WO2016114531A1 - 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법 - Google Patents

조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법 Download PDF

Info

Publication number
WO2016114531A1
WO2016114531A1 PCT/KR2016/000224 KR2016000224W WO2016114531A1 WO 2016114531 A1 WO2016114531 A1 WO 2016114531A1 KR 2016000224 W KR2016000224 W KR 2016000224W WO 2016114531 A1 WO2016114531 A1 WO 2016114531A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
plane
shaping
polygon mirror
modeling
Prior art date
Application number
PCT/KR2016/000224
Other languages
English (en)
French (fr)
Inventor
김승택
박문수
김종석
김형태
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to EP16737495.8A priority Critical patent/EP3246150B1/en
Priority to US15/543,052 priority patent/US10962769B2/en
Publication of WO2016114531A1 publication Critical patent/WO2016114531A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/127Adaptive control of the scanning light beam, e.g. using the feedback from one or more detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors

Definitions

  • the present invention relates to a head apparatus of a three-dimensional molding equipment and a molding plane scanning method using the same, and more particularly, has a configuration including a molding light source array consisting of a plurality of molding light sources and a polygon mirror having an optical guide function.
  • the combination of these can provide a molding light scanning at a high speed, and provides a head device of a three-dimensional molding equipment having the effect of increasing the molding precision through precise scanning control and a molding plane scanning method using the same.
  • 3D printing is one of the methods of manufacturing a product, and since it uses a lamination method, it has been mainly used for prototyping because the loss of materials is small and relatively low manufacturing cost is required as compared with the conventional cutting process. Recently, technology in this field has been recognized as a next-generation production technology beyond prototyping. Increasing production speed, increasing the completeness of the output (resolution), increasing the available materials, and miniaturizing the device can be used by individuals. This is because accessibility has increased.
  • Such a method of 3D printing includes, for example, Stereo Lithography Apparatus (SLA), Selective Laser Sintering (SLS), and Fused Deposition Modeling (FDM).
  • SLA Stereo Lithography Apparatus
  • SLS Selective Laser Sintering
  • FDM Fused Deposition Modeling
  • Korean Patent Laid-Open Publication No. 1996-0024766 name of the invention: a three-dimensional shape forming apparatus using an optical molding apparatus, hereinafter referred to as the conventional technique 1), the optical starting apparatus of the XY plotter type near the starting point of the servo motor and driving
  • the conventional technique 1 Korean Patent Laid-Open Publication No. 1996-0024766
  • the optical starting apparatus of the XY plotter type near the starting point of the servo motor and driving
  • the sculpture is transformed into an unwanted structure
  • the control pulse is corrected based on the signal returned from the motor.
  • a three-dimensional shape forming apparatus composed of an attenuator.
  • the first problem is that the control accuracy is worse than that in the method of controlling the optical path.
  • the relatively heavy head is moved directly, and vibration occurs in accordance with the acceleration and deceleration of the head, thereby lowering the molding quality, and the third problem is that such a vibration problem becomes more serious when the molding speed is increased.
  • the present invention has a predetermined scanning pattern on a molding plane comprising a first axis (1) and a second axis (2) perpendicular to each other
  • a head apparatus of three-dimensional shaping equipment for irradiating shaping light comprising: a shaping light source array having a plurality of shaping light sources 16 arranged in a line parallel to the first axis (1); An optical guide unit 20 provided at a predetermined position on the upper surface of the molding plane and having a function of reflecting the molding light beam from the molding light source array 15 and incident on the molding plane; And a controller 40 which controls the driving of the modeling light source array 15 and the optical guide unit 20 in association with each other.
  • the plurality of modeling light beams generated from the plurality of modeling light sources 16 include:
  • the line guide 12 is formed to form a line scan 12 having the direction of the first axis 1 on the molding plane, and the light guide part 20 continuously or continuously moves the line scan 12 on the molding plane. It moves intermittently, to provide a head device of the three-dimensional molding equipment characterized in that to irradiate the molding light to the front of the molding plane.
  • the head apparatus of the three-dimensional shaping equipment having such a configuration includes a shaping light source array 15 including a plurality of shaping light sources 16, and is responsible for line scan in one axial direction of the shaping planes. It is possible to make the molding speed faster than to perform the scanning operation.
  • the present invention comprises a modeling light source array (15) consisting of a plurality of modeling light source (16), and is responsible for the line scan in one axial direction of the modeling plane, rather than performing a conventional scanning operation
  • the first effect is that the speed can be increased, the polygon mirror 21 rotates in a single direction to handle stepping in one axis direction different from the line scan axis, and the irradiation position of the shaping ray is the polygon mirror 21
  • the vibration and noise generated from the head device can be reduced, thereby improving the quality of the molding layer formed on the molding plane.
  • the present invention can be applied to various types of three-dimensional molding apparatus including SLA or SLS.
  • FIG. 1 is a schematic view of the prior art 1.
  • Figure 2 is a schematic diagram showing the configuration of the head device of the three-dimensional molding equipment according to an embodiment of the present invention.
  • FIG. 3 is a perspective view illustrating a method of scanning a molding plane using a head device of a three-dimensional molding equipment according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an embodiment of the shaped light incident angle correction unit of the present invention.
  • the present invention has been made to solve the above problems, and irradiates the shaped light with a predetermined scanning pattern over the entire surface of the molding plane including a first axis (1) and a second axis (2) perpendicular to each other.
  • the modeling light source array 15 having a plurality of modeling light sources 16 is provided at a predetermined position above the modeling plane, and reflects the modeling light from the modeling light source array 15.
  • the plurality of shaping rays generated from the shaping light source 16 of the incidence are incident to form one line scan 12 having a first axis 1 direction on the shaping plane, and the light guide portion 20 has one line.
  • Scan 12 continuously or intermittently on the forming plane To move to, so as to investigate the crude fluorescence for molding the front plane can be characterized.
  • the step of setting the polygon mirror 21 at a predetermined position the molding light source array 15 is incident on the reflective surface of the polygon mirror (21)
  • the plurality of shaping rays reflected by the polygon mirror 21 perform a line scan 12 in a direction parallel to the first axis 1 with respect to the shaping plane for a predetermined time.
  • a plurality of shaping rays are controlled so that the shaping planes are not irradiated on the shaping plane, so that a line scan is finished, and after stepping at a predetermined interval in the direction of the second axis 2.
  • the polygon mirror 21 is rotated by a predetermined angular displacement, and the steps are repeated until scanning is completed for the entire surface of the molding plane. It can be made, including.
  • the polygon mirror 21 is set at a predetermined position, the polygon mirror 21 starts to rotate at a predetermined speed, and at the same time, the molding light source array 15 Starting to inject a plurality of shaping rays on the reflecting surface of the polygon mirror 21, wherein the plurality of shaping rays reflected on the polygon mirror 21 are parallel to the first axis 1 with respect to the shaping plane.
  • a line scan 12 in one direction is performed, and the line scan is continuously performed while the polygon mirror 21 continues to rotate at a predetermined speed.
  • This may include a step in which a continuous line scan 12 is completed.
  • molding apparatus of this invention can be characterized by irradiating a shaping plane to the shaping plane using the above-mentioned head apparatus.
  • the present invention is characterized in that the molding light source array 15 having a plurality of molding light sources 16 arranged in a line is reflected and the molding light beams from the molding light source array 15 are reflected.
  • the optical guide unit 20 having a function of making an incident on a plane, and a control unit 40 for controlling the driving of the modeling light source and the optical guide unit 20 as a main component, are predetermined over the entire surface of the modeling plane. Irradiates the shaped light with the scanning pattern of.
  • the scanning pattern proposed by the present invention includes a second axis (line scan) in a direction parallel to the first axis 1 constituting the molding plane, as described later.
  • the pattern may be repeated while being spaced apart by a predetermined distance in the 2) direction, or may be a pattern in which the line scan is continuously formed along the second axis direction.
  • the former means that the next line scan 12 is performed at a position spaced apart by a predetermined distance in the direction of the second axis 2 after the completion of one line scan 12.
  • the former is performed through the output being controlled discretely with respect to time, the latter being controlled to vary continuously with time.
  • the term “line scan 12” may refer to a task in which a plurality of molding rays generated from a plurality of molding light sources 16 are incident on the molding plane and are performed. It also means.
  • the molding plane may mean an area to which the molding beam of which the path is controlled is irradiated in the head apparatus of the three-dimensional molding apparatus of the present invention, and in order to mathematically represent the actual irradiation region of the molding beam, the molding first is perpendicular to each other.
  • An axis 1 and a second axis 2 are included, and a coordinate region along the first axis 1 and the second axis 2 may also mean a logical region in which a position on the plane is described.
  • the actual modeling plane may be in a state of being blocked by a transparent member through which the modeling beam can pass, even if it is directly exposed to the outside or cannot be directly irradiated with the modeling beam.
  • the shaping plane since the energy is applied to the shaping ray and the action of photocuring or sintering hardening is actually limited to the shaping plane region, the shaping plane may be expressed as an effective forming region.
  • the first axis 1 and the second axis 2 refer to the scanning direction of the molding beam with respect to the molding plane and the position of the pattern or axis of rotation of the polygon mirror 21, the direction of the arrangement of the molding light source 16, and the like. Becomes The first axis 1 and the second axis 2 are arbitrarily located on the actual molding plane.
  • the shaping light source array 15 performs a function of generating a shaping ray and entering the light guide unit 20 to be described later.
  • the shaped light source array 15 is proposed as being arranged in a line in a direction parallel to the first axis 1.
  • the plurality of shaping rays generated from the shaping light source array 15 can perform the line scan 12 on the lines on the shaping plane parallel to the first axis 1.
  • the photocuring / sintering requirements (specs) of the shaping material are satisfied to the same extent in all parts of the line. shall.
  • the length of the molding light source array 15 is preferably at least one length of one side of the molding plane, which is obtained by one line scan 12 irradiating the length corresponding to one side of the molding plane at a time. This is because the molding time can be shortened.
  • the number of shaping light source arrays 15 is automatically calculated when the above-described spacing between shaping light sources 16 and the length of shaping light source array 15 are determined.
  • the shaping light source 16 is a device that functions to generate shaping light. Since shaping light has sufficient energy to cure the shaping material used, all of the shaping light source can be selected such as UV lay, laser, and the like. Do. However, the use of a laser is not only able to focus high energy, but also easy to control its output intensity and on / off, and is suitable for use as a shaping ray. The power and wavelength of the laser must be determined corresponding to the molding material used.
  • a laser diode (LD), a device such as a VCSEL, or an optical fiber bundle including an optical fiber bundle may be used, but is not limited thereto.
  • the shaping light source array 15 is composed of a plurality of shaping light source elements 16, the shape information of the three-dimensional object must also be digitized and divided into predetermined unit information. The spacing between these shaping elements should be set in consideration of the close relationship with the shaping resolution.
  • the light guide portion 20 is provided at a predetermined position above the modeling plane, and reflects the modeling beam from the modeling light source array 15 and enters the modeling plane in the function and irradiation of the modeling beam to the modeling plane.
  • the line scanning 12 in the first axis direction is implemented to be spaced apart in the direction of the second axis 2 so that the missing portion does not occur.
  • a polygon mirror 21 having a predetermined number of light reflection surfaces and rotating about a rotation axis (a polygon mirror axis 3 parallel to the first axis 1). polygon mirror 21.
  • the polygon mirror 21 has a polygonal cross section perpendicular to the axis of rotation, and the side surface must be configured to reflect the shaping ray.
  • the cross section of the polygon mirror 21 is square, regular, It is possible to set it as a regular hexagon, an octagon, etc. It is not limited to this.
  • one line scan is performed by one side reflection surface of the polygon mirror 21. Polygons The smaller the variable of the regular polygon of the cross section 21 (for example, the square), the longer the length of the line scan 12 can be. However, one line scan can be performed.
  • the length of the polygon mirror 21 is preferably equal to or greater than the length of the shaping light source array 15. 21)
  • the reflecting surfaces of the side surfaces may be rectangular or trapezoids having the same shape and size, so that the overall shape of the polygon mirror 21 may be a regular polygonal pillar or a regular polygonal pyramid, that is, the polygon mirror 21.
  • the polygon mirror 21 can be configured in the shape of one of a regular polygonal pillar or a regular polygonal truncated pyramid.
  • the light guide portion 20 is implemented in the shape of a regular hexagon pillar.
  • the rotation axis of the polygon mirror 21 may be installed at a predetermined position on the upper part of the molding plane in various ways.
  • the control unit 40 controls the driving of the modeling light source array 15 and the light guide unit 20, and specific control targets include on-off and output values of the modeling light sources 16 constituting the modeling light source array 15.
  • the optical guide unit 20 will be driven (rotated / stopped).
  • the irradiation position is specified with respect to the modeling plane of the modeling beam according to the rotation angle control of the polygon mirror 21 of the light guide unit 20, and the modeling light source 16 is based on the modeling layer image information with respect to the modeling irradiation position.
  • the driving of the plurality of shaping rays should be controlled through the control of. Through this, the molding light irradiation on one molding plane is completed, and one molding layer is molded.
  • the molding layers are stacked to complete a three-dimensional object.
  • the control of the shaping light source array 15 means that the shaping light sources 16 also interlock with each other.
  • each of the modeling beams forming the line scan 12 is incident on the modeling plane at the same time, and thus, one unit time (that is, Only the irradiation during photocuring / sintering can be completed, thus minimizing the molding time since the scanning in one axial direction of the molding plane, i.e. so called 'temporary line scan', can be completed.
  • the scanning in one axial direction of the molding plane does not exclude driving each of the molding light sources 16 to implement 'moving line scan'.
  • the control unit 40 includes a processing unit that largely generates an appropriate control signal for the control variable, and a driving unit that processes the control signal generated by the processing unit to generate driving of the corresponding component.
  • the processing unit may be implemented in hardware such as a circuit or may be configured in software such as a program.
  • the on / off control of the shaping ray may be configured to control on / off of the shaping ray generating element—LD or VCSEL, etc., and selectively passes or blocks the shaping ray generated by the shaping ray generating element over time. Additional components such as shutters can be implemented by controlling them, but are not limited to these configurations.
  • Control of the output value of shaping rays specifically controls the amplitude or frequency of shaping rays, which is caused by the difference in the optical path lengths required to reach each point of the shaping plane or the incident angle of the shaping rays. It is necessary to correct the difference in the shaping ray output density at each point.
  • the beam is incident perpendicularly to the model plane, the incident area is minimized, and thus the model beam output density increases, and conversely, when the beam enters at an oblique angle to the model plane, the incident Since the area also becomes large, the modeled light output density becomes small.
  • the degree of the curing-light curing or powder sintering action of the molding light to the molding material is proportional to the size of the molding light output density, thereby ensuring a uniform molding light output density over the entire surface of the molding plane,
  • the energy loss degree of the shaping ray will also vary according to the light path length required for the shaping ray to reach each point of the shaping plane. Calibration is necessary.
  • the head apparatus of the three-dimensional molding equipment of the present invention may further include a modeling light incident angle correction unit having a function of causing the molding light to be perpendicular to the modeling plane at all points forming the modeling plane. This is to make the shaped light output density uniform according to each incident point as described above.
  • 4 is a lens installed on an upper portion of the modeling plane, and although the incident angles of the modeling beams reflected from the light guide unit 20 are different for each point, two times After the refraction process, it functions to induce vertical incidence on the molding plane.
  • Control of the light guide unit 20 of the control unit 40 is made by the rotation control of the polygon mirror 21, the main control variables are the rotation angle speed, rotation angle displacement and rotation angle acceleration of the polygon mirror 21. It is necessary to follow these control variables with a small error within a small lead time with respect to the control signal of the controller 40.
  • an electric control method More preferably, an electric servo-motor capable of realizing the rotational angular velocity, rotational angular displacement and rotational angular acceleration in response to a control signal (electrical signal) that changes with time may be used, but is not limited thereto. no.
  • the spacing (size) of the stepping is determined according to the rotation angle of the polygon mirror 21.
  • the shaping ray is again applied to the site where the hardening has already been performed and a line scan is performed. Since it is irradiated, it is inefficient, and if it is too large, it should be considered that the part which a shaping ray does not irradiate produces.
  • the modeling ray from the modeling light source array 15 is shown to be irradiated in parallel with the modeling plane, it may be considered that the modeling beam is irradiated at a predetermined angle with the modeling plane.
  • These proposals are intended to implement the required functionality using a minimum number of components. Therefore, reflectors, prisms, and other optical elements can be used to alter or modify parts of the layout to make them more complex, or to adjust the angle of the rays, etc. It may be said that the configuration is changed to a certain extent in the same or equivalent range as the configuration of the present invention.
  • Stepping in the direction of the second axis 2 will be described.
  • setting parameters such as a separation distance interval and a separation time interval may be taken into consideration, and these parameters may include the output of the modeling beam, the setting thickness of the modeling layer, the type of the molding material, and the elements of the molding light source. It is related to various variables such as the spacing between them.
  • the molding light generated from one modeling light source reaches the modeling plane and transfers energy (which is a driving force of photocuring or sintering action) to the molding material, which has a predetermined area and depth rather than a specific point. Ripple to the area.
  • the line scan should be performed for a predetermined time, and this time should be determined in consideration of the output and the separation distance.
  • the following two embodiments are proposed according to the rotation control pattern of the polygon mirror 21 of the light guide unit 20.
  • the above-described molding plane is actually provided with a molding material.
  • one molding layer is formed, and the molding layers are stacked to form one three-dimensional object.
  • the separation in the direction of the second axis 2 should be made after one line scan 12 is completely finished, and further, after the separation in the direction of the second axis 2 is completely finished, the next line scan 12 is completed.
  • Such a method has an advantage that it is possible to apply sufficient energy to the irradiation beam point, to set a large thickness of the molding layer, and to increase the rotational speed of the polygon mirror 21 in the stepping (stepping) process.
  • the polygon mirror 21 is set at a predetermined position.
  • the initial position of the polygon mirror 21 is adjusted so that the molding beam can be incident on a predetermined portion of the edge of the molding plane.
  • the shaping light source array 15 starts to inject a plurality of shaping rays on the reflecting surface of the polygon mirror 21.
  • the plurality of shaping rays reflected by the polygon mirror 21 perform a line scan 12 in a direction parallel to the first axis 1 for a predetermined time with respect to the shaping plane.
  • each modeling light source 16 is synchronized (at one time) and advantageous in shortening the modeling time.
  • the plurality of shaping rays are controlled so that the shaping planes are not irradiated, so that the line scan 12 is finished.
  • the control at this time may be applied to the use of additional components such as output off of the modeling light source, shutter, use of a blocking film installed near the modeling plane, and even when the modeling beam is incident on the modeling plane. Considering a method of lowering the output of the modeling beam to the extent that curing or sintering of the molding material does not occur, and the like may be considered.
  • the second to fifth steps are repeated until scanning is completed for the entire surface of the molding plane.
  • the polygon mirror 21 preferably rotates continuously in a predetermined unidirectional direction. However, after surveying one modeling plane, when investigating the next modeling plane, it may be rotated in the same direction as the rotational direction during the previous modeling plane survey or may be rotated in the opposite direction. .
  • the line scan is a method of continuously sweeping the molding surface at a predetermined speed (this speed is a function of the rotational angular velocity of the polygon mirror). If the speed is too fast, it should be taken into account that it may not be possible to apply sufficient energy to the point of irradiation. However, setting such as increasing the light source output or narrowing the spacing between the shaping light source elements can be considered. In addition, it is possible to reduce the required energy itself by setting the molding layer thickness small. By using the scanning pattern in this manner, the polygon mirror can be continuously rotated, so that vibration and noise generated during the rotation / stopping of the polygon mirror 21 can be reduced, so that the molding quality and the working environment can be satisfactorily improved.
  • the present scanning method is performed by controlling the output of the shaped light source to change continuously with time.
  • the polygon mirror 21 When the scanning process is represented in time series, first, the polygon mirror 21 is set at a predetermined position, and second, the polygon mirror 21 starts to rotate at a predetermined speed, and the modeling light source array 15 The incidence of a plurality of shaping rays on the reflecting surface of the polygon mirror 21 is started. Third, the plurality of shaping rays reflected by the polygon mirror 21 perform a line scan 12 in a direction parallel to the first axis 1 with respect to the shaping plane. The polygon mirror 21 is continuously made while rotating at a predetermined speed. Fourth, when scanning of the entire surface of the modeling plane is completed, the continuous line scan 12 in the previous step is terminated.
  • the rotational speed of the polygon mirror 21 may be set at a constant speed, and in this configuration, vibration noise may be reduced.
  • the rotational speed may be reduced while the modeling ray is incident on the modeling plane, and may be rotated in a stepping process. It may be considered to increase the speed relatively, but in the latter case, it is advantageous in terms of molding time, while it is noted that the sign of rotational acceleration may be repeated with + and ⁇ to inevitably generate vibration and noise.
  • the second to third steps are repeated until the scanning of the entire surface of the molding plane is completed.
  • the polygon mirror 21 is preferably rotated continuously in a predetermined unidirectional direction. However, after surveying one modeling plane, when investigating the next modeling plane, it may be rotated in the same direction as the rotational direction during the previous modeling plane survey or may be rotated in the opposite direction. .
  • control unit 40 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

본 발명은, 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법에 관한 것으로, 복수의 조형광원을 구비하는 조형광원어레이, 조형평면 상부의 소정의 위치에 설치되고, 조형광원어레이로부터의 조형광선을 반사하여 조형평면상에 입사시키는 기능을 구비하는 광가이드부, 조형광원어레이와 상기 광가이드부의 구동을 연동하여 제어하는 제어부를 포함하여 이루어지고, 복수의 조형광원으로부터 생성되는 복수의 조형광선은 조형평면 상에 제1축방향을 갖는 하나의 라인스캔을 형성하며 입사하고, 광가이드부는 하나의 라인스캔을 조형평면 상에서 연속적 또는 단속적으로 이동시켜, 조형평면 전면에 대해 조형광을 조사하도록 하는 것을 특징으로 하며, 스캐닝을 고속으로 수행할 수 있고, 정밀한 스캐닝 제어를 통해 조형정밀도를 높일 수 있는 효과를 지니는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법을 제공한다.

Description

조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법
본 발명은, 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법에 관한 것으로, 더욱 상세하게는, 복수개의 조형광원으로 이루어지는 조형광원어레이와 광가이드 기능을 하는 폴리곤미러를 구비하는 구성을 갖고, 이들의 조합으로 조형광선 스캐닝을 고속으로 수행할 수 있고, 정밀한 스캐닝 제어를 통해 조형정밀도를 높일 수 있는 효과를 지니는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법을 제공한다.
3D 프린팅은 제품을 제작하는 방식 중 하나로, 적층 방식을 이용하므로 종래의 절삭가공에 비하여 재료의 손실이 작고, 상대적으로 저렴한 제조 비용이 소요되므로 주로 시제품 제작에 이용하여 왔다. 최근 이 분야의 기술은 시제품 제작을 넘어 차세대 생산기술로서의 가능성을 인정받고 있는데, 제작 속도의 증대, 출력물의 완성도(해상도)가 높아지고, 사용가능한 소재가 다양해지고, 장치의 소형화로 인해 개인들도 이용 접근성이 높아졌기 때문이다. 이러한, 3D 프린팅의 방식은, 크게 SLA(Stereo Lithography Apparatus), SLS(Selective Laser Sintering), FDM(Fused Deposition Modeling) 등의 방식이 존재한다.
대한민국 공개특허 제 1996-0024766호 (발명의 명칭 : 광조형장치를 이용한 입체형상 형성장치, 이하 종래기술1이라 한다.) 에서는 X-Y 플로터방식의 광조형장치에 대하여, 서보모터의 구동 시작점부근과 구동 종료점 부근에서 나타나는 가감속구간에서 레이저 빛의 조사시간이 정속운동구간보다 길어져 조형물이 원치않는 구조로 변형되는 문제점을 해결하기 위하여 모터로부터 귀환되는 신호를 근거로 제어펄스를 보정하여 그 모터가 목표속도로 회전되게 하는 콘트롤러와, 상기 콘트롤러에서 출력되는 제어펄스에 따라 모터에 구동전압을 공급하는 모터 구동기와, 레이저빔을 발생하는 레이저 발진부와, 상기 구동전압에 따라 주사렌즈측으로 출력되는 레이저빔을 감쇠시키는 감쇠기로 구성되는 입체형상 형성장치를 개시한다.
도1에 도시된 바와 같은 종래기술1은, 2축 이동레일을 통해 헤드가 직접 광조사지점으로 이동하여 조형광선을 조사하므로, 광경로를 제어하는 방식에서보다 제어정밀도가 열악하다는 제1문제점, 상대적으로 무거운 헤드를 직접 이동시키고, 이러한 헤드의 가속, 감속에 따라 진동이 발생하여 조형품질이 저하된다는 제2문제점, 조형속도를 높이면 이와 같은 진동 문제점이 더 심각해진다는 제3문제점을 갖는다.
상기와 같은 기술적 과제를 달성하기 위하여 안출된 본 발명은, 청구항 1의 기재와 같이, 서로 수직한 제1축(1)과 제2축(2)을 포함하여 이루어지는 조형평면에 소정의 스캐닝패턴으로 조형광을 조사하는 입체조형장비의 헤드장치에 있어서, 상기 제1축(1)에 평행한 방향으로 일렬로 배열되는 복수의 조형광원(16)을 구비하는 조형광원어레이(15); 상기 조형평면 상부의 소정의 위치에 설치되고, 상기 조형광원어레이(15)로부터의 조형광선을 반사하여 상기 조형평면상에 입사시키는 기능을 구비하는 광가이드부(20); 상기 조형광원어레이(15)와 상기 광가이드부(20)의 구동을 연동하여 제어하는 제어부(40);를 포함하여 이루어지고, 상기 복수의 조형광원(16)으로부터 생성되는 복수의 조형광선은 상기 조형평면 상에 상기 제1축(1)방향을 갖는 하나의 라인스캔(12)을 형성하며 입사하고, 상기 광가이드부(20)는 상기 하나의 라인스캔(12)을 상기 조형평면 상에서 연속적 또는 단속적으로 이동시켜, 상기 조형평면 전면에 대해 조형광을 조사하도록 하는 것을 특징으로 하는 입체조형장비의 헤드장치를 제공한다. 이와 같은 구성의 입체조형장비의 헤드장치는, 복수개의 조형광원(16)으로 이루어지는 조형광원어레이(15)를 구비하여, 조형평면 중 한 축 방향의 라인 스캔을 담당하게 함으로써, 기존의 이동 방식의 스캔 작업을 수행하는 것보다 조형속도를 빠르게 할 수 있다.
본 발명은, 복수개의 조형광원(16)으로 이루어지는 조형광원어레이(15)를 구비하여, 조형평면 중 한 축 방향의 라인 스캔을 담당하게 함으로써, 기존의 이동 방식의 스캔 작업을 수행하는 것보다 조형속도를 빠르게 할 수 있다는 제1효과, 단일 방향으로 회전하는 폴리곤미러(21)를 통해 라인 스캔 축과 다른 한 축 방향으로 이격(stepping)을담당하게 하고, 조형광선의 조사위치는 폴리곤미러(21)의 회전각속도 및 회전각변위의 제어를 통해 정밀제어함으로써, 헤드장치로부터 발생하는 진동 및 소음을 줄일 수 있고, 이로써, 조형평면에 형성되는 조형레이어의 품질을 개선할 수 있다는 제2효과, 제어기를 통해, 조형광선의 출력값을 제어하거나, 조형광선입사각보정부를 적용하여, 조형평면 전면에 대해 균일한 조형광선출력밀도를 구현함으로써, 조형품질을 증대시킬 수 있다는 제3효과를 갖는다. 나아가 본 발명은, SLA 또는 SLS 방식을 포함하는 다양한 방식의 입체조형장치에 적용할 수 있다.
도 1은 종래기술1의 모식도이다.
도 2은 본 발명의 일실시예에 따른 입체조형장비의 헤드장치의 구성을 나타내는 모식도 이다.
도 3은 본 발명의 일실시예에 따른 입체조형장비의 헤드장치를 이용하여 조형평면을 스캐닝하는 방법을 나타내는 사시도이다.
도 4은 본 발명의 조형광선입사각보정부의 일실시예를 나타내는 단면도이다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 서로 수직한 제1축(1)과 제2축(2)을 포함하여 이루어지는 조형평면 전면에 걸쳐 소정의 스캐닝패턴으로 조형광을 조사하는 입체조형장비의 헤드장치에 있어서, 복수의 조형광원(16)을 구비하는 조형광원어레이(15), 조형평면 상부의 소정의 위치에 설치되고, 조형광원어레이(15)로부터의 조형광선을 반사하여 조형평면상에 입사시키는 기능을 구비하는 광가이드부(20), 조형광원어레이(15)와 상기 광가이드부(20)의 구동을 연동하여 제어하는 제어부(40)를 포함하여 이루어지고, 복수의 조형광원(16)으로부터 생성되는 복수의 조형광선은 조형평면 상에 제1축(1)방향을 갖는 하나의 라인스캔(12)을 형성하며 입사하고, 광가이드부(20)는 하나의 라인스캔(12)을 조형평면 상에서 연속적 또는 단속적으로 이동시켜, 조형평면 전면에 대해 조형광을 조사하도록 하는 것을 특징으로 할 수 있다.
또한, 본 발명의 조형평면의 스캐닝방법은, 폴리곤미러(21)가 소정의 위치에 세팅되는 단계, 조형광원어레이(15)가 폴리곤미러(21)의 반사면상에 복수의 조형광선을 입사하는 것을 시작하는 단계, 폴리곤미러(21)에 반사된 상기 복수의 조형광선이 상기 조형평면에 대해 상기 제1축(1)과 평행한 방향의 라인스캔(12)(line scan)을 소정의 시간동안 수행하는 단계, 복수의 조형광선이 상기 조형평면에 조사되지 않도록 제어되어 라인스캔(12)(line scan)이 종료되는 단계, 상기 제2축(2) 방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(12)(line scan)을 수행하기 위해, 상기 폴리곤미러(21)가 소정의 각변위만큼 회전하는 단계, 조형평면의 전면에 대해 스캐닝이 완료될 때까지 상기 단계들을 반복하는 단계를 포함하여 이루어질 수 있다.
또한, 본 발명의 조형평면의 스캐닝방법은 폴리곤미러(21)가 소정의 위치에 세팅되는 단계, 폴리곤미러(21)가 소정의 속도로 회전을 시작함과 동시에, 상기 조형광원어레이(15)가 상기 폴리곤미러(21)의 반사면상에 복수의 조형광선을 입사하는 것을 시작하는 단계, 폴리곤미러(21)에 반사된 상기 복수의 조형광선이 상기 조형평면에 대해 상기 제1축(1)과 평행한 방향의 라인스캔(12)(line scan)을 수행하며, 이러한 라인스캔은 상기 폴리곤미러(21)가 소정의 속도로 계속 회전하면서 연속적으로 이루어지는 단계, 조형평면의 전면에 대해 스캐닝이 완료되면, 연속적인 라인스캔(12)(line scan)이 종료되는 단계를 포함하여 이루어질 수 있다.
또한, 본 발명의 입체조형장치는, 조형광선의 조형평면에의 조사를, 전술한 헤드장치를 이용하여 이루어지는 것을 특징으로 할 수 있다.
도 2의 도시된 모식도에서와 같이, 본 발명은, 일렬로 배열되는 복수의 조형광원(16)을 구비하는 조형광원어레이(15), 조형광원어레이(15)로부터의 조형광선을 반사하여 상기 조형평면상에 입사시키는 기능을 구비하는 광가이드부(20), 조형광원와 상기 광가이드부(20)의 구동을 연동하여 제어하는 제어부(40)를 주요 구성요소로 가지면서, 조형평면 전면에 걸쳐 소정의 스캐닝패턴으로 조형광을 조사하는 기능을 수행한다.
특히, 본 발명에서 제안하는 스캐닝패턴은, 후술하는 바와 같이, 조형평면을 이루는 제1축(1)과 평행한 방향으로 되는 라인스캔(12)(line scan)이 조형평면을 이루는 제2축(2) 방향으로 소정의 거리만큼 이격(stepping)하면서 반복하는 패턴이거나, 라인스캔이 연속적으로 제2축방향을 따라 이루어지는 패턴일 수 있다. 전자는 한 번의 라인스캔(12) 종료 후 상기 제2축(2)방향으로 소정의 거리만큼 이격(stepping)된 위치에 다음 번 라인스캔(12)이 이루어지도록 하는 것이다. 조형광원의 출력 관점에서는, 전자는 출력이 시간에 대해 이산적으로 제어되며, 후자는 시간에 대해 연속적으로 변화하도록 제어되는 것을 통해 수행된다. 이때, 상기 라인스캔(12)이라는 용어는 복수의 조형광원(16)으로부터 생성되는 복수의 조형광선이 상기 조형평면 상에 입사하며 수행하는 작업을 의미하기도 하며, 그러한 작업을 통해 형성되는 조형부위를 의미하기도 한다.
이하, 주요구성요소 및 실시예를 상술하는 방식으로 본 발명에 대해 설명하기에 앞서, 관련 용어들을 정의하기로 한다.
조형평면은, 본 발명의 입체조형장비의 헤드장치에서 그 경로가 제어되는 조형광선이 조사되는 영역을 의미하기도 하며, 이러한 실제의 조형광선의 조사 영역을 수학적으로 나타내기 위해, 서로 수직하는 제1축(1)과 제2축(2)을 포함하여 이루어지고, 제1축(1)과 제2축(2)에 따른 좌표값으로써 그 평면상의 위치가 기술되는 논리적인 영역을 의미하기도 한다. 실제의 조형평면은, 외부에 직접적으로 노출되거나, 또는 조형광선을 직접 조사받을 수 없다 하더라도, 조형광선이 투과할 수 있는 투명한 부재로 차단된 상태일 수 있다. 또한, 조형광선에 에너지가 부여되어, 실제로 광경화 또는 소결경화 등의 작용이 일어나는 것은 조형평면 영역에 한정된다는 점에서, 조형평면은 유효조형영역(effective forming region)이라고 표현할 수 있을 것이다.
제1축(1), 제2축(2)은 조형평면에 대한 조형광선의 스캐닝방향 및 패턴 또는 폴리곤미러(21) 회전축의 위치, 조형광원(16)의 배열의 방향 등을 기술함에 있어 기준이 된다. 제1축(1) 및 제2축(2)은 실제 조형평면 상에는 임의적으로 위치한다.
도 3의 실시예에 도시된 바와 같이, 조형광원어레이(15)는 조형광선을 생성하고 후술할 광가이드부(20)로 입사시키는 기능을 수행한다. 본 발명에서 조형광원어레이(15)는 제1축(1)과 평행한 방향으로 일렬로 배열되는 것으로서 제안된다. 이러한 구성을 통해 조형광원어레이(15)로부터 생성되는 복수개의 조형광선은 제1축(1)과 평행한 조형평면상의 라인에 대해 라인스캔(12)을 수행할 수 있게 된다. 복수의 조형광원(16) 간의 간격을 결정함에 있어서는 하나의 라인스캔(12)이 종료된 후, 해당 라인의 모든 부분에 있어 동일한 정도로, 조형재료의 광경화/소결 요구수준(스펙)이 충족되도록 하여야 한다. 간격이 너무 넓으면, 하나의 라인에 대해 부위별로 광경화/소결 정도에 차이가 생기게 되어 조형품질이 저하될 것이고, 간격이 너무 좁아지면, 불필요하게 많은 에너지가 조사되는 문제가 발생할 수 있음을 감안한다. 또한, 조형광원(16)의 출력이 큰 경우에는 조형광원(16) 간의 간격을 크게 할 수 있음을 고려한다. 조형광원어레이(15)의 길이는 적어도 조형평면의 한 변의 길이 이상이 되는 것이 바람직하며, 이는 하나의 라인스캔(12)이 조형평면의 한 변에 해당하는 길이 만큼을 한 번에 조사하는 것을 통해 조형시간을 단축시킬 수 있기 때문이다. 또한, 조형광원어레이(15)의 개수는 전술한 조형광원(16) 간의 간격, 그리고, 조형광원어레이(15)의 길이가 결정되면 자동으로 계산된다.
조형광원(16)은 조형광선을 생성하는 기능을 하는 소자이며, 조형광선은, 사용되는 조형재료를 경화시키는데 필요한 에너지를 가지고 있으면 족하므로, 자외선(UV lay), 레이저(laser) 등 모두 선택 가능하다. 다만, 레이저를 이용하면, 높은 에너지를 집속할 수 있을 뿐만 아니라, 그 출력세기 및 온오프제어가 용이하여, 조형광선으로서의 용도에 적합하여 바람직하다. 레이저의 출력 및 파장은, 사용하는 조형재료에 대응하여 결정되어야 한다. 레이저를 생성하기 위한 조형광원(16)으로서는 레이저다이오드(LD) 또는, VCSEL 등의 소자(device) 또는 광섬유번들(bundle)을 포함하여 이루어지는 광섬유레이저 등을 적용할 수 있으나 이에 한정되는 것은 아니며, 조형광선으로서 단일채널의 광선이 필요하다고 하여 반드시 단일한 소자를 사용할 필요는 없고, 광선(광신호)의 결합 및 분배 기능을 갖는 다양한 소자들(일례로, 릴레이모듈 등)을 이용할 수 있다. 또한, 다양한 광변조모듈 또는 집속렌즈, 프리즘 등의 광학요소을 적용하여 조형광선의 품질을 개선하거나 헤드장치를 소형화하는 구성을 디자인하는 것도 고려할 수 있다. 조형광원어레이(15)는 복수개의 조형광원(16)소자로 이루어지므로, 입체조형물의 형상정보도 디지털화 및 소정의 단위정보로 분할 되어 구성되어야 한다. 이러한 조형광원소자들간의 간격은 조형해상도와 밀접한 관계가 있음을 고려하여 설정되어야 한다.
광가이드부(20)는, 조형평면 상부의 소정의 위치에 설치되고, 조형광원어레이(15)로부터의 조형광선을 반사하여 조형평면상에 입사시키는 기능 및 조형평면에의 조형광선 조사에 있어, 누락되는 부위가 발생하지 않도록 제 1축 방향의 각 라인스캔(12)을 제2축(2)방향으로 이격(stepping)하는 기능을 구현한다. 광가이드부(20)의 구성에 있어, 본 발명에서는 소정의 개수의 광반사면을 구비하고, 회전축(제1축(1)과 평행한 폴리곤미러축(3)을 중심으로 회전하는 폴리곤미러(21)(polygon mirror)를 포함하여 이루어지는 것을 제안한다. 폴리곤미러(21)는 회전축에 대해 수직한 단면의 형상이 다각형으로 되고, 측면표면이 조형광선을 반사할 수 있도록 구성되어야 한다. 더욱 바람직하게는 상기 단면형상이 정다각형인 폴리곤미러(21)를 채택하면, 폴리곤미러(21)의 회전속도 및 회전방향을 정밀제어하는 것이 용이하므로 유리하다. 폴리곤미러(21)의 단면은, 정사각형, 정오각형, 정육각형, 정팔각형 등으로 하는 것이 가능하나, 이에 한정되는 것은 아니다. 후술하는 바와 같이 라인스캔(12)(line scan) 하나의 수행은, 폴리곤미러(21)의 측면반사면 하나에 의해 수행되므로, 폴리곤미러(21) 단면의 정다각형의 변수가 적을수록(일례로 정사각형) 라인스캔(12)(line scan)의 길이를 길게 할 수 있다는 장점이 있으나, 라인스캔(12)(line scan) 하나의 수행을 위해 폴리곤미러(21)의 회전각변위가 더 커져야 하므로, 같은 조형속도를 내기 위해 폴리곤미러(21)의 회전속도를 더 크게 해야 한다는 단점이 있게 된다. 따라서, 조형평면의 크기에 따라 적절한 모양의 폴리곤미러(21)를 선택하여 이러한 장점과 단점을 절충하는 것이 필요하다. 또한, 폴리곤미러(21)의 길이는, 조형광원어레이(15)의 길이 이상이 되는 것이 바람직하다. 그리고, 폴리곤미러(21) 측면의 반사면은 서로 동일한 모양과 크기를 갖는 직사각형 또는 사다리꼴일 수 있으며. 이렇게 되면, 폴리곤미러(21)의 전체적인 형상은 정다각기둥 또는 정다각뿔대가 될 수 있다. 즉, 폴리곤미러(21)의 회전축의 설치각도 및 조형광선의 입사각도, 또는 본 발명의 헤드장치의 전체적인 크기 등 변수에 따라, 폴리곤미러(21)를 정다각기둥 또는 정다각뿔대 중의 하나의 형상으로 구성할 수 있다. 도 2 내지 도 4에서의 실시예에서, 광가이드부(20)는 정육각기둥의 형상으로 구현되어 있다. 폴리곤미러(21)의 회전축은, 다양한 방법으로 조형평면의 상부의 소정의 위치에 설치될 수 있다.
제어부(40)는, 조형광원어레이(15)와 광가이드부(20)의 구동을 연동제어하는데, 구체적인 제어대상은, 조형광원어레이(15)를 이루는 각 조형광원(16)의 온오프와 출력값, 광가이드부(20)의 구동(회전/정지) 등이 될 것이다. 광가이드부(20)의 폴리곤미러(21) 회전각제어에 따라 조형광선의 조형평면에 대해 조사 위치가 특정되고, 이렇게 특정된 조사 위치에 대하여, 조형레이어 이미지정보에 의거, 조형광원(16)의 제어를 통해 복수의 조형광선의 구동이 제어되어야 한다. 이를 통해 하나의 조형평면에 대한 조형광선조사가 완료되어 하나의 조형레이어가 성형되는 것이며, 이러한 조형레이어가 적층되어 입체조형물이 완성되는 것이다.
조형광원어레이(15)의 제어란, 각 조형광원(16)들도 서로 연동제어하는 것을 의미한다. 특히, 각 조형광원(16)들을 동기화(synchronizing)하여 제어하는 경우, 라인스캔(12)을 이루는 각 조형광선은 상기 조형평면에 동시에 입사하게 되는데, 이를 통해, 하나의 단위 시간(이는 조형재료의 광경화/소결을 위해 필요한 광선조사시간과 연관된다.) 동안의 조사 만으로, 조형평면 한 축 방향에 대한 스캐닝, 즉 소위 ‘일시적인 선스캔’을 완료할 수 있으므로, 조형시간을 최소화할 수 있다. 다만, 필요에 의해, 조형평면 한 축 방향의 스캐닝이 ‘이동(moving)하는 선스캔’을 구현하도록 조형광원(16) 각각을 구동하는 것을 배제하는 것은 아니다.
제어부(40)는, 크게 제어변수에 대해 적절한 제어신호를 발생시키는 처리부 및 처리부에서 발생한 제어신호를 처리하여 해당 구성요소의 구동을 발생시키는 구동부로 이루어진다. 처리부는 회로 등 하드웨어로 구현하거나, 프로그램 등 소프트웨어적으로 구성할 수 있다. 조형광선의 온오프제어는, 조형광선생성소자 ?LD 또는 VCSEL 등- 의 온오프를 제어하는 구성을 취할 수도 있으며, 조형광선생성소자에 의해 생성되는 조형광선을 시간에 따라 선택적으로 통과 또는 차단하는 셔터(shutter)등의 부가적인 구성요소를 두고 이들을 제어하는 것을 통해 구현할 수 있으나, 이러한 구성에 한정되는 것은 아니다. 조형광선의 출력값 제어는 구체적으로 조형광선의 진폭 또는 주파수를 제어하는 것이며, 이는 조형광선이 조형평면을 이루는 각 지점까지 도달하는 데 필요한 광경로길이의 차이 또는 조형광선의 입사각도의 차이에 따라 야기되는 상기 각 지점에서의 조형광선출력밀도의 차이를 보정하기 위해 필요하다. 이에 대하여 상술하자면, 조형광선이 조형평면에 대해 수직으로 입사하면, 입사면적이 최소가 되므로, 조형광선출력밀도가 커지게 되며, 반대로 조형광선이 조형평면에 대해 비스듬한 각도를 가지면서 입사한다면, 입사면적도 커지게 되므로, 조형광선출력밀도는 작아지게 된다. 그런데, 조형재료에 대한 조형광선의 경화-광경화 또는 분말소결 등 ?작용의 정도는 조형광선출력밀도의 크기에 비례하므로, 조형평면의 전면적에 대해, 균일한 조형광선출력밀도를 보장하여, 조형레이어의 품질을 확보하기 위해서는 상기와 같은 조형광선의 출력값 제어가 필요하다. 또한, 특히 본 발명의 헤드장치가 대형화되는 경우, 조형광선이 조형광선이 조형평면을 이루는 각 지점까지 도달하는 데 필요한 광경로길이에 따라 조형광선의 에너지 손실 정도도 차이가 생기게 될 것이므로, 이에 대한 보정이 필요한 것이다.
또한, 본 발명의 입체조형장비의 헤드장치는, 조형평면을 이루는 모든 지점에서 상기 조형광선이 조형평면에 대해 수직하게 입사하게 하는 기능을 구비하는 조형광선입사각보정부를 더 구비할 수 있다. 이는 전술한 바와 같이 조형광선출력밀도를 각 입사지점에 따라 균일하게 하기 위한 것이다. 도 4에 도시된 일실시예에서의 조형광선입사각보정부는, 조형평면의 상부에 설치되는 렌즈로서, 광가이드부(20)로부터 반사된 조형광선의 입사각이 각 지점별로 상이함에도 불구하고, 두 번의 굴절과정을 통하고 나면, 조형평면상에 수직으로 입사하도록 유도하는 기능을 한다.
제어부(40)의 광가이드부(20)에 대한 제어는 폴리곤미러(21)의 회전제어에 의해 이루어지며, 주된 제어변수는 폴리곤미러(21)의 회전각속도, 회전각변위 및 회전각가속도가 된다. 제어부(40)의 제어신호에 대하여 이러한 제어변수들이 작은 지연시간(lead time) 내에 작은 오차를 갖고 추종하는 것이 필요하며, 이를 위해 전동식 제어방법을 이용하는 것이 바람직하다. 더욱 바람직하게는 시간에 따라 변화하는 제어신호(전기신호)에 대응하여 상기 회전각속도, 회전각변위, 회전각가속도를 구현할 수 있는 전동서보모터 (electric servo-motor)를 사용할 수 있으나, 이에 한정되는 것은 아니다. 이격(stepping)의 간격(크기)은 폴리곤미러(21)의 회전각에 따라 결정되는데, 그 값이 너무 작으면, 라인스캔(12)(line scan)되어 경화가 이미 진행된 부위에 다시 조형광선이 조사되므로, 비효율적이고, 그 값이 너무 크면, 조형광선이 조사되지 않는 부분이 생기게 됨을 감안하여야 한다.
이하, 전술한 주요구성요소들을 공간상에 배치하여, 스캐닝패턴을 구현하는 것에 대해 추가 고려사항을 설명하기로 한다. 도3에 도시된 실시예에서는 조형광원어레이(15)로부터의 조형광선이 조형평면과 평행하게 조사되는 것으로 나타나 있으나, 조형평면과 일정한 각도를 이루면서 조사되는 것도 고려할 수 있음은 물론이다. 이러한 제안들은, 최소의 구성요소를 사용하여 요구되는 기능을 구현하기 위한 것이므로, 반사경, 프리즘 기타 광학요소들을 사용하여, 배치의 일부를 변경, 변형하여 더 복잡하게 되도록 구성하거나, 광선의 각도 등을 일정 정도 변경하여 구성하는 것은 본 발명의 구성과 동일 내지 균등한 범위에 있는 것이라고 할 수 있을 것이다.
제2축(2) 방향의 이격(stepping)에 대하여 기술한다. 이러한 제2축 방향의 이격과 관련하여서는, 이격거리간격 및 이격시간간격 등의 설정파라미터를 고려할 수 있으며, 이들 파라미터는 조형광선의 출력 및 조형레이어의 설정두께, 조형재료의 종류, 조형광원소자들 사이의 간격 등 다양한 변수들과 관련되어 있다. 또한, 하나의 조형광원에서 생성되는 조형광선은 조형평면에 도달하여 조형재료에 에너지(광경화 또는 소결작용의 동인이 되는)를 전달하는데, 이러한 에너지는 특정 지점이 아닌 소정의 면적 및 깊이를 갖는 영역으로 파급된다. 조형광선의 출력밀도가 크면, 동일한 시간 동안 조사가 이루어지더라도, 더 넓은 영역에 걸쳐 에너지가 전달되므로, 제2축방향의 이격거리간격을 상대적으로 크게 할 수 있다. 또한, 제2축방향의 이격거리간격의 존재로 인해, 라인스캔은 소정의 시간 동안 이루어져야 하며, 이러한 시간은 출력 및 이격거리간격 등을 감안하여 결정하여야 한다.
본 발명의 헤드장치를 이용한 조형평면의 스캐닝 방식으로는 광가이드부(20)의 폴리곤미러(21)의 회전제어 패턴에 따라 다음의 두 가지 실시예를 제안한다. 설명에 앞서, 전술한 조형평면에는 실제로 조형재료가 공급되어 위치한다는 것을 전제한다. 하나의 조형평면에 대해 조형광선의 스캐닝이 완료되고 나면, 하나의 조형레이어가 형성되는 것이며, 이러한 조형레이어가 적층되어 하나의 입체조형물을 형성하게 된다. 조형평면의 스캐닝에 있어, 조형광선이 조사되지 않는 부분이 있어서는 안되며, 스캐닝 소요시간을 최소화할 수 있는 최적의 경로를 통해 스캐닝을 수행하는 것이 바람직하다.
<제1실시예>
제2축(2) 방향의 이격은 하나의 라인스캔(12)이 완전히 종료된 이후, 이루어져야 하며, 나아가, 제2축(2) 방향의 이격이 완전히 종료된 이후, 다음 번 라인스캔(12)이 이루어져야 한다. 즉 라인스캔(12) 뿐만 아니라, 제2축(2)방향의 이격도 비연속적으로(discontiuously) 내지 이산적으로(discretely) 수행되어야 한다. 즉, 폴리곤미러(21)가 정지된 상태에서 하나의 라인스캔(12)이 수행되고, 라인스캔(12)이 종료되면 폴리곤미러가 소정의 각도만큼 회전한 후, 정지하고, 다음번 라인스캔(12)이 수행되는 방식이다. 이러한 방식은 조형광선조사지점에 대해 충분한 에너지를 가할 수 있어, 조형레이어 두께를 크게 설정할 수 있고, 이격(stepping) 과정에서는 폴리곤미러(21)의 회전속도를 빠르게 할 수 있다는 장점이 있다.
스캐닝 과정을 시계열적으로 나타내면, 첫째, 폴리곤미러(21)가 소정의 위치에 세팅된다. 폴리곤미러(21)의 초기 위치는 조형평면의 가장자리 소정 부위에 조형광선이 입사될 수 있도록 조정된다. 둘째, 조형광원어레이(15)가 상기 폴리곤미러(21)의 반사면상에 복수의 조형광선을 입사하는 것을 시작한다. 셋째, 폴리곤미러(21)에 반사된 상기 복수의 조형광선이 조형평면에 대해 소정의 시간동안 상기 제1축(1)과 평행한 방향의 라인스캔(12)(line scan)을 수행한다. 물론, 각 조형광원(16)은 동기화하여(일시에) 구동되는 것이 조형시간 단축에 유리함은 전술한 바 있다. 넷째, 복수의 조형광선이 상기 조형평면에 조사되지 않도록 제어되어 라인스캔(12)(line scan)이 종료된다. 이때의 제어는, 조형광원의 출력오프(off), 셔터(shutter) 등의 추가구성요소의 이용, 조형평면 근처에 설치한 차단막의 이용 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 다섯째, 직전 라인스캔(12)(line scan)에 이어, 상기 제2축(2) 방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(12)(line scan)을 수행하기 위해, 상기 폴리곤미러(21)가 소정의 각변위만큼 회전한다. 여섯째, 조형평면의 전면에 대해 스캐닝이 완료될 때까지 상기 두번째 단계 내지 상기 다섯째 단계를 반복하여 수행한다. 물론 폴리곤미러(21)는 소정의 단방향으로 계속 회전하는 것이 바람직하다는 것은 자명하다. 다만, 하나의 조형평면에 대해 조사를 완료하고 난 후, 다음 조형평면을 조사할 때, 직전 조형평면 조사과정에서의 회전방향과 같은 방향으로 회전하도록 할 수도 있고, 반대방향으로 회전하도록 할 수도 있다.
<제2실시예>
라인스캔이 소정의 속도(이러한 속도는 폴리곤미러의 회전각속도와 함수관계)로 조형면을 연속적으로 스위핑(sweeping)하는 방식이다. 이때의 속도가 너무 빠르면, 조형광선조사지점에 대해 충분한 에너지를 가할 수 없을 수 있음을 감안하여야 한다. 다만, 광원출력을 증대시키거나, 조형광원소자간 간격을 좁게 설정하는 등의 설정을 고려할 수 있다. 또한, 조형레이어 두께를 작게 설정하여, 필요에너지 자체를 감소시킬 수도 있을 것이다. 이러한 방식의 스캐닝 패턴을 이용하며, 폴리곤미러가 연속적으로 회전하도록 할 수 있으므로, 폴리곤미러(21)의 회전/정지 과정에서 발생되는 진동, 소음을 저감할 수 있어, 조형품질 및 작업환경을 양호하게 할 수 있다는 장점이 있음을 고려한다. 본 스캐닝 방식은, 조형광원의 출력이 시간에 대하여 연속적으로 변화하도록 제어하여 수행된다.
스캐닝 과정을 시계열적으로 나타내면, 첫째, 폴리곤미러(21)가 소정의 위치에 세팅되고, 둘째, 폴리곤미러(21)가 소정의 속도로 회전을 시작함과 동시에, 상기 조형광원어레이(15)가 상기 폴리곤미러(21)의 반사면상에 복수의 조형광선을 입사하는 것을 시작한다. 셋째, 폴리곤미러(21)에 반사된 상기 복수의 조형광선이 상기 조형평면에 대해 상기 제1축(1)과 평행한 방향의 라인스캔(12)(line scan)을 수행하며, 이러한 라인스캔은 상기 폴리곤미러(21)가 소정의 속도로 계속 회전하면서 연속적으로 이루어지도록 한다. 넷째, 상기 조형평면의 전면에 대해 스캐닝이 완료되면, 전 단계에서의 연속적인 라인스캔(12)(line scan)을 종료한다.
여기서 폴리곤미러(21)의 회전속도를 등속도로 설정할 수도 있고- 이러한 구성에서는 진동 소음을 저감할 수 있다-, 조형광선이 조형평면에 입사되는 동안에는 회전속도를 작게 하고, 이격(stepping) 과정에서는 회전속도를 상대적으로 크게하는 것을 고려할 수 있으나, 후자의 경우, 조형시간측면에서는 이점이 있는 반면, 회전 가속도의 부호가 +, - 로 반복되어 진동 및 소음이 불가피하게 발생할 수 있음을 유의한다. 넷째, 조형평면의 전면에 대해 스캐닝이 완료될 때까지 상기 둘째 단계 내지 셋째 단계를 반복하여 수행한다. 이 경우에도, 물론 폴리곤미러(21)는 소정의 단방향으로 계속 회전하는 것이 바람직하다는 것은 자명하다. 다만, 하나의 조형평면에 대해 조사를 완료하고 난 후, 다음 조형평면을 조사할 때, 직전 조형평면 조사과정에서의 회전방향과 같은 방향으로 회전하도록 할 수도 있고, 반대방향으로 회전하도록 할 수도 있다.
본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시 예에 불과하며, 당업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시 예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.
[부호의 설명]
1 : 제1축
2 : 제2축
3 : 폴리곤미러축
10 : 조형평면
11 : 조형광선
12 : 라인스캔(line scan)
15 : 조형광원어레이
16 : 조형광원
20: 광가이드부
21 : 폴리곤미러
40 : 제어부
50 ; 조형광선입사각보정부

Claims (14)

  1. 서로 수직한 제1축(1)과 제2축(2)을 포함하여 이루어지는 조형평면에 소정의 스캐닝패턴으로 조형광을 조사하는 입체조형장비의 헤드장치에 있어서,
    상기 제1축(1)에 평행한 방향으로 일렬로 배열되는 복수의 조형광원(16)을 구비하는 조형광원어레이(15);
    상기 조형평면 상부의 소정의 위치에 설치되고, 상기 조형광원어레이(15)로부터의 조형광선을 반사하여 상기 조형평면상에 입사시키는 기능을 구비하는 광가이드부(20);
    상기 조형광원어레이(15)와 상기 광가이드부(20)의 구동을 연동하여 제어하는 제어부(40);
    를 포함하여 이루어지고,
    상기 복수의 조형광원(16)으로부터 생성되는 복수의 조형광선은 상기 조형평면 상에 상기 제1축(1)방향을 갖는 하나의 라인스캔(12)을 형성하며 입사하고,
    상기 광가이드부(20)는 상기 하나의 라인스캔(12)을 상기 조형평면 상에서 연속적 또는 단속적으로 이동시켜, 상기 조형평면 전면에 대해 조형광을 조사하도록 하는 것을 특징으로 하는 입체조형장비의 헤드장치.
  2. 청구항 1에 있어서,
    상기 광가이드부(20)는, 측면이 소정의 개수의 광반사면을 구비하고, 상기 제1축(1)과 평행한 폴리곤미러축(3)을 회전중심축으로 하여 설치되는 폴리곤미러(21)(polygon mirror)를 포함하여 이루어지는 것을 특징으로 하는 입체조형장비의 헤드장치.
  3. 청구항 1에 있어서,
    상기 복수의 조형광원(16) 모두는 서로 동기화하여 구동되어, 상기 라인스캔(12)을 이루는 각 조형광선은 상기 조형평면에 동시에 입사하는 것을 특징으로 하는 입체조형장비의 헤드장치.
  4. 청구항 1에 있어서,
    상기 조형광원(16)은 레이저다이오드(Laser Diode), VCSEL, 또는 광섬유번들(bundle)을 포함하여 이루어지는 광섬유레이저 중 어느 하나인 것을 특징으로 하는 입체조형장비의 헤드장치.
  5. 청구항 1에 있어서,
    상기 입체조형장비의 헤드장치는, 상기 조형평면을 이루는 모든 지점에서 상기 조형광선이 상기 조형평면에 대해 수직하게 입사하게 하는 기능을 구비하는 조형광선입사각보정부를 더 구비하는 것을 특징으로 하는 입체조형장비의 헤드장치.
  6. 청구항 1에 있어서,
    상기 제어부(40)는, 상기 조형광선이 상기 조형평면을 이루는 각 지점까지 도달하는 데 필요한 경로길이의 차이 또는 상기 조형광선의 입사각도의 차이에 따라 야기되는 상기 각 지점에서의 조형광선출력밀도의 차이를 보정하기 위해, 상기 조형광선의 진폭 또는 주파수를 제어하는 것을 특징으로 하는 입체조형장비의 헤드장치.
  7. 청구항 2의 입체조형장비의 헤드장치를 사용하여 조형평면을 스캐닝하는 방법에 있어서,
    (i) 상기 폴리곤미러(21)가 소정의 위치에 세팅되는 단계(s10);
    (ii) 상기 조형광원어레이(15)가 상기 폴리곤미러(21)의 반사면상에 복수의 조형광선을 입사하는 것을 시작하는 단계(s20);
    (iii) 상기 폴리곤미러(21)에 반사된 상기 복수의 조형광선이 상기 조형평면에 대해 상기 제1축(1)과 평행한 방향의 라인스캔(12)(line scan)을 소정의 시간동안 수행하는 단계(s30);
    (iv) 상기 복수의 조형광선이 상기 조형평면에 조사되지 않도록 제어되어 상기 (iii)단계에서의 라인스캔(12)(line scan)이 종료되는 단계(s40);
    (v) 상기 (iii)단계에서의 라인스캔(12)(line scan)에 이어, 상기 제2축(2) 방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(12)(line scan)을 수행하기 위해, 상기 폴리곤미러(21)가 소정의 각변위만큼 회전하는 단계(s50);
    (vi) 상기 조형평면의 전면에 대해 스캐닝이 완료될 때까지 상기 (ii)단계 내지 상기 (v)단계를 반복하여 수행하는 단계(s60);
    를 포함하여 이루어지고,
    상기 (iii)단계에서 상기 폴리곤미러(21)는 소정의 단방향으로 회전하는 것을 특징으로 하는 특징으로 하는 조형평면의 스캐닝방법.
  8. 청구항 7에 있어서,
    상기 (iv)단계 이후, 상기 폴리곤미러(21)는, 상기 (iii) 단계에서의 회전방향과 같은 방향으로 회전을 준비하는 단계;를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.
  9. 청구항 7에 있어서,
    상기 (iv)단계 이후, 상기 폴리곤미러(21)는, 상기 (iii) 단계에서의 회전방향과 반대방향으로 회전을 준비하는 단계;를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.
  10. 청구항 2의 입체조형장비의 헤드장치를 사용하여 조형평면을 스캐닝하는 방법에 있어서,
    (a) 상기 폴리곤미러(21)가 소정의 위치에 세팅되는 단계(s100);
    (b) 상기 폴리곤미러(21)가 소정의 속도로 회전을 시작함과 동시에, 상기 조형광원어레이(15)가 상기 폴리곤미러(21)의 반사면상에 복수의 조형광선을 입사하는 것을 시작하는 단계(s200);
    (c) 상기 폴리곤미러(21)에 반사된 상기 복수의 조형광선이 상기 조형평면에 대해 상기 제1축(1)과 평행한 방향의 라인스캔(12)(line scan)을 수행하며, 이러한 라인스캔은 상기 폴리곤미러(21)가 소정의 속도로 계속 회전하면서 연속적으로 이루어지는 단계(s300);
    (d) 상기 조형평면의 전면에 대해 스캐닝이 완료되면, 상기 (c)단계에서의 연속적인 라인스캔(12)(line scan)이 종료되는 단계(s400);
    를 포함하여 이루어지고,
    상기 (b)단계 및 상기 (c)단계에서 상기 폴리곤미러(21)는 소정의 단방향으로 회전하는 것을 특징으로 하는 특징으로 하는 조형평면의 스캐닝방법.
  11. 청구항 10에 있어서,
    상기 (d)단계 이후, 상기 폴리곤미러(21)는, 상기 (b)단계 및 상기 (c) 단계에서의 회전방향과 같은 방향으로 회전을 준비하는 단계;를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.
  12. 청구항 10에 있어서,
    상기 (d)단계 이후, 상기 폴리곤미러(21)는, 상기 (b)단계 및 상기 (c) 단계에서의 회전방향과 반대방향으로 회전을 준비하는 단계;를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.
  13. 청구항 10에 있어서,
    상기 (c)단계에서의 폴리곤미러(21)의 회전속도는 등속도인 것을 특징으로 하는 조형평면의 스캐닝방법.
  14. 조형재료를 공급받아 조형레이어를 형성하고 적층하여 입체조형물을 조형하는 입체조형장치에 있어서,
    조형광선의 조형평면에의 조사는, 청구항 1 내지 청구항 6 중 선택되는 어느 하나의 항의 헤드장치를 이용하여 이루어지는 것을 특징으로 하는 입체조형장치.
PCT/KR2016/000224 2015-01-12 2016-01-11 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법 WO2016114531A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16737495.8A EP3246150B1 (en) 2015-01-12 2016-01-11 Head device of three-dimensional modelling equipment having modeling light source array and polygon mirror, and modelling plane scanning method using same
US15/543,052 US10962769B2 (en) 2015-01-12 2016-01-11 Head device of three-dimensional modelling equipment having modelling light source array and polygonal mirror, and modelling plane scanning method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0004141 2015-01-12
KR1020150004141A KR101704553B1 (ko) 2015-01-12 2015-01-12 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법

Publications (1)

Publication Number Publication Date
WO2016114531A1 true WO2016114531A1 (ko) 2016-07-21

Family

ID=56406034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000224 WO2016114531A1 (ko) 2015-01-12 2016-01-11 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법

Country Status (4)

Country Link
US (1) US10962769B2 (ko)
EP (1) EP3246150B1 (ko)
KR (1) KR101704553B1 (ko)
WO (1) WO2016114531A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541137A (zh) * 2016-12-27 2017-03-29 南京理工大学 一种减弱电子束选区烧结翘曲变形的工艺方法
CN110678310A (zh) * 2017-05-26 2020-01-10 应用材料公司 用于积层制造的以旋转多边形及多光束在相同路径上进行的能量传递
EP3554795A4 (en) * 2016-12-15 2020-07-29 General Electric Company 3D PRINTING SYSTEMS AND PROCESSES
US11518100B2 (en) 2018-05-09 2022-12-06 Applied Materials, Inc. Additive manufacturing with a polygon scanner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518051B1 (de) * 2016-04-19 2017-07-15 Klaus Stadlmann Dr Vorrichtung und Verfahren zur Steigerung der Anhaftung einer Bauteilschicht an einem Trägerobjekt
US10918235B2 (en) 2016-07-11 2021-02-16 Samsung Electronics Co., Ltd. Cooking system
US20180369914A1 (en) * 2017-06-23 2018-12-27 Applied Materials, Inc. Additive manufacturing with multiple polygon mirror scanners
CN108705774A (zh) * 2018-08-03 2018-10-26 上海梓域材料科技有限公司 一种3d打印用准直均匀的光源系统及打印系统
CN109465539B (zh) * 2018-12-29 2024-02-13 广州新可激光设备有限公司 一种具有3d自建模的自动对焦激光打标机
CN114911052B (zh) * 2022-06-07 2024-03-26 西安应用光学研究所 一种光学扫描装置及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626919A (en) * 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
US5780070A (en) * 1996-02-14 1998-07-14 Institute Of Physical And Chemical Research (Riken) Apparatus for solidifying and shaping optically cured fluid by carrying out scanning simultaneously with recoating
JP2000015705A (ja) * 1998-07-03 2000-01-18 Hitachi Koki Co Ltd 光造形装置
KR20140047103A (ko) * 2011-06-28 2014-04-21 글로벌 필트레이션 시스템즈, 에이 디비에이 오브 걸프 필트레이션 시스템즈 인코포레이티드 선형 응고를 이용하여 3차원 물체를 형성하는 장치 및 방법
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596917A (en) * 1979-01-17 1980-07-23 Canon Inc Two-dimensional scanner
KR970005556B1 (ko) 1994-12-31 1997-04-17 엘지전자 주식회사 광조형장치를 이용한 입체형상 형성장치
US20130201634A1 (en) * 2010-06-03 2013-08-08 Columbia University Single-scan line-scan crystallization using superimposed scanning elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626919A (en) * 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
US5780070A (en) * 1996-02-14 1998-07-14 Institute Of Physical And Chemical Research (Riken) Apparatus for solidifying and shaping optically cured fluid by carrying out scanning simultaneously with recoating
JP2000015705A (ja) * 1998-07-03 2000-01-18 Hitachi Koki Co Ltd 光造形装置
KR20140047103A (ko) * 2011-06-28 2014-04-21 글로벌 필트레이션 시스템즈, 에이 디비에이 오브 걸프 필트레이션 시스템즈 인코포레이티드 선형 응고를 이용하여 3차원 물체를 형성하는 장치 및 방법
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3246150A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3554795A4 (en) * 2016-12-15 2020-07-29 General Electric Company 3D PRINTING SYSTEMS AND PROCESSES
CN106541137A (zh) * 2016-12-27 2017-03-29 南京理工大学 一种减弱电子束选区烧结翘曲变形的工艺方法
CN110678310A (zh) * 2017-05-26 2020-01-10 应用材料公司 用于积层制造的以旋转多边形及多光束在相同路径上进行的能量传递
CN110678310B (zh) * 2017-05-26 2022-01-11 应用材料公司 用于积层制造的以旋转多边形及多光束在相同路径上进行的能量传递
US11518100B2 (en) 2018-05-09 2022-12-06 Applied Materials, Inc. Additive manufacturing with a polygon scanner

Also Published As

Publication number Publication date
EP3246150A1 (en) 2017-11-22
US10962769B2 (en) 2021-03-30
KR20160087023A (ko) 2016-07-21
US20180003956A1 (en) 2018-01-04
EP3246150A4 (en) 2018-08-29
KR101704553B1 (ko) 2017-02-23
EP3246150B1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
WO2016114531A1 (ko) 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법
KR101590774B1 (ko) 단방향으로 회전하는 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.
CN101209583B (zh) 光制模设备
EP3213905B1 (en) Multichannel head assembly for three-dimensional modeling apparatus, having polygon mirror rotating in single direction, and three-dimensional modeling apparatus using same
KR0140699B1 (ko) 입체형상형성방법 및 장치
US6215095B1 (en) Apparatus and method for controlling exposure of a solidifiable medium using a pulsed radiation source in building a three-dimensional object using stereolithography
KR101697530B1 (ko) 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 에너지밀도 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.
US20170225393A1 (en) Apparatus and method for forming three-dimensional objects using two-photon absorption linear solidification
RU2671740C1 (ru) Стереолитографическое устройство с улучшенным оптическим блоком
US11225017B2 (en) Three-dimensional object shaping apparatus and method
CN102405122A (zh) 用于镭射加工的改良方法和设备
JP4582894B2 (ja) 光学的立体造形装置及び造形方法
KR101849999B1 (ko) 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 멀티헤드장치 및 이를 이용하는 멀티 조형평면 스캐닝 방법
JPS61116322A (ja) 立体形状形成装置
JP3948835B2 (ja) 光造形方法及びその装置
EP3487704B1 (en) Layer orientation control for pixel-based additive manufacturing
CN112373016B (zh) 三维层叠造型方法、装置、电子装置和存储介质
KR101704547B1 (ko) 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.
CN112192034A (zh) 镭射加工系统及其镭射加工方法
JP7183763B2 (ja) 三次元物体の造形装置および造形方法
CN114228153B (zh) 双激光头标定方法
RU2791739C1 (ru) Многолучевой растровый станок селективного лазерного плавления
KR101819470B1 (ko) 입체조형장비를 위한 광원조사위치 센싱장치 및 이를 이용한 제어방법
JP2022531768A (ja) 物体を層ごとに付加製造するための付加製造機械
JP3207484B2 (ja) 光造形装置および光造形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15543052

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016737495

Country of ref document: EP