WO2016117922A1 - D2d 통신을 수행할 인접 ue를 선택하는 방법 - Google Patents

D2d 통신을 수행할 인접 ue를 선택하는 방법 Download PDF

Info

Publication number
WO2016117922A1
WO2016117922A1 PCT/KR2016/000581 KR2016000581W WO2016117922A1 WO 2016117922 A1 WO2016117922 A1 WO 2016117922A1 KR 2016000581 W KR2016000581 W KR 2016000581W WO 2016117922 A1 WO2016117922 A1 WO 2016117922A1
Authority
WO
WIPO (PCT)
Prior art keywords
coverage
relay
base station
adjacent
dmrs
Prior art date
Application number
PCT/KR2016/000581
Other languages
English (en)
French (fr)
Inventor
신석민
채혁진
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/545,284 priority Critical patent/US10244378B2/en
Publication of WO2016117922A1 publication Critical patent/WO2016117922A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/17Selecting a data network PoA [Point of Attachment]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to mobile communications.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • communication can be enabled between UEs located outside the coverage of the base station.
  • the present disclosure aims to solve the above-mentioned problem.
  • one disclosure of the present disclosure provides a method for selecting a neighbor UE to perform device to device (D2D) communication by a user equipment (UE) located outside the coverage of the base station.
  • the method may include receiving a physical sidelink discovery channel (PSCH) including a detection signal from at least one neighboring UE and a de-modulation reference signal (DMRS) for demodulation of the PSDCH.
  • PSCH physical sidelink discovery channel
  • DMRS de-modulation reference signal
  • the PSDCH may be scrambled by a scrambling sequence.
  • the method includes determining whether the adjacent one or more UEs are within coverage of a base station based on the received DMRS; Determining whether the adjacent one or more UEs can operate as a relay based on a scrambling sequence used for scrambling of the PSDCH; Selecting one of the adjacent one or more UEs that can be located within the coverage of the base station and operate as a relay.
  • Determining whether the adjacent one or more UEs are located within the coverage of the base station comprises: obtaining, through blind detection, the base sequence number of the received DMRS; And determining whether the adjacent one or more UEs are located within the coverage of the base station based on the obtained basic sequence number.
  • Determining whether the at least one UE can operate as a relay includes: obtaining, through blind detection, a scrambling sequence used for scrambling of the PSDCH; Acquiring, via blind detection, one or more initialization parameters that were used by the neighboring UE to initialize the obtained scrambling sequence; And determining whether the at least one UE can operate as a relay based on the one or more initialization parameters.
  • the one or more initialization parameters may be a radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • Selecting the UE comprises: selecting at least one UE located within coverage of a base station among the adjacent one or more UEs; The method may include selecting a UE capable of operating as a relay from the at least one UE.
  • the method includes selecting a resource for sending data to the selected UE;
  • the method may further include transmitting a control channel including a scheduling assignment for the selected resource to the selected UE.
  • the method may further comprise receiving a control channel comprising a scheduling assignment from the selected UE.
  • the method may further include scheduling scheduling included in the transmitted control channel when the resource indicated by the scheduling assignment included in the transmitted control channel overlaps with the resource indicated by the scheduling assignment in the received control channel.
  • the method may further include transmitting a silence signal for withdrawing to the selected UE.
  • one disclosure of the present disclosure provides a UE that is located outside the coverage of the base station to select a neighboring user equipment (UE) to perform device to device (D2D) communication.
  • the UE includes a transceiver; It may include a processor for controlling the transceiver.
  • the processor may perform a step of receiving a physical sidelink discovery channel (PSCH) including a detection signal from at least one adjacent UE and a de-modulation reference signal (DMRS) for demodulation of the PSDCH.
  • PSCH physical sidelink discovery channel
  • DMRS de-modulation reference signal
  • the PSDCH may be scrambled by a scrambling sequence.
  • the processor determining whether the adjacent one or more UEs are within coverage of a base station based on the received DMRS; Determining whether the adjacent one or more UEs can operate as a relay based on a scrambling sequence used for scrambling of the PSDCH; The UE may perform a step of selecting one of the adjacent one or more UEs within the coverage of the base station and capable of operating as a relay.
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • 3 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • 5 shows a structure of an uplink subframe in 3GPP LTE.
  • 6A and 6B illustrate an example of a structure of a subframe in which DMRS for a PUSCH is transmitted.
  • D2D device to device
  • FIG. 9 illustrates an example of D2D communication with UE # 1 in which UE # 2 located outside the coverage of the base station shown in FIG.
  • FIG 10 is an exemplary view showing a first embodiment of a second method of the first disclosure of the present specification.
  • FIG. 11 is an exemplary view illustrating a first embodiment of a second disclosure of the present specification.
  • FIG. 12 is an exemplary diagram illustrating an example of a third disclosure of the present specification.
  • FIG. 13 is an exemplary view illustrating a fourth disclosure of the present specification.
  • 15 is a block diagram illustrating a wireless communication system in which the present disclosure is implemented.
  • LTE includes LTE and / or LTE-A.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • base station which is used hereinafter, generally refers to a fixed station for communicating with a wireless device, and includes an evolved-nodeb (eNodeB), an evolved-nodeb (eNB), a base transceiver system (BTS), and an access point (e. Access Point) may be called.
  • eNodeB evolved-nodeb
  • eNB evolved-nodeb
  • BTS base transceiver system
  • access point e. Access Point
  • UE User Equipment
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • MT mobile terminal
  • 1 is a wireless communication system.
  • a wireless communication system includes at least one base station (BS) 20.
  • Each base station 20 provides a communication service for a particular geographic area (generally called a cell) 20a, 20b, 20c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are determined relatively based on the UE.
  • downlink means communication from the base station 20 to the UE 10
  • uplink means communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • a wireless communication system can be largely divided into a frequency division duplex (FDD) method and a time division duplex (TDD) method.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the downlink transmission by the base station and the uplink transmission by the UE cannot be performed at the same time.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • the radio frame illustrated in FIG. 2 may refer to section 5 of 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • a radio frame includes 10 subframes, and one subframe includes two slots. Slots in a radio frame are numbered from 0 to 19 slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be referred to as a scheduling unit for data transmission.
  • one radio frame may have a length of 10 ms
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • one slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols. How many OFDM symbols are included in one slot may vary depending on a cyclic prefix (CP).
  • One slot in a normal CP includes 7 OFDM symbols, and one slot in an extended CP includes 6 OFDM symbols.
  • the OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL). It does not limit the name.
  • the OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • 3 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • a slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and NRB resource blocks (RBs) in a frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • RBs resource blocks
  • the number of resource blocks (RBs), that is, NRBs may be any one of 6 to 110.
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536, and 2048.
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • FIG. 4 it is illustrated that 7 OFDM symbols are included in one slot by assuming a normal CP.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • physical channels include a physical downlink shared channel (PDSCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid (PHICH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid
  • ARQ Indicator Channel Physical Uplink Control Channel
  • 5 shows a structure of an uplink subframe in 3GPP LTE.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) for transmitting uplink control information is allocated to the control region.
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) for transmitting data (in some cases, control information may also be transmitted).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an uplink radio resource allocation request. (scheduling request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • the PUSCH is mapped to the UL-SCH, which is a transport channel.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the transmission time interval (TTI).
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include a CQI, a precoding matrix indicator (PMI), a HARQ, a rank indicator (RI), and the like.
  • the uplink data may consist of control information only.
  • Reference signals are generally transmitted in sequence.
  • the sequence of the reference signal may be any sequence without particular limitation.
  • the reference signal sequence may use a PSK-based computer generated sequence. Examples of PSKs include binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK).
  • the reference signal sequence may use a constant amplitude zero auto-correlation (CAZAC) sequence. Examples of CAZAC sequences are ZC-based sequences, ZC sequences with cyclic extensions, ZC sequences with truncation, etc. There is this.
  • the reference signal sequence may use a pseudo-random (PN) sequence. Examples of PN sequences include m-sequences, computer generated sequences, Gold sequences, and Kasami sequences.
  • the reference signal sequence may use a cyclically shifted sequence.
  • the uplink reference signal may be divided into a demodulation reference signal (DMRS) and a sounding reference signal (SRS).
  • DMRS is a reference signal used for channel estimation for demodulation of a received signal.
  • DMRS may be combined with transmission of PUSCH or PUCCH.
  • the SRS is a reference signal transmitted by the terminal to the base station for uplink scheduling.
  • the base station estimates an uplink channel based on the received sounding reference signal and uses the estimated uplink channel for uplink scheduling.
  • SRS is not combined with transmission of PUSCH or PUCCH.
  • the same kind of base sequence can be used for DMRS and SRS.
  • precoding applied to DMRS in uplink multi-antenna transmission may be the same as precoding applied to PUSCH. Cyclic shift separation is a primary scheme for multiplexing DMRS.
  • the SRS may not be precoded and may also be an antenna specified reference signal.
  • the reference signal sequence r u, v ( ⁇ ) (n) may be defined based on the basic sequence b u, v (n) and the cyclic shift ⁇ by the following equation.
  • M sc RS m * N sc RB (1 ⁇ m ⁇ N RB max, UL ) is a length of a reference signal sequence.
  • N sc RB represents the size of a resource block represented by the number of subcarriers in the frequency domain, and N RB max, UL represents the maximum value of an uplink bandwidth expressed in multiples of N sc RB .
  • the plurality of reference signal sequences may be defined by differently applying a cyclic shift value ⁇ from one basic sequence.
  • the basic sequence b u, v (n) is divided into a plurality of groups, where u ⁇ ⁇ 0,1,, 29 ⁇ represents a group number, and v represents a basic sequence number within a group.
  • the base sequence depends on the length of the base sequence (M sc RS ).
  • the sequence group number u and the basic sequence number v in the group may change over time, such as group hopping or sequence hopping, which will be described later.
  • the basic sequence may be defined by the following equation.
  • q represents the root index of the ZCoff (Zadoff-Chu) sequence.
  • N ZC RS is the length of the ZC sequence and may be given as a maximum prime number smaller than M sc RS .
  • the ZC sequence having the root index q may be defined by Equation 4.
  • the basic sequence may be defined by the following equation.
  • Hopping of the reference signal may be applied as follows.
  • the sequence group number u of the slot n s may be defined based on the group hopping pattern f gh (n s ) and the sequence shift pattern f ss by the following equation.
  • Group hopping may or may not be applied by Group-hopping-enabled parameters, which are cell specific parameters provided by higher layers.
  • group hopping for the PUSCH may not be applied to a specific UE by a disable-sequence-group-hopping parameter which is a UE-specific parameter.
  • PUCCH and PUSCH may have the same group hopping pattern and may have different sequence shift patterns.
  • the group hopping pattern f gh (n s ) is the same for PUSCH and PUCCH and may be defined by the following equation.
  • c (i) is a pseudo-random sequence that is a PN sequence and may be defined by a Gold sequence of length-31. Equation below shows an example of the gold sequence c (n).
  • Nc 1600
  • x 1 (i) is the first m-sequence
  • x 2 (i) is the second m-sequence.
  • a pseudo random sequence generator is used at the beginning of each radio frame Can be initialized to
  • the definition of the sequence shift pattern f ss may be different for PUCCH and PUSCH.
  • the sequence shift pattern f ss PUCCH of the PUCCH may be given as an ID cell mod 30.
  • Sequence hopping can be applied only to a reference signal sequence whose length is longer than 6N sc RB .
  • the base sequence number v 0 in the base sequence group is given.
  • the base sequence number v in the base sequence group in slot n s may be defined by Equation 10.
  • Sequence hopping may or may not be applied by Sequence-hopping-enabled parameters, which are cell specific parameters provided by higher layers.
  • sequence hopping for the PUSCH may not be applied to a specific UE by a Disable-sequence-group-hopping parameter which is a UE-specific parameter.
  • a pseudo random sequence generator is used at the beginning of each radio frame Can be initialized to
  • the PUSCH DMRS sequence r PUSCH ( ⁇ ) (.) may be defined by Equation 11.
  • M sc RS M sc PUSCH .
  • the orthogonal sequence w ( ⁇ ) (m) may be determined according to the table described below.
  • n cs 2 ⁇ n cs / 12 in the slot n s , n cs
  • n (1) DMRS may be determined according to a cyclicShift parameter provided by a higher layer.
  • the table below shows an example of n (1) DMRS determined according to the cyclicShift parameter.
  • n (2) DMRS, ⁇ may be determined by a DMRS cyclic shift field in DCI format 0 for a transport block according to a corresponding PUSCH transmission.
  • the following table is an example of n (2) DMRS, ⁇ determined according to the DMRS cyclic shift field.
  • n PN (n s ) may be defined by the following equation.
  • c (i) may be represented by the example of Equation 8 above, and may be applied cell-specific of c (i).
  • a pseudo random sequence generator is used at the beginning of each radio frame Can be initialized to
  • the vector of the reference signal may be precoded by the following equation.
  • P is the number of antenna ports used for PUSCH transmission.
  • W is a precoding matrix.
  • P 2 or 4 for spatial multiplexing.
  • the DMRS sequence For each antenna port used for PUSCH transmission, the DMRS sequence is multiplied by an amplitude scaling factor ⁇ PUSCH and mapped in order to the resource block.
  • the set of physical resource blocks used for mapping is the same as the set of physical resource blocks used for corresponding PUSCH transmission.
  • the DMRS sequence may first be mapped to a resource element in an increasing direction in the frequency domain and in a direction in which the slot number increases.
  • the DMRS sequence may be mapped to a fourth SC-FDMA symbol (SC-FDMA symbol index 3) in the case of a normal CP and a third SC-FDMA symbol (SC-FDMA symbol index 2) in the case of an extended CP.
  • 6A and 6B illustrate an example of a structure of a subframe in which DMRS for a PUSCH is transmitted.
  • the structure of the subframe of FIG. 6A shows a case of a normal CP.
  • the subframe includes a first slot and a second slot. Each of the first slot and the second slot includes 7 SC-FDMA symbols.
  • the 14 SC-FDMA symbols in the subframe are symbol indexed from 0 to 13.
  • Reference signals may be transmitted over SC-FDMA symbols with symbol indices of 3 and 10.
  • the reference signal may be transmitted using a sequence.
  • a ZCoff (Zadoff-Chu) sequence may be used as the reference signal sequence, and various ZC sequences may be generated according to a root index and a cyclic shift value.
  • the base station may estimate different channels of the plurality of terminals through an orthogonal sequence or a quasi-orthogonal sequence by allocating different cyclic shift (CS) values to the terminal.
  • the positions of the frequency domains occupied by the reference signal in the two slots in the subframe may be the same or different.
  • the same reference signal sequence is used in two slots.
  • Data may be transmitted through the remaining SC-FDMA symbols except for the SC-FDMA symbol to which the reference signal is transmitted.
  • the structure of the subframe of FIG. 6B shows a case of an extended CP.
  • the subframe includes a first slot and a second slot.
  • Each of the first slot and the second slot includes 6 SC-FDMA symbols.
  • the 12 SC-FDMA symbols in the subframe are symbol indexed from 0 to 11.
  • Reference signals are transmitted over SC-FDMA symbols with symbol indices of 2 and 8. Data is transmitted through the remaining SC-FDMA symbols except for the SC-FDMA symbol to which the reference signal is transmitted.
  • D2D communication expected to be introduced in the next generation communication system will be described below.
  • D2D device to device
  • SNS social network services
  • UE # 1 100-1 As shown in FIG. 7 to reflect the above-described requirements, between UE # 1 100-1, UE # 2 100-2, UE # 3 100-3, or UE # 4 100-. 4), a method of allowing direct communication between the UE # 5 (100-5) and the UE # 6 (100-6) without the involvement of the base station (eNodeB) 200 has been discussed.
  • the UE # 1 100-1 and the UE # 4 100-4 may directly communicate with the help of the base station (eNodeB) 200.
  • the UE # 4 100-4 may serve as a repeater for the UE # 5 100-5 and the UE # 6 100-6.
  • the UE # 1 100-1 may serve as a relay for the UE # 2 100-2 and the UE # 3 100-3 that are far from the cell center.
  • a link between UEs used for the D2D communication is also called sidelink.
  • Physical channels used for mall sidelinks are as follows.
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • a scrambling unit has an input codeword, that is, b (0),... , b (Mbit-1) performs scrambling on the block of bits.
  • the modulation mapper places the scrambled codewords into modulation symbols representing positions on the signal constellation.
  • the resource element mapper maps the symbol output from the precoding unit to the resource element.
  • An input code word i.e. b (0),...
  • the block of bits b (Mbit-1) is scrambled by the scrambling unit, and then modulated by the modulation mapper, layer mapping by the layer mapper, precoding, and resource element mapping by the resource element mapper to the SC-FDMA signal. It is generated and transmitted through the antenna.
  • the resource element mapper maps the symbol output from the illustrated precoding unit to the resource element.
  • PSDCH is modulated with QPSK.
  • FIG. 9 illustrates an example of D2D communication with UE # 1 in which UE # 2 located outside the coverage of the base station shown in FIG.
  • UE # 1 100-1 detects whether there is a suitable UE in the vicinity for D2D communication, or UE # 1 100-1 detects its presence, for example, a discovery signal. Can be transmitted through the PSDCH.
  • the UE # 1 100-1 may transmit DMRS for demodulation of the PSDCH.
  • the DMRS may be generated in the same manner as the DMRS for the PUSCH described using Equations 1 to 12, and may be mapped to symbols in a subframe as shown in FIGS. 6 and 6B.
  • the UE # 1 100-1 may also transmit a scheduling assignment (SA) through a PSCCH and transmit a DMRS for demodulation of the PSCCH.
  • SA scheduling assignment
  • the UE # 1 100-1 may transmit a PSSCH including data based on the scheduling assignment SA and transmit a DMRS for demodulation of the PSSCH.
  • PSDCH including the detection signal
  • PSCCH including scheduling assignment (SA)
  • DMRS DMRS
  • the UE # 2 100-2 decodes the PSDCH including the detection signal based on the DMRS, receives the PSCCH based on the detection signal, and then reads the data received through the PSSCH. , If the UE # 1 100-1 is located within or outside the coverage of the base station, and relays the D2D communication to the base station when the UE # 1 100-1 is located within the coverage of the base station. You can see if it can be relayed.
  • the UE # 2 100-2 is able to know whether the UE # 5 100-1 is located within the coverage of the base station and can relay D2D communication to the base station, It takes a considerable time.
  • the UE # 2 100-2 may also transmit a detection signal, a PSCCH including a scheduling assignment (SA), and a PSSCH including data to the UE # 1 100-1.
  • SA scheduling assignment
  • the UE # 1 100-1 is located within the coverage of the base station and may relay D2D communication to the base station, the UE # 2 100-1 should decode the data received through the PSSCH. It is only known if -2) is located outside the coverage of the base station, and then it is possible to determine whether to operate as a relay for UE # 2 (100-2). As such, it takes considerable time for the UE # 1 100-2 to decide to operate as a relay.
  • the disclosures herein are directed to providing a solution for solving the above-described problem. That is, the present disclosure aims to propose a method for quickly and efficiently knowing whether a neighboring UE is located within the coverage of a base station in a D2D environment, or if it is operable as a relay when located. In addition, the disclosures herein aim to present a scheme that enables a UE located within coverage of a base station to quickly and efficiently determine whether to operate as a relay to relay D2D communication with an adjacent UE to the base station. do.
  • the first disclosure of the present specification proposes a method for quickly knowing, through either of a detection signal and a DMRS, whether a neighboring UE is located in or out of coverage. For example, when UE # 2 100-2 is out of coverage, UE # 1 100-1 is in coverage via any one of a detection signal and DMRS received from UE # 1 100-1. If it is known that it is located, it may ask UE # 1 100-1 to play a relay role. In addition, when the UE # 1 100-1 is located within the coverage, the detection signal received from the UE # 2 100-2 indicates that the UE # 2 100-2 is located outside of the coverage. The UE may report that the UE # 2 is located outside the coverage area, and may report that the UE # 1 100-1 may serve as a relay for the UE # 2 100-2.
  • the second disclosure of the present specification enables a user to quickly know whether the adjacent UE is located within the coverage of the base station and can operate as a relay through either the detection signal and the DMRS. Present a plan.
  • the first disclosure of the present specification proposes a scheme for quickly knowing, via either a detection signal or a DMRS, whether a neighboring UE is in coverage or out of coverage.
  • N cell ID represents a cell ID
  • n S represents a slot number
  • q represents an index of a codeword number
  • nRNTI represents a radio network temporary identifier (RNTI).
  • the first scheme can distinguish between a UE located in coverage and a UE located outside of coverage through a combination of one or more parameters of i) cell ID, ii) RNTI, iii) slot number, and iv) codeword number index. Suggest that you do so.
  • the RNTI when the RNTI is used, all UEs have conventionally set the RNTI to have the same value of 0 as shown in Table 5, but in the first exemplary embodiment, an in-coverage UE located within coverage is provided.
  • the RNTI of) and the RNTI of the out coverage UE (UE) located outside the coverage are set to have different values. That is, among different predefined values a and b (where a, b ⁇ ⁇ 0,1, ..., 2 16 -1 ⁇ ), an in-coverage UE located in coverage receives an RNTI of a value. It is set to use, and out coverage UE (UE) which is out of coverage is set to use RNTI which is b value.
  • the RNTI of the in coverage UE (UE) located in the coverage may be set to have 0, and the RNTI of the out coverage UE (UE) located outside of the coverage may be set to have 1.
  • an in-coverage UE located in the coverage may be set to use 1 as the RNTI, and an out coverage UE located outside the coverage may be set to use 0 as the RNTI.
  • the second embodiment is a UE located in coverage. It is proposed to set the slot number of the (in coverage UE) and the slot number of the out coverage UE (UE) located outside the coverage to have different values. That is, among the predetermined values a and b (where a, b ⁇ ⁇ 0,1, ... 19 ⁇ ), UEs located in the coverage are assigned a value using a slot number. The out coverage UE (UE) located outside the coverage is set to use the slot number of the value b.
  • the slot number of the in coverage UE (UE) located in the coverage may be set to have 0, and the slot number of the out coverage UE (UE) located outside the coverage may be set to have 1.
  • the slot number of an in coverage UE located in the coverage may be set to have 1, and the slot number of an out coverage UE located outside the coverage may be set to have 0.
  • the slot number of the in coverage UE (UE) located in the coverage is not 0, the slot number of the in coverage UE (UE) located in the coverage is set to use the value of the current D2D slot number and is out of coverage.
  • the slot number of the located out coverage UE (UE) may be set to have zero.
  • the slot number of the in coverage UE located in the coverage is 0, the slot number of the in coverage UE located in the coverage is set to have 0 and the slot number of the out coverage UE located outside the coverage Can be set to use the value of the current D2D slot number.
  • the third embodiment is within the coverage.
  • the codeword number index of the in coverage UE (located UE) and the codeword number index of the out coverage UE (UE) located outside the coverage are set to have different values. That is, among the predefined values a and b (where a, b ⁇ ⁇ 0,1 ⁇ ), the UE (in coverage UE) located in the coverage is configured to use a codeword number index of a value and is outside the coverage.
  • the out coverage UE (located UE) is configured to use a codeword number index that is a value of b.
  • the codeword number index of an in coverage UE (UE) located in coverage may be set to have 0, and the codeword number index of an out coverage UE (UE) located outside of coverage may be set to have 1, or vice versa.
  • a codeword number index of an in coverage UE (UE) located within coverage may be set to have one, and a codeword number index of an out coverage UE (UE) located outside of coverage may be set to have zero.
  • the preset values a and b (where a, b ⁇ ⁇ 0,1, ..., 2 8 -1 ⁇ ) and the different values c and d (where c, d ⁇ ⁇ 0,1) , ..., 2 16 -1 ⁇ ) in the coverage UE (UE) located within the coverage is configured to use a value as the cell ID and c value as the RNTI, and out coverage UE located outside the coverage ) Is set to use the value b as the cell ID and the value d as the RNTI.
  • a cell ID of an in coverage UE (UE) located in coverage is set to have 510 and an RNTI of 0, and a cell ID of an out coverage UE (UE) located outside of coverage is set to have 511 and an RNTI of 1.
  • the cell ID of the in coverage UE located in the coverage may be set to have 511 and the RNTI of 1
  • the cell ID of the out coverage UE located outside the coverage may have 510 and the RNTI of 0.
  • the DMRS used for D2D communication (eg, PSDCH, PSSCH, etc.) is generated in the same manner as the DMRS of the PUSCH. That is, the DMRS for D2D communication (eg, PSDCH, PSSCH, etc.) is generated in the same manner as the DMRS for the PUSCH described using Equations 1 to 12, and is mapped to a symbol in a subframe as shown in FIGS. 6 and 6B. Can be.
  • the variables to consider when generating the basic sequence of DMRS are i) sequence hopping, ii) group hopping, iii) delta shift, and iv) cell ID. In the DMRS for D2D communication (eg, PSDCH, PSSCH, etc.), these variables are used as shown in Table 5, unlike the DMRS of the PUSCH.
  • the second approach proposes to set one or more of the i to iv variables differently from Table 5 so that the UE located in the coverage can be distinguished from the UE located in the coverage.
  • sequence hopping may be used.
  • the sequence hopping of all UEs is conventionally set to be disabled. That is, in Equation 9, the basic sequence number defined by v is set to have zero.
  • the first embodiment proposes to set the base sequence number of the in coverage UE (UE) located within the coverage and the base sequence number of the out coverage UE (UE) located outside the coverage to have different values. That is, among the predetermined values a and b (where a, b ⁇ ⁇ 0,1 ⁇ ), the basic sequence number of the UE (in coverage UE) located in the coverage is set to have a and is located outside the coverage.
  • the basic sequence number of the out coverage UE (UE) is to have b.
  • the basic sequence number of the in coverage UE (UE) located in the coverage may be set to have zero, and the basic sequence number of the out coverage UE (UE) located outside the coverage may be set to have one.
  • the basic sequence number of the in coverage UE (UE) located in the coverage may be set to have one, and the basic sequence number of the out coverage UE (UE) located outside the coverage may be set to have zero.
  • FIG 10 is an exemplary view showing a first embodiment of a second method of the first disclosure of the present specification.
  • UE # 1 100-1 generates a DMRS using a value indicating that the UE is located within coverage, as a basic sequence number of DMRS for demodulation of PSDCH. Subsequently, the UE # 1 100-1 transmits a PDSCH including a detection signal and a DMRS for demodulation of the PSDCH. Then, the UE # 2 100-2 blindly detects the basic sequence number used for the received DMRS from the UE # 1 100-1. Then, the UE # 2 100-2 may find out that the UE # 1 100-1 is located in coverage based on the basic sequence number.
  • UE # 2 100-2 generates a DMRS using a value indicating that it is located outside of coverage as a basic sequence number of DMRS for demodulation of PSDCH. Subsequently, the UE # 2 100-2 transmits a PDSCH including a detection signal and a DMRS for demodulation of the PSDCH. Then, the UE # 1 100-1 blindly detects what is the base sequence number used for the received DMRS from the UE # 2 100-2. Then, the UE # 1 100-1 may find that the UE # 2 100-2 is located out of coverage based on the basic sequence number.
  • the PSDCH and the DMRS for demodulation of the PSDCH are respectively transmitted separately, but this is only for convenience of drawing.
  • the PSDCH and the DMRS may be transmitted on one D2D subframe.
  • the second exemplary embodiment may use a combination of ii group hopping, iii) delta shift, and iv) cell ID.
  • group hopping of all UEs is set to be disabled.
  • the sequence group number defined by u in Equation 6 is determined by the group hopping pattern defined by f gh (n S ) and the sequence shift pattern defined by f ss .
  • the sequence shift pattern is set by the cell ID and the delta shift. Therefore, assuming that the cell ID and the delta shift have a fixed value, the sequence group number is set only in the group hopping pattern.
  • the second embodiment may be configured such that an in coverage UE located in coverage and an out coverage UE located outside coverage have different group hopping patterns, or an in coverage UE located in coverage.
  • out coverage UEs located outside the coverage are set to have element values of different sets of two sets which do not share the same group hopping pattern. That is, the group hopping pattern of the UE (in coverage UE) located within the coverage among the predetermined values a and b (where a, b ⁇ ⁇ 0,1, ..., 29 ⁇ ) is set to have a.
  • the group hopping pattern of the in coverage UE (UE) located in the coverage may be set to have 0, and the group hopping pattern of the out coverage UE (UE) located outside of the coverage may be set to have 15.
  • the group hopping pattern of the UE (in coverage UE) located in the coverage may be set to have 15 and the group hopping pattern of the out coverage UE (UE) located outside of the coverage may be set to have 0.
  • the group hopping pattern of the UE (in coverage UE) located in the coverage is set to the set of group hopping patterns 0 to 14 A, and the set of group hopping patterns 15 to 29 B.
  • the group hopping pattern of the out coverage UE (UE) that is set to have one of the elements and is located outside the coverage may be set to have one of the elements of set B.
  • the group hopping pattern of the in coverage UE (UE) which is located in the coverage is The group hopping pattern of an out coverage UE (UE) that is set to have one of the elements of the set B and is located outside the coverage may be set to have one of the elements of the set A.
  • a delta shift value may be used.
  • the sequence group number is set only by delta shift.
  • the proposal here is to set the in-coverage UE located within the coverage and the out-coverage UE located outside the coverage to have different delta shifts, or the in-coverage UE located outside the coverage and the coverage outside the coverage.
  • the out coverage UE (located UE) is configured to have element values of different sets among two sets that do not share the same delta shift. That is, the delta shift of the UE (in coverage UE) located in the coverage is set to have a among predetermined values a and b (where a, b ⁇ ⁇ 0,1, ..., 29 ⁇ ).
  • the delta shift of the out coverage UE (UE) located outside the coverage may be set to have b.
  • the delta shift of an out coverage UE (UE) located outside of coverage is set to have one of the elements of set A.
  • the delta shift of the in coverage UE (UE) located in the coverage may be set to have zero, and the delta shift of the out coverage UE (UE) located outside the coverage may be set to have 15.
  • the delta shift of the in coverage UE located in the coverage may be set to have 15, and the delta shift of the out coverage UE located outside the coverage may be set to have 0.
  • the set of delta shifts from 0 to 14 is set to A
  • the set of delta shifts from 15 to 29 is set to B so that the delta shift of the in coverage UE (UE) located in the coverage is set to the set A.
  • a delta shift of an out coverage UE (UE) that is set to have one of the elements and is located outside the coverage may be set to have one of the elements of the set B.
  • the delta shift of the in coverage UE (UE) located in the coverage may be set to have one of the elements of set B and the delta shift of the out coverage UE (UE) located outside the coverage may be set to have one of the elements of set A.
  • a combination of two or more of the above i to iv variables may be used.
  • the preset values a and b (where a, b ⁇ ⁇ 0,1, ..., 29 ⁇ ) and the different values c and d (where c, d ⁇ ⁇ 0,1 ,. .., 29 ⁇ )
  • the group hopping pattern of the UE (in coverage UE) located in coverage is set to have a
  • the delta shift is c
  • the group hopping pattern of the out coverage UE (UE) located outside of coverage is b
  • Delta shift is set to have d.
  • a group hopping pattern of an in coverage UE (UE) located in coverage is set to 0, and a delta shift is set to 0, and the UE (out of coverage) is set out.
  • the group hopping pattern of coverage UE) may be set to have 15 and the delta shift is 15.
  • the group hopping pattern of the UE (in coverage UE) located in the coverage is set to have 15, the delta shift is set to 15, the group hopping pattern of the UE (out coverage UE) located outside of the coverage is set to 0, and the delta shift is set to 0. It may be.
  • CS cyclic shift
  • OCC orthogonal cover code
  • CS may be used.
  • the first embodiment sets a CS of an in coverage UE located in the coverage and a CS of an out coverage UE located outside the coverage to have different values.
  • a different set of values, a and b (where C) of the coverage UE (UE) located within the coverage is set to have a
  • CS of the out coverage UE (UE) located outside the coverage is set to have b.
  • the CS of an in-coverage UE located in the coverage may be set to have zero
  • the CS of an out-coverage UE located outside the coverage may be set to have ⁇ .
  • the CS of the in coverage UE may be set to have ⁇ and the CS of the out coverage UE located outside the coverage may be set to have zero.
  • OCC can be used.
  • all UEs set the OCC to have the same value [1 1].
  • the second embodiment is to set the OCC of the in coverage UE (UE) located within the coverage and the OCC of the out coverage UE (UE) located outside the coverage to have different values.
  • a and b where a, b ⁇ ⁇ [1 1], [1 -1], [-1 1], [-1 -1] ⁇ )
  • the OCC of an in coverage UE (UE) is set to have a
  • the OCC of an out coverage UE (UE) located outside coverage is set to have b.
  • an OCC of an in coverage UE (UE) located in coverage may be set to have [1 1], and an OCC of an out coverage UE (UE) located outside of coverage may be set to have [1 -1].
  • the OCC of an in coverage UE (UE) located in coverage may be set to have [1 -1] and the OCC of an out coverage UE (UE) located outside of coverage may be set to have [1 1].
  • a combination of CS and OCC may be used to distinguish an in-coverage UE located in coverage from an out-coverage UE located outside coverage.
  • a CS of an in coverage UE located within coverage is set to have 0, an OCC is set to [1 1], and CS of an out coverage UE located outside of coverage is ⁇ , and an OCC is set to [1-].
  • 1] may be set to have the CS of the coverage (in coverage UE) located within the coverage is ⁇ , OCC is set to have [1 -1] and CS of the out coverage UE located outside the coverage is 0,
  • the OCC may be set to have [1 1].
  • the existing CRC mask is mainly used by the base station to distinguish DCI for each UE when transmitting a control signal.
  • the fourth approach proposes using a CRC mask in distinguishing an in coverage UE (UE) located within coverage and an out coverage UE (UE) located outside coverage.
  • the proposed scheme masks the CRC of the in coverage UE located in the coverage with an arbitrary value A for the in coverage UEs located in the coverage and the arbitrary coverage for the out coverage UEs located outside the coverage.
  • a value B may mask a CRC of an out coverage UE (out of coverage UE) to distinguish an in coverage UE (out of coverage UE) from an out coverage UE (UE) located in coverage.
  • a and B may be preset to a value known to all UEs and base stations, or may be determined from a higher layer to inform each UE in advance, or may be set in other ways. At this time, A and B cannot have the same value and must be independent of each other.
  • an arbitrary value A for in coverage UEs located in coverage may be set to have 0, and an arbitrary value B for out coverage UEs located outside of coverage may be set to have 1. have.
  • an arbitrary value A for in coverage UEs located in the coverage may be set to have 1, and an arbitrary value B for out coverage UEs located outside of the coverage may be set to have 1.
  • Second Initiation A Distinguishing Method for UEs That Can Operate as Relays
  • the second disclosure of the present specification proposes a scheme for quickly knowing whether a neighboring UE can operate as a relay through one of a detection signal and a DMRS.
  • a total of 10 used in the first to fourth methods of the first disclosure described above that is, four parameters (cell ID, RNTI, slot number, codeword number) used for initialization of the scrambling sequence, and DMRS Adjacent to each other using one or more of the four variables (sequence hopping, group hopping, delta shift, cell ID) used in the generation of the base sequence of, and two parameters applicable to DMRS (CS and OCC) and a CRC mask. It can be seen whether the UE can operate as a relay.
  • four parameters cell ID, RNTI, slot number, codeword number
  • DMRS Adjacent to each other using one or more of the four variables (sequence hopping, group hopping, delta shift, cell ID) used in the generation of the base sequence of, and two parameters applicable to DMRS (CS and OCC) and a CRC mask.
  • a UE capable of operating as a relay and a UE not operating may set a value of the RNTI to have a different value.
  • the RNTI of the UE that can operate as a relay is set to have a
  • the RNTI of the UE that cannot operate as a relay is set to have a b
  • the RNTI of an out coverage UE located outside the coverage area is c. It is set to have.
  • an RNTI of a UE capable of operating as a relay may be set to 0, and an RNTI of a UE that cannot operate as a relay may be set to 1.
  • the RNTI of the UE that can operate as a relay may be set to 1
  • the RNTI of the UE that cannot operate as a relay may be set to 0.
  • the RNTI of the out coverage UE (UE) located outside the coverage should be set to have a value other than 0 and 1. In this case, for example, the RNTI of the out coverage UE (UE) located outside the coverage is set to have 2. can do.
  • FIG. 11 is an exemplary view illustrating a first embodiment of a second disclosure of the present specification.
  • the UE # 1 100-1 uses the value of the RNTI among the initialization parameters of the scrambling sequence as a value indicating that it can operate as a relay.
  • the UE # 1 100-1 initializes the scrambling sequence using the initialization parameter including the RNTI, and then scrambles the PDSCH according to the scrambling sequence. Subsequently, the UE # 1 100-1 transmits a PDSCH including a detection signal.
  • the UE # 2 100-2 blindly detects the scrambling sequence used for the PDSCH received from the UE # 1 100-1. By detecting the scrambling sequence through the blind detection, it is possible to know by which C init the scrambling sequence is initialized, and then the value of RNTI among the parameters used for C init can be known. Then, the UE # 2 100-2 may find out that the UE # 1 100-1 can operate as a relay based on the value of the RNTI.
  • the UE # 2 100-2 uses the value of the RNTI among the initialization parameters of the scrambling sequence as a value indicating that it cannot be operated as a relay.
  • the slot number of the UE that can operate as a relay The slot number of the UE that can be set to have and cannot operate as a relay
  • the slot number of the out coverage UE (UE) located outside the coverage may be set to have a mod 10 + 10 (D2D slot number).
  • a UE that cannot operate as a relay is configured to have a and a UE that can operate as a relay has b.
  • the cell ID of the UE that can operate as a relay may be set to have 510 and the cell ID of the UE that cannot operate as a relay may have 511.
  • the cell ID of the UE that can operate as a relay may be set to have 511 and the cell ID of the UE which cannot operate as a relay may have 510.
  • a and B may be preset to a value known to all UEs and base stations, or may be determined from a higher layer to inform each UE in advance, or may be set in other ways. At this time, A and B cannot have the same value and must be independent of each other. For example, in coverage UEs located in the coverage may set the A value to 0, and out coverage UEs located outside the coverage may set the B value to 1. FIG. On the contrary, an in-coverage UE located in the coverage may set the A value to 1, and an out-coverage UE located outside the coverage may set the B value to 1.
  • a combination of two or more of the ten items may be used to distinguish between a UE that can operate as a relay and a UE that cannot operate as a relay.
  • a cell ID used for a DMRS basic sequence is fixed
  • a group hopping pattern and a delta shift may be set to be differently used between a UE that can operate as a relay and a UE that cannot operate as a relay. have.
  • a, b, c (where a, b, c ⁇ ⁇ 0,1..., 29 ⁇ ), which are preset different values, and d, e, f (where d, e, f ⁇ ⁇ 0,1,..., 29 ⁇ ), the group hopping pattern of the UE that can operate as a relay is set to have a, the delta shift is d, and the group hopping pattern of the UE that cannot operate as a relay is b, The delta shift is set to have e, and the group hopping pattern of the out coverage UE (UE) located outside the coverage is set to have c and the delta shift is set to have f.
  • the group hopping pattern of the UE capable of operating as a relay is 0 and the delta shift is 0.
  • the group hopping pattern of the UE that is set to have a value and cannot operate as a relay may be set to have a group shift pattern of 15, and the delta shift may be set to 15.
  • the UE may operate as a relay.
  • the group hopping pattern is set to have 15, the delta shift is set to 15, and the group hopping pattern of the UE which cannot operate as a relay may be set to have 0 and the delta shift is set to 0, and the group of out coverage UEs located outside the coverage
  • the hopping pattern may be set to have 1 and the delta shift may be set to have 16.
  • Third disclosure a combination of first disclosure and second disclosure
  • the third disclosure of the present specification presents a combination of the first disclosure and the second disclosure described above.
  • the UE may indicate whether it is located within coverage or outside using a base sequence number used to generate a DMRS for demodulation of a PSDCH containing a detection signal according to the second scheme of the first disclosure. Subsequently, according to the first embodiment of the second disclosure, it may indicate whether the self-operation is possible by using the value of the initialization parameter of the scrambling sequence used to scramble the PSDCH including the detection signal.
  • This exemplary combination is described with reference to FIG. 12 as follows.
  • FIG. 12 is an exemplary diagram illustrating an example of a third disclosure of the present specification.
  • the UE # 1 100-1 generates a DMRS using a value indicating that the UE is located within the coverage as a basic sequence number of the DMRS for demodulation of the PSDCH.
  • UE # 1 100-1 uses the value of the RNTI among the initialization parameters of the scrambling sequence as a value indicating that it can operate as a relay.
  • the UE # 1 100-1 initializes the scrambling sequence using the initialization parameter including the RNTI, and then scrambles the PDSCH according to the scrambling sequence.
  • the UE # 1 100-1 transmits a PDSCH including a detection signal and a DMRS for demodulation of the PSDCH.
  • the UE # 2 100-2 blindly detects the basic sequence number used for the received DMRS from the UE # 1 100-1. Then, the UE # 2 100-2 may find out that the UE # 1 100-1 is located in coverage based on the basic sequence number.
  • the UE # 2 100-2 may find out that the UE # 1 100-1 can operate as a relay based on the value of the RNTI.
  • the UE # 2 100-2 may also receive the DMRS and the PSDCH from the adjacent UE # 3 100-3 illustrated in FIG. 7 as described above.
  • the UE # 2 100-2 may find out whether the adjacent UE # 3 100-3 is located within or outside the coverage of the base station and may operate as a relay UE through the DMRS and the PSDCH. have.
  • the UE # 2 100-2 may select one of the UE # 2 100-2 and the UE # 3 100-3 as a relay.
  • the UE # 3 (100-3) is located outside the coverage of the base station as shown in Figure 7, the UE # 2 (100-2) can select the UE # 1 (100-1) as a relay. have.
  • PSDCH and the DMRS for demodulation of the PSDCH are transmitted separately, but this is only for convenience of drawing.
  • the PSDCH and the DMRS may be transmitted on one D2D subframe.
  • the PSCCH is decoded using information obtained through a detection signal, and the PSCCH is decoded.
  • SA scheduling assignment
  • an out coverage UE located out of coverage very quickly determines whether the neighboring UE is located within the coverage and whether the neighboring UE can operate as a relay. I can figure it out.
  • radio resources may collide with each other.
  • the fourth disclosure of the present specification proposes an efficient radio resource usage method when a UE out of coverage attempts to perform D2D data communication with an adjacent UE operable as a relay within the coverage.
  • FIG. 13 is an exemplary view illustrating a fourth disclosure of the present specification.
  • UE # 1 100-1 transmits a PSDCH including a detection signal and DMRS for demodulation of the PSDCH
  • UE # 2 100-2 transmits a PSDCH including a detection signal and the PSDCH.
  • DMRS for demodulation of PSDCH is transmitted.
  • the PSDCH and the DMRS for demodulation of the PSDCH are respectively transmitted separately, but this is only for convenience of drawing.
  • the PSDCH and the DMRS may be transmitted on one D2D subframe.
  • the UE # 1 100-1 uses the DMRS from the UE # 2 100-2 to find that the UE # 2 100-2 is out of coverage. Thereafter, since the UE # 1 100-1 is located in the coverage area and can operate as a relay, the UE # 1 100-1 determines to operate as a relay for the UE # 2 100-2.
  • the UE # 2 100-2 finds that the UE # 1 100-1 is located in coverage by using the DMRS from the UE # 1 100-1. In addition, the UE # 2 100-2 finds that the UE # 1 100-1 can operate as a relay by using a PSDCH including a detection signal from the UE # 1 100-1. . In addition, the UE # 2 100-2 decides to request the UE # 1 100-1 to operate as a relay.
  • the UE # 2 100-2 determines a scheduling assignment SA to transmit a message requesting the UE # 1 100-1 to operate as a relay, and includes the determined scheduling assignment SA. Transmit the PSCCH.
  • the UE # 1 100-1 determines a scheduling assignment (SA) to know this, and determines the determined scheduling assignment ( Transmit a PSCCH including the SA).
  • SA scheduling assignment
  • the scheduling assignment is performed by the determination of time resource pattern of transmission (T-RPT).
  • T-RPT time resource pattern of transmission
  • the UE # 2 100-2 checks whether a scheduling assignment SA included in the PSCCH received from the UE # 1 100-1 collides with its scheduling assignment SA. To this end, the UE # 2 100-2 may compare its T-RPT with the T-RPT of the UE # 1 100-1. At this time, as a result of comparison, the T-RPT of the UE # 2 100-2 and the T-RPT of the UE # 1 100-1 are the same or substantially similar, and thus collide with each other, thereby causing the UE # 1 ( If the data from 1) cannot be received, the UE # 2 100-2 may move to any resource location ahead of the resource location it was trying to use for data transmission, on the resource location corresponding to the SA sent immediately before. Information not to transmit data '. This is referred to herein as a silence signal.
  • any resource location for transmitting a silence signal may be determined to a specific place previously promised between the D2D UEs (eg, a portion within the data resource or between a scheduling assignment (SA) and the data resource).
  • SA scheduling assignment
  • UE # 2 is A resource or B shown in FIG. 14.
  • the resource can be used to transmit silence signals.
  • the silence signal may be transmitted at a location other than A resource or B resource.
  • the UE # 2 100-2 can quickly detect whether the UE # 1 100-1 is within coverage and can be operated as a relay through the detection signal and the DMRS from the UE # 1 100-1. If the scheduling assignment (SA) conflicts with the scheduling assignment (SA) with the UE # 1 100-1, the scheduling assignment (SA) can be quickly withdrawn. Therefore, the radio resource can be efficiently used.
  • Embodiments of the present invention described so far may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof. Specifically, it will be described with reference to the drawings.
  • 15 is a block diagram illustrating a wireless communication system in which the present disclosure is implemented.
  • the base station 200 includes a processor 201, a memory 202, and an RF unit 203.
  • the memory 202 is connected to the processor 201 and stores various information for driving the processor 201.
  • the RF unit 203 is connected to the processor 201 to transmit and / or receive a radio signal.
  • the processor 201 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 201.
  • the UE 100 includes a processor 101, a memory 102, and an RF unit 103.
  • the memory 102 is connected to the processor 101 and stores various information for driving the processor 101.
  • the RF unit 103 is connected to the processor 101 and transmits and / or receives a radio signal.
  • the processor 101 implements the proposed functions, processes and / or methods.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

본 명세서의 일 개시는 기지국의 커버리지 밖에 위치한 UE(user equipment)가 D2D(Device to Device) 통신을 수행할 인접 UE를 선택하는 방법을 제공한다. 상기 방법에 따르면 인접한 UE로부터 수신되는 탐지 신호 및 DMRS를 통해 인접한 UE가 기지국의 커버리지 내에 위치하는지 그리고 릴레이로 동작가능한지를 신속하게 알 수 있게 된다.

Description

D2D 통신을 수행할 인접 UE를 선택하는 방법
본 발명은 이동통신에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
한편, SNS(Social Network Service)에 대한 사용자 요구사항의 증가로 인해 물리적으로 가까운 거리의 UE들 사이의 통신, 즉 D2D(Device to Device) 통신이 요구되고 있다.
D2D 통신의 혜택으로, 기지국의 커버리지 밖에 위치한 UE들 간에 통신이 가능해질 수 있다.
그러나, 기지국의 커버리지 밖에 위치한 UE가 인접한 다른 UE가 기지국의 커버리지 내에 위치하고 있는지 그리고 기지국의 커버리지 내에 위치하고 있다면 D2D 통신을 기지국으로 중계(relay)할 수 있는 릴레이로 동작가능한지를 알아내는데 적지 않은 시간이 소요되는 문제점이 있다.
따라서, 본 명세서의 개시는 전술한 문제점을 해결하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 기지국의 커버리지 밖에 위치한 UE(user equipment)가 D2D(Device to Device) 통신을 수행할 인접 UE를 선택하는 방법을 제공한다. 상기 방법은 인접한 하나 이상의 인접 UE로부터 탐지 신호를 포함하는 PSDCH(Physical Sidelink Discovery Channel)와 상기 PSDCH의 복조를 위한 DMRS(De-Modulation Reference Signal)를 수신하는 단계를 포함할 수 있다. 여기서 상기 PSDCH는 스크램블링 시퀀스에 의해 스크램블링되어 있을 수 있다. 상기 방법은 상기 수신한 DMRS에 기초하여 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지 판단하는 단계와; 상기 인접한 하나 이상의 UE가 릴레이로 동작할 수 있는지를 상기 PSDCH의 스크램블링을 위해 사용된 스크램블링 시퀀스에 기초하여 판단하는 단계와; 상기 인접한 하나 이상의 UE 중 기지국의 커버리지 내에 위치하고 릴레이로 동작할 수 있는 UE를 선택하는 단계를 포함할 수 있다.
상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지 판단하는 단계는: 상기 수신한 DMRS의 기본 시퀀스 번호를 블라인드 검출(blind detection)을 통해 획득하는 단계와; 상기 획득한 기본 시퀀스 번호에 기초하여 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지를 판단하는 단계를 포함할 수 있다.
상기 적어도 하나의 UE가 릴레이로 동작할 수 있는지를 판단하는 단계는: 상기 PSDCH의 스크램블링을 위해 사용된 스크램블링 시퀀스를 블라인드 검출(blind detection)을 통해 획득하는 단계와; 상기 획득한 스크램블링 시퀀스를 초기화하기 위해 상기 인접한 UE에 의해서 사용되었던 하나 이상의 초기화 파라미터를 블라인드 검출을 통해 획득하는 단계와; 상기 하나 이상의 초기화 파라미터에 기초하여 상기 적어도 하나의 UE가 릴레이로 동작할 수 있는지를 판단하는 단계를 포함할 수 있다.
상기 하나 이상의 초기화 파라미터는 RNTI(radio network temporary identifier)일 수 있다.
상기 UE를 선택하는 단계는: 상기 인접한 하나 이상의 UE 중 기지국의 커버리지 내에 위치하는 적어도 하나의 UE를 선택하는 단계와; 상기 적어도 하나의 UE 중에서 릴레이로 동작할 수 있는 UE를 선택하는 단계를 포함할 수 있다.
상기 방법은 상기 선택된 UE로 데이터를 전송하기 위해 자원을 선택하는 단계와; 상기 선택된 자원에 대한 스케줄링 할당(scheduling assignment)를 포함하는 제어 채널을 상기 선택한 UE로 전송하는 단계를 더 포함할 수 있다.
상기 방법은 상기 선택된 UE로부터 스케줄링 할당(scheduling assignment)를 포함하는 제어 채널을 수신하는 단계를 더 포함할 수 있다.
또한, 상기 방법은 상기 전송된 제어 채널 내에 포함된 스케줄링 할당에 의해서 지시된 자원과 상기 수신한 제어 채널 내의 스케줄링 할당에 의해 지시된 자원이 중첩되는 경우, 상기 전송된 제어 채널 내에 포함된 스케줄링 할당을 철회하기 위한 침묵 신호(silence signal)를 상기 선택된 UE로 전송하는 단계를 더 포함할 수 있다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 기지국의 커버리지 밖에 위치하여, D2D(Device to Device) 통신을 수행할 인접 UE(user equipment)를 선택하는 UE를 제공한다. 상기 UE는 송수신부와; 상기 송수신부를 제어하는 프로세서를 포함할 수 있다. 상기 프로세서는: 인접한 하나 이상의 인접 UE로부터 탐지 신호를 포함하는 PSDCH(Physical Sidelink Discovery Channel)와 상기 PSDCH의 복조를 위한 DMRS(De-Modulation Reference Signal)를 수신하는 단계를 수행할 수 있다. 여기서 상기 PSDCH는 스크램블링 시퀀스에 의해 스크램블링되어 있을 수 있다. 상기 프로세서는 상기 수신한 DMRS에 기초하여 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지 판단하는 단계와; 상기 인접한 하나 이상의 UE가 릴레이로 동작할 수 있는지를 상기 PSDCH의 스크램블링을 위해 사용된 스크램블링 시퀀스에 기초하여 판단하는 단계와; 상기 인접한 하나 이상의 UE 중 기지국의 커버리지 내에 위치하고 릴레이로 동작할 수 있는 UE를 선택하는 단계를 수행할 수 있다.
본 명세서의 개시에 의하면, 전술한 종래 기술의 문제점이 해결되게 된다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 6a 및 도 6b는 PUSCH를 위한 DMRS가 전송되는 서브프레임의 구조의 일 예이다.
도 7은 차세대 통신 시스템에서 도입될 것으로 기대되는 D2D(Device to Device) 통신의 개념을 나타낸다.
도 8은 PSDCH의 전송을 위한 신호 처리 과정을 나타낸다.
도 9는 도 7에 도시된 기지국의 커버리지 밖에 위치하는 UE#2이 UE#1와 D2D 통신의 예를 나타낸다.
도 10은 본 명세서의 제1 개시 중 제2 방안에 대한 제1 실시예을 나타낸 예시도이다.
도 11은 본 명세서의 제2 개시 중 제1 실시예을 나타낸 예시도이다.
도 12는 본 명세서의 제3 개시의 일 예시를 나타낸 예시도이다.
도 13은 본 명세서의 제4 개시를 나타낸 예시도이다.
도 14는 UE#1과 UE#2가 사용하는 자원에 대한 예시를 나타낸다.
도 15는 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
이하에서 사용되는 용어인 기지국은, 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
그리고 이하, 사용되는 용어인 UE(User Equipment)는, 고정되거나 이동성을 가질 수 있으며, 기기(Device), 무선기기(Wireless Device), 단말(Terminal), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다.
도 1은 무선 통신 시스템이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(base station: BS)(20)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20a, 20b, 20c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다.
UE은 통상적으로 하나의 셀에 속하는데, UE이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 UE을 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE(10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
한편, 무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 UE에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
이하에서는, LTE 시스템에 대해서 보다 상세하게 알아보기로 한다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 2에 도시된 무선 프레임은 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 5절을 참조할 수 있다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 전송시간구간(Transmission Time interval: TTI)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
한편, 하나의 슬롯은 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함할 수 있다. 하나의 슬롯에 몇개의 OFDM 심볼이 포함되는지는 순환전치(cyclic prefix: CP)에 따라 달라질 수 있다. 노멀(normal) CP에서 1 슬롯은 7 OFDM 심볼을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심볼을 포함한다. 여기서, OFDM 심볼은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심볼 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심볼은 SC-FDMA(single carrier-frequency division multiple access) 심볼, 심볼 구간 등 다른 명칭으로 불릴 수 있다.
도 3은 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 3을 참조하면, 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역(frequency domain)에서 NRB 개의 자원블록(RB)을 포함한다. 예를 들어, LTE 시스템에서 자원블록(RB)의 개수, 즉 NRB은 6 내지 110 중 어느 하나일 수 있다.
자원블록(resource block: RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심볼을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element: RE)를 포함할 수 있다.
한편, 하나의 OFDM 심볼에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 3의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 4에서는 노멀 CP를 가정하여 예시적으로 하나의 슬롯 내에 7 OFDM 심볼이 포함하는 것으로 도시하였다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫 번째 슬롯의 앞선 최대 3개의 OFDM 심볼을 포함하나, 제어영역에 포함되는 OFDM 심볼의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
도 5는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역에는 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)가 할당된다. 데이터 영역은 데이터(경우에 따라 제어 정보도 함께 전송될 수 있다)가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)가 할당된다.
하나의 UE에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다.
UE이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(frequency diversity) 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 전송시간구간(TTI) 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(Precoding Matrix indicator), HARQ, RI (rank indicator) 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
<상향링크 참조 신호>
이하 상향링크 참조 신호에 대해서 설명한다.
참조 신호는 일반적으로 시퀀스로 전송된다. 참조 신호의 시퀀스는 특별한 제한 없이 임의의 시퀀스가 사용될 수 있다. 참조 신호 시퀀스는 PSK(Phase Shift Keying) 기반의 컴퓨터를 통해 생성된 시퀀스(PSK-based computer generated sequence)를 사용할 수 있다. PSK의 예로는 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying) 등이 있다. 또는, 참조 신호 시퀀스는 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스를 사용할 수 있다. CAZAC 시퀀스의 예로는 ZC(Zadoff-Chu) 기반 시퀀스(ZC-based sequence), 순환 확장(cyclic extension)된 ZC 시퀀스(ZC sequence with cyclic extension), 절단(truncation) ZC 시퀀스(ZC sequence with truncation) 등이 있다. 또는, 참조 신호 시퀀스는 PN(pseudo-random) 시퀀스를 사용할 수 있다. PN 시퀀스의 예로는 m-시퀀스, 컴퓨터를 통해 생성된 시퀀스, 골드(Gold) 시퀀스, 카사미(Kasami) 시퀀스 등이 있다. 또, 참조 신호 시퀀스는 순환 쉬프트된 시퀀스(cyclically shifted sequence)를 이용할 수 있다.
상향링크 참조 신호는 복조 참조 신호(DMRS; demodulation reference signal)와 사운딩 참조 신호(SRS; sounding reference signal)로 구분될 수 있다. DMRS는 수신된 신호의 복조를 위한 채널 추정에 사용되는 참조 신호이다. DMRS는 PUSCH 또는 PUCCH의 전송과 결합될 수 있다. SRS는 상향링크 스케줄링을 위해 단말이 기지국으로 전송하는 참조 신호이다. 기지국은 수신된 사운딩 참조신호를 통해 상향링크 채널을 추정하고, 추정된 상향링크 채널을 상향링크 스케줄링에 이용한다. SRS는 PUSCH 또는 PUCCH의 전송과 결합되지 않는다. DMRS와 SRS를 위하여 동일한 종류의 기본 시퀀스가 사용될 수 있다. 한편, 상향링크 다중 안테나 전송에서 DMRS에 적용된 프리코딩은 PUSCH에 적용된 프리코딩과 같을 수 있다. 순환 쉬프트 분리(cyclic shift separation)는 DMRS를 다중화하는 기본 기법(primary scheme)이다. 3GPP LTE-A 시스템에서 SRS는 프리코딩되지 않을 수 있으며, 또한 안테나 특정된 참조 신호일 수 있다.
참조 신호 시퀀스 ru,v (α)(n)은 아래의 수학식에 의해서 기본 시퀀스 bu,v(n)와 순환 쉬프트 α를 기반으로 정의될 수 있다.
수학식 1
Figure PCTKR2016000581-appb-M000001
수학식 1에서 Msc RS=m*Nsc RB(1≤m≤NRB max,UL)는 참조 신호 시퀀스의 길이이다. Nsc RB는 주파수 영역에서 부반송파의 개수로 나타낸 자원 블록의 크기를 나타내며, NRB max,UL는 Nsc RB의 배수로 나타낸 상향링크 대역폭의 최대치를 나타낸다. 복수의 참조 신호 시퀀스는 하나의 기본 시퀀스로부터 순환 쉬프트 값인 α를 다르게 적용하여 정의될 수 있다.
기본 시퀀스 bu,v(n)는 복수의 그룹으로 나누어지며, 이때 u∈{0,1, ,29}는 그룹 번호를, v는 그룹 내에서 기본 시퀀스 번호를 나타낸다. 기본 시퀀스는 기본 시퀀스의 길이(Msc RS)에 의존한다. 각 그룹은 1≤m≤5인 m에 대해서 길이가 Msc RS 인 하나의 기본 시퀀스(v=0)를 포함하며, 6≤m≤nRB max,UL인 m에 대해서는 길이가 Msc RS 인 2개의 기본 시퀀스(v=0,1)를 포함한다. 시퀀스 그룹 번호 u와 그룹 내의 기본 시퀀스 번호 v는 후술할 그룹 홉핑(group hopping) 또는 시퀀스 홉핑(sequence hopping)과 같이 시간에 따라 변할 수 있다.
참조신호 시퀀스의 길이가 3Nsc RB 또는 그 이상인 경우, 기본 시퀀스는 아래의 수학식에 의해서 정의될 수 있다.
수학식 2
Figure PCTKR2016000581-appb-M000002
위 수학식에서 q는 ZC(Zadoff-Chu) 시퀀스의 루트 인덱스(root index)를 나타낸다. NZC RS는 ZC 시퀀스의 길이이며, Msc RS보다 작은 최대 소수(prime number)로 주어질 수 있다. 루트 인덱스 q인 ZC 시퀀스는 수학식 4에 의해 정의될 수 있다.
수학식 3
Figure PCTKR2016000581-appb-M000003
위 수학식에서 q는 아래의 수학식에 의해서 주어질 수 있다.
수학식 4
Figure PCTKR2016000581-appb-M000004
참조 신호 시퀀스의 길이가 3Nsc RB 이하인 경우, 기본 시퀀스는 아래 수학식 에 의해서 정의될 수 있다.
수학식 5
Figure PCTKR2016000581-appb-M000005
아래의 표는 Msc RS=Nsc RB일 때 φ(n)을 정의한 예시이다.
표 1
φ(0),...,φ(11)
0 -1 1 3 -3 3 3 1 1 3 1 -3 3
1 1 1 3 3 3 -1 1 -3 -3 1 -3 3
2 1 1 -3 -3 -3 -1 -3 -3 1 -3 1 -1
3 -1 1 1 1 1 -1 -3 -3 1 -3 3 -1
4 -1 3 1 -1 1 -1 -3 -1 1 -1 1 3
5 1 -3 3 -1 -1 1 1 -1 -1 3 -3 1
6 -1 3 -3 -3 -3 3 1 -1 3 3 -3 1
7 -3 -1 -1 -1 1 -3 3 -1 1 -3 3 1
8 1 -3 3 1 -1 -1 -1 1 1 3 -1 1
9 1 -3 -1 3 3 -1 -3 1 1 1 1 1
10 -1 3 -1 1 1 -3 -3 -1 -3 -3 3 -1
11 3 1 -1 -1 3 3 -3 1 3 1 3 3
12 1 -3 1 1 -3 1 1 1 -3 -3 -3 1
13 3 3 -3 3 -3 1 1 3 -1 -3 3 3
14 -3 1 -1 -3 -1 3 1 3 3 3 -1 1
15 3 -1 1 -3 -1 -1 1 1 3 1 -1 -3
16 1 3 1 -1 1 3 3 3 -1 -1 3 -1
17 -3 1 1 3 -3 3 -3 -3 3 1 3 -1
18 -3 3 1 1 -3 1 -3 -3 -1 -1 1 -3
19 -1 3 1 3 1 -1 -1 3 -3 -1 -3 -1
20 -1 -3 1 1 1 1 3 1 -1 1 -3 -1
21 -1 3 -1 1 -3 -3 -3 -3 -3 1 -1 -3
22 1 1 -3 -3 -3 -3 -1 3 -3 1 -3 3
23 1 1 -1 -3 -1 -3 1 -1 1 3 -1 1
24 1 1 3 1 3 3 -1 1 -1 -3 -3 1
25 1 -3 3 3 1 3 3 1 -3 -1 -1 3
26 1 3 -3 -3 3 -3 1 -1 -1 3 -1 -3
27 -3 -1 -3 -1 -3 3 1 -1 1 3 -3 -3
28 -1 3 -3 3 -1 3 3 -3 3 3 -1 -1
29 3 -3 -3 -1 -1 -3 -1 3 -3 3 1 -1
아래의 표는 Msc RS=2*Nsc RB일 때 φ(n)을 정의한 예시이다.
표 2
φ(0),..,φ(23)
0 -1 3 1 -3 3 -1 1 3 -3 3 1 3 -3 3 1 1 -1 1 3 -3 3 -3 -1 -3
1 -3 3 -3 -3 -3 1 -3 -3 3 -1 1 1 1 3 1 -1 3 -3 -3 1 3 1 1 -3
2 3 -1 3 3 1 1 -3 3 3 3 3 1 -1 3 -1 1 1 -1 -3 -1 -1 1 3 3
3 -1 -3 1 1 3 -3 1 1 -3 -1 -1 1 3 1 3 1 -1 3 1 1 -3 -1 -3 -1
4 -1 -1 -1 -3 -3 -1 1 1 3 3 -1 3 -1 1 -1 -3 1 -1 -3 -3 1 -3 -1 -1
5 -3 1 1 3 -1 1 3 1 -3 1 -3 1 1 -1 -1 3 -1 -3 3 -3 -3 -3 1 1
6 1 1 -1 -1 3 -3 -3 3 -3 1 -1 -1 1 -1 1 1 -1 -3 -1 1 -1 3 -1 -3
7 -3 3 3 -1 -1 -3 -1 3 1 3 1 3 1 1 -1 3 1 -1 1 3 -3 -1 -1 1
8 -3 1 3 -3 1 -1 -3 3 -3 3 -1 -1 -1 -1 1 -3 -3 -3 1 -3 -3 -3 1 -3
9 1 1 -3 3 3 -1 -3 -1 3 -3 3 3 3 -1 1 1 -3 1 -1 1 1 -3 1 1
10 -1 1 -3 -3 3 -1 3 -1 -1 -3 -3 -3 -1 -3 -3 1 -1 1 3 3 -1 1 -1 3
11 1 3 3 -3 -3 1 3 1 -1 -3 -3 -3 3 3 -3 3 3 -1 -3 3 -1 1 -3 1
12 1 3 3 1 1 1 -1 -1 1 -3 3 -1 1 1 -3 3 3 -1 -3 3 -3 -1 -3 -1
13 3 -1 -1 -1 -1 -3 -1 3 3 1 -1 1 3 3 3 -1 1 1 -3 1 3 -1 -3 3
14 -3 -3 3 1 3 1 -3 3 1 3 1 1 3 3 -1 -1 -3 1 -3 -1 3 1 1 3
15 -1 -1 1 -3 1 3 -3 1 -1 -3 -1 3 1 3 1 -1 -3 -3 -1 -1 -3 -3 -3 -1
16 -1 -3 3 -1 -1 -1 -1 1 1 -3 3 1 3 3 1 -1 1 -3 1 -3 1 1 -3 -1
17 1 3 -1 3 3 -1 -3 1 -1 -3 3 3 3 -1 1 1 3 -1 -3 -1 3 -1 -1 -1
18 1 1 1 1 1 -1 3 -1 -3 1 1 3 -3 1 -3 -1 1 1 -3 -3 3 1 1 -3
19 1 3 3 1 -1 -3 3 -1 3 3 3 -3 1 -1 1 -1 -3 -1 1 3 -1 3 -3 -3
20 -1 -3 3 -3 -3 -3 -1 -1 -3 -1 -3 3 1 3 -3 -1 3 -1 1 -1 3 -3 1 -1
21 -3 -3 1 1 -1 1 -1 1 -1 3 1 -3 -1 1 -1 1 -1 -1 3 3 -3 -1 1 -3
22 -3 -1 -3 3 1 -1 -3 -1 -3 -3 3 -3 3 -3 -1 1 3 1 -3 1 3 3 -1 -3
23 -1 -1 -1 -1 3 3 3 1 3 3 -3 1 3 -1 3 -1 3 3 -3 3 1 -1 3 3
24 1 -1 3 3 -1 -3 3 -3 -1 -1 3 -1 3 -1 -1 1 1 1 1 -1 -1 -3 -1 3
25 1 -1 1 -1 3 -1 3 1 1 -1 -1 -3 1 1 -3 1 3 -3 1 1 -3 -3 -1 -1
26 -3 -1 1 3 1 1 -3 -1 -1 -3 3 -3 3 1 -3 3 -3 1 -1 1 -3 1 1 1
27 -1 -3 3 3 1 1 3 -1 -3 -1 -1 -1 3 1 -3 -3 -1 3 -3 -1 -3 -1 -3 -1
28 -1 -3 -1 -1 1 -3 -1 -1 1 -1 -3 1 1 -3 1 -3 -3 3 1 1 -1 3 -1 -1
29 1 1 -1 -1 -3 -1 3 -1 3 -1 1 3 1 -1 3 1 3 -3 -3 1 -1 -1 1 3
참조 신호의 홉핑은 다음과 같이 적용될 수 있다.
슬롯 ns의 시퀀스 그룹 번호 u는 아래의 수학식에 의해서 그룹 홉핑 패턴 fgh(ns)와 시퀀스 쉬프트 패턴 fss를 기반으로 정의될 수 있다.
수학식 6
Figure PCTKR2016000581-appb-M000006
17개의 서로 다른 그룹 홉핑 패턴과 30개의 서로 다른 시퀀스 쉬프트 패턴이 존재할 수 있다. 그룹 홉핑은 상위 계층에 의해 제공되는 셀 특정 파라미터인 Group-hopping-enabled 파라미터에 의해서 적용되거나 적용되지 않을 수 있다. 또한, PUSCH를 위한 그룹 홉핑은 단말 특정 파라미터인 Disable-sequence-group-hopping 파라미터에 의해서 특정 UE에 대해서는 적용되지 않을 수 있다. PUCCH와 PUSCH는 같은 그룹 홉핑 패턴을 가질 수 있고, 서로 다른 시퀀스 쉬프트 패턴을 가질 수 있다.
그룹 홉핑 패턴 fgh(ns)는 PUSCH와 PUCCH에 대해 동일하며, 아래의 수학식 에 의해서 정의될 수 있다.
수학식 7
Figure PCTKR2016000581-appb-M000007
위 수학식에서 c(i)는 PN 시퀀스인 모조 임의 시퀀스(pseudo-random sequence)로, 길이-31의 골드(Gold) 시퀀스에 의해 정의될 수 있다. 아래의 수학식 은 골드 시퀀스 c(n)의 일 예를 나타낸다.
수학식 8
Figure PCTKR2016000581-appb-M000008
여기서, Nc=1600이고, x1(i)은 제1 m-시퀀스이고, x2(i)는 제2 m-시퀀스이다. 모조 임의 시퀀스 생성기는 각 무선 프레임의 처음에서
Figure PCTKR2016000581-appb-I000001
로 초기화될 수 있다.
시퀀스 쉬프트 패턴 fss의 정의는 PUCCH와 PUSCH에 대해서 서로 다를 수 있다. PUCCH의 시퀀스 쉬프트 패턴 fss PUCCH=NID cell mod 30으로 주어질 수 있다. PUSCH의 시퀀스 쉬프트 패턴 fss PUSCH=(fss PUCCHss) mod 30으로 주어질 수 있으며, Δss∈{0,1, ,29}는 상위 계층에 의해서 구성될 수 있다.
시퀀스 홉핑은 길이가 6Nsc RB보다 긴 참조 신호 시퀀스에만 적용될 수 있다. 길이가 6Nsc RB보다 짧은 참조 신호 시퀀스에 대해서, 기본 시퀀스 그룹 내에서의 기본 시퀀스 번호 v=0으로 주어진다. 길이가 6Nsc RB보다 긴 참조 신호 시퀀스에 대해서, 슬롯 ns에서 기본 시퀀스 그룹 내에서의 기본 시퀀스 번호 v는 수학식 10에 의해 정의될 수 있다.
수학식 9
Figure PCTKR2016000581-appb-M000009
c(i)는 위 수학식 8의 예시에 의해서 표현될 수 있다. 시퀀스 홉핑은 상위 계층에 의해 제공되는 셀 특정 파라미터인 Sequence-hopping-enabled 파라미터에 의해서 적용되거나 적용되지 않을 수 있다. 또한, PUSCH를 위한 시퀀스 홉핑은 단말 특정 파라미터인 Disable-sequence-group-hopping 파라미터에 의해서 특정 UE에 대해서는 적용되지 않을 수 있다. 모조 임의 시퀀스 생성기는 각 무선 프레임의 처음에서
Figure PCTKR2016000581-appb-I000002
로 초기화될 수 있다.
레이어 λ(0,1,...,γ-1)에 따른 PUSCH DMRS 시퀀스 rPUSCH (λ)(.)는 수학식 11에 의해서 정의될 수 있다.
수학식 10
Figure PCTKR2016000581-appb-M000010
위 수학식에서 m=0,1,…이며, n=0,..., Msc RS-1이다. Msc RS=Msc PUSCH이다. 직교 시퀀스(orthogonal sequence) w(λ)(m)는 후술하는 표에 따라 결정될 수 있다.
슬롯 ns에서 순환 쉬프트 α=2πncs/12로 주어지며, ncs는 아래의 수학식에 의해서 정의될 수 있다.
수학식 11
Figure PCTKR2016000581-appb-M000011
위 수학식에서 n(1) DMRS는 상위 계층에 의해 제공되는 cyclicShift 파라미터에 따라 결정될 수 있다. 아래의 표는 cyclicShift 파라미터에 따라 결정되는 n(1) DMRS의 예시를 나타낸다.
표 3
Parameter n(1) DMRS
0 0
1 2
2 3
3 4
4 6
5 8
6 9
7 10
다시 위 수학식에서 n(2) DMRS,λ는 대응되는 PUSCH 전송에 따른 전송 블록을 위한 DCI 포맷 0 내의 DMRS 순환 쉬프트 필드(cyclic shift field)에 의해서 결정될 수 있다. 아래의 표는 상기 DMRS 순환 쉬프트 필드에 따라 결정되는 n(2) DMRS,λ의 예시이다.
표 4
n(2) DMRS,λ [w(λ)(0) w(λ)(1)]
DMRS 순환 쉬프트 필드 λ=0 λ=1 λ=2 λ=3 λ=0 λ=1 λ=2 λ=3
000 0 6 3 9 [1 1] [1 1] [1 -1] [1 -1]
001 6 0 9 3 [1 -1] [1 -1] [1 1] [1 1]
010 3 9 6 0 [1 -1] [1 -1] [1 1] [1 1]
011 4 10 7 1 [1 1] [1 1] [1 1] [1 1]
100 2 8 5 11 [1 1] [1 1] [1 1] [1 1]
101 8 2 11 5 [1 -1] [1 -1] [1 -1] [1 -1]
110 10 4 1 7 [1 -1] [1 -1] [1 -1] [1 -1]
111 9 3 0 6 [1 1] [1 1] [1 -1] [1 -1]
nPN(ns)는 아래의 수학식에 의해서 정의될 수 있다.
수학식 12
Figure PCTKR2016000581-appb-M000012
c(i)는 위 수학식 8의 예시에 의해서 표현될 수 있으며, c(i)의 셀 별로(cell-specific) 적용될 수 있다. 모조 임의 시퀀스 생성기는 각 무선 프레임의 처음에서
Figure PCTKR2016000581-appb-I000003
로 초기화될 수 있다.
참조 신호의 벡터(vector)는 아래의 수학식에 의해서 프리코딩 될 수 있다.
수학식 13
Figure PCTKR2016000581-appb-M000013
위 수학식에서, P는 PUSCH 전송을 위하여 사용되는 안테나 포트의 개수이다. W는 프리코딩 행렬이다. 단일 안테나 포트를 사용하는 PSUCH 전송에 대하여 P=1, W=1, γ=1이다. 또한, 공간 다중화(spatial multiplexing)에 대하여 P=2 또는 4이다.
PUSCH 전송에 사용되는 각 안테나 포트에 대하여, DMRS 시퀀스는 진폭 스케일링 인자(amplitude scaling factor) βPUSCH와 곱해지고, 자원 블록에 순서대로 맵핑된다. 맵핑 시에 사용되는 물리 자원 블록의 집합은 대응되는 PUSCH 전송에 사용되는 물리 자원 블록의 집합과 동일하다. 서브프레임 내에서 상기 DMRS 시퀀스는 먼저 주파수 영역에서 증가하는 방향으로, 그리고 슬롯 번호가 증가하는 방향으로 자원 요소에 맵핑될 수 있다. DMRS 시퀀스는 노멀 CP인 경우 4번째 SC-FDMA 심벌(SC-FDMA 심벌 인덱스 3), 확장 CP인 경우 3번째 SC-FDMA 심벌(SC-FDMA 심벌 인덱스 2)에 맵핑될 수 있다.
도 6a 및 도 6b는 PUSCH를 위한 DMRS가 전송되는 서브프레임의 구조의 일 예이다.
도 6a의 서브프레임의 구조는 노멀 CP의 경우를 나타낸다. 서브프레임은 제1 슬롯과 제2 슬롯을 포함한다. 제1 슬롯과 제2 슬롯 각각은 7 SC-FDMA 심벌을 포함한다. 서브프레임 내 14 SC-FDMA 심벌은 0부터 13까지 심벌 인덱스가 매겨진다. 심벌 인덱스가 3 및 10인 SC-FDMA 심벌을 통해 기준 신호가 전송될 수 있다. 기준 신호는 시퀀스를 이용하여 전송될 수 있다. 기준 신호 시퀀스로 ZC(Zadoff-Chu) 시퀀스가 사용될 수 있으며, 루트 인덱스(root index)와 순환 쉬프트(cyclic shift) 값에 따라 다양한 ZC 시퀀스가 생성될 수 있다. 기지국은 단말에게 서로 다른 순환 쉬프트(CS) 값을 할당하여 직교 시퀀스(orthogonal sequence) 또는 준직교(quasi-orthogonal) 시퀀스를 통해 복수의 단말의 채널을 추정할 수 있다. 상기 서브프레임 내의 2개의 슬롯에서 기준 신호가 차지하는 주파수 영역의 위치는 서로 동일할 수도 있고 다를 수도 있다. 2개의 슬롯에서는 동일한 기준 신호 시퀀스가 사용된다. 기준 신호가 전송되는 SC-FDMA 심벌을 제외한 나머지 SC-FDMA 심벌을 통해 데이터가 전송될 수 있다.
도 6b의 서브프레임의 구조는 확장 CP의 경우를 나타낸다. 서브프레임은 제1 슬롯과 제2 슬롯을 포함한다. 제1 슬롯과 제2 슬롯 각각은 6 SC-FDMA 심벌을 포함한다. 서브프레임 내 12 SC-FDMA 심벌은 0부터 11까지 심벌 인덱스가 매겨진다. 심벌 인덱스가 2 및 8인 SC-FDMA 심벌을 통해 기준 신호가 전송된다. 기준 신호가 전송되는 SC-FDMA 심벌을 제외한 나머지 SC-FDMA 심벌을 통해 데이터가 전송된다.
<D2D(Device to Device) 통신>
다른 한편, 이하에서는 차세대 통신 시스템에서 도입될 것으로 기대되는 D2D 통신에 대해서 설명하기로 한다.
도 7은 차세대 통신 시스템에서 도입될 것으로 기대되는 D2D(Device to Device) 통신의 개념을 나타낸다.
SNS(Social Network Service)에 대한 사용자 요구사항의 증가로 인해 물리적으로 가까운 거리의 UE들 사이의 통신, 즉 D2D(Device to Device) 통신이 요구되고 있다.
전술한 요구 사항을 반영하기 위해서 도 7에 도시된 바와 같이, UE#1(100-1), UE#2(100-2), UE#3(100-3) 간에 또는 UE#4(100-4), UE#5(100-5), UE#6(100-6) 간에 기지국(eNodeB)(200)의 개입 없이 직접적으로 통신을 할 수 있도록 하는 방안이 논의 되고 있다. 물론, 기지국(eNodeB)(200)의 도움 하에 UE#1(100-1)와 UE#4(100-4) 간에 직접적으로 통신을 할 수 있다. 한편, UE#4(100-4)는 UE#5(100-5), UE#6(100-6)를 위해 중계기로서의 역할을 수행할 수도 있다. 마찬가지로, UE#1(100-1)는 셀 중심에서 멀리 떨어져 있는 UE#2(100-2), UE#3(100-3)를 위해 중계기로서의 역할을 수행할 수도 있다.
한편, 상기 D2D 통신에 사용되는 UE간의 링크를 사이드링크(Sidelink)라고 부르기도 한다.
상가 사이드링크에 사용되는 물리 채널은 다음과 같은 것들이 있다.
- PSSCH(Physical Sidelink Shared Channel)
- PSCCH(Physical Sidelink Control Channel)
- PSDCH(Physical Sidelink Discovery Channel)
- PSBCH(Physical Sidelink Broadcast Channel)
이상과 같이 차기 시스템에서는 UE간의 D2D 통신이 도입될 것으로 논의되고 있다.
도 8은 PSDCH의 전송을 위한 신호 처리 과정을 나타낸다.
도 8을 참조하면, 스크램블링(scrambling) 유닛, 변조 맵퍼(Modulation Mapper), 레이어 맵퍼(Layer Mapper), 변환 프리코더(transform precoder), 프리코딩(precoding) 유닛, 자원요소 맵퍼(resource element mapper) 및 SC-FDMA 신호 생성 유닛을 포함한다. 스크램블링 유닛은 입력되는 코드워드, 즉 b(0),…,b(Mbit-1) 비트들의 블록에 대해 스크램블링을 수행한다. 변조 맵퍼는 스크램블링된 코드워드를 신호 성상 상의 위치를 표현하는 변조심볼로 배치한다. 자원요소 맵퍼는 프리코딩 유닛으로부터 출력되는 심볼을 자원요소에 맵핑시킨다.
도 8을 참조하여 동작을 설명하면, 입력되는 코드워드, 즉 b(0),…,b(Mbit-1) 비트들의 블록은 스크램블링 유닛에 의해 스크램블링된 후, 변조 맵퍼에 의한 변조, 레이어 맵퍼에 의한 레이어 맵핑, 프리코딩, 자원 요소 맵퍼에 의한 자원 요소 맵핑을 거쳐 SC-FDMA 신호로 생성된 후 안테나를 통해 전송된다. 상기 자원 요소 맵퍼는 도시된 프리코딩 유닛으로부터 출력되는 심볼을 자원요소에 맵핑시킨다.
PSDCH를 스크램블링하는데 사용되는 스크램블링 시퀀스는 수학식 8과 같이 생성되고, 스크램블링 시퀀스의 생성기는 Cinit=510으로 초기화된다.
PSDCH는 QPSK로 변조된다.
도 9는 도 7에 도시된 기지국의 커버리지 밖에 위치하는 UE#2이 UE#1와 D2D 통신의 예를 나타낸다.
도 9를 참조하면, UE#2(100-2)이 도 7에 도시된 바와 같이 기지국의 커버리지 밖에 위치할 때, 커버리지 안에 위치하는 UE#1(100-1)와 통신하는 예를 나타낸다. 이때, 상기 UE#2(100-2)은 기지국의 커버리지 밖에 위치하므로, D2D 통신을 기지국으로 릴레이(relay)할 수 있는 UE를 찾고자 한다.
먼저, UE#1(100-1)는 D2D 통신을 위해 주변에 적합한 UE가 존재하는지 탐지하기 위하여, 혹은 상기 UE#1(100-1)는 자신의 존재를 알리기 위하여, 탐지 신호(Discovery Signal)를 PSDCH를 통해 전송할 수 있다. 또한, 상기 UE#1(100-1)는 상기 PSDCH의 복조를 위해 DMRS를 전송할 수 있다. 이때, 상기 DMRS는 수학식 1 내지 수학식 12을 이용하여 설명한 PUSCH를 위한 DMRS와 동일하게 생성되고, 도 6 및 도 6b와 같이 서브프레임 내의 심볼에 매핑될 수 있다.
한편, 또한, 상기 UE#1(100-1)는 스케줄링 할당(scheduling assignment: SA)를 PSCCH를 통해 전송하고, 상기 PSCCH의 복조를 위한 DMRS를 전송할 수 있다. 그리고, 상기 UE#1(100-1)는 상기 스케줄링 할당(SA)에 기초하여, 데이터를 포함하는 PSSCH를 전송하고, 상기 PSSCH의 복조를 위한 DMRS를 전송할 수 있다.
여기서, 상기 탐지 신호를 포함하는 PSDCH, 스케줄링 할당(SA)를 포함하는 PSCCH, DMRS를 위해서 사용되는 파라미터는 다음과 같다.
표 5
스크램블링 DMRS 베이스 시퀀스 DMRS
Cell ID RNTI 슬롯 넘버 코드워드 인덱스 그룹 호핑 시퀀스 호핑 델타 쉬프트 Cell ID CS OCC
탐지 신호 510 UE ID와 무관하게 0으로 고정 UE ID와 무관하게 0으로 고정 0으로 고정 Disable Disable 0 510 0 [1 1] 고정
스케줄링 할당(SA) 510 UE ID와 무관하게 0으로 고정 UE ID와 무관하게 0으로 고정 0으로 고정 Disable Disable 0 510 0 [1 1] 고정
데이터 510 SA ID 0으로 고정 Enable Enable 0 510 비트 1, 2, 3 비트 0
한편, 상기 UE#2(100-2)은 상기 DMRS에 기초하여 상기 탐지 신호를 포함하는 PSDCH를 복호하고, 상기 탐지 신호에 기초하여 PSCCH를 수신한 다음 상기 PSSCH를 통해 수신된 데이터를 판독하고 나서야, 비로서 상기 UE#1(100-1)이 상기 기지국의 커버리지 내에 위치하는지 아니면 밖에 위치하는지, 그리고 상기 UE#1(100-1)가 상기 기지국의 커버리지 내에 위치하는 경우 D2D 통신을 기지국으로 릴레이(relay)할 수 있는지를 알 수 있게 된다.
이와 같이, 상기 UE#2(100-2)가 상기 UE#5(100-1)는 상기 기지국의 커버리지 내에 위치하는지 그리고 D2D 통신을 기지국으로 릴레이(relay)할 수 있는지를 알 수 있게 되기 까지는, 상당한 시간이 걸리게 된다.
한편, 도시되지는 않았으나, UE#2(100-2)도 탐지 신호와, 스케줄링 할당(SA)를 포함하는 PSCCH, 그리고 데이터를 포함하는 PSSCH를 상기 UE#1(100-1)으로 전송할 수 있다. 이 경우, 상기 UE#1(100-1)는 기지국의 커버리지 내에 위치하고 그리고 D2D 통신을 기지국으로 릴레이(relay)할 수 있음에도, 상기 PSSCH를 통해 수신되는 데이터를 복호해야지만, 상기 UE#2(100-2)이 기지국의 커버리지 밖에 위치하는지를 비로소 알게 되고, 그제서야 자신이 UE#2(100-2)를 위해 릴레이로 동작할지를 결정할 수 있게 된다. 이와 같이, UE#1(100-2)가 릴레이로 동작하기로 결정하는 데에 까지, 상당한 시간이 걸리게 된다.
<본 명세서의 개시>
따라서, 본 명세서의 개시들은 전술한 문제점을 해결하기 위한 방안을 제공하는 것을 목적으로 한다. 즉, 본 명세서의 개시들은 D2D 환경에서 인접한 UE가 기지국의 커버리지 내에 위치하는 지, 위치하는 경우 릴레이로 동작가능한지를 신속하고, 효율적으로 알 수 있게 하는 방안을 제시하는 것을 목적으로 한다. 또한, 본 명세서의 개시들은 기지국의 커버리지 내에 위치하는 UE가 인접한 UE와의 D2D 통신을 기지국으로 릴레이하는 릴레이로서 동작할지 여부를 결정하는 것을 신속하고, 효율적으로 할 수 있게 하는 방안을 제시하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여, 본 명세서의 제1 개시는 인접하는 UE가 커버리지 내에 위치하는지 커버리지 밖에 위치하는지를 탐지 신호 및 DMRS 중 어느 하나를 통해, 신속하게 알 수 있게 하는 방안을 제시한다. 예를 들어, UE#2(100-2)가 커버리지 밖에 위치 할 때, UE#1(100-1)로부터 수신되는 탐지 신호 및 DMRS 중 어느 하나를 통해 UE#1(100-1)가 커버리지 내에 위치한다는 것을 알았다면, UE#1(100-1)에게 중계 역할을 해달라고 요구할 수 있다. 또한, UE#1(100-1)이 커버리지 내에 위치할 때, UE#2(100-2)로부터 수신되는 탐지 신호를 통해 상기 UE#2(100-2)가 커버리지 밖에 위치하는 것을 알게 된다면, 기지국에게 커버리지 밖에 위치한 UE#2를 발견했음을 보고하고, UE#1(100-1)이 UE#2(100-2)를 위한 중계역할을 할 수 있음을 보고 할 수 있다.
또한, 전술한 목적을 달성하기 위하여, 본 명세서의 제2 개시는 인접하는 UE가 기지국의 커버리지 내에 위치하고 있어 릴레이로 동작할 수 있는지 여부를 탐지 신호 및 DMRS 중 어느 하나를 통해 신속하게 알 수 있게 하는 방안을 제시한다.
I. 제1 개시: 커버리지 내에 위치하는 UE와 커버리지 밖에 위치하는 UE의 구별 방안
본 명세서의 제1 개시는 인접하는 UE가 커버리지 내에 위치하는지 커버리지 밖에 위치하는지를 탐지 신호 및 DMRS 중 어느 하나를 통해, 신속하게 알 수 있게 하는 방안들을 제시한다.
I-1. 제1 개시의 제1 방안: 스크램블링 시퀀스를 이용한 구별 방안
앞서 설명한 바와 같이, PSDCH를 스크램블링하는데 사용되는 스크램블링 시퀀스는 수학식 8과 같이 생성되고, 스크램블링 시퀀스의 생성기는 표 5에 나타난 바와 같이 Cinit=510으로 초기화된다.
그러나, 제1 방안은 스크램블링 시퀀스의 생성기는 다음과 같은 Cinit에 의해 초기화 될 것을 제안한다.
수학식 14
Figure PCTKR2016000581-appb-M000014
여기서, 상기 Ncell ID는 셀 ID(cell ID)를 나타내고, nS는 슬롯 번호를 나타내고, q는 코드워드 번호의 인덱스를 나타내고, nRNTI는 무선 네트워크 임시 식별자(radio network temporary identifier: RNTI)를 나타낸다.
따라서, 제1 방안은 i) 셀 ID, ii) RNTI, iii) 슬롯 번호, iv) 코드워드 번호 인덱스 중 하나 이상 파라미터의 조합을 통하여, 커버리지 내에 위치하는 UE와 커버리지 밖에 위치하는 UE를 구별할 수 있도록 하는 것을 제안한다.
상기 스크램블링 시퀀스의 초기화에 사용되는 파라미터에 대해서 구체적인 실시예들을 설명하면 다음과 같다.
예시적인 제1 실시예로서, 상기 RNTI을 이용하면, 기존에는 표 5에서와 같이 모든 UE가 RNTI를 동일한 값인 0을 갖도록 설정했으나, 예시적인 제1 실시예에서는 커버리지 내에 위치하는 UE(in coverage UE)의 RNTI와 커버리지 밖에 위치하는 UE(out coverage UE)의 RNTI를 서로 다른 값을 갖도록 설정하는 것이다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1,..., 216-1}) 중에서, 커버리지 내에 위치하는 UE(in coverage UE)는 a 값인 RNTI를 사용하도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)는 b 값인 RNTI를 사용하도록 설정하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)의 RNTI는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 RNTI는 1을 갖도록 설정할 수도 있다. 혹은 반대로 커버리지 내에 위치하는 UE(in coverage UE)는 RNTI로서 1을 사용하도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)는 RNTI로서 0을 사용하도록 설정할 수도 있다.
예시적인 제2 실시예로서, 슬롯 번호를 이용하면, 표 5를 참조하여 알 수 있는 바와 같이 기존에는 모든 UE가 슬롯 번호를 동일한 값인 0을 갖도록 설정했으나, 제2 실시예는 커버리지 내에 위치하는 UE(in coverage UE)의 슬롯 번호와 커버리지 밖에 위치하는 UE(out coverage UE)의 슬롯 번호가 서로 다른 값을 갖도록 설정하는 것을 제안한다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1,...19}) 중에서, 커버리지 내에 위치하는 UE(in coverage UE)는 a값이 슬롯 번호를 사용하도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)는 b 값의 슬롯 번호를 사용하도록 설정하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)의 슬롯 번호는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 슬롯 번호는 1을 갖도록 설정할 수도 있다. 혹은 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 슬롯 번호는 1을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 슬롯 번호는 0을 갖도록 설정할 수도 있다. 추가적으로 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)의 슬롯 번호가 0이 아니라면, 커버리지 내에 위치하는 UE(in coverage UE)의 슬롯 번호는 현재 D2D 슬롯 번호의 값을 사용하도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 슬롯 번호는 0을 갖도록 설정할 수 있다. 혹은 커버리지 내에 위치하는 UE(in coverage UE)의 슬롯 번호가 0이라면, 커버리지 내에 위치하는 UE(in coverage UE)의 슬롯 번호는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 슬롯 번호는 현재 D2D 슬롯 번호의 값을 사용하도록 설정할 수 있다.
예시적인 제3 실시예로서, 코드워드 번호 인덱스를 이용하면, 기존에는 표 5를 참조하여 알 수 있는 바와 같이 모든 UE가 코드워드 번호 인덱스를 동일한 값인 0을 갖도록 설정했으나, 제3 실시예은 커버리지 내에 위치하는 UE(in coverage UE)의 코드워드 번호 인덱스와 커버리지 밖에 위치하는 UE(out coverage UE)의 코드워드 번호 인덱스를 서로 다른 값을 갖도록 설정하는 것이다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1}) 중에서커버리지 내에 위치하는 UE(in coverage UE)는 a 값인 코드워드 번호 인덱스를 사용하도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)는 b 값인 코드워드 번호 인덱스를 사용하도록 설정하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)의 코드워드 번호 인덱스는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 코드워드 번호 인덱스는 1을 갖도록 설정할 수도 있고, 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 코드워드 번호 인덱스는 1을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 코드워드 번호 인덱스는 0을 갖도록 설정할 수도 있다.
예시적인 제4 실시예로서, 상기 셀 ID, RNTI, 슬롯 번호, 코드워드 번호 인덱스 중 둘 이상의 조합을 사용하여, 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)를 구별할 수 있다. 즉, 미리 설정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1,..., 28-1}) 그리고 서로 다른 값인 c와 d(여기서 c,d ∈ {0,1,..., 216-1}) 중에서 커버리지 내에 위치하는 UE(in coverage UE)는 셀 ID로서 a값을 사용하고 RNTI로서 c 값을 사용하도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)는 셀 ID로서 b값을 사용하고 RNTI로서 d값을 사용하도록 설정하는 것이다. 구체적인 일례로는 커버리지 내에 위치하는 UE(in coverage UE)의 셀 ID는 510, RNTI는 0을 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 셀 ID는 511, RNTI는 1을 갖도록 설정할 수 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 셀 ID는 511, RNTI는 1을 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 셀 ID는 510, RNTI는 0을 갖도록 설정할 수도 있다.
I-2. 제1 개시의 제2 방안: DMRS 기본 시퀀스를 이용한 구별 방법
앞서 설명한 바와 같이 D2D 통신(예컨대, PSDCH, PSSCH 등)에 사용되는 DMRS는 PUSCH의 DMRS와 동일하게 생성된다. 즉, D2D 통신(예컨대, PSDCH, PSSCH 등)을 위한 DMRS는 수학식 1 내지 수학식 12을 이용하여 설명한 PUSCH를 위한 DMRS와 동일하게 생성되고, 도 6 및 도 6b와 같이 서브프레임 내의 심볼에 매핑될 수 있다. 여기서, DMRS의 기본 시퀀스를 생성할 때 고려하는 변수는 i) 시퀀스 호핑, ii) 그룹 호핑, iii) 델타 쉬프트, iv) 셀 ID이다. D2D 통신(예컨대, PSDCH, PSSCH 등)을 위한 DMRS에서는 PUSCH의 DMRS와 다르게 이러한 변수에 대해서 표 5와 같이 사용한다.
그러나, 제2 방안은 상기 i 내지 iv 변수들 중 하나 이상을 표 5와 다르게 설정함으로써, 커버리지 내에 위치하는 UE와 커버리지 밖에 위치하는 UE를 구별할 수 있도록 하는 것을 제안한다.
상기 i 내지 iv 변수들 중 하나 이상을 사용하여 커버리지 내에 위치하는 UE와 커버리지 밖에 위치하는 UE를 구별하는 방안대해서 구체적인 실시예들을 설명하면 다음과 같다.
예시적인 제1 실시예로서, 시퀀스 호핑을 사용할 수 있다. 표 5을 참조하여 알 수 있는 바와 같이 기존에는 모든 UE의 시퀀스 호핑이 disabled가 되도록 설정되었다. 즉, 수학식 9에서 v로 정의되는 기본 시퀀스 번호가 0을 갖도록 설정했다. 그러나, 제1 실시예는 커버리지 내에 위치하는 UE(in coverage UE)의 기본 시퀀스 번호와 커버리지 밖에 위치하는 UE(out coverage UE)의 기본 시퀀스 번호가 서로 다른 값을 갖도록 설정하는 것을 제안한다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1}) 중에서, 커버리지 내에 위치하는 UE(in coverage UE)의 기본 시퀀스 번호는 a를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 기본 시퀀스 번호는 b를 갖도록 설정하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)의 기본 시퀀스 번호는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 기본 시퀀스 번호는 1을 갖도록 설정할 수도 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 기본 시퀀스 번호는 1을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 기본 시퀀스 번호는 0을 갖도록 설정할 수도 있다.
도 10은 본 명세서의 제1 개시 중 제2 방안에 대한 제1 실시예을 나타낸 예시도이다.
도 10을 참조하여 알 수 있는 바와 같이, UE#1(100-1)는 PSDCH의 복조를 위한 DMRS의 기본 시퀀스 번호로서, 커버리지 내에 위치함을 나타내는 값을 사용하여 DMRS를 생성한다. 이어서, 상기 UE#1(100-1)는 탐지 신호를 포함하는 PDSCH와 상기 PSDCH의 복조를 위한 DMRS를 전송한다. 그러면, 상기 UE#2(100-2)는 상기 UE#1(100-1)로부터의 수신된 DMRS에 사용된 기본 시퀀스 번호가 무엇인지를 블라인드 검출(blind detection)한다. 그러면, 상기 UE#2(100-2)는 상기 기본 시퀀스 번호에 기초하여 상기 UE#1(100-1)이 커버리지 내에 위치함을 알아낼 수 있다.
마찬가지로, UE#2(100-2)는 PSDCH의 복조를 위한 DMRS의 기본 시퀀스 번호로서, 커버리지 밖에 위치함을 나타내는 값을 사용하여 DMRS를 생성한다. 이어서, 상기 UE#2(100-2)는 탐지 신호를 포함하는 PDSCH와 상기 PSDCH의 복조를 위한 DMRS를 전송한다. 그러면, 상기 UE#1(100-1)는 상기 UE#2(100-2)로부터의 수신된 DMRS에 사용된 기본 시퀀스 번호가 무엇인지를 블라인드 검출(blind detection)한다. 그러면, 상기 UE#1(100-1)는 상기 기본 시퀀스 번호에 기초하여 상기 UE#2(100-2)이 커버리지 밖에 위치함을 알아낼 수 있다.
도 10에서 상기 PSDCH와 상기 PSDCH의 복조를 위한 DMRS는 각기 별도로 전송되는 것으로 도시되었으나, 이는 어디까지나 도면의 작성 편의를 위한 것 뿐이다. 상기 PSDCH와 상기 DMRS는 하나의 D2D 서브프레임 상에서 전송될 수 있다.
다른 한편, 예시적인 제2 실시예를 설명하면 다음과 같다. 예시적인 제2 실시예는 상기 ii 그룹 호핑, iii) 델타 쉬프트, iv) 셀 ID의 조합을 이용할 수 있다. 기존에는 표 5를 참조하여 알 수 있는 바와 같이 모든 UE의 그룹 호핑이 disabled가 되도록 설정했다. 수학식 6에서 u로 정의되는 시퀀스 그룹 번호는 fgh(nS)로 정의되는 그룹 호핑 패턴과 fss로 정의되는 시퀀스 쉬프트 패턴으로 결정되는 것을 확인할 수 있다. 이들 중, 시퀀스 쉬프트 패턴은 셀 ID와 델타 쉬프트에 의해 그 값이 설정되는 것을 확인 할 수 있다. 따라서, 셀 ID와 델타 쉬프트가 고정된 값을 갖는다고 할 때, 시퀀스 그룹 번호는 그룹 호핑 패턴으로만 값이 설정된다. 그러므로, 제2 실시예는 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)가 서로 다른 그룹 호핑 패턴을 갖도록 설정하거나, 또는 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)가 동일한 그룹 호핑 패턴을 공유하지 않는 두 개의 집합 중 서로 다른 집합의 원소 값을 갖도록 설정하는 것이다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1,...,29}) 중에서 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 a를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 b를 갖도록 설정하거나 또는, 미리 정해 놓은 집합 A와 B(여기서, A ∪ B = {0,1,...,29}이고, A∩B=Ø) 중에서 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 집합 A의 원소 중 하나를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 집합 B의 원소 중 하나를 갖도록 설정하는 것이다. 구체적인 예시를 설명하면, 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 15를 갖도록 설정 할 수 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 15를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 0을 갖도록 설정할 수도 있다. 또 다른 예로는 0부터 14까지의 그룹 호핑 패턴들의 집합을 A, 15부터 29까지의 그룹 호핑 패턴들의 집합을 B로 설정하여 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 집합 A의 원소 중 하나를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 집합 B의 원소 중 하나를 갖도록 설정할 수도 있고, 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 집합 B의 원소 중 하나를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 집합 A의 원소 중 하나를 갖도록 설정할 수도 있다.
예시적인 제3 실시예로서, 델타 쉬프트 값을 사용할 수 있다. 그룹 호핑 패턴과 셀 ID가 고정된 값을 갖는다고 할 때, 시퀀스 그룹 번호는 delta shift로만 값이 설정된다. 여기서 제안하는 내용은 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)가 서로 다른 델타 쉬프트를 갖도록 설정하거나, 또는 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)가 동일한 델타 쉬프트를 공유하지 않는 두 개의 집합 중 서로 다른 집합의 원소 값을 갖도록 설정하는 것이다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1,...,29}) 중에서, 커버리지 내에 위치하는 UE(in coverage UE)의 델타 쉬프트는 a를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 델타 쉬프트는 b를 갖도록 설정할 수 있다. 또는, 미리 정해 놓은 집합 A와 B(여기서, A ∪ B = {0,1,...,29}이고, A∩B=Ø) 중에서 커버리지 내에 위치하는 UE(in coverage UE)의 델타 쉬프트는 집합 A의 원소 중 하나를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 델타 쉬프트는 집합 B의 원소 중 하나를 갖도록 설정하는 것이다. 구체적인 예를 설명하면, 커버리지 내에 위치하는 UE(in coverage UE)의 델타 쉬프트는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 델타 쉬프트는 15를 갖도록 설정 할 수 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 델타 쉬프트는 15를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 델타 쉬프트는 0을 갖도록 설정할 수도 있다. 또 다른 예로는 0부터 14까지의 델타 쉬프트들의 집합을 A로 설정하고, 15부터 29까지의 델타 쉬프트들의 집합을 B로 설정하여 커버리지 내에 위치하는 UE(in coverage UE)의 델타 쉬프트는 집합 A의 원소 중 하나를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 델타 쉬프트는 집합 B의 원소 중 하나를 갖도록 설정할 수도 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 델타 쉬프트는 집합 B의 원소 중 하나를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 델타 쉬프트는 집합 A의 원소 중 하나를 갖도록 설정할 수도 있다.
예시적인 제4 실시예로서, 상기 i 내지 iv 변수들 중에서 둘 이상의 조합을 사용할 수 있다. 즉, 미리 설정해 놓은 서로 다른 값인 a와 b(여기서, a,b ∈ {0,1,...,29}), 그리고 서로 다른 값인 c와 d(여기서 c,d ∈ {0,1,...,29}) 중에서 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 a, 델타 쉬프트는 c를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 b, 델타 쉬프트는 d를 갖도록 설정하는 것이다. 구체적인 예를 설명하면, 셀 ID가 고정된 값을 갖는다고 할 때, 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 0, 델타 쉬프트는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 15, 델타 쉬프트는 15를 갖도록 설정할 수 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 그룹 호핑 패턴은 15, 델타 쉬프트는 15를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 0, 델타 쉬프트는 0을 갖도록 설정할 수도 있다.
I-3. 제1 개시의 제3 방안: DMRS를 이용한 구별 방법
기존에는 표 5에 나타난 바와 같이 바와 DMRS를 위한 순환 쉬프트(cyclic shift: CS)를 0을 적용하고, OCC(orthogonal cover code)를 [1,1]을 사용하였다. 그러나, 제3 방안은 CS와 OCC 중 하나 이상을 표 5와 다르게 설정함으로써, 커버리지 내에 위치하는 UE와 커버리지 밖에 위치하는 UE를 구별할 수 있도록 하는 것을 제안한다.
예시적인 제1 실시예로서, CS를 사용할 수 있다. 기존에는 표 5에 나타난 바와 같이 모든 UE가 CS를 동일한 값인 0을 갖도록 설정했다. 그러나, 제1 실시예는 커버리지 내에 위치하는 UE(in coverage UE)의 CS 와 커버리지 밖에 위치하는 UE(out coverage UE)의 CS 를 서로 다른 값을 갖도록 설정한다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서,
Figure PCTKR2016000581-appb-I000004
) 중에서 커버리지 내에 위치하는 UE(in coverage UE)의 CS는 a를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 CS는 b를 갖도록 설정하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)의 CS는 0을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 CS는 π를 갖도록 설정할 수도 있고, 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 CS는 π를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 CS는 0을 갖도록 설정할 수도 있다.
예시적인 제2 실시예로서, OCC를 사용할 수 있다. 기존에는 표 5에 나타난 바와 같이 모든 UE가 OCC를 동일한 값인 [1 1]을 갖도록 설정했다. 그러나, 제2 실시예는 커버리지 내에 위치하는 UE(in coverage UE)의 OCC와 커버리지 밖에 위치하는 UE(out coverage UE)의 OCC를 서로 다른 값을 갖도록 설정하는 것이다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b∈{[1 1], [1 -1], [-1 1], [-1 -1]}) 중에서, 커버리지 내에 위치하는 UE(in coverage UE)의 OCC는 a를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 OCC는 b를 갖도록 설정하는 것이다. 구체적인 일시로서, 커버리지 내에 위치하는 UE(in coverage UE)의 OCC는 [1 1]을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 OCC는 [1 -1]을 갖도록 설정할 수 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 OCC는 [1 -1]을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 OCC는 [1 1]을 갖도록 설정할 수도 있다.
예시적인 제3 실시예로서, CS와 OCC의 조합을 사용하여, 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)를 구별할 수 있다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서,
Figure PCTKR2016000581-appb-I000005
)와 그리고 서로 다른 값인 c와 d(여기서, c,d∈{[1 1], [1 -1], [-1 1], [-1 -1]}) 중에서 커버리지 내에 위치하는 UE(in coverage UE)의 CS는 a, OCC는 c를 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 CS는 b, OCC는 d를 갖도록 설정하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)의 CS 는 0, OCC 는 [1 1]을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 CS 는 π, OCC 는 [1 -1]을 갖도록 설정할 수도 있고, 반대로 커버리지 내에 위치하는 UE(in coverage UE)의 CS 는 π, OCC 는 [1 -1]을 갖도록 설정하고 커버리지 밖에 위치하는 UE(out coverage UE)의 CS 는 0, OCC 는 [1 1]을 갖도록 설정할 수도 있다.
I-4. 제1 개시의 제4 방안: CRC mask를 이용한 구별 방법
기존 CRC 마스크는 기지국이 제어 신호 전송 시 각각의 UE들을 위한 DCI를 구별하기 위해 주로 사용되었다. 이와 비슷하게, 제4 방안은 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)를 구별하는데 있어서 CRC 마스크를 사용하는 것을 제안한다. 여기서 제안하는 방안은 커버리지 내에 위치하는 UE(in coverage UE)들을 위한 임의의 값 A로 커버리지 내에 위치하는 UE(in coverage UE)의 CRC를 마스킹하고 커버리지 밖에 위치하는 UE(out coverage UE)들을 위한 임의의 값 B로 커버리지 밖에 위치하는 UE(out coverage UE)의 CRC를 마스킹하여 커버리지 내에 위치하는 UE(in coverage UE)와 커버리지 밖에 위치하는 UE(out coverage UE)를 구별할 수 있다. 여기서 A와 B는 모든 UE와 기지국이 알고 있는 값으로 미리 설정 될 수도 있고, 상위 계층으로부터 정해져 각 UE에게 사전에 알려줄 수도 있으며 이와 다른 방식으로도 설정 될 수 있다. 이 때 A와 B는 서로 같은 값을 가질 수 없고 서로 독립적이어야 한다. 구체적인 예시로서, 커버리지 내에 위치하는 UE(in coverage UE)들을 위한 임의의 값 A를 0을 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)들을 위한 임의의 값 B를 1을 갖도록 설정 할 수도 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)들을 위한 임의의 값 A를 1을 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)들을 위한 임의의 값 B를 1을 갖도록 설정 할 수도 있다.
II. 제2 개시: 릴레이로 동작할 수 있는 UE의 구별 방안
본 명세서의 제2 개시는 인접하는 UE가 릴레이로 동작할 수 있는지 여부를 탐지 신호 및 DMRS 중 어느 하나를 통해 신속하게 알 수 있게 하는 방안들을 제시한다.
구체적인 방안은 앞서 설명한 제1 개시의 제1 방안 내지 제4 방안에서 사용되는 총 10개, 즉 스크램블링 시퀀스의 초기화에 사용되는 4개의 파라미터(셀 ID, RNTI, 슬롯 번호, 코드워드 번호), 그리고 DMRS의 기본 시퀀스의 생성에 사용되는 4개의 변수(시퀀스 호핑, 그룹 호핑, 델타 쉬프트, 셀 ID), 그리고 DMRS에 적용가능한 2개의 파라미터(CS 및 OCC) 그리고 CRC 마스크 중 하나 이상을 사용하여, 인접하는 UE가 릴레이로 동작할 수 있는지 여부를 알 수 있다.
제1 실시예로서, 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE와 그렇지 않은 UE는 RNTI의 값을 서로 다른 값을 갖도록 설정할 수 있다. 구체적으로, 미리 정해 놓은 서로 다른 값인 a, b, c(여기서, a, b, c ∈ {0,1,2,...,216-1}) 중에서 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE의 RNTI는 a를 갖도록 설정하고, 릴레이로 동작할 수 없는 UE의 RNTI는 b를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 RNTI는 c를 갖도록 설정 하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE의 RNTI는 0을 갖도록 설정하고 릴레이로 동작할 수 없는 UE의 RNTI는 1을 갖도록 설정할 수도 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE의 RNTI는 1을 갖도록 설정하고 릴레이로 동작할 수 없는 UE의 RNTI는 0을 갖도록 설정할 수도 있다. 물론, 커버리지 밖에 위치하는 UE(out coverage UE)의 RNTI는 0과 1이 아닌 다른 값을 갖도록 설정 해야 하는데, 이 경우 예를 들면 커버리지 밖에 위치하는 UE(out coverage UE)의 RNTI는 2를 갖도록 설정 할 수 있다.
도 11은 본 명세서의 제2 개시 중 제1 실시예을 나타낸 예시도이다.
도 11을 참조하여 알 수 있는 바와 같이, UE#1(100-1)는 스크램블링 시퀀스의 초기화 파라미터 중 RNTI의 값을 릴레이로 동작 가능함을 나타내는 값으로 사용한다. 그리고, 상기 UE#1(100-1)는 상기 RNTI를 포함하는 초기화 파라미터를 사용하여, 스크램블링 시퀀스를 초기화환 후, 상기 스크램블링 시퀀스에 따라 PDSCH를 스크램블링한다. 이어서, 상기 UE#1(100-1)는 탐지 신호를 포함하는 PDSCH를 전송한다.
그러면, 상기 UE#2(100-2)는 상기 UE#1(100-1)로부터 수신된 PDSCH에 사용된 스크램블링 시퀀스가 무엇인지를 블라인드 검출(blind detection)한다. 상기 블라인드 검출을 통해 상기 스크램블링 시퀀스를 알아내면, 상기 스크램블링 시퀀스가 어떠한 Cinit에 의해 초기화되었는지를 알 수 있고, 이어서 Cinit에 사용된 파라미터 중 RNTI의 값을 알 수 있게 된다. 그러면, 상기 UE#2(100-2)는 상기 RNTI의 값에 기초하여 상기 UE#1(100-1)이 릴레이로 동작 가능함을 알아낼 수 있다.
마찬가지로, UE#2(100-2)는 스크램블링 시퀀스의 초기화 파라미터 중 RNTI의 값을 릴레이로 동작 불가능함을 나타내는 값으로 사용한다.
다른 한편, 예시적인 제2 실시예를 설명하면 다음과 같다. 제2 실시예는 슬롯 번호를 사용하여 릴레이 동작 가능 여부를 구별할 수 도 있다. 즉, 미리 정해 놓은 서로 다른 집합 A와 B, C(여기서, A∪B∪C= {0,1...,19}, A∩B=Ø, B∩C=Ø, C∩A=Ø 중에서 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE의 슬롯 번호는 집합 A의 원소 중 하나를 갖도록 설정하고, 릴레이로 동작할 수 없는 UE의 슬롯 번호는 집합 B의 원소 중 하나를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 슬롯 번호는 집합 C의 원소 중 하나를 갖도록 설정하는 것이다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE의 슬롯 번호는
Figure PCTKR2016000581-appb-I000006
을 갖도록 설정 할 수 있고 릴레이로 동작할 수 없는 UE의 슬롯 번호는
Figure PCTKR2016000581-appb-I000007
을 갖도록 설정 할 수 있고 커버리지 밖에 위치하는 UE(out coverage UE)의 슬롯 번호는 (D2D 슬롯 번호) mod 10+10을 갖도록 설정 할 수 있다.
제3 예시로서, 셀 ID를 다르게 설정하여 릴레이 동작 가능 여부를 구별할 수 도 있다. 즉, 미리 정해 놓은 서로 다른 값인 a와 b(여기서, a,b∈{510,511}) 중에서 릴레이로 동작할 수 없는 UE는 a를 갖도록 설정하고 릴레이로 동작할 수 있는 UE는 b를 갖도록 설정하는 것이다. 구체적인 예를 들면, 릴레이로 동작할 수 있는 UE의 셀 ID는 510을 갖도록 설정 하고 릴레이로 동작할 수 없는 UE의 셀 ID는 511을 갖도록 설정 할 수도 있다. 반대로 릴레이로 동작할 수 있는 UE의 셀 ID는 511을 갖도록 설정하고 릴레이로 동작할 수 없는 UE의 셀 ID는 510을 갖도록 설정할 수도 있다.
제4 예시로서, CRC 마스크를 사용하여 릴레이 동작 가능 여부를 구별할 수 도 있다. 제1 개시의 제4방안과 유사하게 릴레이로 동작할 수 있는 UE들은 A 값의 CRC를 마스킹하고, 릴레이로 동작할 수 없는 UE들은 B 값의 CRC를 마스킹하여 각 UE의 릴레이 동작 가능 여부를 구별할 수 있다. 여기서 A와 B는 모든 UE와 기지국이 알고 있는 값으로 미리 설정 될 수도 있고, 상위 계층으로부터 정해져 각 UE에게 사전에 알려줄 수도 있으며 이와 다른 방식으로도 설정 될 수 있다. 이 때 A와 B는 서로 같은 값을 가질 수 없고 서로 독립적이어야 한다. 구체적인 예를 들면, 커버리지 내에 위치하는 UE(in coverage UE)들은 A 값을 0으로 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)들은 B값을 1로 설정 할 수도 있다. 반대로 커버리지 내에 위치하는 UE(in coverage UE)는 A값을 1로 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)는 B 값을 1로 설정 할 수도 있다.
이상에서는 4개의 예시를 들었으나, 그 외에 제 1개시의 제1 내지 제4 방안에 설명된 다른 것들을 사용하여, 릴레이 동작 가능 여부를 구별할 수 있다.
한편, 제5 예시로서, 10가지 항목 중 2개 이상의 조합을 사용하여 릴레이로 동작할 수 있는 UE와 릴레이로 동작할 수 없는 UE를 구별 할 수 있다. 구체적인 예를 들면, DMRS 기본 시퀀스에 사용되는 셀 ID는 고정되어 있다고 가정할 때, 그룹 호핑 패턴, 델타 쉬프트를 릴레이로 동작할 수 있는 UE와 릴레이로 동작할 수 없는 UE 간에 서로 다르게 사용하도록 설정할 수 있다. 다른 예를 들면, 미리 설정해 놓은 서로 다른 값인 a,b,c(여기서, a,b,c∈{0,1…,29}) 그리고 서로 다른 값인 d,e,f(여기서, d,e,f∈{0,1,…,29}) 중에서 릴레이로 동작할 수 있는 UE의 그룹 호핑 패턴은 a, 델타 쉬프트는 d를 갖도록 설정하고, 릴레이로 동작할 수 없는 UE의 그룹 호핑 패턴은 b, 델타 쉬프트는 e를 갖도록 설정하고, 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 c, 델타 쉬프트는 f를 갖도록 설정 하는 것이다. 이에 대해 구체적인 예를 들면, 셀 ID가 고정된 값을 갖는다고 할 때, 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE의 그룹 호핑 패턴은 0, 델타 쉬프트는 0을 갖도록 설정하고 릴레이로 동작할 수 없는 UE의 그룹 호핑 패턴은 15, 델타 쉬프트는 15를 갖도록 설정할 수 있고, 반대로 커버리지 내에 위치하는 UE(in coverage UE)들 중, 릴레이로 동작할 수 있는 UE의 그룹 호핑 패턴은 15, 델타 쉬프트는 15를 갖도록 설정하고 릴레이로 동작할 수 없는 UE의 그룹 호핑 패턴은 0, 델타 쉬프트는 0을 갖도록 설정할 수도 있고, 커버리지 밖에 위치하는 UE(out coverage UE)의 그룹 호핑 패턴은 1을 갖도록 설정하고 델타 쉬프트는 16을 갖도록 설정할 수도 있다.
III. 제3 개시: 제1 개시 및 제2 개시의 조합
본 명세서의 제3 개시는 앞서 설명한 제1 개시 및 제2 개시는 조합을 제시한다. 예를 들어, UE는 제1 개시의 제2 방안에 따라 탐지 신호를 포함하는 PSDCH의 복조를 위한 DMRS를 생성하는데 사용되는 기본 시퀀스 번호를 이용하여 자신이 커버리지 내에 위치하는지 밖에 위치하는지를 지시할 수 있고, 이어서 제2 개시의 제1 실시예에 따라 탐지 신호를 포함하는 PSDCH을 스크램블링하는데 사용되는 스크램블링 시퀀스의 초기화 파라미터의 값을 이용하여 자신이 릴레이로 동작 가능한지를 나타낼 수 있다. 이러한 예시적인 조합에 대해서 도 12를 참조하여 설명하면 다음과 같다.
도 12는 본 명세서의 제3 개시의 일 예시를 나타낸 예시도이다.
도 12를 참조하여 알 수 있는 바와 같이, UE#1(100-1)는 PSDCH의 복조를 위한 DMRS의 기본 시퀀스 번호로서, 커버리지 내에 위치함을 나타내는 값을 사용하여 DMRS를 생성한다.
다음으로, UE#1(100-1)는 스크램블링 시퀀스의 초기화 파라미터 중 RNTI의 값을 릴레이로 동작 가능함을 나타내는 값으로 사용한다. 그리고, 상기 UE#1(100-1)는 상기 RNTI를 포함하는 초기화 파라미터를 사용하여, 스크램블링 시퀀스를 초기화환 후, 상기 스크램블링 시퀀스에 따라 PDSCH를 스크램블링한다.
이어서, 상기 UE#1(100-1)는 탐지 신호를 포함하는 PDSCH와 상기 PSDCH의 복조를 위한 DMRS를 전송한다.
그러면, 상기 UE#2(100-2)는 상기 UE#1(100-1)로부터의 수신된 DMRS에 사용된 기본 시퀀스 번호가 무엇인지를 블라인드 검출(blind detection)한다. 그러면, 상기 UE#2(100-2)는 상기 기본 시퀀스 번호에 기초하여 상기 UE#1(100-1)이 커버리지 내에 위치함을 알아낼 수 있다.
또한, 상기 UE#2(100-2)는 상기 RNTI의 값에 기초하여 상기 UE#1(100-1)이 릴레이로 동작 가능함을 알아낼 수 있다.
한편, 상기 UE#2(100-2)는 도 7에 도시된 인접한 UE#3(100-3)으로부터도 전술한 바와 같이 DMRS와 PSDCH를 수신할 수 있다. 그리고 상기 UE#2(100-2)는 상기 DMRS와 상기 PSDCH를 통해 상기 인접한 UE#3(100-3)가 기지국의 커버리지 내에 위치하는지 아니면 밖에 위치하는지 그리고 릴레이 UE로 동작할 수 있는지를 알아낼 수 있다.
상기 UE#2(100-2)는 상기 UE#2(100-2)와 UE#3(100-3) 중에서 어느 하나를 릴레이로 선택할 수 있다. 여기서, 상기 UE#3(100-3)는 도 7에 도시된 바와 같이 기지국의 커버리지 밖에 위치하므로, 상기 UE#2(100-2)는 상기 UE#1(100-1)를 릴레이로 선택할 수 있다.
도 12에서 상기 PSDCH와 상기 PSDCH의 복조를 위한 DMRS는 각기 별도로 전송되는 것으로 도시되었으나, 이는 어디까지나 도면의 작성 편의를 위한 것 뿐이다. 상기 PSDCH와 상기 DMRS는 하나의 D2D 서브프레임 상에서 전송될 수 있다.
IV. 제4 개시: 제1 개시 및 제2 개시를 통한 효율적인 무선 자원 사용 방안
기존 LTE D2D 환경에서 커버리지 밖에 위치하는 UE(out coverage UE)와 커버리지 내에 위치하면서 릴레이로 동작가능한 UE간에 중계 통신이 활성화 되기 위해서는, 탐지 신호를 통해 얻은 정보를 사용하여 PSCCH을 디코딩하고, 상기 PSCCH에 포함된 스케줄링 할당(SA)에 의해 지시된 다수의 자원 상에서 PSSCH를 수신한 뒤, 상기 PSSCH를 디코딩하여, 데이터를 추출한 다음, 상기 데이터를 통해 중계 통신과 관련된 정보를 얻어야만 한다. 따라서, 적지 않은 시간이 필요하다.
그런데, 본 명세서의 제1 개시, 제2 개시, 제3 개시에 따라 커버리지 밖에 위치하는 UE(out coverage UE)가 인접한 UE가 커버리지 내에 위치하는지 그리고 해당 인접한 UE가 릴레이로 동작할 수 있는지를 매우 빠르게 알아낼 수 있다.
그러나, 이와 같이 커버리지 밖에 있는 UE가 커버리지 내에서 릴레이로 동작가능한 인접한 UE를 빠르게 알아낸 후, 바로 D2D 데이터 통신을 시작하는 경우, 무선 자원이 서로 충돌 될 수 있다.
따라서, 본 명세서의 제 4개시는 커버리지 밖에 있는 UE가 커버리지 내에서 릴레이로 동작가능한 인접한 UE와 D2D 데이터 통신을 하려고 할 때, 효율적인 무선 자원 사용 방안을 제시한다.
도 13은 본 명세서의 제4 개시를 나타낸 예시도이다.
도 13을 참조하면, UE#1(100-1)은 탐지 신호를 포함하는 PSDCH와 상기 PSDCH의 복조를 위한 DMRS를 전송하고, UE#2(100-2)은 탐지 신호를 포함하는 PSDCH와 상기 PSDCH의 복조를 위한 DMRS를 전송한다. 도 13에서 상기 PSDCH와 상기 PSDCH의 복조를 위한 DMRS는 각기 별도로 전송되는 것으로 도시되었으나, 이는 어디까지나 도면의 작성 편의를 위한 것 뿐이다. 상기 PSDCH와 상기 DMRS는 하나의 D2D 서브프레임 상에서 전송될 수 있다.
상기 UE#1(100-1)은 상기 UE#2(100-2)로부터의 DMRS를 이용하여, 상기 UE#2(100-2)가 커버리지 밖에 위치함을 알아낸다. 이후 상기 UE#1(100-1)은 자신은 커버리지 내에 위치하고, 릴레이로 동작가능하므로, 상기 UE#2(100-2)를 위해 릴레이로 동작하기로 결정한다.
한편, 상기 UE#2(100-2)는 상기 UE#1(100-1)로부터의 DMRS이용하여, 상기 UE#1(100-1)가 커버리지 내에 위치함을 알아낸다. 또한, 상기 UE#2(100-2)는 상기 UE#1(100-1)로부터의 탐지 신호를 포함하는 PSDCH를 이용하여, 상기 UE#1(100-1)가 릴레이로 동작가능함을 알아낸다. 그리고, 상기 UE#2(100-2)는 상기 UE#1(100-1)에게 릴레이로 동작하도록 요청하기로 결정한다.
상기 UE#2(100-2)는 상기 UE#1(100-1)에게 릴레이로 동작하도록 요청하는 메시지를 전송하기 위해, 스케줄링 할당(SA)을 결정하고, 상기 결정된 스케줄링 할당(SA)를 포함하는 PSCCH를 전송한다.
다른 한편, 상기 UE#1(100-1)은 상기 UE#2(100-2)를 위해 릴레이로 동작하기로 결정한 경우, 이를 알라기 위해 스케줄링 할당(SA)을 결정하고, 상기 결정된 스케줄링 할당(SA)를 포함하는 PSCCH를 전송한다.
상기 스케줄링 할당은 T-RPT(time resource pattern of transmission)의 결정에 의해 수행된다. 상기 T-RPT는 아래의 표 6, 표 7, 표 8 중 어느 하나의 필드로 결정된다.
표 6
ITRP kTRP (b',b',…b'NTRP-1) ITRP kTRP (b',b',…b'NTRP-1) ITRP kTRP (b',b',…b'NTRP-1)
0 1 (1,0,0,0,0,0,0,0) 37 4 (1,1,1,0,1,0,0,0) 74 4 (0,1,1,1,0,0,0,1)
1 1 (0,1,0,0,0,0,0,0) 38 4 (1,1,0,1,1,0,0,0) 75 4 (1,1,0,0,1,0,0,1)
2 1 (0,0,1,0,0,0,0,0) 39 4 (1,0,1,1,1,0,0,0) 76 4 (1,0,1,0,1,0,0,1)
3 1 (0,0,0,1,0,0,0,0) 40 4 (0,1,1,1,1,0,0,0) 77 4 (0,1,1,0,1,0,0,1)
4 1 (0,0,0,0,1,0,0,0) 41 4 (1,1,1,0,0,1,0,0) 78 4 (1,0,0,1,1,0,0,1)
5 1 (0,0,0,0,0,1,0,0) 42 4 (1,1,0,1,0,1,0,0) 79 4 (0,1,0,1,1,0,0,1)
6 1 (0,0,0,0,0,0,1,0) 43 4 (1,0,1,1,0,1,0,0) 80 4 (0,0,1,1,1,0,0,1)
7 1 (0,0,0,0,0,0,0,1) 44 4 (0,1,1,1,0,1,0,0) 81 4 (1,1,0,0,0,1,0,1)
8 2 (1,1,0,0,0,0,0,0) 45 4 (1,1,0,0,1,1,0,0) 82 4 (1,0,1,0,0,1,0,1)
9 2 (1,0,1,0,0,0,0,0) 46 4 (1,0,1,0,1,1,0,0) 83 4 (0,1,1,0,0,1,0,1)
10 2 (0,1,1,0,0,0,0,0) 47 4 (0,1,1,0,1,1,0,0) 84 4 (1,0,0,1,0,1,0,1)
11 2 (1,0,0,1,0,0,0,0) 48 4 (1,0,0,1,1,1,0,0) 85 4 (0,1,0,1,0,1,0,1)
12 2 (0,1,0,1,0,0,0,0) 49 4 (0,1,0,1,1,1,0,0) 86 4 (0,0,1,1,0,1,0,1)
13 2 (0,0,1,1,0,0,0,0) 50 4 (0,0,1,1,1,1,0,0) 87 4 (1,0,0,0,1,1,0,1)
14 2 (1,0,0,0,1,0,0,0) 51 4 (1,1,1,0,0,0,1,0) 88 4 (0,1,0,0,1,1,0,1)
15 2 (0,1,0,0,1,0,0,0) 52 4 (1,1,0,1,0,0,1,0) 89 4 (0,0,1,0,1,1,0,1)
16 2 (0,0,1,0,1,0,0,0) 53 4 (1,0,1,1,0,0,1,0) 90 4 (0,0,0,1,1,1,0,1)
17 2 (0,0,0,1,1,0,0,0) 54 4 (0,1,1,1,0,0,1,0) 91 4 (1,1,0,0,0,0,1,1)
18 2 (1,0,0,0,0,1,0,0) 55 4 (1,1,0,0,1,0,1,0) 92 4 (1,0,1,0,0,0,1,1)
19 2 (0,1,0,0,0,1,0,0) 56 4 (1,0,1,0,1,0,1,0) 93 4 (0,1,1,0,0,0,1,1)
20 2 (0,0,1,0,0,1,0,0) 57 4 (0,1,1,0,1,0,1,0) 94 4 (1,0,0,1,0,0,1,1)
21 2 (0,0,0,1,0,1,0,0) 58 4 (1,0,0,1,1,0,1,0) 95 4 (0,1,0,1,0,0,1,1)
22 2 (0,0,0,0,1,1,0,0) 59 4 (0,1,0,1,1,0,1,0) 96 4 (0,0,1,1,0,0,1,1)
23 2 (1,0,0,0,0,0,1,0) 60 4 (0,0,1,1,1,0,1,0) 97 4 (1,0,0,0,1,0,1,1)
24 2 (0,1,0,0,0,0,1,0) 61 4 (1,1,0,0,0,1,1,0) 98 4 (0,1,0,0,1,0,1,1)
25 2 (0,0,1,0,0,0,1,0) 62 4 (1,0,1,0,0,1,1,0) 99 4 (0,0,1,0,1,0,1,1)
26 2 (0,0,0,1,0,0,1,0) 63 4 (0,1,1,0,0,1,1,0) 100 4 (0,0,0,1,1,0,1,1)
27 2 (0,0,0,0,1,0,1,0) 64 4 (1,0,0,1,0,1,1,0) 101 4 (1,0,0,0,0,1,1,1)
28 2 (0,0,0,0,0,1,1,0) 65 4 (0,1,0,1,0,1,1,0) 102 4 (0,1,0,0,0,1,1,1)
29 2 (1,0,0,0,0,0,0,1) 66 4 (0,0,1,1,0,1,1,0) 103 4 (0,0,1,0,0,1,1,1)
30 2 (0,1,0,0,0,0,0,1) 67 4 (1,0,0,0,1,1,1,0) 104 4 (0,0,0,1,0,1,1,1)
31 2 (0,0,1,0,0,0,0,1) 68 4 (0,1,0,0,1,1,1,0) 105 4 (0,0,0,0,1,1,1,1)
32 2 (0,0,0,1,0,0,0,1) 69 4 (0,0,1,0,1,1,1,0) 106 8 (1,1,1,1,1,1,1,1)
33 2 (0,0,0,0,1,0,0,1) 70 4 (0,0,0,1,1,1,1,0)  107-127  reserved reserved
34 2 (0,0,0,0,0,1,0,1) 71 4 (1,1,1,0,0,0,0,1)      
35 2 (0,0,0,0,0,0,1,1) 72 4 (1,1,0,1,0,0,0,1)      
36 4 (1,1,1,1,0,0,0,0) 73 4 (1,0,1,1,0,0,0,1)      
표 7
ITRP kTRP (b',b',…b'NTRP-1) ITRP kTRP (b',b',…b'NTRP-1) ITRP kTRP (b',b',…b'NTRP-1)
0 reserved reserved 44 3 (0,0,1,1,0,1,0) 88 3 (0,0,0,1,1,0,1)
1 1 (1,0,0,0,0,0,0) 45 4 (1,0,1,1,0,1,0) 89 4 (1,0,0,1,1,0,1)
2 1 (0,1,0,0,0,0,0) 46 4 (0,1,1,1,0,1,0) 90 4 (0,1,0,1,1,0,1)
3 2 (1,1,0,0,0,0,0) 47 5 (1,1,1,1,0,1,0) 91 5 (1,1,0,1,1,0,1)
4 1 (0,0,1,0,0,0,0) 48 2 (0,0,0,0,1,1,0) 92 4 (0,0,1,1,1,0,1)
5 2 (1,0,1,0,0,0,0) 49 3 (1,0,0,0,1,1,0) 93 5 (1,0,1,1,1,0,1)
6 2 (0,1,1,0,0,0,0) 50 3 (0,1,0,0,1,1,0) 94 5 (0,1,1,1,1,0,1)
7 3 (1,1,1,0,0,0,0) 51 4 (1,1,0,0,1,1,0) 95 6 (1,1,1,1,1,0,1)
8 1 (0,0,0,1,0,0,0) 52 3 (0,0,1,0,1,1,0) 96 2 (0,0,0,0,0,1,1)
9 2 (1,0,0,1,0,0,0) 53 4 (1,0,1,0,1,1,0) 97 3 (1,0,0,0,0,1,1)
10 2 (0,1,0,1,0,0,0) 54 4 (0,1,1,0,1,1,0) 98 3 (0,1,0,0,0,1,1)
11 3 (1,1,0,1,0,0,0) 55 5 (1,1,1,0,1,1,0) 99 4 (1,1,0,0,0,1,1)
12 2 (0,0,1,1,0,0,0) 56 3 (0,0,0,1,1,1,0) 100 3 (0,0,1,0,0,1,1)
13 3 (1,0,1,1,0,0,0) 57 4 (1,0,0,1,1,1,0) 101 4 (1,0,1,0,0,1,1)
14 3 (0,1,1,1,0,0,0) 58 4 (0,1,0,1,1,1,0) 102 4 (0,1,1,0,0,1,1)
15 4 (1,1,1,1,0,0,0) 59 5 (1,1,0,1,1,1,0) 103 5 (1,1,1,0,0,1,1)
16 1 (0,0,0,0,1,0,0) 60 4 (0,0,1,1,1,1,0) 104 3 (0,0,0,1,0,1,1)
17 2 (1,0,0,0,1,0,0) 61 5 (1,0,1,1,1,1,0) 105 4 (1,0,0,1,0,1,1)
18 2 (0,1,0,0,1,0,0) 62 5 (0,1,1,1,1,1,0) 106 4 (0,1,0,1,0,1,1)
19 3 (1,1,0,0,1,0,0) 63 6 (1,1,1,1,1,1,0) 107 5 (1,1,0,1,0,1,1)
20 2 (0,0,1,0,1,0,0) 64 1 (0,0,0,0,0,0,1) 108 4 (0,0,1,1,0,1,1)
21 3 (1,0,1,0,1,0,0) 65 2 (1,0,0,0,0,0,1) 109 5 (1,0,1,1,0,1,1)
22 3 (0,1,1,0,1,0,0) 66 2 (0,1,0,0,0,0,1) 110 5 (0,1,1,1,0,1,1)
23 4 (1,1,1,0,1,0,0) 67 3 (1,1,0,0,0,0,1) 111 6 (1,1,1,1,0,1,1)
24 2 (0,0,0,1,1,0,0) 68 2 (0,0,1,0,0,0,1) 112 3 (0,0,0,0,1,1,1)
25 3 (1,0,0,1,1,0,0) 69 3 (1,0,1,0,0,0,1) 113 4 (1,0,0,0,1,1,1)
26 3 (0,1,0,1,1,0,0) 70 3 (0,1,1,0,0,0,1) 114 4 (0,1,0,0,1,1,1)
27 4 (1,1,0,1,1,0,0) 71 4 (1,1,1,0,0,0,1) 115 5 (1,1,0,0,1,1,1)
28 3 (0,0,1,1,1,0,0) 72 2 (0,0,0,1,0,0,1) 116 4 (0,0,1,0,1,1,1)
29 4 (1,0,1,1,1,0,0) 73 3 (1,0,0,1,0,0,1) 117 5 (1,0,1,0,1,1,1)
30 4 (0,1,1,1,1,0,0) 74 3 (0,1,0,1,0,0,1) 118 5 (0,1,1,0,1,1,1)
31 5 (1,1,1,1,1,0,0) 75 4 (1,1,0,1,0,0,1) 119 6 (1,1,1,0,1,1,1)
32 1 (0,0,0,0,0,1,0) 76 3 (0,0,1,1,0,0,1) 120 4 (0,0,0,1,1,1,1)
33 2 (1,0,0,0,0,1,0) 77 4 (1,0,1,1,0,0,1) 121 5 (1,0,0,1,1,1,1)
34 2 (0,1,0,0,0,1,0) 78 4 (0,1,1,1,0,0,1) 122 5 (0,1,0,1,1,1,1)
35 3 (1,1,0,0,0,1,0) 79 5 (1,1,1,1,0,0,1) 123 6 (1,1,0,1,1,1,1)
36 2 (0,0,1,0,0,1,0) 80 2 (0,0,0,0,1,0,1) 124 5 (0,0,1,1,1,1,1)
37 3 (1,0,1,0,0,1,0) 81 3 (1,0,0,0,1,0,1) 125 6 (1,0,1,1,1,1,1)
38 3 (0,1,1,0,0,1,0) 82 3 (0,1,0,0,1,0,1) 126 6 (0,1,1,1,1,1,1)
39 4 (1,1,1,0,0,1,0) 83 4 (1,1,0,0,1,0,1) 127 7 (1,1,1,1,1,1,1)
40 2 (0,0,0,1,0,1,0) 84 3 (0,0,1,0,1,0,1)      
41 3 (1,0,0,1,0,1,0) 85 4 (1,0,1,0,1,0,1)      
42 3 (0,1,0,1,0,1,0) 86 4 (0,1,1,0,1,0,1)      
43 4 (1,1,0,1,0,1,0) 87 5 (1,1,1,0,1,0,1)      
표 8
ITRP kTRP (b',b',…b'NTRP-1) ITRP kTRP (b',b',…b'NTRP-1) ITRP kTRP (b',b',…b'NTRP-1)
0 reserved reserved 22 3 (0,1,1,0,1,0) 44 3 (0,0,1,1,0,1)
1 1 (1,0,0,0,0,0) 23 4 (1,1,1,0,1,0) 45 4 (1,0,1,1,0,1)
2 1 (0,1,0,0,0,0) 24 2 (0,0,0,1,1,0) 46 4 (0,1,1,1,0,1)
3 2 (1,1,0,0,0,0) 25 3 (1,0,0,1,1,0) 47 5 (1,1,1,1,0,1)
4 1 (0,0,1,0,0,0) 26 3 (0,1,0,1,1,0) 48 2 (0,0,0,0,1,1)
5 2 (1,0,1,0,0,0) 27 4 (1,1,0,1,1,0) 49 3 (1,0,0,0,1,1)
6 2 (0,1,1,0,0,0) 28 3 (0,0,1,1,1,0) 50 3 (0,1,0,0,1,1)
7 3 (1,1,1,0,0,0) 29 4 (1,0,1,1,1,0) 51 4 (1,1,0,0,1,1)
8 1 (0,0,0,1,0,0) 30 4 (0,1,1,1,1,0) 52 3 (0,0,1,0,1,1)
9 2 (1,0,0,1,0,0) 31 5 (1,1,1,1,1,0) 53 4 (1,0,1,0,1,1)
10 2 (0,1,0,1,0,0) 32 1 (0,0,0,0,0,1) 54 4 (0,1,1,0,1,1)
11 3 (1,1,0,1,0,0) 33 2 (1,0,0,0,0,1) 55 5 (1,1,1,0,1,1)
12 2 (0,0,1,1,0,0) 34 2 (0,1,0,0,0,1) 56 3 (0,0,0,1,1,1)
13 3 (1,0,1,1,0,0) 35 3 (1,1,0,0,0,1) 57 4 (1,0,0,1,1,1)
14 3 (0,1,1,1,0,0) 36 2 (0,0,1,0,0,1) 58 4 (0,1,0,1,1,1)
15 4 (1,1,1,1,0,0) 37 3 (1,0,1,0,0,1) 59 5 (1,1,0,1,1,1)
16 1 (0,0,0,0,1,0) 38 3 (0,1,1,0,0,1) 60 4 (0,0,1,1,1,1)
17 2 (1,0,0,0,1,0) 39 4 (1,1,1,0,0,1) 61 5 (1,0,1,1,1,1)
18 2 (0,1,0,0,1,0) 40 2 (0,0,0,1,0,1) 62 5 (0,1,1,1,1,1)
19 3 (1,1,0,0,1,0) 41 3 (1,0,0,1,0,1) 63 6 (1,1,1,1,1,1)
20 2 (0,0,1,0,1,0) 42 3 (0,1,0,1,0,1)  64-127  reserved  reserved
21 3 (1,0,1,0,1,0) 43 4 (1,1,0,1,0,1)      
그러면, 상기 UE#2(100-2)는 상기 UE#1(100-1)로부터 수신된 상기 PSCCH 내에 포함된 스케줄링 할당(SA)이 자신의 스케줄링 할당(SA)가 충돌되는지 확인한다. 이를 위해, 상기 UE#2(100-2)는 자신의 T-RPT와 UE#1(100-1)의 T-RPT를 비교할 수 있다. 이때, 비교 결과 상기 UE#2(100-2) 자신의 T-RPT와 UE#1(100-1)의 T-RPT가 같거나, 상당부분 유사하여, 충돌되고 그로 인해 UE#1(100-1)로부터의 데이터를 수신할 수 없는 경우, UE#2(100-2)는 자신이 데이터 전송을 위해 사용하려고 했던 자원 위치 보다 앞선 임의의 자원 위치에‘직전에 보낸 SA에 해당하는 자원 위치 상에서 데이터를 전송하지 않겠다는 정보’를 전송할 수 있다. 이를 본 명세서에서는 침묵 신호(silence signal)이라고 칭한다.
여기서 침묵 신호(silence signal)를 전송하기 위한 임의의 자원 위치는 D2D UE들 간에 미리 약속된 특정한 곳 (예컨대, 데이터 자원 내의 일부 혹은 스케줄링 할당(SA)과 데이터 자원 사이 )으로 정해질 수 있다.
예를 들어, UE#1과 UE#2가 데이터를 전송하려고 하는 자원 위치에 대해서 도 14를 참조하여 설명하면 다음과 같다.
도 14는 UE#1과 UE#2가 사용하는 자원에 대한 예시를 나타낸다.
도 14를 참조하여 알 수 있는 바와 같이, 데이터의 송수신을 위한 자원 풀 내에서 UE#1과 UE#2가 사용하려한 자원이 서로 겹치는 경우, UE#2는 도 14에 도시된 A 자원 혹은 B 자원을 사용하여 silence signal을 전송할 수 있다. 대안적으로, A 자원 혹은 B 자원 외에 다른 위치에서도 silence signal이 전송될 수도 있다.
이상에서 설명한 바와 같이, UE#2(100-2)는 UE#1(100-1)가 커버리지 내에 위치하고 릴레이로 동작가능한지를 UE#1(100-1)로부터의 탐지 신호 및 DMRS를 통해 신속하게 알아낼 수 있고, 자신의 스케줄링 할당(SA)이 UE#1(100-1)과의 스케줄링 할당(SA)와 충돌되는 경우, 자신의 스케줄링 할당(SA)을 신속하게 철회할 수 있다. 따라서, 무선 자원을 효율적으로 사용할 수 있게 된다.
지금까지 설명한, 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 구체적으로는 도면을 참조하여 설명하기로 한다.
도 15는 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(200)은 프로세서(processor, 201), 메모리(memory, 202) 및 RF부(RF(radio frequency) unit, 203)을 포함한다. 메모리(202)는 프로세서(201)와 연결되어, 프로세서(201)를 구동하기 위한 다양한 정보를 저장한다. RF부(203)는 프로세서(201)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(201)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(201)에 의해 구현될 수 있다.
UE(100)는 프로세서(101), 메모리(102) 및 RF부(103)을 포함한다. 메모리(102)는 프로세서(101)와 연결되어, 프로세서(101)를 구동하기 위한 다양한 정보를 저장한다. RF부(103)는 프로세서(101)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(101)는 제안된 기능, 과정 및/또는 방법을 구현한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(r그리고om access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 기지국의 커버리지 밖에 위치한 UE(user equipment)가 D2D(Device to Device) 통신을 수행할 인접 UE를 선택하는 방법으로서,
    인접한 하나 이상의 인접 UE로부터 탐지 신호를 포함하는 PSDCH(Physical Sidelink Discovery Channel)와 상기 PSDCH의 복조를 위한 DMRS(De-Modulation Reference Signal)를 수신하는 단계와, 여기서 상기 PSDCH는 스크램블링 시퀀스에 의해 스크램블링되어 있고;
    상기 수신한 DMRS에 기초하여 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지 판단하는 단계와;
    상기 인접한 하나 이상의 UE가 릴레이로 동작할 수 있는지를 상기 PSDCH의 스크램블링을 위해 사용된 스크램블링 시퀀스에 기초하여 판단하는 단계와;
    상기 인접한 하나 이상의 UE 중 기지국의 커버리지 내에 위치하고 릴레이로 동작할 수 있는 UE를 선택하는 단계를 포함하는 방법.
  2. 제1항에 있어서, 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지 판단하는 단계는
    상기 수신한 DMRS의 기본 시퀀스 번호를 블라인드 검출(blind detection)을 통해 획득하는 단계와;
    상기 획득한 기본 시퀀스 번호에 기초하여 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지를 판단하는 단계를 포함하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 적어도 하나의 UE가 릴레이로 동작할 수 있는지를 판단하는 단계는
    상기 PSDCH의 스크램블링을 위해 사용된 스크램블링 시퀀스를 블라인드 검출(blind detection)을 통해 획득하는 단계와;
    상기 획득한 스크램블링 시퀀스를 초기화하기 위해 상기 인접한 UE에 의해서 사용되었던 하나 이상의 초기화 파라미터를 블라인드 검출을 통해 획득하는 단계와;
    상기 하나 이상의 초기화 파라미터에 기초하여 상기 적어도 하나의 UE가 릴레이로 동작할 수 있는지를 판단하는 단계를 포함하는 것을 특징으로 하는 방법.
  4. 제4항에 있어서,
    상기 하나 이상의 초기화 파라미터는 RNTI(radio network temporary identifier)인 것을 특징으로 하는 방법.
  5. 제1항에 있어서, 상기 UE를 선택하는 단계는
    상기 인접한 하나 이상의 UE 중 기지국의 커버리지 내에 위치하는 적어도 하나의 UE를 선택하는 단계와;
    상기 적어도 하나의 UE 중에서 릴레이로 동작할 수 있는 UE를 선택하는 단계를 포함하는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    상기 선택된 UE로 데이터를 전송하기 위해 자원을 선택하는 단계와;
    상기 선택된 자원에 대한 스케줄링 할당(scheduling assignment)를 포함하는 제어 채널을 상기 선택한 UE로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  7. 제6항에 있어서,
    상기 선택된 UE로부터 스케줄링 할당(scheduling assignment)를 포함하는 제어 채널을 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 전송된 제어 채널 내에 포함된 스케줄링 할당에 의해서 지시된 자원과 상기 수신한 제어 채널 내의 스케줄링 할당에 의해 지시된 자원이 중첩되는 경우, 상기 전송된 제어 채널 내에 포함된 스케줄링 할당을 철회하기 위한 침묵 신호(silence signal)를 상기 선택된 UE로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  9. 기지국의 커버리지 밖에 위치하여, D2D(Device to Device) 통신을 수행할 인접 UE(user equipment)를 선택하는 UE로서,
    송수신부와;
    상기 송수신부를 제어하는 프로세서를 포함하고, 상기 프로세서는:
    인접한 하나 이상의 인접 UE로부터 탐지 신호를 포함하는 PSDCH(Physical Sidelink Discovery Channel)와 상기 PSDCH의 복조를 위한 DMRS(De-Modulation Reference Signal)를 수신하는 단계와, 여기서 상기 PSDCH는 스크램블링 시퀀스에 의해 스크램블링되어 있고;
    상기 수신한 DMRS에 기초하여 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지 판단하는 단계와;
    상기 인접한 하나 이상의 UE가 릴레이로 동작할 수 있는지를 상기 PSDCH의 스크램블링을 위해 사용된 스크램블링 시퀀스에 기초하여 판단하는 단계와;
    상기 인접한 하나 이상의 UE 중 기지국의 커버리지 내에 위치하고 릴레이로 동작할 수 있는 UE를 선택하는 단계를 수행하는 것을 특징으로 하는 UE.
  10. 제9항에 있어서, 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지 판단하기 위해 상기 프로세서는:
    상기 수신한 DMRS의 기본 시퀀스 번호를 블라인드 검출(blind detection)을 통해 획득하는 단계와;
    상기 획득한 기본 시퀀스 번호에 기초하여 상기 인접한 하나 이상의 UE가 기지국의 커버리지 내에 위치하는지를 판단하는 단계를 수행하는 것을 특징으로 하는 UE.
  11. 제9항에 있어서, 상기 적어도 하나의 UE가 릴레이로 동작할 수 있는지를 판단하기 위해 상기 프로세서는
    상기 PSDCH의 스크램블링을 위해 사용된 스크램블링 시퀀스를 블라인드 검출(blind detection)을 통해 획득하는 단계와;
    상기 획득한 스크램블링 시퀀스를 초기화하기 위해 상기 인접한 UE에 의해서 사용되었던 하나 이상의 초기화 파라미터를 블라인드 검출을 통해 획득하는 단계와;
    상기 하나 이상의 초기화 파라미터에 기초하여 상기 적어도 하나의 UE가 릴레이로 동작할 수 있는지를 판단하는 단계를 수행하는 것을 특징으로 하는 UE.
  12. 제11항에 있어서,
    상기 하나 이상의 초기화 파라미터는 RNTI(radio network temporary identifier)인 것을 특징으로 하는 UE.
PCT/KR2016/000581 2015-01-20 2016-01-20 D2d 통신을 수행할 인접 ue를 선택하는 방법 WO2016117922A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/545,284 US10244378B2 (en) 2015-01-20 2016-01-20 Method for selecting neighboring UE to perform D2D communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562105213P 2015-01-20 2015-01-20
US62/105,213 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016117922A1 true WO2016117922A1 (ko) 2016-07-28

Family

ID=56417384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000581 WO2016117922A1 (ko) 2015-01-20 2016-01-20 D2d 통신을 수행할 인접 ue를 선택하는 방법

Country Status (2)

Country Link
US (1) US10244378B2 (ko)
WO (1) WO2016117922A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271242A (zh) * 2017-12-14 2018-07-10 南京邮电大学 基于能量效率的d2d资源分配方法
WO2018165150A1 (en) * 2017-03-10 2018-09-13 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods of switching between direct and indirect communication for a relay arrangement
WO2018174665A1 (en) * 2017-03-23 2018-09-27 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting and receiving demodulation reference signal
CN109565406A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 用于车辆到车辆通信的解调参考信号设计

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016154914A1 (zh) * 2015-03-31 2016-10-06 华为技术有限公司 一种信息传输方法、设备及系统
WO2017130993A1 (ja) * 2016-01-27 2017-08-03 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2019149593A (ja) * 2016-07-15 2019-09-05 シャープ株式会社 端末装置および方法
CN108307535B (zh) * 2016-08-25 2021-05-07 北京三星通信技术研究有限公司 传输数据的方法及设备
EP3522428B1 (en) * 2016-09-29 2021-08-04 LG Electronics Inc. Method and device for transceiving wireless signal in wireless communication system
US20190357101A1 (en) * 2017-03-10 2019-11-21 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods of switching between direct and indirect communication for a relay arrangement
CN108631912B (zh) * 2017-03-23 2021-09-28 大唐移动通信设备有限公司 一种传输方法和装置
KR102647886B1 (ko) 2018-05-16 2024-03-14 삼성전자주식회사 V2x 시스템에서 dmrs 정보 설정 방법 및 장치
KR20200087630A (ko) * 2019-01-11 2020-07-21 주식회사 아이티엘 무선통신 시스템에서 dmrs 구성 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090075102A (ko) * 2008-01-03 2009-07-08 삼성전자주식회사 협력 통신 릴레이를 이용하여 데이터를 전송하는 통신시스템
KR20120048445A (ko) * 2010-11-05 2012-05-15 주식회사 팬택 비주기적 참조신호를 송수신하는 방법 및 장치
US8730903B2 (en) * 2010-04-22 2014-05-20 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090075102A (ko) * 2008-01-03 2009-07-08 삼성전자주식회사 협력 통신 릴레이를 이용하여 데이터를 전송하는 통신시스템
US8730903B2 (en) * 2010-04-22 2014-05-20 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
KR20120048445A (ko) * 2010-11-05 2012-05-15 주식회사 팬택 비주기적 참조신호를 송수신하는 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "On the D2D-related Information Sharing between In-coverage UEs and Out-coverage UEs", R1-142158, 3GPP TSG RAN WG1 MEETING #77, 10 May 2014 (2014-05-10), Seoul, Korea, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_77/Dacs/R1-142158.zip> *
SAMSUNG: "D2D Synchronization Procedure for Out-of-network Coverage", R1-142122, 3GPP TSG RAN WG1 MEETING #77, 10 May 2014 (2014-05-10), Seoul, Korea, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_77/Docs/R1-142122.zip> *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565406A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 用于车辆到车辆通信的解调参考信号设计
JP2019532537A (ja) * 2016-08-12 2019-11-07 クアルコム,インコーポレイテッド 車両対車両通信のための復調基準信号設計
EP3700119A1 (en) * 2016-08-12 2020-08-26 QUALCOMM Incorporated Demodulation reference signal design for vehicle-to-vehicle communication
US11095411B2 (en) 2016-08-12 2021-08-17 Qualcomm Incorporated Demodulation reference signal design for vehicle-to-vehicle communication
JP7061995B2 (ja) 2016-08-12 2022-05-02 クアルコム,インコーポレイテッド 車両対車両通信のための復調基準信号設計
WO2018165150A1 (en) * 2017-03-10 2018-09-13 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods of switching between direct and indirect communication for a relay arrangement
WO2018174665A1 (en) * 2017-03-23 2018-09-27 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting and receiving demodulation reference signal
CN108271242A (zh) * 2017-12-14 2018-07-10 南京邮电大学 基于能量效率的d2d资源分配方法
CN108271242B (zh) * 2017-12-14 2021-01-05 南京邮电大学 基于能量效率的d2d资源分配方法

Also Published As

Publication number Publication date
US10244378B2 (en) 2019-03-26
US20180007529A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
WO2016117922A1 (ko) D2d 통신을 수행할 인접 ue를 선택하는 방법
WO2016099057A1 (ko) 상향링크 데이터의 복조를 위한 dmrs를 전송하는 방법 및 mtc 기기
WO2016099135A1 (ko) 상향링크 채널을 전송하는 방법 및 커버리지 확장이 필요로 되는 무선 기기
WO2016093573A1 (ko) 5개를 초과하는 셀들을 반송파 집성에 따라 사용할 때의 pucch 전송 방법 및 사용자 장치
WO2016064218A2 (ko) Mtc 기기의 상향링크 채널 및 복조 참조 신호 전송 방법
WO2017160100A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2017026814A1 (ko) 상향링크 전송을 수행하는 방법 및 사용자 장치
WO2014069945A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 장치
WO2020256379A1 (en) Method and apparatus for ss/pbch block repetition
WO2016143968A1 (ko) Short tti 내 제어 채널의 전송 자원을 감소시키는 방법 및 이를 사용한 기기
WO2016163847A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018038410A1 (ko) 비직교 다중 접속 방식에 기초하여 데이터를 전송/검출하는 방법 및 이를 위한 장치
WO2016167614A1 (ko) Papr 감소를 위한 심벌 맵핑 방법 및 무선기기
WO2015133778A1 (ko) 무선 통신 시스템에서의 상향링크 제어 채널의 전송 방법 및 단말
WO2019031787A1 (ko) 무선 통신 시스템에서 신호를 수신하는 방법 및 장치
WO2010098584A2 (ko) 무선 통신 시스템에서의 중계기가 상향링크 제어 정보를 전송하는 방법 및 그 중계기
WO2014137105A1 (ko) Epdcch를 통한 제어 정보 수신 방법
WO2020130573A1 (en) Method and apparatus for configuration of common search space for discovery signal and channel
WO2013176511A1 (ko) Harq ack/nack 전송 방법 및 이를 이용한 무선기기
WO2010056068A9 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2017204471A1 (ko) 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
WO2013070035A1 (ko) 제어 채널 모니터링 방법 및 무선기기
WO2016072688A2 (ko) Ack/nack 신호 수신 방법 및 mtc 기기
WO2015122718A1 (ko) 무선 통신시스템에서 단말간 직접통신을 수행하기 위한 방법 및 장치
WO2014123388A1 (ko) 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15545284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740395

Country of ref document: EP

Kind code of ref document: A1