performed, and the number of bits of the combined at least two ACK/NACKs is not greater than a preset threshold of the number of bits;
  • the time combination is performed. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bits, the space combination is performed, and the number of the combined at least two ACK/NACK bits is not greater than the preset. Bit number threshold.
  • the combined at least one first ACK/NACK and the combined at least one second ACK/NACK are user equipments that send at least two ACK/NACKs according to each ACK/NACK to be sent on the uplink subframe.
  • the sequence numbers of the carriers on which the corresponding signals are located are combined as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • the combined at least one first ACK/NACK and the combined at least one second ACK/NACK are merged as follows:
  • the at least one first ACK/NACK is spatially combined and/or temporally combined, and then the at least one second ACK/NACK is spatially combined and/or temporally combined.
  • receiving at least two ACK/NACKs from an uplink subframe including:
  • At least two ACK/NACKs transmitted in PUCCH format 3 are received on the uplink subframe.
  • receiving at least two ACK/NACKs from an uplink subframe including:
  • At least two ACK/NACKs transmitted using PUCCH format 1b with channel selection are received on the uplink subframe.
  • the preset number of bits is 4;
  • the receiving module 1001 occupies 4 bits from the at least two ACK/NACKs received on the uplink subframe, where 2 bits are used to feedback the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used to The reception of the second signal transmitted by one carrier on the second frequency band Feedback, or,
  • the receiving module 1001 occupies 4 bits from the at least two ACK/NACKs received on the uplink subframe, where 2 bits are used to feedback the reception of the first signal sent on the two carriers in the first frequency band, and the other 2 bits are used. Feedbacking the reception of the second signal transmitted by the two carriers on the second frequency band, or
  • the receiving module 1001 occupies 4 bits from the at least two ACK/NACKs received on the uplink subframe, where 1 bit is used to feedback the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are used respectively. Feedback is received on the reception of the second signal transmitted by the three carriers on the second frequency band.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the control channel element CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources.
  • FIG. 11 is a schematic structural diagram of a second network device according to an embodiment of the present invention. As shown in FIG. 11, the network device includes:
  • the receiver 1101 is configured to receive at least two acknowledgement information ACK/NACK from an uplink subframe.
  • the processor 1102 is configured to obtain at least one first ACK/NACK and at least one second ACK/NACK from at least two ACK/NACKs received by the receiver 1101 in the following order:
  • At least one first ACK/NACK is first, at least one second ACK/NACK is after, or,
  • At least one second ACK/NACK is preceded by at least one first ACK/NACK;
  • the first ACK/NACK is used to feed back the reception condition of the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to feedback the reception condition of the second signal, and the second signal is in the The second frequency band is transmitted; the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • receiver 110 For the specific implementation of the receiver 1101, reference may be made to the foregoing receiving module 1001.
  • processor 1102 reference may be made to the foregoing processing module 1002, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a third network device according to an embodiment of the present invention. As shown in FIG. 12, the network device includes:
  • the processing module 1202 is configured to determine, according to the CA, the number of bit bits of the ACK/NACK of the acknowledgment information to be received by the network device from an uplink subframe.
  • the receiving module 1201 is configured to receive at least two ACK/NACKs from the uplink subframe.
  • the processing module 1202 is further configured to: determine that the number of bits of the ACK/NACK to be received from the uplink subframe is greater than a preset number of bit thresholds, and determine at least two ACK/NACKs received from the uplink subframe, Is a user equipment that sends at least two ACK/NACKs, and ACK/to be sent on the uplink subframe according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the ACK/NACK to be transmitted on the uplink subframe is located.
  • NACK is merged as follows:
  • the carriers with large serial numbers are combined, and then the carriers with small serial numbers are combined.
  • the receiving module 1201 receives at least two ACK/NACKs from the uplink subframe, and is a user equipment that sends at least two ACK/NACKs.
  • the ACK/NACK to be sent on the uplink subframe is merged as follows. Generated:
  • the time combination is performed, and the number of bits of the combined at least two ACK/NACKs is not greater than a preset bit number threshold, or
  • spatial merging is performed. If the number of bits of at least two ACK/NACKs after the spatial combination is greater than a preset threshold of the number of bits, time combining is performed, and the number of bits of the combined at least two ACK/NACKs is not greater than a preset number. Bit number threshold;
  • the time combination is performed. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bits, the space combination is performed, and the number of the combined at least two ACK/NACK bits is not greater than the preset. Bit number threshold.
  • At least two ACK/NACKs received by the receiving module 1201 from the uplink subframe are sent by using a physical uplink control channel PUCCH format 3.
  • At least two ACK/NACKs received by the receiving module 1201 from the uplink subframe are sent by using a PUCCH format 1b with channel selection.
  • the preset number of bits is 4;
  • the receiving module 1201 occupies 4 bits from the at least two ACK/NACKs received on the uplink subframe, where 2 bits are used for feeding back the reception condition of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used for Feedbacking the reception of the second signal transmitted by one carrier on the second frequency band, or
  • the receiving module 1201 occupies 4 bits from the at least two ACK/NACKs received on the uplink subframe, where 2 bits are used to feedback the reception of the first signal sent on the two carriers on the first frequency band, and the other 2 bits are used. Used to feedback the reception of the second signal sent by the two carriers on the second frequency band, or
  • the receiving module 1201 occupies 4 bits from the at least two ACK/NACKs received on the uplink subframe, where 1 bit is used to feedback the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are respectively used. And feeding back the receiving condition of the second signal sent by the three carriers on the second frequency band;
  • the first frequency band is a frequency band used for D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; the second frequency band is a frequency band used for downlink transmission.
  • FIG. 13 is a schematic structural diagram of a fourth network device according to an embodiment of the present invention. As shown in FIG. 13, the network device includes:
  • the processor 1302 is configured to determine, according to the CA, the number of bit bits of the acknowledgement information ACK/NACK to be received by the network device from an uplink subframe;
  • the receiver 1301 is configured to receive at least two ACK/NACKs from the uplink subframe.
  • the processor 1302 is further configured to: determine that the number of bits of the ACK/NACK to be received from the uplink subframe is greater than a preset number of bit thresholds, and determine at least two ACK/NACKs received from the uplink subframe, Is a user equipment that sends at least two ACK/NACKs, and ACK/to be sent on the uplink subframe according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the ACK/NACK to be transmitted on the uplink subframe is located.
  • NACK is merged as follows:
  • the carriers with large serial numbers are combined, and then the carriers with small serial numbers are combined.
  • receiver 1301 For the specific implementation of the receiver 1301, reference may be made to the foregoing receiving module 1201.
  • processor 1302 reference may be made to the foregoing processing module 1202, and details are not described herein again.
  • FIG. 14 is a flowchart of a method for sending a first type of confirmation information according to an embodiment of the present invention. As shown in FIG. 14, the method includes the following steps:
  • S1401 Sort at least two acknowledgment information ACK/NACK to be sent on one uplink subframe in the following order, at least two ACK/NACKs including at least one first ACK/NACK and at least one second ACK/NACK:
  • At least one first ACK/NACK is first, at least one second ACK/NACK is after, or,
  • At least one second ACK/NACK is preceded by at least one first ACK/NACK;
  • the first ACK/NACK is used to feed back the reception condition of the first signal, and the first signal is transmitted on the first frequency band;
  • the second ACK/NACK is used to feedback the reception condition of the second signal, and the second signal is in the
  • the second frequency band is transmitted;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission;
  • the second frequency band is a frequency band used for downlink transmission;
  • S1402 Send at least two ACK/NACKs after sorting.
  • the sorting of the at least two ACK/NACKs to be sent on one uplink subframe in step S1401 further includes:
  • the method before sending the sorted at least two ACK/NACKs in step S1402, the method further includes:
  • the method further includes: combining at least one first ACK/NACK, and combining at least one second ACK/NACK;
  • Step S1401 sorts at least two ACK/NACKs to be sent on one uplink subframe, including:
  • the merged at least one first ACK/NACK and the merged at least one second ACK/NACK are sorted.
  • the method before sending the sorted at least two ACK/NACKs in step S1402, the method further includes:
  • the method further includes:
  • At least one of the at least two ACK/NACKs of the sorted at least one ACK/NACK is merged, and at least one of the at least two ACK/NACKs of the sorted at least two ACK/NACKs is combined.
  • the above combination includes:
  • spatial merging is performed. If the number of bits of at least two ACK/NACKs after the spatial combination is greater than a preset threshold of the number of bits, time combining is performed, so that at least two ACK/NACKs after the merging are combined.
  • the number of bits is not greater than a preset threshold of the number of bits;
  • the time combination is performed. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bits, the space combination is performed, so that the number of bits of the combined at least two ACK/NACKs is not greater than the preset.
  • the number of bits is the threshold.
  • the merging comprises: combining according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the at least two ACK/NACKs to be sent on the uplink subframe is:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • the above combination includes:
  • the at least one first ACK/NACK is spatially combined and/or temporally combined, and then the at least one second ACK/NACK is spatially combined and/or temporally combined.
  • step S1402 sending the sorted at least two ACK/NACKs in step S1402, including:
  • the sorted at least two ACK/NACKs are transmitted using the physical uplink control channel PUCCH format 3.
  • step S1402 sending the sorted at least two ACK/NACKs in step S1402, including:
  • the sorted at least two ACK/NACKs are transmitted using PUCCH format 1b with channel selection.
  • the preset number of bits is 4;
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used to send a carrier on the second frequency band. Feedback of the reception of the second signal, or,
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers in the first frequency band, and the other 2 bits are used to the two on the second frequency band.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are respectively used for three on the second frequency band. The reception of the second signal transmitted by the carrier is fed back.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the control channel element CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources; and/or,
  • the second frequency band includes a contiguous spectrum resource or a plurality of discrete spectrum resources.
  • FIG. 15 is a flowchart of a method for sending a second type of confirmation information according to an embodiment of the present invention. As shown in Figure 15, the method includes:
  • S1501 Determine, at the time of CA, the number of bits of at least two ACK/NACKs to be sent on one uplink subframe;
  • S1502 determining that the number of bits of the at least two ACK/NACKs to be sent is greater than a preset number of bit thresholds, and according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the at least two ACK/NACKs to be sent is located,
  • the at least two ACK/NACKs to be sent are combined as follows:
  • S1503 Send at least two ACK/NACKs after the combination.
  • step S1502 At least two ACK/NACKs to be sent are combined in step S1502, including:
  • the at least two ACK/NACKs to be sent are first spatially combined. If the number of bits of the at least two ACK/NACKs after the spatial combination is still greater than the preset number of bits, the time combination is performed, so that at least two of the merged are performed.
  • the number of bits of the ACK/NACK is not greater than a preset threshold of the number of bits, or
  • the at least two ACK/NACKs to be sent are first time-synthesized. If the number of bits of the at least two ACK/NACKs after the time combination is greater than a preset threshold of the number of bits, spatial combining is performed, so that at least two ACKs are combined. The number of bits of the /NACK is not greater than the preset number of bits.
  • the combined at least two ACK/NACKs are transmitted using the physical uplink control channel PUCCH format 3.
  • the combined at least two ACK/NACKs are transmitted using PUCCH format 1b with channel selection.
  • the preset number of bits is 4;
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used to send a carrier on the second frequency band. Feedback of the reception of the second signal, or,
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers in the first frequency band, and the other 2 bits are used to the two on the second frequency band.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are respectively used for three on the second frequency band. Receiving feedback of the second signal transmitted by the carrier;
  • the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; the second frequency band is a frequency band used for downlink transmission.
  • FIG. 16 is a flowchart of a method for receiving a third acknowledgement information according to an embodiment of the present invention. As shown in FIG. 16, the method includes:
  • S1601 Receive at least two ACK/NACKs from an uplink subframe.
  • S1602 Acquire at least one first ACK/NACK and at least one second ACK/NACK from the received at least two ACK/NACKs in the following order:
  • At least one first ACK/NACK is first, at least one second ACK/NACK is after, or,
  • At least one second ACK/NACK is preceded by at least one first ACK/NACK;
  • the first ACK/NACK is used to feed back the reception condition of the first signal, and the first signal is transmitted on the first frequency band; the second ACK/NACK is used to feedback the reception condition of the second signal, and the second signal is in the The second frequency band is transmitted; the first frequency band is a frequency band used for device-to-device D2D transmission and/or a frequency band used for both uplink transmission and downlink transmission; and the second frequency band is a frequency band used for downlink transmission.
  • the at least one first ACK/NACK is sequentially or in reverse order according to the sequence number of the carrier where the first signal corresponding to the at least one first ACK/NACK is located;
  • the at least one second ACK/NACK is ordered in the order of the sequence numbers of the carriers in which the second signals corresponding to the at least one second ACK/NACK are located.
  • the method before acquiring the at least one first ACK/NACK and the at least one second ACK/NACK from the received at least two ACK/NACKs, the method further includes:
  • the combined at least one first ACK/NACK and the combined at least one second ACK/NACK are combined as follows:
  • the time combination is performed, and the number of bits of the combined at least two ACK/NACKs is not greater than a preset bit number threshold, or
  • spatial merging is performed. If the number of bits of at least two ACK/NACKs after the spatial combination is greater than a preset threshold of the number of bits, then time combining is performed, and the combined bits of at least two ACK/NACKs are combined. The number is not greater than the preset bit number threshold;
  • the time combination is performed. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bits, the space combination is performed, and the number of the combined at least two ACK/NACK bits is not greater than the preset. Bit number threshold.
  • the combined at least one first ACK/NACK and the combined at least one second ACK/NACK are user equipments that send at least two ACK/NACKs according to each ACK/NACK to be sent on the uplink subframe.
  • the sequence numbers of the carriers on which the corresponding signals are located are combined as follows:
  • space combining and/or time combining are performed on carriers with small serial numbers, and then performing spatial combining and/or time combining on carriers with large serial numbers, or
  • the carrier with a large sequence number is first spatially combined and/or time-combined, and then the carrier with a small sequence number is spatially combined and/or time-time combined.
  • the combined at least one first ACK/NACK and the combined at least one second ACK/NACK are merged as follows:
  • the at least one first ACK/NACK is spatially combined and/or temporally combined, and then the at least one second ACK/NACK is spatially combined and/or temporally combined.
  • step S1601 receives at least two ACK/NACKs from an uplink subframe, including:
  • At least two ACK/NACKs transmitted in PUCCH format 3 are received on the uplink subframe.
  • step S1601 receives at least two ACK/NACKs from an uplink subframe, including:
  • At least two ACK/NACKs transmitted using PUCCH format 1b with channel selection are received on the uplink subframe.
  • the preset number of bits is 4;
  • At least two ACK/NACKs received from the uplink subframe occupy 4 bits, wherein 2 bits are used for feeding back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used for the second frequency band. Receiving feedback on the second signal sent by one carrier, or
  • At least two ACK/NACKs received from the uplink subframe occupy 4 bits, of which 2 bits are respectively used And feeding back the receiving condition of the first signal sent on the two carriers on the first frequency band, and the other two bits are used for feeding back the receiving condition of the second signal sent by the two carriers on the second frequency band, or
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, wherein 1 bit is used for feedback on the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are used for the second The reception of the second signal transmitted by the three carriers on the frequency band is fed back.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number or higher layer signaling of the control channel element CCE of the physical downlink control channel PDCCH.
  • the PUCCH resource occupied by the first ACK/NACK is determined by the sequence number of the control channel element CCE of the PDCCH, or
  • the PUCCH resource occupied by the first ACK/NACK is determined by high layer signaling
  • the first downlink subframe is a subframe for sending a data scheduling instruction, and the data scheduling instruction is used to schedule data of the first ACK/NACK feedback.
  • the first frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources
  • the second frequency band includes a continuous spectrum resource or a plurality of discrete spectrum resources.
  • FIG. 17 is a flowchart of a fourth method for receiving acknowledgement information according to an embodiment of the present invention. As shown in FIG. 17, the method includes the following steps:
  • S1701 Determine, according to the CA, the number of bits of the ACK/NACK to be received from an uplink subframe;
  • S1702 Receive at least two ACK/NACKs from the uplink subframe.
  • S1703 Determine that the number of bits of the ACK/NACK to be received from the uplink subframe is greater than a preset bit number threshold, and determine that at least two ACK/NACKs received from the uplink subframe are sent by at least two ACKs.
  • the user equipment of the /NACK according to the sequence number of the carrier where the signal corresponding to each ACK/NACK in the ACK/NACK to be transmitted on the uplink subframe is located, the ACK/NACK to be transmitted on the uplink subframe is as follows Merge generated:
  • the carriers with large serial numbers are combined, and then the carriers with small serial numbers are combined.
  • the step S1701 may be performed first, and then the step S1702 may be performed; or the step S1702 may be performed first, and then the step S1701 is performed.
  • At least two ACK/NACKs received from the uplink subframe in step S1702 are ACK/NACKs to be sent by the user equipment that sends at least two ACK/NACKs on the uplink subframe as follows: Merge generated:
  • the time combination is performed, and the number of bits of the combined at least two ACK/NACKs is not greater than a preset bit number threshold, or
  • spatial merging is performed. If the number of bits of at least two ACK/NACKs after the spatial combination is greater than a preset threshold of the number of bits, time combining is performed, and the number of bits of the combined at least two ACK/NACKs is not greater than a preset number. Bit number threshold;
  • the time combination is performed. If the number of bits of the at least two ACK/NACKs after the time combination is greater than the preset number of bits, the space combination is performed, and the number of the combined at least two ACK/NACK bits is not greater than the preset. Bit number threshold.
  • At least two ACK/NACKs received from the uplink subframe in step S1702 are sent by using a physical uplink control channel PUCCH format 3.
  • At least two ACK/NACKs received from the uplink subframe in step S1702 are transmitted in PUCCH format 1b with channel selection.
  • the preset number of bits is 4;
  • the at least two ACK/NACKs received from the uplink subframe occupy 4 bits, wherein 2 bits are used for feedback on the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used for the second Feedback of the reception of the second signal transmitted by one carrier on the frequency band, or
  • At least two ACK/NACKs received from the uplink subframe occupy 4 bits, wherein 2 bits are respectively used to feedback the reception of the first signal sent on the two carriers on the first frequency band, and 2 bits are used to feedback the reception of the second signal sent by the two carriers on the second frequency band, or
  • At least two ACK/NACKs received from the uplink subframe occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are used for the first The receiving condition of the second signal sent by the three carriers on the second frequency band is fed back;
  • the first frequency band is a frequency band used for D2D transmission and/or a frequency band that can be used for both uplink transmission and downlink transmission; the second frequency band is a frequency band used for downlink transmission.
  • the user equipment uses PUCCH Format 3 to transmit ACK/NACK.
  • the downlink signal can be transmitted in the uplink frequency band of the five groups of carriers.
  • the uplink and downlink subframe ratios of the Time Division Duplex (TDD) can be used to configure the subframes of some uplink frequency bands for downlink transmission.
  • the uplink resource may also be configured for downlink transmission in other manners.
  • Table 1 shows the timing of an ACK/NACK feedback for current TDD systems.
  • the numbers in the table without parentheses indicate that the feedback information of the first few subframes is fed back; the numbers in parentheses indicate the confirmation information that needs to be fed back several subframes.
  • the transmission mode in the TDD system is adopted in the uplink frequency band, and the number of uplink subframes that can be used for feeding back ACK/NACK and the number of downlink subframes that need feedback are calculated in the case of various subframe ratios.
  • each uplink frequency band uses the same subframe ratio.
  • U/D represents the number of uplink subframes/downlink subframes;
  • Dlband indicates that all subframes are downlink, so the number of subframes is 10;
  • the user equipment when PUCCH format 3 is used to transmit ACK/NACK, the user equipment can transmit up to 20 bits of ACK/NACK in one uplink subframe, and according to the above calculation, even if each subframe only feeds back 1 bit ACK/
  • the NACK also has a case where the number of bits of the ACK/NACK to be transmitted in the uplink subframe exceeds 20 bits. For example, when the carrier is 5, the subframe ratio is 2, 3, 4, or 5.
  • the user equipment may send at least two ACK/NACKs as follows:
  • Sorting in the following order, sending the sorted at least two ACK/NACKs to the network device:
  • the second ACK/NACK is first, and the first ACK/NACK is after;
  • the first ACK/NACK is sorted according to the sequence number of the carrier where the signal corresponding to the first ACK/NACK is located, for example, the carriers with small serial numbers are first combined, and then the carriers with large serial numbers are combined, or the serial number is large.
  • the carriers are combined, and the carriers with small sequence numbers are sorted according to the carrier sequence number; in the second ACK/NACK, similarly, the sequence numbers of the carriers corresponding to the signals corresponding to the second ACK/NACK may be sorted according to the above manner. .
  • the merging may be performed according to one or more of the following rules:
  • the first optional implementation manner is: starting the merging from the downlink carrier with the largest sequence number (that is, the carrier on the second frequency band), and the primary carrier feedback information is finally merged.
  • the second optional implementation manner is: spatially combining the second ACK/NACK, if the number of combined ACK/NACK bits is not greater than 20 bits, spatial combining is not performed; if the combined ACK/ If the number of bits of the NACK is still greater than 20 bits, the first ACK/NACK is spatially combined.
  • time combining is performed.
  • temporal merging is similar to the alternative implementation of spatial merging described above.
  • the first optional implementation manner is: performing time combining from the downlink carrier with the largest sequence number (that is, the carrier on the second frequency band), and finally combining the primary carrier feedback information until the combined ACK/NACK bit
  • the number is not more than 20bit.
  • the second optional implementation manner is: performing time combining on the second ACK/NACK first. If the number of combined ACK/NACK bits is not greater than 20 bits, time combining is not performed, if the combined ACK/ If the number of bits of the NACK is still greater than 20 bits, the first ACK/NACK is time-combined.
  • the final result of the combination can ensure that the number of combined ACK/NACK bits is not more than 20 bits.
  • the user equipment uses 8 carriers for data transmission at the same time.
  • the serial numbers of the 8 carriers are 1, 2, 3, 4, 5, 6, 7, and 8, respectively.
  • the ACK/NACK to be transmitted by the user equipment on one uplink subframe includes feedback information on data transmitted on the eight carriers, assuming that the number of MIMO spatial streams per carrier is 2, and the TDD configuration of each carrier is as follows. TDD configuration 2 shown in FIG.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the S subframe can also be used for downlink data transmission, and the number above each subframe indicates the subframe number of the subframe.
  • the acknowledgement ACK/NACK of the eight subframes in a radio frame is sent in the uplink subframe, the number of bits of the ACK/NACK to be transmitted by each carrier on the uplink subframe for the carriers 1 to 8 If the number of bits of the ACK/NACK to be transmitted on the uplink subframe is 64 bits, the preset bit number threshold is 20 bits.
  • each codeword feeds back 1 bit of ACK/NACK.
  • the data transmission of the ACK/NACK feedback corresponding to the two codewords is the same, and only the codewords are different.
  • spatial merging is first performed, and when spatial merging is performed, merging is performed in the order of the carrier numbers.
  • the ACK/NACK of the data transmission on the same time-frequency resource and the different codeword is combined in the 8-bit ACK/NACK.
  • the carrier 2 is merged, and the rules are the same as above.
  • time combining is performed on carrier 1. After the time combination, the number of bits of the ACK/NACK to be transmitted in the uplink subframe corresponding to each carrier is 4 bits, and the ACK/NACK of the 4 bits can be time combined.
  • the number of bits of the combined ACK/NACK may be 1 bit or 2 bits. If the number of bits of the combined ACK/NACK is 1 bit, the combined ACK/NACK is ACK when 4 ACK/NACKs are ACKs; optionally, one or more of the 4 ACK/NACKs When NACK or DTX is used, the combined ACK/NACK is NACK.
  • 00 may represent that the ACK/NACK of at least one subframe corresponds to NACK/DTX; "01” may represent that the first ACK/NACK is ACK; "10” “On behalf of the first and second ACK / NACK are ACK; "11” can represent the first, second and third ACK / NACK are ACK.
  • an example of the meaning represented by the state 00/01/10/11 of only 2 bits described above may be redefined according to the situation in actual implementation.
  • the user equipment uses PUCCH Format 1b with channel selection for transmission.
  • the user equipment when the ACK/NACK is transmitted by using the PUCCH Format 1b with channel selection, the user equipment can transmit up to 4 bits of ACK/NACK in one uplink subframe, then the foregoing Set the bit number threshold to 4.
  • the user equipment 301 combines at least two ACK/NACKs to be transmitted, such that:
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 2 bits are used to send a carrier on the second frequency band. Feedback of the reception of the second signal, or,
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 2 bits are used to feedback the reception of the first signal sent on the two carriers in the first frequency band, and the other 2 bits are used to the two on the second frequency band.
  • the receiving condition of the second signal sent by the carrier is fed back, or
  • the combined at least two ACK/NACKs occupy 4 bits, wherein 1 bit is used to feed back the reception of the first signal sent on one carrier in the first frequency band, and the other 3 bits are respectively used for three on the second frequency band. The reception of the second signal transmitted by the carrier is fed back.
  • space consolidation can be performed first, and time consolidation is performed.
  • the embodiments of the present invention provide a user equipment, a network device, and a method for transmitting confirmation information.
  • the user equipment sends the sorted at least two at least two ACK/NACKs.
  • Two ACK/NACKs such that when the network device such as the base station receives at least two ACK/NACKs sent by the user equipment, it can determine which ACK/NACK is used for feedback in the same order as that when the user equipment transmits.
  • the user equipment combines at least two ACK/NACKs to be transmitted on one uplink subframe, reducing the number of bits occupied by the ACK/NACK.
  • the carrier number is determined according to the quality of the signal on the carrier, generally, the smaller the carrier number, the better the communication quality on the carrier. If the carrier with the small sequence number is first combined, the first is used for the feedback communication quality.
  • the ACK/NACK of the signal on a good carrier is stable due to the good communication quality of the carrier, so the probability of feeding back the ACK is large, and the probability of retransmission of multiple signals on the carrier is small due to the combination. The transmission efficiency is high.
  • the ACK/NACK for the signal on the carrier with poor communication quality is first combined. Since the communication quality of the carrier is poor, the probability of feeding back the NACK is large, although the combination will make The probability of retransmission of multiple signals on the carrier becomes large, and the transmission efficiency may be reduced, but the reliability of signal transmission on such carriers is ensured, and the transmission of multiple ACK/NACKs can also be guaranteed.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明涉及无线通信技术领域,尤其涉及用户设备、网络设备和确认信息的传输方法。其中,用户设备对一个上行子帧上待发送的至少二个确认信息ACK/NACK中的至少一个第一ACK/NACK和至少一个第二ACK/NACK,按照第一ACK/NACK在先,第二ACK/NACK在后,或,第二ACK/NACK在先,第一ACK/NACK在后的顺序发送。网络设备按照与用户设备发送时排序的相同顺序,即可确定收到的至少二个ACK/NACK中,哪些用于反馈在非传统的通信方式下传输的信号,哪些用于反馈在传统的通信方式下传输的信号。因此提供了用户设备既采用传统的通信方式,也采用非传统的通信方式通信的情况下,确认信息的反馈机制。

Description

一种用户设备、网络设备,以及确认信息的传输方法 技术领域
本发明涉及无线通信技术领域,尤其涉及一种用户设备、网络设备,以及确认信息的传输方法。
背景技术
为了确保通信传输的可靠性,无线通信系统中引入了反馈重传的方法。即:通信设备一发送信息给通信设备二,则通信设备二通过解码校验等确定所获得的信息是否正确,并将判断结果发送给通信设备一。如果反馈的信息指示通信设备二无法获取通信设备一发送的信息,则通信设备一需要重新传输之前发送的信息;反之,则不需要。通信设备二反馈的指示信息为肯定应答(ACKnowledge,ACK)表明所获取信息正确,反馈的指示信息为否定应答(Negative ACKnowledge,NACK)表明所获取信息错误。
传统频分双工(Frequency Division Duplexing,FDD)系统采用成对的上下行频段资源,下行频段资源中传输信息的ACK/NACK在对应的上行频段资源反馈。比如:在FDD长期演进(Long Term Evolution,LTE)系统中,如图1所示,反馈的ACK/NACK在图1中阴影部分所标识的上行频段资源中的物理上行控制信道(Physical Uplink Control CHannel,PUCCH)中传输。
目前,存在一种通信方式,称作动态频谱共享(Dynamic Spectrum Sharing,DSS)。在DSS通信方式下,基站利用空闲的上行频段资源传输下行信号,如图2A所示。
此外,还存在一种通信方式称作设备到设备(Device-to-Device,D2D)通信,如图2B所示。通常,在D2D通信方式下,用户设备(User Equipment,UE)之间直接通信,不经过基站等网络设备转发。在这种方式下,通信一方发送给另一方的数据,也需要另一方反馈ACK/NACK。
对于用户设备既采用图1所示的传统的通信方式,又采用诸如上述两种 与图1所示的传统的通信方式不同的通信方式进行通信时,目前,还没有一种用户设备对通过上述传统的通信方式和非传统的通信方式接收的信号反馈ACK/NACK信息的反馈机制。
发明内容
本发明实施例提供一种用户设备、网络设备,以及确认信息的传输方法,用以提供一种用户设备既采用图1所示的传统的通信方式,又采用诸如图2A和图2B所示的两种与图1所示的传统的通信方式不同的通信方式进行通信时,用户设备对通过上述传统的通信方式和非传统的通信方式接收的信号反馈ACK/NACK信息的反馈机制。
第一方面,本发明实施例提供一种用户设备,包括:
处理模块,用于按如下顺序对所述用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK排序,所述至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK:
所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在后,或,
所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段;
发送模块,用于发送所述处理模块排序后的所述至少二个ACK/NACK。
结合第一方面,在第一种可能的实现方式中,所述处理模块具体用于:
按照第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序,对所述至少一个第一ACK/NACK排序;
按照第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序,对所述至少一个第二ACK/NACK排序。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理模块还用于:在所述发送模块发送排序后的所述至少二个ACK/NACK之前,
确定所述用户设备待发送的所述至少二个ACK/NACK的比特bit数;
确定所述确定的bit数大于预设的bit数阈值;
在对所述用户设备在一个上行子帧上待发送的至少二个ACK/NACK排序之前,对所述至少一个第一ACK/NACK合并,以及对所述至少一个第二ACK/NACK合并;
所述处理模块具体用于:将合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK排序。
结合第一方面或第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述处理模块还用于在所述发送排序后的所述至少二个ACK/NACK之前,
确定所述用户设备待发送的所述至少二个ACK/NACK的比特bit数,并确定所述确定的bit数大于预设的bit数阈值;
在对所述用户设备在一个上行子帧上待发送的至少二个ACK/NACK排序之后,将排序后的所述至少二个ACK/NACK中的至少一个第一ACK/NACK合并,以及将排序后的所述至少二个ACK/NACK中的至少一个第二ACK/NACK合并。
结合第一方面的第二种可能的实现方式或第三种可能的实现方式,在第四种可能的实现方式中,所述处理模块具体用于:
进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述处理模块具体用于:根据在所述上行子帧上待发送的所述至少二个ACK/NACK中各ACK/NACK所对应的信号所在载波的序号,按照如下方式进行合并:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
结合第一方面的第四种可能的实现方式或第五种可能的实现方式,在第六种可能的实现方式中,所述处理模块具体用于:
先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,或,
先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
结合第一方面,或第一方面的第一种可能的实现方式至第六种可能的实现方式中的任一种,在第七种可能的实现方式中,所述发送模块具体用于:
采用物理上行控制信道PUCCH格式3发送排序后的所述至少二个ACK/NACK。
结合第一方面的第二种可能的实现方式至第六种可能的实现方式的任一种,在第八种可能的实现方式中,所述发送模块具体用于:
采用带信道选择的PUCCH格式1b发送排序后的所述至少二个 ACK/NACK。
结合第一方面的第八种可能的实现方式,在第九种可能的实现方式中,所述预设的bit数阈值为4;
合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
结合第一方面,第一方面的第一种可能的实现方式至第九种可能的实现方式中的任一种,在第十种可能的实现方式中,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
结合第一方面的第十种可能的实现方式,在第十一种可能的实现方式中,
当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
结合第一方面,第一方面的第一种可能的实现方式至第十一种可能的实现方式中的任一种,在第十二种可能的实现方式中,
所述第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或,
所述第二频段包括一段连续的频谱资源或多段离散的频谱资源。
第二方面,本发明实施例提供一种用户设备,包括:
处理模块,用于确定在载波聚合CA时,所述用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK的比特bit数;以及
确定所述待发送的所述至少二个ACK/NACK的bit数大于预设的bit数阈值,并根据待发送的所述至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的所述至少二个ACK/NACK进行合并:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并;
发送模块,用于发送所述处理模块合并后的所述至少二个ACK/NACK。
结合第二方面,在第一种可能的实现方式中,所述处理模块具体用于:
对所述用户设备待发送的所述至少二个ACK/NACK进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
对所述用户设备待发送的所述至少二个ACK/NACK进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对所述用户设备待发送的所述至少二个ACK/NACK先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数仍大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
对所述用户设备待发送的所述至少二个ACK/NACK先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述发送模块具体用于:
采用物理上行控制信道PUCCH格式3发送合并后的所述至少二个ACK/NACK。
结合第二方面或第二方面的第一种可能的实现方式,在第三种可能的实现方式中,所述发送模块具体用于:
采用带信道选择的PUCCH格式1b发送合并后的所述至少二个ACK/NACK。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述预设的bit数阈值为4;
合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
其中,所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
第三方面,本发明实施例提供一种网络设备,包括:
接收模块,用于从一个上行子帧上接收至少二个确认信息ACK/NACK;
处理模块,用于按如下顺序从所述接收模块接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK:
所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在后,或,
所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
结合第三方面,在第一种可能的实现方式中,
所述至少一个第一ACK/NACK是按照所述至少一个第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序排序的;
所述至少一个第二ACK/NACK是按照所述至少一个第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序排序的。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述处理模块还用于:在所述接收模块从接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK之前,
确定在所述上行子帧上待接收的ACK/NACK的比特bit数;
确定所述确定的bit数大于预设的bit数阈值,并确定所述接收模块接收到的所述至少二个ACK/NACK中包括合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK是按照如下方式合并的:
进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述 预设的bit数阈值,或,
进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是发送所述至少二个ACK/NACK的用户设备根据在所述上行子帧上待发送的各ACK/NACK所对应的信号所在载波的序号,按照如下方式合并的:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
结合第三方面的第三种可能的实现方式或第四种可能的实现方式,在第五种可能的实现方式中,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是按照如下方式进行合并的:
先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,或,
先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
结合第三方面,或第三方面的第一种可能的实现方式至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,从一个上行子帧上接收至 少二个ACK/NACK,包括:
在所述上行子帧上接收采用PUCCH格式3发送的所述至少二个ACK/NACK。
结合第三方面的第二种可能的实现方式至第五种可能的实现方式中的任一种,在第七种可能的实现方式中,从一个上行子帧上接收至少二个ACK/NACK,包括:
在所述上行子帧上接收采用带信道选择的PUCCH格式1b发送的所述至少二个ACK/NACK。
结合第三方面的第七种可能的实现方式,在第八种可能的实现方式中,所述预设的bit数阈值为4;
所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈,或,
所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
结合第三方面,或第三方面的第一种可能的实现方式至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
结合第三方面的第九种可能的实现方式,在第十种可能的实现方式中,
当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
结合第三方面,或第三方面的第一种可能的实现方式至第十种可能的实现方式中的任一种,在第十一种可能的实现方式中,
所述第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或
所述第二频段包括一段连续的频谱资源或多段离散的频谱资源。
第四方面,本发明实施例提供一种网络设备,包括:
处理模块,用于确定在载波聚合CA时,从一个上行子帧上待接收的确认信息ACK/NACK的比特bit数;
接收模块,用于从所述上行子帧上接收至少二个ACK/NACK;
所述处理模块,还用于:确定从所述上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,并确定从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备,根据在所述上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在所述上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并。
结合第四方面,在第一种可能的实现方式中,所述接收模块从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备对在所述上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述 预设的bit数阈值,或,
进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第四方面或第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK是采用物理上行控制信道PUCCH格式3发送的。
结合第四方面或第四方面的第一种可能的实现方式,在第三种可能的实现方式中,所述接收模块从所述上行子帧上接收的所述至少二个ACK/NACK是采用带信道选择的PUCCH格式1b发送的。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中,所述预设的bit数阈值为4;
所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈,或,
所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的 接收情况进行反馈,另外的3bit ACK/NACK分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
其中,所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
第五方面,本发明实施例提供一种确认信息的发送方法,包括:
按如下顺序对在一个上行子帧上待发送的至少二个确认信息ACK/NACK排序;
所述至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK:
所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在后,或,
所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;
所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段;
发送排序后的所述至少二个ACK/NACK。
结合第五方面,在第一种可能的实现方式中,所述对在一个上行子帧上待发送的至少二个ACK/NACK排序还包括:
按照第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序,对所述至少一个第一ACK/NACK排序;
按照第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序,对所述至少一个第二ACK/NACK排序。
结合第五方面或第五方面的第一种可能的实现方式,在第二种可能的实现方式中,在所述发送排序后的所述至少二个ACK/NACK之前,还包括:
确定待发送的所述至少二个ACK/NACK的比特bit数;
确定所述确定的bit数大于预设的bit数阈值;
在对在一个上行子帧上待发送的至少二个ACK/NACK排序之前,还包括:对所述至少一个第一ACK/NACK合并,以及对所述至少一个第二ACK/NACK合并;
所述对在一个上行子帧上待发送的所述至少二个ACK/NACK排序,包括:
将合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK排序。
结合第五方面或第五方面的第一种可能的实现方式,在第三种可能的实现方式中,在所述发送排序后的所述至少二个ACK/NACK之前,还包括:
确定待发送的所述至少二个ACK/NACK的比特bit数,并确定所述确定的bit数大于预设的bit数阈值;
所述在对在一个上行子帧上待发送的至少二个ACK/NACK排序之后,还包括:
将排序后的所述至少二个ACK/NACK中的至少一个第一ACK/NACK合并,以及将排序后的所述至少二个ACK/NACK中的至少一个第二ACK/NACK合并。
结合第五方面的第二种可能的实现方式或第三种可能的实现方式,在第四种可能的实现方式中,所述合并包括:
进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第五方面的第四种可能的实现方式,在第五种可能的实现方式中,所述合并包括:根据在所述上行子帧上待发送的所述至少二个ACK/NACK中各ACK/NACK所对应的信号所在载波的序号,按照如下方式进行合并:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
结合第五方面的第四种可能的实现方式或第五种可能的实现方式,在第六种可能的实现方式中,所述合并包括:
先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,或,
先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
结合第五方面,或第五方面的第一种可能的实现方式至第六种可能的实现方式中的任一种,在第七种可能的实现方式中,发送排序后的所述至少二个ACK/NACK,包括:
采用物理上行控制信道PUCCH格式3发送排序后的所述至少二个ACK/NACK。
结合第五方面的第二种可能的实现方式至第六种可能的实现方式的任一种,在第八种可能的实现方式中,发送排序后的所述至少二个ACK/NACK,包括:
采用带信道选择的PUCCH格式1b发送排序后的所述至少二个ACK/NACK。
结合第五方面的第八种可能的实现方式,在第九种可能的实现方式中, 所述预设的bit数阈值为4;
合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
结合第五方面,第五方面的第一种可能的实现方式至第九种可能的实现方式中的任一种,在第十种可能的实现方式中,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
结合第五方面的第十种可能的实现方式,在第十一种可能的实现方式中,
当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
结合第五方面,第五方面的第一种可能的实现方式至第十一种可能的实现方式中的任一种,在第十二种可能的实现方式中,
所述第一频段包括一段连续频谱资源或多段离散的频谱资源;和/或,
所述第二频段包括一段连续频谱资源或多段离散的频谱资源。
第六方面,本发明实施例提供一种确认信息的发送方法,包括:
确定在载波聚合CA时,一个上行子帧上待发送的至少二个确认信息ACK/NACK的比特bit数;
确定所述待发送的所述至少二个ACK/NACK的bit数大于预设的bit数阈值,并根据待发送的所述至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的所述至少二个ACK/NACK进行合并:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并;
发送合并后的所述至少二个ACK/NACK。
结合第六方面,在第一种可能的实现方式中,对待发送的所述至少二个ACK/NACK进行合并,包括:
对待发送的所述至少二个ACK/NACK进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
对待发送的所述至少二个ACK/NACK进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对待发送的所述至少二个ACK/NACK先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数仍大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
对待发送的所述至少二个ACK/NACK先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第六方面或第六方面的第一种可能的实现方式,在第二种可能的实 现方式中,发送合并后的所述至少二个ACK/NACK,包括:
采用物理上行控制信道PUCCH格式3发送合并后的所述至少二个ACK/NACK。
结合第六方面或第六方面的第一种可能的实现方式,在第三种可能的实现方式中,发送合并后的所述至少二个ACK/NACK,包括:
采用带信道选择的PUCCH格式1b发送合并后的所述至少二个ACK/NACK。
结合第六方面的第三种可能的实现方式,在第四种可能的实现方式中,所述预设的bit数阈值为4;
合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
其中,所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
第七方面,本发明实施例提供一种确认信息的接收方法,包括:
从一个上行子帧上接收至少二个确认信息ACK/NACK;
按如下顺序从接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK:
所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在 后,或,
所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;
所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
结合第七方面,在第一种可能的实现方式中,
所述至少一个第一ACK/NACK是按照所述至少一个第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序排序的;
所述至少一个第二ACK/NACK是按照所述至少一个第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序排序的。
结合第七方面或第七方面的第一种可能的实现方式,在第二种可能的实现方式中,
在从接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK之前,还包括:
确定在所述上行子帧上待接收的ACK/NACK的比特bit数;
确定所述确定的bit数大于预设的bit数阈值,并确定接收到的所述至少二个ACK/NACK中包括合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK。
结合第七方面的第二种可能的实现方式,在第三种可能的实现方式中,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK是按照如下方式合并的:
进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述 预设的bit数阈值,或,
先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第七方面的第三种可能的实现方式,在第四种可能的实现方式中,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是发送所述至少二个ACK/NACK的用户设备根据在所述上行子帧上待发送的各ACK/NACK所对应的信号所在载波的序号,按照如下方式合并的:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
结合第七方面的第三种可能的实现方式或第四种可能的实现方式,在第五种可能的实现方式中,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是按照如下方式进行合并的:
先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,或,
先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
结合第七方面,或第七方面的第一种可能的实现方式至第五种可能的实现方式中的任一种,在第六种可能的实现方式中,从一个上行子帧上接收至少二个ACK/NACK,包括:
在所述上行子帧上接收采用PUCCH格式3发送的所述至少二个 ACK/NACK。
结合第七方面的第二种可能的实现方式至第五种可能的实现方式中的任一种,在第七种可能的实现方式中,从一个上行子帧上接收至少二个ACK/NACK,包括:
在所述上行子帧上接收采用带信道选择的PUCCH格式1b发送的所述至少二个ACK/NACK。
结合第七方面的第七种可能的实现方式,在第八种可能的实现方式中,所述预设的bit数阈值为4;
从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈,或,
从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
结合第七方面,或第七方面的第一种可能的实现方式至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
结合第七方面的第九种可能的实现方式,在第十种可能的实现方式中,
当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素 CCE的序号确定,或,
当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
结合第七方面,或第七方面的第一种可能的实现方式至第十种可能的实现方式中的任一种,在第十一种可能的实现方式中,
所述第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或
所述第二频段包括一段连续的频谱资源或多段离散的频谱资源。
第八方面,本发明实施例提供一种确认信息的接收方法,包括:
确定在载波聚合CA时,从一个上行子帧上待接收的确认信息ACK/NACK的比特bit数;
从所述上行子帧上接收至少二个ACK/NACK;
确定从所述上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,并确定从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备,根据在所述上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在所述上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并。
结合第八方面,在第一种可能的实现方式中,从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备对在所述上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值,或,
先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
结合第八方面或第八方面的第一种可能的实现方式,在第二种可能的实现方式中,从所述上行子帧上接收到的所述至少二个ACK/NACK是采用物理上行控制信道PUCCH格式3发送的。
结合第八方面或第八方面的第一种可能的实现方式,在第三种可能的实现方式中,从所述上行子帧上接收的所述至少二个ACK/NACK是采用带信道选择的PUCCH格式1b发送的。
结合第八方面的第三种可能的实现方式,在第四种可能的实现方式中,所述预设的bit数阈值为4;
从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈,或,
从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈,或,
从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
其中,所述第一频段为用于设备到设备D2D传输的频段和/或既可用于上 行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
对于本发明实施例的第一方面、第三方面、第五方面和第七方面,
用户设备在发送至少二个ACK/NACK时,发送排序后的该至少二个ACK/NACK,这样,诸如基站的网络设备在收到用户设备发送的至少二个ACK/NACK时,按照与用户设备发送时排序的相同顺序,即可确定哪些ACK/NACK是用于反馈在非传统的通信方式下传输的信号的ACK/NACK,哪些ACK/NACK是用于反馈在传统的通信方式下传输的信号。
因此提供了一种用户设备既采用传统的通信方式,也采用非传统的通信方式通信的情况下,确认信息ACK/NACK的反馈机制。
对于本发明实施例的第二方面、第四方面、第六方面和第八方面,
用户设备将一个上行子帧上待发送的至少二个ACK/NACK进行合并,减少了ACK/NACK占用的bit数。
并且,由于载波序号是按照载波上信号的质量而定的,通常载波序号越小,在该载波上的通信质量越好,若先对序号小的载波合并,则先合并用于反馈通信质量较好的载波上的信号的ACK/NACK,由于该类载波的通信质量好,信道情况稳定,因此反馈ACK的概率较大,由于合并而导致该载波上的多个信号均重传的概率较小,传输效率较高。
若先对序号大的载波合并,则先合并用于反馈通信质量较差的载波上的信号的ACK/NACK,由于该类载波的通信质量差,因此反馈NACK的概率较大,虽然合并会使得该载波上的多个信号均重传的概率变大,传输效率可能会降低,但却保证了这类载波上的信号传输的可靠性,也能够保证多个ACK/NACK的传输。
附图说明
图1为传统FDD系统中,ACK/NACK的发送方式示意图;
图2A为采用DSS通信方式的无线通信系统中,数据传输方式的示意图;
图2B为采用D2D通信方式的无线通信系统中,用户设备之间数据传输 方式的示意图;
图3A和图3B为本发明实施例提供的一种无线通信系统的结构示意图;
图4为本发明实施例提供的另一种无线通信系统的结构示意图;
图5为TDD配置2的无线帧结构图;
图6为本发明实施例提供的第一种用户设备的结构示意图;
图7为本发明实施例提供的第二种用户设备的结构示意图;
图8为本发明实施例提供的第三种用户设备的结构示意图;
图9为本发明实施例提供的第四种用户设备的结构示意图;
图10为本发明实施例提供的第一种网络设备的结构示意图;
图11为本发明实施例提供的第二种网络设备的结构示意图;
图12为本发明实施例提供的第三种网络设备的结构示意图;
图13为本发明实施例提供的第四种网络设备的结构示意图;
图14为本发明实施例提供的第一种确认信息的发送方法的流程图;
图15为本发明实施例提供的第二种确认信息的发送方法的流程图;
图16为本发明实施例提供的第三种确认信息的接收方法的流程图;
图17为本发明实施例提供的第四种确认信息的接收方法的流程图;
具体实施方式
在图2A和图2B所示的两种非传统的通信方式下,用户设备也需要对收到的信号的接收情况进行反馈。当用户设备既接收传统的通信方式下的信号,又接收图2A和/或图2B所示的通信方式下的信号时,还没有一种对接收情况进行反馈的方案。
因此,本发明实施例提供一种用户设备、网络设备,以及确认信息的传输方法。其中,用户设备对在一个上行子帧上待发送的至少二个确认信息ACK/NACK,其中包括至少一个第一ACK/NACK和至少一个第二ACK/NACK,按如下方式排序后发送出去:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后,或, 至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
其中,第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输;第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
其中,用户设备在发送至少二个ACK/NACK时,发送排序后的该至少二个ACK/NACK,这样,诸如基站的网络设备在收到用户设备发送的至少二个ACK/NACK时,按照与用户设备发送时排序的相同顺序,即可确定哪些ACK/NACK是用于反馈在非传统的通信方式下传输的信号的ACK/NACK,哪些ACK/NACK是用于反馈在传统的通信方式下传输的信号。因此提供了一种用户设备既采用传统的通信方式,也采用非传统的通信方式通信的情况下,确认信息ACK/NACK的反馈机制。
此外,本发明实施例提供另一种用户设备、网络设备,以及确认信息的传输方法,提供了一种在载波聚合(Carrier Aggregation,CA)时,当一个上行子帧上待发送ACK/NACK的比特(bit)数较多,超过预设的bit数阈值时的一种解决方案。该方案中,当在一个上行子帧上待发送ACK/NACK的比特(bit)数较多,超过预设的bit数阈值时,用户设备根据待发送的所述至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的ACK/NACK进行合并后发送:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并。
其中,通过合并,减少了ACK/NACK占用的bit数。并且,由于载波序号是按照载波上信号的质量而定的,通常载波序号越小,在该载波上的通信质量越好,若先对序号小的载波合并,则先合并用于反馈通信质量较好的载波上的信号的ACK/NACK,由于该类载波的通信质量好,信道情况稳定,因此反馈ACK的概率较大,由于合并而导致该载波上的多个信号均重传的概率较小,传输效率较高。
若先对序号大的载波合并,则先合并用于反馈通信质量较差的载波上的信号的ACK/NACK,由于该类载波的通信质量差,因此反馈NACK的概率较大,虽然合并会使得该载波上的多个信号均重传的概率变大,传输效率可能会降低,但却保证了这类载波上的信号传输的可靠性,也能够保证多个ACK/NACK的传输。
下面,结合附图对本发明的各实施例进行详细说明。
首先,介绍本发明实施例提供的两种无线通信系统,然后分别介绍本发明实施例提供的两种用户设备、网络设备和两种ACK/NACK的传输方法。
图3A和图3B为本发明实施例提供的无线通信系统30两种结构示意图。其中,无线通信系统30包括:
用户设备301,用于按如下顺序对一个上行子帧上待发送的至少二个ACK/NACK排序,并将排序后的该至少二个ACK/NACK发送给网络设备302:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后,或,至少一个第二ACK/NACK在先,至少一个第一ACK/NACK在后;
网络设备302,用于从用户设备301发送的上述上行子帧上接收排序后的上述至少二个确认信息ACK/NACK;并按照与用户设备301排序的相同方式,从该至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK。
其中,至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK;第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输。
第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于D2D传输的频段,和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
其中,第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或
第二频段包括一段连续的频谱资源或多段离散的频谱资源;
其中,后一种情况即对应载波聚合的场景。
图3A中,用户设备301接收网络设备302在第一频段上发送的第一信号,并接收网络设备302在第一频段上发送的第二信号,用户设备301向网络设备反馈第一ACK/NACK和第二ACK/NACK。
图3B中,用户设备301接收网络设备302通过另一个用户设备,在第一频段上发送的第一信号,用户设备301在接收该第一信号时,与另一个用户设备采用D2D的通信方式。并且,用户设备301接收网络设备302在第二频段上发送的第二信号。用户设备301向网络设备302反馈第一ACK/NACK和第二ACK/NACK。
其中,图3B中,该另一个用户设备可位于网络设备302中,也可通过无线通信的方式,与网络设备302通信。
本发明实施例提供的无线通信系统30的通信制式可包括但不限于如下通信制式:
全球移动通信系统(Global System of Mobile communication,GSM)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)等。
用户设备301可包括但不限于如下类型的用户设备:手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、销售用户设备(Point of Sales,POS)、车载电脑等。
若无线通信系统30的通信制式为GSM,则用户设备301为移动台(Mobile Station,MS),网络设备302为基站收发信机(Base Transceiver Station,BTS),或基站控制器(Base Station Controller,BSC);
若无线通信系统30的通信制式为TD-SCDMA或WCDMA,则用户设备 301为UE,网络设备302为节点B(NodeB,NB)或无线网络控制器(Radio Network Controller,RNC);
若无线通信系统的通信制式为TDD LTE或FDD LTE,则用户设备301为UE,网络设备302为演进节点B(evolved NodeB,eNB)。
用户设备301和网络设备302之间传输的确认信息ACK/NACK,用于反馈用户设备收到的信号。
对于DSS场景和传统的FDD场景,用户设备301通过发送ACK/NACK,对网络设备302发给用户设备的下行数据的接收情况进行反馈。用户设备301在正确接收时,反馈ACK;在错误接收时,反馈NACK。
对于D2D场景,用户设备301通过发送ACK/NACK,对另一个用户设备发送的数据的接收情况进行反馈,同样地,用户设备301在正确接收时,反馈ACK;在错误接收时,反馈NACK。
用户设备301向网络设备302发送ACK/NACK的顺序,可通过用户设备301和网络设备302均遵循的通信标准来约定,也可在用户设备301与网络设备302传输数据之前通过信令传递来约定。网络设备302按照与用户设备301发送的ACK/NACK相同的顺序,即可从接收到的至少二个ACK/NACK分别获取第一ACK/NACK和第二ACK/NACK。
对发送的至少二个ACK/NACK区分第一ACK/NACK和第二ACK/NACK进行排序,从而使得用户设备和网络设备的排序一致,对ACK/NACK信息反馈ACK/NACK所针对的下行数据传输的理解一致,避免理解不一致的问题。目前的ACK/NACK反馈的时序关系中,仅规定了如何对第二频段,即用于下行传输的频段上发送的下行信号的反馈,并不适用于本发明实施例中的既存在第一频段,也存在第二频段,两个频段上传输的信号都需要反馈的场景,并且,目前的时序关系并没有对一个上行子帧上待发送的至少二个ACK/NACK进行区分、排序。
因此,本发明实施例提供的将第一ACK/NACK和第二ACK/NACK进行区分、排序,突破了现有的ACK/NACK反馈的时序关系的规定,避免了通信 的双方对于至少二个ACK/NACK理解不一致的问题。
除了按照上述方式,对第一ACK/NACK和第二ACK/NACK之间的顺序进行约定,此外,还可以对至少二个第一ACK/NACK进行排序,以及对至少二个第二ACK/NACK进行排序。
具体地,可按照第一ACK/NACK对应的第一下行信号所在载波的序号的顺序或倒序,对至少二个第一ACK/NACK进行排序;
按照第二ACK/NACK对应的第二下行信号所在载波的序号的顺序或倒序,对至少二个第二ACK/NACK进行排序。
若待发送的至少二个ACK/NACK的比特(bit)数大于预设的bit数阈值,则可选地,用户设备301可在排序前或排序后对该待发送的至少二个ACK/NACK进行合并,将排序、合并后的该至少二个ACK/NACK再发送给网络设备302。
其中,合并是指:当用户设备在一个上行子帧上有至少二个ACK/NACK要发送时,为了节省上行传输资源,或者受限于上行传输能力,将其中的若干个ACK/NACK进行合并。
比如:将ACK/NACK1和ACK/NACK2进行合并,若ACK/NACK1取值为ACK,ACK/NACK取值为NACK,或ACK/NACK1取值为NACK,ACK/NACK取值为ACK,则合并后的ACK/NACK取值为NACK,只有在ACK/NACK1和ACK/NACK2取值均为ACK时,合并后的ACK/NACK取值才为ACK。
或者,对于DSS场景和传统的FDD场景,考虑用户设备301在没有收到网络设备302通过下行控制信道发送的下行调度控制信息时,用户设备301则不会在上行子帧反馈确认信息ACK/NACK,这种情况称为不连续发送(Discontinuous Transmission,DTX)则用户设备301在合并时,可采用包括下述方式在内的多种可选实现方式:
用户设备301将该种DTX的情况视为NACK,此时,用户设备301可认为本应收到网络设备302发送的下行调度控制信息,但没有正确接收,用户 设备301将该反馈的确认信息ACK/NACK,作为NACK与其他ACK/NACK合并。相应地,网络设备是知道用户设备进行合并的规则的,因此网络设备在收到至少二个ACK/NACK时,是知道哪些ACK/NACK是合并后的ACK/NACK。网络设备在收到的合并后的ACK/NACK取值为ACK时,则确定该合并后的ACK/NACK对应的合并前的各ACK/NACK取值均为ACK;在收到的合并后的ACK/NACK取值为NACK时,则确定该合并后的ACK/NACK对应的合并前的各ACK/NACK取值均为NACK。
对于D2D的场景,其他用户设备也可采用DTX的方式向用户设备301发送数据,类似地,在合并时,也可采用上述与传统的FDD系统和DSS系统类似的方式进行合并,这里不再赘述。
合并的方式有多种,比如:时间合并(Time bundling)和空间合并(Spatial bundling)。时间合并是指,对于在不同时刻接收的数据,用户设备在同一上行子帧进行反馈,将对于不同时刻接收的数据分别反馈的ACK/NACK进行合并。比如:对于FDD LTE而言,用户设备将对于不同子帧接收的下行数据分别反馈的ACK/NACK进行合并。
空间合并是指,在采用MIMO技术时,对于接收的不同的MIMO流,用户设备在同一上行子帧进行反馈,将对于不同的MIMO流上接收的数据分别反馈的ACK/NACK进行合并。比如:对于FDD LTE而言,用户设备将对于不同MIMO流接收的下行数据分别反馈的ACK/NACK进行合并,即将对于相同资源、不同码字上接收的数据分别反馈的ACK/NACK进行合并。
网络设备302按照与用户设备301预先预定的规则,或者按照网络设备302与用户设备301共同遵守的协议中规定的规则,根据接收的合并后的至少二个ACK/NACK,确定对每一个接收的信号的反馈信息。
该预设的bit数阈值可根据用户设备301的上行传输能力、传输该至少二个ACK/NACK的上行子帧中可用于传输ACK/NACK的bit数,和/或ACK/NACK的传输格式而定,也可以按照标准规定设置。可由网络设备302配置后,通过消息发送给用户设备301。
根据目前的网络设备与用户设备之间数据传输和反馈信息传输的时序,网络设备在向用户设备发送下行数据时,也会向用户设备发送控制信息,指示用户设备对下行数据进行接收,并且,网络设备向用户设备发送控制信息,或通过标准预先约定规则,指示用户设备何时反馈ACK/NACK。
类似地,对于D2D的通信方式,数据发送方也会向数据接收方发送控制信息,指示数据接收方接收数据。并且,数据发送方也可向数据接收方发送控制信息,或通过标准预先约定规则,指示接收方核实反馈ACK/NACK。
因此,网络设备302知道用户设备301在特定时刻接收特定的数据、以及在另一特定时刻需要对接收的这些特定数据进行反馈。因此网络设备302能够知道在一个上行子帧上要接收的至少二个ACK/NACK的bit数,并在该bit数大于上述预设的bit数阈值时,采用和用户设备301合并的相同的规则,对接收到的合并后的该至少二个ACK/NACK进行解读。
特别地,对于图3B所示的无线通信系统的结构,网络设备302知道另一个用户设备何时向用户设备301发送数据,也知道用户设备301何时对接收的这些数据进行反馈。比如:由网络设备302控制该另一个用户设备向用户设备302的数据的发送和确认信息的反馈。因此,对于D2D的场景,网络设备302也是知道用户设备在一个上行子帧上待发送的至少二个ACK/NACK的bit数的。
比如:网络设备302收到了M bit的ACK/NACK,确定其中的前X个bit是合并后的ACK/NACK,并根据预先知道的合并规则,知道每一个合并的ACK/NACK的bit是用于反馈哪些子帧或码字的数据的,若某个bit的ACK/NACK为ACK,则确定该bit用于反馈的多个子帧或码字的数据均被用户设备301正确接收了;若某个bit的ACK/NACK为NACK,则确定该bit代表的多个个子帧或码字均未被用户设备301正确接收,需要重新向用户设备301发送。
用户设备301在合并时,可采用包括下列可选方式在内的多种方式之一进行合并:
方式一、进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值;
方式二、进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值;
方式三、先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值;
方式四、先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
其中,上述方式三,对于空间合并,由于空间合并是在相同时间资源和频率资源上发送的不同的码字之间的合并,正是由于相同时间资源和频率资源上的干扰比较一致,从而两个码字的正确接收与否是一致的概率比较大。换言之,两个码字要么都是错误接收,反馈NACK;要么都是正确接收,反馈ACK这样,将两个码字的ACK/NACK的信息进行合并,由于合并导致正确接收的数据重传的可能性不大。
而对于时间合并,由于时间合并是不同的时间资源上的两个传输块所对应的ACK/NACK信息的合并,由于不同时间资源上的干扰不同的可能性通常大于相同时频资源上的干扰不同的可能性,因此,先进行空间合并,再进行时间合并,与先进行时间合并,再进行空间合并相比,由于合并导致正确接收的数据重传的概率更小,从而下行传输的效率更高,下行性能损失更小。
可选地,用户设备301根据在上述上行子帧上待发送的所述至少二个ACK/NACK中各ACK/NACK所对应的信号所在载波的序号,按照如下方式进行上述空间合并和时间合并:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行 空间合并和/或时间合并。
通过合并,减少了ACK/NACK占用的bit数。
由于载波序号是按照载波上信号的质量而定的,通常载波序号越小,在该载波上的通信质量越好,若按照载波序号的顺序的方式对至少二个ACK/NACK合并,则先合并用于反馈通信质量较好的载波上的信号的ACK/NACK,由于该类载波的通信质量好,信道情况稳定,因此反馈ACK的概率较大,由于合并而导致该载波上的多个信号均重传的概率较小,传输效率较高。
若按照载波序号的倒序的方式对至少二个ACK/NACK合并,则先合并用于反馈通信质量较差的载波上的下行信号的ACK/NACK,由于该类载波的通信质量差,因此反馈NACK的概率较大,虽然合并会使得该载波上的多个信号均重传的概率变大,传输效率可能会降低,但却保证了这类载波上的信号传输的可靠性,同时也能够保证至少二个ACK/NACK的传输。
在合并时,可选地,用户设备301可先对第二ACK/NACK进行空间合并和时间合并,再对第一ACK/NACK进行空间合并和时间合并。
这是由于第一ACK/NACK是对第一频段上传输的信号的接收情况进行反馈的,第一频段为用于D2D传输和/或既用于上行传输也用于下行传输的频段,第一频段上传输的各信号受到的干扰情况不一致,因此用户设备301对第一频段上传输的不同信号反馈的第一ACK/NACK通常不一致。
而第二ACK/NACK是对第二频段上传输的下行信号的接收情况进行反馈的,第二频段是用于下行传输的频段,第二频段上传输的各下行信号受到的干扰情况基本一致,与第一ACK/NACK相比,用户设备301对第二频段上传输的不同下行信号反馈的第二ACK/NACK之间一致的概率较大。
因此,先对第二ACK/NACK进行合并,再对第一ACK/NACK进行合并。
用户设备301在向网络设备302发送至少二个ACK/NACK时,可采用已有的发送格式进行发送,也可定义新的发送格式发送。
以无线通信系统30的通信制式为FDD LTE为例,用户设备301在发送 该至少二个ACK/NACK时,可采用物理上行控制信道(Physical Uplink Control CHannel,PUCCH)格式3(Format 3)进行传输,也可采用带信道选择的PUCCH格式1b(PUCCH Format 1b with channel selection)进行传输。
采用物理上行控制信道PUCCH Format 3进行传输的例子可参考后面的实施例一,采用PUCCH Format 1b with channel selection进行传输的例子可参考后面的实施例二。
可选地,上述第一ACK/NACK占用的PUCCH资源,是由PDCCH的控制信道元素(Channel Control Element,CCE)的序号或高层信令确定的。
具体地,当在上述上行子帧之前的第一下行子帧有PDCCH资源时,第一ACK/NACK占用的PUCCH资源由PDCCH的CCE的序号确定,或,
当在上述上行子帧之前的第一下行子帧没有PDCCH资源时,第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,第一下行子帧为发送数据调度指令的子帧,上述数据调度指令用于调度第一ACK/NACK反馈的数据。
以上,介绍了本发明实施例提供的无线通信系统30,下面介绍本发明实施例提供的另一种无线通信系统40。
图4为本发明实施例提供的另一种无线通信系统40的结构示意图。如图4所示,无线通信系统40包括:
用户设备401,用于确定在载波聚合时,一个上行子帧上待发送的至少二个ACK/NACK的bit数;若待发送的至少二个ACK/NACK的bit数大于预设的bit数阈值,则根据待发送的该至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对对待发送的至少二个ACK/NACK进行合并后发送给网络设备402:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并;
网络设备402,用于确定在CA时,从用户设备401发送的一个上行子帧上待接收的ACK/NACK的bit数,并从该上行子帧上接收至少二个 ACK/NACK;
若确定的从该上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,则确定从该上行子帧上收到的该至少二个ACK/NACK,是用户设备401根据在该上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在该上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并;
根据用户设备401合并时的上述方式,从收到的至少二个ACK/NACK中,获得合并前的各ACK/NACK。
其中,网络设备402执行的下述两项操作不区分先后顺序:
从用户设备401发送的一个上行子帧上待接收的ACK/NACK的bit数;
从该上行子帧上接收至少二个ACK/NACK。
采用无线通信系统40,通过合并,实现了在载波聚合的场景下,当一个上行子帧上待发送ACK/NACK的bit数较多,超过预设的bit数阈值时,ACK/NACK的发送。其中,通过合并,减少了ACK/NACK占用的bit数。并且,由于载波序号是按照载波上信号的质量而定的,通常载波序号越小,在该载波上的通信质量越好,若先对序号小的载波合并,则先合并用于反馈通信质量较好的载波上的信号的ACK/NACK,由于该类载波的通信质量好,信道情况稳定,因此反馈ACK的概率较大,由于合并而导致该载波上的多个信号均重传的概率较小,传输效率较高。
若先对序号大的载波合并,则先合并用于反馈通信质量较差的载波上的信号的ACK/NACK,由于该类载波的通信质量差,因此反馈NACK的概率较大,虽然合并会使得该载波上的多个信号均重传的概率变大,传输效率可能会降低,但却保证了这类载波上的信号传输的可靠性,也能够保证多个ACK/NACK的传输。
关于无线通信系统40的制式,用户设备401的各种用户设备形式,以及 网络设备402的在不同通信制式下的具体实现形式,均可参考无线通信系统30,这里不再赘述。
在无线通信系统40中,用户设备401可采用图1所示的传统的FDD通信方式与网络设备402通信;也可采用图2A所示的DSS的通信方式与网络设备402通信,其系统结构可参照图3A;再或者也可采用图2B所示的D2D的通信方式与网络设备402通信,其系统结果可参照图3B。
可选地,用户设备401可采用如下多种方式之一,对于待发送的至少二个ACK/NACK进行合并:
方式一、对待发送的至少二个ACK/NACK进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
方式二、对待发送的至少二个ACK/NACK进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
方式三、对待发送的至少二个ACK/NACK先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数仍大于预设的bit数阈值,则再进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,;
方式四、对待发送的至少二个ACK/NACK先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
用户设备401合并的原理,网络设备402对接收到的合并后的ACK/NACK解析的原理、以及空间合并、时间合并的原理,均可参考无线通信系统30中用户设备301和网络设备302,这里不再赘述。
可选地,用户设备401可采用PUCCH Format 3或PUCCH Format1b with channel selection发送合并后的至少二个ACK/NACK。
可选地,若采用PUCCH Format1b with channel selection发送合并后的至少二个ACK/NACK,则预设的bit数阈值为4;
合并后的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频 段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈;
其中,第一频段为用于D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
基于相同的发明构思,本发明实施例还提供了两种用户设备、网络设备和确认信息的传输方法,由于其解决技术问题的原理与本发明实施例提供的无线通信系统类似,其实施可参照上述无线通信系统的实施,重复之处不再赘述。
图6为本发明实施例提供的第一种用户设备的结构示意图。如图6所示,该用户设备包括:
处理模块601,用于按如下顺序对用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK排序,至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后,或,
至少一个第二ACK/NACK在先,至少一个第一ACK/NACK在后;
其中,第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输;第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段;
发送模块602,用于发送处理模块601排序后的至少二个ACK/NACK。
可选地,处理模块601具体用于:
按照第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序,对 至少一个第一ACK/NACK排序;
按照第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序,对至少一个第二ACK/NACK排序。
可选地,处理模块601还用于:在发送模块602发送排序后的至少二个ACK/NACK之前,
确定用户设备待发送的至少二个ACK/NACK的比特bit数;
确定确定的bit数大于预设的bit数阈值;
在对用户设备在一个上行子帧上待发送的至少二个ACK/NACK排序之前,对至少一个第一ACK/NACK合并,以及对至少一个第二ACK/NACK合并;
处理模块601具体用于:将合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK排序。
可选地,处理模块601还用于在发送排序后的至少二个ACK/NACK之前,
确定用户设备待发送的至少二个ACK/NACK的比特bit数,并确定确定的bit数大于预设的bit数阈值;
在对用户设备在一个上行子帧上待发送的至少二个ACK/NACK排序之后,将排序后的至少二个ACK/NACK中的至少一个第一ACK/NACK合并,以及将排序后的至少二个ACK/NACK中的至少一个第二ACK/NACK合并。
可选地,处理模块601具体用于:
进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值;
先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预 设的bit数阈值,则再进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,处理模块601具体用于:根据在上行子帧上待发送的至少二个ACK/NACK中各ACK/NACK所对应的信号所在载波的序号,按照如下方式进行合并:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
可选地,处理模块601具体用于:
先对至少一个第二ACK/NACK进行空间合并和/或时间合并,再对至少一个第一ACK/NACK进行空间合并和/或时间合并,或,
先对至少一个第一ACK/NACK进行空间合并和/或时间合并,再对至少一个第二ACK/NACK进行空间合并和/或时间合并。
可选地,发送模块602具体用于:
采用物理上行控制信道PUCCH格式3发送排序后的至少二个ACK/NACK。
可选地,发送模块602具体用于:
采用带信道选择的PUCCH格式1b发送排序后的至少二个ACK/NACK。
可选地,预设的bit数阈值为4;
合并后的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的 一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈。
可选地,第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
可选地,当在上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
当在上行子帧之前的第一下行子帧没有PDCCH资源时,第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,第一下行子帧为发送数据调度指令的子帧,数据调度指令用于调度第一ACK/NACK反馈的数据。
可选地,第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或,
第二频段包括一段连续的频谱资源或多段离散的频谱资源。
图7为本发明实施例提供的第二种用户设备的结构示意图。如图7所示,该用户设备包括:
处理器701,用于按如下顺序对用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK排序,至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后,或,
至少一个第二ACK/NACK在先,至少一个第一ACK/NACK在后;
其中,第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输;第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段;
发射器702,用于发送处理器701排序后的至少二个ACK/NACK。
其中,处理器701的具体实现可参考上述处理模块601,发射器702的具 体实现可参考上述模块602,重复之处不再赘述。
图8为本发明实施例提供的第三种用户设备的结构示意图。如图8所示,该用户设备包括:
处理模块801,用于确定在载波聚合CA时,用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK的比特bit数;以及
确定待发送的至少二个ACK/NACK的bit数大于预设的bit数阈值,并根据待发送的至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的至少二个ACK/NACK进行合并:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并;
发送模块802,用于发送处理模块801合并后的至少二个ACK/NACK。
可选地,处理模块801具体用于:
对用户设备待发送的至少二个ACK/NACK进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对用户设备待发送的至少二个ACK/NACK进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对用户设备待发送的至少二个ACK/NACK先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数仍大于预设的bit数阈值,则再进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对用户设备待发送的至少二个ACK/NACK先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,发送模块802具体用于:
采用物理上行控制信道PUCCH格式3发送合并后的至少二个ACK/NACK。
可选地,发送模块802具体用于:
采用带信道选择的PUCCH格式1b发送合并后的至少二个ACK/NACK。
可选地,预设的bit数阈值为4;
合并后的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈;
其中,第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
图9为本发明实施例提供的第四种用户设备的结构示意图。如图9所示,该用户设备包括:
处理器901,用于确定在载波聚合CA时,用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK的比特bit数;以及
确定待发送的至少二个ACK/NACK的bit数大于预设的bit数阈值,并根据待发送的至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的至少二个ACK/NACK进行合并:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并;
发射器902,用于发送处理器901合并后的至少二个ACK/NACK。
其中,处理器901的具体实现可参考上述处理模块801,发射器902的具体实现可参考上述模块802,重复之处不再赘述。
图10为本发明实施例提供的第一种网络设备的结构示意图。如图10所示,该网络设备包括:
接收模块1001,用于从一个上行子帧上接收至少二个确认信息 ACK/NACK;
处理模块1002,用于按如下顺序从接收模块1001接收到的至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后;或
至少一个第二ACK/NACK在先,至少一个第一ACK/NACK在后;
其中,第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输;第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
可选地,至少一个第一ACK/NACK是按照至少一个第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序排序的;
至少一个第二ACK/NACK是按照至少一个第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序排序的。
可选地,处理模块1002还用于:在接收模块1001从接收到的至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK之前,
确定在上行子帧上待接收的ACK/NACK的比特bit数;
确定上述确定的bit数大于预设的bit数阈值,并确定接收模块1001接收到的至少二个ACK/NACK中包括合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK。
可选地,合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK是按照如下方式合并的:
进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
进行时间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数大于预 设的bit数阈值,则再进行时间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值;
先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK,是发送至少二个ACK/NACK的用户设备根据在上行子帧上待发送的各ACK/NACK所对应的信号所在载波的序号,按照如下方式合并的:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
可选地,合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK,是按照如下方式进行合并的:
先对至少一个第二ACK/NACK进行空间合并和/或时间合并,再对至少一个第一ACK/NACK进行空间合并和/或时间合并;或
先对至少一个第一ACK/NACK进行空间合并和/或时间合并,再对至少一个第二ACK/NACK进行空间合并和/或时间合并。
可选地,从一个上行子帧上接收至少二个ACK/NACK,包括:
在上行子帧上接收采用PUCCH格式3发送的至少二个ACK/NACK。
可选地,从一个上行子帧上接收至少二个ACK/NACK,包括:
在上行子帧上接收采用带信道选择的PUCCH格式1b发送的至少二个ACK/NACK。
可选地,预设的bit数阈值为4;
接收模块1001从上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进 行反馈,或,
接收模块1001从上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
接收模块1001从上行子帧上接收到的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈。
可选地,第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
可选地,当在上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
当在上行子帧之前的第一下行子帧没有PDCCH资源时,第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,第一下行子帧为发送数据调度指令的子帧,数据调度指令用于调度第一ACK/NACK反馈的数据。
可选地,第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或
第二频段包括一段连续的频谱资源或多段离散的频谱资源。
图11为本发明实施例提供的第二种网络设备的结构示意图。如图11所示,该网络设备包括:
接收器1101,用于从一个上行子帧上接收至少二个确认信息ACK/NACK;
处理器1102,用于按如下顺序从接收器1101接收到的至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后,或,
至少一个第二ACK/NACK在先,至少一个第一ACK/NACK在后;
其中,第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输;第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
其中,接收器1101的具体实现可参考上述接收模块1001,处理器1102的具体实现可参考上述处理模块1002,重复之处不再赘述。
图12为本发明实施例提供的第三种网络设备的结构示意图。如图12所示,该网络设备包括:
处理模块1202,用于确定在CA时,该网络设备从一个上行子帧上待接收的确认信息ACK/NACK的比特bit数;
接收模块1201,用于从该上行子帧上接收至少二个ACK/NACK;
处理模块1202,还用于:确定从该上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,并确定从该上行子帧上收到的至少二个ACK/NACK,是发送至少二个ACK/NACK的用户设备,根据在上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并。
可选地,接收模块1201从该上行子帧上收到的至少二个ACK/NACK,是发送至少二个ACK/NACK的用户设备对在上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
进行时间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行时间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值;
先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,接收模块1201从该上行子帧上接收到的至少二个ACK/NACK是采用物理上行控制信道PUCCH格式3发送的。
可选地,接收模块1201从该上行子帧上接收的至少二个ACK/NACK是采用带信道选择的PUCCH格式1b发送的。
可选地,预设的bit数阈值为4;
接收模块1201从该上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
接收模块1201从该上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
接收模块1201从该上行子帧上接收到的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈;
其中,第一频段为用于D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
图13为本发明实施例提供的第四种网络设备的结构示意图。如图13所示,该网络设备包括:
处理器1302,用于确定在CA时,该网络设备从一个上行子帧上待接收的确认信息ACK/NACK的比特bit数;
接收器1301,用于从该上行子帧上接收至少二个ACK/NACK;
处理器1302,还用于:确定从该上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,并确定从该上行子帧上收到的至少二个ACK/NACK,是发送至少二个ACK/NACK的用户设备,根据在上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并。
其中,接收器1301的具体实现可参考上述接收模块1201,处理器1302的具体实现可参考上述处理模块1202,重复之处不再赘述。
图14为本发明实施例提供的第一种确认信息的发送方法的流程图。如图14所示,该方法包括如下步骤:
S1401:按如下顺序对在一个上行子帧上待发送的至少二个确认信息ACK/NACK排序,至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后,或,
至少一个第二ACK/NACK在先,至少一个第一ACK/NACK在后;
其中,第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输;第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段;
S1402:发送排序后的至少二个ACK/NACK。
可选地,步骤S1401中对在一个上行子帧上待发送的至少二个ACK/NACK排序还包括:
按照第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序,对 至少一个第一ACK/NACK排序;
按照第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序,对至少一个第二ACK/NACK排序。
可选地,在步骤S1402发送排序后的至少二个ACK/NACK之前,还包括:
确定待发送的至少二个ACK/NACK的比特bit数;
确定上述确定的bit数大于预设的bit数阈值;
在步骤S1401对在一个上行子帧上待发送的至少二个ACK/NACK排序之前,还包括:对至少一个第一ACK/NACK合并,以及对至少一个第二ACK/NACK合并;
步骤S1401对在一个上行子帧上待发送的至少二个ACK/NACK排序,包括:
将合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK排序。
可选地,在步骤S1402发送排序后的至少二个ACK/NACK之前,还包括:
确定待发送的至少二个ACK/NACK的比特bit数,并确定确定的bit数大于预设的bit数阈值;
在对在一个上行子帧上待发送的至少二个ACK/NACK排序之后,还包括:
将排序后的至少二个ACK/NACK中的至少一个第一ACK/NACK合并,以及将排序后的至少二个ACK/NACK中的至少一个第二ACK/NACK合并。
可选地,上述合并包括:
进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行时间合并,使得合并后的至少二个ACK/NACK的 bit数不大于预设的bit数阈值;
先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,上述合并包括:根据在上行子帧上待发送的至少二个ACK/NACK中各ACK/NACK所对应的信号所在载波的序号,按照如下方式进行合并:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
可选地,上述合并包括:
先对至少一个第二ACK/NACK进行空间合并和/或时间合并,再对至少一个第一ACK/NACK进行空间合并和/或时间合并,或,
先对至少一个第一ACK/NACK进行空间合并和/或时间合并,再对至少一个第二ACK/NACK进行空间合并和/或时间合并。
可选地,步骤S1402中发送排序后的至少二个ACK/NACK,包括:
采用物理上行控制信道PUCCH格式3发送排序后的至少二个ACK/NACK。
可选地,步骤S1402中发送排序后的至少二个ACK/NACK,包括:
采用带信道选择的PUCCH格式1b发送排序后的至少二个ACK/NACK。
可选地,预设的bit数阈值为4;
合并后的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈。
可选地,第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
可选地,当在上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
当在上行子帧之前的第一下行子帧没有PDCCH资源时,第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,第一下行子帧为发送数据调度指令的子帧,数据调度指令用于调度第一ACK/NACK反馈的数据。
可选地,第一频段包括一段连续频谱资源或多段离散的频谱资源;和/或,
第二频段包括一段连续频谱资源或多段离散的频谱资源。
图15为本发明实施例提供的第二种确认信息的发送方法的流程图。如图15所示,该方法包括:
S1501:确定在CA时,一个上行子帧上待发送的至少二个ACK/NACK的bit数;
S1502:确定待发送的至少二个ACK/NACK的bit数大于预设的bit数阈值,并根据待发送的至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的至少二个ACK/NACK进行合并:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并;
S1503:发送合并后的至少二个ACK/NACK。
可选地,步骤S1502中对待发送的至少二个ACK/NACK进行合并,包括:
对待发送的至少二个ACK/NACK进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对待发送的至少二个ACK/NACK进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对待发送的至少二个ACK/NACK先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数仍大于预设的bit数阈值,则再进行时间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
对待发送的至少二个ACK/NACK先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,使得合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,步骤S1503中发送合并后的至少二个ACK/NACK,包括:
采用物理上行控制信道PUCCH格式3发送合并后的至少二个ACK/NACK。
可选地,步骤S1503中发送合并后的至少二个ACK/NACK,包括:
采用带信道选择的PUCCH格式1b发送合并后的至少二个ACK/NACK。
可选地,预设的bit数阈值为4;
合并后的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈;
其中,第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
图16为本发明实施例提供的第三种确认信息的接收方法的流程图。如图16所示,该方法包括:
S1601:从一个上行子帧上接收至少二个ACK/NACK;
S1602:按如下顺序从接收到的至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK:
至少一个第一ACK/NACK在先,至少一个第二ACK/NACK在后,或,
至少一个第二ACK/NACK在先,至少一个第一ACK/NACK在后;
其中,第一ACK/NACK用于对第一信号的接收情况进行反馈,第一信号在第一频段上传输;第二ACK/NACK用于对第二信号的接收情况进行反馈,第二信号在第二频段上传输;第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
可选地,至少一个第一ACK/NACK是按照至少一个第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序排序的;
至少一个第二ACK/NACK是按照至少一个第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序排序的。
可选地,在步骤S1602从接收到的至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK之前,还包括:
确定在上行子帧上待接收的ACK/NACK的比特bit数;
确定上述确定的bit数大于预设的bit数阈值,并确定接收到的至少二个ACK/NACK中包括合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK。
可选地,合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK是按照如下方式合并的:
进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
进行时间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行时间合并,合并后的至少二个ACK/NACK的bit 数不大于预设的bit数阈值;
先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK,是发送至少二个ACK/NACK的用户设备根据在上行子帧上待发送的各ACK/NACK所对应的信号所在载波的序号,按照如下方式合并的:
先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并,或,
先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
可选地,合并后的至少一个第一ACK/NACK和合并后的至少一个第二ACK/NACK,是按照如下方式进行合并的:
先对至少一个第二ACK/NACK进行空间合并和/或时间合并,再对至少一个第一ACK/NACK进行空间合并和/或时间合并,或,
先对至少一个第一ACK/NACK进行空间合并和/或时间合并,再对至少一个第二ACK/NACK进行空间合并和/或时间合并。
可选地,步骤S1601从一个上行子帧上接收至少二个ACK/NACK,包括:
在上行子帧上接收采用PUCCH格式3发送的至少二个ACK/NACK。
可选地,步骤S1601从一个上行子帧上接收至少二个ACK/NACK,包括:
在上行子帧上接收采用带信道选择的PUCCH格式1b发送的至少二个ACK/NACK。
可选地,预设的bit数阈值为4;
从上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
从上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit分别用 于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
从上行子帧上接收到的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈。
可选地,第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
可选地,当在上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
当在上行子帧之前的第一下行子帧没有PDCCH资源时,第一ACK/NACK占用的PUCCH资源由高层信令确定;
其中,第一下行子帧为发送数据调度指令的子帧,数据调度指令用于调度第一ACK/NACK反馈的数据。
可选地,第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或
第二频段包括一段连续的频谱资源或多段离散的频谱资源。
图17为本发明实施例提供的第四种确认信息的接收方法的流程图。如图17所示,该方法包括如下步骤:
S1701:确定在CA时,从一个上行子帧上待接收的ACK/NACK的bit数;
S1702:从该上行子帧上接收至少二个ACK/NACK;
S1703:确定从该上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,并确定从该上行子帧上收到的至少二个ACK/NACK,是发送至少二个ACK/NACK的用户设备,根据在该上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在该上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
先对序号小的载波进行合并,再对序号大的载波进行合并,或,
先对序号大的载波进行合并,再对序号小的载波进行合并。
其中,可先执行步骤S1701,后执行步骤S1702;或先执行步骤S1702,后执行步骤S1701。
可选地,步骤S1702中从该上行子帧上收到的至少二个ACK/NACK,是发送至少二个ACK/NACK的用户设备对在该上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
进行时间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值,或,
先进行空间合并,若空间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行时间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值;
先进行时间合并,若时间合并后的至少二个ACK/NACK的bit数大于预设的bit数阈值,则再进行空间合并,合并后的至少二个ACK/NACK的bit数不大于预设的bit数阈值。
可选地,步骤S1702中从该上行子帧上接收到的至少二个ACK/NACK是采用物理上行控制信道PUCCH格式3发送的。
可选地,步骤S1702中从该上行子帧上接收的至少二个ACK/NACK是采用带信道选择的PUCCH格式1b发送的。
可选地,预设的bit数阈值为4;
从该上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
从该上行子帧上接收到的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外 的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
从该上行子帧上接收到的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈;
其中,第一频段为用于D2D传输的频段和/或既可用于上行传输也用于下行传输的频段;第二频段为用于下行传输的频段。
【实施例一】
实施例一中,用户设备采用PUCCH Format 3传输ACK/NACK。
根据目前的第三代合作伙伴计划(3rd Generation Partener Project,3GPP)技术规范(Technical Specification,TS)36.213V10定义,在采用PUCCH format3传输ACK/NACK时,在一个上行子帧中,用户设备最多可传输20bit的ACK/NACK,则上述预设的bit数阈值为20。
目前在载波聚合时,最多支持同时调度5组载波。根据业务量需求,在采用DSS技术时,可在5组载波中的上行频段传输下行信号。可借鉴时分双工系统(Time Division Duplex,TDD)的上下行子帧配比,将部分上行频段的子帧配置为用于下行传输。当然,也可以采用其他的方式将上行资源配置为用于下行传输。
表1示出了目前TDD系统的一种ACK/NACK反馈的时序。表格中的数字不带括号的数字表示反馈的是第几子帧的确认信息;括号内的数字表示需要反馈了几个子帧的确认信息。
表1
Figure PCTCN2015072020-appb-000001
Figure PCTCN2015072020-appb-000002
在采用DSS通信方式时,在上行频段采用TDD系统中的传输方式,则计算出的各种子帧配比情况下可用于反馈ACK/NACK的上行子帧数,以及需要反馈的下行子帧数如下所示。这里,为了简单示意,各个上行频段均采用相同的子帧配比。其中,U/D表示上行子帧数/下行子帧数;Dlband表示所有子帧均为下行,所以子帧数为10;
子帧配比0:U/D=6:4,U/(D+Dlband)=6/(4+10)=6:14,5个载波对应下行子帧70个;
子帧配比1:U/D=4:6,U/(D+Dlband)=4/(6+10)=4:16,5个载波对应下行子帧80个;
子帧配比2:U/D=2:8,U/(D+Dlband)=2/(8+10)=2:18,5个载波对应下行子帧90个;
子帧配比3:U/D=3:7,U/(D+Dlband)=3/(7+10)=3:17,5个载波对应下行子帧85个;
子帧配比4:U/D=2:8,U/(D+Dlband)=2/(8+10)=2:18,5个载波对应下行子帧90个;
子帧配比5:U/D=1:9,U/(D+Dlband)=1/(9+10)=1:19,5个载波对应下行子帧95个;
子帧配比6:U/D=5:5,U/(D+Dlband)=5/(4+15)=5:15,5个载波对应下行子帧75个。
按照目前的标准定义,在采用PUCCH format 3传输ACK/NACK时,一个上行子帧上用户设备最多可传输20bit的ACK/NACK,而根据上面的计算,即使,每个子帧仅反馈1bit的ACK/NACK,也存在一个上行子帧上待发送的ACK/NACK的bit数超过20bit的情况,比如:5载波时,采用子帧配比2、3、4或5时。
类似地,对于采用D2D传输的方式,也存在用户设备在一个上行子帧上待发送的ACK/NACK的bit数超过20bit的情况。
可选地,实施例一中,用户设备可按照下述方式发送至少二个ACK/NACK:
按照如下顺序进行排序,将排序后的至少二个ACK/NACK发送给网络设备:
第二ACK/NACK在先,第一ACK/NACK在后;
第一ACK/NACK中,根据第一ACK/NACK所对应的信号所在载波的序号进行排序,比如:先对序号小的载波进行合并,再对序号大的载波进行合并,或,先对序号大的载波进行合并,再对序号小的载波进行合并按照载波序号进行排序;第二ACK/NACK中,同样地,也可按照上述方式根据第二ACK/NACK所对应的信号所在载波的序号进行排序。
若一个上行子帧上待发送的ACK/NACK的bit数超过20bit,则可按照如下规则中的一个或多个进行合并:
规则1、先进行空间合并,再进行时间合并;
规则2、先对第二ACK/NACK进行合并,在对第一ACK/NACK进行合并;
规则3、先对序号大的载波进行合并,再对序号小的载波进行合并。
比如:若一个上行子帧上待发送的ACK/NACK的bit数超过20bit,则先进行下行码字间的空间合并。
其中,第一种可选的实现方式是:从序号最大的下行载波(即上述第二频段上的载波)开始合并,主载波反馈信息最后进行合并。
其中,第二种可选的实现方式是:先对第二ACK/NACK进行空间合并,若合并后的ACK/NACK的bit数不大于20bit,则不再进行空间合并;若合并后的ACK/NACK的bit数仍然大于20bit,则再对第一ACK/NACK进行空间合并。
若通过上述两种可选的实现方式之一进行空间合并后的ACK/NACK的bit数仍超过20bit,则再进行时间合并。
时间合并的可选的实现方式与上述空间合并的可选的实现方式类似。
其中,第一种可选的实现方式是:从序号最大的下行载波(即上述第二频段上的载波)开始进行时间合并,主载波反馈信息最后进行合并,直至合并后的ACK/NACK的bit数不大于20bit为止。
其中,第二种可选的实现方式是:先对第二ACK/NACK进行时间合并,如果合并后的ACK/NACK的bit数不大于20bit,则不再进行时间合并,如果合并后的ACK/NACK的bit数仍然大于20bit则再对第一ACK/NACK进行时间合并。
因为5组载波共计10个上下频段,所以合并的最终结果可保证合并后的ACK/NACK的bit数不大于20bit。
比如:用户设备同时使用8个载波进行数据传输,这8个载波的序号分别为1、2、3、4、5、6、7、8。用户设备在一个上行子帧上待发送的ACK/NACK中包括对该8个载波上传输的数据的反馈信息,假设每个载波MIMO空间流的数量为2,且每个载波的TDD配置为如图5所示的TDD配置2。
图5中,“D”表示下行子帧,“U”表示上行子帧,“S”表示特殊子帧。其中S子帧也可用于下行数据传输,每个子帧上方的编号表示该子帧的子帧号。
若一个无线帧中的上述8个子帧的确认ACK/NACK均在上述上行子帧上发送,则对于上述载波1~8,每个载波在该上行子帧上待发送的ACK/NACK的bit数为8bit,一共8个载波,则在该上行子帧上待发送的ACK/NACK的bit数为64bit,超过了预设的bit数阈值20bit。
对于同一个载波上的不同的码字,每个码字反馈1bit的ACK/NACK,这两个码字对应的ACK/NACK反馈的数据传输所占用的时频资源相同,仅码字不同。在合并时,首先进行空间合并,在进行空间合并时,按照载波的序号的顺序进行合并。
首先,针对序号为1的载波(简称“载波1”)合并,将8bit的ACK/NACK中,每两个反馈相同时频资源、不同码字上的数据传输的ACK/NACK进行合并,则对于载波1,合并后的ACK/NACK的bit数为4bit,合并后在该上行子帧上还需要传输4+8+8+8+8+8+8+8=60bit的ACK/NACK,仍大于20bit;
则再对载波2合并,规则同上,合并后该上行子帧上还需要传输4+4+8+8+8+8+8+8=56bit的ACK/NACK,仍大于20bit;
继续合并,在按照上述规则对8个载波均进行空间合并后,该上行子帧上需要传输4+4+4+4+4+4+4+4=32bit的ACK/NACK,仍大于20bit。
接下来,再进行时间合并。首先,对载波1进行时间合并。由于时间合并后,每个载波对应的在上述上行子帧上待发送的ACK/NACK的bit数为4bit,则可以对这4个bit的ACK/NACK进行时间合并。
对于载波1,合并后的ACK/NACK的比特数可以为1bit,也可以为2bit。若合并后的ACK/NACK的bit数为1bit,则在4个ACK/NACK均为ACK时,合并后的ACK/NACK才为ACK;可选地,在4个ACK/NACK中有一个或多个是NACK或DTX时,合并后的ACK/NACK为NACK。
若合并后的ACK/NACK的bit数为2bit,则“00”可代表至少有一个子帧的ACK/NACK对应为NACK/DTX;“01”可代表第一个ACK/NACK为ACK;“10”可代表第一个和第二个ACK/NACK均为ACK;“11”可代表第一个、第二个和第三个ACK/NACK均为ACK。这里,上述仅为2bit的状态00/01/10/11代表的含义的一种举例,在实际实现时,可根据情况重新定义。
若对于载波1,合并后ACK/NACK的bit数为1bit,则该上行子帧上需要传输1+4+4+4+4+4+4+4=29bit的ACK/NACK,仍大于20bit。
然后,对载波2进行时间合并,规则同载波1的时间合并,合并后该上 行子帧上需要传输1+1+4+4+4+4+4+4=26bit t的ACK/NACK,仍然大于20bits,那么再对载波3进行时间合并,规则同载波1的时间合并,合并后该上行子帧上需要传输1+1+1+4+4+4+4+4=23bit,仍然大于20bits,那么再对载波4进行时间合并,规则同载波1的时间合并,合并后该上行子帧上需要传输1+1+1+1+4+4+4+4=20bit,不大于20bit,则不再对载波6、载波7、8进行时间合并,合并结束。
【实施例二】
实施例二中,用户设备采用PUCCH Format 1b with channel selection进行传输。
根据目前的3GPP TS 36.213物理层过程版本号为V10定义,在采用PUCCH Format 1b with channel selection传输ACK/NACK时,在一个上行子帧中,用户设备最多可传输4bit的ACK/NACK,则上述预设的bit数阈值为4。
实施例二中,提供以下四种可选方案:
用户设备301对待发送的至少二个ACK/NACK进行合并,使得:
合并后的至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中2bit分别用于对第一频段上的两个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的两个载波发送的第二信号的接收情况进行反馈,或,
合并后的至少二个ACK/NACK占用4bit,其中1bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的3bit分别用于对第二频段上的三个载波发送的第二信号的接收情况进行反馈。
上述合并时,可先进行空间合并,再进行时间合并。
综上,本发明实施例提供了一种用户设备、网络设备,以及确认信息的传输方法。
一方面,用户设备在发送至少二个ACK/NACK时,发送排序后的该至少 二个ACK/NACK,这样,诸如基站的网络设备在收到用户设备发送的至少二个ACK/NACK时,按照与用户设备发送时排序的相同顺序,即可确定哪些ACK/NACK是用于反馈在非传统的通信方式下传输的信号的ACK/NACK,哪些ACK/NACK是用于反馈在传统的通信方式下传输的信号。因此提供了一种用户设备既采用传统的通信方式,也采用非传统的通信方式通信的情况下,确认信息ACK/NACK的反馈机制。
另一方面,用户设备对在一个上行子帧上待发送的至少二个ACK/NACK进行合并,减少了ACK/NACK占用的bit数。
并且,由于载波序号是按照载波上信号的质量而定的,通常载波序号越小,在该载波上的通信质量越好,若先对序号小的载波合并,则先合并用于反馈通信质量较好的载波上的信号的ACK/NACK,由于该类载波的通信质量好,信道情况稳定,因此反馈ACK的概率较大,由于合并而导致该载波上的多个信号均重传的概率较小,传输效率较高。
若先对序号大的载波合并,则先合并用于反馈通信质量较差的载波上的信号的ACK/NACK,由于该类载波的通信质量差,因此反馈NACK的概率较大,虽然合并会使得该载波上的多个信号均重传的概率变大,传输效率可能会降低,但却保证了这类载波上的信号传输的可靠性,也能够保证多个ACK/NACK的传输。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (70)

  1. 一种用户设备,其特征在于,包括:
    处理模块,用于按如下顺序对所述用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK排序,所述至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK:
    所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在后,或,
    所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
    其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段;
    发送模块,用于发送所述处理模块排序后的所述至少二个ACK/NACK。
  2. 如权利要求1所述的用户设备,其特征在于,所述处理模块具体用于:
    按照第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序,对所述至少一个第一ACK/NACK排序;
    按照第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序,对所述至少一个第二ACK/NACK排序。
  3. 如权利要求1或2所述的用户设备,其特征在于,所述处理模块还用于:在所述发送模块发送排序后的所述至少二个ACK/NACK之前,
    确定所述用户设备待发送的所述至少二个ACK/NACK的比特bit数;
    确定所述确定的bit数大于预设的bit数阈值;
    在对所述用户设备在一个上行子帧上待发送的至少二个ACK/NACK排序之前,对所述至少一个第一ACK/NACK合并,以及对所述至少一个第二 ACK/NACK合并;
    所述处理模块具体用于:将合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK排序。
  4. 如权利要求1或2所述的用户设备,其特征在于,所述处理模块还用于在所述发送排序后的所述至少二个ACK/NACK之前,
    确定所述用户设备待发送的所述至少二个ACK/NACK的比特bit数,并确定所述确定的bit数大于预设的bit数阈值;
    在对所述用户设备在一个上行子帧上待发送的至少二个ACK/NACK排序之后,将排序后的所述至少二个ACK/NACK中的至少一个第一ACK/NACK合并,以及将排序后的所述至少二个ACK/NACK中的至少一个第二ACK/NACK合并。
  5. 如权利要求3或4所述的用户设备,其特征在于,所述处理模块具体用于:
    进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;
    先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  6. 如权利要求5所述的用户设备,其特征在于,所述处理模块具体用于:根据在所述上行子帧上待发送的所述至少二个ACK/NACK中各ACK/NACK所对应的信号所在载波的序号,按照如下方式进行合并:
    先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并;或者
    先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
  7. 如权利要求5或6所述的用户设备,其特征在于,所述处理模块具体用于:
    先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并;或
    先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
  8. 如权利要求1~7任一项所述的用户设备,其特征在于,所述发送模块具体用于:
    采用物理上行控制信道PUCCH格式3发送排序后的所述至少二个ACK/NACK。
  9. 如权利要求3~7任一项所述的用户设备,其特征在于,所述发送模块具体用于:
    采用带信道选择的PUCCH格式1b发送排序后的所述至少二个ACK/NACK。
  10. 如权利要求9所述的用户设备,其特征在于,所述预设的bit数阈值为4;
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反 馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
  11. 如权利要求1~10任一项所述的用户设备,其特征在于,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
  12. 如权利要求11所述的用户设备,其特征在于,
    当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定;或
    当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
    其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
  13. 如权利要求1~12任一项所述的用户设备,其特征在于,
    所述第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或,
    所述第二频段包括一段连续的频谱资源或多段离散的频谱资源。
  14. 一种用户设备,其特征在于,包括:
    处理模块,用于确定在载波聚合CA时,所述用户设备在一个上行子帧上待发送的至少二个确认信息ACK/NACK的比特bit数;以及
    确定所述待发送的所述至少二个ACK/NACK的bit数大于预设的bit数阈值,并根据待发送的所述至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的所述至少二个ACK/NACK进行合并:
    先对序号小的载波进行合并,再对序号大的载波进行合并,或,
    先对序号大的载波进行合并,再对序号小的载波进行合并;
    发送模块,用于发送所述处理模块合并后的所述至少二个ACK/NACK。
  15. 如权利要求14所述的用户设备,其特征在于,所述处理模块具体用于:
    对所述用户设备待发送的所述至少二个ACK/NACK进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    对所述用户设备待发送的所述至少二个ACK/NACK进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于预设的bit数阈值;或者
    对所述用户设备待发送的所述至少二个ACK/NACK先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数仍大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    对所述用户设备待发送的所述至少二个ACK/NACK先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  16. 如权利要求14或15所述的用户设备,其特征在于,所述发送模块具体用于:
    采用物理上行控制信道PUCCH格式3发送合并后的所述至少二个ACK/NACK。
  17. 如权利要求14或15所述的用户设备,其特征在于,所述发送模块具体用于:
    采用带信道选择的PUCCH格式1b发送合并后的所述至少二个ACK/NACK。
  18. 如权利要求17所述的用户设备,其特征在于,所述预设的bit数阈值为4;
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
    其中,所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
  19. 一种网络设备,其特征在于,包括:
    接收模块,用于从一个上行子帧上接收至少二个确认信息ACK/NACK;
    处理模块,用于按如下顺序从所述接收模块接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK:
    所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在后,或,
    所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
    其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;所述第一频段为用于设备到设 备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
  20. 如权利要求19所述的网络设备,其特征在于,
    所述至少一个第一ACK/NACK是按照所述至少一个第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序排序的;
    所述至少一个第二ACK/NACK是按照所述至少一个第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序排序的。
  21. 如权利要求19或20所述的网络设备,其特征在于,
    所述处理模块还用于:在所述接收模块从接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK之前,
    确定在所述上行子帧上待接收的ACK/NACK的比特bit数;
    确定所述确定的bit数大于预设的bit数阈值,并确定所述接收模块接收到的所述至少二个ACK/NACK中包括合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK。
  22. 如权利要求21所述的网络设备,其特征在于,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK是按照如下方式合并的:
    进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;
    先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于 所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  23. 如权利要求22所述的网络设备,其特征在于,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是发送所述至少二个ACK/NACK的用户设备根据在所述上行子帧上待发送的各ACK/NACK所对应的信号所在载波的序号,按照如下方式合并的:
    先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并;或者
    先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
  24. 如权利要求22或23所述的网络设备,其特征在于,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是按照如下方式进行合并的:
    先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并;或
    先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
  25. 如权利要求19~24任一项所述的网络设备,其特征在于,从一个上行子帧上接收至少二个ACK/NACK,包括:
    在所述上行子帧上接收采用PUCCH格式3发送的所述至少二个ACK/NACK。
  26. 如权利要求21~24任一项所述的网络设备,其特征在于,从一个上行子帧上接收至少二个ACK/NACK,包括:
    在所述上行子帧上接收采用带信道选择的PUCCH格式1b发送的所述至少二个ACK/NACK。
  27. 如权利要求26所述的网络设备,其特征在于,所述预设的bit数阈值 为4;
    所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈;或
    所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈;或
    所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
  28. 如权利要求19~27任一项所述的网络设备,其特征在于,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
  29. 如权利要求28所述的网络设备,其特征在于,
    当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
    当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
    其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
  30. 如权利要求19~29任一项所述的网络设备,其特征在于,
    所述第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或
    所述第二频段包括一段连续的频谱资源或多段离散的频谱资源。
  31. 一种网络设备,其特征在于,包括:
    处理模块,用于确定在载波聚合CA时,从一个上行子帧上待接收的确认信息ACK/NACK的比特bit数;
    接收模块,用于从所述上行子帧上接收至少二个ACK/NACK;
    所述处理模块,还用于:确定从所述上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,并确定从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备,根据在所述上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在所述上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
    先对序号小的载波进行合并,再对序号大的载波进行合并;或者
    先对序号大的载波进行合并,再对序号小的载波进行合并。
  32. 如权利要求31所述的网络设备,其特征在于,所述接收模块从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备对在所述上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
    进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;
    先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  33. 如权利要求31或32所述的网络设备,其特征在于,所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK是采用物理上行控制信道PUCCH格式3发送的。
  34. 如权利要求31或32所述的网络设备,其特征在于,所述接收模块从所述上行子帧上接收的所述至少二个ACK/NACK是采用带信道选择的PUCCH格式1b发送的。
  35. 如权利要求34所述的网络设备,其特征在于,所述预设的bit数阈值为4;
    所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈;或
    所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈;或
    所述接收模块从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
    其中,所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
  36. 一种确认信息的发送方法,其特征在于,包括:
    按如下顺序对在一个上行子帧上待发送的至少二个确认信息ACK/NACK排序,所述至少二个ACK/NACK包括至少一个第一ACK/NACK和至少一个第二ACK/NACK:
    所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在后,或,
    所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
    其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段;
    发送排序后的所述至少二个ACK/NACK。
  37. 如权利要求36所述的方法,其特征在于,所述对在一个上行子帧上待发送的至少二个ACK/NACK排序还包括:
    按照第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序,对所述至少一个第一ACK/NACK排序;
    按照第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序,对所述至少一个第二ACK/NACK排序。
  38. 如权利要求36或37所述的方法,其特征在于,在所述发送排序后的所述至少二个ACK/NACK之前,还包括:
    确定待发送的所述至少二个ACK/NACK的比特bit数;
    确定所述确定的bit数大于预设的bit数阈值;
    在对在一个上行子帧上待发送的至少二个ACK/NACK排序之前,还包括:对所述至少一个第一ACK/NACK合并,以及对所述至少一个第二ACK/NACK合并;
    所述对在一个上行子帧上待发送的所述至少二个ACK/NACK排序,包括:
    将合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK排序。
  39. 如权利要求36或37所述的方法,其特征在于,在所述发送排序后的所述至少二个ACK/NACK之前,还包括:
    确定待发送的所述至少二个ACK/NACK的比特bit数,并确定所述确定的bit数大于预设的bit数阈值;
    所述在对在一个上行子帧上待发送的至少二个ACK/NACK排序之后,还包括:
    将排序后的所述至少二个ACK/NACK中的至少一个第一ACK/NACK合并,以及将排序后的所述至少二个ACK/NACK中的至少一个第二ACK/NACK合并。
  40. 如权利要求38或39所述的方法,其特征在于,所述合并包括:
    进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;
    先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  41. 如权利要求40所述的方法,其特征在于,所述合并包括:根据在所述上行子帧上待发送的所述至少二个ACK/NACK中各ACK/NACK所对应的信号所在载波的序号,按照如下方式进行合并:
    先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并;或者
    先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空 间合并和/或时间合并。
  42. 如权利要求40或41所述的方法,其特征在于,所述合并包括:
    先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并;或
    先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
  43. 如权利要求36~42任一项所述的方法,其特征在于,发送排序后的所述至少二个ACK/NACK,包括:
    采用物理上行控制信道PUCCH格式3发送排序后的所述至少二个ACK/NACK。
  44. 如权利要求38~42任一项所述的方法,其特征在于,发送排序后的所述至少二个ACK/NACK,包括:
    采用带信道选择的PUCCH格式1b发送排序后的所述至少二个ACK/NACK。
  45. 如权利要求44所述的方法,其特征在于,所述预设的bit数阈值为4;
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
  46. 如权利要求36~45任一项所述的方法,其特征在于,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
  47. 如权利要求46所述的方法,其特征在于,
    当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
    当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
    其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
  48. 如权利要求36~47任一项所述的方法,其特征在于,
    所述第一频段包括一段连续频谱资源或多段离散的频谱资源;和/或,
    所述第二频段包括一段连续频谱资源或多段离散的频谱资源。
  49. 一种确认信息的发送方法,其特征在于,包括:
    确定在载波聚合CA时,一个上行子帧上待发送的至少二个确认信息ACK/NACK的比特bit数;
    确定所述待发送的所述至少二个ACK/NACK的bit数大于预设的bit数阈值,并根据待发送的所述至少二个ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,按照如下方式对待发送的所述至少二个ACK/NACK进行合并:
    先对序号小的载波进行合并,再对序号大的载波进行合并,或,
    先对序号大的载波进行合并,再对序号小的载波进行合并;
    发送合并后的所述至少二个ACK/NACK。
  50. 如权利要求49所述的方法,其特征在于,对待发送的所述至少二个ACK/NACK进行合并,包括:
    对待发送的所述至少二个ACK/NACK进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    对待发送的所述至少二个ACK/NACK进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于预设的bit数阈值;或者
    对待发送的所述至少二个ACK/NACK先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数仍大于所述预设的bit数阈值,则再进行时间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    对待发送的所述至少二个ACK/NACK先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,使得合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  51. 如权利要求49或50所述的方法,其特征在于,发送合并后的所述至少二个ACK/NACK,包括:
    采用物理上行控制信道PUCCH格式3发送合并后的所述至少二个ACK/NACK。
  52. 如权利要求49或50所述的方法,其特征在于,发送合并后的所述至少二个ACK/NACK,包括:
    采用带信道选择的PUCCH格式1b发送合并后的所述至少二个ACK/NACK。
  53. 如权利要求52所述的方法,其特征在于,所述预设的bit数阈值为4;
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit用于对第一频段上的一个载波上发送的第一信号的接收情况进行反馈,另外的2bit用于对第二频段上的一个载波发送的第二信号的接收情况进行反馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的 2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈;或
    合并后的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
    其中,所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
  54. 一种确认信息的接收方法,其特征在于,包括:
    从一个上行子帧上接收至少二个确认信息ACK/NACK;
    按如下顺序从接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK:
    所述至少一个第一ACK/NACK在先,所述至少一个第二ACK/NACK在后,或,
    所述至少一个第二ACK/NACK在先,所述至少一个第一ACK/NACK在后;
    其中,所述第一ACK/NACK用于对第一信号的接收情况进行反馈,所述第一信号在第一频段上传输;所述第二ACK/NACK用于对第二信号的接收情况进行反馈,所述第二信号在第二频段上传输;所述第一频段为用于设备到设备D2D传输的频段和/或既用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
  55. 如权利要求54所述的方法,其特征在于,
    所述至少一个第一ACK/NACK是按照所述至少一个第一ACK/NACK对应的第一信号所在载波的序号的顺序或倒序排序的;
    所述至少一个第二ACK/NACK是按照所述至少一个第二ACK/NACK对应的第二信号所在载波的序号的顺序或倒序排序的。
  56. 如权利要求54或55所述的方法,其特征在于,
    在从接收到的所述至少二个ACK/NACK中获取至少一个第一ACK/NACK和至少一个第二ACK/NACK之前,还包括:
    确定在所述上行子帧上待接收的ACK/NACK的比特bit数;
    确定所述确定的bit数大于预设的bit数阈值,并确定接收到的所述至少二个ACK/NACK中包括合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK。
  57. 如权利要求56所述的方法,其特征在于,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK是按照如下方式合并的:
    进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;
    先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  58. 如权利要求57所述的方法,其特征在于,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是发送所述至少二个ACK/NACK的用户设备根据在所述上行子帧上待发送的各ACK/NACK所对应的信号所在载波的序号,按照如下方式合并的:
    先对序号小的载波进行空间合并和/或时间合并,再对序号大的载波进行空间合并和/或时间合并;或者
    先对序号大的载波进行空间合并和/或时间合并,再对序号小的载波进行空间合并和/或时间合并。
  59. 如权利要求57或58所述的方法,其特征在于,合并后的所述至少一个第一ACK/NACK和合并后的所述至少一个第二ACK/NACK,是按照如下方式进行合并的:
    先对所述至少一个第二ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第一ACK/NACK进行空间合并和/或时间合并;或
    先对所述至少一个第一ACK/NACK进行空间合并和/或时间合并,再对所述至少一个第二ACK/NACK进行空间合并和/或时间合并。
  60. 如权利要求54~59任一项所述的方法,其特征在于,从一个上行子帧上接收至少二个ACK/NACK,包括:
    在所述上行子帧上接收采用PUCCH格式3发送的所述至少二个ACK/NACK。
  61. 如权利要求56~59任一项所述的方法,其特征在于,从一个上行子帧上接收至少二个ACK/NACK,包括:
    在所述上行子帧上接收采用带信道选择的PUCCH格式1b发送的所述至少二个ACK/NACK。
  62. 如权利要求61所述的方法,其特征在于,所述预设的bit数阈值为4;
    从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈;或
    从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈;或
    从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈。
  63. 如权利要求54~62任一项所述的方法,其特征在于,所述第一ACK/NACK占用的PUCCH资源,是由物理下行控制信道PDCCH的控制信道元素CCE的序号或高层信令确定的。
  64. 如权利要求63所述的方法,其特征在于,
    当在所述上行子帧之前的第一下行子帧有物理下行控制信道PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由PDCCH的控制信道元素CCE的序号确定,或,
    当在所述上行子帧之前的所述第一下行子帧没有PDCCH资源时,所述第一ACK/NACK占用的PUCCH资源由高层信令确定;
    其中,所述第一下行子帧为发送数据调度指令的子帧,所述数据调度指令用于调度所述第一ACK/NACK反馈的数据。
  65. 如权利要求54~64任一项所述的方法,其特征在于,
    所述第一频段包括一段连续的频谱资源或多段离散的频谱资源;和/或
    所述第二频段包括一段连续的频谱资源或多段离散的频谱资源。
  66. 一种确认信息的接收方法,其特征在于,包括:
    确定在载波聚合CA时,从一个上行子帧上待接收的确认信息ACK/NACK的比特bit数;
    从所述上行子帧上接收至少二个ACK/NACK;
    确定从所述上行子帧上待接收的ACK/NACK的bit数大于预设的bit数阈值,并确定从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备,根据在所述上行子帧上待发送的ACK/NACK中的各ACK/NACK所对应的信号所在载波的序号,对在所述上行 子帧上待发送的ACK/NACK按照如下方式合并生成的:
    先对序号小的载波进行合并,再对序号大的载波进行合并;或者
    先对序号大的载波进行合并,再对序号小的载波进行合并。
  67. 如权利要求66所述的方法,其特征在于,从所述上行子帧上收到的所述至少二个ACK/NACK,是发送所述至少二个ACK/NACK的用户设备对在所述上行子帧上待发送的ACK/NACK按照如下方式合并生成的:
    进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;或者
    先进行空间合并,若空间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行时间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值;
    先进行时间合并,若时间合并后的所述至少二个ACK/NACK的bit数大于所述预设的bit数阈值,则再进行空间合并,合并后的所述至少二个ACK/NACK的bit数不大于所述预设的bit数阈值。
  68. 如权利要求66或67所述的方法,其特征在于,从所述上行子帧上接收到的所述至少二个ACK/NACK是采用物理上行控制信道PUCCH格式3发送的。
  69. 如权利要求66或67所述的方法,其特征在于,从所述上行子帧上接收的所述至少二个ACK/NACK是采用带信道选择的PUCCH格式1b发送的。
  70. 如权利要求69所述的方法,其特征在于,所述预设的bit数阈值为4;
    从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的一个载波发送的所述第二信号的接收情况进行反馈;或
    从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中2bit分别用于对所述第一频段上的两个载波上发送的所述第一信号的接收情况进行反馈,另外的2bit用于对所述第二频段上的两个载波发送的所述第二信号的接收情况进行反馈;或
    从所述上行子帧上接收到的所述至少二个ACK/NACK占用4bit,其中1bit用于对所述第一频段上的一个载波上发送的所述第一信号的接收情况进行反馈,另外的3bit分别用于对所述第二频段上的三个载波发送的所述第二信号的接收情况进行反馈;
    其中,所述第一频段为用于设备到设备D2D传输的频段和/或既可用于上行传输也用于下行传输的频段;所述第二频段为用于下行传输的频段。
PCT/CN2015/072020 2015-01-30 2015-01-30 一种用户设备、网络设备,以及确认信息的传输方法 WO2016119245A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/072020 WO2016119245A1 (zh) 2015-01-30 2015-01-30 一种用户设备、网络设备,以及确认信息的传输方法
JP2017540582A JP6537205B2 (ja) 2015-01-30 2015-01-30 ユーザ機器、ネットワークデバイス、および確認応答情報伝送方法
EP15879453.7A EP3244562B1 (en) 2015-01-30 2015-01-30 User equipment and transmission method for acknowledgement information
CN201580002459.8A CN106063176B (zh) 2015-01-30 2015-01-30 一种用户设备、网络设备,以及确认信息的传输方法
US15/663,013 US20170331594A1 (en) 2015-01-30 2017-07-28 User equipment, network device, and acknowledgement information transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072020 WO2016119245A1 (zh) 2015-01-30 2015-01-30 一种用户设备、网络设备,以及确认信息的传输方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/663,013 Continuation US20170331594A1 (en) 2015-01-30 2017-07-28 User equipment, network device, and acknowledgement information transmission method

Publications (1)

Publication Number Publication Date
WO2016119245A1 true WO2016119245A1 (zh) 2016-08-04

Family

ID=56542239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072020 WO2016119245A1 (zh) 2015-01-30 2015-01-30 一种用户设备、网络设备,以及确认信息的传输方法

Country Status (5)

Country Link
US (1) US20170331594A1 (zh)
EP (1) EP3244562B1 (zh)
JP (1) JP6537205B2 (zh)
CN (1) CN106063176B (zh)
WO (1) WO2016119245A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056308A1 (zh) * 2019-09-26 2021-04-01 华为技术有限公司 一种处理方法及网络设备
EP3711453A4 (en) * 2017-11-14 2021-09-01 Telefonaktiebolaget LM Ericsson (Publ) METHODS AND DEVICES FOR GROUPING ACKNOWLEDGMENT / NEGATIVE ACKNOWLEDGMENT OF AUTOMATIC HYBRID REPEAT REQUEST

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180131640A1 (en) * 2016-11-07 2018-05-10 Qualcomm Incorporated Techniques for encoding and decoding multiple acknowledgement signals in new radio
CN109391406A (zh) * 2017-08-10 2019-02-26 株式会社Ntt都科摩 数据发送方法、确认信号发送方法、用户设备和基站
CN114422089A (zh) * 2017-11-10 2022-04-29 华为技术有限公司 一种应答信息的传输方法、通信设备和网络设备
CN110582067B (zh) * 2018-06-08 2022-04-05 华为技术有限公司 一种应答信息的发送和接收方法、通信设备及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007498A1 (en) * 2008-07-14 2010-01-21 Nokia Corporation Setup of device to device connection
CN101674164A (zh) * 2008-09-11 2010-03-17 三星电子株式会社 反馈ack/nack信息方法
CN102948173A (zh) * 2010-06-17 2013-02-27 诺基亚公司 合作集群中转发设备的本地选择以增强蜂窝多播
CN103238289A (zh) * 2010-12-03 2013-08-07 诺基亚公司 具有即时链路适配和自适应重传器数目的群集内d2d重传

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036514A1 (ko) * 2010-09-17 2012-03-22 엘지전자 주식회사 무선통신 시스템에서 복수의 수신 확인 정보 전송 방법 및 장치
WO2012044045A1 (ko) * 2010-09-28 2012-04-05 엘지전자 주식회사 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
CN102480775B (zh) * 2010-11-22 2014-01-08 大唐移动通信设备有限公司 物理上行控制信道的功率控制方法及设备
EP3110221B1 (en) * 2011-03-18 2018-05-09 LG Electronics, Inc. Method and device for communicating device-to-device
CN102938691B (zh) * 2011-08-15 2018-05-01 北京三星通信技术研究有限公司 一种无线通信系统中反馈ack/nack的方法
WO2013151394A1 (ko) * 2012-04-05 2013-10-10 엘지전자 주식회사 무선통신 시스템에서 반송파 집성 방법 및 장치
KR20130125695A (ko) * 2012-05-09 2013-11-19 주식회사 팬택 인터밴드 tdd 전송 방식에서 채널 셀렉션 전송을 위한 harq-ack 인덱스 매핑 및 업링크 자원 할당을 제어하는 방법 및 장치
WO2013166723A1 (en) * 2012-05-11 2013-11-14 Nokia Siemens Networks Oy Ack/nak bit bundling in carrier aggregation scenarios
CN104348591B (zh) * 2013-08-01 2019-03-12 中兴通讯股份有限公司 一种上行控制信息的发送方法及用户设备、基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007498A1 (en) * 2008-07-14 2010-01-21 Nokia Corporation Setup of device to device connection
CN101674164A (zh) * 2008-09-11 2010-03-17 三星电子株式会社 反馈ack/nack信息方法
CN102948173A (zh) * 2010-06-17 2013-02-27 诺基亚公司 合作集群中转发设备的本地选择以增强蜂窝多播
CN103238289A (zh) * 2010-12-03 2013-08-07 诺基亚公司 具有即时链路适配和自适应重传器数目的群集内d2d重传

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3244562A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3711453A4 (en) * 2017-11-14 2021-09-01 Telefonaktiebolaget LM Ericsson (Publ) METHODS AND DEVICES FOR GROUPING ACKNOWLEDGMENT / NEGATIVE ACKNOWLEDGMENT OF AUTOMATIC HYBRID REPEAT REQUEST
US11184118B2 (en) 2017-11-14 2021-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for hybrid automatic repeat request acknowledgement/non-acknowledgement bundling
WO2021056308A1 (zh) * 2019-09-26 2021-04-01 华为技术有限公司 一种处理方法及网络设备

Also Published As

Publication number Publication date
US20170331594A1 (en) 2017-11-16
CN106063176B (zh) 2019-10-22
EP3244562B1 (en) 2020-09-02
JP2018509807A (ja) 2018-04-05
CN106063176A (zh) 2016-10-26
EP3244562A1 (en) 2017-11-15
JP6537205B2 (ja) 2019-07-03
EP3244562A4 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP6500164B2 (ja) アップリンク制御情報伝送方法及び装置
WO2017186174A1 (zh) Harq-ack信息的发送方法及装置
JP5763204B2 (ja) スケジューリング要求リソースを使用したマルチコンポーネントキャリア通信システムにおけるハイブリッド自動再送要求フィードバック送信
EP3288326B1 (en) Method of transmitting feedback information, terminal equipment and base station
CN110943815B (zh) 一种harq-ack的传输方法、终端设备及网络设备
WO2016119245A1 (zh) 一种用户设备、网络设备,以及确认信息的传输方法
US8687582B2 (en) Method and device for transmitting semi-persistent scheduling data
WO2018018620A1 (zh) 反馈ack/nack信息的方法、终端设备和网络侧设备
WO2017045138A1 (zh) 控制信息的发送方法和通信设备
WO2015106554A1 (zh) 资源管理方法、装置及计算机存储介质
WO2012062128A1 (zh) 一种上行控制信令的传输方法及终端、基站
WO2014173351A1 (zh) 一种上行控制信息的发送方法及用户设备、基站
US9713127B2 (en) Method and device for configuring data transmission resource
TW201519680A (zh) 用於傳輸控制資訊的方法和設備
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
WO2014076552A2 (en) Method of transmitting signaling of device-to-device communication in cellular network
CN110447283A (zh) 无线通信网络中的网络节点和方法
WO2017028014A1 (zh) 一种信息发送、接收方法及设备
WO2018082679A1 (zh) 重传方法及设备
WO2013010472A1 (zh) 一种反馈信息的传输方法及装置
WO2017214976A1 (zh) 数据传输的方法和装置
CN109792330A (zh) 传输信息的方法、网络设备和终端设备
WO2021159615A1 (zh) 混合自动重传请求应答码本确定方法、装置及其设备
WO2017084095A1 (zh) 传输数据的方法、终端和基站
CN103580823A (zh) 处理上行harq反馈的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015879453

Country of ref document: EP