WO2016114605A1 - 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법 - Google Patents

지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법 Download PDF

Info

Publication number
WO2016114605A1
WO2016114605A1 PCT/KR2016/000403 KR2016000403W WO2016114605A1 WO 2016114605 A1 WO2016114605 A1 WO 2016114605A1 KR 2016000403 W KR2016000403 W KR 2016000403W WO 2016114605 A1 WO2016114605 A1 WO 2016114605A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
seismic
synchronization
seismograph
central
Prior art date
Application number
PCT/KR2016/000403
Other languages
English (en)
French (fr)
Inventor
강태섭
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Publication of WO2016114605A1 publication Critical patent/WO2016114605A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/34Displaying seismic recordings or visualisation of seismic data or attributes
    • G01V1/345Visualisation of seismic data or attributes, e.g. in 3D cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/34Displaying seismic recordings or visualisation of seismic data or attributes

Definitions

  • the present invention relates to a time synchronization system for acquiring seismic data and a time synchronization method for acquiring seismic data. More specifically, an earthquake receiver and an earthquake generator are provided for an exploration device for seismic monitoring using seismic waves and imaging of underground geological structures.
  • the present invention relates to a time synchronization system and a time synchronization method for enabling time synchronization of a network in which is widely deployed.
  • a seismograph is a device for recording seismic energy propagated from natural earthquake or artificially generated vibration energy source.
  • the seismograph recorded by the seismograph can be used to determine the exact location of the earthquake or to analyze the geological structure by analyzing the reflection or refraction of the geological boundary.
  • the same exact time information from the seismograph distribution distributed over several points to form a network must be included in the continuous signal of the seismic waves recorded in the seismograph.
  • GPS Global Positioning System
  • seismographs used in seismic observations should record seismic waveforms with very precise time synchronization in seismic networks consisting of at least three points to determine the exact location and time of seismic events.
  • seismic networks consisting of at least three points to determine the exact location and time of seismic events.
  • the seismic wave detection apparatus used for general underground structure imaging and resource exploration should distribute several dozen or more geophones such as geophones in a constant array. There is a problem that the cable must be connected to the acquisition device.
  • the present invention has been made to solve the above problems, a time synchronization system for acquiring seismic data that can achieve time synchronization with a high accuracy of the seismograph of a distributed network using a Precision Time Protocol, and
  • the purpose is to provide a visual synchronization method for seismic data acquisition.
  • the time synchronization system for seismic data acquisition is provided with a synchronization time by receiving an external time data, transmitting a reference pulse once a second per second, and including a precision time protocol for implementing time synchronization.
  • a central earthquake recorder ; And a seismometer connected to the central earthquake recorder by wire or wirelessly, and time-synchronizing the detected seismic observation data at a synchronization time provided from the central earthquake recorder, and transmitting the time-synchronized seismic observation data to the central earthquake recorder. .
  • the central earthquake recorder of the present invention includes a pulse receiving unit for receiving a reference pulse at a period of one second per second based on time information supplied from at least one of a GPS and an atomic clock, and a grandmaster clock for setting a synchronization time through a network.
  • a wireless access point unit wirelessly transmitting the synchronization time provided by the grandmaster clock unit to the seismograph, receiving a time-synchronized seismic observation data from the seismograph, and a central data storage unit for storing seismic observation data. It is characterized by.
  • the seismograph of the present invention is generated by the earthquake sensor unit by using a wireless communication unit for wireless communication with the wireless access point unit, an earthquake sensor unit for detecting an earthquake by detecting vibration, and synchronization time information received from the wireless communication unit. And a slave clock unit for time-synchronizing the seismic observation data, and a digital converter for converting the time-synchronized seismic observation data into a digital signal.
  • the seismograph of the present invention has a time synchronization function, and the wireless access point unit periodically transmits a wireless signal including a timestamp so that the time synchronization function of the seismograph is different from the timestamp of the received wireless signal.
  • the seismometer is characterized in that to adjust the time synchronization function to the received timestamp value.
  • the grandmaster clock unit of the present invention is characterized in that it is configured by the IEEE 1588-2008 PTP module to set the synchronization time through the network.
  • the wireless access point unit of the present invention is characterized in that it is configured as an IEEE 802.11 access point module for transmitting the synchronization time information from the central earthquake recorder, and receives the time-synchronized seismic observation data from the seismograph.
  • a time synchronization method for acquiring seismic data includes: a first step of receiving external time data from a central earthquake recorder and transmitting a reference pulse at a period of one second; A second step of providing a synchronized time having a precise time protocol for implementing time synchronization in the central earthquake recorder; A third step of having a seismometer connected to the central earthquake recorder in a wired or wireless manner and visually synchronizing the detected seismic observation data at a synchronization time provided from the central earthquake recorder; And transmitting a time-synchronized seismic observation data from the seismograph to the central seismic recorder, and storing the time-synchronized seismic observation data in the central seismic recorder.
  • the seismograph has a time synchronization function
  • the wireless access point unit periodically transmits a radio signal including a time stamp
  • the time synchronization function of the seismograph is different from the time stamp of the received radio signal.
  • the time synchronization function is adjusted to the time stamp value received by the seismograph.
  • the synchronization time is set using the IEEE 1588-2008 PTP module.
  • an IEEE 802.11 access point module is used to transmit synchronized time information between the central seismic recorder and the seismograph and to receive time-synchronized seismic observation data.
  • the time synchronization system for seismic data acquisition and the time synchronization method for seismic data acquisition according to the present invention provide a high accuracy of a seismograph in a distributed network using a precision time protocol. Has the effect of achieving visual synchronization with.
  • FIG. 1 is a view showing a time synchronization system for seismic data acquisition according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the configuration of a central earthquake recorder according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the configuration of a seismograph according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a time synchronization method for seismic data acquisition according to an embodiment of the present invention.
  • FIGS. 1 to 3 are diagrams for explaining a time synchronization system for seismic data acquisition according to an embodiment of the present invention.
  • Figure 1 is a view showing a time synchronization system for seismic data acquisition according to an embodiment of the present invention
  • Figure 2 is a view for explaining the configuration of a central earthquake recorder according to an embodiment of the present invention
  • 3 is a view for explaining the configuration of a seismograph according to an embodiment of the present invention.
  • the time synchronization system for seismic data acquisition for receiving the external time data and sending a reference pulse in a cycle once per second to implement the time synchronization And a central earthquake recorder (100) having a precision time protocol to provide synchronization time.
  • the time synchronization system for seismic data acquisition is connected to the central earthquake recorder 100 by wire or wireless, the earthquake detected at the synchronization time provided from the central earthquake recorder 100 And a seismometer 200 for time-synchronizing the observation data and transmitting the time-synchronized seismic observation data to the central earthquake recorder 100.
  • the pulse receiving unit 110 for receiving a reference pulse once per second based on time information supplied from at least one of the GPS or atomic clock, Grandmaster clock unit 120 to set the synchronization time through the network, and transmits the synchronization time provided by the grandmaster clock unit 120 to the seismograph 200 wirelessly, seismic observation time-synchronized by the seismograph 200
  • a wireless access point unit 130 for receiving data
  • a central data storage unit 140 for storing seismic observation data.
  • the seismograph 200 according to an embodiment of the present invention, the wireless communication unit 210 for wireless communication with the wireless access point unit 130, the earthquake sensor unit 220 for detecting the earthquake by detecting vibration and
  • the slave clock unit 230 synchronizes the seismic observation data generated by the seismic sensor unit 220 by using the synchronization time information received from the wireless communication unit 210, and converts the time-synchronized seismic observation data into a digital signal. It is possible to include a digital converter 240 to.
  • the seismograph 200 has a time synchronization function (Time Synchronization Function), the wireless access point unit 130 transmits a radio signal including a time stamp periodically to the seismograph 200 If the time synchronization function is different from the time stamp of the received radio signal, the seismograph 200 adjusts the time synchronization function to the received time stamp value.
  • a time synchronization function Time Synchronization Function
  • the grandmaster clock unit 120 is composed of an IEEE 1588-2008 PTP module to set the synchronization time through the network
  • the wireless access point unit 130 is a central earthquake recorder (100) It is possible to configure the IEEE 802.11 access point module in order to transmit the synchronization time information, and to receive the time-synchronized seismic observation data in the seismograph 200.
  • the seismograph 200 of a distributed network uses a precision time protocol (PTP) to perform time synchronization with high accuracy.
  • PTP precision time protocol
  • FIG. 4 is a flowchart illustrating a time synchronization method for seismic data acquisition according to an embodiment of the present invention.
  • the time synchronization method for seismic data acquisition is performed according to the following steps.
  • the central earthquake recorder receives the external time data and transmits a reference pulse once per second.
  • the centralized earthquake recorder is provided with a precise time protocol for implementing time synchronization to provide a synchronization time.
  • the second step it is possible to set the synchronization time using the IEEE 1588-2008 PTP module.
  • the seismograph has a time synchronization function
  • the wireless access point unit periodically transmits a radio signal including a time stamp so that the seismograph is received if the time synchronization function of the seismograph is different from the time stamp of the received radio signal. It is possible to adjust the time synchronization function by one timestamp value.
  • step S140 time-synchronized seismic observation data is transmitted from the seismograph to the central seismic recorder, and the time-synchronized seismic observation data is stored in the central seismic recorder.
  • the IEEE 802.11 access point module it is possible to use the IEEE 802.11 access point module to transmit the synchronization time information between the central seismic recorder and the seismograph and to receive the time-synchronized seismic observation data.
  • the seismograph 200 of a distributed network uses a time clock (Precision Time Protocol) to have high accuracy. There is an advantage that can be achieved.
  • GPS signals For example, it is often difficult to receive such GPS signals depending on the installation environment such as an ocean bottom seismograph installed in the sea bottom or an earthquake meter installed in an underground cave or a closed structure.
  • PTP Precision Time Protocol
  • Precision Time Protocol is a protocol used to synchronize time across a computer network. In local area networks, this protocol is suitable for measurement or control systems because it achieves visual accuracy in the sub-microsecond range.
  • PTP was originally defined in IEEE 1588-2002, entitled “Standard for a precision clock Synchronization protocol for Networked Measurement and Control Systems,” originally published in 2002.
  • IEEE 1588-2008 is designed to fill gaps that are not well done with any of the mainstream protocols such as Network Time Protocol (NTP) or GPS.
  • NTP Network Time Protocol
  • GPS GPS
  • IEEE 1588-2008 is designed for local systems that demand accuracy beyond what can be achieved using NTP. In addition, it is designed for the case that the GPS signal is difficult to reach when the node can not afford the cost of the GPS receiver.
  • the seismographs that make up the seismograph network can be distributed over long distances or isolated by obstacles such as ups and downs in structures or terrain. In this case, achieving time synchronization of the seismograph network is a very challenging task.
  • the IEEE1588-2008 Precision Time Protocol (PTP) is designed to operate on wired networks that are more predictable than when the transmission delay is wireless.
  • This time synchronization protocol allows time information to be communicated between seismograph networks through the transmission of time stamped messages.
  • the terminal seismograph time can be synchronized to the master clock located at the central seismograph access point (AP).
  • IEEE 802.11 devices attached to individual seismographs have a time synchronization function (TSF).
  • TSF can be used for time synchronization between seismographs in the same seismograph network.
  • the AP of the seismic earthquake recorder periodically transmits a radio signal to indicate the existence of a seismograph network using a wireless LAN.
  • This radio signal includes a timestamp of the AP's time synchronization function to synchronize the TSFs of other seismographs in the network.
  • the TSF's time stamp is recorded in the radio signal at the same time as it is transmitted to other physical media to compensate for the hardware internal delay time and is not affected by the delay caused by the access control of the media.
  • the individual seismograph receives the time information contained in the radio signal sent from the AP.
  • the seismograph adjusts the time synchronization function of the corresponding node with the occasional time stamp value.
  • the present invention as described above is the time of the control unit and the highest absolute clock of the network to embed the IEEE 1588-2008 PTP to implement the time synchronization by receiving a reference pulse at a time per second (PPS) by receiving external time data
  • the controller may be configured to perform synchronization.
  • a network connection unit for signal transmission between a receiving module receiving the highest absolute time, such as a GPS, and a receiving module and the control unit, a central earthquake recording unit sharing the highest absolute time from the control unit, and a control unit connected to the central earthquake recording apparatus can be achieved by constructing a wired or wireless seismograph network consisting of terminal seismographs to provide time synchronization with absolute time.
  • the wired or wireless seismograph network has the effect that it can achieve the time synchronization of millions of seconds or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Electric Clocks (AREA)

Abstract

본 발명은 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법에 관한 것으로 보다 상세하게는, 지진파를 이용한 지진감시 및 지하 지질 구조 영상화를 위한 탐사 장치가 지진파 수신기 및 지진원 발생장치가 넓게 배치되어 있는 네트워크의 시각 동기화를 가능하게 하는 시각동기화 시스템 및 시각동기화 방법에 관한 것이다. 본 발명에 따른 지진자료 취득을 위한 시각동기화 시스템은, 외부 시간자료를 수신하고 초당 1회 주기로 기준 펄스를 발신하며 시각동기화를 구현하기 위한 정밀 시각 프로토콜(Precision Time Protocol)을 구비하여 동기화 시각을 제공하는 중앙지진기록계; 및 중앙지진기록계와 유선 또는 무선으로 연결되며, 중앙지진기록계로부터 제공되는 동기화 시각에, 감지되는 지진관측 데이터를 시각동기화하여, 시각동기화된 지진관측 데이터를 중앙지진기록계로 송신하는 지진계;를 포함한다.

Description

지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법
본 발명은 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법에 관한 것으로 보다 상세하게는, 지진파를 이용한 지진감시 및 지하 지질 구조 영상화를 위한 탐사 장치가 지진파 수신기 및 지진원 발생장치가 넓게 배치되어 있는 네트워크의 시각 동기화를 가능하게 하는 시각동기화 시스템 및 시각동기화 방법에 관한 것이다.
일반적으로, 지진계는 자연지진이나 인공적으로 발생시킨 진동 에너지원에서 전파되는 지진 에너지를 기록하는 장치이다. 지진계에서 기록한 지진파 신호를 이용하여 지진이 발생한 정확한 위치를 결정하거나, 지질 경계면에서 반사되거나 굴절된 위치를 분석하여 지질구조를 분석 할 수 있다. 이러한 분석을 위해서는 여러 지점에 분산되어 네트워크를 형성하는 지진계 분포로부터 동일한 정확한 시간 정보가 지진계에 기록되는 지진파의 연속적인 신호에 포함되어야 한다. 이를 위하여 GPS(Global Positioning System)을 사용하는 것이 일반적이다. 그러나 해저면에 설치하는 지진계(ocean bottom seismograph)나 지하 동굴 또는 폐쇄된 구조물 내에 설치된 지진계 등의 설치환경에 따라서 이러한 GPS 신호를 받아들이기 어려운 상황이 빈번하게 발생한다.
예를 들어, 지진관측에 사용되는 지진계는 정확한 지진발생 위치와 시간을 결정하기 위하여 최소 3지점 이상으로 구성된 지진 관측망에서 매우 정밀한 시각동기화가 이루어진 지진파형을 기록하여야 한다. 좁은 영역에서 발생하는 자연 발생 미소지진이나 셰일가스 등과 같은 지하자원탐사에서 수압파쇄에 의한 유발 미소지진을 관측할 때, 미소지진의 발생 위치와 범위를 정확히 파악하기 위해서는 수십 마이크로초(microseconds) 이하의 시각 정밀도가 확보되어야 하고 이를 위하여 GPS가 보편적으로 이용되고 있다.
또한, 일반적인 지하구조 영상화 및 자원탐사를 위하여 사용되는 지진파 탐사 장치는 수십 개 이상의 지오폰(geophone)과 같은 지진감지 센서를 일정한 배열로 분포하여야 하는데, 종래에는 시각 동기화를 위하여 이들 센서를 중앙의 자료획득장치에 케이블로 연결하여야 하는 문제점이 있다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허공보 제10-1432469호(2014.8.13)
본 발명은 상기의 문제를 해결하기 위해서 안출된 것으로, 정밀 시각 프로토콜(Precision Time Protocol)을 이용하여 분산된 네트워크의 지진계가 높은 정확도를 가지고 시각 동기화를 이룰 수 있는 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법을 제공하는데 그 목적이 있다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 여기에 언급되지 않은 본 발명이 해결하고자 하는 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 지진자료 취득을 위한 시각동기화 시스템은, 외부 시간자료를 수신하고 초당 1회 주기로 기준 펄스를 발신하며 시각동기화를 구현하기 위한 정밀 시각 프로토콜(Precision Time Protocol)을 구비하여 동기화 시각을 제공하는 중앙지진기록계; 및 중앙지진기록계와 유선 또는 무선으로 연결되며, 중앙지진기록계로부터 제공되는 동기화 시각에, 감지되는 지진관측 데이터를 시각동기화하여, 시각동기화된 지진관측 데이터를 중앙지진기록계로 송신하는 지진계;를 포함한다.
또한, 본 발명의 중앙지진기록계는, GPS 또는 원자시계 중 적어도 어느 하나로부터 공급되는 시간 정보에 기반하여 초당 1회 주기로 기준 펄스를 수신하는 펄스 수신부와, 네트워크를 통하여 동기화 시각을 설정하는 그랜드마스터 시계부와, 그랜드마스터 시계부에서 제공하는 동기화 시각을 지진계에 무선으로 전송하며, 지진계에서 시각동기화된 지진관측 데이터를 수신하는 무선 엑세스 포인트부와, 지진관측 데이터를 저장하기 위한 중앙자료 저장부를 포함하는 것을 특징으로 한다.
또한, 본 발명의 지진계는, 무선 엑세스 포인트부와 무선 통신하기 위한 무선통신부와, 진동을 감지하여 지진을 관측하는 지진센서부와, 무선통신부에서 수신되는 동기화 시각 정보를 이용하여 지진센서부에서 생성되는 지진관측 데이터를 시각동기화하는 슬레이브 시계부와, 시각동기화된 지진관측 데이터를 디지털 신호로 변환하는 디지털 변환부를 포함하는 것을 특징으로 한다.
또한, 본 발명의 지진계는, 시각동기화 함수(Time Synchronization Function)를 가지며, 무선 엑세스 포인트부는 타임스탬프를 포함하는 무선 신호를 주기적으로 전송하여 지진계의 시각동기화 함수가 수신된 무선 신호의 타임스탬프와 다르면, 지진계는 수신한 타임스탬프값으로 시각동기화 함수를 조정하는 것을 특징으로 한다.
또한, 본 발명의 그랜드마스터 시계부는 네트워크를 통하여 동기화 시각을 설정하기 위하여 IEEE 1588-2008 PTP 모듈로 구성되는 것을 특징으로 한다.
또한, 본 발명의 무선 엑세스 포인트부는 중앙지진기록계에서 동기화 시각 정보를 송신하고, 지진계에서 시각동기화된 지진관측 데이터를 수신하기 위하여 IEEE 802.11 엑세스 포인트 모듈로 구성되는 것을 특징으로 한다.
본 발명에 따른 지진자료 취득을 위한 시각동기화 방법은, 중앙지진기록계에서 외부 시간자료를 수신하고 초당 1회 주기로 기준 펄스를 발신하는 제1 단계; 중앙지진기록계에서 시각동기화를 구현하기 위한 정밀 시각 프로토콜을 구비하여 동기화 시각을 제공하는 제2 단계; 중앙지진기록계와 유선 또는 무선으로 연결되는 지진계를 구비하되, 중앙지진기록계로부터 제공되는 동기화 시각에, 감지되는 지진관측 데이터를 시각동기화하는 제3 단계; 및 시각동기화된 지진관측 데이터를 지진계로부터 중앙지진기록계로 송신하고, 중앙지진기록계에서 상기 시각동기화된 지진관측 데이터를 저장하는 제4 단계를 포함한다.
또한, 본 발명의 제3 단계에서, 지진계가 시각동기화 함수를 가지며, 무선 엑세스 포인트부는 타임스탬프롤 포함하는 무선 신호를 주기적으로 전송하여 지진계의 시각동기화 함수가 수신된 무선 신호의 타임스탬프와 다르면, 지진계가 수신한 타임스탬프값으로 시각동기화 함수를 조정하는 것을 특징으로 한다.
또한, 본 발명의 제2 단계에서는, IEEE 1588-2008 PTP 모듈을 이용하여 동기화 시각을 설정하는 것을 특징으로 한다.
또한, 본 발명의 제2 단계 및 제4 단계에서, 중앙지진기록계와 지진계 사이에 동기화 시각 정보를 송신하고, 시각동기화된 지진관측 데이터를 수신하기 위하여 IEEE 802.11 엑세스 포인트 모듈을 이용하는 것을 특징으로 한다.
상기 과제의 해결 수단에 의해, 본 발명의 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법은, 정밀 시각 프로토콜(Precision Time Protocol)을 이용하여 분산된 네트워크의 지진계가 높은 정확도를 가지고 시각 동기화를 이룰 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 시스템을 나타낸 도면이다.
도 2는 본 발명의 일실시예에 따른 중앙지진기록계의 구성을 설명하기 위한 도면이다.
도 3은 본 발명의 일실시예에 따른 지진계의 구성을 설명하기 위한 도면이다.
도 4는 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 방법을 설명하기 위한 플로차트이다.
이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.
도 1 내지 도 3은 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 시스템을 설명하기 위한 도면이다.
구체적으로, 도 1은 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 시스템을 나타낸 도면이고, 도 2는 본 발명의 일실시예에 따른 중앙지진기록계의 구성을 설명하기 위한 도면이며, 도 3은 본 발명의 일실시예에 따른 지진계의 구성을 설명하기 위한 도면이다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 시스템은, 외부 시간자료를 수신하고 초당 1회 주기로 기준 펄스를 발신하며 시각동기화를 구현하기 위한 정밀 시각 프로토콜(Precision Time Protocol)을 구비하여 동기화 시각을 제공하는 중앙지진기록계(100)를 포함한다.
또한, 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 시스템은, 중앙지진기록계(100)와 유선 또는 무선으로 연결되며, 중앙지진기록계(100)로부터 제공되는 동기화 시각에, 감지되는 지진관측 데이터를 시각동기화하여, 시각동기화된 지진관측 데이터를 중앙지진기록계(100)로 송신하는 지진계(200)를 포함한다.
또한, 본 발명의 일실시예에 따른 중앙지진기록계(100)는, GPS 또는 원자시계 중 적어도 어느 하나로부터 공급되는 시간 정보에 기반하여 초당 1회 주기로 기준 펄스를 수신하는 펄스 수신부(110)와, 네트워크를 통하여 동기화 시각을 설정하는 그랜드마스터 시계부(120)와, 그랜드마스터 시계부(120)에서 제공하는 동기화 시각을 지진계(200)에 무선으로 전송하며, 지진계(200)에서 시각동기화된 지진관측 데이터를 수신하는 무선 엑세스 포인트부(130)와, 지진관측 데이터를 저장하기 위한 중앙자료 저장부(140)를 포함하는 것이 가능하다.
또한, 본 발명의 일실시예에 따른 지진계(200)는, 무선 엑세스 포인트부(130)와 무선 통신하기 위한 무선통신부(210)와, 진동을 감지하여 지진을 관측하는 지진센서부(220)와, 무선통신부(210)에서 수신되는 동기화 시각 정보를 이용하여 지진센서부(220)에서 생성되는 지진관측 데이터를 시각동기화하는 슬레이브 시계부(230)와, 시각동기화된 지진관측 데이터를 디지털 신호로 변환하는 디지털 변환부(240)를 포함하는 것이 가능하다.
또한, 본 발명의 일실시예에 따른 지진계(200)는, 시각동기화 함수(Time Synchronization Function)를 가지며, 무선 엑세스 포인트부(130)는 타임스탬프를 포함하는 무선 신호를 주기적으로 전송하여 지진계(200)의 시각동기화 함수가 수신된 무선 신호의 타임스탬프와 다르면, 지진계(200)는 수신한 타임스탬프값으로 시각동기화 함수를 조정하도록 한다.
한편, 본 발명의 일실시예에 따른 그랜드마스터 시계부(120)는 네트워크를 통하여 동기화 시각을 설정하기 위하여 IEEE 1588-2008 PTP 모듈로 구성되며, 무선 엑세스 포인트부(130)는 중앙지진기록계(100)에서 동기화 시각 정보를 송신하고, 지진계(200)에서 시각동기화된 지진관측 데이터를 수신하기 위하여 IEEE 802.11 엑세스 포인트 모듈로 구성되는 것이 가능하다.
이와 같이, 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 시스템은, 정밀 시각 프로토콜(Precision Time Protocol; PTP)을 이용하여 분산된 네트워크의 지진계(200)가 높은 정확도를 가지고 시각 동기화를 이룰 수 있는 장점이 있다.
도 4는 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 방법을 설명하기 위한 플로차트이다.
도 4에 도시된 바와 같이, 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 방법은, 다음의 단계들에 따라 이루어진다.
먼저, 제1 단계(S110)에서는, 중앙지진기록계에서 외부 시간자료를 수신하고 초당 1회 주기로 기준 펄스를 발신한다.
다음으로, 제2 단계(S120)에서는, 중앙지진기록계에서 시각동기화를 구현하기 위한 정밀 시각 프로토콜을 구비하여 동기화 시각을 제공한다. 이때, 제2 단계에서는, IEEE 1588-2008 PTP 모듈을 이용하여 동기화 시각을 설정하는 것이 가능하다.
다음으로, 제3 단계(S130)에서는, 중앙지진기록계와 유선 또는 무선으로 연결되는 지진계를 구비하되, 중앙지진기록계로부터 제공되는 동기화 시각에, 감지되는 지진관측 데이터를 시각동기화한다. 이때, 제3 단계에서는, 지진계가 시각동기화 함수를 가지며, 무선 엑세스 포인트부는 타임스탬프롤 포함하는 무선 신호를 주기적으로 전송하여 지진계의 시각동기화 함수가 수신된 무선 신호의 타임스탬프와 다르면, 지진계가 수신한 타임스탬프값으로 시각동기화 함수를 조정하는 것이 가능하다.
다음으로, 제4 단계(S140)에서는, 시각동기화된 지진관측 데이터를 지진계로부터 중앙지진기록계로 송신하고, 중앙지진기록계에서 상기 시각동기화된 지진관측 데이터를 저장한다.
한편, 제2 단계 및 제4 단계에서, 중앙지진기록계와 지진계 사이에 동기화 시각 정보를 송신하고, 시각동기화된 지진관측 데이터를 수신하기 위하여 IEEE 802.11 엑세스 포인트 모듈을 이용하는 것이 가능하다.
이와 같이, 본 발명의 일실시예에 따른 지진자료 취득을 위한 시각동기화 방법은, 정밀 시각 프로토콜(Precision Time Protocol; PTP)을 이용하여 분산된 네트워크의 지진계(200)가 높은 정확도를 가지고 시각 동기화를 이룰 수 있는 장점이 있다.
예컨대, 해저면에 설치하는 지진계(ocean bottom seismograph)나 지하 동굴 또는 폐쇄된 구조물 내에 설치된 지진계 등의 설치환경에 따라서 이러한 GPS 신호를 받아들이기 어려운 상황이 빈번하게 발생한다.
이러한 환경에서 지진계 네트워크 사이에 시각을 동기화하기 위해서는 단일 파장의 시각신호를 여러 분산된 지진계에 배포하는 방법이 필요하다. IEEE 1588의 Precision Time Protocol(PTP)표준을 이러한 환경에서 백만 분의 1초 이하의 정확도를 가지고 시각을 동기화 할 수 있다.
Precision Time Protocol(PTP)는 컴퓨터 네트워크를 통하여 시각을 동기화하기 위하여 사용되는 규약(protocol)이다. 국지적인 영역의 네트워크에서 이 규약을 통해 마이크로초 이하 범위에서 시각 정확도를 달성하기 때문에 측정이나 제어계통에 적절하다.
PTP는 당초 2002년에 출간된 “Standard for a precision clock Synchronization protocol for Networked Measurement and Control Systems”라는 공식 제목의 IEEE 1588-2002에서 정의되었다.
이어 2008년에 수정된 IEEE 1588-2008이 출간되었다. PTP Version라고도 알려진 이 새로운 기준은 정확도와 정밀도가 높고 강력하지만 기존 2002년 기준과는 호환되지 않는다.
IEEE 1588-2008은 Network Time Protocal (NTP)이나 GPS와 같이 주류를 이루는 규약의 어느 것으로 잘 이루어지지 않는 빈틈을 메우기 위하여 설계되었다.
IEEE 1588-2008은 NTP를 이용하여 이룰 수 있는 정도를 넘어서는 정확도를 요구하고 국지적인 시스템을 위하여 설계되었다. 또한, 각 말단(node)에서 GPS 수신기의 비용을 감당할 수 없는 경우, GPS신호가 닿기 어려운 경우를 위하여 설계되었다.
지진계 네트워크를 구성하는 각 지진계는 서로 먼 거리에 분산되거나 구조물 또는 지형의 기복 등에 의한 장애로 격리 될 수 있다. 이러한 경우에 지진계 네트워크의 시각동기화를 이루는 것은 매우 도전적인 과제이다.
따라서 매우 다양한 조건에서 사용할 수 있는 시각동기화 방법 및 이를 구현할 수 있는 장치를 확보하는 것이 바람직하다.
이러한 장치와 방법은 유선 또는 무선 네트워크를 통해 구현되어야 하며, 본 발명을 통하여 그러한 시스템을 설명하고자 한다.
IEEE1588-2008 Precision Time Protocol (PTP)는 전송으로 인한 지연의 정도가 무선인 경우보다 더 예측 가능한 유선 네트워크에서 작동하도록 설계되었다.
이러한 시각동기화 통신 규약은 타임스탬프가 이루어진 메시지 전송을 통하여 시간정보가 지진계 네트워크 사이에 교신 될 수 있도록 한다. 한편, 무선 지진계 네트워크에 이 통신 규약을 적용하기 위하여 중앙의 지진기록계 접속 지점(access point; AP)에 위치한 마스터 시계에 말단 지진계 시각을 동기화할 수 있다.
무선의 경우에 달성 할 수 있는 시각의 정확도는 무선 채널 상태 및 네트워크의 통신부하에 크게 영향을 받는다.
한편 IEEE 802.11 기술표준에 따라서, 개별 지진계에 부착된 IEEE802.11 장치는 시각 동기화 함수(Time Synchronization Function; TSF)를 가지고 있다. TSF는 동일 지진계 네트워크에서 지진계들 사이에서 시각동기화를 위해 사용될 수 있다.
IEEE 802.11 표준에 따라, 중앙지진기록계의 AP는 주기적으로 무선 신호를 전송하여 무선 LAN을 이용한 지진계 네트워크의 존재를 알려준다. 이 무선신호는 네트워크 내에 있는 다른 지진계들의 TSF를 동기화하기 위하여 AP의 시각동기화 함수의 타임스탬프를 포함한다.
TSF의 타임스탬프는 다른 물리적인 매체에 전송과 동시에 무선 신호에 기록되어 하드웨어 내부지연시간을 보상하며 매체의 접속 제어로 인한 지연에 영향을 받지 않는다. 개별 지진계는 AP로부터 보내진 무선신호에 포함된 시간 정보를 수신한다.
만일, 개별 지진계의 시각 동기화 함수가 수신된 무선신호의 타임스탬프와 다르면, 지진계는 수시한 타임스탬프 값으로 해당 노드의 시각 동기화 함수를 조정한다.
상기와 같은 본 발명은 외부 시간자료를 수신하여 초당 1회 주기(PPS)로 기준 펄스를 발신하여 시각동기화를 구현하기 위한 IEEE 1588-2008 PTP를 내장하는 조절부와 네트워크의 최상위 절대 시계와의 시각 동기화를 수행하는 제어부로 구성될 수 있다.
또한, GPS등과 같이 최상위 절대 시각을 수신하는 수신 모듈과 수신모듈과 제어부 사이의 신호전달을 위한 네트워크 연결부와, 제어부로부터 최상위 절대 시각을 공유하는 중앙지진기록장치부와, 중앙지진기록장치에 연결된 제어부로부터 최상위 절대 시각을 공급받아 시각동기화를 달성하기 위한 말단 지진계부로 구성되는 유선 또는 무선 지진계 네트워크를 구성함으로써 달성할 수 있다.
상기와 같은 본 발명의 하나의 실시예에 의하면, 유선 또는 무선 지진계 네트워크가 IEEE 1588-2008 PTP 표준어 모듈을 적용함으로써 수백만 분의 1초 이하의 시각동기화를 이루 수 있는 효과가 있다.
이러한 본 발명은 많은 수의 지진계로 이루어진 유선 또는 무선 네트워크를 구축함에 있어서 일차적으로는 매우 향상된 시각동기화를 구현할 수 있다.
이에 따라 시각동기화 송수신에 필요한 기존의 별도 케이블 작업과 부피 그리고 신호전송을 위한 부가적인 전력소요를 필요로 하지 않음으로써 경제적이고 효율적인 지진계 네트워크 구현을 가능하게 한다.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
[부호의 설명]
100 : 중앙지진기록계
110 : 펄스 수신부
120 : 그랜드마스터 시계부
130 : 무선 엑세스 포인트부
140 : 중앙자료 저장부
200 : 지진계
210 : 무선통신부
220 : 지진센서부
230 : 슬레이브 시계부
240 : 디지털 변환부

Claims (10)

  1. 외부 시간자료를 수신하고 초당 1회 주기로 기준 펄스를 발신하며 시각동기화를 구현하기 위한 정밀 시각 프로토콜(Precision Time Protocol)을 구비하여 동기화 시각을 제공하는 중앙지진기록계; 및
    상기 중앙지진기록계와 유선 또는 무선으로 연결되며, 상기 중앙지진기록계로부터 제공되는 동기화 시각에, 감지되는 지진관측 데이터를 시각동기화하여, 상기 시각동기화된 지진관측 데이터를 상기 중앙지진기록계로 송신하는 지진계;
    를 포함하는 지진자료 취득을 위한 시각동기화 시스템.
  2. 제1항에 있어서,
    상기 중앙지진기록계는,
    GPS 또는 원자시계 중 적어도 어느 하나로부터 공급되는 시간 정보에 기반하여 초당 1회 주기로 기준 펄스를 수신하는 펄스 수신부와,
    네트워크를 통하여 동기화 시각을 설정하는 그랜드마스터 시계부와,
    상기 그랜드마스터 시계부에서 제공하는 동기화 시각을 상기 지진계에 무선으로 전송하며, 상기 지진계에서 시각동기화된 지진관측 데이터를 수신하는 무선 엑세스 포인트부와,
    상기 지진관측 데이터를 저장하기 위한 중앙자료 저장부를 포함하는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 시스템.
  3. 제2항에 있어서,
    상기 지진계는,
    상기 무선 엑세스 포인트부와 무선 통신하기 위한 무선통신부와,
    진동을 감지하여 지진을 관측하는 지진센서부와,
    상기 무선통신부에서 수신되는 동기화 시각 정보를 이용하여 상기 지진센서부에서 생성되는 지진관측 데이터를 시각동기화하는 슬레이브 시계부와,
    상기 시각동기화된 지진관측 데이터를 디지털 신호로 변환하는 디지털 변환부를 포함하는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 시스템.
  4. 제2항에 있어서,
    상기 지진계는, 시각동기화 함수(Time Synchronization Function)를 가지며, 상기 무선 엑세스 포인트부는 타임스탬프를 포함하는 무선 신호를 주기적으로 전송하여 상기 지진계의 시각동기화 함수가 상기 수신된 무선 신호의 타임스탬프와 다르면, 상기 지진계는 수신한 타임스탬프값으로 상기 시각동기화 함수를 조정하는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 시스템.
  5. 제2항에 있어서,
    상기 그랜드마스터 시계부는 네트워크를 통하여 동기화 시각을 설정하기 위하여 IEEE 1588-2008 PTP 모듈로 구성되는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 시스템.
  6. 제2항에 있어서,
    상기 무선 엑세스 포인트부는 상기 중앙지진기록계에서 상기 동기화 시각 정보를 송신하고, 상기 지진계에서 시각동기화된 지진관측 데이터를 수신하기 위하여 IEEE 802.11 엑세스 포인트 모듈로 구성되는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 시스템.
  7. 중앙지진기록계에서 외부 시간자료를 수신하고 초당 1회 주기로 기준 펄스를 발신하는 제1 단계;
    상기 중앙지진기록계에서 시각동기화를 구현하기 위한 정밀 시각 프로토콜을 구비하여 동기화 시각을 제공하는 제2 단계;
    상기 중앙지진기록계와 유선 또는 무선으로 연결되는 지진계를 구비하되, 상기 중앙지진기록계로부터 제공되는 동기화 시각에, 감지되는 지진관측 데이터를 시각동기화하는 제3 단계; 및
    상기 시각동기화된 지진관측 데이터를 상기 지진계로부터 상기 중앙지진기록계로 송신하고, 상기 중앙지진기록계에서 상기 시각동기화된 지진관측 데이터를 저장하는 제4 단계;
    를 포함하는 지진자료 취득을 위한 시각동기화 방법.
  8. 제7항에 있어서,
    상기 제3 단계에서,
    상기 지진계가 시각동기화 함수를 가지며, 상기 무선 엑세스 포인트부는 타임스탬프를 포함하는 무선 신호를 주기적으로 전송하여 상기 지진계의 시각동기화 함수가 상기 수신된 무선 신호의 타임스탬프와 다르면, 상기 지진계가 수신한 타임스탬프값으로 상기 시각동기화 함수를 조정하는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 방법.
  9. 제7항에 있어서,
    상기 제2 단계에서는, IEEE 1588-2008 PTP 모듈을 이용하여 동기화 시각을 설정하는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 방법.
  10. 제7항에 있어서,
    상기 제2 단계 및 상기 제4 단계에서, 상기 중앙지진기록계와 상기 지진계 사이에 상기 동기화 시각 정보를 송신하고, 상기 시각동기화된 지진관측 데이터를 수신하기 위하여 IEEE 802.11 엑세스 포인트 모듈을 이용하는 것을 특징으로 하는 지진자료 취득을 위한 시각동기화 방법.
PCT/KR2016/000403 2015-01-16 2016-01-14 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법 WO2016114605A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150007741A KR101686619B1 (ko) 2015-01-16 2015-01-16 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법
KR10-2015-0007741 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016114605A1 true WO2016114605A1 (ko) 2016-07-21

Family

ID=56406084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000403 WO2016114605A1 (ko) 2015-01-16 2016-01-14 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법

Country Status (2)

Country Link
KR (1) KR101686619B1 (ko)
WO (1) WO2016114605A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884814A (zh) * 2017-12-15 2018-04-06 合肥国为电子有限公司 高道间一致性地震勘探仪及其命令执行延迟时间计算方法
CN110231654A (zh) * 2019-06-20 2019-09-13 合肥国为电子有限公司 一种槽波地震数据采集系统及方法
CN111487674A (zh) * 2020-03-23 2020-08-04 四川省华地建设工程有限责任公司 一种无缆式地震采集仪震源激发时间记录仪及记录方法
CN111679316A (zh) * 2020-06-19 2020-09-18 中煤科工集团西安研究院有限公司 一种矿用多地震采集系统时间对齐方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693412B (zh) * 2017-04-06 2024-05-03 上海市地震预测分析中心 地震地电场观测装置以及观测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033561A (ja) * 1999-07-15 2001-02-09 Akashi Corp データロガー及び振動計測システム
JP2009122069A (ja) * 2007-11-19 2009-06-04 Goto Ikueikai 地震観測システム
KR20090093089A (ko) * 2008-02-28 2009-09-02 부산대학교 산학협력단 무선 시각 동기 시스템 및 무선 시각 동기 방법
KR101128491B1 (ko) * 2011-10-27 2012-03-28 동일테크주식회사 지진 감시 시스템
KR101432469B1 (ko) * 2014-03-04 2014-09-24 강창식 시간 동기화가 개선된 지진 감시 시스템 및 그 제공 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675832B2 (ja) * 2006-06-08 2011-04-27 東京瓦斯株式会社 地震記録データの同期化処理方法
US8050881B1 (en) * 2007-10-18 2011-11-01 Enbiomedic Post data-collection synchronization for approximation of simultaneous data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033561A (ja) * 1999-07-15 2001-02-09 Akashi Corp データロガー及び振動計測システム
JP2009122069A (ja) * 2007-11-19 2009-06-04 Goto Ikueikai 地震観測システム
KR20090093089A (ko) * 2008-02-28 2009-09-02 부산대학교 산학협력단 무선 시각 동기 시스템 및 무선 시각 동기 방법
KR101128491B1 (ko) * 2011-10-27 2012-03-28 동일테크주식회사 지진 감시 시스템
KR101432469B1 (ko) * 2014-03-04 2014-09-24 강창식 시간 동기화가 개선된 지진 감시 시스템 및 그 제공 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884814A (zh) * 2017-12-15 2018-04-06 合肥国为电子有限公司 高道间一致性地震勘探仪及其命令执行延迟时间计算方法
CN107884814B (zh) * 2017-12-15 2023-08-25 合肥国为电子有限公司 高道间一致性地震勘探仪及其命令执行延迟时间计算方法
CN110231654A (zh) * 2019-06-20 2019-09-13 合肥国为电子有限公司 一种槽波地震数据采集系统及方法
CN111487674A (zh) * 2020-03-23 2020-08-04 四川省华地建设工程有限责任公司 一种无缆式地震采集仪震源激发时间记录仪及记录方法
CN111679316A (zh) * 2020-06-19 2020-09-18 中煤科工集团西安研究院有限公司 一种矿用多地震采集系统时间对齐方法及系统

Also Published As

Publication number Publication date
KR101686619B1 (ko) 2016-12-14
KR20160088547A (ko) 2016-07-26

Similar Documents

Publication Publication Date Title
WO2016114605A1 (ko) 지진자료 취득을 위한 시각동기화 시스템 및 지진자료 취득을 위한 시각동기화 방법
Anthony et al. Do low‐cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D
US7583560B2 (en) Synchronization of seismic data acquisition systems
US20110158047A1 (en) Synchronization of modules in a wireless array
US20180136354A1 (en) Sensor device and method for borehole seismic applications
CN104320238B (zh) 一种海底观测网大流量背景下的时间同步方法
US9304218B2 (en) Digital seismic sensor and acquisition device adapted to be connected together via a two-conductor line
CN102970094B (zh) 一种海底观测网接驳盒时间同步方法
CN105425899A (zh) 多观测器控制和同步系统
CN102932085A (zh) 一种海底观测网观测仪器的时间同步方法
WO2013151383A1 (ko) 비동기 복수의 디지털 신호의 전송방법
CN103957069B (zh) 基于物理层时间信息的网络授时ied时间同步检测方法
EP2725387A1 (en) Million channel-class digital seismometer based on computer network
CN110519034A (zh) 一种有线遥测数字地震仪的高精度时间同步技术
JP5397764B2 (ja) 時刻付与観測システムおよび時刻付与観測方法
Pelletier et al. Delivery of Accurate Timing to Subsea Instruments via Optical Modem Technology with the Added Benefit of Optical Range Measurement
Li et al. Research and implementation of an IEEE 1588 PTP-based time synchronization system for Chinese experimental ocean observatory network
CN204515158U (zh) 海洋地震勘探仪数字包信息采集时间同步装置
AU2013211962B2 (en) Analog in power supply module
Xie et al. Simulation and Analysis of Time Synchronization System for Seafloor Observatory Network Using OMNeT++
US9213113B2 (en) Clock synchronization over fiber
Carr Status of ANTARES in Nov 2005
JP2003077085A (ja) 大地監視用観測データ収集システム、大地監視システムおよびその構築方法
JP3344176B2 (ja) 同期信号出力方式
CN116878644A (zh) 一种基于多通道频率分集的微小宽带信号分布式测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737569

Country of ref document: EP

Kind code of ref document: A1