WO2016116360A1 - Procédé de calcul d'une orientation au moyen d'un système de détection et système de détection - Google Patents

Procédé de calcul d'une orientation au moyen d'un système de détection et système de détection Download PDF

Info

Publication number
WO2016116360A1
WO2016116360A1 PCT/EP2016/050727 EP2016050727W WO2016116360A1 WO 2016116360 A1 WO2016116360 A1 WO 2016116360A1 EP 2016050727 W EP2016050727 W EP 2016050727W WO 2016116360 A1 WO2016116360 A1 WO 2016116360A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
natural frequency
sensor system
calculation unit
sensor
Prior art date
Application number
PCT/EP2016/050727
Other languages
German (de)
English (en)
Inventor
Tobias RANKL
Rainer Dorsch
Timo Giesselmann
Gerhard Lammel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2016116360A1 publication Critical patent/WO2016116360A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719

Definitions

  • the invention is based on a method for calculating an orientation with a sensor system according to the preamble of claim 1 and on a sensor system according to the preamble of claim 9.
  • Angular velocity - z. B measured with a micromechanical rotation rate sensor and this rotation rate is then integrated over time to obtain the angle.
  • the temporal integration of the rotation rate requires a time reference, which is typically provided as a clock signal.
  • clock signals are derived in the known from the prior art sensor systems of a quartz oscillator.
  • the inventive method for calculating an orientation with a sensor system and the sensor system according to the invention with the features of the independent claims have the advantage over the prior art that it is not necessary to provide a quartz oscillator for generating a clock signal. Rather, a natural frequency signal is generated with a micromechanical oscillator which is provided anyway in the rotation rate sensor and which oscillates at a natural frequency.
  • Natural frequency signal of the micromechanical oscillator is derived a clock signal for integrating in the calculation unit.
  • a quartz oscillator By dispensing with a quartz oscillator, a cost-effective calculation of the orientation or a cost-effective implementation of the sensor system is made possible.
  • the orientation can be calculated, for example, as an angle with respect to a given axis in space.
  • the natural frequency signal is fed to a frequency multiplier, wherein the frequency multiplier the natural frequency of
  • micromechanical oscillator multiplied by a balance factor.
  • frequency multiplier manufacturing tolerances can be compensated by the frequency of the clock signal is set by multiplication with an adjustable adjustment factor to a predetermined target frequency.
  • Adjustment factor may take an integer value or a fractional value, so that it is possible with the frequency multiplier to generate a clock signal having a clock frequency which is a full or is a fractional multiple of the natural frequency or which is a quotient of the natural frequency.
  • the frequency multiplier is designed as a digital frequency multiplier, so that it can be implemented in a digital electronic circuit.
  • an embodiment is advantageous in which the adjustment factor is determined, wherein the natural frequency of the micromechanical oscillator is measured and the measured natural frequency is compared with a predetermined desired frequency. The measurement of the natural frequency and the comparison of the measured natural frequency with the given
  • Target frequency can be carried out within the framework of the production of the sensor system and / or as part of a calibration process. It is advantageous if the nominal frequency is generated by a quartz oscillator.
  • the adjustment factor is preferably stored in a calibration register of the sensor system.
  • Calculation unit is fed a correction factor to a
  • Compensate quantization error of the frequency multiplier is advantageous for compensating for a deviation of the clock frequency of the clock signal derived from the frequency multiplier from the predetermined setpoint frequency, which is due to the finite resolution of the adjustment factor-that is, the quantization error of the
  • the accuracy of the frequency multiplier can be reduced, i. the quantization error can be increased without deteriorating the accuracy of the angular orientation.
  • correction factor corresponds to the ratio of the clock frequency of the clock signal to the nominal frequency.
  • the quotient of the actual frequency of the clock signal and the nominal frequency indicates the quantization error of the frequency multiplier.
  • an embodiment is advantageous in which the clock frequency of the clock signal is measured to determine the correction factor becomes.
  • the measurement can, for example, in the context of the production of the
  • Sensor system and / or carried out as part of a calibration process.
  • a further preferred embodiment provides that the correction factor is stored in a correction register of the sensor system, so that the correction factor for calculating the orientation can be retrieved by the calculation unit.
  • the correction register is particularly preferably designed as a non-volatile correction register, so that the determined correction factor is maintained even when the power supply of the sensor system is turned off.
  • the calculation unit for calculating the orientation is detected with an acceleration sensor detected acceleration values and / or with a magnetic field sensor
  • Magnetic field values are supplied.
  • the acceleration values and / or magnetic field values can be taken into account in the calculation of the orientation, in particular the calculation of an angle. It is particularly advantageous if a Kalman filter is used to calculate the orientation, to which the rotation rate, an acceleration value and a magnetic field value determined with the yaw rate sensor are preferably supplied as input variables.
  • Sensor system is provided that the sensor system a
  • Natural frequency of the micromechanical oscillator can be multiplied by a predetermined adjustment factor and that the sensor system
  • Correction register in which a correction factor is stored, which can be supplied to the calculation unit to correct a quantization error of the frequency multiplier.
  • FIG. 1 shows a block diagram of a sensor system according to FIG. 1
  • FIG. 2 shows various measured and predetermined frequencies for illustrating the processes during a calibration process.
  • FIG. 3 shows two examples of calculated time profiles of FIG
  • FIG. 1 is a block diagram of an embodiment of a
  • Sensor system 1 which can be used in an inertial navigation system to determine the orientation of an object and / or a person in the room.
  • the sensor system 1 has a first micromechanical rotation rate sensor 2, via which a rotation rate ⁇ -that is to say an angular velocity about a predetermined first axis-is measured.
  • the first rotation rate sensor 2 has at least one
  • Micro-mechanical oscillator which is excited to a vibration with a natural frequency.
  • the micromechanical oscillator can be any suitable micromechanical oscillator.
  • the first rotation rate sensor 2 are in the
  • Sensor system 1 is provided two further rotation rate sensors, which measure rotation rates about two axes arranged perpendicular to the first axis.
  • the two further rotation rate sensors are not shown in FIG. 1 for reasons of clarity.
  • angles ⁇ 'relative to the three mutually perpendicular axes are calculated from the measured rotation rates ⁇ of the three rotation rate sensors 2.
  • the calculation of the angles ⁇ 'takes place in a calculation unit 6 of FIG.
  • Sensor system 1 which is arranged in a common housing with the first rotation rate sensor 2 and preferably with the two other rotation rate sensors.
  • Magnetic field data to be arranged.
  • the rotation rate ⁇ measured with the first rotation rate sensor 2 is integrated over an integration time to obtain a first angle ⁇ '.
  • the integration of the rate of rotation co over time requires one
  • Time reference which is provided in the sensor system 1 as a clock signal 13 available.
  • a natural frequency signal 11 is generated by the rotation rate sensor 2, which has the natural frequency 21 of the micromechanical oscillator of the rotation rate sensor 2.
  • Natural frequency signal 11 is supplied to a digital frequency multiplier 4.
  • the frequency multiplier 4 multiplies the natural frequency 21 of the
  • the adjustment factor 10 is in the form of the integer values n, m in a trim register 3 of the
  • Adjustment factor 10 has a finite resolution, but the clock frequency 23 of the clock signal 13, as a rule, a deviation 24 from the target frequency, which represents the quantization error of the frequency multiplier 4.
  • a correction factor fcorr deposited, which is the
  • Calculation unit 6 is supplied and which in integrating the
  • Rate of rotation ⁇ is taken into account, as will be explained in more detail below.
  • the correction factor fcorr corresponds to the ratio of the clock frequency 23 of the clock signal 13 to the setpoint frequency 22.
  • acceleration values 15 detected by an acceleration sensor and magnetic field values 16 detected by a magnetic field sensor are supplied to the calculation unit 6 for calculating the orientation.
  • Adjustment of the clock frequency 23 of the clock signal 13 will be explained.
  • the adjustment takes place in the sensor system 1 as part of a calibration process, which, for example, immediately after the production of the sensor system 1 or as needed before the installation of the sensor system 1 in an inertial
  • the frequency fT generated by the frequency multiplier 4 is plotted against the frequency fE of the natural frequency signal 11 obtained from the micromechanical oscillator.
  • Reference numeral 19 denotes the frequency range in which the measured value of the natural frequency 21 of the natural frequency signal 11 due to the manufacturing tolerance is presumed. In this frequency range 19, it is possible by selecting a suitable adjustment factor 10 to match the clock frequency 23 to the reference frequency 22. To the respective frequency f E of the
  • Natural frequency signal corresponding adjustment factors 10 are exemplified in the figure 2 by the reference numerals 41 to 47. These symbolize a certain ratio of the values n and m.
  • the resulting from the choice of the adjustment factor 10 clock frequency fT follows due to the
  • Frequency multiplier 4 quantization error of a zigzag line.
  • Micromechanical oscillator measured. To match the clock frequency 23 to a predetermined setpoint frequency 22, the corresponding
  • the adjustment factor 10 is selected, at which the frequency difference 24 between the resulting from the application of the adjustment factor 10 clock frequency 23 of the clock signal 13 and the target frequency 22 is the lowest.
  • the frequency difference 24 between the resulting from the application of the adjustment factor 10 clock frequency 23 of the clock signal 13 and the target frequency 22 is the lowest.
  • Adjustment factor 10 the value 44 is chosen, which stands symbolically for a certain ratio of the values n and m, for example, 15/16 and this coded.
  • the adjustment factor 10 is stored in the adjustment register 3.
  • the correction factor fcorr In order to determine the correction factor fcorr, the quotient of the clock frequency 23 of the clock signal 13 and the setpoint frequency 22 is formed.
  • the correction factor fcorr is stored in a non-volatile correction register 5 of the sensor system 1.
  • the clock frequency 23 can be measured. Alternatively, it is possible to calculate the clock frequency 23 on the basis of the measured natural frequency 21 and the selected adjustment factor 10.
  • FIG. 3 shows the calculated angle ⁇ over a first time axis t,
  • Quantization error of the frequency multiplier 4 is not corrected and the calculated angle ⁇ 'over a second time axis t', wherein the
  • the correction factor is used in the calculation unit 6 to calculate the angle ⁇ ', the quantization error is compensated and the accuracy of the angle ⁇ ' is improved. This will be done in the
  • Embodiment for all three spatial directions are performed, are determined for the rotation rate in the sensor system 1. Furthermore, in the calculation of the angle, additional acceleration data 15 and / or
  • Magnetic field data 16 are consulted. In that sense, in the
  • Calculation unit 6 a fusion of the data of several sensors are performed.
  • Solid angle ⁇ ' with a sensor system 1, which has a micromechanical rotation rate sensor 2 and a calculation unit 6, wherein a
  • Rate of rotation ⁇ is measured with the rotation rate sensor 2 and for calculating the solid angle ⁇ 'the rotation rate ⁇ is integrated in the calculation unit over time, oscillates a micromechanical oscillator of the rotation rate sensor 2 with a natural frequency 21 and generates a natural frequency signal 11, wherein from the natural frequency signal 11 a Clock signal 13 for integrating in the
  • Calculation unit 6 is derived. As a result, a cost-effective calculation of the solid angle ⁇ 'and a cost-effective sensor system 1 is made possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

L'invention concerne un procédé de calcul d'une orientation au moyen d'un système de détection présentant un capteur de vitesse de lacet micromécanique et une unité de calcul, une vitesse de lacet étant mesurée au moyen du capteur de vitesse de lacet et la vitesse de lacet étant intégrée dans le temps dans l'unité de calcul pour le calcul de l'orientation. Un oscillateur micromécanique du capteur de vitesse de lacet oscille avec une fréquence propre et produit un signal de fréquence propre, un signal d'horloge pour l'intégration dans l'unité de calcul étant déduit du signal de fréquence propre.
PCT/EP2016/050727 2015-01-21 2016-01-15 Procédé de calcul d'une orientation au moyen d'un système de détection et système de détection WO2016116360A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015200944.0A DE102015200944A1 (de) 2015-01-21 2015-01-21 Verfahren zur Berechnung einer Orientierung mit einem Sensorsystem und Sensorsystem
DE102015200944.0 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016116360A1 true WO2016116360A1 (fr) 2016-07-28

Family

ID=55237629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/050727 WO2016116360A1 (fr) 2015-01-21 2016-01-15 Procédé de calcul d'une orientation au moyen d'un système de détection et système de détection

Country Status (2)

Country Link
DE (1) DE102015200944A1 (fr)
WO (1) WO2016116360A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018209485A1 (de) * 2018-06-14 2019-12-19 Robert Bosch Gmbh Verfahren zum Abgleich eines Drehratensensors und einer Auswerteeinheit des Drehratensensors
DE102018222608B4 (de) * 2018-12-20 2021-06-10 Robert Bosch Gmbh System mit mikromechanischer taktgebender Systemkomponente

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089813A1 (de) * 2011-12-23 2013-06-27 Continental Teves Ag & Co. Ohg Frequenzgeberanordnung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089813A1 (de) * 2011-12-23 2013-06-27 Continental Teves Ag & Co. Ohg Frequenzgeberanordnung

Also Published As

Publication number Publication date
DE102015200944A1 (de) 2016-07-21

Similar Documents

Publication Publication Date Title
DE19910415A1 (de) Verfahren und Vorrichtung zum Abstimmen eines ersten Oszillators mit einem zweiten Oszillator
EP2547984B1 (fr) Procédé de régulation découplée de la quadrature et de la fréquence de résonance d'un gyroscope micromécanique
DE3926038C2 (fr)
DE102009000743B4 (de) Vibrationskompensation für Drehratensensoren
EP0883795B1 (fr) Dispositif pour determiner la vitesse de rotation
EP3256822B1 (fr) Dispositif pour déterminer et/ou surveiller au moins une grandeur de processus d'un milieu et procédé correspondant
DE102005043559A1 (de) Verfahren und Anordnung zur Überwachung einer Sensoranordnung
DE10230528B4 (de) Verbesserungen in bzw. bezüglich eines Systems der Beseitigung der Abweichung für ein Schwinggyroskop
WO2017194223A1 (fr) Procédé et dispositif de démodulation de signaux de gyroscope
DE102012011934A1 (de) Verfahren zum Betreiben eines Resonazmesssystems und diesbezügliche Resonanzmesssystem
WO2007031403A1 (fr) Procede pour faire fonctionner un gyroscope vibrant et dispositif de detection
EP1630525A2 (fr) Procédé d'étalonnage d'un gyroscope d'un module de localisation dans un système mobile
WO2016116360A1 (fr) Procédé de calcul d'une orientation au moyen d'un système de détection et système de détection
DE10321962B4 (de) Verfahren und Vorrichtung zum Simulieren einer Drehrate und Verwendung von simulierten Drehraten zur initialen Kalibrierung von Drehratensensoren oder zur In-Betrieb-Nachkalibrierung von Drehratensensoren
DE10240087C5 (de) Vibrationskreisel
EP0179197A2 (fr) Montage pour mesurer la position variable dans le temps et les erreurs d'un système de navigation répétiteur par rapport à un système principal
EP3117182A1 (fr) Procédé d'optimisation du temps de fermeture dans un gyroscope de coriolis et gyroscope de coriolis adapté à cette fin
EP3653991B1 (fr) Procédé et dispositif de traitement de signal d'adaptation automatique de la fréquence d'un filtre dans une boucle de régulation fermée
EP1440289B1 (fr) Systeme de navigation destine a determiner la trajectoire d'un vehicule
EP3167551A1 (fr) Dispositif de commande et procédé pour rendre minimales les erreurs de facteur d'échelle d'un capteur de vitesse de rotation
WO1990002311A1 (fr) Procede perfectionne de reglage automatique sur le nord
DE102020202812A1 (de) Verfahren und Vorrichtung zum verbesserten Betrieb eines Oszillators und Drehratensensor
DE10129444A1 (de) Ortungs-und/oder Navigationsverfahren und System
WO2016180566A1 (fr) Procédé pour la détermination d'états d'un système au moyen d'un filtre d'estimation
DE102020209481A1 (de) Verfahren und Vorrichtung zum Kalibrieren und Betreiben eines Sensorbauteils mithilfe maschineller Lernverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16701731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16701731

Country of ref document: EP

Kind code of ref document: A1