WO2016114400A1 - Laminated wiring structure, and methdod for forming laminated wiring structure - Google Patents

Laminated wiring structure, and methdod for forming laminated wiring structure Download PDF

Info

Publication number
WO2016114400A1
WO2016114400A1 PCT/JP2016/051185 JP2016051185W WO2016114400A1 WO 2016114400 A1 WO2016114400 A1 WO 2016114400A1 JP 2016051185 W JP2016051185 W JP 2016051185W WO 2016114400 A1 WO2016114400 A1 WO 2016114400A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
forming
conductive ink
insulating layer
laminated structure
Prior art date
Application number
PCT/JP2016/051185
Other languages
French (fr)
Japanese (ja)
Inventor
仲島 厚志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016569531A priority Critical patent/JPWO2016114400A1/en
Publication of WO2016114400A1 publication Critical patent/WO2016114400A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a wiring laminated structure and a method for forming a wiring laminated structure, and more specifically, a wiring laminated structure and a wiring laminated structure in which upper and lower electrodes laminated with an insulating layer interposed therebetween are electrically connected by a post electrode. About the body.
  • a contact hole is formed in the insulating layer, and a via electrode is formed in the contact hole to electrically connect the upper and lower electrodes. A connection is made.
  • interlayer connection is achieved by forming a via hole and an upper electrode by a method such as plating after forming a through hole in an insulating layer provided on the lower electrode.
  • the present inventor is examining a method for producing an electronic device directly by printing or coating (also referred to as printed electronics).
  • Patent Document 1 proposes forming a photo-curing ceramic layer as an insulating layer after forming a conductor pattern layer to be a via electrode.
  • an object of the present invention is to provide an electrical interlayer connection between upper and lower electrodes laminated with an insulating layer interposed therebetween, and to provide a reliable electrical connection and a method for forming a wiring multilayer structure Is to provide.
  • 2. The wiring laminated structure according to 1 above, wherein the conductive layer and the upper electrode are fired simultaneously.
  • the wiring laminated structure according to 1 or 2 wherein the lower electrode is supported by a base material. 4). 4. The wiring laminate structure according to 3 above, wherein the substrate is a film. 5.
  • a method for forming a wiring laminated structure having: 6).
  • Forming a post electrode on the lower electrode Applying a conductive ink for forming a conductive layer so as to be in contact with the post electrode; Forming an insulating layer on the lower electrode so as to expose at least part of the conductive ink; Forming an upper electrode on the insulating layer in contact with the conductive ink; A method for forming a wiring laminated structure having: 7).
  • a wiring laminated structure and a method for forming the wiring laminated structure that can ensure reliable electrical connection between upper and lower electrodes laminated with an insulating layer interposed therebetween, and provide reliable conduction. Can be provided.
  • Sectional drawing which explains notionally an example of wiring lamination structure Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in FIG. Sectional drawing explaining notionally other examples of wiring lamination structure Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in FIG. Sectional drawing which illustrates further another example of wiring lamination structure Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in which the post electrode is formed in a part in the contact hole of an insulating layer Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in FIG. Sectional drawing which conceptually demonstrates the other aspect of the formation method of a wiring laminated structure Sectional drawing explaining notionally an example of the thin-film transistor provided with the wiring laminated structure
  • FIG. 1 is a cross-sectional view conceptually illustrating an example of a wiring laminated structure.
  • reference numeral 1 denotes a wiring laminated structure, which includes a base material 2, a lower electrode 3 provided on the base material 2, an insulating layer 4 provided on the lower electrode 3, and the insulating layer 4. And an upper electrode 5 provided on the top. That is, the lower electrode 3 and the upper electrode 5 are stacked with the insulating layer 4 interposed therebetween.
  • the insulating layer 4 is provided with a contact hole 41 that penetrates the insulating layer 4.
  • a post electrode 6 for obtaining electrical connection between the lower electrode 3 and the upper electrode 5 is provided in the contact hole 41.
  • the contact hole 41 may be blocked by the post electrode 6 as in the illustrated example.
  • a conductive layer 7 made of conductive ink is interposed between the post electrode 6 and the upper electrode 5.
  • FIG. 2 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
  • the lower electrode 3 is formed on the substrate 2.
  • the lower electrode 3 can be formed, for example, by applying or printing ink containing a conductive material.
  • the conductive material examples include metals such as Ag, Au, Pt, Pd, Cr, Se, and Ni, oxide conductive materials such as ITO and ZnO, and conductive polymers.
  • the ink can contain such a conductive material dissolved or dispersed in an organic solvent and / or water.
  • preferred inks include inks containing PEDOT-PSS in water or isopropyl alcohol (abbreviated as IPA), water-based Ag nanoinks containing Ag particles in polar solvents such as ethanol and IPA in addition to water, and Ag particles.
  • examples thereof include solvent-based Ag nanoinks in which is added in a hydrocarbon-based solvent such as tetradecane.
  • a known coating method such as dipping, spin coating, knife coating, bar coating, blade coating, squeeze coating, reverse roll coating, gravure roll coating, curtain coating, spray coating, die coating or the like is used. be able to.
  • a printing method known per se such as screen printing, offset printing, flexographic printing, gravure printing, ink jet printing and the like can be used.
  • the offset printing method is preferable.
  • the offset printing method is not particularly limited, but the microcontact printing method, the reverse printing method, etc. are suitable as a printing method for the lower electrode 3 in the electronic device because the flatness of the coating film is good and high-resolution printing can be handled. It is.
  • the lower electrode 3 can also be formed by photolithography or the like.
  • a post electrode 6 is formed on the lower electrode 3.
  • the post electrode 6 can be formed using, for example, the method described for the lower electrode 3.
  • printing methods such as screen printing, gravure printing, flexographic printing, and inkjet printing, and photolithography can be preferably exemplified.
  • inkjet printing, gravure printing, photolithography, and the like are preferable from the viewpoint of suitably responding to a request for reducing the diameter of the post electrode 6.
  • Gravure offset printing is a method in which ink supplied to a gravure plate (intaglio) is transferred to a rotating rubber roll and then adhered to an object (work) from the rubber roll.
  • the post electrode 6 can be formed by forming a metal layer (for example, a copper layer) on the workpiece and patterning the metal layer.
  • a metal layer for example, a copper layer
  • an insulating layer 4 is formed on the lower electrode 3.
  • the insulating layer 4 is formed so as not to completely cover the post electrode 6. That is, the insulating layer 4 is formed so that at least a part of the post electrode 6 is exposed. As shown in the figure, it is particularly preferable to form the insulating layer 4 so that the upper portion of the post electrode 6 is exposed.
  • the insulating layer 4 can be formed, for example, by applying or printing ink containing an insulating material. As a specific method of application or printing, for example, the method described for the lower electrode 3 can be used.
  • an ink is applied to a roll to form an application surface, and then the relief plate is pressed against the application surface of the roll to transfer the ink to the convex portion of the relief plate.
  • examples thereof include a method in which ink is partially removed from the application surface, and then the ink remaining on the application surface is transferred to a workpiece.
  • an inorganic material such as SiO 2 or SiN, or an organic material such as polyvinyl phenol resin, polyvinyl alcohol resin, polyimide resin, or novolac resin
  • the ink can contain such an insulating material dissolved or dispersed in an organic solvent and / or water. Further, the ink can further contain a curing agent, a crosslinking aid and the like as appropriate.
  • an ink containing a polyvinyl phenol resin, an epoxy resin, and a crosslinking aid in an organic solvent capable of dissolving the polyvinyl phenol resin can be given.
  • the insulating layer 4 can be formed by, for example, sputtering, vapor deposition, CVD, or the like.
  • the insulating layer 4 may have a laminated structure formed by using a plurality of insulating materials.
  • a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6.
  • the conductive ink layer 8 is a layer that forms the conductive layer 7 by drying or by drying and baking.
  • an ink containing a conductive material described for the method of forming the lower electrode 3 can be used.
  • the conductive ink used for forming the conductive ink layer 8 can be in good contact with the surface of the post electrode 6 due to the fluidity because it is an ink. Therefore, the conductive layer 7 formed from the conductive ink layer 8 has good contact with the post electrode 6 and can improve the stability of electrical connection.
  • the viscosity of the conductive ink is preferably in the range of 0.5 mPa ⁇ s to 1000 mPa ⁇ s.
  • the viscosity here is a value measured at 25 ° C.
  • the method described for the lower electrode 3 can be used, but it is particularly preferable to use a printing method, and among these, ink jet printing is preferable.
  • the viscosity of the ink is preferably in the range of 1 mPa ⁇ s to 20 mPa ⁇ s. The viscosity here is measured at the temperature at which the ink is ejected.
  • the upper electrode 5 is formed on the insulating layer 4.
  • the upper electrode 5 is formed so as to be in contact with the conductive ink layer 8.
  • the upper electrode 5 can be formed using, for example, the method described for the lower electrode 3, but is particularly preferably formed by transfer printing.
  • Transfer printing is a method in which an electrode film formed in advance is transferred to a workpiece and printed, and examples thereof include offset printing, flexographic printing, and gravure printing.
  • an electrode film that has been dried in advance is preferably used as the electrode film transferred to the workpiece. This is because the flowability can be reduced and the printing accuracy can be improved by proceeding with drying. Specifically, when the drying proceeds, for example, semi-drying or full drying can be performed.
  • the electrode film with reduced fluidity has a point contact with the post electrode 6 and lacks reliability of conduction, but according to the present invention, such an electrode film is not suitable. However, the reliability of conduction can be ensured. Therefore, by forming the upper electrode by transfer printing, it is possible to achieve both improvement in printing accuracy and reliability of conduction.
  • Baking is preferably performed after the upper electrode 5 is formed, whereby the conductive ink layer 8 made of conductive ink becomes a conductive layer 7 as shown in FIG.
  • the electrical connection between the fired conductive layer 7 and the upper electrode 5 can be further stabilized. Since the conductive layer 7 and the upper electrode 5 are fired at the same time, a conductive material constituting the conductive layer 7 and a conductive material constituting the upper electrode 5 are formed at the joint between the conductive layer 7 and the upper electrode 5. A region in which is mixed is formed. Thereby, as described above, the electrical connection between the conductive layer 7 and the upper electrode 5 can be further stabilized.
  • the wiring laminated structure 1 shown in FIG. 1 can be formed.
  • the present invention it is possible to prevent an increase in the resistance value between the electrodes due to the residue derived from the ink component. That is, in the ink, various additives such as a fluorosurfactant can be blended in order to adjust the ink physical properties such as viscosity and surface tension to obtain printability. In particular, in an ink containing a conductive material, an organic substance such as a dispersant can be blended in order to maintain the dispersibility of the metal particles. In the conventional method, these compounding components can become a residue after firing and cause the resistance value between the electrodes to increase, but in the present invention, the electrical connection can be stabilized by the interposition of the conductive layer 7. Thus, it is possible to sufficiently reduce the influence of the residue and prevent an increase in the resistance value between the electrodes.
  • various additives such as a fluorosurfactant can be blended in order to adjust the ink physical properties such as viscosity and surface tension to obtain printability.
  • an organic substance such as a dispersant can be blended in order to
  • the present invention it is possible to prevent an increase in the interelectrode resistance value derived from the insulating layer 4. That is, it is preferable to form the insulating layer 4 after the post electrode 6 is formed.
  • the post-patterning accuracy of the insulating layer 4 and the residue generated during the formation of the insulating layer 4 may cause the post.
  • the area of the conductive portion on the surface of the electrode 6 becomes small, or the resistance value on the surface of the post electrode 6 becomes high, which easily leads to poor connection.
  • the present invention since the electrical connection is stabilized by the interposition of the conductive layer 7, the influence derived from the insulating layer 4 can be sufficiently reduced to prevent an increase in the resistance value between the electrodes. it can.
  • the surface of the post electrode after firing is porous and has many irregularities, so that the contact with the upper electrode becomes a point contact, which may easily cause a connection failure. According to the invention, even in such a case, the electrical connection can be secured stably.
  • conductive ink for forming a conductive layer after forming the upper electrode.
  • the conductive ink can be applied through the opening by providing an opening for exposing the post electrode in the upper electrode in advance.
  • FIG. 3 is a cross-sectional view conceptually illustrating another example of a wiring laminated structure.
  • an opening 51 is provided in the upper electrode 5 of the wiring laminated structure 1.
  • the wiring laminated structure 1 includes a conductive layer 7 formed of a conductive ink applied through the opening 51 of the upper electrode 5.
  • FIG. 4 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
  • the lower electrode 3 is formed on the substrate 2.
  • a post electrode 6 is formed on the lower electrode 3.
  • an insulating layer 4 is formed on the lower electrode 3.
  • the insulating layer 4 is formed so as not to completely cover the post electrode 6. That is, the insulating layer 4 is formed so that at least a part of the post electrode 6 is exposed.
  • an upper electrode 5 is formed on the insulating layer 4 as shown in FIG.
  • the upper electrode 5 is provided with an opening 51 for exposing the post electrode 6.
  • the method of forming the upper electrode 5 having such an opening 51 is not particularly limited, but a method of transferring an electrode film that has been previously patterned into a shape having the opening 51 is particularly suitable.
  • the upper electrode 5 can be fired, but preferably, the following conductive ink layer 8 is formed without firing. It is particularly preferable to fire the conductive ink layer 8 and the upper electrode 5 at the same time.
  • a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6.
  • the conductive ink can be applied through the opening 51 of the upper electrode 5.
  • the conductive ink layer 8 is formed in contact with the upper electrode 5.
  • the conductive ink layer 8 After the conductive ink layer 8 is formed, firing is performed, so that the conductive ink layer 8 made of the conductive ink becomes the conductive layer 7 as shown in FIG.
  • the wiring laminated structure 1 shown in FIG. 3 can be formed.
  • FIG. 5 is a cross-sectional view conceptually illustrating still another example of the wiring laminated structure.
  • an opening 51 is provided in the upper electrode 5 of the wiring laminated structure 1 as in the example of FIG.
  • the opening 51 in the example of FIG. 5 is formed larger than the opening 51 in the example of FIG.
  • the opening 51 in the example of FIG. 3 has an opening area approximately equal to the diameter of the post electrode 6, whereas the opening 51 in the example of FIG. Has a wide opening area.
  • the wiring laminated structure 1 includes a conductive layer 7 formed of a conductive ink applied through the opening 51 of the upper electrode 5.
  • the conductive layer 7 is formed of an aggregate of conductive ink droplets that have landed at different landing positions using the inkjet head method.
  • FIG. 6 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
  • the lower electrode 3 is formed on the substrate 2.
  • a post electrode 6 is formed on the lower electrode 3.
  • an insulating layer 4 is formed on the lower electrode 3.
  • the insulating layer 4 is formed so as not to completely cover the post electrode 6. That is, the insulating layer 4 is formed so that at least a part of the post electrode 6 is exposed.
  • the upper electrode 5 is formed on the insulating layer 4.
  • the upper electrode 5 is provided with an opening 51 for exposing the post electrode 6.
  • the opening 51 has an opening area wider than the diameter of the post electrode 6. Since the opening 51 has a wide opening area, the post electrode 6 can be more reliably exposed from the opening 51. For example, the post electrode 6 can be exposed from the opening 51 even if a slight shift occurs between the position of the opening 51 of the upper electrode 5 and the post electrode 6 when the upper electrode 5 is formed.
  • the upper electrode 5 can be fired, but preferably, the following conductive ink layer 8 is formed without firing. It is particularly preferable to fire the conductive ink layer 8 and the upper electrode 5 at the same time.
  • a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6.
  • the conductive ink can be applied through the opening 51 of the upper electrode 5.
  • the conductive ink layer 8 is formed of an aggregate of conductive ink droplets that have landed at different landing positions using the inkjet head method.
  • the conductive ink layer 8 is formed in contact with the upper electrode 5.
  • the wiring laminated structure 1 shown in FIG. 5 can be formed.
  • the post electrode 6 is formed in a part of the contact hole 41 of the insulating layer 4.
  • the conductive layer 7 enters a region other than the region where the post electrode 6 is formed in the contact hole 41 of the insulating layer 4.
  • FIG. 8 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
  • the lower electrode 3 is formed on the substrate 2.
  • a post electrode 6 is formed on the lower electrode 3.
  • an insulating layer 4 is formed on the lower electrode 3.
  • the insulating layer 4 has a contact hole 41 having a diameter larger than that of the post electrode 6 so that the post electrode 6 is formed in a part of the contact hole 41 of the insulating layer 4.
  • the upper electrode 5 is formed on the insulating layer 4.
  • the upper electrode 5 is provided with an opening 51 for exposing the post electrode 6.
  • the upper electrode 5 can be fired, but preferably, the following conductive ink layer 8 is formed without firing. It is particularly preferable to fire the conductive ink layer 8 and the upper electrode 5 at the same time.
  • a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6.
  • the conductive ink can be applied through the opening 51 of the upper electrode 5.
  • the conductive ink enters the region other than the region where the post electrode 6 is formed in the contact hole 41 of the insulating layer 4 to form the conductive ink layer 8.
  • the conductive ink layer 8 is formed so as to be in contact with the upper electrode 5.
  • the wiring laminated structure 1 shown in FIG. 7 can be formed.
  • the step of applying the conductive ink so as to come into contact with the post electrode is mainly provided after the step of forming the insulating layer, but the present invention is not limited to this.
  • a step of forming an insulating layer may be provided after the step of applying the conductive ink so as to be in contact with the post electrode.
  • FIG. 9 is a cross-sectional view conceptually illustrating another aspect of the method for forming the wiring laminated structure.
  • the lower electrode 3 is formed on the substrate 2 as shown in FIG. *
  • a post electrode 6 is formed on the lower electrode 3. It is also preferable to perform baking after forming the post electrode 6.
  • a conductive ink layer 8 made of conductive ink is applied so as to come into contact with the post electrode 6.
  • the conductive ink layer 8 is a layer that forms the conductive layer 7 by drying or by drying and baking.
  • the conductive ink since the conductive ink is applied before the formation of the insulating layer 4, the conductive ink can be more reliably applied to the post electrode 6 in a suitably exposed state. Further, it is easy to form the conductive ink layer 8 so as to be in contact with a wide range of the surface of the post electrode 6, and an effect of further stabilizing the electrical connection can be obtained.
  • an insulating layer 4 is formed on the lower electrode 3.
  • the insulating layer 4 is formed so as not to completely cover the conductive ink layer 8 made of conductive ink. That is, the insulating layer 4 is formed so that at least a part of the conductive ink constituting the conductive ink layer 8 is exposed. As shown in the drawing, it is particularly preferable to form the insulating layer 4 so that the conductive ink layer 8 covering the upper portion of the post electrode 6 is exposed.
  • the upper electrode 5 is formed on the insulating layer 4.
  • the upper electrode 5 is formed so as to be in contact with the conductive ink layer 8.
  • Baking is preferably performed after the upper electrode 5 is formed, whereby the conductive ink layer 8 made of conductive ink becomes the conductive layer 7 as shown in FIG.
  • the electrical connection between the fired conductive layer 7 and the upper electrode 5 can be further stabilized.
  • the wiring laminated structure 1 can be formed.
  • a liquid that does not contain a conductive material may be applied in contact with the post electrode 6 instead of the conductive ink.
  • the liquid not containing the conductive material include water and organic solvents.
  • the conductive material which comprises at least a part of the surface of the post electrode 6 is eluted or dispersed by the liquid not containing the conductive material, and the conductive ink composed of the liquid and the conductive material is used as the post electrode 6.
  • the conductive ink layer 8 similar to that shown in FIG. 9C can be formed. That is, the conductive ink layer 8 can be formed by wetting at least part of the surface of the post electrode 6.
  • the liquid not containing the conductive material may be applied by a printing method or the like, but may be applied by exposing the post electrode 6 under the vapor of the liquid.
  • the post electrode precursor can be obtained without completely baking the post electrode by adjusting the conditions for drying and baking the conductive ink applied to form the post electrode. It is also preferable to form By using such a post electrode precursor, the surface layer of the post electrode precursor can function as the conductive ink layer described above.
  • a conductive ink for forming a post electrode is applied on the lower electrode.
  • a method for applying the conductive ink per se known printing methods such as the above-described screen printing, offset printing, flexographic printing, gravure printing, and ink jet printing can be used, and ink jet printing is particularly preferable.
  • a part of the conductive ink is dried to form a post electrode precursor in which the conductive ink remains on at least a part of the surface.
  • drying a part of the conductive ink means that the ink solvent derived from the conductive ink is not completely dried, and as described above, when the conductive ink is dried and baked. This can be achieved by adjusting the conditions.
  • the conductive ink remains on at least part of the surface means that the ink solvent derived from the conductive ink remains on at least part of the surface.
  • a conductive ink layer is formed by the portion where the ink solvent remains.
  • an insulating layer is formed on the lower electrode so as to expose at least a part of the conductive ink (conductive ink layer) on the surface of the post electrode precursor.
  • an upper electrode is formed on the insulating layer so as to come into contact with the conductive ink (conductive ink layer) on the surface of the post electrode precursor.
  • the post electrode precursor can be made into a post electrode by firing the conductive ink after forming the upper electrode.
  • the upper electrode is also baked simultaneously with the conductive ink remaining on the surface of the post electrode precursor, whereby the electrical connection between the baked post electrode and the upper electrode can be further stabilized.
  • the process for manufacturing the wiring laminated structure can be shortened. Furthermore, since an interface is unlikely to be generated between the post electrode and the conductive ink layer, an effect of further stabilizing the electrical connection can be obtained.
  • the substrate 2 is not particularly limited, and an insulating material can be preferably applied, and a known material can be appropriately used depending on the purpose.
  • a known material can be appropriately used depending on the purpose.
  • substrates such as glass substrates, ceramic substrates, metal substrates (eg metal thin film substrates), paper phenol substrates, paper epoxy substrates, nanocellulose fiber paper
  • It may be a substrate made of a mixture of two kinds such as a glass composite substrate and a glass epoxy substrate, or may be a resin substrate.
  • the resin of the resin base material include polyimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, and polyethersulfone.
  • the substrate 2 may have a single layer structure or a multilayer structure, and an insulating coated conductive material or the like can also be used.
  • the substrate 2 is preferably a flexible substrate (also referred to as a flexible substrate) such as a film or the like from the viewpoint of remarkably exhibiting the effects of the present invention.
  • a flexible substrate also referred to as a flexible substrate
  • the resistance value is likely to increase when deformation based on the flexibility of the base material occurs.
  • reliable conduction can be maintained even in such a case.
  • the use of the base material may be omitted as appropriate.
  • the use of the wiring laminated structure according to the present invention is not particularly limited, and is suitably used when a lower electrode and an upper electrode laminated via an insulating layer are connected via a contact hole provided in the insulating layer. be able to.
  • Particularly preferred applications include flexible printed circuit boards, printed circuit boards (also simply referred to as printed circuit boards), thin film transistors, integrated circuits, and the like.
  • FIG. 10 is a cross-sectional view conceptually illustrating an example of a thin film transistor provided with a wiring laminated structure.
  • the thin film transistor shown in FIG. 10 includes a gate electrode 9 on a base material 2, an insulating layer 10 on the gate electrode 9, and a source electrode 11 and a lower electrode 3 that is a drain electrode on the insulating layer 10. . That is, here, the drain electrode corresponds to the lower electrode 3.
  • Reference numeral 12 denotes a semiconductor layer formed between the source electrode 11 and the drain electrode (lower electrode 3).
  • the insulating layer 4 is provided on the drain electrode (lower electrode 3), and the upper electrode 5 is provided on the insulating layer 4.
  • a post electrode 6 for obtaining conduction between the drain electrode (lower electrode 3) and the upper electrode 5 is provided in the contact hole 41 of the insulating layer 4.
  • a conductive layer 7 made of conductive ink is interposed between the post electrode 6 and the upper electrode 5.
  • Wiring laminated structure 2 Base material 3: Lower electrode 4: Insulating layer 41: Contact hole 5: Upper electrode 51: Opening 6: Post electrode 7: Conductive layer 8: Conductive ink layer

Abstract

In order to provide a laminated wiring structure and a method for forming the laminated wiring structure that ensure the electrical interlayer connection between upper and lower electrodes, which are laminated with an insulating layer therebetween, and that provide reliable conductivity, the present invention is equipped with a lower electrode 3, an insulating layer 4 provided above the lower electrode 3, and an upper electrode 5 provided above the insulating layer 4. A contact hole 41 is provided in the insulating layer 4. A post electrode 6 for achieving conductivity between the lower electrode 3 and the upper electrode 5 is provided in the contact hole 41. A conductive layer 7 is formed between the post electrode 6 and the upper electrode 5 by using a conductive ink.

Description

配線積層構造体及び配線積層構造体の形成方法Wiring multilayer structure and method for forming wiring multilayer structure
 本発明は、配線積層構造体及び配線積層構造体の形成方法に関し、より詳しくは、絶縁層を挟んで積層された上下電極間をポスト電極により電気的に接続する配線積層構造体及び配線積層構造体に関する。 The present invention relates to a wiring laminated structure and a method for forming a wiring laminated structure, and more specifically, a wiring laminated structure and a wiring laminated structure in which upper and lower electrodes laminated with an insulating layer interposed therebetween are electrically connected by a post electrode. About the body.
 電極が絶縁層を挟んで積層される構造において、上下電極の接続を必要とされる場合、絶縁層にコンタクトホールを形成し、該コンタクトホールにビア電極を形成することで上下電極の電気的な接続がなされる。 In a structure in which electrodes are stacked with an insulating layer sandwiched between them, when it is necessary to connect the upper and lower electrodes, a contact hole is formed in the insulating layer, and a via electrode is formed in the contact hole to electrically connect the upper and lower electrodes. A connection is made.
 一般的なフォトリソプロセスにおいては、下部電極上に設けられた絶縁層にスルーホールを形成した後に、めっき等の手法によりビア電極及び上部電極を形成することで層間接続が達成される。 In a typical photolithography process, interlayer connection is achieved by forming a via hole and an upper electrode by a method such as plating after forming a through hole in an insulating layer provided on the lower electrode.
特開2004-179181号公報JP 2004-179181 A
 本発明者は、エレクトロニクスデバイスを作製する手法として、印刷又は塗布により直接的に作製する方法(プリンテッドエレクトロニクスともいう)を検討している。 The present inventor is examining a method for producing an electronic device directly by printing or coating (also referred to as printed electronics).
 エレクトロニクスデバイスとして薄膜トランジスタを例に挙げれば、電極材料、絶縁材料、半導体材料などを、それぞれ印刷又は塗布による工程(以下、ウェット工程という場合がある)で形成することが試みられている。 Taking a thin film transistor as an example of an electronic device, it has been attempted to form an electrode material, an insulating material, a semiconductor material, and the like in a process by printing or coating (hereinafter sometimes referred to as a wet process).
 しかし、エレクトロニクスデバイスを作製する手法として、上記のようなウェット工程を含む場合、特に全層をウェット工程にて形成する場合などにおいて、上述した層間接続を高い信頼性で達成する技術が十分に確立されているとは言い難い。 However, as a method for manufacturing an electronic device, a technique for achieving the above-described interlayer connection with high reliability is sufficiently established when the above-described wet process is included, particularly when all layers are formed by a wet process. It is hard to say that it is.
 特許文献1には、ビア電極となる導体パターン層を形成した後に、絶縁層である光硬化セラミック層を形成することが提案されている。 Patent Document 1 proposes forming a photo-curing ceramic layer as an insulating layer after forming a conductor pattern layer to be a via electrode.
 しかるに、特許文献1の技術では、ビア電極上に上部電極を積層する場合に、これらビア電極と上部電極との間の電気的な接続が不安定になりやすいため、信頼性のある導通を得る観点で更なる改善の余地が見出される。 However, in the technique of Patent Document 1, when the upper electrode is stacked on the via electrode, the electrical connection between the via electrode and the upper electrode is likely to be unstable, so that reliable conduction is obtained. There is room for further improvement from the viewpoint.
 そこで本発明の課題は、絶縁層を挟んで積層された上下電極間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる配線積層構造体及び配線積層構造体の形成方法を提供することにある。 Accordingly, an object of the present invention is to provide an electrical interlayer connection between upper and lower electrodes laminated with an insulating layer interposed therebetween, and to provide a reliable electrical connection and a method for forming a wiring multilayer structure Is to provide.
 また本発明の他の課題は、以下の記載によって明らかとなる。 Further, other problems of the present invention will become apparent from the following description.
 上記課題は、以下の各発明によって解決される。 The above problems are solved by the following inventions.
1.
 下部電極と、該下部電極上に設けられた絶縁層と、該絶縁層上に設けられた上部電極とを備え、
 前記絶縁層にコンタクトホールが設けられると共に、該コンタクトホール内に前記下部電極と前記上部電極との導通を得るためのポスト電極が設けられ、
 前記ポスト電極と前記上部電極との間に、導電性インクによって形成された導電層を介在させた配線積層構造体。
2.
 前記導電層と前記上部電極が同時に焼成されたものである前記1記載の配線積層構造体。
3.
 前記下部電極は、基材に支持されている前記1又は2記載の配線積層構造体。
4.
 前記基材は、フィルムである前記3記載の配線積層構造体。
5.
 下部電極上にポスト電極を形成する工程と、
 前記下部電極上に、前記ポスト電極の少なくとも一部を露出させるように絶縁層を形成する工程と、
 前記ポスト電極と接触するように、導電層を形成するための導電性インクを付与する工程と、
 前記導電性インクと接触するように前記絶縁層上に上部電極を形成する工程と、
 を有する配線積層構造体の形成方法。
6.
 下部電極上にポスト電極を形成する工程と、
 前記ポスト電極と接触するように、導電層を形成するための導電性インクを付与する工程と、
 前記下部電極上に、前記導電性インクの少なくとも一部を露出させるように絶縁層を形成する工程と、
 前記導電性インクと接触するように前記絶縁層上に上部電極を形成する工程と、
 を有する配線積層構造体の形成方法。
7.
 下部電極上にポスト電極を形成する工程と、
 前記下部電極上に、前記ポスト電極の少なくとも一部を露出させるように絶縁層を形成する工程と、
 前記絶縁層上に、前記ポスト電極を露出させる開口を有する上部電極を形成する工程と、
 前記上部電極の前記開口を介して、該上部電極と前記ポスト電極とに接触するように、導電層を形成するための導電性インクを付与する工程と、
 を有する配線積層構造体の形成方法。
8.
 前記上部電極は、あらかじめ開口を有する形状にパターニングされた電極膜を転写することにより形成される前記7記載の配線積層構造体の形成方法。
9.
 前記ポスト電極は、スクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷の何れかにより形成される前記5~8の何れかに記載の配線積層構造体の形成方法。
10.
 前記導電性インクは、インクジェット印刷により付与される前記5~9の何れかに記載の配線積層構造体の形成方法。
11.
 前記上部電極は、転写印刷により形成される前記5~10の何れかに記載の配線積層構造体の形成方法。
12.
 前記導電性インクは、前記上部電極を形成した後に焼成される前記5~11の何れかに記載の配線積層構造体の形成方法。
13.
 前記下部電極は、基材に支持されている前記5~12の何れかに記載の配線積層構造体の形成方法。
14.
 前記基材は、フィルムである前記13記載の配線積層構造体の形成方法。
15.
 下部電極上に、ポスト電極を形成するための導電性インクを付与する工程と、
 前記導電性インクの一部を乾燥させることにより、少なくとも表面の一部に前記導電性インクが残留するポスト電極前駆体を形成する工程と、
 前記下部電極上に、前記導電性インクの少なくとも一部を露出させるように絶縁層を形成する工程と、
 前記導電性インクと接触するように前記絶縁層上に上部電極を形成する工程と、
 前記上部電極を形成した後に前記導電性インクを焼成することにより、前記ポスト電極前駆体をポスト電極にする工程と、
 を有する配線積層構造体の形成方法。
16.
 前記ポスト電極を形成するための導電性インクは、インクジェット印刷により付与されることを特徴とする前記15記載の配線積層構造体の形成方法。
1.
A lower electrode, an insulating layer provided on the lower electrode, and an upper electrode provided on the insulating layer,
A contact hole is provided in the insulating layer, and a post electrode for obtaining conduction between the lower electrode and the upper electrode is provided in the contact hole,
A wiring laminated structure in which a conductive layer formed of conductive ink is interposed between the post electrode and the upper electrode.
2.
2. The wiring laminated structure according to 1 above, wherein the conductive layer and the upper electrode are fired simultaneously.
3.
The wiring laminated structure according to 1 or 2, wherein the lower electrode is supported by a base material.
4).
4. The wiring laminate structure according to 3 above, wherein the substrate is a film.
5.
Forming a post electrode on the lower electrode;
Forming an insulating layer on the lower electrode so as to expose at least part of the post electrode;
Applying a conductive ink for forming a conductive layer so as to be in contact with the post electrode;
Forming an upper electrode on the insulating layer in contact with the conductive ink;
A method for forming a wiring laminated structure having:
6).
Forming a post electrode on the lower electrode;
Applying a conductive ink for forming a conductive layer so as to be in contact with the post electrode;
Forming an insulating layer on the lower electrode so as to expose at least part of the conductive ink;
Forming an upper electrode on the insulating layer in contact with the conductive ink;
A method for forming a wiring laminated structure having:
7).
Forming a post electrode on the lower electrode;
Forming an insulating layer on the lower electrode so as to expose at least part of the post electrode;
Forming an upper electrode having an opening exposing the post electrode on the insulating layer;
Applying a conductive ink for forming a conductive layer so as to be in contact with the upper electrode and the post electrode through the opening of the upper electrode;
A method for forming a wiring laminated structure having:
8).
8. The method for forming a wiring laminated structure according to 7, wherein the upper electrode is formed by transferring an electrode film that has been previously patterned into a shape having an opening.
9.
9. The method for forming a wiring laminated structure according to any one of 5 to 8, wherein the post electrode is formed by any one of screen printing, gravure printing, flexographic printing, and inkjet printing.
10.
10. The method for forming a wiring laminated structure according to any one of 5 to 9, wherein the conductive ink is applied by ink jet printing.
11.
11. The method for forming a wiring laminated structure according to any one of 5 to 10, wherein the upper electrode is formed by transfer printing.
12
12. The method for forming a wiring laminated structure according to any one of 5 to 11, wherein the conductive ink is baked after forming the upper electrode.
13
13. The method for forming a wiring laminated structure according to any one of 5 to 12, wherein the lower electrode is supported on a base material.
14
14. The method for forming a wiring laminated structure according to 13, wherein the substrate is a film.
15.
Applying a conductive ink to form a post electrode on the lower electrode;
Forming a post electrode precursor in which the conductive ink remains on at least a part of the surface by drying a part of the conductive ink; and
Forming an insulating layer on the lower electrode so as to expose at least part of the conductive ink;
Forming an upper electrode on the insulating layer in contact with the conductive ink;
Baking the conductive ink after forming the upper electrode to form the post electrode precursor as a post electrode;
A method for forming a wiring laminated structure having:
16.
16. The method for forming a wiring laminated structure according to 15, wherein the conductive ink for forming the post electrode is applied by ink jet printing.
 本発明によれば、絶縁層を挟んで積層された上下電極間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる配線積層構造体及び配線積層構造体の形成方法を提供することができる。 According to the present invention, there is provided a wiring laminated structure and a method for forming the wiring laminated structure that can ensure reliable electrical connection between upper and lower electrodes laminated with an insulating layer interposed therebetween, and provide reliable conduction. Can be provided.
配線積層構造体の一例を概念的に説明する断面図Sectional drawing which explains notionally an example of wiring lamination structure 図1に示した配線積層構造体の形成方法の一例を概念的に説明する断面図Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in FIG. 配線積層構造体の他の例を概念的に説明する断面図Sectional drawing explaining notionally other examples of wiring lamination structure 図3に示した配線積層構造体の形成方法の一例を概念的に説明する断面図Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in FIG. 配線積層構造体の更なる他の例を概念的に説明する断面図Sectional drawing which illustrates further another example of wiring lamination structure 図5に示した配線積層構造体の形成方法の一例を概念的に説明する断面図Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in FIG. 絶縁層のコンタクトホール内の一部にポスト電極が形成されている配線積層構造体の一例を概念的に説明する断面図Sectional drawing explaining notionally an example of the wiring laminated structure in which the post electrode is formed in a part in the contact hole of an insulating layer 図7に示した配線積層構造体の形成方法の一例を概念的に説明する断面図Sectional drawing which illustrates notionally an example of the formation method of the wiring laminated structure shown in FIG. 配線積層構造体の形成方法の他の態様を概念的に説明する断面図Sectional drawing which conceptually demonstrates the other aspect of the formation method of a wiring laminated structure 配線積層構造体を備えた薄膜トランジスタの一例を概念的に説明する断面図Sectional drawing explaining notionally an example of the thin-film transistor provided with the wiring laminated structure
 以下に、図面を参照して本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は、配線積層構造体の一例を概念的に説明する断面図である。 FIG. 1 is a cross-sectional view conceptually illustrating an example of a wiring laminated structure.
 図1において、1は配線積層構造体であり、基材2と、該基材2上に設けられた下部電極3と、該下部電極3上に設けられた絶縁層4と、該絶縁層4上に設けられた上部電極5とを備えている。即ち、下部電極3と上部電極5とが、絶縁層4を介して積層された構造である。 In FIG. 1, reference numeral 1 denotes a wiring laminated structure, which includes a base material 2, a lower electrode 3 provided on the base material 2, an insulating layer 4 provided on the lower electrode 3, and the insulating layer 4. And an upper electrode 5 provided on the top. That is, the lower electrode 3 and the upper electrode 5 are stacked with the insulating layer 4 interposed therebetween.
 絶縁層4には、該絶縁層4を貫通するコンタクトホール41が設けられている。コンタクトホール41内には、下部電極3と上部電極5との導通を得るためのポスト電極6が設けられている。なお、コンタクトホール41内は、図示の例のように、ポスト電極6により塞がれていてもよい。 The insulating layer 4 is provided with a contact hole 41 that penetrates the insulating layer 4. In the contact hole 41, a post electrode 6 for obtaining electrical connection between the lower electrode 3 and the upper electrode 5 is provided. The contact hole 41 may be blocked by the post electrode 6 as in the illustrated example.
 そして、ポスト電極6と上部電極5との間には、導電性インクによって形成された導電層7を介在させている。 Further, a conductive layer 7 made of conductive ink is interposed between the post electrode 6 and the upper electrode 5.
 これにより、下部電極3と上部電極5との間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる効果が奏される。 Thereby, an electrical interlayer connection between the lower electrode 3 and the upper electrode 5 is ensured, and an effect of obtaining reliable conduction is obtained.
 図2は、図1に示した配線積層構造体の形成方法の一例を概念的に説明する断面図である。 FIG. 2 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
 図2(a)に示すように、基材2上に下部電極3を形成する。 As shown in FIG. 2A, the lower electrode 3 is formed on the substrate 2.
 下部電極3は、例えば、導電材料を含有するインクを塗布又は印刷することにより形成することができる。 The lower electrode 3 can be formed, for example, by applying or printing ink containing a conductive material.
 導電材料としては、例えば、Ag、Au、Pt、Pd、Cr、Se、Ni等の金属、ITO、ZnO等の酸化物導電材料、導電性高分子等が挙げられる。インクは、かかる導電材料を、有機溶媒及び又は水に溶解あるいは分散した状態で含有することができる。好ましいインクの例としては、PEDOT-PSSを水やイソプロピルアルコール(略称IPA)に含有させたインク、Ag粒子を水のほかに、エタノール、IPAなどの極性溶媒に含有させた水系Agナノインク、Ag粒子をテトラデカンなどの炭化水素系溶剤に含有させた溶剤系Agナノインクなどを挙げることができる。 Examples of the conductive material include metals such as Ag, Au, Pt, Pd, Cr, Se, and Ni, oxide conductive materials such as ITO and ZnO, and conductive polymers. The ink can contain such a conductive material dissolved or dispersed in an organic solvent and / or water. Examples of preferred inks include inks containing PEDOT-PSS in water or isopropyl alcohol (abbreviated as IPA), water-based Ag nanoinks containing Ag particles in polar solvents such as ethanol and IPA in addition to water, and Ag particles. Examples thereof include solvent-based Ag nanoinks in which is added in a hydrocarbon-based solvent such as tetradecane.
 塗布形成する方法としては、例えば、ディッピング、スピンコート、ナイフコート、バーコート、ブレードコート、スクイズコート、リバースロールコート、グラビアロールコート、カーテンコート、スプレーコート、ダイコート等の自体公知の塗布方法を用いることができる。 As a method for forming the coating, a known coating method such as dipping, spin coating, knife coating, bar coating, blade coating, squeeze coating, reverse roll coating, gravure roll coating, curtain coating, spray coating, die coating or the like is used. be able to.
 また、印刷形成する方法としては、例えば、スクリーン印刷、オフセット印刷、フレキソ印刷、グラビア印刷、インクジェット印刷等の自体公知の印刷方法を用いることができる。中でも、オフセット印刷方法が好ましい。オフセット印刷方法としては、格別限定されないが、マイクロコンタクト印刷法、反転印刷法などは塗膜の平坦性が良好で高解像度の印刷にも対応できることから、エレクトロニクスデバイスにおける下部電極3の印刷方法として好適である。 Also, as a method for forming a print, for example, a printing method known per se such as screen printing, offset printing, flexographic printing, gravure printing, ink jet printing and the like can be used. Among these, the offset printing method is preferable. The offset printing method is not particularly limited, but the microcontact printing method, the reverse printing method, etc. are suitable as a printing method for the lower electrode 3 in the electronic device because the flatness of the coating film is good and high-resolution printing can be handled. It is.
 また、下部電極3は、フォトリソ等によっても形成することができる。 The lower electrode 3 can also be formed by photolithography or the like.
 下部電極3を形成した後、焼成を行うことも好ましいことである。 It is also preferable to perform firing after forming the lower electrode 3.
 次いで、図2(b)に示すように、下部電極3上にポスト電極6を形成する。 Next, as shown in FIG. 2B, a post electrode 6 is formed on the lower electrode 3.
 ポスト電極6は、例えば、下部電極3について説明した方法を用いて形成することができる。 The post electrode 6 can be formed using, for example, the method described for the lower electrode 3.
 ポスト電極6に所望の形成高さを付与しやすい等の観点では、スクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷などの印刷法や、フォトリソ等を好ましく挙げることができる。 From the viewpoint of easily imparting a desired formation height to the post electrode 6, printing methods such as screen printing, gravure printing, flexographic printing, and inkjet printing, and photolithography can be preferably exemplified.
 また、ポスト電極6の径を小さくする要求にも好適に対応する等の観点では、特にインクジェット印刷、グラビア印刷、フォトリソ等が好適である。 In addition, in particular, inkjet printing, gravure printing, photolithography, and the like are preferable from the viewpoint of suitably responding to a request for reducing the diameter of the post electrode 6.
 グラビア印刷を用いる場合には、特にグラビアオフセット印刷が好適である。グラビアオフセット印刷とは、グラビア版(凹版)に供給されたインクを、回転しているゴムロールに転移させた後に、該ゴムロールから対象物(ワーク)に付着させる方法のことである。 In the case of using gravure printing, gravure offset printing is particularly suitable. Gravure offset printing is a method in which ink supplied to a gravure plate (intaglio) is transferred to a rotating rubber roll and then adhered to an object (work) from the rubber roll.
 また、フォトリソを用いる場合には、例えば、ワーク上に金属層(例えば銅層)を形成し、これをパターニングすることでポスト電極6を形成することができる。 In the case of using photolithography, for example, the post electrode 6 can be formed by forming a metal layer (for example, a copper layer) on the workpiece and patterning the metal layer.
 ポスト電極6を形成した後、焼成を行うことも好ましいことである。 It is also preferable to perform baking after forming the post electrode 6.
 次いで、図2(c)に示すように、下部電極3上に絶縁層4を形成する。絶縁層4は、ポスト電極6を完全に被覆しないように形成される。即ち、絶縁層4は、ポスト電極6の少なくとも一部が露出するように形成される。図示のように、絶縁層4を、ポスト電極6の上部が露出するように形成することは特に好ましいことである。 Next, as shown in FIG. 2C, an insulating layer 4 is formed on the lower electrode 3. The insulating layer 4 is formed so as not to completely cover the post electrode 6. That is, the insulating layer 4 is formed so that at least a part of the post electrode 6 is exposed. As shown in the figure, it is particularly preferable to form the insulating layer 4 so that the upper portion of the post electrode 6 is exposed.
 絶縁層4は、例えば、絶縁材料を含有するインクを塗布又は印刷することにより形成することができる。塗布又は印刷の具体的な方法としては、例えば、下部電極3について説明した方法を用いることができる。 The insulating layer 4 can be formed, for example, by applying or printing ink containing an insulating material. As a specific method of application or printing, for example, the method described for the lower electrode 3 can be used.
 また、特に好ましい絶縁層の形成方法として、ロールにインクを塗布して塗布面を形成した後、該ロールの該塗布面に対して凸版を押圧して該凸版の凸部分にインクを転写して該塗布面から部分的にインクを除去し、次いで、該塗布面に残ったインクをワークに転写する方法などを挙げることができる。 Further, as a particularly preferable method for forming an insulating layer, an ink is applied to a roll to form an application surface, and then the relief plate is pressed against the application surface of the roll to transfer the ink to the convex portion of the relief plate. Examples thereof include a method in which ink is partially removed from the application surface, and then the ink remaining on the application surface is transferred to a workpiece.
 絶縁材料としては、例えば、SiO、SiN等の無機材料、ポリビニルフェノール樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ノボラック樹脂等の有機材料を用いることができる。インクは、かかる絶縁材料を、有機溶媒及び又は水に溶解あるいは分散した状態で含有することができる。また、インクには、更に硬化剤や架橋助剤などを適宜含有させることができる。好ましいインクの例としては、ポリビニルフェノール樹脂、エポキシ樹脂及び架橋助剤を、該ポリビニルフェノール樹脂を溶解可能な有機溶剤に含有させたインクなどを挙げることができる。 As the insulating material, for example, an inorganic material such as SiO 2 or SiN, or an organic material such as polyvinyl phenol resin, polyvinyl alcohol resin, polyimide resin, or novolac resin can be used. The ink can contain such an insulating material dissolved or dispersed in an organic solvent and / or water. Further, the ink can further contain a curing agent, a crosslinking aid and the like as appropriate. As an example of a preferable ink, an ink containing a polyvinyl phenol resin, an epoxy resin, and a crosslinking aid in an organic solvent capable of dissolving the polyvinyl phenol resin can be given.
 また、絶縁層4は、例えば、スパッタ法、蒸着、CVD法等によっても形成することができる。 Also, the insulating layer 4 can be formed by, for example, sputtering, vapor deposition, CVD, or the like.
 更に、絶縁層4は、絶縁材料を複数用いて形成された積層構造を有してもよい。 Furthermore, the insulating layer 4 may have a laminated structure formed by using a plurality of insulating materials.
 絶縁層4を形成した後、焼成を行うことも好ましいことである。 It is also preferable to perform baking after forming the insulating layer 4.
 次いで、図2(d)に示すように、ポスト電極6と接触するように、導電性インクからなる導電性インク層8を付与する。導電性インク層8は、乾燥により、あるいは乾燥と焼成により、導電層7を形成する層である。 Next, as shown in FIG. 2D, a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6. The conductive ink layer 8 is a layer that forms the conductive layer 7 by drying or by drying and baking.
 導電性インクとしては、下部電極3の形成方法について説明した導電材料を含有するインクを用いることができる。 As the conductive ink, an ink containing a conductive material described for the method of forming the lower electrode 3 can be used.
 導電性インク層8の形成に用いられる導電性インクは、インクであるが故の流動性により、ポスト電極6の表面に良好に接触することができる。そのため、導電性インク層8から形成される導電層7は、ポスト電極6との接触が良好であり、電気接続の安定性を向上することができる。 The conductive ink used for forming the conductive ink layer 8 can be in good contact with the surface of the post electrode 6 due to the fluidity because it is an ink. Therefore, the conductive layer 7 formed from the conductive ink layer 8 has good contact with the post electrode 6 and can improve the stability of electrical connection.
 導電性インクに好適な流動性を付与する観点で、該導電性インクの粘度は、0.5mPa・s~1000mPa・sの範囲であることが好ましい。ここでいう粘度は、25℃において測定される値である。 From the viewpoint of imparting suitable fluidity to the conductive ink, the viscosity of the conductive ink is preferably in the range of 0.5 mPa · s to 1000 mPa · s. The viscosity here is a value measured at 25 ° C.
 導電性インクの付与による導電性インク層8の形成方法としては、例えば、下部電極3について説明した方法を用いることができるが、特に印刷法を用いるのが好ましく、中でもインクジェット印刷が好適である。インクジェット印刷を用いる場合、インクの粘度は、1mPa・s~20mPa・sの範囲であることが好ましい。ここでいう粘度は、当該インクを吐出する時の温度で測定されたものである。 As a method for forming the conductive ink layer 8 by applying conductive ink, for example, the method described for the lower electrode 3 can be used, but it is particularly preferable to use a printing method, and among these, ink jet printing is preferable. When ink jet printing is used, the viscosity of the ink is preferably in the range of 1 mPa · s to 20 mPa · s. The viscosity here is measured at the temperature at which the ink is ejected.
 導電性インク層8を形成した後、焼成を行うことも可能であるが、好ましくは、未だ焼成を行わずに、下記の上部電極5を形成することである。即ち、導電性インク層8と上部電極5を同時に焼成することは特に好ましいことである。 It is possible to carry out baking after forming the conductive ink layer 8, but preferably the following upper electrode 5 is formed without baking. That is, it is particularly preferable to fire the conductive ink layer 8 and the upper electrode 5 at the same time.
 次いで、図2(e)に示すように、絶縁層4上に上部電極5を形成する。上部電極5は、導電性インク層8と接触するように形成される。 Next, as shown in FIG. 2E, the upper electrode 5 is formed on the insulating layer 4. The upper electrode 5 is formed so as to be in contact with the conductive ink layer 8.
 上部電極5は、例えば、下部電極3について説明した方法を用いて形成することができるが、特に好ましいのは、転写印刷により形成されることである。 The upper electrode 5 can be formed using, for example, the method described for the lower electrode 3, but is particularly preferably formed by transfer printing.
 転写印刷とは、あらかじめ形成された電極膜をワークに転写して印刷する方法であり、例えば、オフセット印刷、フレキソ印刷、グラビア印刷などが挙げられる。転写印刷では、ワークに転写される電極膜として、あらかじめ乾燥を進行させた電極膜が好適に用いられる。乾燥を進行させることにより流動性を小さくし、印刷精度を向上できるからである。乾燥を進行させる場合、具体的には、例えば半乾燥もしくは全乾燥させることができる。従来の方法では、流動性を小さくした電極膜は、ポスト電極6との接触が点接触となり、導通の信頼性を欠く場合があったが、本発明によれば、このような電極膜であっても、導通の信頼性を確保できる。従って、転写印刷によって上部電極を形成することにより、印刷精度の向上と、導通の信頼性を両立できるようになる。 Transfer printing is a method in which an electrode film formed in advance is transferred to a workpiece and printed, and examples thereof include offset printing, flexographic printing, and gravure printing. In transfer printing, an electrode film that has been dried in advance is preferably used as the electrode film transferred to the workpiece. This is because the flowability can be reduced and the printing accuracy can be improved by proceeding with drying. Specifically, when the drying proceeds, for example, semi-drying or full drying can be performed. In the conventional method, the electrode film with reduced fluidity has a point contact with the post electrode 6 and lacks reliability of conduction, but according to the present invention, such an electrode film is not suitable. However, the reliability of conduction can be ensured. Therefore, by forming the upper electrode by transfer printing, it is possible to achieve both improvement in printing accuracy and reliability of conduction.
 上部電極5を形成した後に、焼成を行うことが好ましく、これにより、図2(f)に示すように、導電性インクからなる導電性インク層8は、導電層7になる。導電性インク層8と共に上部電極5も同時に焼成されることにより、焼成後の導電層7と上部電極5との電気的接続を更に安定化できる。導電層7と上部電極5が同時に焼成されたものであることによって、導電層7と上部電極5との接合部に、導電層7を構成する導電材料と、上部電極5を構成する導電材料とが混ざり合った領域が形成される。これにより、上述したように、導電層7と上部電極5との電気的接続を更に安定化できる。 Baking is preferably performed after the upper electrode 5 is formed, whereby the conductive ink layer 8 made of conductive ink becomes a conductive layer 7 as shown in FIG. By firing the upper electrode 5 together with the conductive ink layer 8, the electrical connection between the fired conductive layer 7 and the upper electrode 5 can be further stabilized. Since the conductive layer 7 and the upper electrode 5 are fired at the same time, a conductive material constituting the conductive layer 7 and a conductive material constituting the upper electrode 5 are formed at the joint between the conductive layer 7 and the upper electrode 5. A region in which is mixed is formed. Thereby, as described above, the electrical connection between the conductive layer 7 and the upper electrode 5 can be further stabilized.
 このようにして、図1に示した配線積層構造体1を形成することができる。 In this way, the wiring laminated structure 1 shown in FIG. 1 can be formed.
 本発明によれば、インク成分由来の残渣による電極間抵抗値の上昇を防止することができる。即ち、インクには、粘度や表面張力などのインク物性を調整して印刷適性を得るために、フッ素系などの界面活性剤など種々の添加剤を配合することができる。また、特に導電材料を含有するインクでは、金属粒子の分散性を維持するために、分散剤などの有機物を配合することができる。従来の方法では、これらの配合成分は、焼成後に残渣となって電極間の抵抗値を上昇させる原因になり得るが、本発明では、導電層7の介在による電気接続の安定化が図られるため、残渣による影響を十分に低減して、電極間抵抗値の上昇を防止することができる。 According to the present invention, it is possible to prevent an increase in the resistance value between the electrodes due to the residue derived from the ink component. That is, in the ink, various additives such as a fluorosurfactant can be blended in order to adjust the ink physical properties such as viscosity and surface tension to obtain printability. In particular, in an ink containing a conductive material, an organic substance such as a dispersant can be blended in order to maintain the dispersibility of the metal particles. In the conventional method, these compounding components can become a residue after firing and cause the resistance value between the electrodes to increase, but in the present invention, the electrical connection can be stabilized by the interposition of the conductive layer 7. Thus, it is possible to sufficiently reduce the influence of the residue and prevent an increase in the resistance value between the electrodes.
 また、本発明によれば、絶縁層4に由来する電極間抵抗値の上昇を防止することができる。即ち、ポスト電極6を形成した後に、絶縁層4を形成することは好ましいことであるが、従来の方法では、絶縁層4のパターニング精度不良や、絶縁層4の形成時に生じる残渣などによって、ポスト電極6表面の導通部分の面積が小さくなる、あるいはポスト電極6表面の抵抗値が高くなるなどして、接続不良に繋がりやすい。これに対して、本発明では、導電層7の介在による電気接続の安定化が図られるため、絶縁層4に由来する影響を十分に低減して、電極間抵抗値の上昇も防止することができる。 Moreover, according to the present invention, it is possible to prevent an increase in the interelectrode resistance value derived from the insulating layer 4. That is, it is preferable to form the insulating layer 4 after the post electrode 6 is formed. However, in the conventional method, the post-patterning accuracy of the insulating layer 4 and the residue generated during the formation of the insulating layer 4 may cause the post. The area of the conductive portion on the surface of the electrode 6 becomes small, or the resistance value on the surface of the post electrode 6 becomes high, which easily leads to poor connection. On the other hand, in the present invention, since the electrical connection is stabilized by the interposition of the conductive layer 7, the influence derived from the insulating layer 4 can be sufficiently reduced to prevent an increase in the resistance value between the electrodes. it can.
 更に、従来の技術では、焼成後のポスト電極の表面が多孔状であり凹凸が多いことに起因して、上部電極との接触が点接触となり、接続不良を起こしやすい場合があったが、本発明によれば、このような場合においても、電気的な接続を安定に確保することができる。 Furthermore, in the conventional technique, the surface of the post electrode after firing is porous and has many irregularities, so that the contact with the upper electrode becomes a point contact, which may easily cause a connection failure. According to the invention, even in such a case, the electrical connection can be secured stably.
 また、従来の技術では、上下電極間に電圧を印加した際に、微弱な電圧領域では電流が流れ難い現象が観察される場合があるが、本発明によれば、微弱な電圧領域であっても電圧に比例した電流値が観察されるため、このような観点でも電気接続の信頼性を高めることができる。 Further, in the conventional technique, when a voltage is applied between the upper and lower electrodes, a phenomenon in which a current hardly flows in a weak voltage region may be observed, but according to the present invention, the voltage region is weak. However, since a current value proportional to the voltage is observed, the reliability of the electrical connection can be improved from this viewpoint.
 以上の説明では、上部電極を形成する前に、導電層を形成するための導電性インクを付与する場合について示したが、これに限定されるものではない。 In the above description, the case where the conductive ink for forming the conductive layer is applied before the upper electrode is formed is shown, but the present invention is not limited to this.
 例えば、上部電極を形成した後に、導電層を形成するための導電性インクを付与することも好ましいことである。この場合、例えば、該導電性インクを付与する際に、あらかじめ上部電極にポスト電極を露出させる開口を設けておくことにより、該開口を介して導電性インクを付与することができる。 For example, it is also preferable to apply conductive ink for forming a conductive layer after forming the upper electrode. In this case, for example, when the conductive ink is applied, the conductive ink can be applied through the opening by providing an opening for exposing the post electrode in the upper electrode in advance.
 図3は、配線積層構造体の他の例を概念的に説明する断面図である。 FIG. 3 is a cross-sectional view conceptually illustrating another example of a wiring laminated structure.
 図示の例では、配線積層構造体1の上部電極5に、開口51が設けられている。 In the illustrated example, an opening 51 is provided in the upper electrode 5 of the wiring laminated structure 1.
 配線積層構造体1は、上部電極5の開口51を介して付与された導電性インクにより形成された導電層7を備えている。 The wiring laminated structure 1 includes a conductive layer 7 formed of a conductive ink applied through the opening 51 of the upper electrode 5.
 これにより、下部電極3と上部電極5との間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる効果が奏される。 Thereby, an electrical interlayer connection between the lower electrode 3 and the upper electrode 5 is ensured, and an effect of obtaining reliable conduction is obtained.
 図4は、図3に示した配線積層構造体の形成方法の一例を概念的に説明する断面図である。 FIG. 4 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
 図4(a)に示すように、基材2上に下部電極3を形成する。 As shown in FIG. 4A, the lower electrode 3 is formed on the substrate 2.
 次いで、図4(b)に示すように、下部電極3上にポスト電極6を形成する。 Next, as shown in FIG. 4B, a post electrode 6 is formed on the lower electrode 3.
 次いで、図4(c)に示すように、下部電極3上に絶縁層4を形成する。絶縁層4は、ポスト電極6を完全に被覆しないように形成される。即ち、絶縁層4は、ポスト電極6の少なくとも一部が露出するように形成される。 Next, as shown in FIG. 4C, an insulating layer 4 is formed on the lower electrode 3. The insulating layer 4 is formed so as not to completely cover the post electrode 6. That is, the insulating layer 4 is formed so that at least a part of the post electrode 6 is exposed.
 次いで、図4(d)に示すように、絶縁層4上に上部電極5を形成する。上部電極5には、ポスト電極6を露出させる開口51が設けられている。 Next, an upper electrode 5 is formed on the insulating layer 4 as shown in FIG. The upper electrode 5 is provided with an opening 51 for exposing the post electrode 6.
 このような開口51を有する上部電極5を形成する方法は、格別限定されないが、あらかじめ開口51を有する形状にパターニングされた電極膜を転写する方法が特に好適である。 The method of forming the upper electrode 5 having such an opening 51 is not particularly limited, but a method of transferring an electrode film that has been previously patterned into a shape having the opening 51 is particularly suitable.
 この段階で、上部電極5を焼成することも可能であるが、好ましくは、未だ焼成を行わず、下記の導電性インク層8を形成することである。導電性インク層8と上部電極5を同時に焼成することは特に好ましいことである。 At this stage, the upper electrode 5 can be fired, but preferably, the following conductive ink layer 8 is formed without firing. It is particularly preferable to fire the conductive ink layer 8 and the upper electrode 5 at the same time.
 次いで、図4(e)に示すように、ポスト電極6と接触するように、導電性インクからなる導電性インク層8を付与する。導電性インクは、上部電極5の開口51を介して付与することができる。導電性インク層8は、上部電極5と接触するように形成される。 Next, as shown in FIG. 4E, a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6. The conductive ink can be applied through the opening 51 of the upper electrode 5. The conductive ink layer 8 is formed in contact with the upper electrode 5.
 導電性インク層8を形成した後、焼成を行うことにより、図4(f)に示すように、導電性インクからなる導電性インク層8は、導電層7になる。 After the conductive ink layer 8 is formed, firing is performed, so that the conductive ink layer 8 made of the conductive ink becomes the conductive layer 7 as shown in FIG.
 このようにして、図3に示した配線積層構造体1を形成することができる。 In this way, the wiring laminated structure 1 shown in FIG. 3 can be formed.
 次に、導電層を形成するための導電性インクの付与に際してインクジェット法を用いる場合について、更に詳しく説明する。 Next, the case where the ink jet method is used for applying the conductive ink for forming the conductive layer will be described in more detail.
 図5は、配線積層構造体の更なる他の例を概念的に説明する断面図である。 FIG. 5 is a cross-sectional view conceptually illustrating still another example of the wiring laminated structure.
 図示の例では、図3の例と同様に、配線積層構造体1の上部電極5に、開口51が設けられている。図5の例における開口51は、図3の例における開口51よりも大きく形成されている。具体的には、図3の例における開口51が、ポスト電極6の径と同程度の開口面積を有しているのに対して、図5の例における開口51は、ポスト電極6の径よりも広い開口面積を有している。 In the illustrated example, an opening 51 is provided in the upper electrode 5 of the wiring laminated structure 1 as in the example of FIG. The opening 51 in the example of FIG. 5 is formed larger than the opening 51 in the example of FIG. Specifically, the opening 51 in the example of FIG. 3 has an opening area approximately equal to the diameter of the post electrode 6, whereas the opening 51 in the example of FIG. Has a wide opening area.
 配線積層構造体1は、上部電極5の開口51を介して付与された導電性インクにより形成された導電層7を備えている。この導電層7は、インクジェットヘッド法を用いて互いに異なる着弾位置に着弾された導電性インク滴の集合体により形成されている。 The wiring laminated structure 1 includes a conductive layer 7 formed of a conductive ink applied through the opening 51 of the upper electrode 5. The conductive layer 7 is formed of an aggregate of conductive ink droplets that have landed at different landing positions using the inkjet head method.
 これにより、下部電極3と上部電極5との間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる効果が奏される。 Thereby, an electrical interlayer connection between the lower electrode 3 and the upper electrode 5 is ensured, and an effect of obtaining reliable conduction is obtained.
 図6は、図5に示した配線積層構造体の形成方法の一例を概念的に説明する断面図である。 FIG. 6 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
 図6(a)に示すように、基材2上に下部電極3を形成する。 As shown in FIG. 6A, the lower electrode 3 is formed on the substrate 2.
 次いで、図6(b)に示すように、下部電極3上にポスト電極6を形成する。 Next, as shown in FIG. 6B, a post electrode 6 is formed on the lower electrode 3.
 次いで、図6(c)に示すように、下部電極3上に絶縁層4を形成する。絶縁層4は、ポスト電極6を完全に被覆しないように形成される。即ち、絶縁層4は、ポスト電極6の少なくとも一部が露出するように形成される。 Next, as shown in FIG. 6C, an insulating layer 4 is formed on the lower electrode 3. The insulating layer 4 is formed so as not to completely cover the post electrode 6. That is, the insulating layer 4 is formed so that at least a part of the post electrode 6 is exposed.
 次いで、図6(d)に示すように、絶縁層4上に上部電極5を形成する。上部電極5には、ポスト電極6を露出させる開口51が設けられている。開口51は、ポスト電極6の径よりも広い開口面積を有している。開口51が広い開口面積を有していることにより、ポスト電極6を該開口51からより確実に露出させることができる。例えば、上部電極5の形成時に、上部電極5の開口51とポスト電極6との位置に多少のずれが生じたとしても、ポスト電極6を該開口51から露出させることができる。 Next, as shown in FIG. 6D, the upper electrode 5 is formed on the insulating layer 4. The upper electrode 5 is provided with an opening 51 for exposing the post electrode 6. The opening 51 has an opening area wider than the diameter of the post electrode 6. Since the opening 51 has a wide opening area, the post electrode 6 can be more reliably exposed from the opening 51. For example, the post electrode 6 can be exposed from the opening 51 even if a slight shift occurs between the position of the opening 51 of the upper electrode 5 and the post electrode 6 when the upper electrode 5 is formed.
 この段階で、上部電極5を焼成することも可能であるが、好ましくは、未だ焼成を行わず、下記の導電性インク層8を形成することである。導電性インク層8と上部電極5を同時に焼成することは特に好ましいことである。 At this stage, the upper electrode 5 can be fired, but preferably, the following conductive ink layer 8 is formed without firing. It is particularly preferable to fire the conductive ink layer 8 and the upper electrode 5 at the same time.
 次いで、図6(e)に示すように、ポスト電極6と接触するように、導電性インクからなる導電性インク層8を付与する。導電性インクは、上部電極5の開口51を介して付与することができる。導電性インク層8は、インクジェットヘッド法を用いて互いに異なる着弾位置に着弾された導電性インク滴の集合体により形成されている。導電性インク層8は、上部電極5と接触するように形成される。 Next, as shown in FIG. 6E, a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6. The conductive ink can be applied through the opening 51 of the upper electrode 5. The conductive ink layer 8 is formed of an aggregate of conductive ink droplets that have landed at different landing positions using the inkjet head method. The conductive ink layer 8 is formed in contact with the upper electrode 5.
 導電性インク層8を形成した後、焼成を行うことにより、図6(f)に示すように、導電性インクからなる導電性インク層8は、導電層7になる。 After the conductive ink layer 8 is formed, baking is performed, so that the conductive ink layer 8 made of the conductive ink becomes the conductive layer 7 as shown in FIG.
 このようにして、図5に示した配線積層構造体1を形成することができる。 In this way, the wiring laminated structure 1 shown in FIG. 5 can be formed.
 以上の説明では、絶縁層4のコンタクトホール41が、ポスト電極6により塞がれている場合、即ち、絶縁層4のコンタクトホール41内の全体にポスト電極6が形成されている場合について示したが、これに限定されるものではない。 In the above description, the case where the contact hole 41 of the insulating layer 4 is blocked by the post electrode 6, that is, the case where the post electrode 6 is formed in the entire contact hole 41 of the insulating layer 4 is shown. However, the present invention is not limited to this.
 例えば、図7に示すように、絶縁層4のコンタクトホール41内の一部にポスト電極6が形成されていることも好ましいことである。この場合、図7に示すように、絶縁層4のコンタクトホール41内のうち、ポスト電極6が形成されている領域以外の領域に、導電層7が入り込んでいることも好ましいことである。 For example, as shown in FIG. 7, it is also preferable that the post electrode 6 is formed in a part of the contact hole 41 of the insulating layer 4. In this case, as shown in FIG. 7, it is also preferable that the conductive layer 7 enters a region other than the region where the post electrode 6 is formed in the contact hole 41 of the insulating layer 4.
 これにより、下部電極3と上部電極5との間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる効果が奏される。 Thereby, an electrical interlayer connection between the lower electrode 3 and the upper electrode 5 is ensured, and an effect of obtaining reliable conduction is obtained.
 図8は、図7に示した配線積層構造体の形成方法の一例を概念的に説明する断面図である。 FIG. 8 is a cross-sectional view conceptually illustrating an example of a method for forming the wiring laminated structure shown in FIG.
 図8(a)に示すように、基材2上に下部電極3を形成する。 As shown in FIG. 8A, the lower electrode 3 is formed on the substrate 2.
 次いで、図8(b)に示すように、下部電極3上にポスト電極6を形成する。 Next, as shown in FIG. 8B, a post electrode 6 is formed on the lower electrode 3.
 次いで、図8(c)に示すように、下部電極3上に絶縁層4を形成する。絶縁層4は、該絶縁層4のコンタクトホール41内の一部にポスト電極6が形成されるように、ポスト電極6よりも大径のコンタクトホール41を有している。 Next, as shown in FIG. 8C, an insulating layer 4 is formed on the lower electrode 3. The insulating layer 4 has a contact hole 41 having a diameter larger than that of the post electrode 6 so that the post electrode 6 is formed in a part of the contact hole 41 of the insulating layer 4.
 次いで、図8(d)に示すように、絶縁層4上に上部電極5を形成する。上部電極5には、ポスト電極6を露出させる開口51が設けられている。 Next, as shown in FIG. 8D, the upper electrode 5 is formed on the insulating layer 4. The upper electrode 5 is provided with an opening 51 for exposing the post electrode 6.
 この段階で、上部電極5を焼成することも可能であるが、好ましくは、未だ焼成を行わず、下記の導電性インク層8を形成することである。導電性インク層8と上部電極5を同時に焼成することは特に好ましいことである。 At this stage, the upper electrode 5 can be fired, but preferably, the following conductive ink layer 8 is formed without firing. It is particularly preferable to fire the conductive ink layer 8 and the upper electrode 5 at the same time.
 次いで、図8(e)に示すように、ポスト電極6と接触するように、導電性インクからなる導電性インク層8を付与する。導電性インクは、上部電極5の開口51を介して付与することができる。導電性インクは、絶縁層4のコンタクトホール41内のうち、ポスト電極6が形成されている領域以外の領域に入り込んで、導電性インク層8を形成している。また、導電性インク層8は、上部電極5と接触するように形成されている。 Next, as shown in FIG. 8 (e), a conductive ink layer 8 made of a conductive ink is applied so as to come into contact with the post electrode 6. The conductive ink can be applied through the opening 51 of the upper electrode 5. The conductive ink enters the region other than the region where the post electrode 6 is formed in the contact hole 41 of the insulating layer 4 to form the conductive ink layer 8. The conductive ink layer 8 is formed so as to be in contact with the upper electrode 5.
 導電性インク層8を形成した後、焼成を行うことにより、図8(f)に示すように、導電性インクからなる導電性インク層8は、導電層7になる。 After the conductive ink layer 8 is formed, baking is performed, so that the conductive ink layer 8 made of the conductive ink becomes the conductive layer 7 as shown in FIG.
 このようにして、図7に示した配線積層構造体1を形成することができる。 In this way, the wiring laminated structure 1 shown in FIG. 7 can be formed.
 以上の説明では、絶縁層を形成する工程の後に、ポスト電極と接触するように導電性インクを付与する工程を設ける場合について主に説明したが、これに限定されるものではない。配線積層構造体の形成方法の他の態様として、ポスト電極と接触するように導電性インクを付与する工程の後に、絶縁層を形成する工程を設けてもよい。 In the above description, the case where the step of applying the conductive ink so as to come into contact with the post electrode is mainly provided after the step of forming the insulating layer, but the present invention is not limited to this. As another aspect of the method for forming the wiring laminated structure, a step of forming an insulating layer may be provided after the step of applying the conductive ink so as to be in contact with the post electrode.
 かかる配線積層構造体の形成方法の他の態様について、図9を参照して詳しく説明する。 Another aspect of the method for forming the wiring laminated structure will be described in detail with reference to FIG.
 図9は、配線積層構造体の形成方法の他の態様を概念的に説明する断面図である。 FIG. 9 is a cross-sectional view conceptually illustrating another aspect of the method for forming the wiring laminated structure.
 本態様においても、まず、図9(a)に示すように、基材2上に下部電極3を形成する。  Also in this embodiment, first, the lower electrode 3 is formed on the substrate 2 as shown in FIG. *
 次いで、図9(b)に示すように、下部電極3上にポスト電極6を形成する。ポスト電極6を形成した後、焼成を行うことも好ましいことである。 Next, as shown in FIG. 9B, a post electrode 6 is formed on the lower electrode 3. It is also preferable to perform baking after forming the post electrode 6.
 次いで、図9(c)に示すように、ポスト電極6と接触するように、導電性インクからなる導電性インク層8を付与する。導電性インク層8は、乾燥により、あるいは乾燥と焼成により、導電層7を形成する層である。 Next, as shown in FIG. 9C, a conductive ink layer 8 made of conductive ink is applied so as to come into contact with the post electrode 6. The conductive ink layer 8 is a layer that forms the conductive layer 7 by drying or by drying and baking.
 本態様では、絶縁層4の形成より前に導電性インクを付与するため、好適に露出された状態のポスト電極6に対して、より確実に導電性インクを付与することができる。また、ポスト電極6の表面の広範囲に接触するように導電性インク層8を形成することが容易であり、電気的な接続を更に安定化できる効果が得られる。 In this aspect, since the conductive ink is applied before the formation of the insulating layer 4, the conductive ink can be more reliably applied to the post electrode 6 in a suitably exposed state. Further, it is easy to form the conductive ink layer 8 so as to be in contact with a wide range of the surface of the post electrode 6, and an effect of further stabilizing the electrical connection can be obtained.
 次いで、図9(d)に示すように、下部電極3上に絶縁層4を形成する。絶縁層4は、導電性インクからなる導電性インク層8を完全に被覆しないように形成される。即ち、絶縁層4は、導電性インク層8を構成している導電性インクの少なくとも一部が露出するように形成される。図示のように、絶縁層4を、ポスト電極6の上部を被覆する導電性インク層8が露出するように形成することは特に好ましいことである。 Next, as shown in FIG. 9D, an insulating layer 4 is formed on the lower electrode 3. The insulating layer 4 is formed so as not to completely cover the conductive ink layer 8 made of conductive ink. That is, the insulating layer 4 is formed so that at least a part of the conductive ink constituting the conductive ink layer 8 is exposed. As shown in the drawing, it is particularly preferable to form the insulating layer 4 so that the conductive ink layer 8 covering the upper portion of the post electrode 6 is exposed.
 次いで、図9(e)に示すように、絶縁層4上に上部電極5を形成する。上部電極5は、導電性インク層8と接触するように形成される。 Next, as shown in FIG. 9E, the upper electrode 5 is formed on the insulating layer 4. The upper electrode 5 is formed so as to be in contact with the conductive ink layer 8.
 上部電極5を形成した後に、焼成を行うことが好ましく、これにより、図9(f)に示すように、導電性インクからなる導電性インク層8は、導電層7になる。導電性インク層8と共に上部電極5も同時に焼成されることにより、焼成後の導電層7と上部電極5との電気的接続を更に安定化できる。 Baking is preferably performed after the upper electrode 5 is formed, whereby the conductive ink layer 8 made of conductive ink becomes the conductive layer 7 as shown in FIG. By firing the upper electrode 5 together with the conductive ink layer 8, the electrical connection between the fired conductive layer 7 and the upper electrode 5 can be further stabilized.
 このようにして、配線積層構造体1を形成することができる。 In this way, the wiring laminated structure 1 can be formed.
 以上に説明した態様において、導電性インクの代わりに、導電材料を含有しない液体を、ポスト電極6と接触するように付与してもよい。導電材料を含有しない液体としては、例えば水や有機溶剤等を挙げることができる。この場合、導電材料を含有しない液体によって、ポスト電極6の表面の少なくとも一部を構成する導電材料を溶出又は分散させて、該液体と該導電材料とからなる導電性インクを、ポスト電極6の表面に生成することができる。これにより、図9(c)に示したものと同様の導電性インク層8を形成することができる。即ち、ポスト電極6の表面の少なくとも一部を湿潤させることによって、導電性インク層8を形成することができる。導電材料を含有しない液体は、印刷法等によって付与してもよいが、該液体の蒸気下にポスト電極6を曝すことによって付与してもよい。 In the embodiment described above, a liquid that does not contain a conductive material may be applied in contact with the post electrode 6 instead of the conductive ink. Examples of the liquid not containing the conductive material include water and organic solvents. In this case, the conductive material which comprises at least a part of the surface of the post electrode 6 is eluted or dispersed by the liquid not containing the conductive material, and the conductive ink composed of the liquid and the conductive material is used as the post electrode 6. Can be produced on the surface. Thereby, the conductive ink layer 8 similar to that shown in FIG. 9C can be formed. That is, the conductive ink layer 8 can be formed by wetting at least part of the surface of the post electrode 6. The liquid not containing the conductive material may be applied by a printing method or the like, but may be applied by exposing the post electrode 6 under the vapor of the liquid.
 また、更なる他の態様として、ポスト電極を形成するために付与された導電性インクを乾燥、焼成する際の条件を調整することによって、ポスト電極を完全に焼き固めずに、ポスト電極前駆体を形成することも好ましい。かかるポスト電極前駆体を用いることによって、該ポスト電極前駆体の表層を、上述した導電性インク層として機能させることができる。 Further, as another aspect, the post electrode precursor can be obtained without completely baking the post electrode by adjusting the conditions for drying and baking the conductive ink applied to form the post electrode. It is also preferable to form By using such a post electrode precursor, the surface layer of the post electrode precursor can function as the conductive ink layer described above.
 具体的には、まず、下部電極上に、ポスト電極を形成するための導電性インクを付与する。導電性インクを付与する方法としては、上述したスクリーン印刷、オフセット印刷、フレキソ印刷、グラビア印刷、インクジェット印刷等の自体公知の印刷方法を用いることができるが、特にインクジェット印刷が好適である。 Specifically, first, a conductive ink for forming a post electrode is applied on the lower electrode. As a method for applying the conductive ink, per se known printing methods such as the above-described screen printing, offset printing, flexographic printing, gravure printing, and ink jet printing can be used, and ink jet printing is particularly preferable.
 次いで、前記導電性インクの一部を乾燥させることにより、少なくとも表面の一部に前記導電性インクが残留するポスト電極前駆体を形成する。ここで、「導電性インクの一部を乾燥させる」というのは、導電性インク由来のインク溶媒を完全に乾燥させないことを意味し、上述したように、導電性インクを乾燥、焼成する際の条件を調整することによって達成できる。また、「少なくとも表面の一部に前記導電性インクが残留する」というのは、少なくとも表面の一部に前記導電性インク由来のインク溶媒が残留することを意味する。インク溶媒が残留している部分によって、導電性インク層が形成される。 Next, a part of the conductive ink is dried to form a post electrode precursor in which the conductive ink remains on at least a part of the surface. Here, “drying a part of the conductive ink” means that the ink solvent derived from the conductive ink is not completely dried, and as described above, when the conductive ink is dried and baked. This can be achieved by adjusting the conditions. Further, “the conductive ink remains on at least part of the surface” means that the ink solvent derived from the conductive ink remains on at least part of the surface. A conductive ink layer is formed by the portion where the ink solvent remains.
 次いで、前記下部電極上に、前記ポスト電極前駆体の表面の前記導電性インク(導電性インク層)の少なくとも一部を露出させるように絶縁層を形成する。 Next, an insulating layer is formed on the lower electrode so as to expose at least a part of the conductive ink (conductive ink layer) on the surface of the post electrode precursor.
 次いで、前記ポスト電極前駆体の表面の前記導電性インク(導電性インク層)と接触するように、前記絶縁層上に上部電極を形成する。 Next, an upper electrode is formed on the insulating layer so as to come into contact with the conductive ink (conductive ink layer) on the surface of the post electrode precursor.
 前記上部電極を形成した後に前記導電性インクを焼成することにより、前記ポスト電極前駆体をポスト電極にすることができる。そして、ポスト電極前駆体の表面に残留していた導電性インクと共に上部電極も同時に焼成されることにより、焼成後のポスト電極と上部電極との電気的接続を更に安定化できる。 The post electrode precursor can be made into a post electrode by firing the conductive ink after forming the upper electrode. The upper electrode is also baked simultaneously with the conductive ink remaining on the surface of the post electrode precursor, whereby the electrical connection between the baked post electrode and the upper electrode can be further stabilized.
 上記のようにポスト電極前駆体を用いることによって、配線積層構造体を製造するための工程を短縮できる。更に、ポスト電極と導電性インク層との間に界面が生じ難いため、電気的な接続を更に安定化できる効果が得られる。 By using the post electrode precursor as described above, the process for manufacturing the wiring laminated structure can be shortened. Furthermore, since an interface is unlikely to be generated between the post electrode and the conductive ink layer, an effect of further stabilizing the electrical connection can be obtained.
 基材2は、格別限定されず、絶縁性を有するものを好ましく適用でき、目的に応じて適宜公知の材料を用いることができる。例えば、ガラス基材、セラミックス基材、金属基材(例えば金属薄膜基材)のような比較的硬質、高耐熱な基材の他、紙フェノール基材、紙エポキシ基材、ナノセルロースファイバー紙、ガラスコンポジット基材、ガラスエポキシ基材のような2種の混合物からなる基材でもよく、また、樹脂基材であってもよい。樹脂基材の樹脂としては、ポリイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン等が挙げられる。基材2は単層構成でも多層構成でもよく、絶縁コートされた導電性材料等を用いることもできる。 The substrate 2 is not particularly limited, and an insulating material can be preferably applied, and a known material can be appropriately used depending on the purpose. For example, in addition to relatively hard and high heat resistant substrates such as glass substrates, ceramic substrates, metal substrates (eg metal thin film substrates), paper phenol substrates, paper epoxy substrates, nanocellulose fiber paper, It may be a substrate made of a mixture of two kinds such as a glass composite substrate and a glass epoxy substrate, or may be a resin substrate. Examples of the resin of the resin base material include polyimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, and polyethersulfone. The substrate 2 may have a single layer structure or a multilayer structure, and an insulating coated conductive material or the like can also be used.
 特に本発明の効果を顕著に奏する観点で、基材2はフィルム等のような可撓性を有する基材(フレキシブル基材ともいう)であることが好ましい。基材2の可撓性に基づく変形が生じても、下部電極3と上部電極5との間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる効果が奏されるからである。従来の技術では、ポスト電極や上部電極の表面にインク成分に由来する樹脂被膜が形成されている等の場合は、基材の可撓性に基づく変形が生じたときに抵抗値が上昇しやすいが、本発明では、このような場合においても、信頼性のある導通を保持することができる。 In particular, the substrate 2 is preferably a flexible substrate (also referred to as a flexible substrate) such as a film or the like from the viewpoint of remarkably exhibiting the effects of the present invention. Even if deformation based on the flexibility of the base material 2 occurs, an electrical interlayer connection between the lower electrode 3 and the upper electrode 5 is ensured, and an effect of obtaining reliable conduction is obtained. Because. In the conventional technique, when a resin film derived from an ink component is formed on the surface of the post electrode or the upper electrode, the resistance value is likely to increase when deformation based on the flexibility of the base material occurs. However, in the present invention, reliable conduction can be maintained even in such a case.
 なお、下部電極が十分な強度を有しているような場合などには、基材の使用は適宜省略してもよい。 In the case where the lower electrode has sufficient strength, the use of the base material may be omitted as appropriate.
 本発明の配線積層構造体の用途は、格別限定されず、絶縁層を介して積層された下部電極と上部電極とを、絶縁層に設けられたコンタクトホールを介して接続する際に好適に用いることができる。特に好ましい用途としては、例えば、フレキシブルプリント基板、プリント回路板(単にプリント基板ともいう)、薄膜トランジスタ、集積回路等が挙げられる。 The use of the wiring laminated structure according to the present invention is not particularly limited, and is suitably used when a lower electrode and an upper electrode laminated via an insulating layer are connected via a contact hole provided in the insulating layer. be able to. Particularly preferred applications include flexible printed circuit boards, printed circuit boards (also simply referred to as printed circuit boards), thin film transistors, integrated circuits, and the like.
 図10は、配線積層構造体を備えた薄膜トランジスタの一例を概念的に説明する断面図である。 FIG. 10 is a cross-sectional view conceptually illustrating an example of a thin film transistor provided with a wiring laminated structure.
 図10に示す薄膜トランジスタは、基材2上にゲート電極9を備え、ゲート電極9上に絶縁層10を備え、更に絶縁層10上にソース電極11及びドレイン電極である下部電極3を備えている。即ち、ここでは、ドレイン電極が下部電極3に対応する。12は、ソース電極11及びドレイン電極(下部電極3)間に形成された半導体層である。 The thin film transistor shown in FIG. 10 includes a gate electrode 9 on a base material 2, an insulating layer 10 on the gate electrode 9, and a source electrode 11 and a lower electrode 3 that is a drain electrode on the insulating layer 10. . That is, here, the drain electrode corresponds to the lower electrode 3. Reference numeral 12 denotes a semiconductor layer formed between the source electrode 11 and the drain electrode (lower electrode 3).
 そして、ドレイン電極(下部電極3)上に絶縁層4を備え、該絶縁層4上に上部電極5を備えている。 The insulating layer 4 is provided on the drain electrode (lower electrode 3), and the upper electrode 5 is provided on the insulating layer 4.
 絶縁層4のコンタクトホール41内には、ドレイン電極(下部電極3)と上部電極5との導通を得るためのポスト電極6が設けられている。 In the contact hole 41 of the insulating layer 4, a post electrode 6 for obtaining conduction between the drain electrode (lower electrode 3) and the upper electrode 5 is provided.
 そして、ポスト電極6と上部電極5との間には、導電性インクによって形成された導電層7を介在させている。 Further, a conductive layer 7 made of conductive ink is interposed between the post electrode 6 and the upper electrode 5.
 これにより、ドレイン電極(下部電極3)と上部電極5との間の電気的な層間接続を確実なものとし、信頼性のある導通が得られる効果が奏される。 Thereby, the electrical interlayer connection between the drain electrode (lower electrode 3) and the upper electrode 5 is ensured, and an effect of obtaining reliable conduction is obtained.
 以上の説明において、一つの態様について説明された構成は、他の態様に適宜適用することができる。 In the above description, the configuration described for one aspect can be appropriately applied to other aspects.
 1:配線積層構造体
 2:基材
 3:下部電極
 4:絶縁層
  41:コンタクトホール
 5:上部電極
  51:開口
 6:ポスト電極
 7:導電層
 8:導電性インク層
1: Wiring laminated structure 2: Base material 3: Lower electrode 4: Insulating layer 41: Contact hole 5: Upper electrode 51: Opening 6: Post electrode 7: Conductive layer 8: Conductive ink layer

Claims (16)

  1.  下部電極と、該下部電極上に設けられた絶縁層と、該絶縁層上に設けられた上部電極とを備え、
     前記絶縁層にコンタクトホールが設けられると共に、該コンタクトホール内に前記下部電極と前記上部電極との導通を得るためのポスト電極が設けられ、
     前記ポスト電極と前記上部電極との間に、導電性インクによって形成された導電層を介在させた配線積層構造体。
    A lower electrode, an insulating layer provided on the lower electrode, and an upper electrode provided on the insulating layer,
    A contact hole is provided in the insulating layer, and a post electrode for obtaining conduction between the lower electrode and the upper electrode is provided in the contact hole,
    A wiring laminated structure in which a conductive layer formed of conductive ink is interposed between the post electrode and the upper electrode.
  2.  前記導電層と前記上部電極が同時に焼成されたものである請求項1記載の配線積層構造体。 The wiring laminated structure according to claim 1, wherein the conductive layer and the upper electrode are fired simultaneously.
  3.  前記下部電極は、基材に支持されている請求項1又は2記載の配線積層構造体。 The wiring laminated structure according to claim 1 or 2, wherein the lower electrode is supported by a base material.
  4.  前記基材は、フィルムである請求項3記載の配線積層構造体。 The wiring laminated structure according to claim 3, wherein the base material is a film.
  5.  下部電極上にポスト電極を形成する工程と、
     前記下部電極上に、前記ポスト電極の少なくとも一部を露出させるように絶縁層を形成する工程と、
     前記ポスト電極と接触するように、導電層を形成するための導電性インクを付与する工程と、
     前記導電性インクと接触するように前記絶縁層上に上部電極を形成する工程と、
     を有する配線積層構造体の形成方法。
    Forming a post electrode on the lower electrode;
    Forming an insulating layer on the lower electrode so as to expose at least part of the post electrode;
    Applying a conductive ink for forming a conductive layer so as to be in contact with the post electrode;
    Forming an upper electrode on the insulating layer in contact with the conductive ink;
    A method for forming a wiring laminated structure having:
  6.  下部電極上にポスト電極を形成する工程と、
     前記ポスト電極と接触するように、導電層を形成するための導電性インクを付与する工程と、
     前記下部電極上に、前記導電性インクの少なくとも一部を露出させるように絶縁層を形成する工程と、
     前記導電性インクと接触するように前記絶縁層上に上部電極を形成する工程と、
     を有する配線積層構造体の形成方法。
    Forming a post electrode on the lower electrode;
    Applying a conductive ink for forming a conductive layer so as to be in contact with the post electrode;
    Forming an insulating layer on the lower electrode so as to expose at least part of the conductive ink;
    Forming an upper electrode on the insulating layer in contact with the conductive ink;
    A method for forming a wiring laminated structure having:
  7.  下部電極上にポスト電極を形成する工程と、
     前記下部電極上に、前記ポスト電極の少なくとも一部を露出させるように絶縁層を形成する工程と、
     前記絶縁層上に、前記ポスト電極を露出させる開口を有する上部電極を形成する工程と、
     前記上部電極の前記開口を介して、該上部電極と前記ポスト電極とに接触するように、導電層を形成するための導電性インクを付与する工程と、
     を有する配線積層構造体の形成方法。
    Forming a post electrode on the lower electrode;
    Forming an insulating layer on the lower electrode so as to expose at least part of the post electrode;
    Forming an upper electrode having an opening exposing the post electrode on the insulating layer;
    Applying a conductive ink for forming a conductive layer so as to be in contact with the upper electrode and the post electrode through the opening of the upper electrode;
    A method for forming a wiring laminated structure having:
  8.  前記上部電極は、あらかじめ開口を有する形状にパターニングされた電極膜を転写することにより形成される請求項7記載の配線積層構造体の形成方法。 The method for forming a wiring laminated structure according to claim 7, wherein the upper electrode is formed by transferring an electrode film that has been previously patterned into a shape having an opening.
  9.  前記ポスト電極は、スクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷の何れかにより形成される請求項5~8の何れかに記載の配線積層構造体の形成方法。 9. The method for forming a wiring laminated structure according to claim 5, wherein the post electrode is formed by any one of screen printing, gravure printing, flexographic printing, and inkjet printing.
  10.  前記導電性インクは、インクジェット印刷により付与される請求項5~9の何れかに記載の配線積層構造体の形成方法。 10. The method for forming a wiring laminated structure according to claim 5, wherein the conductive ink is applied by ink jet printing.
  11.  前記上部電極は、転写印刷により形成される請求項5~10の何れかに記載の配線積層構造体の形成方法。 The method for forming a wiring laminated structure according to any one of claims 5 to 10, wherein the upper electrode is formed by transfer printing.
  12.  前記導電性インクは、前記上部電極を形成した後に焼成される請求項5~11の何れかに記載の配線積層構造体の形成方法。 12. The method for forming a wiring laminated structure according to claim 5, wherein the conductive ink is baked after forming the upper electrode.
  13.  前記下部電極は、基材に支持されている請求項5~12の何れかに記載の配線積層構造体の形成方法。 The method for forming a wiring laminated structure according to any one of claims 5 to 12, wherein the lower electrode is supported by a base material.
  14.  前記基材は、フィルムである請求項13記載の配線積層構造体の形成方法。 14. The method for forming a wiring laminated structure according to claim 13, wherein the substrate is a film.
  15.  下部電極上に、ポスト電極を形成するための導電性インクを付与する工程と、
     前記導電性インクの一部を乾燥させることにより、少なくとも表面の一部に前記導電性インクが残留するポスト電極前駆体を形成する工程と、
     前記下部電極上に、前記導電性インクの少なくとも一部を露出させるように絶縁層を形成する工程と、
     前記導電性インクと接触するように前記絶縁層上に上部電極を形成する工程と、
     前記上部電極を形成した後に前記導電性インクを焼成することにより、前記ポスト電極前駆体をポスト電極にする工程と、
     を有する配線積層構造体の形成方法。
    Applying a conductive ink to form a post electrode on the lower electrode;
    Forming a post electrode precursor in which the conductive ink remains on at least a part of the surface by drying a part of the conductive ink; and
    Forming an insulating layer on the lower electrode so as to expose at least part of the conductive ink;
    Forming an upper electrode on the insulating layer in contact with the conductive ink;
    Baking the conductive ink after forming the upper electrode to form the post electrode precursor as a post electrode;
    A method for forming a wiring laminated structure having:
  16.  前記ポスト電極を形成するための導電性インクは、インクジェット印刷により付与されることを特徴とする請求項15記載の配線積層構造体の形成方法。 The method for forming a wiring laminated structure according to claim 15, wherein the conductive ink for forming the post electrode is applied by ink jet printing.
PCT/JP2016/051185 2015-01-15 2016-01-15 Laminated wiring structure, and methdod for forming laminated wiring structure WO2016114400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569531A JPWO2016114400A1 (en) 2015-01-15 2016-01-15 Wiring multilayer structure and method for forming wiring multilayer structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005887 2015-01-15
JP2015-005887 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016114400A1 true WO2016114400A1 (en) 2016-07-21

Family

ID=56408939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051185 WO2016114400A1 (en) 2015-01-15 2016-01-15 Laminated wiring structure, and methdod for forming laminated wiring structure

Country Status (2)

Country Link
JP (1) JPWO2016114400A1 (en)
WO (1) WO2016114400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027022A1 (en) * 2018-07-31 2020-02-06 京セラ株式会社 Printed-wiring board and method of manufacturing printed-wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277750A (en) * 2007-04-30 2008-11-13 Samsung Electro Mech Co Ltd Method of manufacturing printed circuit board having embedded electronic component
WO2012128269A1 (en) * 2011-03-24 2012-09-27 株式会社村田製作所 Wiring substrate
WO2013031815A1 (en) * 2011-08-31 2013-03-07 株式会社フジクラ Multilayered circuit board manufacturing method
JP2014112722A (en) * 2014-03-03 2014-06-19 Dainippon Printing Co Ltd Method for manufacturing wiring board with built-in electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277750A (en) * 2007-04-30 2008-11-13 Samsung Electro Mech Co Ltd Method of manufacturing printed circuit board having embedded electronic component
WO2012128269A1 (en) * 2011-03-24 2012-09-27 株式会社村田製作所 Wiring substrate
WO2013031815A1 (en) * 2011-08-31 2013-03-07 株式会社フジクラ Multilayered circuit board manufacturing method
JP2014112722A (en) * 2014-03-03 2014-06-19 Dainippon Printing Co Ltd Method for manufacturing wiring board with built-in electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027022A1 (en) * 2018-07-31 2020-02-06 京セラ株式会社 Printed-wiring board and method of manufacturing printed-wiring board
JPWO2020027022A1 (en) * 2018-07-31 2021-08-02 京セラ株式会社 Printing wiring board and manufacturing method of printed wiring board
JP7366025B2 (en) 2018-07-31 2023-10-20 京セラ株式会社 Printed wiring board and method for manufacturing printed wiring board

Also Published As

Publication number Publication date
JPWO2016114400A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP4433796B2 (en) Method for producing pattern layer on substrate
US8334464B2 (en) Optimized multi-layer printing of electronics and displays
KR101184674B1 (en) Conductive ink for letterpress reverse printing
US7535107B2 (en) Tiled construction of layered materials
TWI334322B (en) Multilayer wiring structure and method of manufacturing the same,flat panel display and method of manufacturing the same , printed board , ceranic substrate , element substrate , and flat panel display device
US8596747B2 (en) Modular printhead for OLED printing
CN102334392B (en) The manufacture method of electronic unit and the electronic unit manufactured by the method
US8327534B2 (en) Method of fabricating printed circuit board assembly
WO2007114342A1 (en) Method of manufacturing electronic part
Kitsomboonloha et al. MHz‐Range Fully Printed High‐Performance Thin‐Film Transistors by Using High‐Resolution Gravure‐Printed Lines
JP5073194B2 (en) Flat panel display and manufacturing method thereof
JP4760844B2 (en) Electronic component manufacturing method and electronic component manufactured by the method
WO2016114400A1 (en) Laminated wiring structure, and methdod for forming laminated wiring structure
JP5219612B2 (en) Semiconductor through electrode forming method
JP2011054620A (en) Method of manufacturing multilayer wiring board
Reinhold et al. Inkjet printing of electrical vias
JP2019186251A (en) Thin film capacitor and semiconductor power module including the same
JP2011014829A (en) Patterned film, and method of forming the same
US9713268B2 (en) Manufacturing method for electronic device
JP2004207510A (en) Multilayered circuit board and manufacturing method thereof
WO2015136900A1 (en) Method for forming wiring line
JP6620556B2 (en) Functional material lamination method and functional material laminate
JP6233738B2 (en) Thin film formation method
JP2011003805A (en) Method of manufacturing wiring board and wiring board
WO2018150916A1 (en) Thin-film transistor array and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737471

Country of ref document: EP

Kind code of ref document: A1