WO2016115790A1 - 一种臭氧光催化反应器及水处理方法 - Google Patents

一种臭氧光催化反应器及水处理方法 Download PDF

Info

Publication number
WO2016115790A1
WO2016115790A1 PCT/CN2015/078783 CN2015078783W WO2016115790A1 WO 2016115790 A1 WO2016115790 A1 WO 2016115790A1 CN 2015078783 W CN2015078783 W CN 2015078783W WO 2016115790 A1 WO2016115790 A1 WO 2016115790A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
layer
carbon bed
honeycomb activated
honeycomb
Prior art date
Application number
PCT/CN2015/078783
Other languages
English (en)
French (fr)
Inventor
谢勇冰
曹宏斌
盛宇星
李玉平
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to US15/544,460 priority Critical patent/US10662095B2/en
Publication of WO2016115790A1 publication Critical patent/WO2016115790A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the technical field of water treatment, in particular to an ozone photocatalytic reactor and a method for using the same.
  • the biological method formed by the combination of aerobic and anaerobic technologies is the cheapest and most effective method for removing organic pollutants, but it has no power for the biotoxic pollutants, and the physical and chemical treatment unit needs to be added later.
  • the advanced oxidation method is the most promising advanced treatment method. By adding an energy field, light, chemicals, etc., it produces a hydroxyl radical deep mineralized pollutant with strong oxidizing ability, and the product is harmless water and carbon dioxide.
  • Advanced oxidation methods include Fenton oxidation, photocatalysis, ozone oxidation, wet catalytic oxidation, supercritical water oxidation, ultrasonic oxidation, etc.
  • Various methods have certain advantages and disadvantages.
  • the Fenton process has a simple process and a strong oxidizing ability, but requires an acidic environment and generates a large amount of iron mud; the photocatalytic reaction rate is slow, and the problem of high industrial application cost cannot be overcome in a short period of time; wet catalytic oxidation requires high temperature and high pressure. It is only suitable for wastewater treatment processes with very high concentrations and low water content.
  • the ozone oxidation method has mild operating conditions and strong oxidizing ability, and has been applied in municipal sewage disinfection and industrial wastewater treatment, but the efficiency and cost need to be further improved.
  • ozone oxidation efficiency There are two ways to increase ozone oxidation efficiency: efficient catalyst development and new reaction process design.
  • a large number of papers and patents disclose the development process of high-efficiency ozone oxidation catalysts, such as CN102029165A and CN102049253A respectively disclose methods for preparing different ozone oxidation catalysts suitable for water treatment.
  • the new reaction process mainly refers to the coupling of ozone with other reaction separation processes, such as ozone combined with ceramic membrane filtration, photocatalysis, hydrogen peroxide, etc., which can improve the oxidation capacity of the ozone oxidation process to a certain extent.
  • CN101497014 discloses a novel photocatalytic ozonation fluidized bed reaction device and a water treatment method, which use at least two devices to switch catalysts in a fluidized state of ozone regeneration gas by a reaction device, thereby solving catalyst pollution, ozone tail gas pollution waste, etc.
  • the problem is that the ozone utilization efficiency is low relative to the water treatment effect.
  • CN201762164U uses the gas stripping method to suspend the activated carbon in the reactor, but the activated carbon particles are trapped when the water is discharged, and the activated carbon has strong absorption of ultraviolet light and the photocatalytic efficiency is low.
  • ozone photocatalytic treatment of industrial wastewater produces a large amount of hydroxyl radicals, and the ineffective quenching between them affects the treatment efficiency; and although ozone has a strong ability to oxidize pollutants containing unsaturated bonds, it is formed after the double bond is broken. Carboxylic acid intermediates have limited ability to remove.
  • the photocatalytic UV lamp has a short life, and the use of a large amount of ultraviolet light source increases the processing cost.
  • one of the objects of the present invention is to provide an ozone photocatalytic reactor which has high sewage treatment efficiency and low production cost.
  • An ozone photocatalytic reactor includes:
  • At least one photooxidation reaction unit is disposed above the activated carbon layer;
  • the reaction unit comprises a honeycomb activated carbon bed layer I, a light source layer and a honeycomb activated carbon bed layer II in order from bottom to top;
  • an air inlet and a water inlet are arranged on the shell layer below the activated carbon layer; a water outlet and an exhaust port are arranged on the shell layer above the photo-oxidation reaction unit;
  • the activated carbon layer is loaded with a solid catalyst; the at least one honeycomb activated carbon bed I and the at least one honeycomb activated carbon bed II are loaded with a photocatalytic solid catalyst.
  • the invention integrates two water treatment processes of ozone oxidation and ozone photocatalysis into the same reactor, utilizes the strong oxidizing ability of the ozone-containing oxidation to the unsaturated bond-containing pollutants, and the ozone photocatalysis and photocatalysis to the carboxylic acid pollutants. Strong removal ability, ingeniously designing the reactor, improving the matching degree of ozone and ultraviolet light, overcoming the shortcomings of the prior art sewage treatment efficiency and high equipment cost.
  • the light transmittance of the honeycomb activated carbon bed layer I and the honeycomb activated carbon bed layer II of the present invention is set to a predetermined percentage.
  • the predetermined percentage is selected according to actual conditions, and may be 0 to 3%, 0 to 5%, 0.1 to 4%, 0.2 to 5%, 0.3 to 10%, or the like.
  • honeycomb activated carbon bed I and the honeycomb activated carbon bed by adjusting the thickness of the honeycomb activated carbon bed layer I and the honeycomb activated carbon bed layer II, the distance between the two from the light source layer, and the power of the light source layer.
  • the light transmittance of II satisfies a predetermined percentage.
  • the content of the activated carbon layer disposed in the shell layer, the at least one honeycomb activated carbon bed layer I, and the at least one honeycomb activated carbon bed layer II are sequentially increased.
  • the activated carbon layer of the present invention is any one of a honeycomb activated carbon bed, a honeycomb ceramic or a granular activated carbon particle, preferably a honeycomb activated carbon bed, and further preferably a water resistant honeycomb activated carbon bed.
  • the honeycomb activated carbon bed layer I and the honeycomb activated carbon bed layer II are both water resistant honeycomb activated carbon beds.
  • the honeycomb activated carbon bed has square holes.
  • the setting of the activated carbon layer requires a good mass transfer effect.
  • the square hole size is required to be ⁇ 0.5 cm, preferably 0.1 to 0.5 cm; and preferably, the honeycomb activated carbon beds are alternately placed.
  • the arrangement of the honeycomb activated carbon bed layer I and the honeycomb activated carbon bed layer II is required to have suitable light transmittance and good mass transfer effect.
  • the honeycomb activated carbon bed layer I has a square hole diameter of 0.5 to 1 cm
  • the honeycomb activated carbon bed layer II has a square hole diameter of 0.5 to 1 cm.
  • the light source layer of the present invention is a light source capable of emitting visible light and/or ultraviolet light, preferably an ultraviolet light source.
  • the light source cover of the light source layer has a quartz protective cover.
  • the role of the quartz protective cover is to prevent the light source from coming into contact with the sewage, reducing the safety risk and reducing the light loss.
  • the photocatalytic solid catalyst of the present invention is TiO 2 and/or metal doped TiO 2 ; the doping metal is preferably selected from any one of Ni, Fe, Cu, Mn or a combination of at least two;
  • the solid catalyst is selected from a solid ozone oxidation catalyst, preferably a transition metal oxide catalyst for ozone oxidation; particularly preferably any of a TiO 2 catalyst, a CuO catalyst, a MnO 2 catalyst, a NiO catalyst or a Fe 2 O 3 catalyst One or a combination of at least two;
  • the activated carbon layer supports a solid catalyst content of ⁇ 5%, preferably 0.1 to 5%.
  • the honeycomb activated carbon bed I supports a solid catalyst content of 2 to 10%, preferably 2 to 6%.
  • the honeycomb activated carbon bed II supports a solid catalyst content of 5 to 20%, preferably 5 to 10%.
  • the thickness of the activated carbon layer accounts for 20 to 95%, preferably 30 to 80%, of the sum of the heights of the activated carbon layer and the photooxidation reaction unit.
  • a gas distributor is further disposed above the gas inlet.
  • the reactors are arranged in order from bottom to top:
  • an activated carbon layer wherein the activated carbon layer is a honeycomb activated carbon bed having a square pore diameter of ⁇ 0.5 cm, and is loaded with a solid catalyst having a content of not more than 0.5%;
  • honeycomb activated carbon bed layer having a thickness of 5 to 20 cm, wherein the honeycomb activated carbon bed layer II has a square pore diameter of 0.5 to 1 cm and is loaded with 2 to 10% of a solid catalyst;
  • An ultraviolet light source layer consisting of a horizontal arrangement of cylindrical ultraviolet tubes of a cover transparent quartz tube, wherein the ultraviolet light tube has an exit light intensity of 10 to 1000 mW/cm 2 ;
  • honeycomb activated carbon bed layer having a thickness of 5 to 20 cm, wherein the honeycomb activated carbon bed layer II has a square pore diameter of 0.5 to 1 cm and is loaded with 5 to 20% of a solid catalyst;
  • the reactor is provided with an air inlet and a water inlet below the activated carbon layer, and a water outlet and an exhaust port are arranged above the reactor honeycomb activated carbon bed II;
  • the distance between the honeycomb activated carbon bed layer I and the honeycomb activated carbon bed layer II and the ultraviolet light source layer is independently selected from 5 to 30 cm.
  • Another object of the present invention is to provide a method for treating wastewater by using the ozone photocatalytic reactor of one of the purposes.
  • the present invention has the following beneficial effects:
  • the catalyst in the reactor is a solid catalyst, which does not require additional recovery, which reduces equipment cost and operating cost.
  • the ozone oxidation and ozone photocatalysis matching are fully realized, the number of light sources is greatly reduced, and the equipment is further reduced. Cost; again, the water treatment efficiency of the reactor is increased, and the treatment The size of the equipment per unit volume of sewage is greatly reduced; finally, as a preferred addition of a protective cover outside the light source, the life of the light source is increased, further reducing the cost of the equipment.
  • Example 1 is a schematic structural view of an ozone photocatalytic reactor provided in Example 1;
  • 1-shell 2-activated carbon layer
  • 3-cellular activated carbon bed I 4-cellular activated carbon bed II; 5-transparent quartz tube; 6-inlet; 7-inlet; 8-UV Lamp; 9-outlet; 10-exhaust port; 11-gas distributor.
  • Figure 1 provides an ozone photocatalytic reactor comprising a shell layer 1 arranged in order from bottom to top inside the shell layer 1:
  • Activated carbon layer 2 wherein the activated carbon layer 2 is a water-resistant honeycomb activated carbon bed having a square pore diameter of ⁇ 0.5 cm, and the load is ⁇ 5%, for example, 0.1%, 2%, 3.3%, 4.4%, etc., preferably 0.1 ⁇ 5% of the solid catalyst, the activated carbon layer has a height of 1 to 5 meters;
  • the honeycomb activated carbon beds are preferably staggered to increase the mass transfer effect of the sewage to be treated in the activated carbon layer 2, and to improve the reaction efficiency of ozone oxidation; the staggered placement is corresponding to the adjacent walls of any honeycomb activated carbon bed. a hole in a honeycomb activated carbon bed;
  • the square hole diameter of the activated carbon layer 2 is preferably 0.1 to 0.5 cm, for example, 0.2 cm, 0.4 cm, etc., when the square hole size is less than 0.1 cm, the resistance of the activated carbon layer 2 is too large, and the water flow velocity becomes small, which affects the treatment efficiency to some extent.
  • the square hole size is larger than 0.5 cm, the mass transfer efficiency is deteriorated, and the water treatment effect is deteriorated.
  • the activated carbon layer-supported solid catalyst is a transition metal oxide catalyst which can be used for ozone oxidation, preferably a metal-doped ozone-oxidized transition metal oxide catalyst, particularly preferably a metal-doped TiO 2 catalyst, further preferably Ni, Fe.
  • the ozone decomposition is insufficient, and the effect of ozone decomposition to generate hydroxyl radicals cannot be fully exerted.
  • the solid catalyst content is too high (> 5%), and the ozone decomposition is thorough, the sewage flow
  • the honeycomb activated carbon bed layer I 3 and the honeycomb activated carbon bed layer II 4 the ozone concentration is too low to perform ozone photocatalysis, which is disadvantageous for the deep removal of the intermediate product.
  • the ozone to be treated which passes through the reaction gas undergoes an ozone oxidation reaction, and the sewage in the sewage to be treated is subjected to preliminary treatment.
  • a photo-oxidation reaction unit comprising a honeycomb activated carbon bed I 3 , an ultraviolet light source layer and a honeycomb activated carbon bed layer 4 disposed from bottom to top;
  • the honeycomb activated carbon bed layer I 2 has a thickness of 5 to 20 cm, for example, 6 cm, 10 cm, 15 cm, etc., wherein the square hole diameter is 0.5 to 1 cm, for example, 0.7 cm, 0.8 cm, etc., and the load is 2 to 10%, for example, 3 %, 5%, 7%, 9%, etc., preferably 2 to 6% of the photocatalytic solid catalyst;
  • the honeycomb activated carbon bed II 4 has a thickness of 5 to 20 cm, for example, 6 cm, 10 cm, 15 cm, etc., wherein the square pore diameter is 0.5 to 1 cm, for example, 0.7 cm, 0.8 cm, etc., loaded with 5 to 20%, for example, 7%, 10%, 16%, 19%, etc., preferably 5 to 10% of a photocatalytic solid catalyst; and a honeycomb activated carbon bed I 3 and honeycomb activated carbon bed II 4 is a water resistant honeycomb activated carbon bed;
  • the ultraviolet light source layer is composed of a cylindrical ultraviolet lamp tube
  • the thickness of the honeycomb activated carbon bed I 3 and the honeycomb activated carbon bed II 4 is too thick (such as > 20cm), the distance from the light source layer is too far, or the power of the light source layer is too small, so that the light does not illuminate the honeycomb activated carbon bed I 3 and the honeycomb activated carbon bed II 4 away from the light source layer, then no light is irradiated The area will not be able to undergo ozone photocatalytic reaction, affecting the efficiency of sewage treatment, causing waste of the activated carbon layer 2 and the catalyst supported thereon; on the other hand, if the honeycomb activated carbon bed layer I 3 and the honeycomb activated carbon bed layer II 4 The thickness is too thin, the distance from the light source layer is too short, or the power of the light source layer is too large, resulting in low utilization of light energy, resulting in energy loss.
  • the content of the photocatalytic solid catalyst supported by the honeycomb activated carbon bed II 4 is high, the ozone decomposition in the sewage can be completely completed, and the photocatalytic reaction of ozone in the honeycomb activated carbon bed I 3 and the honeycomb activated carbon bed II 4 can be strengthened and reduced.
  • the concentration of ozone in the water avoids secondary pollution; however, if it is too high, it causes waste; therefore, the content of the photocatalytic solid catalyst supported on the honeycomb activated carbon bed II 4 is preferably 5 to 10%.
  • the visible light and/or the ultraviolet light emitted by the light source layer can be irradiated simultaneously in the upward and downward directions, under the action of the honeycomb activated carbon bed layer 3 and the honeycomb activated carbon bed layer 4 supported photocatalytic solid catalyst.
  • the ozone from the activated carbon layer 2 further undergoes an ozone photocatalytic reaction to further treat the undegraded contaminants and degradation intermediates.
  • the reactor is provided with an inlet port 7 and a water inlet port 6 below the activated carbon layer 2, and a water outlet port 9 and an exhaust port 10 are disposed above the reactor honeycomb activated carbon bed layer II; in the activated carbon layer and the intake port a gas distributor 11 between the mouths;
  • the air inlet 7 is supplied with ozone gas, and the water inlet 6 is connected to the sewage to be treated.
  • the sewage to be treated flows through the activated carbon layer 2 to cause adsorption and ozone oxidation reaction.
  • the honeycomb activated carbon bed II 3 undergoes adsorption, ozone oxidation, photocatalysis and ozone photocatalytic reaction, and the photochemical reaction occurs in the ultraviolet layer, and the honeycomb activated carbon bed III 4 occurs.
  • Adsorption, photocatalysis, ozone oxidation and ozone photocatalytic reaction, the pollutants in the water undergo different reactions through multiple stages to achieve the purpose of deep removal.
  • Example 1 The working principle of the ozone photocatalytic reactor provided in Example 1 is as follows:
  • Ozone enters the bottom of the reactor from the inlet port 7, and the sewage to be treated enters the bottom of the reactor through the water inlet 6, and the ozone introduced from the inlet port 7 passes through the gas distributor 11 and is uniformly mixed with the sewage to be treated, and then flows through the honeycomb activated carbon.
  • activated carbon layer 2 is composed of a plurality of water-resistant honeycomb activated carbon, the inner hole is a square hole with a pore diameter of less than 0.5 cm, the solid catalyst supported on the pore wall is a metal ion doped TiO 2 catalyst; and the activated carbon layer 2 is formed with a large number of staggered
  • the water flow channel helps the sewage, ozone and the supported catalyst to fully contact; the ozone oxidation reaction occurs in each square hole channel, the pollutant adsorption and the catalytic ozone oxidation reaction occur on the pore wall; the ozone decomposes on the pore wall to generate hydroxyl radical Oxidation species such as superoxide radicals and singlet oxygen oxidize and decompose organic pollutants in sewage; therefore, adsorption, ozone oxidation and catalytic oxidation of ozone in activated carbon layer 2, organic pollutants in sewage are oxidized into intermediate products, water And carbon dioxide.
  • the honeycomb activated carbon bed I 3 After the sewage flows through the activated carbon layer 2, it enters the honeycomb activated carbon bed I 3 with a layer height of 5-20 cm; the ultraviolet light is irradiated downward from the top of the honeycomb activated carbon bed I 3 , and photochemical reaction occurs in the square hole of the honeycomb activated carbon bed I 3 . Adsorption, ozone oxidation, ozone photocatalysis and other reactions occur in the square pore wall of the honeycomb activated carbon bed I 3 to form oxide species such as photogenerated holes, hydroxyl radicals and superoxide radicals, and further decompose organic pollutants in the sewage. An intermediate formed by reaction with activated carbon layer 2.
  • the sewage flows out of the honeycomb activated carbon bed I 3 and enters the ultraviolet region.
  • the photochemical reaction and the ozone reaction occur under ultraviolet light.
  • the undecomposed ozone continues to oxidize the pollutants.
  • the ozone and oxygen in the ozone gas can also act as a photogenerated electron trapping agent. Increasing the yield of photogenerated holes under ultraviolet light and forming holes with strong oxidizing ability also contribute to further oxidative decomposition of organic pollutants.
  • honeycomb activated carbon bed II 4 The sewage finally flows into the honeycomb activated carbon bed II 4 , and the structure of the honeycomb activated carbon bed II 4 is very close to the honeycomb activated carbon bed I 3 , but the inner wall of the tunnel has a higher catalyst content; since the concentration of ozone passes through the three reaction zones, the concentration is greatly reduced. Therefore, the honeycomb activated carbon bed II 4 has a higher loading catalyst, so that Ozone decomposition is more thorough, avoiding secondary pollution caused by dissolved ozone in the effluent; the reaction occurring in the honeycomb activated carbon bed II 4 is also the same as that of the honeycomb activated carbon bed I 3 , including adsorption, ozone oxidation, ozone photocatalysis, etc. Oxidation of photogenerated holes, hydroxyl radicals, superoxide radicals, etc., deep mineralization of organic pollutants and oxidation intermediates formed in the previous stage.
  • An ozone photocatalytic reactor which differs from Embodiment 1 in that two photo-oxidation reaction units are provided, and the light source in the two photo-oxidation reaction units is a visible light source; the two photo-oxidation reaction units have a total of four honeycomb activated carbons.
  • the thickness of the bed is 5-10 cm, 5-10 cm, 5-20 cm, 5-20 cm from bottom to top; the four beds are loaded with metal ion doped TiO 2 catalyst, and the amount of solid catalyst supported is 2 ⁇ 10%, 2-10%, 5-20%, preferably 2-4%, 2-4%, 5-10%.
  • the ozone photocatalytic reactor provided in Example 1 was used for sewage treatment, the sewage intake amount was 1 m 3 /h, the sewage COD was 150 mg/L, and the ozone input amount was 120 g/h; after treatment, the COD in the sewage was ⁇ 50 mg/ L.
  • the present invention illustrates the detailed process equipment and process flow of the present invention by the above embodiments, but the present invention is not limited to the above detailed process equipment and process flow, that is, does not mean that the present invention must rely on the above detailed process equipment and The process can only be implemented. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.

Abstract

一种臭氧光催化反应器,包括:壳层(1);设置于壳层(1)内部的活性炭层(2);以及在壳层(1)内部,活性炭层(2)上方至少设置一个光氧化反应单元。该光氧化反应单元由下至上依次包括蜂窝状活性炭层Ⅰ(3)、光源层和蜂窝状活性炭床层Ⅱ(4);其中,在活性炭层(2)下方的壳层上设置进气口(7)和进水口(6);在光氧化反应单元上方的壳层(1)上设置出水口(9)和排气口(10);且活性炭层(2)、至少一个蜂窝状活性炭床层Ⅰ(3)和至少一个蜂窝状活性炭床层Ⅱ(4)负载有固体催化剂。该反应器充分利用了臭氧氧化和臭氧光催化处理污水,处理时间短,处理效率高。

Description

一种臭氧光催化反应器及水处理方法 技术领域
本发明涉及水处理技术领域,尤其涉及一种臭氧光催化反应器及使用其进行水处理的方法。
背景技术
我国水污染形势严峻,许多地区长期受水污染困扰,严重危害居民健康和工业可持续发展。随着2015年1月1日开始实施新环保法,我国对废水深度处理的要求越来越迫切,特别是难降解工业废水的处理难题。
当前,以好氧、厌氧技术组合形成的生物法是去除有机污染物最廉价有效的方法,但对生物毒性大的污染物无能为力,后续需增加物理化学处理单元。高级氧化法是最具前景的深度处理方法,通过外加能量场、光照、药剂等,产生氧化能力强的羟基自由基深度矿化污染物,产物为无害的水和二氧化碳。高级氧化法包括芬顿氧化法、光催化法、臭氧氧化法、湿式催化氧化法、超临界水氧化、超声氧化法等,各种方法都存在一定的优缺点。例如,芬顿法处理流程简单,氧化能力较强,但要求酸性环境,并且产生大量铁泥;光催化法反应速率慢,短期内无法克服工业应用成本高的难题;湿式催化氧化要求高温高压,仅适用于浓度非常高、水量小的污水处理过程。臭氧氧化法操作条件温和,氧化能力较强,在市政污水消毒和工业废水处理中得到一定应用,但效率和成本还需进一步提高。
提高臭氧氧化效率有两种途径:高效催化剂开发和新反应过程设计。大量论文、专利公开了高效臭氧氧化催化剂开发过程,如CN102029165A和 CN102049253A分别公布了适用于水处理的不同臭氧氧化催化剂制备方法。新反应过程主要指臭氧与其他反应分离过程耦合,如臭氧与陶瓷膜过滤、光催化、过氧化氢等结合,可在一定程度上提高臭氧氧化过程的氧化能力。
CN101497014公开了一种新型光催化臭氧化流化床反应装置及水处理方法,其使用至少两个装置,通过反应装置切换用臭氧尾气再生水中流化态的催化剂,解决催化剂污染及臭氧尾气污染浪费等问题,相对水处理效果而言,臭氧利用效率偏低。
CN201762164U采用气提方法使活性炭悬浮在反应器中,但出水时需截留活性炭颗粒,且活性炭对紫外光吸收强,光催化效率偏低。
现有技术采用臭氧光催化处理工业废水,会产生大量羟基自由基,相互间无效湮灭影响了处理效率;且臭氧虽然对含不饱和键的污染物氧化能力强,但对双键断裂后形成的羧酸类中间产物去除能力有限。而另一方面,光催化用紫外灯管寿命较短,大量使用紫外光源会提高处理成本。
因此,本领域亟待开发一种臭氧光催化反应器,其反应效率较高,对污水处理能力强,且制作成本低。
发明内容
针对现有技术的不足,本发明的目的之一在于提供一种臭氧光催化反应器,所述反应器污水处理效率高,制作成本低。
本发明目的之一通过如下方案实现:
一种臭氧光催化反应器包括:
(i)壳层;
(ii)设置于壳层内部的活性炭层;
(iii)在壳层内部,活性炭层上方设至少置一个光氧化反应单元;所述光氧 化反应单元由下至上依次包括蜂窝状活性炭床层I、光源层和蜂窝状活性炭床层II;
其中,在活性炭层下方的壳层上设置进气口和进水口;在光氧化反应单元上方的壳层上设置出水口和排气口;
所述活性炭层负载有固体催化剂;所述至少一个蜂窝状活性炭床层I和至少一个蜂窝状活性炭床层II负载有光催化固体催化剂。
本发明将臭氧氧化和臭氧光催化两种水处理过程集成在同一个反应器中,利用臭氧氧化对含不饱和键污染物的强氧化能力,和臭氧光催化和光催化对羧酸类污染物的强去除能力,巧妙设计反应器,提高了臭氧和紫外光的匹配度,克服了现有技术污水处理效率低,设备成本高的缺点。
优选地,本发明设置蜂窝状活性炭床层I和蜂窝状活性炭床层II的光线透过率满足预定百分比。
所述预定百分比根据实际情况进行选择,可以是0~3%、0~5%、0.1~4%、0.2~5%、0.3~10%等。
本领域技术人员可以通过调节蜂窝状活性炭床层I和蜂窝状活性炭床层II的厚度,两者与光源层的距离,以及光源层的功率来实现蜂窝状活性炭床层I和蜂窝状活性炭床层II的光线透过率满足预定百分比的目的。
优选地,设置于壳层内的活性炭层、至少一个蜂窝状活性炭床层I和至少一个蜂窝状活性炭床层II上负载的固体催化剂的含量依次增加。
优选地,本发明所述活性炭层为蜂窝状活性炭床、蜂窝陶瓷或颗粒活性炭颗粒中的任意1种,优选蜂窝状活性炭床,进一步优选耐水蜂窝状活性炭床。
优选地,蜂窝状活性炭床层I和蜂窝状活性炭床层II均为耐水蜂窝状活性炭床。
优选地,所述蜂窝状活性炭床具有方孔。
作为优选,活性炭层的设置要求传质效果好。当选择蜂窝状活性炭床作为活性炭层时,要求其方孔尺寸≤0.5cm,优选0.1~0.5cm;且优选蜂窝状活性炭床交错放置。
作为优选,蜂窝状活性炭床层I和蜂窝状活性炭床层II的设置要求具有合适的透光性和良好的传质效果。所述蜂窝状活性炭床层I的方孔孔径为0.5~1cm,所述蜂窝状活性炭床层II的方孔孔径为0.5~1cm。
优选地,本发明所述光源层为能够发射可见光和/或紫外光的光源,优选紫外光源。
优选地,所述光源层的光源外罩有石英保护罩。石英保护罩的作用是避免光源与污水接触,降低安全风险,减少光损失。
优选地,本发明所述光催化固体催化剂为TiO2和/或金属掺杂的TiO2;所述掺杂金属优选自Ni、Fe、Cu、Mn中任意一种或至少两种的组合;
优选地,所述固体催化剂选自固体臭氧氧化催化剂,优选用于臭氧氧化的过渡金属氧化物催化剂;特别优选TiO2催化剂、CuO催化剂、MnO2催化剂、NiO催化剂或Fe2O3催化剂中的任意一种或至少两种的组合;。
优选地,所述活性炭层负载的固体催化剂含量≤5%,优选0.1~5%。
优选地,当只含有一个光氧化单元时,所述蜂窝状活性炭床层I负载的固体催化剂含量2~10%,优选2~6%。
优选地,当只含有一个光氧化单元时,所述蜂窝状活性炭床层II负载的固体催化剂含量5~20%,优选5~10%。
优选地,所述活性炭层的厚度占活性炭层和光氧化反应单元高度之和的20~95%,优选30~80%。
优选地,壳层内部,在活性炭层下方,进气口上方还设置有气体分布器。
作为优选技术方案,所述反应器由下至上依次设置:
活性炭层,所述活性炭层为具有方孔孔径≤0.5cm的蜂窝状活性炭床,负载有含量不超过0.5%的固体催化剂;
厚度为5~20cm的蜂窝状活性炭床层I,所述蜂窝状活性炭床层II的方孔孔径为0.5~1cm,负载有2~10%的固体催化剂;
由外罩透明石英管的圆柱形紫外灯管水平排列组成的紫外光源层,所述紫外灯管的出射光强为10~1000mW/cm2
厚度为5~20cm的蜂窝状活性炭床层II,所述蜂窝状活性炭床层II的方孔孔径为0.5~1cm,负载有5~20%的固体催化剂;
反应器在活性炭层的下方设置进气口和进水口,反应器蜂窝状活性炭床层II的上方设置出水口和排气口;
所述蜂窝状活性炭床层I和蜂窝状活性炭床层II与紫外光源层的距离独立地选自5~30cm。
本发明目的之二是提供一种利用目的之一所述臭氧光催化反应器处理废水的方法。
与现有技术相比,本发明具有如下有益效果:
(1)充分利用了臭氧氧化和臭氧光催化来处理污水,处理效率高,其每小时进水量不低于反应器空体积的4倍,处理时间在15min以内;处理结果优良,对污水中难降解污染物有很好的矿化效果;
(2)反应器内的催化剂为固体催化剂,无需额外回收,降低了设备成本和操作成本;另外,由于充分实现了臭氧氧化和臭氧光催化的匹配,大大减少了光源的数量,进一步降低了设备成本;再次,反应器的水处理效率提高,处理 单位体积污水的设备尺寸大幅降低;最后,作为优选在光源外加入保护罩,提高了光源的寿命,进一步降低了设备的成本。
附图说明
图1是实施例1提供的臭氧光催化反应器的结构示意图;
其中,1-壳层;2-活性炭层;3-蜂窝状活性炭床层I;4-蜂窝状活性炭床层II;5-透明石英管;6-进水口;7-进气口;8-紫外灯管;9-出水口;10-排气口;11-气体分布器。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
图1提供了一种臭氧光催化反应器包括壳层1,在壳层1内部由下至上依次设置的:
(1)活性炭层2,所述活性炭层2为具有方孔孔径≤0.5cm的耐水蜂窝状活性炭床,负载有≤5%,例如0.1%、2%、3.3%、4.4%等,优选0.1~5%的固体催化剂,所述活性炭层的高度为1~5米;
其中,所述蜂窝状活性炭床优选交错放置,以增加待处理污水在活性炭层2的传质效果,提高臭氧氧化的反应效率;所述交错放置为任一蜂窝状活性炭床的孔壁对应相邻蜂窝状活性炭床的孔洞;
其中,活性炭层2的方孔孔径优选0.1~0.5cm,例如0.2cm、0.4cm等,当方孔尺寸小于0.1cm时,活性炭层2的阻力太大,水流速度变小,一定程度影响了处理效率;当方孔尺寸大于0.5cm时,传质效率变差,水处理效果变差。
活性炭层2负载的固体催化剂为能够用于臭氧氧化的过渡金属氧化物催化 剂,优选金属掺杂的臭氧氧化的过渡金属氧化物催化剂,特别优选为金属掺杂的TiO2催化剂,进一步优选Ni、Fe、Cu、Mn中任意一种金属离子掺杂的TiO2催化剂。
活性炭层2负载的固体催化剂含量太低(<0.1%)则臭氧分解不够,无法充分发挥臭氧分解产生羟基自由基的作用,固体催化剂含量太高(>5%)则臭氧分解较彻底,污水流经蜂窝状活性炭床层I 3和蜂窝状活性炭床层II 4时,臭氧浓度太低,无法发挥臭氧光催化作用,不利于中间产物深度去除。
在活性炭层2负载的固体催化剂的作用下,通入反应气的待处理污水发生臭氧氧化反应,将待处理污水中的污物进行了初步处理。
(2)一个光氧化反应单元,所述光氧化反应单元包括由下至上设置的蜂窝状活性炭床层I 3、紫外光源层和蜂窝状活性炭床层II 4;
其中,蜂窝状活性炭床层I 2厚度为5~20cm,例如6cm、10cm、15cm等,其中的方孔孔径为0.5~1cm,例如0.7cm、0.8cm等,负载有2~10%,例如3%、5%、7%、9%等,优选2~6%的光催化固体催化剂;蜂窝状活性炭床层II 4厚度为5~20cm,例如6cm、10cm、15cm等,其中的方孔孔径为0.5~1cm,例如0.7cm、0.8cm等,负载有5~20%,例如7%、10%、16%、19%等,优选5~10%的光催化固体催化剂;且蜂窝状活性炭床层I 3和蜂窝状活性炭床层II 4为耐水蜂窝状活性炭床;所述紫外光源层由外罩透明石英管5的圆柱形紫外灯管8水平排列组成,所述紫外灯管的出射光强为10~1000mW/cm2,例如50mW/cm2、120mW/cm2、350mW/cm2、700mW/cm2、850mW/cm2、900mW/cm2等;所述蜂窝状活性炭床层I 3和蜂窝状活性炭床层II 4距离紫外光源透明石英管5的距离独立的选自5~30cm,例如6cm、10cm、15cm、25cm等;
如果蜂窝状活性炭床层I 3和蜂窝状活性炭床层II 4的厚度太厚(如> 20cm),距离光源层的距离太远,或者光源层功率太小等,导致光线没有照射到蜂窝状活性炭床层I 3和蜂窝状活性炭床层II 4远离光源层一侧,则没有照射到光线的区域将无法发生臭氧光催化反应,影响污水处理效率,造成活性炭层2和负载在其上的催化剂的浪费;另一方面,如果蜂窝状活性炭床层I 3和蜂窝状活性炭床层II 4的厚度太薄,距离光源层的距离太短,或者光源层功率太大等,导致光能利用率低,造成能量损失。
如果蜂窝状活性炭床层II 4负载的光催化固体催化剂含量高,可使污水中臭氧分解完全,强化蜂窝状活性炭床层I 3和蜂窝状活性炭床层II 4中臭氧光催化反应,并且降低出水中臭氧浓度,避免二次污染;但如果过高,则造成浪费;因此选择蜂窝状活性炭床层II 4负载的光催化固体催化剂含量优选5~10%。
在光氧化反应单元中,光源层发射的可见光和/或紫外光能够同时向上下两个方向照射,在蜂窝活性炭床层3和蜂窝状活性炭床层4负载的光催化固体催化剂的作用下,从活性炭层2过来的污水进一步发生臭氧光催化反应,使未降解污染物和降解中间产物得到进一步的处理。
(3)反应器在活性炭层2的下方设置进气口7和进水口6,反应器蜂窝状活性炭床层II 4的上方设置出水口9和排气口10;在所述活性炭层和进气口之间设气体分布器11;
所述进气口7通入臭氧气体,进水口6通入待处理污水。
待处理污水依次流经活性炭层2发生吸附和臭氧氧化反应,蜂窝活性炭床层II 3发生吸附、臭氧氧化、光催化和臭氧光催化反应,紫外光层发生光化学反应,蜂窝活性炭床层III 4发生吸附、光催化、臭氧氧化和臭氧光催化反应,水中污染物经过多阶段的不同反应,达到深度去除的目的。
实施例1提供的臭氧光催化反应器的工作原理如下:
臭氧从进气口7进入反应器底部,待处理污水通过进水口6进入反应器底部,从进气口7通入的臭氧经过气体分布器11后与待处理污水均匀混合,然后流经蜂窝活性炭床层2;活性炭层2由许多耐水蜂窝活性炭堆积而成,内部为孔径小于0.5cm的方孔,孔壁负载固体催化剂为金属离子掺杂的TiO2催化剂;活性炭层2内形成大量交错排列的水流通道,有助于污水、臭氧和负载催化剂充分接触;在每个方孔通道内发生臭氧氧化反应,孔壁上发生污染物吸附和催化臭氧氧化反应;臭氧在孔壁上分解产生羟基自由基、超氧自由基和单线态氧等氧化物种,氧化分解污水中有机污染物;因此在活性炭层2内发生吸附、臭氧氧化、催化臭氧氧化反应,污水中有机污染物被氧化成中间产物、水和二氧化碳。
污水流过活性炭层2后,进入层高5~20cm的蜂窝活性炭床层I 3;紫外光从蜂窝活性炭床层I 3顶部向下照射,在蜂窝活性炭床层I 3的方孔中发生光化学反应,在蜂窝活性炭床层I 3的方孔孔壁发生吸附、臭氧氧化、臭氧光催化等反应,形成光生空穴、羟基自由基、超氧自由基等氧化物种,进一步分解污水中的有机污染物和活性炭层2中反应形成的中间产物。
污水流出蜂窝活性炭床层I 3后进入紫外光区,在紫外光照下发生光化学反应和臭氧反应,未分解完全的臭氧继续氧化污染物,臭氧气体中的臭氧和氧气还可作为光生电子捕获剂,提高紫外光照下光生空穴的产率,形成氧化能力强的空穴也有助有机污染物进一步氧化分解。
污水最后流入蜂窝活性炭床层II 4,蜂窝活性炭床层II 4的结构与蜂窝活性炭床层I 3非常接近,但孔道内壁负载催化剂含量更高;由于臭氧经过三个反应区域后浓度已大大降低,因此蜂窝活性炭床层II 4内负载含量更高的催化剂,使 臭氧分解更彻底,避免出水中溶解的臭氧造成二次污染;蜂窝活性炭床层II 4内发生的反应也与蜂窝活性炭床层I 3相同,包括吸附、臭氧氧化、臭氧光催化等反应,产生的光生空穴、羟基自由基、超氧自由基等氧化物种,深度矿化有机污染物及前段形成的氧化中间产物。
污水流出蜂窝活性炭床层II 4后,尾气从顶部的排气口10排出,处理之后的水从上部的出水口9流出。
实施例2
提供一种臭氧光催化反应器,与实施例1的区别在于,设置两个光氧化反应单元,两个光氧化反应单元中的光源为可见光光源;两个光氧化反应单元一共有四个蜂窝活性炭床层,其厚度由下至上依次为5~10cm,5~10cm,5~20cm,5~20cm;四个床层均负载金属离子掺杂TiO2催化剂,其负载的固体催化剂含量量依次为2~10%,2-10%,5-20%,优选2-4%,2-4%,5-10%。
应用例1
使用实施例1提供的臭氧光催化反应器进行污水处理,污水通入量为1m3/h,污水COD为150mg/L,臭氧通入量为120g/h;处理后,污水中COD<50mg/L。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (9)

  1. 一种臭氧光催化反应器,其特征在于,所述反应器包括:
    (i)壳层;
    (ii)设置于壳层内部的活性炭层;
    (iii)在壳层内部,活性炭层上方至少设置一个光氧化反应单元;所述光氧化反应单元由下至上依次包括蜂窝状活性炭床层I、光源层和蜂窝状活性炭床层II;
    其中,在活性炭层下方的壳层上设置进气口和进水口;在光氧化反应单元上方的壳层上设置出水口和排气口;
    所述活性炭层负载有固体催化剂;所述蜂窝状活性炭床层I和蜂窝状活性炭床层II负载有光催化固体催化剂。
  2. 如权利要求1所述的反应器,其特征在于,设置蜂窝状活性炭床层I和蜂窝状活性炭床层II的光线透过率满足预定百分比;
    优选地,设置于壳层内的活性炭层、蜂窝状活性炭床层I和蜂窝状活性炭床层II上负载的固体催化剂的含量由下至上依次增加。
  3. 如权利要求1或2所述的反应器,其特征在于,所述活性炭层为蜂窝状活性炭床、蜂窝陶瓷或颗粒活性炭中的任意1种,优选蜂窝状活性炭床,进一步优选耐水蜂窝状活性炭床;
    优选地,蜂窝状活性炭床层I和蜂窝状活性炭床层II均为耐水蜂窝状活性炭床;
    优选地,所述蜂窝状活性炭床具有方孔;
    优选地,所述活性炭层的蜂窝状活性炭床的方孔尺寸≤0.5cm,优选0.1~0.5cm;所述蜂窝状活性炭床层I和蜂窝状活性炭床层II的方孔孔径独立地选自0.5~1cm。
  4. 如权利要求1~3之一所述的反应器,其特征在于,所述光源层为能够发射可见光和/或紫外光的光源,优选紫外光源;
    优选地,所述光源层的光源外罩有石英保护罩。
  5. 如权利要求1~4之一所述的反应器,其特征在于,所述光催化固体催化剂为TiO2和/或金属掺杂的TiO2;所述掺杂金属优选自Ni、Fe、Cu、Mn中任意一种或至少两种的组合;
    优选地,所述固体催化剂选自固体臭氧氧化催化剂,优选用于臭氧氧化的过渡金属氧化物催化剂;特别优选TiO2催化剂、CuO催化剂、MnO2催化剂、NiO催化剂或Fe2O3催化剂中的任意一种或至少两种的组合;
    优选地,所述活性炭层负载的固体催化剂含量≤5%,优选0.1~5%;
    优选地,当反应器只含有一个光氧化反应单元时,所述蜂窝状活性炭床层I负载的光催化固体催化剂含量2~10%,优选2~6%;所述蜂窝状活性炭床层II负载的光催化固体催化剂含量5~20%,优选5~10%。
  6. 如权利要求1~5之一所述的反应器,其特征在于,所述活性炭层的厚度占活性炭层和光氧化反应单元高度之和的20%-95%,优选30~80%。
  7. 如权利要求1~6之一所述的反应器,其特征在于,当所述活性炭层为蜂窝状活性炭床时,蜂窝状活性炭床交错设置。
  8. 如权利要求1~7之一所述的反应器,其特征在于,壳层内部,在活性炭层下方,进气口上方还设置有气体分布器。
  9. 如权利要求1~8之一所述的反应器,其特征在于,所述反应器由下至上依次设置:
    活性炭层,所述活性炭层为具有方孔孔径≤0.5cm的蜂窝状活性炭床,负载有含量不超过0.5%的固体催化剂;
    厚度为5~20cm的蜂窝状活性炭床层I,所述蜂窝状活性炭床层I的方孔孔径为0.5~1cm,负载有2~10%的固体催化剂;
    由外罩透明石英管的圆柱形紫外灯管水平排列组成的紫外光源层,所述紫外灯管的出射光强为10~1000mW/cm2
    厚度为5~20cm的蜂窝状活性炭床层II,所述蜂窝状活性炭床层II的方孔孔径为0.5~1cm,负载有5~20%的固体催化剂;
    反应器在活性炭层的下方设置进气口和进水口,反应器蜂窝状活性炭床层II的上方设置出水口和排气口;
    所述蜂窝状活性炭床层I和蜂窝状活性炭床层II与紫外光源层的距离独立地选自5~30cm。
PCT/CN2015/078783 2015-01-19 2015-05-12 一种臭氧光催化反应器及水处理方法 WO2016115790A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/544,460 US10662095B2 (en) 2015-01-19 2015-05-12 Ozone-photocatalysis reactor and water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510024822.8A CN104609500B (zh) 2015-01-19 2015-01-19 一种臭氧光催化反应器及水处理方法
CN201510024822.8 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016115790A1 true WO2016115790A1 (zh) 2016-07-28

Family

ID=53144200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078783 WO2016115790A1 (zh) 2015-01-19 2015-05-12 一种臭氧光催化反应器及水处理方法

Country Status (3)

Country Link
US (1) US10662095B2 (zh)
CN (1) CN104609500B (zh)
WO (1) WO2016115790A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106237806A (zh) * 2016-11-01 2016-12-21 天津海泰市政绿化有限公司 一种有机废气处理方法以及用于该方法的废气处理系统
CN109985518A (zh) * 2019-04-01 2019-07-09 广州尚洁环保科技有限公司 一种基于氧化性自由基处理涂装自动生产线废气系统
CN114684972A (zh) * 2022-04-15 2022-07-01 东华工程科技股份有限公司 一种内环流臭氧催化氧化反应器及其处理废水的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105481079B (zh) * 2016-01-08 2018-06-05 中北大学 一种旋转盘反应器中改性TiO2催化剂降解含酚废水的方法
CN108043221A (zh) * 2018-01-24 2018-05-18 合肥工业大学 一种光催化活性炭吸附尾气处理装置及其处理方法
CN108557986A (zh) * 2018-06-26 2018-09-21 苏州他山石环保科技有限公司 一种高效快速净化污水处理塔
CN108569755A (zh) * 2018-07-03 2018-09-25 北京市市政工程设计研究总院有限公司 大规模市政臭氧催化氧化滤池水处理系统
CN113493273B (zh) * 2020-03-19 2023-04-07 海加尔(厦门)科技有限公司 一种养殖废水处理工艺
CN114105281B (zh) * 2020-08-31 2023-04-21 中国石油化工股份有限公司 臭氧多级催化氧化装置
CN115490291A (zh) * 2021-06-17 2022-12-20 北京化工大学 一种具有臭氧和紫外光催化氧化作用的平推流式反应器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029747A (ja) * 1999-07-26 2001-02-06 Shimadzu Corp 光化学酸化分解方法及び光化学酸化分解反応器
CN101121040A (zh) * 2007-07-25 2008-02-13 江苏高淳陶瓷股份有限公司 一种光催化空气净化器
CN201454339U (zh) * 2009-08-26 2010-05-12 何冠东 复合型有害废气净化装置
CN201485308U (zh) * 2009-09-07 2010-05-26 浙江理工大学 一种深度处理有机废水的吸附和光催化集成装置
CN103086469A (zh) * 2013-02-19 2013-05-08 江苏大地益源环境修复有限公司 一种高效光催化水处理方法与装置
CN103979666A (zh) * 2014-05-28 2014-08-13 南京麦得文环保科技有限公司 一种一体式臭氧光催化反应装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080044A (ja) * 2001-09-14 2003-03-18 Japan Water Works Association オゾン簡易溶解装置
CN1172863C (zh) * 2003-04-28 2004-10-27 清华大学 臭氧光催化-生物活性炭深度净化水的方法
CN100460060C (zh) * 2005-01-05 2009-02-11 中国科学院过程工程研究所 一种负载型TiO2光催化剂及其制备方法和光催化水质净化器
CN101219371A (zh) * 2007-01-08 2008-07-16 北京化工大学 光催化氧化处理高浓度有机工业废水
CN201347378Y (zh) * 2009-01-07 2009-11-18 南京师范大学 间歇式三相流化臭氧氧化反应器
CN101497014B (zh) 2009-01-16 2011-09-14 天津大学 新型光催化臭氧化流化床反应装置及水处理方法
CN102049253B (zh) 2009-10-28 2013-03-06 中国石油化工集团公司 一种用于臭氧氧化处理废水专用催化剂的制备方法
CN201762164U (zh) * 2010-08-26 2011-03-16 东北石油大学 悬浮活性炭光催化臭氧水处理装置
CN102029165B (zh) 2010-11-09 2012-10-17 中国海洋石油总公司 一种处理焦化废水的臭氧催化氧化催化剂的制备方法
CN102863110B (zh) * 2012-10-23 2014-08-13 河海大学 一种一体化处理难降解有机废水的设备及方法
CN102874994B (zh) * 2012-10-30 2014-08-27 山东大学 一种光催化与好氧生物结合的双重内循环水处理器及其工作方法
EP3044168A4 (en) * 2013-09-13 2017-03-22 WestRock MWV, LLC Catalytic activated carbon structures and methods of use and manufacture
CN204097234U (zh) * 2014-08-26 2015-01-14 北京国中科创环境科技有限责任公司 一种难降解有机废水处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029747A (ja) * 1999-07-26 2001-02-06 Shimadzu Corp 光化学酸化分解方法及び光化学酸化分解反応器
CN101121040A (zh) * 2007-07-25 2008-02-13 江苏高淳陶瓷股份有限公司 一种光催化空气净化器
CN201454339U (zh) * 2009-08-26 2010-05-12 何冠东 复合型有害废气净化装置
CN201485308U (zh) * 2009-09-07 2010-05-26 浙江理工大学 一种深度处理有机废水的吸附和光催化集成装置
CN103086469A (zh) * 2013-02-19 2013-05-08 江苏大地益源环境修复有限公司 一种高效光催化水处理方法与装置
CN103979666A (zh) * 2014-05-28 2014-08-13 南京麦得文环保科技有限公司 一种一体式臭氧光催化反应装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106237806A (zh) * 2016-11-01 2016-12-21 天津海泰市政绿化有限公司 一种有机废气处理方法以及用于该方法的废气处理系统
CN109985518A (zh) * 2019-04-01 2019-07-09 广州尚洁环保科技有限公司 一种基于氧化性自由基处理涂装自动生产线废气系统
CN114684972A (zh) * 2022-04-15 2022-07-01 东华工程科技股份有限公司 一种内环流臭氧催化氧化反应器及其处理废水的方法

Also Published As

Publication number Publication date
US10662095B2 (en) 2020-05-26
CN104609500B (zh) 2016-08-24
US20170369346A1 (en) 2017-12-28
CN104609500A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2016115790A1 (zh) 一种臭氧光催化反应器及水处理方法
Augugliaro et al. The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance
CN101786756B (zh) 一种处理生化难降解有机废水的工艺方法
CN100443156C (zh) 多光源三相循环流化床光化学反应器及其处理废水的方法
CN101863526A (zh) 紫外催化湿式氧化降解污染物的方法及装置
EP2319619A1 (en) Method and an apparatus for regeneration of an adsorbent
CN104857824A (zh) 真空紫外光催化协同臭氧催化氧化的废气处理方法和装置
CN108911023B (zh) 一种循环式异相光催化氧化处理系统及处理方法
CN101492200A (zh) 臭氧光电催化氧化有机废水的方法
CN102690005A (zh) 一种光电催化氧化处理有机废水的方法
CN112159011A (zh) 一种紫外/臭氧耦合催化剂的高级氧化系统及污水处理工艺
CN111484176A (zh) 一种双波段紫外光催化高级氧化装置与工艺
CN110975560A (zh) VOCs废气净化处理方法和装置
CN204265477U (zh) 一种光导介质负载催化剂的光催化水处理设备
CN202785888U (zh) 一种微波无极紫外光催化氧化反应器
CN103214133B (zh) 一种石墨烯净化污水组合装置
KR100454260B1 (ko) 오폐수 고도처리장치 및 방법
CN104370328A (zh) 光导介质负载催化剂的光催化水处理设备及其处理方法
CN213231883U (zh) 一种基于物理吸附耦合光芬顿氧化技术处理废水的装置
CN206494802U (zh) 水体净化设备
CN211255411U (zh) 一种紫外激发臭氧降解渗滤液中污染物的装置
CN101700927B (zh) 金属锌与臭氧联用的给水深度处理方法
CN201770512U (zh) 紫外催化湿式氧化降解污染物的装置
CN206635100U (zh) 一种一体式梯度臭氧催化流化床装置
CN206328268U (zh) 一种工业有机废水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878464

Country of ref document: EP

Kind code of ref document: A1